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Abstract

This thesis deals with the problem of non-baryonic dark matter (DM), which
according to the standard model of cosmology is necessary to explain rota-
tion curves of galaxies, the movement of galaxy clusters and the formation
of structure in the early universe. The thesis consists of four introductory
chapters and then five papers.

The thesis starts with a brief introduction to cosmology and evidence
for the existence of non-baryonic dark matter. The following chapter gives
some additional explainations and results concerning the topic of the three
first papers, namely an application of the neutralino from the minimal super-
symmetric model (MSSM) as an implementation of superheavy dark matter
(SHDM).

SHDM was introduced in a paper of Chung, Kolb and Riotto, and is a
non-thermal relic which could be produced by e.g. gravitational mechanisms
at the end of inflation. The theory has the advantage that the correct dark
matter abundance ), ~ 1 is generated quite independently of the details of
concrete particle physics, provided that the dark matter particle is stable and
superheavy, of order 10'® GeV. On the other hand, a disadvantage is that
most SHDM candidates have no tree-level interactions with standard model
(SM) particles and would hence be difficult to observe. Moreover, weak
interactions generically become strong for masses m, > my, which infers
non-perturbativity. An exception to this is softly broken supersymmetry
(SUSY), in particular the MSSM, which remains perturbative for all, also
superheavy, masses. The conclusion is that superheavy MSSM allows us to
calculate the properties of SHDM. We explore this possibility in papers I-111:

Paper I proposes the neutralino as a well-suited candidate for SHDM,
as described above. Moreover, it lays the foundation for the other papers
by calculating relevant Feynman amplitudes, energy relaxation times and
cross-sections.

In paper II we study the formation and evolution of superdense dark
matter clumps. The smallest DM objects in the universe are called clumps
and they are produced first. Being produced very early during the radiation
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dominated epoch, superdense clumps evolve as isolated objects. They do
not belong to hierarchical structures for a long time after production, and
therefore they are not destroyed by tidal interactions during the formation
of larger structures. Superdense clumps cannot be composed of standard
neutralinos, since their annihilations would overproduce the diffuse gamma
radiation. On the other hand, superdense clumps (consisting of e.g. SHDM)
can be observed by gamma radiation from DM annihilations and by gravi-
tational wave detectors, while the production of primordial black holes and
cascade nucleosynthesis constrain this scenario.

When we in Paper III are using the neutralino as candidate for the SHDM,
we find that free-streaming allows the formation of DM clumps of all masses
down to ~ 260m, in case the neutralino is a Bino. This low-mass cutoff
increases the diffuse flux of ultrahigh energy (UHE) particles produced by
annihilations. Another effect is the formation of superdense clumps, in which
the annihilation rate can be strongly enhanced. In the case of a Higgsino,
the annihilation signal is enhanced by the Sommerfeld effect. As a result,
annihilations of superheavy neutralinos in dense clumps may lead to observ-
able fluxes of annihilation products in the form of UHE particles, for both
cases, Binos and Higgsinos, as the lightest supersymmetric particles.

Chapter 3 provides a background for the topic of paper IV. Here we
present an experiment which observed a surplus in the flux of galactic
positrons, the so-called PAMELA excess. A corresponding surplus in the flux
of antiprotons was not observed. This has led to phenomenological models
extending the SM with DM in the TeV range, where the DM at tree-level
couples to electrons (and positrons) only. Usually, predictions of annihilation
rates of DM into stable particles in these models include tree-level processes
and electromagnetic bremsstrahlung, but not electroweak bremsstrahlung.
We show that the electroweak bremsstrahlung corrections are substantial,
and should be included. Moreover, we derive upper limits on (ov) of DM
models where the DM annihilates solely into electrons or neutrinos at tree-
level. In chapter 3 we also show some figures not included in paper IV, and
finally we perform an additional calculation relevant to this paper.

Finally, chapter 4 in the introduction serves as a comment to paper V.
First we discuss how a N-Higgs-doublet model (NHDM) can provide a dark
matter candidate by letting one of the doublets be "inert": The inert doublet
doesn’t couple directly to fermions, and has no vacuum expectation value.
Hence, the lightest particle of the inert doublet becomes stable, and could
be a good DM candidate. In this chapter we also show that there is no
discrete symmetry we can impose on the NHDM Lagrangian discussed in
paper V, which removes certain troublesome SO(4)-violating terms (and only
them). In paper V we analyze the symmetries of the NHDM, and also state a
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mass degeneration result, which says that the mass spectra of the C-odd and
charged sectors will be (exactly) degenerate in the limit ¢’ — 0, if we have
vacuum alignment, the Higgs potential is C-invariant, and the aforementioned
troublesome terms are set to zero.

In summary, we have in this thesis studied the features of some hypothet-
ical elementary particles which possibly could constitute (parts of) the dark
matter. Moreover, we have studied how they could be detected by observa-
tions of the by-products of their annihilations in the galaxy. Future surveys
and experiments will have to decide if any of these DM candidates have a
right to live.
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Chapter 1

Dark matter

The Lambda-Cold Dark Matter (ACDM) model of cosmology is often referred
to as the standard model of big-bang cosmology. The model attempts to ex-
plain the existence and temperature fluctuations of the cosmic microwave
background (CMB), the large scale structure and motion of galaxies and
galaxy clusters, the synthesis of light elements as hydrogen, helium and
lithium, and also the accelerating expansion of the universe observed in the
light from distant galaxies and supernovae. It is the simplest model that is
in general agreement with observed phenomena.

The universe is assumed to be spatially homogeneous and isotropic at
large scales—scales comparable with the observable universe. This is the
so-called cosmological principle. The metric for a space which is spatially
homogeneous and isotropic is the maximally-symmetric Robertson-Walker
(RW) metric,

dr?

1 — kr?

ds® = dt* — a*(t) ( + 72df* + r? sin® 0d¢2) (1.1)

where (t,7,6,¢) are the comoving coordinates, a(t) is the cosmic scale factor
and with an appropriate rescaling of the coordinates x can be chosen to be
—1,0 or +1 for spaces of negative, constant or positive spatial curvature,
respectively. Since the universe is spatially homogeneous and isotropic, the
scale factor a(t) can only be a function of time. The time coordinate of (1.1) is
the proper time measured by an observer at rest in the comoving coordinates
(i.e. (r,0,¢) = constant), and observers at rest in the comoving frame stay
at rest, that is, (r,0,¢) remains constant (hence the term "comoving"). It
is often convenient to express the metric (1.1) in terms of conformal time 7,
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which is defined by dn = dt/a(t), and

d 2
ds* = a*(n) (dn2 1 _Tng — 7r2df? — r? sin® 9dq§2) : (1.2)
The redshift z is defined
L= (1.3)
Vv

where 11 and vy are the frequencies of the emitted and observed photon,
respectively. For the metric (1.1) we get
v a
l4+z===2 (1.4)
V9 aq
where ay and a; is the scale factor of the universe at the time of observation
and emission, respectively.
The dynamics of the expanding universe only appears implicitly in the
time dependence of the scale factor a(t) of the RW metric. To make the time
dependence of the scale factor explicit, one must solve the Einstein equations

Gpu = SWGTMV + Ag/u/» (15)

where G, is the Einstein tensor, 7}, is the stress-energy tensor and A is a
cosmological constant. In the case of the RW metric T, = diag(p,p,p,p),
where p is the energy density and p is the isotropic pressure. The pu = 0
component of the conservation of stress energy (74 = 0) for the stress
energy tensor of a perfect fluid yields the 1st law of thermodynamics (for
adiabatic evolution)

d(pa’) = —pd(a®). (1.6)

For the simple equation of state p = wp, where w is assumed to be constant
with time, eq. (1.6) gives us

p oc a 30T (1.7)

for a single component universe. On the other hand, the u = v = 0 part of
Einstein equations for the RW metric with a perfect fluid source, yields the

Friedmann equation
a\> Kk 871G
— — =—0. 1.8
(8) + 5= (18)



The energy density p is the energy density contributed by all the components
of the universe, including a possible cosmological constant. The ratio a/a =
H(t) is called the Hubble parameter and the Hubble constant H, is the
present value of this expansion rate. For early times when a is small, one can
neglect the cosmological and curvature terms [the latter as long as w > —1/3,
which makes p more singular, c¢f. (1.7)] of the Friedmann equation (1.8).
Combining this with with eq. (1.7) we get

alt) o t50Tw (1.9)
for a single-component universe. Then we for a radiation-dominated (early)
universe have w = 1/3 and hence p < a=* and

1 1
RD: a(t)xtz H(t)= o (1.10)
while for a matter-dominated universe w = 0 (pressureless gas) gives p oc a3
and if K =0
2 2
MD: a(t) octs  H(t) = gy (1.11)
If the universe is dominated by a cosmological constant (w = —1) we get p =

PA = ﬁ = constant, and the Friedmann equation leads to an exponential
expansion of the universe

AD:  a(t) oceVi! He:vzi (1.12)

The Friedmann equation (1.8) can be rewritten as

K
H?2a?

=0-1 (1.13)
where 2 and the critical energy density p. equals

p 3H?
=", =2
Pe Pe = Snc

(1.14)

Equation (1.13) is valid for all times, although © and p. changes as the uni-
verse expands. Moreover, we see from eq. (1.13) that if Q2 > 1 at one time,
) is always greater than one. The same is true for the cases 2 = 1 and
) < 1. The spatial geometry of the universe in RW models as the ACDM
model is hence dictated by the energy content of the universe: If the energy
density p is (at some time) greater than the critical density p., x has to equal
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+1 and the universe has positive spatial curvature and has hence a spherical
spatial geometry. Such a universe is finite and is called "closed". If p < p.
then k = —1 and the spatial curvature of the universe is negative and the
corresponding spatial geometry hyperbolic. Such an universe is infinite, and
is called "open". Finally, if p = p. then x = 0 and the spatial geometry of
the universe is flat. Such an universe is also infinite. In the (benchmark)
ACDM model the energy content of the universe is at the critical density. In
this scenario the universe is infinite. Both dark (non-luminous) and luminous
matter, radiation and the so-called dark energy (often identified with a cos-
mological constant A, hence the A in ACDM) contributes to the total energy
density. At the present time the energy content of the universe is believed
to be summed up of about 73% dark energy, 23% dark matter, 4% luminous
("baryonic") matter and almost one part of a ten thousand radiation.

We will in this thesis focus on the second most common component, the
dark matter.

1.1 The existence of dark matter

In this section we will present some arguments for the existence of dark
matter.

1.1.1 Dark matter in galaxies

Assume a star is in a circular orbit around the center of its galaxy. Let
the distance to the center be r and let the orbital speed be v. Then the
acceleration a of the star is given by

a=—, (1.15)
directed towards the center of the galaxy. If the acceleration is provided by
the gravitational attraction of the galaxy, the acceleration equals

m(r)

a=G

. (1.16)

where m(r) is is the mass contained in the sphere of radius r around the center
of the galaxy, and G is the gravitational constant. We are here assuming the
distribution of the mass is spherically symmetric. When we consider spiral
galaxies we only get a small correction to this expression for the gravitational
acceleration. Egs. (1.15) and (1.16) then gives us the relation between orbital
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speed v and the mass m(r),

m(r)

v=1/G

. (1.17)

Now, the surface brightness I of the disk of a spiral galaxy typically falls off
exponentially with the distance from the center

I(r) = I(0) exp <—1> , (1.18)

T's

where the scale length r, typically is a few kiloparsecs. Hence, a few scale
lengths from the center, the mass of the stars inside  becomes approximately
constant. If stars contributed all or most of the mass in a galaxy, the orbital
speed of the stars would fall as

1
VX —= (1.19)

T
at large radii (r 2 3ry), cf. (1.17). The relation (1.19) between orbital speed
and radius is referred to as "Keplerian rotation" (as Kepler found for the
solar system, since its mass is strongly concentrated toward the center).

In contrast, measurements of orbital speeds of stars in spiral galaxies
show that the orbital speed is not decreasing in a Keplerian way, but is
approximately constant at large radii, see Fig. 1.1. Since the orbital speed
of stars and gas at large radii is greater than it would be if stars and gas was
the only matter present, it is consistent to propose the presence of a dark
halo within which the visible stellar disk is embedded.

1.1.2 Dark matter in galaxy clusters

Suppose that a cluster of galaxies consists of N galaxies, and that each of
them can be approximated as a point mass m;, with position ¥ and velocity
z. Galaxy clusters are gravitationally bound objects, not expanding with
the Hubble law. They are small compared to the horizon size dp, (the
largest distance a photon can travel during the age of the universe); the
radius of the Coma cluster, e.g. , is & 3 Mpc ~ 0.0002dy,,. The galaxies
within a cluster are moving at nonrelativistic speeds; the velocity dispersion
(the range of velocities about the mean velocity) within the Coma cluster
is 0coma ~ 900km s~ ~ 0.003c. Hence we can treat the dynamics of the
Coma cluster, and other clusters, in a Newtonian manner.
The potential energy of the cluster can be written
2
W= - (1.20)

Th
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150 — -

30

Radius (kpc)

Figure 1.1: Rotation curve for the spiral galaxy NGC6503. The dashed and
dotted graphs are the contribution to the orbital speed due to the observed

disk and gas, respectively, and the dot-dashed curve is the contribution at-
tributed to the dark halo [10].

where M = > m; is the total mass of all the galaxies in the cluster, « is
a numerical factor of order unity that depends on the density profile of the
cluster, and rj, is the half-mass radius of the cluster, that is the radius of a
sphere centered on the cluster’s center of mass, containing a mass M /2. For
observed clusters of galaxies, it is found that a =~ 0.4 for a typical density
profile of a cluster [1].

The kinetic energy associated with the relative motion of the galaxies in
the cluster can be expressed as

K = IM{v?), (1.21)
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where
1 )
20 502
(v*) = <7 ;mi‘xi’ (1.22)

is the mean square velocity of all the galaxies in the cluster.
The moment of inertia of the cluster is defined as

I=> myla (1.23)

Then we can derive
[ =2W +4K, (1.24)

a result which is known as the virial theorem. When I = constant, the
steady-state virial theorem is

K=——. 1.25
: (1.25)
To ensure the moment of inertia is constant, we have to assume that we are
using a coordinate system were the center of mass of the cluster is at rest,
in addition to the assumption that the cluster does not expand or contract.
From this we derive

Moy = gGM2

= 1.26
2 2 Th ’ ( )

and then we can use the virial theorem to estimate the mass of a cluster of
galaxies, or any other self-gravitating steady-state system:
(v )rn

M = el (1.27)
Assuming that the velocity dispersion in a cluster is isotropic, redshift mea-
surements of hundreds of galaxies in the Coma cluster dictates its mean
square velocity to be (v?) = 2.32 x 10 m?s™2. Moreover, assuming that
the mass-to-light ratio is constant with radius, the sphere containing half the
mass of the cluster will be the same as the sphere containing half the lumi-
nosity of the cluster. If we additionally assume the cluster is spherical, the
observed distribution of galaxies within the Coma cluster indicates a half-
mass radius 7, &~ 1.5 Mpc ~ 4.6 x 10 m [1]. Inserting these numbers in
eq. (1.27) yields

Meoma = 4 x 10%kg ~ 2 x 10" M. (1.28)
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Hence, observations show that less than two percent of the Coma cluster
consists of stars,

MComa,* ~ 3 X 1013M@7 (1.29)
and only ten percent consists of hot, intracluster gas,
MComa, gas ~ 2 X 1014M@, (130)

which suggests the presence of almost 90% dark matter. This concludes
Fritz Zwicky’s argument from 1933 for the existence of dark matter in galaxy
clusters [2].

The presence of dark matter in galaxy clusters is confirmed by the obser-
vations of hot, x-ray emitting intracluster gas (i.e. gas between the galaxies in
the cluster). If there were no dark matter to anchor the gas gravitationally,
the hot gas would have expanded beyond the cluster on time scales much
shorter than the Hubble time. If the gas is supported by its own pressure
against gravitational infall, it must obey the equation of hydrostatic equilib-
rium,

dp _ GM(r)p(r)
- 1.31

dr r2 ’ (1.31)
where p is the pressure and p the density of the gas, while M(r) is the total
mass inside a sphere of radius r. The pressure p is given by the perfect gas
law

T

— (1.32)

p

where T is the temperature of the gas and m, is the (effective) mass of the
particle species constituting the gas. Combining eqs. (1.31) and (1.32) gives
us an expression for the total mass of the cluster, as a function of radius,

M) —kT(r)r (dlogp dlogT
r) = .
Gmy dlogr = dlogr

(1.33)

Equation (1.33) gives an alternative way of calculating a cluster’s total mass,
which is in general consistent with cluster masses calculated by eq. (1.27)
above. Moreover, gravitational lensing observations of galaxy clusters allow
direct estimates of the gravitational mass based on its effect on light from
background galaxies. Cluster masses calculated by the means of gravitational
lensing are also in general agreement with the masses found by applying the
virial theorem to the velocities of the galaxies in the clusters [1].
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Figure 1.2: Hot gas detected in x-rays (by the Chandra satellite) is seen as
two pink clumps in the image and contains most of the "normal" (baryonic)
matter in the two clusters. The bullet-shaped clump on the right is the
hot gas from one cluster, which passed through the hot gas from the other
larger cluster during the collision. An optical image (from Magellan and the
Hubble Space Telescope) shows the galaxies in orange and white. The blue
areas show where most of the mass in the clusters is found by gravitational
lensing. Most of the matter in the clusters (blue) is clearly separated from the
baryonic matter (pink), giving direct evidence that nearly all of the matter
in the clusters is dark [4].

