
Master of Science in Physics and Mathematics
June 2010
Trond Kvamsdal, MATH

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Matrix-Free Conjugate Gradient
Methods for Finite Element Simulations
on GPUs

Runar Heggelien Refsnæs

Problem Description
Develop and implement matrix-free conjugate gradient methods applicable for solving Poisson
problems by the finite element method on GPUs.

Assignment given: 01. February 2010
Supervisor: Trond Kvamsdal, MATH

Abstract

A block-structured approach for solving 2-dimensional finite element approx-
imations of the Poisson equation on graphics processing units(GPUs) is devel-
oped. Linear triangular elements are used, and a matrix-free version of the con-
jugate gradient method is utilized for solving test problems with over 30 million
elements. A speedup of 24 is achieved on a NVIDIA Tesla C1060 GPU when
compared to a serial CPU version of the same solution approach, and a com-
parison is made with previous GPU implementations of the same problem.

i

ii

Preface

This master thesis is written as part of the Master of Science study program in
Applied Mathematics at the Department of Mathematical Sciences at NTNU,
and is the result of work done in the spring of 2010 at the HPC laboratory of the
Department of Computer and Information Science.

I would like to thank my supervisor Trond Kvamsdal for his guidance in our
weekly meetings and for his valuable help in completing this project. Anne C.
Elster, the head of the HPC-lab, has been kind enough to have me as an hon-
orary member of the lab, allowing me to use their excellent equipment and par-
ticipate as an equal member in their activities, including traveling to the Super
Computing convention in Portland, Oregon november last year.

A special thanks goes to the master students Aleksander Gjermundsen, Ahmed
Aqrawi, Holger Ludvigsen and Øystein Krog at the HPC-lab, who have helped
me immensly with whatever technical difficulties I have encountered, and for
providing good company and many laughs this last year. Finally I would like to
thank my friend and fellow math-student, Gagandeep Singh, for the collabera-
tion last fall on the project leading up to this master.

Trondheim, June 25, 2010

Runar Heggelien Refsnæs

i

ii

Contents

Abstract i

Preface i

1 Introduction 1
1.1 Report Outline . 2

2 General Purpose Computations on GPUs 4
2.1 Heterogeneous Programming . 5
2.2 GPUs and Scientific Computations 5

2.2.1 Double Precision . 5
2.2.2 Accuracy and Reliability . 6
2.2.3 Development Tools . 6

2.3 FEM on GPU and Similar Work . 7
2.4 The GPU Architecture . 7

2.4.1 Processing power . 8
2.4.2 Memory . 8
2.4.3 Data transfers . 9

2.5 CUDA . 10
2.5.1 CUDA Programming Model 10
2.5.2 Main Language and Syntax Structure 10
2.5.3 Memory Hierarchy . 12

3 Mathematical Problem Description and The Finite Element Method 15
3.1 The Poisson Equation . 15

3.1.1 Test cases . 15
3.2 The Finite Element Method . 17

3.2.1 Discretization . 18
3.2.2 Assembly . 19

3.3 Quadrature . 21
3.4 Error Analysis . 22

iii

CONTENTS

4 The Conjugate Gradient Method 23
4.1 The Conjugate Gradient Method . 23

4.1.1 Theory and Background . 23
4.2 Algorithm . 24
4.3 Convergence and Error . 24
4.4 Matrix-Free Versions . 25

5 Structured Block Representation 26
5.1 Technical Specifications . 27
5.2 Adaptation to the project . 28

6 Implementation 31
6.1 Program Flow . 31
6.2 Grid Generation . 32
6.3 Load Function . 33
6.4 Matrix-Vector Product . 34
6.5 Linear Algebra . 37
6.6 Visualization . 39
6.7 Performance Optimization . 41

7 Results and Discussion 43
7.1 Introduction . 43
7.2 Performance . 43

7.2.1 Performance Criterias and Considerations. 43
7.2.2 Test Results . 46

7.3 Discussion . 51

8 Conclusion and Further Work 55
8.0.1 Conclusion . 55
8.0.2 Suggestions for Further work 55

A Poster from Supercomputing 2009. 59

B Results from february 2010. 61

C ICADA - Spline Patch Specifications. 70

iv

List of Figures

1.1 A view from Berkeley: seven critical questions for 21st Century
parallel computing. The picture is taken from [1]. 2

1.2 Floating-Point Performance for the CPU and GPU. 3

2.1 Smoothed-particle hydrodynamics(SPH) performed on the GPU.
Picture taken from [11]. 7

2.2 The difference in priorities of transistor usage on the CPU and
GPU. Picture taken from [15]. 8

2.3 The different memory types on a NVIDIA GPU with CUDA sup-
port. Picture taken from [15]. 9

2.4 The partitioning of multithreaded programs into independent blocks
means that programs will automatically scale to GPUs with a dif-
ferent amount of cores. Picture taken from [15]. 12

2.5 Grids are divided into blocks that again are divided into different
threads. Picture taken from [15]. 13

3.1 The constant source, zero boundary problem: Solution domain
and boundary conditions. 16

3.2 The non-constant load and boundary problem: Solution domain
and boundary conditions. 17

3.3 Mapping between physical and reference element 19

5.1 Numbering convention for the spline surfaces in ICADA. 29
5.2 Numbering convention for the 2-dimensional block structure. . . 30

6.1 Program flow. 32
6.2 Screenshots from the application for selecting boundary condi-

tions for the edges . 33
6.3 The contributions from all 6 elements to a node are computed by

independent threads, and must be collected and summed up at
the end. 36

v

LIST OF FIGURES

6.4 Storage order in arrays for corner, edge and inner nodes. nC is
the total number of corner nodes, nE is the total number of edge
nodes and nI is the total number of inner nodes. 37

6.5 Definition of indices from various block for reduction to edge-
nodes. The index i is for a specific edge-node, and contributions
are stored in the global solution vector based on the left-right ori-
entation of the blocks A and B with respect to i. 38

6.6 Definition of indices from various block for reduction to edge-
nodes. The index i is for a specific corner-node, and contributions
are stored in the global solution vector based on the orientation
of the blocks A, B, C and D with respect to i. 39

6.7 Screenshot of a Poisson solution in the custom built visualization
tool, demonstrating the wireframe mode 40

7.1 The constant source, zero boundary problem: Log-log plot of rel-
ative error vs. number of degrees of freedom. 46

7.2 The non-constant load and boundary problem: (left) Exact solu-
tion, (right) Approximate solution with 32 768 elements. 47

7.3 The constant source, zero boundary problem: Log-log plot of time
per iteration vs. N1, the number of elements along an edge of the
square domain. 49

7.4 Structured finite element mesh over the unit square. 51
7.5 The constant source, zero boundary problem: Speedup per itera-

tion vs. degrees of freedom. 52
7.6 Comparison of memory requirements between the various ver-

sions of the FEM solver. All versions are tested for various resolu-
tions of elements for the same test problem 53

vi

List of Tables

2.1 Glossary of terms used in GPU programming using CUDA. 14

3.1 Weights and sampling points for 3-point Gauss-Legendre quadra-
ture over a triangular domain. 22

5.1 Variables used in the specification of spline patch topologies. . . . 28
5.2 Variables used in the description of a 2-dimensional block struc-

ture. 28

7.1 Hardware Specifications for the Test System. 46
7.2 The constant source, zero boundary problem: Timing results for

the serial version running on the intel CPU. 47
7.3 Important specifications for the Tesla C1060. (2008) 48
7.4 Important specifications for the Tesla C2050. (2010) 48
7.5 The constant source, zero boundary problem: Parallel version run-

ning on the Tesla C1060. The table gives the total runtime towards
convergence with tolerance 10−8, time per iteration and speedup
compared to the serial version. 50

7.6 The constant source, zero boundary problem: Parallel version run-
ning on the Tesla C2050. The table gives the total runtime towards
convergence with tolerance 10−8, time per iteration and speedup
compared to the serial version. 50

7.7 Comparison between the three different approaches tried over
the last year. 51

vii

LIST OF TABLES

viii

Chapter 1

Introduction

In the technical report "The landscape of Parallel Computing Research: A View
from Berkeley" [1] from 2006, a Berkeley research group predicts that processor
architecture must shift from multicore technology to manycore, utilizing 1000s
of cores per chip instead of the single digit numbers we see today.

To allow applications to draw from the full potential of the added computa-
tional capabilities, this shift will demand new ways of thinking and program-
ming for parallel processors. The gap between applications and hardware must
be filled with new programming models and tools to evaluate the success of ap-
plications. In the report, the problem is illustrated with figure 1.1, inspired by
the view of the Golden Gate Bridge from the University of California at Berkeley.

The article from Berkeley was published in december 2006, and only months
later NVIDA released the first iteration of a new general purpuse SDK for devel-
opment on NVIDIA GPUs, the Compute Unified Device Architecture, or CUDA.

CUDA tries to answer many of the challenges proposed in [1], such as a pro-
gramming model independent of the number of processors, minimizing re-
mote accesses, and balancing the opacity of the underlying architecture, while
keeping visible the key elements vital for performance. GPUs have several of
the hardware properties that are mentioned in [1], and figure 1.2 illustrates the
floating-point performance that can be gained compared to traditional proces-
sor design.

This thesis seeks to bridge the gap between the two towers in figure 1.1, rep-
resented by Finite Element Analysis as the application in the left tower, and

1

1.1. REPORT OUTLINE

Figure 1.1: A view from Berkeley: seven critical questions for 21st Century parallel
computing. The picture is taken from [1].

NVIDIA GPUs as the specific hardware in the tower on the right. Our bridge is a
highly structured matrix-free approach to the conjugate gradient method.

1.2.

1.1 Report Outline

The rest of the report is structured as follows:

Chapter 2 presents general purpose programming on GPUs, with special at-
tention to NVIDIA GPUs and the CUDA architecture and development
tools.

Chapter 3 gives the mathematical basis for the finite element formulation, and
the test problems used in the thesis.

Chapter 4 describes the conjugate gradient method used for solving the di-
cretized finite element system, and explains the matrix-free version we
have utilized.

Chapter 5 provides details on the block-structured approach to domain de-
composition, and introduces our 2-dimensional take on the spline patch
topology from the ICADA framework provided by SINTEF.

Chapter 6 presents the details of our implementation, and explains the design
choices and optimizations done to make the program suitable for the ar-

2

CHAPTER 1. INTRODUCTION

Figure 1.2: Floating-Point Performance for the CPU and GPU.

chitecture.

Chapter 7 contains the speedup and runtime results of our implementation,
as well as a comparison with previous efforts and a discussion of the re-
sults.

Chapter 8 concludes the project and proposes further work.

3

Chapter 2

General Purpose Computations on
GPUs

Graphical Processing Units, GPUs, were initially developed as coprocessors for
offloading compute-intensive 2D and 3D operations involved in graphics. A
highly parallel architecture allowed them to do these operations much faster
than what was possible on CPUs. Early GPUs were fixed hardware designed to
perform very specific operations, but advancements in graphical effects such as
3D shading demanded more programmable arhcitectures. Today almost every
personal computer has a GPU, and a new market has opened up for handheld
devices such as mobile phones. The two biggest companies in the industry are,
ATI, who is owned by AMD, and NVIDIA.

The term General-Purpose computation on Graphics Processing Units or GPGPU,
was coined in 2002 [5], by Mark Harris who now works for NVIDIA. The concept
is to use the new programmable GPUs for computational tasks not necessarily
linked to graphics. Initial attempts at running non-graphics related software on
GPUs were largely proof-of-concepts, and often relied on clever use of the hard-
ware and a substantial knowledge of the inner workings of the GPU. Interest in
GPGPU has been on the rise the last few years, and in an attempt to appeal to a
broader audience of scientific communities, NVIDIA launched its CUDA archi-
tecture in 2007. In 2008 an open framwork for multi-core programming called
OpenCL was also released by the Khronos Group, and both ATI and NVIDIA are
now supporting this platform.

4

CHAPTER 2. GENERAL PURPOSE COMPUTATIONS ON GPUS

2.1 Heterogeneous Programming

The consept of heterogeneous programming is to use different types of com-
putational units in a system. A computer with a GPU is an example of a het-
erogeneous system, where the CPU acts as the host processor, and the GPU is a
coprocessor.

The CPU is desgined as a general purpose processor capable and designed for
handling advanced flow control and data caching. The GPU on the other hand
is developed for handling code that is computational intensive, requires a high
memory bandwidth, and can run in parallel. This is typical for the graphical
operations performed in games, with high-resolution textures and 3D-models
with a high polygon count.

In a typical program the CPU will handle the overall program execution and
serial code, while the GPU performs tasks with a high degree of parallelization.
The bottleneck in heterogenous computing such as GPU programming, is very
often the transfer of data between the two devices. For the CPU and GPU, all
communication must go through the PCI-Express interface. This means that
as a programmer you want to transfer as much data as possible in as few trans-
fers as you can, in order to reduce overhead costs. You also want to design your
program such that it does as many computations as possible on the data each
device has locally before transfering more data.

2.2 GPUs and Scientific Computations

The appeal of using GPUs in scientific computing lies in taking advantage of a
hardware architecture that provides a high level of parallelization and compu-
tational power for a relatively small amount of money. This means that a scien-
tist in practice can have what is effectively a supercomputer on his own desk.
Using GPUs for scientific applications like numerical analysis does however of-
ten pose different requirements to the hardware than the graphics programs
the GPUs traditionally have been developed for.

2.2.1 Double Precision

One of the most important issues is double precision. Double precision is im-
portant both for exact results as well as rapid convergence in numerical solvers.

5

2.2. GPUS AND SCIENTIFIC COMPUTATIONS

On modern CPUs this basically comes for free, but on GPUs single precision
floating point units outnumber those for double precision. This means that the
speedup one usually get for programs requiring less precision, is much more
limited when requiring double precision. The trend in hardware development
is a shift in this ratio towards a more balanced split.

