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Abstract
The underwater hyperspectral imager is a new type of imager able to acquire hy-
perspectral images under water. Common consumer cameras have poor spectral
resolution and only captures light in three bands, in the red, green and blue parts
of the light spectrum. Hyperspectral cameras, on the other hand, might capture
hundreds of spectral bands in both the ultraviolet, visible and infrared regime.
This property makes such cameras ideal for automatic mapping and object classi-
fication, which is important tools in fields such as environmental mapping.

In this thesis, we have taken the first steps towards a physical model for images
acquired with an underwater hyperspectral imager. Light is heavily attenuated in
water, and corrections need to be made if measurements from different distances
and water bodies are to be compared. The proposed model consists of three sub-
models: a model describing a lamp, a model for spectrally dependent attenuation
in water and a model for reflectance. The lamp was modelled as a point source
positioned behind the real lamp, emitting light in a Gaussian angular distribution.
Attenuation in water was modelled using radiative transfer theory, and reflectance
using the Oran-Nayar reflectance model. With the proposed model we were able
to describe the collimation of the light well, and the assumed distribution as a rea-
sonable first approximation. The model was also partly able to describe the change
of shape of the light spectra with attenuation.

We have tested classification in underwater hyperspectral images to see the ef-
fect of uneven illumination and attenuation in water on the classification accuracy.
It was also used as a tool for evaluating the proposed model. Uneven illumina-
tion and attenuation had a significant effect on classification accuracy, and hence
need to be accounted for in real world applications. Two approaches were tested
for removing these effects: normalisation and estimating reflectances. Normali-
sation gave a near perfect classification, while estimating reflectances using the
proposed model performed worse than classification on the raw spectra. The es-
timated reflectances had however similar shapes, and it is thus mainly a problem
with estimating the correct magnitudes for the illumination. The preprocessing
method which seems to have the most potential when classifying different water
bodies is to first estimate reflectance, and then normalise. We then circumvent the
problem with illumination, and are able to classify between water bodies as long
as the attenuation is known.

The proposed model performs within the expectations of a first attempt at mod-
elling images acquired with an underwater hyperspectral imager. The developed
simulation- and analysis tools will be useful in further research and field measure-
ments.





Sammendrag
Undervanns hyperspektrale kamera er ny type kamera som tar hyperspektrale bilder
under vann. Vanlige kameraer har lav spektral oppløsning og kan kun fange lys
i tre spektrale bånd i den røde-, blå- og grønne delen av lysspekteret. Hyper-
spektrale bilder derimot har hundrevis av spektrale bånd som dekker både den
ultrafiolette-, synlige- og infrarøde delen av lysspekteret. Dette gjør at slike kam-
eraer er ideelle for automatisk kartlegning og klassifikasjon av objekter, som er
viktig i applikasjoner som miljøovervåkning.

I denne oppgaven har vi tatt de første stegene for å utvikle en fysisk modell for
bilder tatt med et undervanns hyperspektralt kamera. Lys blir kraftig dempet når
det propagerer i vann. For å kunne sammenligne og gjøre analyser av bilder tatt
i forskjellige høyder, og i forskjellige vann, må denne dempningen korrigeres for.
Den foreslåtte modellen består av tre deler: en modell for en lampe, en model for
spektralt avhengig dempning i vann og en modell for reflektans. Lampen ble mod-
ellert som en punktkilde plassert bak den virkelige lampen. Det ble antatt at den
sprer lys i en Gaussisk form. Dempning i vann ble modellert ved hjelp av ligninger
for lystransport og reflektans ved Oran-Nayar modellen for reflektans. Med den
foreslåtte modellen klarte vi å beskrive lysets kollimering og den antatte lysdis-
tribusjonen var et godt første estimat. Den korrigerte også delvis for endringer i de
målte spektraenes formendring.

Vi har testet klassifikasjon i undervanns hyperspektrale bilder for å undersøke
effekten av ujevn belysning og dempning i vann på klassifikasjonsstyrken. Det ble
også brukt som en test av den foreslåtte modellen. Ujevn belysning of dempning
fra vann hadde stor effekt på klassifikasjonen og trengs derfor å bli tatt hensyn til.
To fremgangsmåter ble brukt for å korrigere vekk disse effektene: normalisering
og estimering av reflektanser. Normalisering gav en nesten perfekt klassifikasjon,
mens reflektansestimering gav dårligere klassifisering enn direkte klassifikasjon på
de målte spektrene. De estimerte reflektansene hadde i stor grad riktig form, og
det er derfor hovedsakelig et problem med den estimerte størrelsen av belysningen.
Den preprosseseringsmetoden som virker som den har størst potensial er å først
estimere reflektans, for så å normalisere. På den måten unngår vi problemet med
feil i korrigeringen av belysningen. Det gjør oss også istand til å klassifisere på
tvers av vanntyper og avstander, så lenge vi kjenner til hvordan lys dempes i vann.

Den foreslåtte modellen fungerer innenfor forventningene til et første forsøk
på en modell. Simulerings- og analyseverktøyene som er utviklet iløpet av denne
mastergraden vil være til hjelp i videre forskning og feltmålinger.