Moreover, in the Bullet Cluster, lensing observations show that much of
the lensing mass is separated from the x-ray emitting baryonic mass [3|, as
seen in fig. 1.2. The hot gas in each cluster is here seen to be slowed by the
friction between the two gas clouds, during the collision. In contrast, the
dark matter is not slowed by the impact because it does (approximately, at
least) not interact directly with itself or the gas except through gravity, i.e. it
is collisionless. Therefore, during the collision, the dark matter clumps from
the two clusters moved ahead of the hot gas, producing the separation of the
dark and normal matter seen in the image. If hot gas was the most massive
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component in the clusters, such an effect would not have been seen. Instead,
this result shows that dark matter is required.

1.1.3 Dark matter in structure formation

Finally, we will consider a few more theoretical (and more model-dependent)
arguments for the existence of dark matter.

If the Universe consisted solely of baryonic matter, then the observed
anisotropies in the cosmic microwave background radiation are too small to
explain the observed structure of the present universe: Baryonic structure
formation via gravitational collapse can only begin when photons decouple
from the baryonic matter at zgec &~ 1100 (when protons and electrons merge
to neutral hydrogen), while the DM can collapse from matter-radiation equal-
ity on, i.e. at zeq ~ 10000: The CMB anisotropy is relatively small, of the
magnitude 67 /T ~ 107°, and this should be reflected by a similar frac-
tional variation in density dp/p in a universe with only baryonic matter,
0T /T = 3p/p for adiabatic fluctuations. On the other hand, dp/p should be
of the size dp/p ~ 10™* in a universe with only baryonic matter (on angular
scales corresponding to galaxies or galaxy clusters), to be consistent with
observed baryonic structure. A solution of this discrepancy is, as indicated
above, that a non-interacting dark matter fluid could start to collapse at
the time of matter-radiation equality (ze, ~ 10000) instead of at the time
of CMB decoupling (zgec = 1100). At zgec the dark matter fluctuations can
have grown to the necessary dp/p ~ 10~*, while the CMB temperature fluc-
tuations are stuck at 1075 as observed. This is so because photon-baryon
fluid density fluctuations are held at the value 10~° until decoupling, since
the photon-baryon fluid is not collisionless like the dark matter. Instead of
freely falling into the DM gravitational potential wells, the photon-baryon
fluid oscillates, due to the pressure gradient generated when the fluid starts
to fall into the potential wells. This phenomenon is called baryon acous-
tic oscillations (BAQ), since they represent a type of standing sound wave
in the photon-baryon fluid. After decoupling the neutral baryonic matter,
being pressureless, is free to collapse into the potential wells of the DM.

Moreover, performing a detailed analysis of the observed anisotropies in
the CMB, the fractional contribution of baryons to the present critical density
pe should be [12]

Qh2 = (0.02273 £ 0.00062), (1.34)

where h is a parametrization of the Hubble constant, Hy = h x 100 km s~!

Mpc~t, so h =~ 0.7. On the other hand, the corresponding total fractional



1.2. THE FREEZE-OUT OF DARK MATTER 11

contribution of matter to p. is, again from the CMB anisotropies, found to
be

Q,,h* = 0.1326 4 0.0063 (1.35)

both results at 68% confidence levels (CL). The discrepancy between
egs. (1.34) and (1.35) suggests the presence of non-baryonic matter. The
amount, of cold, non-baryonic dark matter is from the CMB anisotropies
found to equal [12]

Qcpmh? = 0.1099 + 0.0062, (1.36)

at 68% CL. The value of €, from (1.34) confirmes the estimate (that is,
theoretical prediction and observed light element abundance combined) from
standard Big-Bang nucleosynthesis (BBN) [13]:

0.017 < Qh? < 0.024, (1.37)

at a 95% confidence level. Hence, baryons alone cannot ensure Q = Qa1 ~ 1,
which is the value predicted by inflation models and the value indicated
by a combination of supernova data and the CMB anisotropies [13]. More
specific, baryons alone cannot account for the value of €, consistent with
the mentioned supernova data and the CMB anisotropies, so 2, should have
a significant non-baryonic component, see fig. 1.3.

Altogether, the existence of dark matter seems to be confirmed by a range
of both astrophysical observations and theoretical considerations.

1.2 The freeze-out of dark matter

At a sufficiently early moment the universe was hot enough that matter
was dissociated into its most basic constituents - the elementary particles.
The abundance of the various kinds of elementary particles where, for all
known particles, set by the conditions of thermal equilibrium. (Hypothetical
particles like axions and superheavy dark matter are examples of particles
which, if they exist, have never been in thermal equilibrium).

We will now, as an example, consider the lightest supersymmetric particle
(LSP) as the dark matter. Supersymmetry (SUSY) is a proposed symmetry
between bosons and fermions, such that for each boson (or more precise
each degree of bosonic freedom) there is a corresponding fermion (fermionic
degree of freedom) with the same properties as the boson, and vice versa.
Since e.g. no scalar electrons are found in nature, the symmetry somehow
has to be broken, inferring that the supersymmetric partners of the standard



12 CHAPTER 1. DARK MATTER

model particles have failed to be discovered because of their heavy masses.
One motivation for (weak scale) SUSY is that it stabilizes the Higgs mass
from radiative corrections that are quadratically divergent in the Standard
Model (SM), and hence solves the so-called hierarchy problem. The minimal
supersymmetric model (MSSM) is a minimal variant of SUSY (minimal in
the sense that it adds a minimum of new particles to the SM).

The neutralinos y;, ¢ = 1,...,4 are linear combinations of the super-
symmetric partners of the two Higgses necessary to construct the MSSM, in
addition to the photon and the Z-boson. Hence the neutralinos are neutral,
as the name indicates. In this section we take the lightest neutralino x to
be the LSP and the dark matter. In the MSSM the LSP is stable, due to
the imposed R-parity of the model. R-parity is a Z,-symmetry acting on the
MSSM fields, and can be defined as

R = (—1)*t35+L (1.38)

where s is spin, B is baryon number, and L is lepton number. All SM
particles have R-parity 1 while supersymmetric particles have R-parity —1.
The R-parity ensures that a SUSY particle cannot decay into SM particles
only, and by this the LSP becomes stable. Moreover, R-parity also ensures
the longevity of the proton, which otherwise could decay too fast through
supersymmetric channels.

Then, in the early universe the lightest neutralino y and e.g. neutrinos
would interact through reactions like

XX ¢ v (1.39)

and
vx > VY. (1.40)

Both processes are mediated by heavy messengers, namely the Z-boson and

sneutrinos, and hence the interactions have a limited range. In thermal equi-

librium the number density of these particles is such that these reaction rates

of, e.g. , creation and annihilation rates balance each other. Reactions of the

type (1.39) change the number density n, of neutralinos, while reactions of

the type (1.40) only exchange energy between them and the thermal plasma.
As the universe expands, the temperature drops according to

a(to)
T(t)="1T(t , 1.41
0 =10 |50 (141
where a(t) is the scale factor of the universe, and ¢, is the present age of
the universe. The number of reactions per unit time, I', decreases with tem-
perature for processes such as (1.39) and (1.40), because both the thermally
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averaged cross-sections (ov) and n, decrease with 7. If the rate I' drops
below the expansion rate of the universe,
(T
['(t) < H(t) = M, (1.42)
a(t)

where H (t) is the Hubble parameter, the reaction is not longer fast enough to
maintain thermal equilibrium: When condition (1.42) is fulfilled, the specific
reaction freezes out. This is a rule of thumb. The freeze-out of the number-
changing reaction (1.39) is called chemical freeze-out and the freeze-out of
energy-exchanging reaction (1.40) is called kinetic freeze-out. The interaction
rate I' of eq. (1.42) for the reaction (1.39) can be expressed as

I' = n, (ov), (1.43)

and where n, is the number density (per volume) of the neutralino, and
(ow) is the annihilation cross-section of neutralinos to neutrinos (or some
other particle interacting with the neutralino) times relative velocity v of the
annihilating particles, thermally averaged. This averaging is necessary, since
the annihilating particles have random thermal velocities and directions. We
will come back to this thermal averaging below.

The criterion (1.42) for freeze-out can be seen to be plausible by regarding
a (rather realistic) interaction rate I oc 7™: Then the number of interactions
a species has from the time ¢ onward is

N = /OO ['(x)dx. (1.44)

Now T o< a™*(t), and if we take the universe to be radiation dominated, the
scale factor a(t) oc t'/2. By this T™ o< t~"/? and hence N = 2t~"/?*1 /(n —2),
hence

I(t)

N=Tom =2

(1.45)

and we see that for n > 2 a particle interacts less than one time subsequent
to the time when I' = H. Now I' < H is not a sufficient condition for
a departure from thermal equilibrium: A massless, non-interacting species
once in thermal equilibrium will forever maintain an equilibrium distribution
with 7" oc a=*(¢) [15]. For instance, the photons of the cosmic background
radiation are neither in chemical nor kinetic equilibrium with any particle
species, still the radiation is in thermal equilibrium.
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1.2.1 The chemical freeze-out

After the chemical freeze-out (1.39), the neutralino abundance ~ n, /n, is
fixed, while it would be exponentially suppressed if neutralinos would stay
in chemical equilibrium,

Nx

X o T3 2T (1.46)
Ty

Hence, we have a surviving abundance, a so-called relic abundance, of the
neutralino because of the freeze-out. When the neutrlino is stable, as it is
in the minimal supersymmetric model (MSSM), there will be a relic abun-
dance around today, which could provide an explaination of the dark matter.
The same would be true for any stable, neutral weakly interacting parti-
cle (WIMP) [16]. In fig. 1.4 we see how relic abundances arise at chemical
freeze-out.

To calculate relic abundances, we have to study how the number density
n of the regarded particle species evolves with time. Considering the example
of the neutralino, the rate of the reaction (1.39) is the same in both directions
under exact thermal equilibrium, and the number density n, (7") will equal the
equilibrium value, nY?(T'). When the actual number density n,(7') is larger
than the equilibrium density, the reaction will go faster to the right, and
the neutralinos will annihilate faster than they are created. The annihilation
rate of y should be proportional to <0XX_W9U>TL§(, but the x’s are also created
by the inverse process at a rate proportional to (nY?(T))?. The resulting
equation governing the evolution of the number density n, is

% +3Hn, = — (0 su0) (ni - (nF‘Q(T))Q). (1.47)
The left-hand side comes from (1/a®)(d/dt)(n,a?), and the term proportional
to 3H expresses the dilution effect of the expansion of the universe. Equation
(1.47) was introduced in [17]. A derivation of eq. (1.47) from the Boltzmann
transport equation in an expanding background can be found in [18] or [15].

The thermally averaged annihilation cross-section times relative velocity
(o) should be defined [18, 19]

(o) = 5 / 1 pa f () f (w2) o, (1.48)

where ov,e is just the usual annihilation cross-sections times relative velocity
of the two annihilating particles, see e.g. [21]. The function f(w), w =
\/P? + m?2, is the energy distribution of the annihilating particles, in the
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case of the neutralino (a fermion)

1
et + 1

fx(w) = (1.49)

where the chemical potential ;# = 0 since the neutralino is a Majorana particle
[20]. Moreover,

nkQ = I 3 w .
0 s [ s (1.50

where g, = 2 represents the two polarization degrees of freedom of the neu-
tralino. When the freeze-out temperature 7% is much less than the mass of
the dark matter, Ty < m,, the DM is non-relativistic at freeze-out. Then
the Fermi distribution (1.49) can be well approximated by an ordinary Boltz-
mann distribution e"7. We call DM which is non-relativistic at freeze-out
cold dark matter (CDM). The typical WIMP x freezes out at T; ~ m, /20
[5, 19], and is hence an example of a CDM particle. This suggests that the
total annihilation cross section times relative velocity can be expanded in

terms of & = T/M (or (vZ;)). The first terms of the expansion are given by
[19]

1 3 3
(ov) = — (w - E(Qw —w' )z + §(16w — 8w’ + bw'")z?
m
X
5
— (80w — 15w’ + 3w’ — Tw")a’ + 0(#)) . (151)

s/4m2 =1

where primes denote derivatives with respect to s/4m? (rather than s itself),
and w and its derivatives are all to be evaluated at s/4m§< = 1. The function
w is given by

W = W1 Wy O Vel (1.52)

where w;, 1 = 1,2 are the total energies of the two annihilating particles.
Since vy is relative velocity each x move with the speed v, /2 in the center-
of-mass frame. Moreover, the leading (z°) term can be identified with s-wave
annihilation, the term proportional to x with p-wave annihilation and so on.
In case s-wave annihilation is unsuppressed it is enough to regard the leading
term: In the center-of-mass frame the differential cross section is

do 1 D3| 9
— = — | M|, 1.53
(dQ) CoM 6472 (wy + wa)? |pi] M ( )
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which for two identical, non-relativistic particles y annihilating becomes

do 1 P3|
— - M|?, 1.54
(dQ) com 29672 my Vel /2 M (1.54)
since (w) +ws)? = s = 4m2, all equalities in this case of annihilating xs being
exact. In the center-of-mass frame the outgoing momenta p3 = —pz, and for
non-relativistic neutralinos we get
(m3 —m3)? — 8 (m3 + mj) m3
my, = |p3| = 4/1 X m,, 1.55

which in the case the outgoing particles have identical mass becomes

B=,]1- % (1.56)

X

We now assume that |M|? is independent of the scattering angle, like it is (to
leading order) in the annihilations in part C of paper I. Integrating eq. (1.54)
over the solid angle €2 and multiplying by v, then gives us

B

7 rel = 327rm§<

M2 (1.57)
Moreover, inserting into the leading term of eq. (1.51) yields

M|+ O(x), (1.58)

o) = 327rm3<

where v on the left hand side refers to v, as usual.
We will also calculate a typical (approximate) relic abundance of a WIMP
X. Using the Hubble-expansion rate for the radiation dominated early uni-
verse,
T2
H(T) =1.66 \/ Neg—, (1.59)
mp]

where N is the effective number of relativistic degrees of freedom and
mp) = \/hc/G ~ 1.22 x 10" GeV is the Planck mass. Moreover, if we dis-
regard the possibility of exotic, entropy-producing phenomena, the entropy
per comoving volume in the universe is constant, so that n, /s remains con-
stant, where s ~ 0.4N.4T3. Combining this with eq. (1.59) and the freeze-out
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condition n, (0v) = ehemical = H, we get

(%), = (%), ~ o
s /0 s/f  mympy/Neg(ov)
1078

My (o)
GeV 10—27¢m3s—1

12

, (1.60)

where the subscripts 0 and f denotes "today" and "freeze-out", respectively.
Here the unit GeV? has to be converted to cm™2 and a factor ¢ has to be
inserted to get the expression in metric units (n,/s is dimensionless). The
current entropy density is so ~ 4000 cm ™3 while the critical energy density
today is p. ~ 107°h? GeV c¢cm~3. Hence the present mass density of the
WIMP yx in units of the critical density is

myn 3x 107 % cm3s!
O h?= 22X~ . 1.61
X pe/h? ( (ov) ) (1.61)

The parameter h is included to be able to correct expressions when better
measurements are available (from current WMAP data h = 0.735 + 0.032
while the best estimate combined with other cosmological data is h = 0.708 +
0.016, according to NASA’s webpage). Now we will make an estimate of the
WIMP cross-section and hence calculate an estimate for the relic WIMP
abundance: (ov) ~ a?/s ~ 107%cm3s™! for a ~ 1072 (the fine structure
constant) and s ~ 100GeV? for a WIMP with mass at the weak scale (defined
by the vacuum expectation value (VEV) v of the Higgs field, v = 246 GeV).
Inserting for (ov) in eq. (1.61), gives us €, =~ 0.06 which is remarkebly
close to the value required to account the DM in the universe (£, ~ 0.2),
remembering there is no apriori reason for a weak-scale interaction to have

anything to do with a cosmological mass density [5]. This is the so-called
WIMP miracle.

1.2.2 The kinetic freeze-out

The kinetic freeze-out generally appears some time later than the chemical
one. Before the kinetic freeze-out the reaction (1.40) is still efficient, and the
neutralinos and the neutrinos stay at the same temperature. After kinetic
freeze-out, the two particle species will evolve with different temperatures.
The inverse of the number of reactions per unit time for the reactions of the
type (1.40), Tinetic 1s called the energy relaxation time,

Trel = Diinetic (t): (1.62)
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Hence, from (1.42), the DM particles goes out of kinetic equilibrium, when
Trel becomes larger than the Hubble time H~'(¢). Afterwards, the neutralinos
and neutrinos effectively evolve separately and can have different tempera-
tures: While relativistic particles like neutrinos have an equilibrium distri-
bution with 7, ~ T, ~ 1/a(t), the energy of non-relativistic particles as cold
dark matter (CDM) scales as E o« p? o< (1/a(t))?. We define t4, the decou-
pling time, as the time neutralinos go out of kinetic equilibrium, i.e. the time
when eq. (1.62) is satisfied.

We could have calculated the evolution of the neutralinos distribution
function by studying a Boltzmann equation analogous to eq. (1.47). But
we will instead use the criterion (1.42), i.e. T, > H'(f), and assume that
the neutralinos are in kinetic equilibrium until ¢ = ¢4, while they evolve

undisturbed after t = t;. The energy relaxation time can be defined as 7' =

' = |(AEy/At)/Ey| where (AE)/At) is the mean change of energy in one
scattering divided by the corresponding time between two scatterings, and
Er = (3/2)T is the mean kinetic energy of the non-relativistic neutralinos.
Hence we are not only taking the frequency of interactions into consideration,
but also the effect of the interactions, in terms of gained kinetic energy. Then
the enery relaxation time can be written

T = QEka/dQ/dwno ()VX (6p)? (1.63)

where (6p)? is the neutralino momentum obtained in one scattering, ng(w) is
the number density of relativistic fermions with one polarization and energy
w and Neg is the relevant relativistic degrees of freedom, weighted with the
relative size of their cross-section compared to a neutrino, cf. egs. (26) to
(28) of paper 1. Also note that the expression (6p)?/(2m,) is the change of
kinetic energy in one scattering for a non-relativistic neutralino.