2.2.2 Accuracy and Reliability

Video games have always been the driving force for GPU technology. Physical
simulations and visual effects in games are basically smoke and mirrors, and
accuracy of the phenomenas simulated is only important up to the point that it
looks good. In addition, if some calculations fail, resulting in say a miscolored
pixel, it is typically overwritten within a fraction of a second.

Scientific applications on the other hand generally have much higher demands
for accuracy and reliability, and miscalculations in a numerical simulation can
have disastrous consequences for the final solution. NVIDIA has taken this se-
riously, and error correction technology in the form of ECC memory is part of
the new generation of scientifically oriented GPUs from NVIDIA, such as the
Tesla C2050 used in some of our tests.

2.2.3 Development Tools

Another very important aspect of programming on the GPU is the need for de-
cent development and debugging tools. Both CUDA and OpenCL are frame-
works developed for making development of more general applications easier,
and the availability of good frameworks and reliable compilers for these is a
necessity for the GPU’s success in the scientific community. While OpenCL has
gained some popularity over the past year, CUDA has the advantage of having
been out for more years, and since it is developed by NVIDIA it naturally has
the advantage of working well on NVIDIA GPUs.

An obvious selling point for OpenCL is that it is cross platform, and thus may
eventually become the de facto standard. There are however several similari-
ties between the two programming models, and OpenCL was made with CUDA
in mind. The choice of platform for this thesis is CUDA, due to the fact that
the currently available OpenCL compilers are known to have problems, and
NVIDIA have GPUs out on the market that are specially made for GPGPU com-
puting such as the Tesla GPUs used for our performance tests.

6

CHAPTER 2. GENERAL PURPOSE COMPUTATIONS ON GPUS

Figure 2.1: Smoothed-particle hydrodynamics(SPH) performed on the GPU. Pic-
ture taken from [11].

2.3 FEM on GPU and Similar Work

Research done on numerical simulations on the GPU range over a wide area
of methods and applications, including sparse matrix solvers [2], fluid simula-
tions using smoothed-particle hydrodynamics [11] and finite difference com-
putations [13]. Some work using the finite element method focus on specific
applications such as cloth simulations [18], and biomechanical simulations [21]
achieving approximate speedups of 9 and 16 respectively.

Work has also been done on the assembly of the stiffness matrix resulting from
the finite element discretization, and an article from Cecka, Lew and Darve at
Stanford [3] presents various strategies for assembly using the GPU. Some of
this work shares similarites to ours, since the matrix-free sparse matrix-vector
multiplication in our conjugate gradient implementation in essence is an as-
sembly procedure. We have not been able to find any work utilizing a block
structured approach similar to ours, and believe that our strategy of combin-
ing this structure with a matrix-free implementation has not previously been
explored.

2.4 The GPU Architecture

We will here present some of the main features of modern graphics cards, or
GPUs, with a special emphasis on NVIDIA cards that incorporate the CUDA ar-
chitecture.

Modern NVIDIA GPUs are seperated into several multiprocessors, each divided
into processors that share a memory space, but with individual local memory.

7

2.4. THE GPU ARCHITECTURE

Figure 2.2: The difference in priorities of transistor usage on the CPU and GPU.
Picture taken from [15].

For the NVIDIA Tesla C1060, the number of streaming multiprocessors is 30,
with 8 cores in each. The new Tesla C2050 has 14 multiprocessors with 32 cores
in each. In addition to the memory space shared between processors in a mul-
tiprocessor, all processors have access to an on-board global memory.

2.4.1 Processing power

Figure 2.2 shows the difference in priorities of transistor usage on the GPU com-
pared to the CPU. The GPU has a very specialized architecture compared to the
CPU, with many more transistors dedicated to floating point calculations, at
the expense of features like flow control and branch predicition. The clock fre-
quencies of GPUs are generally lower than for CPUs, and for our test system
the CPU runs at 2.83 GHz, while the Tesla C1060 and Tesla C2050 GPUs run at
1.3GHz and 1.15GHz respectively.

2.4.2 Memory

The GPU has a lot of specialized memory units. Figure 2.3 shows how these
memory units are located with respect to the processor. Memory transfers within
the graphics card have a high bandwith. On the CPU, memory management
is handled automatically, while on the GPU many of the choices on how the
memory should be utilized is left to the programmer in order to achieve good
performance. This often calls for a different approach to structuring of data, as
will be seen in the implementation chapter.

8

CHAPTER 2. GENERAL PURPOSE COMPUTATIONS ON GPUS

Figure 2.3: The different memory types on a NVIDIA GPU with CUDA support.
Picture taken from [15].

2.4.3 Data transfers

The memory spaces on the CPU host system and the GPU device are com-
pletely separate, and in order to do work on the GPU, data sets must be trans-
fered over the PCI-express bus. Transfers over the PCI-e bus is a bottleneck,
with high latency and limited bandwith, and extensive use should hence be
avoided. Even with tasks more suited for execution on the CPU, it is still some-
times better to make a GPU implementation with the same functionality, to
avoid transfering data between the host and device systems.

In games, vertex and texture data for a scene is typically preloaded to the GPU
when the scene is loaded. A similar approach should also be taken for more
general numerical applications like our own. Coordinate data for all nodes is

9

2.5. CUDA

only loaded once, and stays on the GPU through all stages of the solution pro-
cess, including visualization.

2.5 CUDA

2.5.1 CUDA Programming Model

The first CUDA SDK was released in february 2007, and the current stable re-
lease is version 3.0. As a developer you can choose between two interfaces to
write CUDA programs. The one that is the simplest to pick up for people ac-
customed to C programming, is C for CUDA, which offers a set of extensions to
the C language. These include extensions for launching kernel functions in C
on the GPU, and synchronizing program flow.

The other interface is the CUDA driver API, which provides a more low-level ap-
proach with functions to load modules of binary or assembly code. This gives
the programmer more control and the program better portability, but is also
harder to use. In our GPU implementations we have used C for CUDA.

Another difference between the two interfaces is that C for CUDA comes with a
device emulation mode initiated by using the -deviceemu option in the compi-
lation stage. The device emulation mode allows for better debugging by allow-
ing break points and code that can not run on the device, like printf statements.
Device emulation mode can also be used on systems without a CUDA enabled
graphics card.

The compiler driver supplied with the CUDA SDK is called nvcc, and it can
handle source files with a mix of both device code and host code. Device code
is compiled with proprietary NVIDIA compilers, and host code by invoking the
C/C++ compiler available on the host system. We have done our programming
on Linux platforms, so the GNU compiler, gcc has been used.

2.5.2 Main Language and Syntax Structure

In CUDA, the thread is the smallest unit of parallelization. Threads are light
weight processes. All threads used in executing a particular kernel, run the
same version of the code. Branching can be initiated based on a thread ID.
Threads are scheduled in warps of 32, and branching will not hurt performance

10

CHAPTER 2. GENERAL PURPOSE COMPUTATIONS ON GPUS

significantly as long as all threads in a warp follow the same branch. However,
if threads in a warp diverge, the execution will be serialized and performance
will drop.

Communication between threads must happen indirectly by writing and read-
ing to the shared memory within the block. Unlike on CPUs, the GPU will in
general not ensure that reading and writing is deterministic and atomic. Atomic
operations that guarantees that an operation such as addition is performed
without interuption from other threads, are supported, but only for integers.

In order to coordinate memory accesses, calls to a special synchronization func-
tion called synchtreads() must be made. This makes sure that all threads are at
the same point in the execution of the kernel function. A typical example of use
is when threads collaborate on reading a chunk of data from the global memory
into the shared memory.

Threads are further structured into blocks. On NVIDIA devices of compute ca-
pability 1.3 such as the Tesla C1060, thread blocks can hold up to 512 threads.
On the new 2.0 devices the limit is 1024. Cooperation between thread blocks
is very limited, since it is a requirement that they can be executed in any order
independent of each other.

This independency has the advantage that blocks can be scheduled on differ-
ent cores, and will scale well to GPUs with a different number of cores. Syn-
chronization between blocks can only be ensured at the completion of a kernel
function. Programs dependent on interchanging of data between blocks must
hence work by splitting the program into several kernel executions.

Threads can be structured in one, two or three dimensions, such that each
thread has a thread index with x,y,z coordinates. This is simply an abstraction
and is there for the convenience of the programmer.

A kernel program can run on several thread blocks, and these are structured
in grids. Blocks in a grid are structured in one or two dimensions, again this
is simply there for ease of implementation. The same can be done on a one-
dimensional as on a two-dimensional structure.

All threads in a block must run on the same multiprocessor, but since blocks
are independent, a grid can be split and scheduled over several cores, with far
more blocks then there are processors. The number of blocks chosen is there-
fore rather a result of data size and what makes sense for the program at hand.

11

2.5. CUDA

Figure 2.4: The partitioning of multithreaded programs into independent blocks
means that programs will automatically scale to GPUs with a different amount
of cores. Picture taken from [15].

Figure 2.4 illustrates this point.

The point of the thread, block and grid structures, is to provide a good model for
GPU implementations, where a program is split into coarse independent part
divided into blocks, but with finer parts that can cooperate between eachother
within a block.

2.5.3 Memory Hierarchy

The memory structures that are part of the CUDA architecture are designed to
work well with the parallelization structure mention above. Threads in a block
will in most programs have to exchange data, and the shared memory allows
for this.

A thread also has access to its own private local memory, as well as the big
global memory or DRAM. The shared memory is on-chip and therefore much
faster then the device memory. Typically a kernel will read in the data it needs

12

CHAPTER 2. GENERAL PURPOSE COMPUTATIONS ON GPUS

Figure 2.5: Grids are divided into blocks that again are divided into different
threads. Picture taken from [15].

from the global memory, and use the shared memory as a working memory.

Shared memory will have the same lifetime as the the block it is attached to,
while the global memory is persistent throughout execution of the program,
and hence can be used for communication between blocks.

In addition to the private, shared and global memory spaces, threads have read
access to the texture memory and the constant memory. The constant memory
is cached and so it is extremely fast. It is however very limited in space, only
16kb, and is hence of limited use.

The host and the device will maintain different memory spaces, and pointers
from one, can not be dereferenced in the other. Before execution of a kernel
function, the necessary memory must be allocated on the GPU, and data must

13

2.5. CUDA

Table 2.1: Glossary of terms used in GPU programming using CUDA.

Term Description
Kernel A function running in parallel on the GPU.
Thread A single process.
Block/Thread block A collection of threads.
Grid A collection of thread blocks.
Streaming multiprocessor/SM A collection of cores.
Host The CPU system.
Device The GPU system.
Shared memory Memory shared by threads.
Global memory Big memory space available for all.
Local memory The individual memory for a single thread.
Constant memory Small memory space available for all.

be transferred from the host system. This transfer goes over the PCI-Express
interface.

The host has read and write access to the global and constant memory and
must be used to allocate shared memory. The threads on the device can read
and write to their own registers and local memory, shared memory within the
block, and global memory. Threads only have read access to the constant mem-
ory.

14

Chapter 3

Mathematical Problem Description
and The Finite Element Method

3.1 The Poisson Equation

In this thesis we will focus on the 2-dimensional Poisson equation. The purpose
of our implementation is prototyping and proof-of-concept for block-structured
FEM solvers on GPUs, and the Poisson equation is a natural choice given its
familiarity and well understood properties. Among the uses for the Poisson
equation are calculations of electrical potentials and of time independent heat
distributions. The equation is given in (3.1). Here Ω is the domain, Γe is the
essential, Dirichlet boundary conditions reflected in the solution space X , and
Γn is the natural, Neumann boundary conditions. ∂u

∂n =∇·n, is the directional
derivative in the outward normal direction.

−∆u =−∇2u =−
(
∂2

∂x2 + ∂2

∂y2

)
u(x, y) = f (x, y) inΩ.

u = g on Γe
∂u
∂n = h on Γn

(3.1)

3.1.1 Test cases

We have chosen two test problems for verification and performance tests in this
thesis. They are presented below.

15

3.1. THE POISSON EQUATION

Ω 1

Γ2

3

4

-1 1

-1

1

2

u = 0 on

u = 0 on 3

u = 0 on 4

1

u = 1 in Ω ∇

u = 0 on

2

Γ

Γ

Γ

Γ

Γ

Γ

Γ

Figure 3.1: The constant source, zero boundary problem: Solution domain and
boundary conditions.

The constant source, zero boundary problem

The test case we have called the constant source, zero boundary problem, is used
for both verification and speedup tests. It has a constant source function f = 1
over the entire solution domain.

The previous implementations of finite element solvers developed in fall 2009
[22], appendix A, and january 2010, appendix B, both used this test case for
performance measures, and we do the same in this thesis for the purpose of
comparison. Figure 3.1 show the domain and boundary conditions. This is a
very simple test case, and it is easy to visually verify due to the characteristic
bell shape of its solution.

The analytic solution of the problem is given in equation (3.2).

u(x, y) = (1−x2)

2
−16

π3

∞∑
k=1,3,5,..

{
sin(kπ(1+x)/2)

k3 sinh(kπ)
× (sinh(kπ(1+ y)/2)+ sinh(kπ(1− y)/2))

}
(3.2)

The non-constant load and boundary problem

The second test case is named the non-constant load and boundary problem,
and has a load function f = sinh(πy

2)sin(πx
2)/sinh(π2), that varies over the do-

main. We also have a mix of boundary conditions, with homegenous dirichlet
on two of the edges, u = sin(πx

2) on a third, and finally a neumann condition on
the fourth.

16

CHAPTER 3. MATHEMATICAL PROBLEM DESCRIPTION AND THE FINITE
ELEMENT METHOD

Ω 13

4

0 1

0

1

2

u = 0 on

u = sin(π x / 2) on

u = 0 on 3

u = 0 on 4

x 1

u = sinh(π y / 2) sin(π x / 2) / sinh(π / 2) in Ω ∇ . . .

.

2

Γ2

Γ Γ

Γ

Γ

Γ

Γ

Γ

Figure 3.2: The non-constant load and boundary problem: Solution domain and
boundary conditions.