Now, the free streaming length is the characteristic scale a weakly inter-
acting massive particle (WIMP) - i.e. the neutralino - is able to stream in the
time it takes for structure to form. The neutralinos will first after the time
of decoupling, ¢4, be able to stream free. The length scale is hence defined as

Ais = a(tp) /tto v (1.64)

a formula which both takes both the distance due to the particles velocity
and the distance due to expansion of the universe, into account.

If the free streaming length is larger than the considered length scale of
the density fluctuations (e.g. a galactic DM halo), then the free streaming
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WIMPs will tend to erase structures. Then the self-gravity of the density
fluctuation will be to small to form structure [7].

The large streaming lengths of Hot Dark Matter (HDM) models, have
made it hard to explain how structures like galaxies might have formed, and
these theories have been abandoned by most cosmologists in favor of the
CDM alternative [8].

Small-scale self-gravitating dark matter clumps (DMCs) may have been
formed in the early universe due to several mechanisms [6]. These fluctua-
tions in mass density, can explain structure formation. Nevertheless, these
density fluctuations are partially washed out by two processes: In the case
of neutralinos as the DM particle, the first is the neutralino diffusion due to
the scattering off neutrinos, electrons and positrons (and possibly also weak
gauge bosons, cf. eq. (5) in paper I11). This process is effective as long as the
neutralinos are in kinetic equilibrium with the cosmological plasma. Up to
the moment of decoupling t; all perturbations with mass

M < Mdiﬂ‘ (165)

are washed out. The second process is neutralino free streaming. Starting
later, at t > t; it washes out the larger perturbations with M < My, where
the free streaming cut-off mass Mg [9, 6] is defined in terms of the free
streaming length (1.64),

Mi() = Zp (A1), (1.66)

3
where py () = peqad,/a’(t). Then Mg determines My, the minimum clump
mass at the present,
Mmin - Mfs<t0)a (167)

where ty is the present. M., is hence the smallest mass of a DM clump,
and M, is a cut-off mass in the sense that it is the smallest of all possible
clump masses.
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Chapter 2

Superheavy dark matter

2.1 Production of SHDM by gravitational
mechanisms

In this section we will, following [11], argue how superheavy dark matter
(SHDM) could be produced by gravitational mechanisms in the expanding
universe, a production mechanism referred to in papers I-111.

For simplicity, consider a scalar field y corresponding to particles of mass
m, in the expanding universe. Let 1 denote conformal time, and a(n) the
time dependence of the expansion scale factor. Also assume for simplicity
that the universe is (spatially) flat. The scalar field can be expanded in
spatial Fourier modes as

2 ) dgik 4 R E T () o=k E
W) = [ s (e + dizone ™). @)

Here a;, and aL are creation operators, and hg(n) are mode functions that
satisfy the (i) normalization condition

hhls — WLk =i, (2.2)

where a prime indicates a derivative with respect to conformal time, and (ii)
the mode equation

hie(n) + wi(n)hi(n) = 0, (2.3)

where

"

W) = K+ m2a?(6¢ — 1)‘;. (2.4)

23
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The parameter ¢ is & = 0 for a minimally coupled field and £ = 1/6 for
a conformally coupled field. For a given complete set of positive-frequency
solutions hy(n), the vacuum of the field with x, i.e. the state with no x par-
ticles, is defined as the state that satisfies a;|05) for all k. Since eq. (2.3)
is a second order equation and the frequency depends on time, the normal-
ization condition is in general not sufficient to specify the positive-frequency
modes uniquely, contrary to the case of constant frequency wg, for which
hl(n) = e~ /\/2wq. Different boundary conditions for the solutions hy(n)
define in general different creation and annihilation operators a; and a,t, and
thus in general different vacua. For instance, solutions which satisfy the
condition of having only positive frequencies in the distant past,

h(n) ~ ape kT 4 Bret i for n — +o00. (2.5)
Here w,:f = lim, 1 wi(n). As a consequence, an initial vacuum state is
no longer a vacuum state at later times, which means particles are created,
because of the expansion.
The number density of x particles is given in terms of the Bogolubov
coefficient [y in eq. (2.5) by

1
™= e /d3k|ﬁk|2. (2.6)

These ideas have been applied to gravitational particle creation at the end of
inflation by [23] and [24]. Particles with masses m, of the order of the Hubble
parameter at the end of inflation, H; ~ 10~%Mp; ~ 10" GeV, may have been
created with a density which today may be comparable with the critical
density. Fig. 2.1 shows the relic density Q,h* of this SHDM as a function
of the mass m, in units of H;. Curves are shown for inflation models that
have a smooth transition to a radiation-dominated epoch (dashed line) and
a matter-dominated epoch (solid line). The third curve (dotted line) shows
the thermal particle density at temperature Ty = H;/2m. Also shown in the
figure is the region where the SHDM are thermal relics. It is clear that it is
possible for dark matter to be in the form of SHDM generated gravitationally
at the end of inflation, since the relic abundance Q, h? is generically of order
one when m, ~ Hj.

2.2 Additional SHDM formulas

Now we will present some Feynman amplitudes, couplings and eigenvectors of
the neutralino mass matrix relevant for our SHDM scenario, but that are not
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Figure 2.1: The DM abundance today shown as a function of the particle
mass for various models. H; is the Hubble parameter at the end of infla-
tion, T}y, is the reheating temperature and Mp; ~ 3 x 10! GeV is the Planck
mass. The long- and short-dashed lines correspond to inflationary models
that respectively end in a radiation- or matter-dominated epoch. The dotted
and solid lines are models that discontinously end in radiation- or matter-
dominated epochs. The dash-dotted line is a thermal distribution at the
Gibbons-Hawking temperature 7' = H; /27, while outside the shaded "ther-
malized" region the SHDM cannot reach thermal equilibrium. Taken from
[23].

included in papers I and III. Most of the Feynman amplitudes were omitted
since they are subdominant to other processes.

First, the eigenvectors of the neutralino mass-matrix A, eq. (3) in paper
L is in the limit my <K MSUSY given by

M7= (10 melen)_peGeei) ) )
M) = (0 1 —Cwmzlff‘iﬁ?“%) Cwmz,ffc@%sﬁ)) (2:8)
7 = (M, e ~dtamd Jomy ) @9
= (P M et didng ). @10
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where
(CB-FSB)C%V (—Mlca,—Mgsa,—l—u)(c/g—Sﬂ) s%,(ca—i—sB)
(cs + s5) < (n—M2)> p(p— M) (p—Mz) T (a2
0= G (2.11)
(03—5-55)05‘/ (—MlC%V—MQS%/V-FM)(Cﬂ—SB) S%/V(C@-‘rsg)
(s + s5) <_ (u—M2)2 (= M) (u—Ma) T (w2
b= 7 (2.12)
(526_1)0%/1/ CQ/B(Mlc%‘/JFMQS%‘/JFM) S%/Vv(525_1)
- — (pt+M2)? wptMy) (pt+M2) (ut+My)? (2.13)

44/2
(52571)03‘, . 025(M1c%V+JV125%V+u) s%v(smgfl)
d— (p+Mz)? w(p+My)(pt+Mz) (ptM)?

42

The eigenvectors are normalized, to the actual order of accuracy: In the
Bino/Wino cases the eigenvectors are the normalized eigenvectors modulo
O(m./Msusy)?, and in the Higgsino cases they are the normalized eigenvec-
tors modulo O(m,/Msysy)?, although the latter perhaps does not look that
way since 1/4/1+ km2 ~ 1 — km%/2, and hence we would expect a second
order contribution in every element. But due to a cancellation, we do not get
any second order contribution in my in the first two elements of the Higgsino
eigenvectors.

(2.14)

2.2.1 Couplings

We are now going to calculate the couplings of processes involving the lightest
neutralino, which we assume to be the LSP. The couplings are evaluated in
the limit m, > my, and the definitions of the couplings are as in paper [5].

Z XX
The interaction between Z° and the neutralinos are given by the interaction
Lagrangian (cf. [5] p.244)

Lo = o= 200" (O Pr + O Pr)x3), (215)

where m = n = 1 yields the interaction between Z° and the LSP’s. Moreover,
we have that

Opm = =0 = 5(=Nau N3 + N Nii ), (2.16)

nm
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which in the case m = n = 1 gives (since N is real)

( cos(28) sin? (Oyy )m?2 . .
Q(MQ—M;S z if My < Ms, u;
cos(23) cos? (O )m?, i M, < M .
o'l _ 2(u2—M3) 2 IRNL (2.17)
1 cos(25)m2Z(M1 cos2(0W)+p+sin2(0W)M2) 0 M. Mo
- » 4yt M)+ M) : 10 < —p < My, Mp;
cos(28)m7, ( M7 cos?®(Ow ) —p+sin® (0w ) M2 .
\ Ap(p—DM) (i—My) if 0 < p < My, My,

since N3; corresponds to the third component of the eigenvector of the least
eigenvalue of M, etc.

HOx X
The interaction between H® and the neutralinos are given by the interaction

Lagrangian (cf. [5] p.245)

EHOXOXO = gHO)Zg [T;InmPL + THnmPR)]X(T)n; (2.18)

where
Tnm = —cosa@,,,, +sinasS,, (2.19)

where the mixing angle « from the two-Higgs-doublet model (2HDM), (which
the Higgs sector of the MSSM is a special case of) satisfies (at tree-level)

sin 2 = —(sin 26)(m§ i mg),
H My
mi —my
cos 2o = —(cos 2) (—5——5). (2.20)
My — My,
With heavy neutralinos, we will have that
My, Mg > My, Mz, (2-21)
and since we also in the 2HDM have (at tree-level) m% + m% = m3% +
mi eq. (2.20) yields sin2a = —(sin2f8) and cos2a = —(cos23) modulo
(mz/Msusy)?. Hence,
1
a=p+7n(z+n) (2.22)

2
where « traditionally is chosen such that [22]

a=p— g (2.23)
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which we will use to simplify the calculations which involve the mixing angle
.

By convention, v,, vy are taken to be real and positive [22], and hence we
can define

tan 8 = v, /vg > 0 (2.24)
with
g€ 0,7/2], (2.25)
and hence
ae [—%,0]. (2.26)
We now turn back to the expressions
Q;;m = %Ngn(sz — tan Oy Ni,) + (n <> m), (2.27)
Sim = 3 Nun(Noy, — tan Oy Niyp) + (n <> m), (2.28)
and then the coupling (2.19) becomes
( pcos(28) siigo_wj\;?z tan(Oy) it My < My,
— e e if My < M, p;

T = < cos(2p) sec(@w)mz(—Ml cosz(OW)+u—sin2(9W)M2)
2(p— M) (u—M2)
cos(2p) sec(Ow )mz (M1 COSQ(Hw)—‘ru—i-SiHQ(Gw)MQ)
\ 2(pt M) (ptMz)

ifO<,u<M1,M2

if 0 < —u < Ml,MQ.
(2.29)

hOXIX:
The interaction between h° and the neutralinos are given by the interaction
Lagrangian

EhOXOXO = ghoxg[ThnmPL + ThnmPR]ng (230)
where
Thnm = sinaQ,  + cosasS,, | (2.31)
SO
( sin(Gw)mz(uijEQJ@)lz—le)tan(GW) if M, < MQ;,U;
- it My < My
hl1l = sec(Ow ) (sin(28)+1)mz (—Mi cos?(Ow ) +pu—sin? (0w ) Ms) .
_ o )Q(M(—Ml)(NQ_MZ)) 3} ) if 0 < n < My, M.
sec(Ow ) (sin(28)—1)mz ( M1 cos= (6w )+ p+sin® (6 ) M2 .
- 20 M) (kM) if 0 < —p < My, M.

(2.32)
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APXEXY:
The interaction between A° and the neutralinos are given by the interaction
Lagrangian

1
Looyins = 5 A =T Pr + Tann Pl X (2.33)
where
Tanm = —sin SQ,, + cos BS,". (2.34)
so, since Q. S, are real,
( Sin(@w)mz(uj;i:](é?)Ml)tan(ew) ]_f ]\4’1 < MQ,ILL;
. cllwimai OO if My < My, pi;
All — sec(@w)(sin(2,3)+1)mz(—Ml COSQ(GW)+/L—Sin2(9W)M2> .
_ ZEM—MI)(M—Mﬂ if 0 < < MI,MQ.
sec(fw ) (sin(28)—1)myz ( M cos2(0W)+,u+sin2(0W)M2) 0 < —u< M, M,

\ 2(p+My)(p+M2)
(2.35)
2.2.2 The Chargino mixing matrices

In this section we derive Chargino mixing matrices in the superheavy limit.
These mixing matrices are used deriving Feynman amplitudes for neutralino
annihilations.

The Bino as the LSP

The Chargino mass matrix is given by [5]

M, V2sin(B)my
M roin — 5 236
Charginos ( \/E COS(ﬁ)TﬂW 1 ( )
and this matrix is bidiagonalized by the matrices
Umix = (2.37)
m3y (usin(B)+eos(B)M2)* ~(12-M3)" /2wy (usin(B)-+cos(8) M)
(#-3)" =3
V2myy (psin(B8)+cos(8) Mz) 1— m%,v(usin(ﬁ)+c05(/3)]\/[2)2 )
p?—M; (MQfMQZ)2

and
Vmix = (2.38)
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miy, (1 005(5)+Sin(ﬂ)M2)2_(NQ_M22>2 V2myy (1 cos(B)+sin(8) Mz)

(n2-12)° ue=M3
V2mw (p cos(B)+sin(B) Mz) 1— m3y (p cos(8)+sin(B8) Ma)? '
p?—M3 (;ﬁfM%)z
such that
Umix Mcharginos VIix' = (2.39)
M3 —p? Ma+m?Z, (psin(28)+Msz)
- e 03 .. +@(m_%‘/)
0 w —M2;4—|—TZZW_(]\/2—;2-sm(2B)M2) MSQUSy )
M, 0 ) miy,

= +0 , 2.40
(0" ) +ogrn) (2.40)

and we write Vmix’! instead of Vmix' since it is real.

The Higgsino as the LSP

The Chargino mass matrix (2.36) is in the Higgsino case bidiagonalized by
the matrices (expanded to an error of order O (mj))

Umix = (2.41)
ﬁmw(usig(ﬂ)tcos(ﬂ)Mg) 1 m%v(usin(ﬁ)+cosgB)M2)2
w _M2 (#2_M22)
(;ﬂ—M%)Z—m%V(,u,sin(ﬁ)—}—cos(ﬁ)Mg)z _ V2my (psin(B8)+cos(8) Ma) ’
(n2-n12)” pi =M
and
Vnix = (2.42)
\/imw(,ucozs(ﬁ)—;sin(,@)Mg) 1— m%v(ucos(,é’)—&—singﬂ)Mg)2
w2 —Ms (N2_M22)
(,usz%)zfm%V(uCOS(§)+sin(5)M2)2 \/imw(#COSQ(B)Jgsin(,B)Mz) ’
(n2—M3) M3=n
such that
Umix Mcpargines Vmix’ = (2.43)
(utsin(26) Ma)m§
oot g0 +0 (miy)
0 M2 . (usin(2§3)+j\§§2)m%‘/ w)o
S )
2
(0 Mw
_ ( b ) +O(5), (2.44)

and we write Vmix? instead of Vmix' since it is real.
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Note that this bidiagonalization puts the diagonalized masses in increas-
ing order, following the TLes Houches accord [25], as for the Bino case. The
mixing matrices in the Higgsino case become different from the mixing ma-
trices in the Bino case, since M, and p there came in a different order, and
hence the Higgsino bidiagonalization matrices have to flip these two mass
parameters.

2.2.3 Neutralino scattering, 7' ~ w > my

In this section we assume that

my < w <K Mgygy. (2.45)

The Bino as the LSP

In the process yv <> yv the s and u channels contribute, the t-channel (alone)
is suppressed by a factor O(m%/w?), relative to the leading contribution

and is of order O(m%/(w?*MZ;sy)). The total matrix element is of order
O(w?/Mysy):

etw?(3 — cos(0)) M}
2y (VME - M)®

M = (2.46)

Energy relaxation time From eq. (2.46) we get a contribution to the
energy relaxation time,
ey My (M3 — M})?
T = :
2564T6Neff

(2.47)

As we will see, neutralinos scattering on weak bosons will yield the dominant
contribution to the energy relaxation time.

The Higgsino as the LSP

In the process yv <> xv the t-channel is of order O(m3/(w?M2;qy)) here
dominates, while the other channels are of order O(w?m?,/M&;qy) or higher.
The dominating channel yields

1 (4w? — t) cos?(283) esct (20w ) m%, (M cos? (Ow) — p + sin® (Oy) Mo) 2

(mz —1)2 (u— My)? (u— My)? 7
(2.48)

IMP = M2 =E

where
t = 2w?(cos(0) — 1). (2.49)
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Energy relaxation time The subdominant contribution to the energy
relaxation time corresponding to the amplitude (2.48) can now be calculated
as

dUel)
don —t) dt dw, (2.50
= [ o [ [ donte @ s, 250

where df = dt /(—2w?sin ), which yields the factor 1/2w? in eq. (2.50). The
integrand in eq. (2.50) contains a factor

16w* log (%2 + 1)
zZ

2.51
4w? + m?, ' (251)
which under our present conditions (2.45), is simplified to
4
40? log ( ~ ) : (2.52)
m

which again yields an integral

/OOO - (4w log (f:j)) dw (2.53)

in eq. (2.50). By using Maple or Mathematica 7 this integral becomes

477
8T (log (—2) — 2y + 3) : (2.54)
Mz

Then the energy relaxation time, using a Maxwell-Boltzmann distribution,
becomes

48731 (e — My) ® (p — Ma) *sqyy

(2.55)
e*T? <10g <%> — 27+ 3> 35y Ner (Mycgyy + Masg, — p)?

T =

Also in the case we are consideing now, the Higgsino case, neutralinos scat-
tering on gauge bosons and light Higgs will give the dominating contribution
to the energy relaxation time.

Taking scattering on gauge bosons and light Higgs into account

Since we assume that T > myea at freeze-out of the neutralinos, the weak
gauge bosons are present in the thermal bath, and we have to take scattering
on these into account to get the leading contribution to the energy relaxation
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times. In addition we have to consider scattering on the light Higgs. In the
case T' > Myear, electroweak symmetry is restored, and the weak bosons are
massless. But they will have an effective mass, which will be a small fraction
of the temperature, hence we will still use the weak boson masses in our
calculations.

We will see that the scattering on weak bosons give O(1) contributions,
so in the SHDM scenario we can disregard neutrino scattering completely,
when we want to calculate energy relaxation times. However, in models with
a smaller gap between Mgy and the electroweak scale, the contributions
from neutrino scattering could be relevant.

Feynman amplitudes for weak boson scatterings In the process
X4 — xZ only light Higgs exchange contributes. The squared amplitude

is
et sect (O ) M? (pusin(28) + M) 2

M = , 2.56
‘ XZ%XZ’ 3<N2_M12)2 ( )
which equals eq. (5) in paper III.
We get exactly the same result for W7 scattering, YW — yW+
4 qnnd 2 (0 2
o etsect (Ow) MY (usin(28) + M)
I Myw sy |” = 3 (2 — M2)? ; (2.57)

and the same formula is of course valid for W~ scattering.

In the case of light Higgs scattering, x%h — x{h, the four amplitudes
involving the (in this section Higgsino-) mediators x3 and x9 give leading
order contributions.

The xJ annihilation (s-channel) squared amplitude equals the x3 exchange
(u-channel) squared amplitude, i.e.

|ngs‘2 = |ngu’2' (258)

Moreover, each of these squared amplitudes equals one fourth of the total
squared amplitude for x3,

Mgy + Mg = Mg, * = 4 M 9, (2.59)
Complex algebra then forces
M9 = Mo, (2.60)
In a totally analogous manner we get that

My, = Mg, (2.61)
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Then the total squared amplitude
[Monxn] = [Mygs + Mgy + Mg + Mg, [ = 4| Mg, + Mg, |?, (2.62)
where y = x{, and where we calculate the latter expression of eq. (2.62) in
CalcHEP, and hence get
etsect (O ) M? (pusin(28) + M) ?
(n* — M¢)? '
Hence, the total weak boson scattering amplitude becomes
|-/\/lwb‘2 = QZM/IXZHXZ|2 + 29W|-A/l><W%XW|2 + gh|Mxhﬂxh|2 (2.64)
etsect (Ow) M? (pusin(2B) + M) 2
(g£+29ﬂ+gh) (Ow) 21 (1 2(25) 1)
3 3 (1* — M¢)
where the polarization degrees of freedom equal gz = g = 3 and g5, = 1, so
4et sect () M? (psin(28) + M) ?
TR |
This is the dominating processes which yield the energy relaxation time given
by eq. (6) in paper III.

’Mxh—wh’ - (2.63)

(2.65)

|Mwb|2 =

(2.66)

Higgsino case This case is dominated by the processes as x{v. <+ x{e™,
see eqs. (7)-(9) in paper III. We will here include the Feynman amplitudes
of some subdominant processes.

The process xZ — xZ: Only the following channels (referring to unitary
gauge, as usual) give leading contributions of order O(Msysy/mz)*:
det piPw? esct (20 )

4
3my,

|MX28|2 = |MX2U|2 =

, (2.67)

but it turns out that the leading order contributions of the y, s- and u-
channels cancel, so the total O(1) squared amplitude becomes in the limit
H < M17 M2

2
|IMyz szl = 564(COS(20) + 3) esc* (20w) . (2.68)

The cancellation of O((Msysy/mz)* is exact for all models, not only our
scenario. This has to do with the fact that gauge bosons do not couple
strongly in the superheavy limit, as we have seen in earlier sections.

The only other leading order contribution comes from light Higgs ex-
change, xZ — h — xZ

dep? (Mycly + Masiy — 1) * (cs + 55)*

3(p— My)2(u— My)2s5y (2:69)

|MxZ~>haxZ’2 =
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The process YW* — yW*: In this process only the mediators h (light
Higgs) and perhaps also x;i (lightest chargino, both s and u channels) give
leading order contributions. We do not calculate the latter, since it later
will be evident it is subdominant anyway. The total squared h-exhchange
amplitude becomes

de'p® (Micly + Masfy — 1) (cs + 55)
3(p— My)? (n— M) sy ’

which is the same as for the case of h-mediated scattering on Z’s.

The two diagrams YW — x; — xW™: The amplitudes yielded by the
mediator x; in s- and u channels cancel each other exactly in orders 1/m7,
1/m3, and 1/m?%. (To calculate correct coefficients for higher orders in my,
we have to specify some of the masses and mixing matrices to a higher degree
in the perturbation my.)

But we can convince ourselves of that we cannot have a non-zero term of
order 1/myz: We can write

FF* P
M+ M )M+ M) = — = —, (2.71)

1
ma m m
7 7z Z

M| =

where F' = (M'y + M',) is a polynomial in my with no negative orders of
my. Now, if [M|? contains a non-zero element propotional to 1/my, then

we either have a non-zero term o m3, or m% in F and a non-zero term o<

mY or m}, in F*. But then we have either a term oc m% or m} in both
F* and its complex conjugation, since complex conjugation does not change
the presence of terms. In case there were a term oc m% present in both the
factors F and F*, there would be a term oc 1/m7 in |[M|?, which there is
not. If there is a term term proportional to m}, present in the factors F and
F*, then there would be term propoportional to 1/m?% in |M|? which there
is not, unless this term was canceled by another term o< m% € P. But there
cannot be such a term, because it would have to come from a term oc m% in
one factor and a term oc m% in the other, but we saw that there could not

be any non-zero term oc m% in the factors F or F*.
y A

The process xh — yh: The total squared amplitude for neutralino scat-
tering on light Higgs is

detyi® (Micy + Masyy — p)° (g +s5)
(= My) % (pp— Ma) sy,

[Migsnl” = (2.72)
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We do not include any energy relaxation time for Higgsinos, w > my, for
scattering on gauge bosons, since these processes will be subdominant to the
(in this case energetically possible) process x, v — X7, e~. The latter process
is also possible in the Wino case, but not in the Bino case, since there is no
chargino with mass comparable with M;.

2.2.4 Sommerfeld enhancements in neutralino annihila-
tions

We will now decide which neutralino annihilation channels could be Sommer-
feld enhanced: A Sommerfeld enhancement of the annihilation cross-section
can occur when the two particles may annihilate through (relatively) long
ranged messengers (i.e. relatively light messengers) at low velocities. Be-
cause of the low relative velocity and the (relatively) long ranged interaction
the interaction effectively becomes too strong for the assumptions underly-
ing ordinary perturbation theory to be valid. Hence the cross-sections from
ordinary perturbation theory are enhanced. In the context of SHDM the
possible relatively light messengers will be the weak gauge bosons Z, W+
and the light Higgs h. See also the discussion in chapter IV B in paper III.

In this section we assume, as indicated above, that the kinetic energy w
of the neutralinos is small,

w <K my < Msysy, (2.73)

i.e. we are considering the v — 0 limit (the neutralinos have a typical velocity
of no more than 1ms~! when annihilating in the clumps, see sec. ITII C of paper
I11.)

Sommerfeld enhancements of the leading Bino annihilations

The Bino does not couple to the Z or the W=, so we do not get any Sommer-
feld enhancements by light mediators in these cases. But the Bino couples to
the light Higgs, and hence the annihilation into W+ H~ could be enhanced.
But the contribution from h-annihilation is not leading (it is proportional to
w).

Sommerfeld enhancements of the leading Higgsino annihilations

Sommerfeld enhancements (of orders up to 10'%) of some of the leading an-
nihilations, will make these enhanced leading annihilation dominate over the
others. Sommerfeld enhancements require the mediating particle to be light
(i.e. not superheavy). The actual particles are Z, W* h. The light and
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superheavy sectors must be gauge invariant each by itself, although the dif-
ferently mediated annihilations are not generally gauge invariant.

The two dominating Higgsino annihilations that are Sommerfeld en-
hanced are

2e1*c55 (Micyy + Masyy, — p)”
(b — M) (p— M) 2syy,

through Z-annihilation, as indicated, which also is the only diagram for neu-
tralino annihilation into Z, h with a light mediator. We see that this differs
from the previous annihilation amplitude into Z, h eq. (64) of paper I, so
Z-annihilation was not the only contributing diagram there.

The second Sommerfeld enhanced dominating Higgsino annihilation is

Myl = (2.74)

e'cyg (M3 — M) * (Micjy + Maosyy, — ) ?
82 (1 — M) % (1 — M) ?syyy 7

through Z-annihilation, as indicated, which also is the only diagram with
a light mediator. We see that this differs from the previous annihilation
amplitude into A, H eq. (76) of paper I, so Z-annihilation was not the only
contributing diagram there either.

Myon? = (2.75)
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Chapter 3

Electroweak bremsstrahlung

3.1 The PAMELA excess

PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei As-
trophysics) is an cosmic ray (CR) research module attatched to an earth or-
biting satellite. PAMELA was launched 15 June 2006 and is a satellite-based
experiment dedicated to the detection of cosmic radiation, with particular
focus on its antimatter component in the form of positrons and antiprotons.

The flux of antimatter is generally expected to fall relative to the flux
of matter as one moves to higher energies. This is so because "secondary
production" is believed to be the dominant production mechanism of cosmic
antimatter rays: Cosmic ray nuclei and interstellar matter interact, generat-
ing the antimatter component consisting of positrons and antiprotons. The
higher the velocity of the CR nuclei is, the shorter the traversed path before
leaving the galaxy becomes. Then the probability that a high energy CR
interacts and produces antimatter is less than the probability that a low en-
ergy CR interacts and produces antimatter. Thus the ratio of antimatter CR
from secondary production and matter CR from primary /secondary produc-
tion falls with increasing energy. Hence, if secondary production dominates,
the positron fraction

¢(e)
oet) + ole)’

(3.1)

where ¢(z) indicate the flux of a particle species x, is expected to fall as
a smooth function of increasing energy. Nevertheless, the PAMELA exper-
iment shows that the positron fraction rises by a factor 2.5 from 10.2 to
82.6 GeV [26], see fig. 3.1. On the other hand, no corresponding surplus of
antiprotons is found, see fig. 3.2. This surplus (compared to the estimated

39
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Figure 3.1: Observed positron fraction from the PAMELA experiment, contra
an expectation of the background (with positrons from secondary production
only) calculated in [28].

background) of positrons in the range 10 — 90 GeV is known as the PAMELA
excess. This has, as we remark in paper IV, prompted several models trying
to explain the data by engineering relatively heavy (m, 2 1TeV) DM candi-
dates with large annihilation cross sections (or decay rates) and small or van-
ishing (tree-level) branching ratios into hadronic final states (i.e. an explaina-
tion of the positron surplus by primary production from DM annihilations
or decays). In these models, the corrections from Z- and W-bremsstrahlung
have generally been ignored, although these electroweak bremsstrahlung cor-
rections generically turn out to be substantial, see paper IV. Another possible
explaination of the PAMELA excess, in terms of primary production, is the
possible production of positrons by nearby astrophysical sources, such as
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Figure 3.2: Antiproton-to-proton flux ratio observed by the PAMELA ex-
periment [27], versus different theoretical backgrounds calculated regarding
a pure secondary production of antiprotons.

pulsars [29, 30] and microquasars [31].

3.2 Additional energy spectrum plots

Now we will present some plots of energy fragmentation spectra dN/dx for
values of m, not considered in paper IV: Figure 3.3 corresponds to Fig. 3
("neutrinos only" in tree-level annihilations) and Fig. 4 ("electrons only" in
tree-level annihilations) in paper IV. While we in paper IV only considered
masses 300 GeV and 3 TeV, we here include plots for masses 100 GeV, 1 TeV
and 10 TeV. We here also report the monochromatic spikes at x = 1 from
the tree-level annihilations.
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Figure 3.3: The fragmentation spectra dN/dz of electrons (solid green), pho-
tons (dotted red), neutrinos (dashed orange), protons (thick blue) in “only
neutrino” annihilations for my = 100 GeV (upper left), mx = 1TeV (upper
right) and mx = 10 TeV (middle left). The three last panels show the same
fragmentation spectra in "only electrons' annihilations, for myxy = 100 GeV
(middle right), mx = 1TeV (lower left) and mx = 10 TeV (lower right).

3.3 The ratio Rz of the process h — ete 2

3.3.1 Introduction

In this section we calculate the exact ratio Rz of the decay rates of the
processes

h—ete Z, h—ete” (3.2)
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considering final state Z-radiation (FSR) only in the former process. In paper
IV we calculated Ry, corresponding to the processes h — ete™Z h — v Z,
and Rz corresponding to the latter process, see eq. (9) in paper IV. In other
words, we will here give a formula for the ratio Rz corresponding to the
Z-strahlung process not considered in that paper.

We compare our result with numerical results for the ratio Rz of the
cross-sections of the processes

xx — h —ete”Z (FSR) XX = h—ete” (3.3)

and also with numerical results for Rz correponding to the processes yxy —
ete”Z (FSR and selectron mediation only) and ee™ — xxZ (initial state
radiation (ISR) and selectron mediation only). For the Rz from (3.3) we
find an excellent agreement with the Ry from (3.2), while for the two latter
processes the agreement is not that good.

The ratio Rz of (3.2) and the Rz of the processes (3.3) should coincide,
due to a factorization of the cross-sections: The Feynman amplitude squared
of the process xx — h — ete”Z is proportional to |[M|* o« AB, where
A and B are traces from spin sums of the ingoing and outgoing particles
respectively. Since the mediating Higgs is a scalar, there are no Lorentz
indices connecting the two factors. Hence the ratios of the cross-sections of
the annihilation processes (3.3) equals (in the center of mass frame)

o3 JdQA(,x)Blet e, Z)  [dQB(e,e”,Z) Ty
oy [dQA(x,x)B(et,em)  [dQB(et,e”)  Tiee

(3.4)

the second equality since A(y,x) is independent of the solid angle €. Here
the magnitudes I'; and I'i,.e respectively denote the Z-strahlung and tree-
level decay rates of a Higgs with mass equaling the center of mass energy
of the two annihilating neutralinos, i.e. their ratio is the Ry corresponding
to the processes (3.2). The factorization described above is confirmed by
fig. 3.5.

3.3.2 Tree-level decay rate

The Feynman diagram of the tree-level decay of Higgs to electrons can be
written

Tree level Higgs decay
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Then the squared Feynman amplitude is,

20272 2
MM — 2e°(Q)*m; c;}c (29W). (3.5)

my

In the rest frame of the Higgs the differential decay can be written

1

M= _—
d 3272

!M%—g dqQ, (3.6)

and hence the tree-level decay rate becomes

2 2 2 2 20
F(h — €_€+) _ FTree _ Qme _ € Qme csc ( W)

(3.7)

Smv? 8mm?2
A

3.3.3 FSR Z-strahlung Feynman amplitudes

Electrons couple to the Z proportional to (¢, Pp + cgPgr), in contrast to
neutrinos that couple proportional to P, = (1 — ~°)/2. Because of this
more complicated coupling, the cross terms of the decay we are studying are
proportional to m? (or m? if we also regard the Higgs coupling). Hence the
cross terms can not be disregarded, in contrast to the case where the Higgs

is decaying into neutrinos.
The FSR Z-strahlung Feynman diagrams are

diagr.1 diagr.2

We are excluding the ZZh-coupling diagram, diagram 3, since this is not
electroweak FSR diagram.

If Q) # my, the Higgs is virtual, and we can assume we are considering a
part of the diagram for two particles annihilating through the Higgs channel,
in the c.m. frame of the two colliding particles.
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The squared Feynman amplitude for the diagrams 1 and 2 then becomes

2etm? csct (20w ) (Am% + Bm%, + CmS, + Dmb)
mismy (m7 —miy —mi; + Q?)*

(M[* = : (3.8)

where
A = m%s (m;fQ + mgg — QQ) <(C4W — Qng> (m‘fz + Q4)

#2 (- iy + ) @+ (4 )+ Q') )
— My (m%Q +miy — QQ) ’
B = milQ (_QCQW + Caw + 2) (Q2 — 377733)
+ m%Q (402W (Q2 — m§3) 2 _2e,w (Q2 — mgg) 2 (2@2 — 3m§3) 2)
+(Q — magz) (mas + Q) (Q% — 2mi,) (Q* (—2caw + caw + 2) — 2miy)
C = (caw — 2cow) (—2m3,Q% + 3m3y (m7y — Q%) + miyy + 2Q%)
2 2 2 2 2\ 2
+ M7y (6m23 —4Q ) +4 (Q — m23)
D= (—262W + caw + 2) (Q2 — m§3) (39)

3.3.4 Decay rate

Now the differential decay rate is (in the standard form for the Dalitz plot,
see eq. (6) of paper 1V)

1 1
I = 2n)? 3207 | M|2dmiydmss. (3.10)

We now want to evaluate the integral, cf. the Dalitz plot (see discussion
in paper IV or [13]).

(Q_mZ)2 (mgg)max
Int :/ / | M|? dm3s dms3,. (3.11)
(

2 _ 2 .
my,=0 M33)min

As we will see, this integral has an exact closed form solution, using both the

exact integrand and integration limits (but with m, set to zero, of course).
Nevertheless, we will first only regard the lowest order terms in m, which

gives us the leading order approximation (in @) I'zo of the decay rate,

etm?2@Q3 csct (20w)
T68mt

Ty = (3.12)



46 CHAPTER 3. ELECTROWEAK BREMSSTRAHLUNG

and Rzo = I'z /T e then becomes

e2Q? csc? (20w)
9672m?

Ry = : (3.13)

which is a good approximation when Q) > m.