We have chosen this test problem for verification of our handling of different
boundary conditions and of the quadrature needed for evaluation. Figure 3.2
shows the domain and placement of the different boundaries, and the analytic
solution is found in equation (3.3).

u(x, y) = sinh
(πy

2

)
sin

(πx

2

)
/sinh

(π
2

)
(3.3)

3.2 The Finite Element Method

The Finite Element Method (FEM) was developed for solving complex prob-
lems in science and engineering. The initial development of the method is of-
ten accredited to Alexander Hrennikoff and Richard Courant in the early 1940s.
The method offers a flexible way of solving equations over complex domains,
and today several variations of the method using different types of elements
and formulations are well established in the mathematical community.

The finite element method is based on the weak, variational formulation of
boundary and initial value problems [16]. Multiplying (3.1) with a test-function
v ∈ X on both sides of the equation, and performing integration-by-parts using
the boundary conditions, gives the weak formulation:

Find u ∈ X e such that
a(u, v) = l (v), ∀v ∈ X ; (3.4)

17

3.2. THE FINITE ELEMENT METHOD

where
X e = {v ∈ H 1(Ω) | v |Γe = g }

a(u, v) =
∫
Ω
∇u ·∇v dΩ=

∫
Ω

f v dΩ+
∫
Γn

(∇u ·n)v d s = l (v)

H 1(Ω) =
{

v |
∫
Ω

v2,
∫
Ω

vx
2,

∫
Ω

vy
2 <+∞

}
X = H 1

0 (Ω) = {
v ∈ H 1|v |Γe = 0

}

The final term on the right-hand side,
∫
Γn

(∇u ·n)v d s will simply vanish when
there are no Neumann condition, or if they are zero.

3.2.1 Discretization

In order to solve our system numerically, the solution space must be discretized.
We have chosen triangular elements in our treatment of the method. This gives
the domain:

Ω= ⋃
Th∈τh

T h

where Th is a triangle in the triangulation τh .

With piecewise linear basis functions, we define the finite-dimensional approx-
imations to X and X e to be respectively

Xh = {v ∈ X | v |Th ∈P1(Th), ∀Th ∈ τh}

and
X e

h = {v ∈ X e | v |Th ∈P1(Th), ∀Th ∈ τh}

That is all functions v in Xh and X e
h that are linear polynomials over each ele-

ment in our triangulation. We choose a nodal basis, that is a basis such that

v(x j) =
n∑

i=1
viφi (x j) =

n∑
i=1

viδi j .

where x j are the nodes. The space Xh can then be written as

Xh = span{φ1, ...,φn} :

φi ∈ Xh , φi (x j) = δi j , 1 ≤ i , j ≤ n

18

CHAPTER 3. MATHEMATICAL PROBLEM DESCRIPTION AND THE FINITE
ELEMENT METHOD

T ~T

η

ξ (1,0)
(0,0)

(0,1)

(xT1 ,y
T
1)

(xT2 ,y
T
2)

(xT3 ,y
T
3)

Figure 3.3: Mapping between physical and reference element

By expressing u and v in terms of the basis functions we can get the final dis-
crete formulation. Find uh ∈ X e

h such that

a(uh , v) = l (v) ∀v ∈ Xh (3.5)

This leads to the set of algebraic equations in (3.6)

Ahuh = F h

Ahi j = a(φi ,φ j) = ∫
Ω
∂φi
∂x

∂φ j

∂x + ∂φi
∂y

∂φ j

∂y dΩ

Fhi = l (φi) , 1 ≤ i ≤ n.

(3.6)

uh is the vector of nodal values of uh .

3.2.2 Assembly

Let φi |T = Ni . We want to compute the integral over the element T k
h∫

T k
h

∂Ni

∂x

∂N j

∂x
+ ∂Ni

∂y

∂N j

∂y
d A (3.7)

In terms of programming, it is easier to calculate the integral (3.7) by use of
substitution. We define a linear(and affine) mapping between T k

h and a refer-

ence element T̃ k
h as shown in figure 3.3. Basis functions for T̃ k

h corresponding

to N1(x, y), N2(x, y) and N3(x, y) for T k
h are given by

N̂1(ξ,η) = 1−ξ−η
N̂2(ξ,η) = ξ
N̂3(ξ,η) = η

19

3.2. THE FINITE ELEMENT METHOD

The relationship between the coordinates (x, y) og (ξ,η) is given by

x = xT
1 N̂1 +xT

2 N̂2 +xT
3 N̂3

y = yT
1 N̂1 + yT

2 N̂2 + yT
3 N̂3

We have
∂Ni

∂x
= ∂N̂i

∂ξ

∂ξ

∂x
+ ∂N̂i

∂η

∂η

∂x
;
∂Ni

∂y
= ∂N̂i

∂ξ

∂ξ

∂y
+ ∂N̂i

∂η

∂η

∂y

We need to find ∂ξ
∂x , ∂ξ∂y , ∂η∂x og ∂η

∂y . Since x = x(ξ,η) og y = y(ξ,η), we get

[
d x
d y

]
=

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

][
dξ
dη

]
(3.8)

The determinant of the Jacobian matrix (3.8) is given by

|J | =
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

= xT
2 −xT

1 xT
3 −xT

1
yT

2 − yT
1 yT

3 − yT
1

(3.9)

The inverse of (3.8) is given by

[
dξ
dη

]
=

[∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

][
d x
d y

]
= 1

|J |

[∂y
∂η

−∂x
∂η

−∂y
∂ξ

∂x
∂ξ

][
d x
d y

]
This gives us

∂ξ

∂x
= 1

|J |
∂y

∂η

∂ξ

∂y
=− 1

|J |
∂x

∂η

∂η

∂x
=− 1

|J |
∂y

∂ξ

∂η

∂y
= 1

|J |
∂x

∂ξ

It follows that

∂N1

∂x
= 1

|J | (yT
2 − yT

3)
∂N1

∂y
= 1

|J | (xT
3 −xT

2)

∂N2

∂x
= 1

|J | (yT
3 − yT

1)
∂N2

∂y
=− 1

|J | (xT
3 −xT

1)

∂N3

∂x
=− 1

|J | (yT
2 − yT

1)
∂N3

∂y
= 1

|J | (xT
2 −xT

1)

(3.10)

20

CHAPTER 3. MATHEMATICAL PROBLEM DESCRIPTION AND THE FINITE
ELEMENT METHOD

All the terms in (3.10) are constant, and the area of T k
h is denoted by AT . The

element matrix for an element k is then given by

Ak = AT

 ∂x N 2
1 +∂y N 2

1 ∂x N1∂x N2 +∂y N1∂y N2 ∂x N1∂x N3 +∂y N1∂y N3

∂x N2∂x N1 +∂y N2∂y N1 ∂x N 2
2 +∂y N 2

2 ∂x N2∂x N3 +∂y N2∂y N3

∂x N3∂x N1 +∂y N3∂y N1 ∂x N3∂x N2 +∂y N3∂y N2 ∂x N 2
3 +∂y N 2

3

The different local contributions in the element matrices Ak , can be added into
the global stiffness matrix A. The final linear system can be solved using a reg-
ular direct or iterative solution process.

In the next chapter, chapter 4 we will define am iterative conjugate gradient
approach for solving the system in (3.6), using only the element matrices Ak

locally, never actually forming A.

A similar treatment, using the reference element, is done for the right-hand
side of the equation (3.4), l (v). For the constant source, zero boundary problem,
the right-hand side is simply reduced to

∫
Ωv dΩ, and evaluation is very simple.

Since we allow for inhomogenous load and boundary function in our imple-
mentation, the evaluation of the integral for more general source functions and
boundary conditions must be handled through use of quadrature.

3.3 Quadrature

An analytic solution is usually not available when calculating integrals over ele-
ments for the stiffness matrix, the load vector and boundary conditions given in
the previous section. We then have to use a numerical approximation method.

We have chosen to evaluate integrals over the reference element given in fig-
ure 3.3, using Gauss-Legendre quadrature. Details on this can be found in [12].
The approximation to the integral of a function f over the reference element
in two dimensions can be expressed through a double summation over special
weighted sampling points. M1 and M2 in the formula below is the number of
integration points along each axis.∫ 1

0
f (ξ,η)dξdη≈

M1∑
i=1

M2∑
j=1

Wi W j f (ξi ,η j)

21

3.4. ERROR ANALYSIS

Table 3.1: Weights and sampling points for 3-point Gauss-Legendre quadrature
over a triangular domain.

ξ η Weight
0.1666667 0.1666667 0.3333333
0.6666667 0.1666667 0.3333333
0.1666667 0.6666667 0.3333333

The weights W and integration points (ξ,η) for 3-point Gauss-Legendre quadra-
ture over the triangular reference element is given in table 3.1.

3.4 Error Analysis

If we define the discretization error as e = uh −u, we can find a general error
result for the finite element formulation given earlier.

1. a(v,e) = 0 , ∀v ∈ Xh

2. a(e,e) ≤ a(Uh −u,Uh −u) , ∀Uh ∈ X e
h

The first part tells us that uh is the projection of u onto Xh with respect to a(·, ·),
and the error e is orthogonal to every v in Xh . The second equation is the best
approximation property, and it tells us that there is no better approximation uh

to u in X e
h . The error is minimized in a(·, ·). A proof for these properties can be

found in [8].

The bilinear symmetric form a(·, ·) is also called the energy norm, and we de-
fine it as

||e||ε = a(e,e)
1
2 =

(∫
Ω
∇e ·∇e dΩ

) 1
2

(3.11)

In the the results chapter, chapter 7, we shall use this norm for verification of
the implementation. We will then use the exact solution, u, for the constant
source, zero boundary problem given in equation (3.2).

22

Chapter 4

The Conjugate Gradient Method

4.1 The Conjugate Gradient Method

4.1.1 Theory and Background

The discrete system of equations from the finite element method must be solved
by a numerical solver. The Conjugate Gradient method was originally proposed
by Magnus R. Hestenes and Eduard Stiefel in 1952 [7] as a method for solv-
ing systems of linear equations. The method requires a symmetric positive-
definite(SPD) system of equations, that is a system of the form Ax = b where
A is such that x ′Ax > 0 ∀x ∈ Ω. The stiffness matrix from the finite element
method applied to the Poisson equation satisfies this requirement.

The method draws it name from the fact that the succesive search directions
p

k
, are conjugate with respect to the SPD A. That is

p
i

T Ap
j
= 0 , ∀i 6= j .

A more complete presentation of the mathematical foundation for the conju-
gate gradient method can be found in [19] and [24].

23

4.2. ALGORITHM

4.2 Algorithm

The standard algorithm as given in [19] is stated in algorithm 1. r0 and p0 are
respectively the initial residual vector and the initial search direction. When the
initial guess x0 is 0, r0 and p0 simply becomes b which for the finite element
method is the right hand side of (3.6), F h . αk is the steplength, and βk is used
to determine the next search direction.

Algorithm 1 The Conjugate Gradient Method

r 0 = b − Ax0, p
0
= r 0

For k = 0,1,2, ..until convergence

αk = r k
T r k

p
k

T Ap
k

xk+1 = xk +αk p
k

r k+1 = r k −αk Ap
k

βk = r k+1
T r k+1

r T
k+1r k

p
k+1

= r k+1 +βk p
k

End

4.3 Convergence and Error

Theoretically the Conjugate Gradient method will converge and reach the ex-
act solution in at most N steps for N degrees of freedom. Each step k projects
the exact solution into the k-dimensional solution space spanned by the A-
conjugate basis vectors.

In practice, each step will not be solved exactly due to round-off error in the
computations. The method will however in general converge to an acceptable
error-tolerance in far less than N iterations. This rapid convergence is one of
the greatest strengths of the method.

It can be shown [19] that the convergence in the A-norm is given as in equa-
tion (4.1), where κ= λmax

λmin
is the condition number of A, x∗ is the exact solution,

and xk is the approximate solution after k steps.

‖x∗−xk‖A ≤ 2

[p
κ−1p
κ+1

]k

‖x∗−x0‖A (4.1)

24

CHAPTER 4. THE CONJUGATE GRADIENT METHOD

4.4 Matrix-Free Versions

Our implementation of the finite element method never forms the actual stiffnes
matrix A, and hence the matrix-vector product Ap

k
in the algorithm is per-

formed implicitly by doing the calculations per-element as can be seen in al-
gorithm 2. θ is the local-to-global mapping of indices. The terms Aαβ are the
entries in the element matrix Ak as given in section 3.2.2. This direct "on-the-
fly" computation of the element matrices is proposed in [14].

Algorithm 2 Direct evaluation of y = Ap
k

y = 0
For k = 1,2, ..K (elements)

For α= 1,2,3
i = θ(k,α)
For β= 1,2,3

j = θ(k,β)
yi = yi + Ak

αβ
p j

End
End

End

In the GPU-implementation, the outer for-loop in the algorithm is replaced
with a parallel distribution where calculations for each element is done on seper-
ate threads.

25

Chapter 5

Structured Block Representation

Our first effort at constructing an implementation of a finite element equation
solver, fall 2009 [22], appendix A, was done on completely unstructured trian-
gular meshes. These were then divided into partitions favouring load balanc-
ing. This approach relied heavily on preprocessing of the mesh data in order to
fit it into data structures suitable for the GPU programming model. Numerous
support structures were needed to handle boundaries between partitions and
on the closure of the domain. The overall complexity made the application rely
to much on a particular implementation of the pre-processing, hence making it
implausible for a general programming approach to finite element implemen-
tations on GPUs.

As a precursor to the final implementation presented in this thesis, a simpler
prototype utilizing a topological and geometrically structured grid was devel-
oped in january 2010, and showed considerable promise in terms of speedup
and general ease of implementation [17], appendix B. Parts of the implemen-
tation quite heavily exploited the rigid and well-defined relationship of the var-
ious blocks. In particular the problem of reduction of values on the borders
between blocks, was done in a manner not really suited for a general block-
structured approach.

In order to solve problems on more complex geometries than the ones utilized
in [17], the topological block structure is kept but we allow for blocks arranged
in an arbitrary manner, with chartesian geometry varying for each individual
block.