3.3.5 Exact expression for R,

Integrating over m3, (with exact integration limits as in eq. (7) of paper IV)
we get the result

(m33) masx 5 9
I :/ |M‘ dmas
(

m%3)min
_2e*mZesc? (20w ) (Am% + Bmi + Cm + Kmi, (mi, — Q%)) (3.14)
my (m% —mi, + Q%) .

where

— (cos (46w) — 2 cos (20w)) (2K (mi, — Q*) — L (mi, + Q%))
+K (GQ - 7m12) + 2L ( mi,Q% +mi, + Q4)
B =2 ((K — Lm3,) (cos (46w) — 2 cos (20w)) + 3K + L (Q* — 2m7,))
C =L (—2cos (20w ) + cos (460w ) + 2) (3.15)

and
K \/ m12 +Q?) mZ (m12 Q*)?%+
<\/_2 m12 + Q?) m22 (m12 Q%2+ m% - mQZ + m%Q - QZ) 2

L =log
(V=20 + QO g + (i, — Q) %+ i+ iy — mdy + Q2) 2
(3.16)
When evaluating the integral
(Q-mz)?
Int = / I dm3,, (3.17)
0

the logarithm L turns out to be problematic. Although L itself has an an-
tiderivative, expressions like

L
(m12 Q?)m

(3.18)
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do not, according to Mathematica at least. Mathematica is neither able to
calculate the total integral (3.14).
We could try to series expand in my, obtaining

L:4log< 1O m),

(3.19)

Qmy ) dmiymy  2mi, (miy 4 2Q%) my,
Q? — m%z (m%Q - QQ) 2 (m%2 - QQ) 4

but inserting the endpoint of the integration Int, m2, = (Q — mz)?, we see
the series become (at least superficially) non-convergent,

0 =L(mi, = (Q —mz)?)
4o Q 4(Q —mz)®  2(=2Qmz +my +3Q%) (Q —my)”
=41 g(QQ—mz)+ (my — 20Q)?2 + (mz —2Q)*4
=0 +01)+01)+.... (3.20)

On the other hand, the approximation Rz, works well for ) > my, since
the problematic logarithm L does not show up in the lowest order of mg,
even when we take into consideration that factors like (m?, —@Q?) are of order
O(myz) (or really O(mzQ)) when m2, is close to the endpoint (Q — myz)>.

Moreover, expanding the integrand in powers of mz; and then integrate
over m?, give a fairly good convergence, as shown in Fig. 3.4, in spite of the
bad approximation (3.20) when expanding in powers of my.

107’

1 1 1 1 1 Q[TGV]
0.15 020 0.30 0.50 0.70 1.00

Figure 3.4: The exact R; compared with approximations produced by ex-
panding in powers of my before integrating over m?,.
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Nevertheless, by doing the substitution

2 _

22
Y (3.21)

the logarithm L becomes

L =log (g :L 1;) . (3.22)

Now L can be convergently expanded in powers of x (converges for 2% < 1),
and for the relevant m?2, (0 < m?, < (Q — mz)?) we have

2 2
ogxgﬁa, (3.23)

Z
so L always converges when expanded in powers of x. Hence, x is the right
parameter to expand in. On the other hand, an expansion in my (implicitly
divided by other massful parameters) does not necessarily converge, since
kQmz/m?, is not necessarily less than zero when m?, is close to (Q — myz)?

and k is of order O(1).

Furthermore, changing integration variable in the integral Int (3.17) from
m2, to x, simplifies the integrand, and makes Mathematica able to solve
the integral exactly. We then get the corresponding decay rate for the Z-
strahlung process,

11 T 1 0 dm?,
V= g ™ T W%/ h@)=g, do (324
zZ

T Q2+m?

and then the exact ratio Ry = 'z /T is given by

62

R, —
7T 96m2Q m% 5,

<Q6 — Q'm2 (12 (caw = 2ew) (Lia(X) = Lin(W)) + M + N
- 3@%‘5( C16(Y + 2)caw + 8(Y + 2)eaw — 4Y + 19)

- (24(1/ 4 Deaw — 12(Y + Degy — 24Y — 29)) (3.25)
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where Li,(2) is the polylogarithm function, and

M = —12¢cow <log2 (m—% + 1) + 6log <Q> —log*(W) — 6>

Q2 my

2 3
+ 24Li, (—%) + 24 1og <%> log (%)

+12@g(m§)+3)bg(gl)+272—2Z
my

N = 6cqy <log (rg ) <log (2566222771%) - 6) + log(W) log (4Q4m22)

z
1 256Q*m 1P 16Q*m?,
+ log <§> log <T +log(Z) log —F
1 20?
+1 — |1 ———— | — 6], 3.26
o) le) ) o
mz
and
my
m2 4+ Q?’
Q2
m% + Q2
Y =log <Q> :
mz
7 =m3 + Q. (3.27)

We see that the leading behaviour of Ry in eq. (3.25) is proportional to Q,
and equals Ryzg given in eq. (3.13), as it should.

We also see in figure 3.5 that factorization works excellent for the s-
channel (FSR only) DM annihilation process

XX = h—ete Z, (3.28)

since Ry from eq. (3.25) equals the ratio Rz of the process (3.28). In the
numerical calculation of Ry of the process (3.28) we used Madgraph. We
found that the numerical results for Rz only depends on the neutralino center
of mass energy, and not on how much of the energy that is carried by the
mass. (The results are also independent of the neutralino couplings, since
these are divided away in the ratio Ry).
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10

0.1

0.001

1 1 1 1 1 1 Q[Tev]
0.5 1.0 5.0 10.0 50.0 100.0

Figure 3.5: The exact Ry, given in eq. (3.25), from the process h — eTe™
(with Z emitted as final state radiation (FSR) only, compared with R, from
the process xx — h — ete”Z (FSR Z-emission only), computed numerically
by Madgraph (red points).

3.3.6 Comparison with Ry from other processes

In Fig. 3.6 we see that Rz unfortunately does not give us a good approxima-
tion of the Ry corresponding to the selectron mediated processes

ete” = xxZ (3.29)

or
xx = ete Z (3.30)

considering respectively initial and final state Z-emission only. The neu-
tralino y was here in Madgraph taken to be a light almost pure bino. Both
right and left selectrons were included (these diagrams are dominant in the
sense that they are few but as big as the size of all the other diagrams
together—including all diagrams will on the other hand give us a much smaller
cross section (by cancellations), since the cross sections in the MSSM goes
roughly like 1/m? and hence preserves unitarity.) Including only the right
handed electron (which couple to the Bino only) we get the same magnitude
for the cross sections (and Ry) for this parameter point.
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Rz

1000
100

10

0.1

0'91/7 | | | | | | | Q[TeV]
* 2 5 10 20 50 100 200

Figure 3.6: The exact ratio Ry from the process h — eTe™ (with Z emitted as
final state radiation (FSR) only (i.e. emitted from the electrons)) compared
with Rz from the process ete” — xx (marked by blue crosses), mediated
by selectrons only €7 r (in t and u channels), with a light almost pure Bino
as the neutralino y, and where the Z is emitted as ISR only. Here we have
disregarded all diagrams but the selectron diagrams (in Madgraph). The
red dots are the Rz’s for the process yx — ete™, with Z emitted as final
state radiation (FSR) only, other conditions the same as for the case of the

"inverse" process (which was indicated by crosses.)
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Chapter 4

Multi-Higgs-doublet models

4.1 The inert doublet model of dark matter

In its simplest form, the inert doublet model (IDM) of dark matter is the
SM with one additional Higgs doublet ®, [32, 33, 34]. Unlike the SM Higgs
doublet @, the extra "inert" Higgs doublet ®5 does not couple directly to
fermions, and has no vacuum expectation value (VEV). This is ensured by
imposing a Zy symmetry on the Lagrangian, where ®, is odd under the
symmetry, while all other fields are even,

b, — @1, by — —s. (41)

Hence, the inert doublet cannot couple to fermions through Yukawa cou-
plings. When we deny the inert doublet a VEV, the inert particles cannot
decay into gauge bosons or SM Higgs exclusively either, with the result that
the lightest inert particle is stable, since it has no lighter particles to decay
into. Since it is stable, it could be a good dark matter candidate. Moreover,
the influence of the inert particles on electroweak precision tests (EWPT)
makes it consistent to have a natural (i.e. with not too much fine tuning)
SM Higgs mass of up to 400 — 600 GeV [35]. In contrast, assuming that
no new physics influences the EWPT, indicate that the SM Higgs is light,
mp < 186 GeV at 95% CL [36], with a central value considerably below
the lower bound of 114.4 GeV < m,, from direct searches [13]. Also DM
constraints could be satisfied in the IDM model of [35], choosing masses of
scalar and pseudoscalar inert Higgses around 80 GeV.

Nevertheless, the IDM is too restricted by the Zs-symmetry, to allow for
C'P-violation in the Higgs potential [37]. To accomodate CP-violation in
the Higgs potential, [37] suggests combining the standard two-Higgs-doublet
model (2HDM) with one inert Higgs doublet ®3 (the model is denoted IDM2).

93
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In other words, the authors of [37] are considering a constrained three-Higgs-
doublet model (3HDM) as a model for DM and C P-violation. Hence, both
IDM and IDM2 are N-Higgs-doublet models (NHDM) which provides a dark
matter candidate.

4.2 The approximate SO(4) symmetry of the
SM electroweak Lagrangian

Let the SM Higgs doublet be written

@:(%), (4.2)

then the global SO(4) = SU(2) x SU(2) so-called custodial symmetry |38, 39
of the Higgs potential can be made manifest by rewriting the Higgs field as

a matrix (bidoublet)

= " ot n—igs @1+ ips
o= = . : ) 4.3
( —¢ ¢ —¢1+igy M+ ig3 (4:3)
Here the Higgs potential will be a function of Tr[é“i], and is hence invariant
under the global transformation

d — UL dUp, (4.4)

where Up, and Ug are SU(2) matrices. Moreover, Uy represents the usual
gauged SU(2)r invariance. On the other hand, Ug represents an ordinary
global transformation (where the gauge fields does not transform parallely
with the Higgs doublet).

The electroweak Lagrangian can then be written

1 - - . -
L= <Tr[(DH<I>)TD“<I>] 4 2Te [0 D) — ATr[ch@qﬂq)}) . (45)
where the covariant derivative in the present notation is
_ -1 -1 .
DMCI) = aﬂq) + EZQWZMO'Z(I) — §Z.g/BM(I)O'3, (46)

where o; are the Pauli matrices. We see that the last term breaks the SU(2)g
symmetry because of the factor o3. However, in the limit ¢’ — 0 the whole
SM Lagrangian has the full SU(2); x SU(2)r symmetry, when the W fields
transform as a triplet under (the gauged) SU(2), and as a singlet under the
global SU(2)r symmetry. (Egs. (4.3) to (4.6) are taken from [40]).
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4.3 The operators B and C in the bidoublet
formulation ®

Consider the operators B and C defined in eq. (2.3) of paper V as

Ss))
3
S

I

)
Q) W

(CI)m, (I)n) = %(Q);fnq)n + ®1'I:L®m)
(D, @) = —1(D] @, — DL D,,), (4.7)

where ®; refers to a doublet of the form (4.2) where every scalar field has

an additional index i. (See section 2 of paper V for a full definition of the
NHDM Lagrangian.)

In the same manner as in the last section, we will now show that the
operator C' does not share the SO(4) symmetry held by the rest of the NHDM
potential: Let ®; refer to a bidoublet of the form (4.3), where every scalar
field has an additional index 7. A simple calculation shows that

B(®,, ®,) = %Tr(é(cf)m, B.)), (4.8)

while

~ ~ ~

C(®,, @) = _%mé(cﬁm, B.)05) = — 5 Tr(0sC( 8y, 8,)) (4.9)

The latter confirms that the operator C' does not have the SU(2)r (and hence
neither the SO(4)-) symmetry, in contrast to B, since the presence of the
factor o3 hinders us from utilizing the cyclic property of the trace. We also
derive from the equality

~ ~ ~

~ ~ 1 ~ ~ ~
C((I)m, (I)n)C((I)m/, (I)n/) = —§TI‘(C<(I)m, (I)n)O'gc((I)m/, (I)n/)O'g)

_ —%Tr(aga(ci)m, )0y C(Dy, o)), (4.10)

that operators of the type O? in the same way do not share the SO(4)
symmetry of the rest of the NHDM potential (which is build up by the
operators E) This is also shown in section 2.2 of paper V, but in a different
manner.
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4.4 Symmetries of the kinetic terms

We now turn to the (global) symmetries of the kinetic terms of the NHDM
Lagrangian,

K =) [(0" +G")(2)]'[(9, + Gu)u(2)], (4.11)

n=1
with
G' = igT,W! + ig'Y B". (4.12)

Let K; denote the terms of the ¢’th order in the gauge fields.

4.4.1 The approximate SO(4) symmetry O of the kinetic
terms

We will now explore the possibility of discrete or continous symmetries be-
yond the global U(2) gauge symmetry. We do this by writing the electroweak
NHDM Lagrangian on real form, i.e. we write the complex Higgs doublets as
real quadruplets. We will show the kinetic terms does not allow for a bigger
symmetry than the usual U(2) x C, where C' = {I,C}, C being the charge
conjugation operator.

Consider the kinetic terms not involving gauge fields, K, of the Higgs
Lagrangian

N
Ko=) 0"00,9, (4.13)
n=1

where &, = VU,, 4+ 10,, is written on real form,

B, — ( g: ) | (4.14)

As in section 2.2 of paper V, we regard ®, (4.14) as a real 2k-plet. Hence
we for generality are considering a gauge group SU(k) x U(1). We see that
we can assign these terms a O(2k) symmetry by

¢, — 09, (4.15)

with O € O(2k) and ®,, given by eq. (4.14). The terms K, are invariant
under the transformation (4.15) since OTO = I for O € O(2k).
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Consider the transformation of the kinetic terms linear in the gauge fields,
K1, under the map p defined in appendix B of paper V. We can then write!

N
Ky = Z au(q)n)LGu(q)n)k + ((I)n)lzGMau(q)n)k
n=1

= p(0"(@,)0)p(G)p((Bn)i) + p((2)1) (G ) p(0,(®1))
= )T, 0, + O} (—T")0, 2, (4.16)

where the subscript & in (®,,), indicates this is the usual complex Higgs k-
plet (in the case k = 2 the usual complex Higgs doublet), while ®,, is the 2k
dimensional real vector (4.14), and where we also use eqs. (B.2), (B.3) and
(B.6).

We then see that the kinetic terms K are apparently invariant under the
O(2k) transformation (4.15) if we let the matrix 7# transform

T — OTHOT (4.17)

simultaneously with (4.15). We denote the combined transformations (4.15)
and (4.17) as O. The only problem is that the transformation (4.17) might
not be well-defined for choices of O beyond the global gauge group U(2).
The transformation is only well-defined when it induces consistent transfor-
mations of each of the fields, i.e. it is well-defined when it makes each of the
fields transform in the same manner everywhere in the matrix 7.

Third, we consider the kinetic terms quadratic in the gauge fields,

N

Ky = Z((I)n)LG“TGu(q)n)k

n=1

= > p((@0)D)p(G)p(G ) p((®n)1)

N
==Y OIT’P,, (4.18)
n=1

which obviously are invariant under the O(2k) symmetry given by egs. (4.15)
and (4.17), when the transformation is well-defined.

'Disregarding so-called Schwinger terms—here terms proportional to i[0,¢(x), ¢(z)]
for a scalar field ¢—or, alternatively, reasoning classically.
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4.4.2 The gauge field Lagrangian

Finally we want to show that the transformations (4.15) and (4.17) are sym-
metries also of the kinetic part of the gauge field Lagrangian.

Consider the kinetic terms for the gauge fields formulated as the trace of
the commutator of two covariant derivatives (see eq. (2.2) in paper V), on

complex form,
1 i ?
£GB = —éTI' <<§{DM,D1/]> )

A general relation is

(4.19)

g'Y—g

Tr(p(X)) = 2Re(Tr(X)) = 2Tr(X), (4.20)

where p was defined in eq. (B.1) in paper V, and the last equality valid when
the trace is real, as it is in eq. (4.19).

Then
Lop=—7Tr (p ((g[DH,Dy]f))

g'Y—yg

g'Y—g

(4.21)

)
g'Y—yg

since p preserves matrix multiplication and addition, and since the partial
derivatives commute. Eq. (4.21) is invariant under O, cf. (4.17), by the cyclic
property of the trace.

4.5 The adjoint representation of O(4)

To decide which transformations beyond U(2) makes the transformation
(4.17) well-defined, we have to consider the adjoint representation of O(4).
We know the standard model gauge fields transform as the adjont represen-
tation of U(2), which is, written on real form, a sub-representation of the
adjoint representation of O(4). Hopefully, we at least could find some matrix
d € O(4) such that (4.17) is well-defined for O = d, and hence d would gener-
ate a discrete symmetry of the kinetic terms of the electroweak Lagrangian.
Furthermore, if we could find such a d € O(4) — P(2,R) (where P(2,R) is the

symmetry group of the operators of the type C? defined in eq. (2.17) in paper
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V) we could impose this discrete symmetry on the electroweak NHDM La-
grangian and hence get rid of terms proportional to O(4)-violating operators
C and C2. Then we, because of the discrete symmetry, would not have to
worry about terms of these kinds, even though having been set to zero in the
first place, coming back as counterterms in the renormalization procedure.
If they show up as counterterms, although they in the beginning are set to
zero, they will violate the O(3) symmetry between the charged and C'P-odd
sectors of the potential, in addition to the kinetic terms proportional to the
parameter ¢'.

Generally, the adjoint representation of a Lie group G is a homomorphism

Ad: G — GL(g, NR), (4.22)
where g is the Lie algebra of G and
Ad(g)(X) = gXg~', (4.23)

for g € G and X € g. We see that for a infinitesimal group element g = I 4+¢€Y
with Y € g, Ad(g)(X) = X +€[Y, X] € g, so Ad is a mapping on g. This is
also the case for non-infinitesimal group elements g, since Ad is the derivative
at the identity of the map ¥ : G — Aut(G) where ¥(g)(h) = ghg™': Since
U(g) already is linear, its linearization Ad(g) is of the same form as ¥(g).
Moreover, denote the image of the adjoint representation Adg, where
Adg C GL(g, NR). If G is connected, the kernel of the adjoint representation
coincides with the kernel of W which is just the center of G, Z(G)

3

Z(G)={g € G|Vx € G(xg = gx)}. (4.24)

Therefore the adjoint representation of a connected Lie group G is faithful if
and only if GG is centerless. More generally, if G is not connected, then the
kernel of the adjoint map is the centralizer of the identity component G of

G, Ca(Gy),
Ca(Go) ={g € G|Vx € Go(zg = gz)}. (4.25)
By the first isomorphism theorem we have
Adg = G/Cq(Gy), (4.26)

and if G is connected, G = Gy and G/Cq(G) = G/Z(G).
In the case of SO(4), which is connected, Z(SO(4)) = {£I}. Hence

Adso = SO()/{£1}. (4.27)
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Now the group SO(4) is not simple, in contrast to SO(N) for N = 3 and for
N > 5, and can modulo its center {£]} be written as a direct product [41]

SO4)/{£Il} =2 SO(3) x SO(3). (4.28)
Hence, we have that

which we also will see explicitly below.

4.5.1 The effect of the adjoint action

We will now explicitly consider the effect of the adjoint action of O(4) on
its Lie algebra so(4) to see if it permits any symmetries beyond the (global)
U(2) = SU(2)r x U(1)y symmetry of the SM. We regard the real variant of
U(2) embedded in SO(4) by the map p, and try to see if the adjoint action
(4.17) can be well-defined for any matrices O € O(4) —U(2) when we restrict
us to the sub-Lie algebra u(2) C so(4), i.e. we do not want any additional
gauge fields, only the W and the B fields from the SM.

Let {X1,...,X,} be a certain basis for the n-dimensional Lie algebra g,
and let G be the Lie group generated through exponentiation of this Lie-
algebra. Then we know that the set

U= {"M1ePXe .. enXn | £ e R} C G, (4.30)

with a possible equality.
Now regard the basis of so(4) given by

{Xi} = (4.31)
{2+ J5), (T + Ju), 5 (Jo — J3), 5 (J6 + J3), 3(Jo — J5), 2(J1 — Ju)},

where the first four are the real forms of (i/2)d and (i/2) 15, i.e. the generators
of the SU(2), x U(1)y gauge group. Now we will exponentiate the generators
X;, and see which effect each of them has on the Lie algebra so(4) [each of
them will yield a linear transformation on so(4), according to (4.22)].

Let P;;(6) denote the 6 x 6 matrix with elements

pii = p;; = cos(6)
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with all other elements equaling zero. For instance, Py (6) is then given by

0
cos(f)
0
— sin(6)
0
0

(4.33)

O =R OO OO

0
0
0
0
0
1

OO OO O
SO o= OO
Q
o
>
N~—

The effects of each €'*¢ (no sum) on so(4) by the adjoint action is then

Ey = Py3(t1), By = P31(ta), B3 = Pia(t3)
Ey = Psg(ts), Es = Psa(ts), Es = Pus(ts), (4.34)

and where the effect of the reflection

1 0 0 O
010 0
r= 001 0 (4.35)
00 0 -1
1s
000 O0T1TPO0
0O 00O0O01
0O 001 O0O0
Er = 001000 (4.36)
1 00 0 0O
01 0 00O

Here so(4) is expressed by the basis (4.31), and also the X;’s below refer to
this basis. For instance,

6 6
1 1
X _ t15 5 X —tig 5 — F.§
et E s X;e X = ghg(ats) E s Xe 2 — g (4.37)

i=1 1=1

where §X = Z?:l SZXZ
The effect of the general element of U from (4.30) is then given by

-
/

§X =UsXU ' o ¢ = F3 (4.38)

where

E=E\E,- - Eg. (4.39)
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Now a calculation shows

A(tl to tg) 03
E= ) 125 , 4.40
( 03 A(ty, ts, t6) (4.40)
where
CyCs CyS» — 8y
A(x,y,2) = | €2828y — CuSz CoCo + 84545, CySy | (4.41)

CpCySy + SzS;  CpSyS, — CpSz  CzCy

which is just the general element of SO(3), written in the so-called "pitch-
roll-yaw" convention. Hence the effect E of the general element U is just
SO(3) x SO(3), since eq. (4.40) yields two independent copies of SO(3).
Since we already know that Adgou = SO(3) x SO(3), we know that the
parametrization U covers the whole of SO(4), at least modulo multiplication
by +7. What is important here is that we in eq. (4.40) have parametrized
the entire Adgo ).

Since we want to set the fields not corresponding to any SM gauge boson,
i.e. the parameters ss, st, s¢ and sg, to zero (we want them to equal zero both
before and after application of the adjoint action), we have to demand

Eil = Eig = Eig = Ei4 = O, 1= 5, 6. (442)

The only non-trivial constraints Fsy = FEg = 0 then infer, conferring
eqs. (4.40) and (4.41), that

Sin(t5) = tan(tG)/ tan(t4),
Sin(t5) = — tan(t(;) tan(t4), (443)

and hence, since the two expressions for sin(ts) have opposite sign,
sin(t5) = 0, (4.44)
and then also
sin(tg) = 0, (4.45)
with ¢4 still being arbitrary. So we have
ts,t¢ =nm, n €7, (4.46)

not necessarily with the same n for both ¢5 and t4. Calculating the most
general SO(4) matrix

O — €t1X1 €t2X2€t3X3et4X4et5X5€t6X67 (447)
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we find that it depends on angles ¢;/2 for all i. Then we have to regard the
cases where

ts,t¢ € {0, m, 2w, 37}. (4.48)
We then find that
cos(ts) cos(tg) = 1= 0 € SO(4)NSP(2,R) =U(2) (4.49)
but when
cos(ts) cos(tg) = —1 = 0 € SO(4) N P~ (2,R), (4.50)

by comparing the form of O with respectively the forms (A.2) and (A.4)
given in Appendix A. (Because of its size, we do not write out the matrix O
explicitly here, and we easily do the investigation of the forms of O by Math-
ematica.) L.e. we get symmetries outside the gauge group U(2) whenever we
choose the field B, to change sign, B, — —B,,, as in eq. (4.50). Moreover,
the symmetries (4.50) are exactly the ones

OeU((2)C (4.51)
since we know that charge conjugation is a symmetry of the kinetic terms,

and since U(2)C = (SO(4) N SP(2,R))C = SO(4)N (SP(2,R)C) = SO(4)N
P~(2,R), where we defined C as

?

1 0 0 0
01 0 0

c=1 o0 -1 o (4.52)
00 0 -1

Still, we find no well-defined O(4) transformation beyond the symmetry
group P(2,R) of the operator 62, so there is no discrete symmetry that we
can impose on the electroweak Lagrangian to exclude the terms of the type
2.

On the other hand, if we also set ¢’ = 0 (i.e. s4 = 0), then we see from
eq. (4.40) that all symmetries are well-defined, and hence the whole SO(4) is
a symmetry group of the SM electroweak Lagrangian. This is the custodial
symmetry from section 4.2, demonstrated in an alternative manner.

We also want to consider the adjoint action of elements of O~ (4), the or-
thogonal matrices with determinant —1. The general effect under the adjoin
representation of an element of O~ (4) can be written?

E~ = E,E\E,- - B, (4.53)

207(n) = SO(n)R = RSO(n) for any R € O~ (n): We have RSO(n) C O~ (n)
since det(R)det(S) = —1 for S € SO(n), and O~ (n) C RSO(n) since for O € O~ (n),
det(RTO) = 1, hence RTO € SO(n), and then O = R(RT0O) € RSO(n).
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cf. (4.39), where E, is given in eq. (4.36), and we calculate it to be of the
form

b 05 D(ty, t5, t5) .
N\ Clty, ta, t 0 ’ (4.54)
( 1502, 3) 3
with
Cts St4 $t5 - ct4 St6 Ct4ct6 + St4 St5 St6 Ct5$t4
D= Ct, Cts St -+ StaSts  CtaStsStg — CtgSty  CtyCts (455)
Ct5Cq Cts Stg — Sty
and

Ct1Cty Sty T St18t3  CtyStySt3 — Ci3Sty Ciy Cy
C = Cy Ctg Cty Stg — Sty (456)
CtaSt1 Sty — Cty Sty CtyCtz + Sty St2St3 Cta Sty

but then the constraints (4.42) are inconsistent: F-; = sin(ty) = 0 give
ty = kom, Egy = cos(te)sin(t;) = 0 then gives sin(ty) = 0, i.e. ¢ = ki,
and Ej, = cos(ty)sin(ts) = 0 give sin(t3) = 0, i.e. ¢35 = ksm, but then
EZ; = cos(tz)cos(tz) = £1 # 0. Hence O~ (4) does not provide any new
symmetries of the kinetic terms of the electroweak Lagrangian.



Appendix A

The form of some O(2k) matrices

Let S € O(2k). Then the condition STJ7S = J (i.e. S € Sp(k,R) can be

written

JS = (5T,
JS =87, (A1)

which forces the solutions of eq. (A.1) to be exactly the matrices of the form

S:(igi), (A.2)

for arbitrary k x k£ matrices A, B.

Again, let S € O(2k). Still, regarding finite (i.e. not infinitesimal) solu-
tions of the equation the condition STJS = —J (which is the definition of
P~(k,R)), can be written

TS+ ST = Oy, (A.3)

which forces the matrices S to be exactly the ones of the form

SZ(é-i)? (A.4)

for arbitrary k& x k& matrices A, B.

65
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Higgs-Doublet Models, and, to some extent, the generalization of such models to gauge
groups other than SU(2)r x U(1)y. In models where the C (charge conjugation) violating
operator C is not present, the scalar potential is invariant under a group larger than the
gauge group, O(4) when the Higgs fields are doublets. If the Higgs fields develop aligned
vacuum expectation values, this symmetry will break to an O(3) subgroup, which in general
is further broken by loop corrections involving the gauge bosons. Assuming such correc-
tions are small, the physical properties of the Higgs sector will approximately organize into
representations of SO(3). If the vacuum expectation values of the Higgs fields are aligned in
the direction of the C even fields, the mass spectra of the charged and C odd sectors will be
degenerate. Moreover, if the Higgs fields develop a pair of non-aligned vacuum expectations
values, so that the charge conjugation symmetry is spontaneously broken (but not the U(1)
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1. Introduction

Future discoveries at the LHC may reveal a sector of scalar particles that is much richer than
that of the Standard Model (SM). Some of the scalars may be responsible for generating
the masses of fermions and the electroweak bosons [1], whereas others may be responsible
for the dark matter [2, 3, 4, 5, 6, 7, §|.

It is natural to classify such scalars according to their properties under the SU(2)
associated with the electroweak sector of the Standard Model. In order to be compatible
with electroweak precision data, one usually considers only SU(2) doublets and singlets.
Even these representations are severely constrained by the data [9, 10, 11, 12].

Going beyond one or two doublets [13, 14|, one immediately has to face models having
a large number of parameters. The structure of such potentials has been studied in [15].

Different doublets could be distinguished via their couplings to fermion fields. This
idea is exploited in the so-called Model II version of the two-Higgs-doublet model (2HDM)
[13|, where one doublet couples to up-type fermions, and the other couples to down-type
fermions. Another version of this idea is the one considered in Ref. [7|, where each fermion
or each family has its own Higgs field.

We shall here consider instead the case when the different doublets can not be distin-
guished (since we are not considering couplings to the fermions). Thus, we shall here study



the symmetries of models with N doublets—it turns out that by setting a certain SO(4)-
violating parameter A to zero and assuming vacuum alignment, the spectrum simplifies
considerably. In particular, a certain “custodial” SO(3) symmetry [16] leads to a degeneracy
between the mass matrix of the C odd (or equivalently, CP odd) and the charged Higgs
bosons.

This possibility of a symmetry group of the scalar polynomial which is larger than
required by gauge invariance was pointed out by Weinberg [17] many years ago. In the
theories considered the extra symmetry was assumed to be a symmetry of any quartic (i.e.
renormalizable) potential of the scalar sector.

The Standard Model with its single Higgs doublet is an example of a theory were the
most general scalar potential has an extra O(4) symmetry not contained in the SU(2)x U (1)
gauge symmetry. On the other hand, an extension of the SM with an extra Higgs doublet (as
required if we want to introduce supersymmetry) or more, and with C symmetry, induces a
most general scalar potential where the extra O(4) symmetry is broken (before spontaneous
symmetry breaking). In our notation, this extra symmetry is broken by the parameter(s)
M) of. eq. (2.8). Standard renormalizability instructs us to include into the Lagrangian,
all terms allowed by the SU(2) x U(1) symmetry, hence it may be inconsistent to leave
out terms proportional to A(®). The presence of such parameters will in general lead to an
order \® tree-level breaking of the additional symmetry. We don’t think this in principle
is any different from having the symmetry broken by loop corrections. It becomes in any
case a question of the magnitude of the perturbation.

However, for renormalization it is only necessary to study the theory with unbroken
symmetry, since the renormalization is not changed when v # 0 [26]. Hence, only quadratic
counterterms have to be considered in the case of mass relations. Thus, in this case coun-
terterms of the type A will be irrelevant.

2. The NHDM potential and Lagrangian

We define the N-Higgs-doublet model, abbreviated NHDM, to be a system of N two-com-
ponent complex scalar fields @1, ®s, ..., Py, each with the same transformation property
under SU(2)r, x U(1)y as the Higgs field of the Standard Model, and with dynamics defined
by the Lagrangian density

L@) =Y (D' ()] [Dy@rn(@)] — V(@1 s, ..., B), (2.1)

m

where V (@1, Py,...,Py) is a potential that—in its most general form—is given by (2.5)
below. The covariant derivative D* is defined as

DV = ot +igiW! +ig'Y B, (2.2)

where W} and B* are the SU(2); and U(1)y gauge fields, respectively, and T; = 30;
are the generators of SU(2) with o1, 09,03 the Pauli matrices. Thus, our Higgs fields are
labeled by two indices: The row indexr running from 1 to N is often written out explicitly as
above, and an often hidden group indezr acted on by the gauge group. The latter are acted



on by the matrices T; in (2.2) (whose indices are also hidden). When written explicitly we
shall use Greek letters from the beginning of the alphabet.

To write the most general gauge-invariant potential in a renormalizable NHDM in a
compact way, we introduce a set of linearly independent! hermitian operators invariant
under local SU(2)r x U(1)y transformations (this is a generalization of the approach for
the 2HDM in [18]):

Ap= o @,
Byn = (0] ®, + @} ®,,) = Re(®],®,) = B,, (2.3)

)

(B!
(O] B, — I D,,) = Im(D] &) = C,.

3
3
DO| =

Due to (anti-)symmetry under interchange of m and n we may impose the restriction that
1 <m < n < N, and introduce indices a, b, ... labeling such pairs. An explicit invertible
encoding is

1§a:a(m,n):m+%(n—2)(n—1)g N(N —-1)=N. (2.4)

N =

We let m(a),n(a) denote the inverse of this encoding. We will use the summation convention
that repeated indices from the beginning of the alphabet are summed from 1 to N, and
repeated indices from the middle of the alphabet are summed from 1 to N. The most
general potential in the NHDM thus becomes a linear combination of all different quadratic
and quartic factors in the ®,, (and <I>I,L) which can be formed from Em, B, and C,:2

Vy(@1, .., Bx) = pD A + 1@ Ba + 1Py + AD A0 A, + 2D B, B,

a mn

+ AV, 0+ AD A, B, + N0, A,C, + NV B,C, (2.5)

where the “g” in V,; denotes “general”. To avoid double counting we introduce the restriction

m < n in the term involving )\571121, and the restriction a < b in the terms involving /\((li),

)\S)) and )\g;). We will not consider terms of degree higher than four, because these would
destroy the renormalizability of the model [22]. From the hermiticity of the potential V,
all parameters 1 and A in the expansion (2.5) must be real. Thus the number of free real

parameters in (2.5) is
Niot = N+ 2N + IN(N + 1) + N(N + 1) + 2NN + N? = IN?(N? + 3), (2.6)

which for N = 1 gives us the 2 parameters of the Standard Model (u? and \). N = 2 gives
us the usual 14 parameters for the 2HDM. There are 54 parameters for N = 3 and 152
parameters for N = 4.

This counting does not take into account the fact that we may make SU(N) row
transformations on the fields ®,, to eliminate some terms in (2.5). One possible choice is

!There are no linear relations between the operators in (2.3). However, they are algebraically dependent
when N > 3, being restricted by (N — 2)2 polynomial equations of 8’th order in the fields.

2Since <I>Laj<1>g (@inajq)n) = — (@L@g) (<I>in<1>n) + 2 (@1@,1) (@In':bg), other quartic invariants may
be expressed by those chosen.



to transform the quadratic terms into a diagonal form, i.e. so that ,ug) = MEE‘) = 0. This in
general leaves a matrix of N —1 independent diagonal phase transformations (such that the
determinant is unity). We may for instance use it to transform all )\ﬁ) with n(a) = m(a)+1
to zero. This reduces the number of parameters by N2 —1, i.e. to N{,, = % (N*+ N%42),
yielding 11 parameters for N = 2 (in agreement with Barroso et. al. [14]), 46 parameters

for N = 3, and 137 parameters for N = 4.