Researchers at SINTEF Applied Mathematics have developed a system for han-

26

CHAPTER 5. STRUCTURED BLOCK REPRESENTATION

dling isogeometric representations in CAD and FEA, called ICADA [20]. We
have decided to utilize a cutomized version of their specification of spline patch
topology for our 2D finite element domain implementation.

5.1 Technical Specifications

The fundamental idea behind the block structured topology is to reduce the
number of variables and indices needed to describe the domain, and instead
introduce only a few that all others can be deduced from. For instance, know-
ing the index of the first node on an edge and a corresponding increment value,
allows us to find the indices of all other nodes along that edge. The represen-
tation developed in the ICADA project is for 3-dimensional geometries, and all
the nodes of a block can be found from the values listed in table 5.1. An example
of the numbering convention can be seen in figure 5.1. The full specifications
can be found in appendix C.

Certain assumptions are made in the documentation. They only allow for com-
pletely matching blocks. This means that two blocks are connected topologi-
cally only if all nodes on the surface between them are shared and identical for
the blocks. In other words completely matching blocks share an entire com-
mon surface, otherwise there is a crack between them. It is also required that
the grid generation process produces unique global indices for all nodes or con-
trol points in the model, and that the internal node number generation can
be done locally within each block independently and in arbitrary order, for in-
stance in a parallel context. This last point is of particular importance for our
project, given the nature of our hardware. As explained in chapter 2, CUDA
blocks are required to execute independently.

The representation described in [20], appendix C, only provides information
of the topology. The necessary coordinate data needed for the solution or sim-
ulation step must be provided seperately.

27

5.2. ADAPTATION TO THE PROJECT

Table 5.1: Variables used in the specification of spline patch topologies.

Variable Description
IBLOCK Spline patch index
IBNODi Global node number of vertex i
ICNODi Global node number of second point along edge i
INCRi Increments in global numbering alond the edge (±1)
ISNODi Global node number for first interior point on face i
INCIi Increments in global numbering in local I-direction on the face (±1)
INCJi Increments in global numbering in local J-direction on the face (±1)
IINOD1 Global node number of the first interior point of the patch

Table 5.2: Variables used in the description of a 2-dimensional block structure.

Variable Description
IBLOCK Block ID
IBNOD1,...,4 Global node numbers for vertices
ICNOD1,...,4 Global node numbers for second points along edges
INCR1,...,4 Increments along positive direction of the edges
ISNOD Global node number for first interior point in block
INCI Increment in local I-direction of interior nodes
INCJ Increment in local J-direction of interior nodes
NINOD Number of total nodes in horisontal direction
NJNOD Number of total nodes in vertical direction
NEL Number of elements

5.2 Adaptation to the project

The 2-dimensional domains we want to look at in our implementation and tests
use a slightly modified version of the block-definitions suggested in the ICADA
spline patch model. Table 5.2 shows all variables included for each block.

Some additional assumptions are made of the grid in order to make the GPU
implementation more efficient. The total number of elements in each block
is assumed to always be 512. This coincides with the maximum number of
threads allowed in a CUDA thread block on architectures of compute capabil-
ity 1.x, and a more detailed reasoning for this choice can be found in chapter
6. Indices for all nodes in the global domain are assumed to follow the order-
ing given in equation 5.1. Again the reasoning is due to implementation details
fleshed out in chapter 6.

28

CHAPTER 5. STRUCTURED BLOCK REPRESENTATION

Figure 5.1: Numbering convention for the spline surfaces in ICADA.

0 ≤ i < j < k < Ntot .

such that xi ∈ I = {Corner Nodes}, x j ∈ E = {Edge Nodes}, xk ∈ I = {Internal Nodes}
(5.1)

In accordance with equation 5.1, we start by assigning a unique index to the
vertices of all blocks in the domain, starting on 0 with increments of 1. Then
all edges are numbered, counting first along the positive I-direction, then the
J-direction, as indicated in figure 5.2. Finally all interior points are numbered
such that all interior point of a block are succesive.

The numbering scheme outlined above is useful for describing the global prop-
erties of the blocks and the domain, and hence for coordinating contributions
on nodes shared by several blocks. But the solution over each block is solved
locally and independently and allows for a local numbering more convenient
for an efficient and simple implementation. A natural ordering of nodes is such
that we number from left to right along the positive I-direction indicated in
figure 5.2, and then jump to the next horizontal line, such that index = i + j ∗

29

5.2. ADAPTATION TO THE PROJECT

ninod

njnod

ibnod1 ibnod2

ibnod3 ibnod4

icnod1

icnod2

icnod3 icnod4

incj inci

isnod

iblock

{

J

I

{
{

incr4incr3

incr2

incr1 {{ {{

{

Figure 5.2: Numbering convention for the 2-dimensional block structure.

NINOD, where NINOD is the width of the block in number of nodes.

We use triangular elements in our implementation, and the numbering of el-
ements follows the same natural ordering as the local nodes. The combination
of the strict ordering of nodes and elements allow us to derive all local indices
for an element, based on its index in the CUDA thread block as can be seen in
algorithm 4 in chapter 6. The variables in 5.2 provides a mapping from the local
nodes following a natural ordering, to the global indices used for reduction on
block boundaries, and to represent the vectors in the conjugate gradient itera-
tion. See figure 6.4 in chapter 6 for an illustration.

30

Chapter 6

Implementation

In this chapter we outline the implementation of the finite element solver, and
present some of the challenges involved. All programming is done in C++ with
the CUDA SDK 3.0 for the GPU specific parts. For the visualization we have
used OpenGL. Both the GPU and the CPU versions are done in single precision.

6.1 Program Flow

The entire solution process consists of several parts. Figure 6.1 shows the work-
flow of the program. First, the grid data and coordinate data must be generated.
This data is then fed into the solution driver that sets up the data in the appro-
priate data structures for solving the CG-iteration. In the solver, the load vec-
tor F is calculated on the host system and the data is then transferred to the
GPU. In the CG-iteration process, the matrix-free "matrix-vector product", is
performed on the GPU. Then the remaining linear algebra tasks of the CG step
is performed using the CUBLAS library provided by NVIDIA. The succeding sec-
tions of this chapter follow this order. Some additional CUDA kernels used for
enforcing Dirichlet boundary conditions and masking steps on the vectors are
not included in the descriptions presented here, as they are insignificant to per-
formance and do not contain any core concepts not presented elsewhere.

31

6.2. GRID GENERATION

Grid generator Coordinates

Block data

Boundaries

CG - solver

Visualization

Load-vector F

Matrix-vector
 prod.

Lin. Alg.

Solution

Coordinates

CUBLAS

Figure 6.1: Program flow.

6.2 Grid Generation

In order to test the implementation of the finite element solver, we needed test
cases to do this on. A simple application was made for generating grids with
boundary conditions.

The program generates square grids, with blocks containing 512 elements each,
and the user can specify the refinement and corner coordinates for the grid.

For specification of boundary conditions, a subroutine in the grid generation
process draws the blocks, and let the user select edges to apply a specific bound-
ary condition code. This code can be arbitrary, but must be linked to an inter-
pretation of its meaning in the solver. The convention we used, reserved the
numbers 1-99 for dirichlet conditions, and 100-> for neumann. A screenshot of
this selection process can be seen in figure 6.2. Once the user is done assigning
boundary codes, the codes are written to a binary file read by the solver. Func-
tion definitions for non-constant boundaries are specified in a header-file that
goes with the solver.

32

CHAPTER 6. IMPLEMENTATION

Figure 6.2: Screenshots from the application for selecting boundary conditions
for the edges

6.3 Load Function

As can be seen from equation (3.4), the right-hand side of the equation handles
both the loads over the domain, as well as the boundary conditions. This makes
the calculation of the F-vector the most laborous and complex part of the pro-
gram. Fortunately, this only needs to be done one time in the whole solution
process, as opposed to the matrix-vector multiplication that must be calculated
in every iteration of the CG-method.

The CUDA programming manual suggests that operations best suited for a se-
rial implementation, should be considered to run on the host system. The
downside of such an approach is that data must be transfered between the host
and GPU memory. Again, the load function is only evaluated once, so the mem-
ory transfer is also only performed once. Because of these considerations we
have decided to implement the function to run on the CPU.

A pseudo-algorithm of the work done by the load-vector function can be found
in algorithm 3. Of particular interest is the calculation of each elements in-
dices. We use the natural ordering described in chapter 5, and the algorithm
for calculating the indices for the 3 nodes of an element is shown in algorithm
4. The advantage of this method is that it exploits the natural ordering of our
structured block, and hence only need one variable, the element index, and one

33

6.4. MATRIX-VECTOR PRODUCT

Algorithm 3 Pseudo algorithm for the load vector F.

for block = 0 to grid size - 1 do
for element = 0 to block size - 1 do

[calculate the elements indices][Algorithm 4]
[read coordinate data for nodes in the element]
[calculate load contributions]
[calculate boundary contributions]

end for
for node = 0 to Nodes in block - 1 do

[reduce contributions from elements][Figure 6.3]
[local index -> global index]
[write to global vector]

end for
end for

constant, the width of the block, for calculating all indices.

The operators "%", and "/" used in algorithm 4 are the modulo and integer
division operators. It is important to note that integer operations are very slow
on the GPU, and division and modulo operations should be replaced with bit-
operators where possible. Integer division i /n, where n is a power of 2 can be
replaced with the bitwise right shift assignment i >> log2(n), and the modulo
i %n with a bitwise AND assignment i &(n −1). Since the integer operations in
our algorithm are done on powers of 2, and are literal constants, the compiler
will replace them with the appropriate bit operators.

The calculations from local to global indices in the final stages of algorithm 3,
are done using the block-variables in table 5.2, chapter 5, and the storage order
shown in figure 6.4.

6.4 Matrix-Vector Product

The matrix-free matrix-vector multiplication between the stiffness matrix A
and the search direction p as described in the final section of chapter 4 is per-
formed on the GPU. A pseudo-algorithm of the process is found in algorithm 5.

For the load function running sequentially on the CPU, there is no problem of
race conditions between the various blocks. On the GPU, when threads are try-

34

CHAPTER 6. IMPLEMENTATION

Algorithm 4 Calculation of local indices for nodes in an element.

if(elementId%2==0){
indices[0] = elementId/2 + elementId/BW;
indices[1] = (elementId +BW)/2 + (elementId+BW)/BW +1;
indices[2] = (elementId +BW)/2 + (elementId+BW)/BW;

}else{
indices[0] = elementId/2 + elementId/BW;
indices[1] = elementId/2 + elementId/BW +1;
indices[2] = (elementId +BW)/2 + (elementId+BW)/BW +1;

}

Algorithm 5 Pseudo algorithm for the matrix-free matrix-vector multiplica-
tion.

[read data from global to shared memory]
[calculate the elements indices][Algorithm 4]
[read coordinate data for nodes in the element from shared memory]
[calculate contributions]
[reduce contributions from elements][Figure 6.3]
[local index -> global index]
[write to global vector]

ing to write to the same space in memory at the same time, no guarantees are
given about the correctness of the result. From figure 6.3 we see that each node
can get contributions from six different elements, which calls for a way of han-
dling the race conditions that would arise between threads both internally in a
block, but also between blocks.

The implementation made in january [17] used a method where each node was
represented with 6 slots in the global vector arrays. This wasted a lot of space,
and eventually limited the test problems we could fit in the GPU memory. In
this final implementation, we have instead taken advantage of the local natural
ordering within blocks, and the indices for corners and edges provided by the
block-structured variable list.

Locally in a block, we let each element k(running on one thread each) store
in shared memory the calculated local element matrix Ak multiplied with the
corresponding values from p. We then synchronize threads in the block with
__syncthreads() and let each node gather its contributions and store the final
value in the result array y .

35

6.4. MATRIX-VECTOR PRODUCT

Figure 6.3: The contributions from all 6 elements to a node are computed by in-
dependent threads, and must be collected and summed up at the end.

Nodes that are on the boundaries of the block can get contributions from 2
different blocks for edge nodes, and up to 4 blocks for corner nodes. This is the
reason for the numbering scheme in figure 6.4, with the total amount of array
entries being 4×nC + 2×nE +nI for the global vectors used in the conjugate
gradient iteration, where nC is the total number of unique corner nodes, nE

the number of unique edge nodes, and nI the total number of unique internal
nodes.

The global indices for the edge and corner nodes can be found from the IBNOD,
ICNOD and INCR arrays in table 5.2 in chapter 5. In addition, local corner and
edge nodes need to know which of the 4 or 2 places, respectively, they should
store their contributions in. Figure 6.5 shows how this is done for the edge
nodes.

A node being on the left or bottom edge of the block will store its number on the
first slot, and contributions on the right and top edges are stored in the second
slot. A similar scheme is used for corner nodes as seen in figure 6.6. In other
words, the storage corresponds to the index number in the IBNOD and ICNOD
tables, as can be seen from figure 5.2 in chapter 5. Inner nodes are unique for

36

CHAPTER 6. IMPLEMENTATION

4* 2*

{Node index

Array index

{

{ { { { { { {
* * * * * * * *

* * * * * * * * * * * * *

1 2

n +1 +2
+

C EnnC nC
nC +

En
nC

+1
+

En
nC

+2 In

1 2

nC En

+ EnnC
+2+

In++

Figure 6.4: Storage order in arrays for corner, edge and inner nodes. nC is the
total number of corner nodes, nE is the total number of edge nodes and nI is the
total number of inner nodes.

each block and can be stored directly in the array entry corresponding to the
global index.

6.5 Linear Algebra

The calculation of the matrix-free matrix-vector product demands a custom
made kernel to gain the benefits of parallelization. The innerproduct of vectors
needed wheen finding the step length α, and β to determine the next search
direction, as well as the SAXPY operations needed to update the solution u,
residual r and search direction p can be done using the BLAS implementation
for CUDA, called CUBLAS. The benefit of using the CUBLAS library is that it is
already heavily optimized, and implementing our own versions of the functions
would be a lot of work unlikely to provide any performance improvements.

One slight disadvantage of using the CUBLAS library is that the result of the dot-
product must be sent to the host system. This introduce a small latancy, but the
performance of the function is so good that it by far outweighs this small addi-
tion in runtime. The initialization of the library also introduce an added time of
about 0.33 seconds on our system, and for smaller test cases, this will dominate
the runtime. The initialization function cublasInit() serves to allocate hardware
resources and attach CUBLAS to the GPU used by the host thread. However this
initialization function only needs to be run once for the entire application and
is also negligable for more realisticly sized test problems. The first version of
the CUBLAS library only allowed for single precission calculations, but the new

37

6.5. LINEAR ALGEBRA

Block A Block B

iA iB

iA Bi i+1Ai-1 i-1 i+1A BB

Figure 6.5: Definition of indices from various block for reduction to edge-nodes.
The index i is for a specific edge-node, and contributions are stored in the global
solution vector based on the left-right orientation of the blocks A and B with re-
spect to i.

version provides double precision for GPUs that can support it.

The way our data is stored in the various vectors means that running the in-
nerproduct on the entire vectors would result in the wrong value, since corner
and edge nodes shared by blocks will be repeated in the data set. As can be
seen from figure 6.4, the last part of the vector contains the values at the in-
ternal nodes of each block. These are all unique, and hence the regular dot-
product function cublasSdot() can be run on the vector, utilizing pointer arith-
metic such that the pointer passed to the function is the pointer to the vector
plus an offset equal to total number of corner and edge nodes.

For the corner and edge parts of the vector, the dot-product is still performed
with CUBLAS, but with an offset between each node. This slows down the func-
tion a bit, and it runs at a lower occupancy, but the time spent in this function is
marginal, so no attempts were made to implement a more optimized version.

38

CHAPTER 6. IMPLEMENTATION

Block A Block B

Block C Block D

iA iB

iC iD

iA Bii-1 i-1 i+1A BB Ci Di i+1A i+1C i+1Di-1C i-1D

Figure 6.6: Definition of indices from various block for reduction to edge-nodes.
The index i is for a specific corner-node, and contributions are stored in the global
solution vector based on the orientation of the blocks A, B, C and D with respect
to i.

6.6 Visualization

In order to get the necessary figures for presenting the results of the solver, we
decided to build a custom visualization tool in OpenGL. This was also very use-
ful for tracking implementation errors during development. An alternative to
creating our own visualizer could have been to export the solution data to MAT-
LAB, and use the built-in visualization capabilites there. The benefit of our tool
is that we can get the results immediatly instead of having to go through an-
other application. The flexibility provided with having full control over coloring
and rendering parameters was also useful.

An important aspect of using OpenGL is the interoperability with CUDA. This
means that solution data do not have to be transfered back from the GPUs de-
vice memory back to the host memory. In our implementation the solver is only

39

6.6. VISUALIZATION

Figure 6.7: Screenshot of a Poisson solution in the custom built visualization tool,
demonstrating the wireframe mode

run once, such that data would only have to be transferred once anyway. But in
an application running in realtime with changing data, our choice of visualiza-
tion would probably prove valuable. Finally, the visualization done in OpenGL
can handle much larger meshes without slowing down when performing real-
time scaling and rotation of the figure. For large sets of data this is very useful.

The visualization is handled by passing the mesh-data from the partitioning
and the solution vector from the numerical solver into a routine that constructs
structures of vertices, indices and color. This data is then passed into an OpenGL
Vertex Buffer Object for fast rendering, and surface normals are also constructed
for lighting. The final object is then rendered in an application where the user
can rotate and zoom as well as apply some transformations in highlighting and
coloring.

Figure 6.7 shows a screenshot from the visualization.

40

CHAPTER 6. IMPLEMENTATION

6.7 Performance Optimization

Several of the design choices made in the construction of the CUDA kernels
were done to make the code apply better to the architecture. When program-
ming for the GPU, one has to take into consideration both the strength and the
limitations of the hardware as compared to a CPU.

The CUDA Occupancy Calculator allows you to compute the multiprocessor
occupancy of a GPU by a given CUDA kernel. The multiprocessor occupancy
is the ratio of active warps to the maximum number of warps supported on a
multiprocessor of the GPU. Each multiprocessor on the device has a set of N
registers available for use by CUDA thread programs. Maximizing the occu-
pancy can help to cover latency during global memory loads that are followed
by a syncthreads() call. The occupancy is determined by the amount of shared
memory and registers used by each thread block.

Because of this, programmers need to choose the size of thread blocks with
care in order to maximize occupancy. The occupancy calculator can assist in
choosing the right thread block size based on shared memory and register re-
quirements. These registers are a shared resource that are allocated among the
thread blocks executing on a multiprocessor.

The CUDA compiler attempts to minimize register usage to maximize the num-
ber of thread blocks that can be active in the machine simultaneously. If a pro-
gram tries to launch a kernel for which the registers used per thread times the
thread block size is greater than N, the launch will fail. N is 16 384 on the Tesla
C1060 and 32 768 on the the Tesla C2050.

Some tricks were performed to push down the number of registers. On some
places readability of the code was sacrificed for performance, reusing variables
and recasting variables instead of declearing new of a different data type.

For our implementation we would like the block size to be as high as possi-
ble. The reason for this is the ratio of internal nodes vs. boundary nodes. For
instance, with a block size of 512 the number of internal nodes will be a approx-
imately 4 times higher then the number of boundary nodes. With a block size
of 128, the ratio is under 2. Computation of boundary nodes is slower than for
internal nodes, and hence we would like the ratio to be high. The memory re-
quirement for an internal node is half that of an edge node, and a quarter of the
memory needed for a corner node, due to the storage scheme outlined in figure

41

6.7. PERFORMANCE OPTIMIZATION

6.4. So a smaller blocksize would also negatively effect the need for storage and
memory transfers.

The read and write operations between global and shared memory in the CUDA
kernels, are performed in a coalesced manner. Threads in a block are struc-
tured in warps of 32, and when one thread performs a read/write operation, all
other in the same warp must follow. By performing the reads/writes such that
all threads work on numbers placed after each other in memory, we can fully
take advantage of the memory bandwith.

With the new 2.0 compute capability hardware in the Tesla C2050, part of the
shared memory can be utilized as an L1 cache. If too many registers are used in
a kernel, variables will spill into the local memory. On older devices this would
significantly hurt performance, but with the new devices, the registers instead
spill to the L1 cache which is much faster. Reading from global memory should
also see som speedup, but since we already have focused on optimal memory
reading through coalescing, not much performance is gained from this.

42

Chapter 7

Results and Discussion

7.1 Introduction

In the following we present various runtime and speedup results for the imple-
mentation in chapter 6, as well as comparisons with previous implementations.
We then discuss the implications of these results and evalute how they fit with
the goals of the thesis.

7.2 Performance

7.2.1 Performance Criterias and Considerations.

Convergence

As a convergence criteria for the conjugate gradient method we have used the
expression in 7.1.

while((||r k ||2 > ε||r 0||2)and(k < kmax)) (7.1)

as suggested in [4] where r 0 and r k are the initial and k’th residual vectors re-
spectively, kmax is a fixed maximum of iterations appropriate for the problem
size, and ε is the tolerance, in our tests set to ε= 10−8.

All the following results were obtained by running the test problems described
in chapter 3 for various complexity, or number of degrees of freedom, NDOF,

43

7.2. PERFORMANCE

for both the CPU and the GPU-implementations, until the the criteria given in
(7.1) was satisfied.

Timing

Timing is done using the CPU time before and after the conjugate gradient so-
lution process. A call to cudaThreadSynchronize() is done to ensure that the
final GPU kernel executions have all completed before the final clock time is
acquired. This is necessary since GPU kernels run asynchronously to the CPU.
All runtimes presented are computed as the mean of 10 different runs. Run-
time per iteration is simply the runtime of a complete solution process divided
by the number of iterations.

Preprocessing such as grid generation and reading of grid and boundary data
from file is not included in the timing. Runtime of these events is vanishingly
small compared to the solution process, and no emphasis has been put on op-
timizing these parts of the program.

Time spent on postprocessing, in particular visualization, is also not included.
The intital steps of the visualization runs marginally faster for the GPU version
of the program, since some of the data is already in the GPU memory space.
For our test problems with the time independent heat equation, the memory
transfer is only performed once, when the final solution is found, and hence
has no real significance for our experiments. For a realtime application of a
time dependent solution, the difference could be greater.

Speedup

Speedup is a measure of how much faster a parallel program is compared to a
serial/sequential version of the program. It is defined as Sp = T1

Tp
, where T1 is

the runtime of the serial version, and Tp is the time for the parallel version run-
ning on p processors.

One separates between relative and absolute speedup. Relative speedup is when
T1 is acquired by running the parallel version of the program with the number
of processors p = 1. If however T1 is from a program especially tailored for the
sequential architecture, we are talking about absolute speedup.

44

CHAPTER 7. RESULTS AND DISCUSSION

Doing speedup measurements on a GPU is somewhat different from a regu-
lar supercomputer. One would usually vary the number of processors and see
how the speedup scales, but the GPU has a fixed number of cores, and does
not allow the user to specify and use a subset of the cores. Hence our mea-
surements will be an investigation into how the speedup scales depending on
problem size.

We consider the speedup achieved to be an absolute speedup, since the CPU
version had to be built from the ground up for the system. Relative speedup is
not really an option, since the parallel code for the GPU can not be made to run
on the CPU without modifications. We have tried to follow good practices when
implementing the serial version, and believe the speedup results achieved are
representative of the problem invetigated.

Verification

The numerical solver was controlled for correctness by testing the problems
described in figure 3.1 and 3.2, that is the constant source, zero boundary, and
non-constant load and boundary problems.

The relative error is defined as

Relative error = ||u −uh ||ε
||u||ε

(7.2)

where || · ||ε is the energy norm defined in equation (3.11), chapter 3. Figure 7.1
shows a log-log plot of the relative error vs. the number of degrees of freedom
for the constant source, zero boundary problem. The energy norm is computed
using the Gauss-Legendre quadrature explained in chapter 3. The linearity with
a slope of 0.5 is the expected convergence rate for this problem.

Figure 7.2 shows a visual comparison between the exact solution and the ap-
proximate solution for the non-constant load and boundary problem.

45

7.2. PERFORMANCE

Figure 7.1: The constant source, zero boundary problem: Log-log plot of relative
error vs. number of degrees of freedom.

Table 7.1: Hardware Specifications for the Test System.

CPU Intel Core 2 Quad Q9550 (2.83 GHz)
Memory 2 GB

OS Linux - Ubuntu 10.04
Compiler GCC 4.4.1

GPU 1 NVIDIA Tesla C1060
GPU 2 NVIDIA Tesla C2050

7.2.2 Test Results

The final implementation utilizing the complete block-structured approach was
tested on two different GPUs, using the same host system. The hardware spec-
ifications for the host system can be found in table 7.1

Most of the time spent testing and optimizing the results was done on GPU1
in 7.1, the Tesla C1060. The reason for this is that the other GPU with the new
improved hardware architecture just became available at the end of the project.
Some tests were still done to see if the program scaled well to future architec-
tures with more cores, and if the other new hardware inventions made a posi-
tive impact on performance.

The time results for the serial version of the program developed in chapter 6

46

CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.2: The non-constant load and boundary problem: (left) Exact solution,
(right) Approximate solution with 32 768 elements.

Table 7.2: The constant source, zero boundary problem: Timing results for the
serial version running on the intel CPU.

NDOF Elements Total runtime (sec.) time per iteration (sec.)
961 2 048 0.0100 0.0001

3 969 8 192 0.0600 0.0004
16 129 32 768 0.4800 0.0017
65 025 131 072 4.4200 0.0071

261 121 524 288 38.9300 0.0296
1 046 529 2 097 152 298.9900 0.1136
4 190 209 8 388 608 2 469.6299 0.4627

16 769 025 33 554 432 21 856.8310 1.8172

is shown in table 7.2.

Table 7.5 and 7.6 shows the runtime and speedup results for the parallel ver-
sion running on GPU 1 and GPU 2 from table 7.1, the Tesla C1060 and the Tesla
C2050. Some of the most important specifications of these GPUs are listed in
tables 7.3 and 7.4. The speedup results are done against the serial implementa-
tion with the results from table 7.2.

Figure 7.3 shows a log-log plot of the runtime per iteration versus N1 or 1
h . N1

is the number of elements in the width of the structured finite element mesh
over the unit square as shown in figure 7.4.

47

7.2. PERFORMANCE

Table 7.3: Important specifications for the Tesla C1060. (2008)

240 cores on 30 streaming multiprocessors
16kB shared memory.
64kB constant memory.
16384 registers per block.
1.3GHz clock rate.
4GB GDDR3 memory
CUDA Capability Major revision number 1.
CUDA Capability Minor revision number 3.

Table 7.4: Important specifications for the Tesla C2050. (2010)

448 cores on 14 streaming multiprocessors
48kB shared memory + 16kB cache.
64kB constant memory.
32768 registers per block.
1.15GHz clock rate.
3GB GDDR5 memory
CUDA Capability Major revision number 2.
CUDA Capability Minor revision number 0.
ECC support

48

CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.3: The constant source, zero boundary problem: Log-log plot of time per
iteration vs. N1, the number of elements along an edge of the square domain.

The graphs in 7.3 clearly demonstrates the superior runtimes on the GPUs for
higher problem sizes. As is also visible in the figure, the speedup in table 7.5
shows that for the smallest problem sizes, the CPU version performs best. This
is due to the latency involved in transfering data and starting up the kernels on
the GPU, which becomes insignificant for the larger problems, and the fact that
there are too few partitions to utilize all multiprocessors.

The CPU runtimes shows a clear linearity. This is to be expected since the num-
ber of operations for each iteration is asymptotically bound as O(N 12), and in
a log-log plot this results in a line with slope 2. For a full-matrix system, the
slope would be 3. The GPU runtimes also display this linear property for larger
problem sizes, but the with a lower intercept, indicating the speedup achieved
in the GPU version.