2.1 The most general C-invariant NHDM-potential

The charge conjugation operator C is a linear operator which leaves complex constants
unaltered, but maps fields onto their hermitian conjugate; C(z®,,) = zfﬂn, where z is a
complex number.? Then C(C,) = —C,, in contrast to C(A,,) = A, and C(B,) = B,.
We obtain a C-invariant potential by leaving out all terms which are odd in éa, i.e., terms
involving 1, AR, and A9, There are A + NN + A2 = IN(N = 1)(N? + N + 2) such
terms, leaving

1
Ne = ZN(N3 + 5N +2) (2.7)

free parameters for the general renormalizable C-invariant potential,

Ve(®1,...,0y) = uD Ay + P By + A 4,4, + A2 B, B,

mn

+A\VC,C,+ \D A, B, (2.8)

For N = 1 we get the usual 2 parameters of the standard model, the Higgs potential of which
is automatically C-invariant. For N = 2 we get the usual (see e.g., [18]) 10 parameters. For
N = 3 we get 33 parameters, and for N = 4 we get 86 parameters.

This counting does not take into account that we may make O(NV) transformations on
the row of fields ®,, to eliminate some terms in (2.8). A natural choice is to transform
the quadratic terms to diagonal form, i.e. so that ,uELQ) = 0. This reduces the number of
parameters by N (N — 1), i.e. to N; = $N(N3 + 3N +4). This gives 9 parameters for
N =2 (in agreement with [14]), 30 parameters for N = 3, and 80 parameters for N = 4.

The difference Nphases = Nigy — Np = %]\fz(N2 — 1)+ 1 — N counts the number of
genuine C-violating parameters in V, (in agreement with Branco et al. [19]).

2.2 Symmetries of ﬁ, ﬁ, C and C?

For generality we here consider k (rather than 2)-component fields, i.e. with SU(k) x U(1)
as gauge group. To make it simpler to explore all possible symmetries we express the field
®,, in terms of its independent real (hermitian) components, ®,, = ¥, + i0,,. Define

2k x 2k matrices
I I
e T o D (2.9)
Or Iy —1I}; Oy,

3This definition assumes that we for some reasons have decided on a decomposition of all fields into their

real and imaginary parts. It is not invariant under complex transformations of the fields, see e.g. [19].



where the subscript k indicates the linear dimension of the submatrix involved. The complex
scalar product between two fields ®,, and ®,,, invariant under unitary (U(k)) transforma-

tions, can be expressed in terms of two real bilinear forms?
Re(®f,®,) = By = (01, 07) T (g”> =vlw,+07e,, (2.10a)
Im(®f,®,) = Cpp = (W1, 05) 7 (g"> =vle,-0rv,. (2.10b)

The first is the Euclidean dot product between 2k-component real vectors, the second is
the Poisson bracket (symplectic form) of the same quantities viewed as coordinates and
momenta of 2k-dimensional phase space. The quantities in (2.10) are individually invariant
under transformation groups larger than U (k). The first form B (with A as a special case)
is invariant under the O(2k) group of real orthogonal transformations,

\Iln \Ijn T
=7 2.11
<®n>—>0<@n>, 00 , ( )

the second form C is invariant under the S p(k, R) group of real symplectic transformations,

\Ijn \Iln T o
(1) s(2). sas-o o2

In this formulation the charge conjugation operator C discussed above can be represented
as a particular O(2k) transformation when acting on the fields ¥,, and ©,,

I O
C= . 2.13
() 219
Considering infinitesimal transformations, O = Z + €L + O(e?), S = T + eM + O(e?), the
conditions (2.11) and (2.12) become

LT +7TIL =09, MTT+TM = 0qy. (2.14)

Thus L must be a 2k x 2k antisymmetric real matrix; there is a set (Lie algebra) so(2k) of
2k% — k linearly independent such matrices. Writing out the condition for M in terms of
k x k submatrices we find that it must have the form

M:(é_iT>, B=B" c=cC". (2.15)

There is a set sp(k) of k? + k(k + 1) = 2k? + k linearly independent such matrices. The

infinitesimal transformations of the original U (k) are the intersection of the sets so(2k) and

sp(k). Le., the matrices of the form (le i), with A = —AT and BT = B. There are

$k(k — 1) + 2k(k + 1) = k? such linearly independent matrices.

4<q)my (I)n> = ‘I):n - P, = Emn + iémn.



The symmetries of C?  The form C? (or more precisely émném,n,) has a bigger sym-
metry group than the form C. Still, we will see that such operators (forms) will violate the
full O(4) symmetry we can assign the rest of the Lagrangian. In analogy with (2.12), C?

\Iln \Iln T o
(2) s (2). sras-sa g

symmetries are given by

which can be collected in a set
P(k,R) = {S € GLy(R)|STTS = +7}, (2.17)

which we in Appendix A show is a Lie group.
The component

P~ (k,R) ={S € GLy(R)|STTS = -7}, (2.18)
consists of matrices with determinant
det(P~(k,R)) = (=1)F, (2.19)

as shown in appendix A. The group P(k,R) = Sp(k,R) U P~ (k,R) will have the same Lie
algebra as Sp(k,R), since the new component P~ (k,R) is not connected with the identity.
This is manifested by the equation corresponding to eq. (2.14),

T+ eMTT+TM)=+7. (2.20)
not having any solution for the case of a —7 on the right side, see appendix A for a proof.

The most general O(2k)-symmetric potential We can conclude that the most general
O(2Fk)-invariant potential can be written

Vor (®1,...,®n) = ) Ay + 1P By + A5 A A
+ Ay BaBy + M) A Ba, (2.21)

since we have seen that operators not containing any factor C are O(2k)-invariant. We
obtain a O(2k)-invariant potential by leaving out terms proportional to )\EL:Z) from the C
invariant potential V¢ (2.8). The number of terms in V(g is then Noap) = Ne — N? =
IN(N3 4+ 5N +2) — IN?(N —1)2, giving

1
Nogr) = 5NN + 1)? (2.22)

free parameters for the general renormalizable O(2k)-invariant potential Vi (ay). For N =1
we get the usual 2 parameters of the standard model, the Higgs potential being automati-
cally O(2k)-invariant. For N = 2 we get the usual 9 parameters, one parameter less than
for the C-invariant potential. For N = 3 we get 24 parameters, and for N = 4 we get 50
parameters.

This counting does again not take into account that we may make O(N) transformations
on the row of fields ®,, to eliminate some terms in (2.21). We may transform the quadratic
terms to diagonal form, so that ME?) = 0. This reduces the number of parameters by
sN(N —1), ie. to N/O(Qk) = IN(N? + N +2). This gives 8 parameters for N = 2, 21
parameters for N = 3, and 44 parameters for N = 4.



2.3 Symmetries of the NHDM potential

Since the NHDM-potential V; is constructed from the invariants (2.3) the symmetries of the
latter are reflected in the symmetries of the former, but in a manner depending on details
of the construction:

1. If Vi depends only on the ﬁm’s, i.e. if only the parameters uﬁ}} and )\7(71121 are nonzero,

then the symmetry group of V is at least® ®%:1 O(2k), since we can make indepen-
dent transformations on each ®,,.

2. If V depends only on the A,.’s and the By’s, i.e. for a C-invariant theory (2.8), where
in addition the parameters )\53)) = 0, then the symmetry group of V; is at least O(2k).
It may contain several such factors if some of the parameters HE?) and Ag)) vanish. To
analyze this we partition the ®,,’s into sets: If a parameter ,u((f) is nonzero, then the
fields ®,,(,) and ®,,(,) belong to the same set, with m(a) and n(a) denoting that m
and n are contained in a. If a parameter )\ﬁ) is nonzero, then the fields ®,,.,) and
®,,(4) belong to the same set, and the fields @,y and @,,;) belong to the same set.
With this partitioning into a maximal number of sets we may make one independent

O(2k) transformation for each set.

3. If V, depends only on the aa’s, i.e. with only the parameters uﬁf”) and AS? being
nonzero, then the symmetry group of Vg is at least Sp(k, R). If we (in the same manner
as above) can partition the fields into several sets, then we may make independent
Sp(k,R) transformations on fields belonging to different sets. However, since the
additional symmetries in this case fail to be symmetries of even the zero’th order
kinetic term (2.30), their significance is uncertain.

4. With all parameters arbitrary the symmetry group of Vg is just the original SU (k) x
U(1) gauge symmetry.

In this work we will pay special attention to the second scenario, with k£ = 2.

2.4 Symmetries of the kinetic terms

We now turn to the (global) symmetries of the kinetic terms of the Lagrangian,

N
K = 300" + 0, @)@, + G0 ()], (2.23)

n=1

with
G* =ig;W! +ig'Y B (2.24)

Let K; denote the terms of the i’th order in the gauge fields.

5Tt could possibly be larger, since there might be additional row symmetries transforming fields ®,,, with

different m into each other; such symmetries would require special relations among the parameters pg) and

AL



Consider the transformation of the kinetic terms linear in the gauge fields, K, under
the map p defined in appendix B. We can then write®

(@)L Gu(®)r + (D)L GH0, ()

I
NE

K

i
I

p(0" (D)D) p(G)p((@n)i) + p((20)])p(G*) p(8yu (P ) )

[
WE

i
I

I
E

ML, @, + OL(—T)0,9, (2.25)

Il
—

n

where the subscript k in (®,,); indicates this is the usual complex Higgs k-plet (in the case
k = 2 the usual complex Higgs doublet), while ®,, is the 2k dimensional real vector (2.26),

Wy
P, = <9n> , (2.26)

where (®,,)r = ¥,, +i0,,, and where we also use egs. (B.2), (B.3) and (B.6).
In eq. (2.25) we have applied the transformation p on the gauge terms G* defined in
eq. (2.24),

p(G") =T, p(G")=-T", (2.27)
where 7 then reads
gWg + ¢ Y B gy ’ '

with Wp = Z; WHT?, summed over the set of real symmetric generators T of SU(k), and
Wi = 122 W/T?, summed over the set of imaginary antisymmetric generators T*. For
k = 2 the two sets are respectively {% , 203} and {; 2}

Third, we consider the kinetic terms quadratic in the gauge fields,

TGuTG D)

)p(G*)p(G)p((®n)r)

= — Z T, (2.29)
n=1

Disregarding so-called Schwinger terms—here terms proportional to i[d.¢(z), ¢(x)] for a scalar field
¢—or, alternatively, reasoning classically.



The symmetries of kg When we first ignore couplings to the gauge fields the remaining
terms can be written

N k
Ko=> Y (0"Vpa0,Vna + 0"Ona 0,04a) , (2.30)
n=1a=1

where the group index « labels the k components of ®,, = ¥,, +i0,,. This term is invariant
under rotation of all components {¥,,, 0,4} into each other. I.e., the symmetry group of
Ky is O(2kN). The connected part of this group is SO(2kN), whose generators are all real
antisymmetric matrices, Lypag = —Lnm,ga (i-e. LT = —L, where transposition refers to
both sets of indices).

The symmetries of Ky and K;: Next, consider the terms linear in the gauge fields
again, cf. eq. (2.25),

N
Ki=> <(3u (vI,e) T (?) —(vL 7)) Ta, (g"» 7 (2.31)
n=1 n n
with 7 given in eq. (2.28).

Consider now an infinitesimal transformation 0®,, o = Lyn,as Pn g, and T denoting
the 2k x 2k antisymmetric matrix in equation (2.28) (in group indices «, f — in addition it
is proportional to the N x N unit matrix in row indices). The requirement that this is an
infinitesimal symmetry transformation for K is that LT 7+ 7 L = 0. Or, when we restrict
L to be antisymmetric so that it also is an infinitesimal symmetry transformation for Ky,

Linn,as Ty — Tap Lmn,gy = 0. (2.32)

In order to determine the allowed structure of L, we expand these matrices into terms of
definite symmetries (L® symmetric, and L(®) antisymmetric) in the mn indices:

Lunnag = (SapLGh + AagLih) (2.33)

with S (symmetric) and A (antisymmetric) restricted by the constraint (2.32). The sum
runs over all possible combinations of allowed matrices”. We next note that the antisym-
metric matrices 7 can be expanded in the set

s | (T7 oy O T¢ Ok 1k
T={T}T,T;7,7}= {(Ok 72"") : <T5 Ok>’<1k Ok>}' (2.34)

By substituting (2.33) into (2.32) we are led to search for the set of 2k x 2k real matrices S
and A which commute with 7 for arbitrary values of the fields W/ and B*. It is sufficient
to verify that this property holds for all elements of the set 7. Let

X111 Xi2
X = , X=5 o X=A 2.35
<X21 X22> (2:35)

"Without the restriction (2.32) there would be 1k(2k+1)N(N —1)+ 3k(2k—1)N(N +1) = kN (2kN —1)
independent terms, equal to the number of generators of SO(2kN).



Requiring commutativity [see eqs. (2.32) and (2.33)] with the three types of matrices in 7
we obtain the conditions

X TP =T X, (2.36a)
XnT; =T; X9, XooTp =T7 X1, XioTp = 17X, XoiTp = —17X12, (2.36b)
X1 = Xo2, Xi2=-Xo. (2.36¢)

Using (2.36¢) we find that X;; and X2 must commute with all matrices 77, T? (assumed
to form an irreducible representation). By Schur’s lemma they must then be proportional
to the k x k unit matrix, so that § « Z and A « J. Thus, the Lie algebra of the symmetry
group of Ky and K7 consists of elements of the form

Lyn = IL%?’L + ng’rsL)n (237)
This is the Lie algebra of U (V) written in real variables.

The symmetries of Ky and K; in the limit ¢ — 0: A more interesting situation
arises if we remove 7 from the set ’7A', as would apply to the limit ¢ — 0. Then we still find
that X11 + Xo2 and X2 — Xo1 must commute with all matrices T3, T, and hence must be
proportional to the unit matrix. Further, Xi; — X995 and X195 + X5 must commute with
all T}, but anticommute with all 7. For k = 2, i.e. for the gauge group SU(2);, x U(1)y
in the limit ¢’ — 0, we find that nonzero solutions of (2.32),

X1 — X xe=io?, Xio+ Xo xe, (2.38)

are possible [see egs. (2.33) and (2.35)]. This means that the possible antisymmetric ma-
trices A may be any linear combination of matrices from the set

0e e 0
)60 e

where the 2 x 2 matrix ¢ was defined in eq. (2.38). The set G is a basis of generators for
SU(2). Thus, the Lie algebra of symmetry generators for Ky and K7 in this case consists
of elements of the form

Ly =TLE, + > ALS), (2.40)

Aeg

allowing all possible symmetric N x N matrix L® for each A. There are %N (N —-1)+
%N(N—i— 1) = 2N? + N independent terms, equal to the number of generators of the N x N
quaternionic symplectic group Sp(IN). The generators (2.40) generate Sp(N), where the
elements of G act as the quaternions 7, j and k.

The results above were again found under the assumption that the fields W/ are ar-
bitrary, and kept constant under the transformation. Combined SU (k) transformations of
the W} and the ®,, fields still remain a symmetry. For k = 2 this symmetry is enhanced
to (at least) Sp(N) x SO(4) as ¢ — 0.8 (In the case ¢’ # 0 it is U(N) x SU(k).) The
generators for SO(4) are the 3 generators in G plus the 3 generators for the SU(2);, gauge
group (written in real form).

8The SO(4) symmetry cannot be extended to a O(4) symmetry [27].
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The symmetries of Ko Next, consider the terms quadratic in the gauge fields cf. eq. (2.29),

= T Ty 72 [ ¥n
Ky = —nzl (wl.ef)T o | (2.41)
As in the symmetry analysis of K we want to find all matrices X such that X772 = 72X.
All matrices X which commute with 7 will fulfill this criterion (since T2 can be expanded
in a set which consists of products of all possible pairs of matrices from ’7\’) Therefore, the
symmetries of K7 are also symmetries of Ks.

3. Spontaneous symmetry breakdown

In this section we return to the case of k = 2, i.e. with SU(2)r, x U(1)y as the gauge group
and a row of N Higgs doublets ®,,. Note however that many of our considerations have
straightforward generalizations to k& > 2.

As for the Standard Model, the potential V, of equation (2.5), or V¢ of equation (2.8),
may acquire its minimum at nonzero values of the scalar fields, (®)y = ®O) where
(without a lower index) refers to the whole set of fields ®,,. This point, ®©) will belong
to one or more manifolds of equivalent minima related by the symmetries of the potential.
One may use these symmetries to transform ®© to a particular form. A possible one is to

require for <I>§O) that only its lowest real component is nonzero. This can always be achieved

by an SU(2)r x U(1)y gauge transformation. Next, the upper component of CIJgJ) can be
made real by the remaining U(1) gauge transformation which keeps <I>(10 unchanged. Then
one has no gauge freedom left to change CD%O) for n > 3. However, it was shown by Barroso
et al. [23] that a sequence of unitary row transformations can shift the vacuum expectation

values to the first two fields of the row only?, for instance (when written in complex form)

U1

Vo€

with vy, ug, vo and § real. The special case us = § = 0 is usually referred to as vacuum
alignment, in which case we may also transform vy to zero by an orthogonal row trans-
formation involving only ®; and ®5. This is known as the Higgs basis [24|. However, for
other purposes it may be more convenient to adopt a “democratic” basis in which the lower
component of all (or most) fields ®,, have a nonzero real expectation value. It is related
to the Higgs basis by an orthogonal row transformation which preserves the form of C and
U(1) electromagnetic gauge transformations (the latter preserving the definition of electric
charge).

90One may collect the quantities @5221 (e =1,2) into two N-component complex vectors MW and &3
By a U(N) row transformation one may first rotate &)5711) so that only the component égl) is nonzero, with
&Dgl) real. There is a group of U(N — 1) transformations preserving this condition; this may be used to
transform &2 so that only the components <i>§2), é?’ are nonzero, with égQ) real. One cannot do better
due to the existence of four real U(N) invariant parameters in [|[®1 ]|, [|®®]], and &M &) But there
remains a U (N —2) group of transformations preserving this condition which can be used for other purposes.
For a SU(k) x U(1) gauge group one may generalize this procedure to k vectors 9, j =1...k.