Figure 7.5 shows a comparison of the speedup on the Tesla C1060 and the Tesla
C2050. The behaviour of the two GPUs is similar, and peak performance seems
to be achieved for the same problem sizes, and the curve flattens over the same
area. For the larger problem sizes the C2050 performs approximately 1.7 times
better than its predecessor.

49

7.2. PERFORMANCE

Table 7.5: The constant source, zero boundary problem: Parallel version running
on the Tesla C1060. The table gives the total runtime towards convergence with
tolerance 10−8, time per iteration and speedup compared to the serial version.

NDOF total runtime (sec.) time per iteration (sec.) Speedup
3 969 0.05 0.00035 1.20

16 129 0.14 0.00045 3.43
65 025 0.41 0.00062 11.61

261 121 1.98 0.00150 19.66
1 046 529 13.58 0.00493 22.02
4 190 209 104.72 0.01822 23.58

16 769 025 925.08 0.07080 23.63

Table 7.6: The constant source, zero boundary problem: Parallel version running
on the Tesla C2050. The table gives the total runtime towards convergence with
tolerance 10−8, time per iteration and speedup compared to the serial version.

NDOF total runtime (sec.) time per iteration (sec.) Speedup
3 969 0.06 0.00039 1.00

16 129 0.16 0.00049 3.00
65 025 0.36 0.00055 12.28

261 121 1.51 0.00115 25.78
1 046 529 8.79 0.00331 34.01
4 190 209 62.12 0.01115 39.76

16 769 025 570.92 0.04392 38.28

50

CHAPTER 7. RESULTS AND DISCUSSION

{N1 = 4

(0,0)

(1,1)

h
{

Figure 7.4: Structured finite element mesh over the unit square.

Table 7.7: Comparison between the three different approaches tried over the last
year.

Fall 2009 February 2010 June 2010
Matrix-free Yes Yes Yes

Topologically structured grid No Yes Yes
Topologically structured blocks No No Yes

Max speedup on Tesla C1060 11 18 24
Ratio of longest total runtime 1 0.59 0.50

7.3 Discussion

The work done in [22](appendix A) and [17](appendix B) represents our first
inquiries into FEA on GPUs. The trend in our work has been a move towards
increasingly more structured representations, better speedup and smaller data
amounts and hence the possibility of fitting larger test cases in the GPU mem-
ory. The results in the previous section strengthens this trend. Table 7.7 sums
up a comparison of the three approches, and figure 7.6 shows the difference in
memory requirements.

The difference between the unstructured implementation done in 2009 and the
final one done for this thesis is a doubling in speed, even though the latter does
a more robust handling of the load function and the boundary conditions. In

51

7.3. DISCUSSION

Figure 7.5: The constant source, zero boundary problem: Speedup per iteration
vs. degrees of freedom.

terms of optimizations done and overall programming approach, all the ver-
sions are similar and hence the increase in performance is strictly due to the
structural changes and overall algorithm.

In [1] the writers present a list of what they consider outdated conventional
wisdom and their new replacements. The last point on this list replaces the old
conventional wisdom that less than linear scaling for a multiprocessor applica-
tion is a failure, with the new wisdom that with the switch to manycore parallel
computing, any speedup via parallelism is a success. We consider our speedup
of 24 to be a clearly significant sign that the problem we have investigated is
well suited for implementations on the GPU hardware.

Using the small list of parameters in table 5.2 for each block, to completely de-
fine the topology and geometry of each block, helped free up the sparse mem-
ory resources attributed to each CUDA thread-block, giving a higher rate of
occupancy as well as reducing time spent reading and writing data. The sim-
ple but strict definitions of global node numbering lets each block be a com-
pletely independent unit. This is of course a prerequisite on the GPU since
block scheduling must be independent.

A strong trend in hardware development is towards many-core processing units,
such as the recently unveiled Many Integrated Core(MIC) architecture from In-

52

CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.6: Comparison of memory requirements between the various versions of
the FEM solver. All versions are tested for various resolutions of elements for the
same test problem

tel [9]. Taking this into consideration with the thought expressed in [1] that a
modern programming approach to parallel computing must be independent
of the number of cores to allow for scaling to future architectures, the approach
we have utilized with independent block structures lends itself well to a general
approach for hardware architectures similar to the GPU.

Numerical algorithms for many-core architectures must be developed in such a
way that performance can be gained simply by moving to an architecture with
more cores, and as long as the number of blocks in the grid exceeds the number
of cores, scalability should be ensured. Our tests with the newest generation of
the Tesla card confirms that this indeed is the case for our programming model,
as can be seen in the increase in speedup from 24 to 40.

It is interesting to note that moving from the block structured version devel-
oped in february 2010 to the final block structured version with the local com-
putation of elemental indices gives a speedup for the GPU implementations,
while the corresponding serial implementation actually runs slightly slover. This
demonstrates how an approach suitable for one architecture is not necessarily
ideal for another, and in bridging the gap between the specific hardware(GPUs)
and the application(FEA), we may be widening the gap for some other hard-

53

7.3. DISCUSSION

ware.

54

Chapter 8

Conclusion and Further Work

8.0.1 Conclusion

In this thesis we have tried to show the feasibility of a block-structured ap-
proach for doing finite element analysis on GPUs. As is pointed out in [1], the
future of processor design probably lies in many-core processors, which makes
this approach not only suitable for current GPUs but potentially for mainstream
hardware emerging in the future.

The three "iterations" of our work on adapting the finite element method to
the GPU programming model, [22], [17] and this thesis, have all been attempts
at finding a suitable "bridge" between the two "towers", applications and hard-
ware, as illustrated in figure 1.1 of the introduction. We conclude from our re-
sults that the GPU hardware with its brute force but lack of control structures, is
well suited for programming approaches that inherently provides the structure
needed for correct memory usage and scalability across cores.

Our speedup results show that the effort of adapting numerical algorithms for
the GPU architecture can be well worth it if speed is important for the applica-
tion.

8.0.2 Suggestions for Further work

The finite element solver developed in this thesis is capable of handling grids
of completely different shapes than the squares used in the tests, but there was
not enough time to develop a grid generator capable of generating more com-

55

plex geometries. Further work should include a more advanced grid generator
to allow for more interesting test cases.

We have used linear triangular elements in our implementation, but the block
structured approach can be applied to square elements and elements of a higher
order. Furthermore, the spline patch specifications in [20] are for for 3 dimen-
sions, and a natural next step in development would be to expand the solver to
handle 3D geometries.

We achieved decent convergence rates with our conjugate gradient solver, but
even better convergence could be gained by utilizing a preconditioner, and the
block-structure could be enhanced to handle local refinements for an adaptive
solution process.

Our experiments with the new fermi architecture from NVIDIA(the Tesla C2050)
showed that the program scales well for newer architectures, but some auto-
matic decision parameters could be developed to ensure that full use is taken
from future improvements like increased shared memory and greater block
size.

56

Bibliography

[1] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer,
D.A. Patterson, W.L. Plishker, J. Shalf, S.W. Williams, et al. The landscape
of parallel computing research: A view from berkeley. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2006-183, pages
2006–183, 2006.

[2] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. In ACM SIGGRAPH 2003
Papers, page 924. ACM, 2003.

[3] Cecka C., Lew A.J., and Darve E. Assembly of finite element methods on
graphics processors. IntâĂŹl. J. Numerical Methods in Engineering, 2009.

[4] G.H. Golub and C.F. Van Loan. Matrix computations. Johns Hopkins Univ
Pr, 1996.

[5] gpgpu.org. General-purpose computation on graphics hardware, web-
page. http://gpgpu.org, 2010.

[6] Donald Hearn and M. Baker. Computer Graphics with OpenGL. Prentice-
Hall, third edition, 2004.

[7] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. J, 1952.

[8] T.J.R. Hughes. The finite element method: linear static and dynamic finite
element analysis. Dover Publications New York, 2000.

[9] intel. Intel unveils new product plans for high-performance comput-
ing. http://www.intel.com/pressroom/archive/releases/2010/

20100531comp.htm, 2010.

[10] David B. Kirk and Wen mei W. Whu. Programming Massively Parallel Pro-
cessors. Elsevier Inc., 2010.

57

BIBLIOGRAPHY

[11] Ø.E. Krog and A.C. Elster. Fast GPU-based Fluid Simulations Using SPH.
Para 2010 âĂŞ State of the Art in Scientific and Parallel Computing, 2010.

[12] Y.W. Kwon and H. Bang. The finite element method using MATLAB. CRC,
2000.

[13] P. Micikevicius. 3D finite difference computation on GPUs using CUDA. In
Proceedings of 2nd Workshop on General Purpose Processing on Graphics
Processing Units, pages 79–84. ACM, 2009.

[14] MIT. Fem for the poisson problem in r2, lecture notes, 2003.

[15] NVIDIA. NVIDIA CUDA Programming Guide Version 3.0, 2010.

[16] JT Oden. Finite elements- An introduction. Handbook of numerical anal-
ysis., 2:3–15, 1991.

[17] R. Refsnœs and T. Kvamsdal. A matrix-free conjugate gradient implemen-
tation for finite element simulations on gpu. 2010.

[18] J. Rodriguez-Navarro and A. Susin. Non structured meshes for Cloth GPU
simulation using FEM, 2006.

[19] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial
Mathematics, 2003.

[20] SINTEF. Isogeometric representation - integrating cad and analy-
sis. http://www.sintef.no/Projectweb/Isogeometric-Analysis/

Projects/ICADA/.

[21] Z. Taylor, M. Cheng, and S. Ourselin. Real-time nonlinear finite element
analysis for surgical simulation using graphics processing units. Medi-
cal Image Computing and Computer-Assisted Intervention–MICCAI 2007,
pages 701–708, 2007.

[22] Runar H. Refsnœs Trond Kvamsdal and Gagandeep Singh. Poster on
matrix-free conjugate gradient solvers for fem. presented at super com-
puting 2009, 2009.

[23] Barry Wilkinson and Michael Allen. Parallel Programming. Prentice-Hall,
second edition, 2005.

[24] S.J. Wright and J. Nocedal. Numerical optimization. Springer, 2006.

58

Appendix A

Poster from Supercomputing 2009.

Appendix A contains a poster made for presentation on the showfloor of the
SC09, supercomputing conference in Portland, OR USA. The poster sums up
the first work on finite element analysis using a matrix-free conjugate gradi-
ent method on GPUs. The work was done in the fall of 2009 by Trond Kvams-
dal(Supervisor), Runar H. Refsnæs and Gagandeep Singh.

59

Finite Element Method on GPU Using Matr ix-Free
Conjugate Gradient Method

Trond Kvamsdal | Runar H. Refsnæs | Gagandeep Singh

Trondheim, Norway

The Project

• This poster is part of our final year master’s project at the Nor-
wegian University of Science and Technology - NTNU.

• Our goal is to investigate the feasibility and potential speed-up
of a Matrix-Free Finite Element solver on a GPU using Nvidia’s
CUDA.

• The main strategy is to partition the domain into smaller sub-
domains, then distribute each of these subdomains to a sepe-
rate block on the GPU, and let every thread on the block calcu-
late the contribution from one element.

• The main features are considered to be a Matrix-Free solver
using Conjugate Gradient Method and maximizing speed-up
compared to a serial implementation.

The Fini te Element Method

Discret izat ion of the domain using finite tr iangular elements.

• The Finite Element Method (FEM) is a numerical technique for
solving partial differential equations (PDE). FEM solves a given
PDEby breaking up a problem into small regions, and solutions
are found for each region by only taking into account the re-
gions that are right next to the one being solved. Mathemati-
cally, it also means discretization of the infinite space in which
our solution is found.

Basic Steps in FEM Approach

• Establish the Strong Formulation.

• Obtain the Weak Formulation.

• Choose approximations for the unknown functions.

• Choose the weight functions.

• Solve the system.

• As a model problem, we have used the well-known Poisson
Equation. The region on which we solve the equation is arbi-
trary. The right-hand load vector f (x, y) is chosen to be 1 in
order to avoid numerical quadrature and only homogeneous
Dirichlet boundary conditions are used for simplicity.

The Poisson Equation: Strong Formulat ion

∇2u(x, y) = f (x, y) , (x, y)∈Ω

u(x, y) = 0 on ∂Ω

Weak and Final FEM Formulat ion

• Here we only state the final result of the Weak Formulation.

Weak Formulat ion

a(u,v) ≡ −
Ω
∇v ·∇ud A =

Ω
f vd A ≡ l (v)

u,v∈X = {h|
Ω

h2d A,
Ω
∇h ·∇hd A < ∞ and h|∂Ω = 0}

• The function v is the so-called test function. The last condition
in thespace X, h|∂Ω = 0, isrequired becausewehaveu = 0 along
the boundary. The Dirichlet Boundary Condition is always re-
flected in the space X. The unknown function u lies in X, but X
is infinite dimensional, so we need to discretize X to approxi-
mate u. This is the second big step in FEM.

• Again, we only state the final result. Here we define a subspace
Xh of X to be the space of all piecewise continous functions h
which restricted to one element (call it T) are linear polyno-
mials in x and y.

Discret izat ion of X

Xh = {h∈X|h|T ∈P1}

P1 = {v = a + bx + cy|a,b,c∈R}

• The finite subspace Xh is formed by finding the basis/ form
functions φi (x, y). The number of basis functions is the same
as the total number of nodes. The properties of each function
are: the form function φi (x, y) associated with node i has the
value 1 at (xi , yi) and zero at every other node: φi (x j , y j) = δi j .

• The approximate solution u(x, y) (call it u) can then be written
as a linear combination of these form functions. u = N

i =0ui φi .
This expression in combination with the Weak Form gives us
the final linear system. After applying Boundary Conditions, we
can solve the system.