— 11 —



Assume now the case of vacuum alignment and a potential V(4 which is O(4) invari-
ant. Then the existence of the vacuum expectation values ®(©) will break the (explicit)
symmetry down to O(3), with the consequence that the Higgs boson particle spectra and
other physical properties will organize themselves into multiplets of O(3) (broken by per-
turbative corrections in ¢’). The number of broken symmetry generators is 3 whether we
consider the symmetry broken from U(2) to U(1) or from O(4) to O(3); this leads to the

existence of 3 Higgs ghosts and no extra Goldstone bosons!".

3.1 Mass-squared matrices

To make these statements slightly more explicit, as needed for calculation of the zero’th
order (in g and ¢’) particle masses, we expand the potential around ®©) to second order.
There are no first order terms since we are expanding around a minimum. The matrix of
second derivatives is the mass-squared matrix Msm ap- Lt is restricted by symmetries to have
a block diagonal form in the group indices o, 8. We use coordinates where ®,,, = ¥, +i0,,

is expressed in terms of four real fields,

By = Uy 410, = [ Ot T0m2 ) g _ (0 (3.2)
Um + m + iPm3 Um,
It is now convenient to represent these on real form as
¢m1
Y Um + m
o, = = 3.3
m3
We have the expansion
V(@0 + AD) = (V) 41 _ov_ AD,,,AD,, + O(AD?) (3.4)
0T 9N\, 00,, [, T T ’ '

where ®,,, denotes one of the four possibilities @1, 1m, Gm2, ¢m3, and the subscript 0
indicates that a quantity is evaluated at ® = ®© . Now a set of generators for SO(4)! is

0100 00 00 000 O
—1000 00-10 000 —1
!]1_ ; J2_ ) J3_ )
0000 01 00 000 O
0000 00 00 010 O
00 00 000 -1 00-10
00 0O 000 O 00 00
J4_ ’ J5_ ) JG_ ’ (35)
00 01 000 O 10 00
00-10 100 O 00 00

0This remains true for general values of k > 2; a set of aligned vacuum expectation values will break
U(k) to U(k — 1) and O(2k) to O(2k — 1). The number of broken generators is 2k — 1 in both cases. The
situation is different if we have two broken real directions, as in equation (3.1) with uz = 0 but 6 # 0. Cf.

section 3.3.

HEquivalently O(4): SO(4) and O(4) have the same Lie algebra and hence the same generators.
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where Ji, Jo, J3 will transform the vacuum expectation value @(0), while Jy, J5, Jg leave it
unchanged, cf. Eq. (3.3). In terms of these, the broken generators of the SU(2) x U(1)y

gauge group, written in real form by the transformation p defined in (B.1), are
i 1—>1(J + J5) i 2—>1(J + J1) i(1 3) = J (3.6)
—o - — — —(1-o0 .
5 g2t J5), 5 gLt Ja), 5 3

and the unbroken U(1) (electromagnetic gauge) generator is

i 3

5(1 +0°) = Js. (3.7)
If now V' is invariant under

A(bml — _A(bmla Anm — Anma A¢m2 — _A¢m2a A¢m3 — A¢m3a

there can be no terms in (3.4) mixing the sets {A¢1, Agpa} and {Any, Apms}. If V in

addition is invariant under

A¢ml — A¢m27 Anm — Anma A¢m2 — _A¢mla A¢m3 — A¢m37

there can be no terms in (3.4) mixing A¢,,1 and Agy,2, and we must have

FVN [PV N
<m>o N <8¢m2 8¢n2 >0 - Mch,mn- (38)

We refer to this as the charged mass-squared matrix. The transformations considered
generate a Z4 subgroup of the U(1) gauge group generated by Jg, assumed to be a symmetry
of V. We have formulated it this way as a reminder that invariance under discrete subgroups
may be sufficient to impose useful restrictions on the mass matrices.

If V' is invariant under C transformations,

A"?m — Anm7 AQme — _AQSmSv (3'9)

(irrespective of how we define C to operate on the charged sector, f.i. A¢p1 — Admi,
A — —Adma) there can be no terms in (3.4) mixing An,, and A¢gy,3. Thus the neutral
mass-squared matrix decomposes into two more blocks, a C even and a C odd one,

0?V 0?V
C+,mn <a77m ann >0 Y Cf,mn <8¢m3 a¢n3 >0 (3 O)

If V in addition is invariant under the transformations
A¢ml — A¢ml7 Anm — A?]m, A¢m2 — A¢m3a A(bm?) — A¢m27 (311)

which generate a Z; subgroup of the SO(2) symmetry group generated by J4, we obtain
the relation
Mg = M3 (3.12)

ch,mn*

This explicitly demonstrates mass degeneracy between the charged and the C odd sec-
tors [25]. Especially, if the potential is O(4)-invariant (2.21), that is, we have a C-invariant
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theory where also the parameters )\((;) = 0 [the latter implies (3.11)]'2, the above symme-

try criteria for mass degeneracy are valid. Moreover, since the the renormalization is not
changed when the Higgs fields aquire a vacuum expectation value [26], we won’t get any mass
renormalization counterterms from the quartic operators. So even though O(4)-violating
quartic terms proportional to )\((;Z) cannot alone be prohibited by any discrete symmetry
imposed on the NHDM Lagrangian [27], they won’t be showing up as counterterms when
renormalizing the masses. Hence, the mass degeneration (3.12) will only be broken by loop
corrections involving gauge bosons, since we get an exact SO(3) symmetry when ¢’ = 0.
With ¢’ # 0 and hence with an approximate SO(3) symmetry, the mass differences of the
charged and C P-odd sectors will be of order O(g*) o< O(e?).

On the other hand, the SO(3) symmetry between C'P-odd and charged sectors could

)

also be broken by counterterms of the type )\fj’) 52, even though these terms are set to zero

in the original potential, if we are considering scattering processes and not mass relations.

3.2 The Higgs ghosts

Let A® be chosen so that ®(©) +eAD+O(e?) is a family of minima related by the symmetry

of the potential V|
0

0Py0

to first order in e. By differentiating this relation with respect to € and then setting e = 0

we find e
V
— ) Ad,53= 14

which reflects the fact that the matrix anmﬁ has zero eigenvalues with corresponding

eigenvectors A®,, 5. We may take the latter to be AP  J;8O for i =1,2,3. Normalized,

V(@ 4 eAd) =0, (3.13)

ADN = (v,,,0,0,00" Ja, ADP) =(0,0,v,,0)" Ja, ADP) = (0,0,0,0m)7 /a, (3.15)

with a? = Y, 02,. The massless excitations in these directions correspond to a triplet of
Higgs ghosts. There will be N — 1 additional SO(3) triplets of excitations in directions
orthogonal to the ghosts. They correspond to physical particles. There will also be N
SO(3) singlets, transforming evenly under C, corresponding to physical particles. In the
case of N = 2, the triplet is (H", H~, A), whereas the singlets are h and H [13].

3.3 Non-aligned vacuum expectation values

We have assumed vacuum alignment in much of the previous discussions of this section.
The phenomenologically most realistic deviation from this case is that we have a situation
with two (real) broken directions, as in (3.1) with ug = 0 but ¢ # 0. This corresponds to a
situation which preserves the U(1) electromagnetic gauge symmetry, and its corresponding
definition of electric charge, but where the C symmetry is spontaneously broken. In this
situation the M, c2h,mn mass-squared matrix remains in block form, but the C even and odd
excitations may mix to give a 2N x 2N mass matrix for the neutral particles. One of the

12For supersymmetric theories we typically have )\((l?,’]) # 0.
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excitations will be massless, corresponding to a neutral Higgs ghost. We assume again that
V' is invariant under O(4) transformations. The explicit symmetry is now broken down to
O(2) ~ U(1), so that 5 generators are broken. As before, 3 of these will generate excitations
which correspond to the Higgs ghosts; the remaining 2 will correspond to nearly massless
charged pseudo-Goldstone! bosons (massless to zero’th order in ¢’).

To analyze the situation we again write ® = ®©) + &’ in terms of real fields,

B, = DO + (Gyts s Grmas Xom)© with & = (0, v, 0, w,,) " .

Jy and J5 are now also broken by the vacuum expectation values. Acting with the broken
generators on ®© one finds five eigenvectors of the mass matrix with zero eigenvalues,
AP  J,8O) After normalization

AN = (v,,,0,0,0)7 /a,

AD?) = (0,0, —vpm,0)" /a,

ADB) = (0, wy,, 0, —vp)" /a2 + b2, (3.16)
4) = (0,0, w0 )T/ba
5>—(w ,0,0,0)" /b,

where a? = =>m v2, and b? = m w?,. These eigenvectors are normalized, but they are not
necessarily orthogonal to each other. Their nonvanishing inner products are

(A@(U,A@@) _ <A<I>(2),A¢(4)) - %vawm = cos®.

Here |sin )| > 0, since the vacuum expectation values by assumption are non-aligned. Thus,
the orthonormalized eigenvectors corresponding to the Higgs ghosts can be written

1 b
HWY = ———— (0,0, wp,,0)7 = AdL 4 — — AW,
m ~/a2+b2( ) ~/a2+b2 1/a2_+_bQ m
1 b
H? = ——— (w0,,,0, 0, 0)T = ——— AD®) 4 A, 3.17
" Va2 + b2 ( ) Va +b2 NN (3.17)
1
@ _ 1 _ — A®
H = —= — (0, W, 0, —v) " = ADE),

where HY G;®© G, denoting the SU(2) generators as given by the map (3.6). The
two eigenvectors corresponding to the Goldstone modes are orthogonal to those above,

GY = WIGQW [a <A<I>(4) + cosﬁACD(Q)) —b <A<I>(1) — cosﬁACD@)} )
G@ = WZQW [—a (Ac1><5> - cosM@“)) +b (Ac1><2> +COSQ9A<I>(4)>} . (3.18)

13Pseudo-Coldstone bosons stems from broken generators of the extra O(4) symmetry of the potential,
while Higgs ghosts per definition is generated by the broken generators of the gauge symmetry (which of
course is a symmetry of the whole lagrangian). The pseudo-Goldstone bosons acquire small masses from
radiative corrections, and are hence not massless in all orders of perturbation theory, like true Goldstone
bosons. True Goldstone bosons are, in contrast, generated by the spontaneous breaking of a symmetry of
a total lagrangian, not only a potential.



They have been orthonormalized. We note that the normalization constant becomes infinite
in the limit of aligned vacuum expectation values, sinv — 0. We recall that the set
{H(l),H(2),H(3),G(1),G(Q)} are just numerical eigenvectors of the mass-squared matrix.
The corresponding zero mode fields are the quantum fields obtained by projecting ®' on
these eigenvectors,

oHY — (H(“,q)’) HY) e = (GU),@’) GU)  fori=1,2,3andj=1,2 (3.19)

The field 7 is the neutral Higgs ghost field, while the fields & " and ®H® form the
charged Higgs ghost field, and the fields G and G®) together form charged Goldstone
boson fields.

If the vacuum expectation values broke the symmetry in even more directions, as in
(3.1) with both ug # 0 and 6 # 0, the situation would be different: All 6 generators of
SO(4) would be broken, 4 of them corresponding to the 4 broken generators of the U(2)
gauge group. Thus, there would still be 2 pseudo-Goldstone bosons.

4. Concluding remarks

In this paper we have analyzed the additional (approximate) symmetries which may arise
in multi-Higgs-doublet models, due to the fact that the scalar potential may have more
symmetries than required by the imposed gauge invariance. Moreover, for the kinetic terms
(as a whole) we found that the symmetry group was U(N) x SU(k). In the case k = 2
(i.e. scalar doublets) we found that the symmetry group of the kinetic terms, in the limit
g — 0, is enhanced to Sp(N) x SO(4). The most general C invariant Higgs potential (2.8)
has the same SO(4) symmetry, only broken by the presence of the operator C?, that is,
terms proportional to A a?; . In the case where )\((;Z) is set to zero, we have a mass degeneration
(3.12) (assuming vacuum alignment) between charged and C odd sectors in the limit ¢ — 0.
When we don’t have vacuum alignment, but rather two broken (real) directions with the
electromagnetic generator left unbroken, a pair of light, charged Higgs bosons should emerge
(cf. section 3.3).

A. P(k,R), the symmetry group of (2

We will here show that the set
P(k,R) = {S € GLy(R)|STTS = +7}, (A1)

given in eq. (2.17) is a Lie group: The associative law and the existence of the identity
follow from G Lok (R) (the set of all invertible, real 2k x 2k matrices) being a group. Define

P~ (k,R) ={S € GLy(R)|STTS = - T}. (A.2)

The other component of P(k,R) (what we could call P*(k,R)) is Sp(k,R). Then, if
S~ € P~ and ST € Sp(k,R), then we easily see by the definition that

S=St, 818 € P~ (k,R),
StSy, ST Sy € Sp(k,R). (A.3)
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So the set P(k,R) is closed under group multiplication. This set also includes the inverse
of each element. We only have to show this for elements S € X, since we already know
Sp(k,R) is a Lie group. Let STJS = —7. Then

(ST) 187788t = (ST (-g7)5 7, (A.4)
and since we generally have that (AT)~! = (A=H)T]
~J=(sTHT7s™, (A5)

so S~1 € P~ too (still, P~ is not a group considered isolated, since it is not closed under
group multiplication, and does not include the identity).

We have now derived that P(k,R) is a group. To prove it is a Lie group, we must prove
that it is a (topologically) closed subset of G Ly (R): f(A) = AT JA is a continuous map,
the set {+7} is closed in G Loy (R), and hence P(k,R) = f~1[{£7}] is closed in G Lay(R).

The determinant of P~ (k,R) We will now show that the determinant of the matrices in
the set P~(k,R), consisting of the real matrices with the property STJS = —7, is (—1):
First, we claim the set P~ (k,R) is given by

Pi(kvR) = Sp(k,R)C :CSp(k,R), (A6)
with C defined in eq. (2.13). This is so because if S” € P~ (k,R), then S'C € Sp(k,R) since
(5'0)1T(S'C) =T (=T)C =T, (A7)

and then S’ = SC for S = S'C € Sp(k,R), since C? = I. Similarly with C Sp(k,R).
On the other hand, if S € Sp(k,R), then

se)yfgse)=ctgc=-7, (A.8)

so then SC € P~ (k,R). Similarly, CS € P~ (k,R).
Now we can evaluate the determinant of an arbitrary element in S’ € P~(k,R). Since
S’ = SC for an element S € Sp(k,R),

det(S") = det(S) det(C) = det(C), (A.9)

since all matrices in Sp(k,R) have determinant 1 [20]. The determinant of a n x n matrix
A can be written (sum over repeated indices)

det(A) = € Ay o A, (A.10)

(the Leibniz formula). Then there is only one non-zero term in this sum for the matrix C,
so the determinant is given by (no sum over k)

det(C) = 61’2""’2k0171 6272 .- -Cgk,gk = 1k(—1)k = (—l)k. (A.ll)

Hence by egs. (A.9) and (A.11), the matrices of P~(k,R) have determinant (—1)*.

,17,



Sp(k,R) and P~ (k,R) are not connected We want to show that Sp(k, R) and P~ (k,R)
are two components of P(k,R), i.e. they are not connected. Connected means the same
as path connected for Lie groups. Assume that the two components are connected. Then
there has to be a continuous path between e.g. I € Sp(k,R) and R € P~ (k,R). Let X(t)
be such a path, i.e. X(0) = I and X (1) = R, where X (¢) is continuous. Consider the
supremum

to =sup{t| XT()TX([t) = +T}. (A.12)
We know that X (I)Tj X(1) = —=J. Moreover, consider the function
7(t) = det(XT()TX (1) + ), (A1)

which is continuous for continuous functions X (t), since the determinant, matrix addition,
multiplication and transposition are continuous. But f(t) is discontinuous for ¢t = ty, since
there in any open interval contining ¢y will be values ¢ where f(t) = 0 and other values
where f(t) = det(2J) = 22*, per definition of t5. Hence our assumption that X (t) is
continuous must be wrong, and hence the sets Sp(k,R) and P~ (k,R) are not connected.

B. The map p

We will now introduce a map p which lets us easily translate between real and complex
formulations of the kinetic terms we are studying. The map p preserves both matrix mul-
tiplication, addition and the identity.'* We define p as a function from My(C), the set of
all k£ x k complex matrices, to Mai(R), the set of all k£ x k complex matrices by

_ [Re(X) —Im(X)
pLX) = <Im(X) Re(X) > ’ (B-1)

With U a Lie group, p is a Lie group isomorphism from U C M (C) to p[U].

Now we want to show that the definition of p can be extended to vectors so that it
preserve products of complex vectors and matrices: Let v be a complex k x 1 vector, let
v = VR + vy, with vg, vy real and define

p(v) = (iﬁg;) = <1:j> : (B.2)

pvh) = (Re(vT), —Im(vT)> = (v%, v?) . (B.3)

Moreover, let A be a complex k x k matrix and let A = (Ar + 1Ay), with Ag, Ay real,
then

and

p(Av) = p(A)p(v), (B.4)

) is an injective ring homomorphism [20]. On the other hand, the inclusion p[U(2)] C SO(4) shows

that p does not preserve the determinant, even though it is a ring (or group) isomorphism on its image.
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i _ ((Avr\ _ (Ar —Ar\ (vr) _
since p(Av) = ((Av)1> = (Az AR) (W) = p(A)p(v). Furthermore, let u, v be complex k x 1

vectors, then
Re(ul Av) = p(u)p(A)p(v), (B.5)

since Re(uf Av) = Re[(uh—iuT)(Ar+iAr)(vr+ivy)] = (uF uF) (‘Z’; _A’i’) (Z’;) = p(uh)p(A)p(v).
Then,

ul Av + 0T ATu = p(ul) p(A)p(v) + p(v1)p(AT)p(u), (B.6)

since the left hand side of eq. (B.6) equals its real part.
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