Discret izat ion of X

a
N

j =1

v j φ j ,
N

i =1

ui φi = l
N

j =1

v j φ j

=
N

j =1

a v j φ j ,
N

i =1

ui φi

=
N

j =1

N

i =1

a v j φ j ,u i φi

=
N

j =1

v j

N

i =1

a φ j ,φi u i =
N

j =1

v j l φ j

Final Linear System

Au = F

A Matr ix-Free CG implementat ion

The CG Algor i thm GJENSTÅR å SKRIVE

• When solving the linear system, we can as usual form the ma-
trix A explicitly. Another way is to calculate the matrix elements
each time they are needed in a calculation, for example as in
each iteration when solving the system in the conjugate gra-
dient method. This makes the memory requirements very low,
but arithmetic intensity gets higher. This transforms the pro-
blem from data intensive to arithmetic intensive, which is very
suitable when implementing the solver in CUDA.

• The main reason why it is possible to calculate the matrix ele-
mentsasand when needed, is that we have explicit expressions
for each element, and a well-defined node numbering makes
this even easier.

• The important step in our implementation of the algorithm is
the matrix-vector product Ap. Most of the implementational
details are aimed at making this step efficient through the be-
fore mentioned method of never actually forming the matrix.
The other steps are performed by CUBLASlibrary functions.

Par t i t ioning the Mesh

Figure showing par t i t ions. Each color is equivalent to one block in CUDA

• The domain on which our PDE is defined is partitioned into
subdomains using the spectral bisection algorithm. The resul-
ting partition is then RESTRUCTURED and ORGANIZED in-
to a form optimized for CUDA. Especially, each thread in eve-
ry block can read/ write its data in a coalesced matter, a rea-
ding/ writing technique regularly mentioned when considering
computation on GPUs.

Figure showing the str ip of elements which divides the internal
par t i t ions. Each color is equivalent to one block in CUDA

• Each partition is associated with a block in CUDA. Between the
partitions, a stripe of elements is put to make all the internal
blocks independent of each other. The stripe itself is divided
into separate partitions, which has to be synchronized because
of shared nodes.

Results at The Moment

Figure showing the solut ion of The Poisson Equation. Each color is
equivalent to one block in CUDA. The str ipe is not shown

• We are finished with more than 2/ 3 of our project, but have not
yet fine-tuned and trimmed our solver. We have not tested the
speed-up yet, but the optimizations and the method we have
used seems to adapt quite nicely to CUDA. We hope on a signi-
ficant speed-up compared to a serial version of the Matrix-Free
version.

• To get some preliminary results, we testet the untrimmed ver-
sion of our solver with a serial version on MATLAB implemen-
ting the same Matrix-Free version of CG. We testet on 30000
nodes, and got a speed-up of approximately 40× . The program
was compiled on NVIDIA GeForce 9800 GX2. It has two GPUs
on one chipset, but we used only one of them. The Compute
Capability is 1.1 on this card, so we would expect even better
performance on a 1.3 architecture. This is because the rules of
coalescing on 1.3 are relaxed compared to 1.1.

Fur ther Work

• Since the blocks, except those made from the stripe, are in-
dependent of each other, it is possible to solve the problem
using multiple GPUs. There is a relatively small size of data that
is needed to synchronize between the different GPUs, so the
communication overhead will be small compared to the ove-
rall work on each GPU.

• Multiple GPUs can only show advantage when the domain on
which the PDE is to be solved is large. Large grid size is most li-
kely to require doubleprecision in order to secure convergence,
so there are many possibilities on the new-coming FERMI ar-
chitecture of NVIDIA.

Acknowledgements

We would like to give many thanks to the staff of HPC-Lab at NT-
NU for giving us the opportunity to travel to SC09 in Portland.
Special thanks goes to Anne C. Elster, head of the HPC-Lab, and
our supervisor Trond Kvamsdal.

Appendix B

Results from february 2010.

Appendix B contains a summary of the second iteration of work on FEM on
GPU using matrix-free conjugate gradient methods, and represents a shift in
focus from unstructured meshes to a more block-structured approach.

61

A Matrix-free Conjugate Gradient Implementation

for Finite Element Simulations on GPUs

T. Kvamsdal, R. Refsnæs

February 2010

1 Introduction

The implementation of numerical solution
methods on graphical processing units can
result in a signi�cant speedup. In this article
we implement and examine a matrix-free
conjugate gradient solver for the �nite element
method. The goal is to �nd the feasibility of a
matrix free approach as opposed to assembling
the sti�ness matrix and solving the linear
system.

In the �rst sections we will be describing
the model problem and the numerical tech-
niques applied. We then discuss some of the
challenges involved in implementing these
techniques on current NVIDIA GPUs, and
present our approach to solving them. In the
�nal part we present the time and speedup
results achieved, and discuss possible future
improvements.

2 Theoretical Background

2.1 The Finite Element Method

Formulation. Our test problem for this
project is the Poisson equation on a two-
dimensional domain with homogeneous Dirich-
let boundary conditions and a load vector f =
1. The strong formulation of this problem given
in (1), where Ω is the domain, and ∂Ω is the
boundary.

∆u = ∇2u = f = 1, u ∈ Ω ∈ R2, u = 0 ∈ ∂Ω.
(1)

The �nite element method (FEM) is based on
the weak, variational formulation of boundary
and initial value problems. Multiplying (1)
with a test-function v ∈ X on both sides of the
equation, and performing integration-by-parts
using the boundary conditions, gives the weak
formulation:

Find u ∈ X such that

a(u, v) = l(v), ∀ v ∈ X , (2)

where

X = {v ∈ H1(Ω)|v|∂Ω = 0} ≡ H1
0 (Ω) ,

a(u, v) =

∫

Ω

∇u · ∇vdΩ =

∫

Ω

fvdΩ = l(v)

H1(Ω) =

{
v |
∫

Ω

v2,

∫

Ω

vx
2,

∫

Ω

vy
2 < +∞

}

Discretization. In order to solve our system
numerically, the space X must be discretized.
We have chosen linear triangular elements in
our treatment of the method. This gives the
domain:

Ω =
⋃

Th∈τh
Th

where Th is a triangle in the triangulation τh.

With piecewise linear basis functions, the
discretized function space becomes

Xh = {v ∈ X| v|Th
∈ P1(Th), ∀Th ∈ τh}

That is, all functions v in the space X that
are linear polynomials over each element in our

1

2 THEORETICAL BACKGROUND 2

triangulation. As a basis for Xh we choose a
nodal basis, such that

v(xj) =
n∑

i=1

viφi(xj) =
n∑

i=1

viδij .

where xj are the nodes. The space Xh can then
be written as

Xh = span{φ1, ..., φn} :

φi ∈ Xh, φi(xj) = δij , 1 ≤ i, j ≤ n

By expressing u and v in terms of the basis
functions we get the �nal discrete formulation:

Find uh ∈ Xh such that

a(uh, v) = l(v) ∀v ∈ Xh (3)

This leads to the set of algebraic equations in
(4)

Ahuh = Fh

Ahij = a(φi, φj) =
∫

Ω
∂φi

∂x
∂φj

∂x + ∂φi

∂y
∂φj

∂y dΩ

Fhi = l(φi) , 1 ≤ i ≤ n.

(4)

uh is the vector of nodal values of uh.

Assembly. We want to compute the integral
over each element T kh in the triangulation of
the domain.

∫

Tk
h

∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

dA (5)

In terms of programming, it is easier to calcu-
late the integral (5) by use of substitution. We
de�ne a linear and a�ne mapping between T kh

and a reference element T̃ kh as shown in �gure 1.

Error Analysis. A general result on the error
can be found in equation 6.

|||u− uh||| = infwh∈Xh
|||u− wh||| (6)

Equation (6) shows that the error u − uh be-
tween the exact solution u of (2) and the solu-
tion uh of the discretized problem is the small-
est possible in the energy norm. In other words

T ~T

η

ξ (1,0)
(0,0)

(0,1)

(xT1 ,y
T
1)

(xT2 ,y
T
2)

(xT3 ,y
T
3)

Figure 1: Mapping between physical and refer-
ence element.

uh is the optimal choice of all wh ∈ Xh, it is
the projection of u on Xh. The energy norm is
de�ned as

|||v||| 2 = a(v, v) = |v|2H1Ω =

∫

Ω

|∇v|2

.

2.2 The Conjugate Gradient

Method

The discrete system of equations from the
�nite element method must be solved by a
numerical solver. The Conjugate Gradient
method was originally proposed by Magnus
R. Hestenes and Eduard Stiefel in 1952 [3]
as a method for solving systems of linear
equations. The method requires a symmetric
positive-de�nite system of equations, that is
a system of the form Ax = b where A is such
that x′Ax > 0 ∀x ∈ Ω. The sti�ness matrix
from the �nite element method applied to the
Poisson equation satis�es this requirement,
given the elliptic nature of the Laplace opera-
tor.

The conjugate gradient algorithm in its
standard form as given in [5] is stated in
algorithm 1. r0 and p0 are respectively the
initial residual vector and the initial search
direction. When the initial guess x0 is 0,
r0 and p0 simply becomes b which for the
�nite element method is the right hand side
of (4), Fh. αk is the steplength, and βk is
used to determine the next search direction.

Our implementation of the �nite element
method never forms the actual sti�nes matrix
A, and hence the matrix-vector product Ap

k
in

3 THE CUDA ARCHITECTURE 3

Algorithm 1 The Conjugate Gradient
Method

r0 = b−Ax0, p0
= r0

For k = 0, 1, 2, ..until convergence

αk =
rk

T rk
p
k
TAp

k

xk+1 = xk + αkpk
rk+1 = rk − αkApk
βk =

rk+1
T rk+1

rTk+1rk

p
k+1

= rk+1 + βkpk
End

the algorithm is performed implicitly by doing
the calculations per-element as can be seen in
algorithm 2. θ is the local-to-global mapping of
indices. The terms Aαβ are the entries in the

elemental matrix Ak.

Algorithm 2 Evaluation of y = Ap
k
without

explicit contruction of A.

y = 0
For k = 1, 2, ..K(elements)

For α = 1, 2, 3
i = θ(k, α)
For β = 1, 2, 3

j = θ(k, β)
yi = yi +Akαβpj

End

End

End

In the GPU-implementation, the outer for-loop
in algorithm 2 is replaced by a parallel distri-
bution where calculations for each element are
done on one thread.

Theoretically the Conjugate Gradient method
will converge and reach the exact solution in
at most N steps for N degrees of freedom.
Each step k projects the exact solution into
the k-dimensional solution space spanned by
the A-conjugate basis vectors.

In practice, each step will not be solved
exactly due to round-o� error in the compu-
tations. The method will however in general
converge to an acceptable error-tolerance in far
less than N iterations. This rapid convergence

is one of the greatest strengths of the method.

It can be shown [5] that the convergence
in the A-norm is given as in equation (7),
where κ = λmax

λmin
is the condition number of

A, x∗ is the exact solution, and xk is the
approximate solution after k steps.

‖x∗ − xk‖A ≤ 2

[√
κ− 1√
κ+ 1

]k
‖x∗ − x0‖A (7)

3 The CUDA Architecture

Launched in 2007, the CUDA architecture
from NVIDIA was an attempt to provide a
more accessible approach to programming
of scienti�c applications on GPUs. Some
of the advantages o�ered over traditional
general-purpose programming on GPUs in-
cludes an exposed shared memory structure
and scattered reads from arbitrary addresses
in memory.

Development on the CUDA architecture
can be done with two di�erent interfaces. The
�rst is C for CUDA which consists of a small
set of extensions to the C language, and is
the easiest to pick up for people accustomed
to C programming. The other interface is
the CUDA driver API that provides a more
low-level approach, allowing for a better level
of control, but also requires more code and is
harder to program. Our implementation was
done using C for CUDA.

3.1 Thread Hierarchy

The smallest unit of parallelization in CUDA is
the thread, which is a small low-maintainance
process running on a single streaming proces-
sor core. In C for CUDA the programmer de-
�nes functions, or kernels that run in parallel
on a set number of threads. Multiple threads
are gathered in thread blocks, and are given a
thread-id which can be used for conditioning
in the kernel. A thread block can have up to
512 threads on current NVIDIA GPUs, and
the entire block must run on the same multi-
processor. Synchronization of threads in thread

4 IMPLEMENTATION 4

Figure 2: Schematic illustration of the GPUs
grid structure. From [4]

block is done with a call to _syncthreads().
Thread blocks are gathered in grids. Blocks
in a grid must run independently, and the only
synchronization possible is achieved after a ker-
nel has run, and all blocks have �nished their
work. The thread hierarchy is illustrated in �g-
ure 2.

3.2 Memory Structure

The memory structures that are part of the
CUDA architecture are designed to work well
with the parallelization structure mentioned
above. All threads have access to a private
local memory. Threads in a block will in most
programs have to exchange data, and a shared
memory of maximum size 16kB for each block
allows for this. The shared memory will have
the same lifetime as the block it is attached
to, while the global memory is persistent
throughout the program, and hence can be
used for communication between di�erent
kernels.

In addition to the shared and global memory
spaces, threads have read access to the texture
memory and the constant memory. The con-
stant memory is cached and so it is very fast. It
is however very limited in space, only 64kb, and

Figure 3: Schematic illustration of the GPUs
memory structure. From [4]

is hence of limited use. The host and the de-
vice will maintain di�erent memory spaces, and
pointers from one, can not be dereferenced in
the other. Before executing a kernel function,
the necessary memory must be allocated on the
GPU, and data must be transferred from the
host system. This transfer goes over the PCIe
interface. Figure 3 shows the various memory
spaces available for a CUDA program, and how
they relate to each other.

4 Implementation

4.1 Challenges

Shared Memory. In order to achieve good
performance, thread blocks should take ad-
vantage of the shared memory. Typically the
data set needed for a block is read from the
global memory into the shared memory once,
and all consecutive operations are done in the
shared and local memory space. The �nal
result is then written back for storage in the
global memory. Reading and writing to the
global memory should be coalesced, and this
put demands on the structuring of the data

4 IMPLEMENTATION 5

from the �nite element mesh.

Synchronisation A minimum of commu-
nication between blocks in a partitioned
�nite-element problem is unavoidable. The
CUDA architecture has no support for
message-passing or synchronization between
thread-blocks, and all communication must be
done through the global memory. Additional
data structures are hence needed to collect the
correct data on the boundaries of each block.
Communication between threads in a thread
block is also a problem, as race conditions
means that additional work must be put into
the reduction of data.

Double Precision. Double-precision is
cheap on a CPU, while on the GPU most of
the processing units are dedicated to single
precision computations. On the Tesla C1060,
the ratio is 8 to 1. In our implementation we
have only used single precision in both the
GPU and CPU version of the program.

4.2 Why matrix-free?

The main advantage of a matrix-free imple-
mentation of the conjugate gradient method
is not having to store the matrix. For a
structured �nite element mesh such as the
one in �gure 4, with N1 + 1 nodes in each
direction, the storage requirement for a full
matrix grows as O(N14). For a mesh with 257
* 257 nodes, the matrix requires more than
16 GB of data, 4 times the available memory
on the Tesla C1060 GPU. By comparison the
same mesh is one of our smallest test cases in
the GPU speed tests. Our biggest mesh has
over 250 times the amount of nodes. Storing
the full matrix for that system would require
more than 1000 TB.

The operation count of the matrix-vector
product Ap

k
also scales as O(N14) for the

full matrix system. The matrix-free system
requires O(N12) calculations. The rest of the

{N1 = 4

(0,0)

(1,1)

h

{

Figure 4: A structured �nite element mesh.

Figure 5: Log-log plot of iteration time for im-
plementations of the CG algorithm in MAT-
LAB.

work done in the CG-iteration are primarily
inner-products that scales as O(N1) This
means that runtime is bound by the matrix-
vector product.

Serial implementations of the matrix-free,
and the full matrix conjugate gradient algo-
rithms were done in MATLAB to illustrate the
di�erences between the two approaches. Figure
5 shows a log-log plot of the time per iteration
versus N1(or 1

h), for both the matrix-free and

the full matrix case. The respective O(N12)
and O(N14) growth in runtime turns in to
linear relations with slope 2 and 4 as can be
seen in the �gure, and for increasing problem
sizes the matrix-free approach clearly becomes
the fastest.

4 IMPLEMENTATION 6

In reality an assembled implementation would
probably use a sparse matrix format. But the
matrix-free implementation is easier to imple-
ment. For our test problem with the structured
mesh, an implementation could be relatively
easy to implement, but general meshes result-
ing in unstructured matrices would be more dif-
�cult, and would su�er from indirect adressing.

4.3 Race conditions

The di�erent nodes in a partition can be
shared by up to 6 surrounding elements. When
all these elements run on seperate threads
in a thread block, race conditions will occur
when these threads try to write to the same
address in the shared memory. To avoid this,
memory is allocated in the shared memory
for all contributions to the node, and these
are then collected and summed up once all
contributions are calculated.

An alternate strategy to avoid race condi-
tions is by coloring the elements in such a way
that no elements sharing a node have the same
color, and then running the computations
in passes based on colors. This approach is
explored in [1].

4.4 Partitioning

We have focused on a structured quadratic
mesh in our implementation, and was hence
able to construct a very simple mesh gener-
ation and partitioning program with perfect
load balancing. All partitions have the same
amount of elements and nodes, and share
only entire boundary edges. The resulting
data is made up of two arrays P and T,
containing respectively the nodal coordi-
nates and the coordinate indices for the
elements. The arrays are structured so that
the 3 ·N · (i− 1), ..., 3 ·N · (i− 1) + 3 · t entries
in T are the indices for elements t = 1 to N in
partition i with N elements in each partition,
and the 2 ·M · (i − 1), ..., 2 ·M · (i − 1) + 2 · p
entries in P are nodal coordinates for all nodes
p = 1 to M in partion i with M nodes in each
partition.

Figure 6: A solution of the Poisson problem on
a mesh with 131 072 elements.

Each partition has its own copy of the
coordinates of nodes it shares on the boarder
to another partition. The reason for this re-
dundant data is to ensure faster and coalesced
reading when blocks on the GPU transfers
data from P and T in the global memory into
the shared memory reserved for that particular
partition. The storage size for an unpartitioned
mesh with 8.4 million elements stored without
redundancy is 97% of a partitioned mesh, so
the additional memory needed is negligable.

4.5 Conjugate Gradient Iteration

Before starting the conjugate gradient itera-
tion, the needed arrays are allocated on the
GPU, the load vector F is calculated, and
the residual vector r0 and search direction pk
are initialized. The calculation of F is done
in parallel in a CUDA kernel function. The
general procedure follows the steps described
in algorithm 3, but with di�erent mathematical
expressions.

Matrix-Vector Product. The output
from the CUDA Visual Pro�ler shows that
most of the runtime is spent in the two kernels
computing the matrix vector product. In the
�rst kernel each element resides on a single
thread in the thread block. A thread block
corresponds to a block in the partitioning.
The necessary data for the block is read into

5 RESULTS 7

shared memory and elemental contributions
for a node is written in a unique place in
memory adjacent to contributions from ele-
ments sharing the same node. All threads in
the thread block are then synched by a call
to _syncthreads(), ensuring that all threads
in the block are done calculating and storing
their contributions. The values stored for each
node are then summed up and stored in the
global memory space.

The second kernel involved in calculating
the matrix-vector product has as its sole task
to gather nodal values on the borders between
partitions. This can be done by using a
look-up table created in the partitioning step,
containing border indices. Our implementation
takes advantage of the structure of the mesh
and the simple indexing relationship between
partitions.
Additional Calculations. The additional
innerproducts and SAXPY operations of each
conjugate gradient iteration step in algorithm
1 are performed by utilizing the CUBLAS
linear algebra library provided with the CUDA
distribution.

For smaller problem sizes, the GPU run-
times are dominated by the start-up of the
CUBLAS library, initiated by the cublasInit()
function call. The initialization alone takes
about 0.33 seconds. We have not included the
cublasInit() call in our results since a typical
application solving multiple problems would
only need to run the function once, assosiating
the added time only with the �rst run. It
is worth mentioning that implementing our
own linear algebra functions would eliminate
this cost, but would probably perform worse
overall.

5 Results

5.1 Hardware

All tests of the serial version of the program
were done on a Linux 2.6.31 system with 2
GB of RAM and an Intel Core 2 Quad Q9559
processor with 2.83 Ghz, running on one core.

The GPU version of the program was run on
the same host system as above, but the GPU-
speci�c parts were run on a NVIDIA Tesla
C1060. The Tesla C1060 has 4 GB of DDR3
embedded memory and 240 streaming proces-
sor cores with a frequency of 1.3 GHz.

5.2 Convergence

As a convergence criteria we have used the ex-
pression in 8.

while((||rk||2 > ε||r0||2)and(k < kmax)) (8)

as suggested in [2] where r0 and rk are the ini-
tial and k'th residual vectors respectively, kmax
is a �xed maximum of iterations appropriate
for the problem size, and ε is the tolerance, in
our tests set to ε = 10−8.
All results were obtained by running problems
of di�erent complexity, or number of degrees
of freedom, NDOF, for both the CPU and the
GPU-implementations, until the the criteria
given in (8) is satis�ed.

5.3 Timing and speedup

Only the actual solving of the system is in-
cluded in the timing results. Grid generation is
not included due to the fact that its runtime is
negligable compared to the solution step, and
optimization of the grid generation has also
not been the focus of the study. Visualization
is for similar reasons not included, but in
practice the visualization step is slightly faster
for the GPU version given that most data
needed is already on the GPU, while in the
CPU case it must be transfered via the PCIe
bus. For a time dependent solution with
visualization done in realtime, this advantage
would propably be more signi�cant.

Table 1 lists the test results. tCPU and
tGPU are the runtimes for the serial CPU
version and the paralell GPU version respec-
tively. NDOF is the problem size in degrees of
freedom, and the speedup is given as tCPU

tGPU
.

Figure 7 shows the speedup as a function of
problem size, and �gure 8 shows a log-log plot

REFERENCES 8

Table 1: Total runtime and speedup results for
various problem sizes.

NDOF tCPU (sec.) tGPU (sec.) Speedup
3969 0.03 0.03 1.00
16129 0.26 0.09 2.89
65025 3.71 0.36 10.31
261121 31.60 2.03 15.57
1046529 267.61 15.52 17.24
4190209 2238.88 121.70 18.40
16769025 19123.90 1095.69 17.45

Figure 7: Speedup per iteration vs. degrees of
freedom.

of runtime results per iteration vs. N1 for both
the serial and the parallel GPU version. The
O(N12) behaviour of the runtime is clearly vis-
ible for both the GPU and the CPU version,
similar to the plot of the matrix-free MATLAB
program in �gure 5. While the slopes of the
two plots in 8 are the same, the constant term
is higher for the CPU version, illustrating the
speedup achieved in the GPU version.

6 Conclusions and future

work

With our GPU implementation of the matrix-
free method, we have achieved a signi�cant
speedup of approximately 18 over the CPU
version, for large test problems. Given the
relative ease of implementation and the small
memory requirements as compared to other

Figure 8: Log-log plot of time per iteration vs.
N1.

methods, we consider our work to be a viable
approach to solving �nite element simulations
on GPU systems.

A natural extension of our work would be
to allow for even greater problem sizes, by
running the program on multiple GPUs. Sup-
port for unstructured domains can be achieved
by mapping to deformed geometries, or by
modifying the code to handle non-uniform
blocks.

References

[1] C. Cecka, A.J. Lew, and E. Darve. Assem-
bly of Finite Element Methods on Graphics
Processors. 2000.

[2] G.H. Golub and C.F. Van Loan. Matrix
computations. Johns Hopkins Univ Pr,
1996.

[3] M.R. Hestenes and E. Stiefel. Methods of
conjugate gradients for solving linear sys-
tems. J, 1952.

[4] NVIDIA. NVIDIA CUDA Programming
Guide Version 2.3.1, 2009.

[5] Y. Saad. Iterative methods for sparse linear
systems. Society for Industrial Mathemat-
ics, 2003.

Appendix C

ICADA - Spline Patch Specifications.

Appendix C contains the spline patch specifications for the ICADA framework
developed by SINTEF.

70

ICADA - Note 2010-001:

Specification of spline patch topology to SIM

Knut Morten Okstad and Trond Kvamsdal

June 23, 2010

1 Assumptions

We only allow for completely matching blocks for now. That is, two adjacent blocks are topologically
connected with a common surface if, and only if, all control points (nodes) defining the geometry of the
surface are identical for the two blocks. Otherwise, they are assumed not connected (we have a “crack”).

2 Input description, topology

The simulation module must generate a unique global node number for all control points in the model.
The input to this process should be as compact as possible, but should contain sufficient information
such that the node number generation can be carried out locally within each patch in arbitrary order or
in parallel. Only topology information is included, all geometry data goes via the g2-files from GoTools.

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�
�

�

�
�
�

�
�
�

�
�

�
�
�	

-

6

I

J

K

w

w

w

w

w

w

w

w

1

2

3

4

5

6

7

8

* icnod1 * icnod2

icnod3 * icnod4 *

*
icnod5

*
icnod6

*
icnod7

*
icnod8

* icnod9

icnod10 *

* icnod11

icnod12 *

Figure 1: Local vertex numbering convention (•) and the first node along each edge (?).

1

For each patch, the input is as follows (see Figures 1, 2 and 3 for the interpretation of the variables
ICNODi, ISNODi and IINODi):

IBLOCK
IBNOD1 IBNOD2 ... IBNOD8
ICNOD1 INCR1
ICNOD2 INCR2
...
ICNOD12 INCR12
ISNOD1 INCI1 INCJ1
ISNOD2 INCI2 INCJ2
...
ISNOD6 INCI6 INCJ6
IINOD1

�
�

�
�
�

�
��

�
�
�

�
�
�

��

�
�
�

�
�
�

��

�
�

�
�
�

�
��

�
�
�	

-

6

I

J

K

w w

w w

w

w

w

ww

w

w

w
1

2

3

4

5

6

7

8
9

10

11

12

* isnod1

* isnod2

isnod3 * *
isnod4

* isnod5

* isnod6

Figure 2: Local edge numbering convention (•) and the first node on each surface (?).

IBLOCK Spline patch index

IBNODi Global node number of vertex i

ICNODi Global node number of second point along edge i

INCRi Increment in global numbering along the edge (±1)

ISNODi Global node number of first interior point on face i

INCIi Increment in global numbering in local I-direction on the face (±1)

INCJi Increment in global numbering in local J-direction on the face (±1)

IINOD1 Global node number of the first interior point of the patch

2

The local I and J directions for a face are defined as the two remaining directions when removing
the index defining the normal direction of that face from the I − J −K triplet. That is, for local faces
1 and 2, the local I − J directions correspond the “global” J −K directions (depicted in Figure 3). For
local faces 3 and 4, the local I − J directions correspond to the “global” I −K directions, respectively,
whereas for local faces 5 and 6 they coincide with the global I − J directions.

�
�

�
�
�

�
��

�
�
�

�
�
�

��

�
�
�

�
�
�

��

�
�

�
�
�

�
��

�
�
�	

-

6

I

J

K

����

����
���� ����

����

����
1

2

3 4

5

6

*
iinod1

Figure 3: Local face numbering convention (◦) and the first interior node (?).

3 Properties and boundary conditions

All physical properties defined in the GPM-module are mapped onto the spline model through a set of
user-defined codes. The actual interpretation of each code is defined within SIM itself, via a separate
input file. The property codes are specified through the following syntax:

PCODE IBLOCK LDIM LINDEX

PCODE Property or boundary condition code (either a string or an integer value)

IBLOCK Spline patch index

LDIM Local entity dimension flag (0, 1, 2, or 3)

LINDEX Local entity index which is assigned the property

• Local vertex if LDIM = 0

• Local edge if LDIM = 1

• Local face if LDIM = 2

• Not referenced if LDIM = 3

The local ordering of the vertices, edges and faces follows the convention defined in Figures 1, 2 and 3,
respectively.

3

	Title Page
	Problem Description
	masteroppgave.pdf