Acknowledgements
First and foremost I would like to thank the people at Ecotone for welcoming me
and allowing me to use their equipment. Especially I would like to thank Paul
Anton Letnes and Lars Martin Aas who have been my co-supervisors. I really
appreciate you giving me an opportunity to write about this topic even though I
knew nothing about machine learning, hyperspectral imaging or how light behaves
in water before I started. I have learned a lot and I look forward to be working with
you.

It has been challenging designing and building experimental setups, and I have
got a newfound respect for the time it takes to plan and perform experiments. To
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Chapter 1
Introduction

Hyperspectral imaging is a method for taking images with large amounts of spec-
tral information. In contrast to a conventional camera, which has poor spectral
resolution and only measured three spectral bands, it captures a nearly continuous
spectrum of light in each pixel. Thus a lot more information can be collected from
such an image than from images taken by conventional cameras. It is sometimes
referred to as ”chemical imaging” as it provides information on chemical composi-
tions of the imaged object. Underwater hyperspectral imagers (UHI) is a relatively
new type of imager, and still under development. It is essentially a hyperspectral
imager inside a watertight container able to travel to great depths.

The UHI is patented and produced by Ecotone [1], which is a spinoff company
from the Norwegian University of Science and Technology (NTNU). Following
the startup of Ecotone, a UHI was deployed in April 2010 for mapping objects of
interest on the seafloor at Hopavågen in Norway [2]. Later, the same prototype
was used by scuba divers at the Great Barrier Reef and Shark Bay for the map-
ping of corals. The first time a UHI was deployed on a remotely operated vehicle
(ROV) under water was in April 2012. Its mission was to look at cold water corals
in Trondheimsfjorden. Images were taken at sixty to eighty meters depth, and a
second survey was later performed down to a depth of four hundred meters. Dur-
ing the last five years, surveys using UHI have been used for bio-geo-chemical
mapping of the seafloor in several waters to a maximum depth of 4200 meters [3].
In August 2016, a UHI was used on a mission in collaboration with the Marmine
project [4] to test if the technology could be used for mapping deep sea miner-
als. Lately, there has been research into the applications of UHIs by Trondheim
Biological Station (TBS). Ingvild Andersson [5] has looked at the bio-optical di-
versity in cold water coral habitats, and Aksel Mogstad [6] investigated the spectral
characteristics of coralline algae.

Oil and gas companies are required to inspect and report the environmental
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impact of their activities. Traditional monitoring methods, used offshore since
the 1980s, involve sediment sampling using remotely deployed grabs or coring de-
vices. Sediments are analysed for their physical composition and chemical content
as well as biological analysis.

During the past two decades, underwater technology has become more widely
available. Subsea habitats are frequently being surveyed using visual methods,
typically image and/or video recordings deployed via ROVs. Generally, a biolo-
gist will sit in the control room with the ROV operators and register observations
directly into a customised database. Typical observations include organisms ob-
served, density of sponges, general seafloor conditions and extent of drill cuttings
deposition. For post-drilling surveys, the extent and intensity of drill cuttings are
recorded.

The Norwegian Environmental Agency generally requires visual surveys in
advance of exploratory drilling in areas regarded as potentially sensitive, such
as sponge grounds or coral habitats. A major concern is how reliable visual as-
sessments of sensitive habitats and drill cuttings deposition are. Quantification of
sponge density is notoriously subjective, and it is often difficult to pinpoint the
border between the deposition zone.

From 2014 to 2016 a project under the Petromaks2 programme [7, 8] explored
whether a UHI could be used for environmental mapping of the seabed. Their ob-
jectives were to compare UHI recordings and traditional methodology using video
image for offshore habitat mapping and monitoring, and to asses impacts of drilling
activities on sea floor habitats. They concluded that UHI measurements have the
potential to become a fast and cost effective method for environmental mapping.
Some benefits compared to the traditional methodology are: automated record-
ings, automatic and objective classification and monitoring at greater depths than
currently possible. They further conclude that there are some challenges which
need to be handled before UHIs can be used reliably.

They observed that both the magnitude and shape of the measured light spectra
changed considerably with distance under water. These spectral changes worsened
the prediction accuracy of classifications. Hence, it is important to aquire a model
describing light’s propagation in water, and derive an invariant quantity from the
measured data, which may be compared across different water bodies.

The reflectance of an object is such an invariant property. It is the amount of
light reflected off a surface, and acts like a spectral fingerprint. There are primarily
two methods which are used to acquire reflectance from the ocean floor [2]. The
first is using a plaque of known reflectance situated within the frame of the hy-
perspectral image. The sensed reflectance from each pixel in the image can then
be estimated by comparison with the measured spectra from the plaque. Such a
method is cumbersome when doing remote sensing of the seabed, due to the need
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of placing an object on the seabed. The second method is to use radiative transfer
theory for how light propagates in water. Measurements of the constituents in the
water must then be made simultaneously, which can be done by a device attached
to the camera. This information can then be used to model the attenuation of the
light beam and estimate the reflectance.

Due to UHIs still being under development, there have been few studies on
how to model systems containing them. In previous project work at NTNU, we
proposed a simple model for how attenuation in water could be described [9]. It
proved to compensate for attenuation effectively, but was from a modelling per-
spective not complete. It did neither explain the effect of the divergence of light in
space, nor the effect of uneven illumination. In the current study, the main aim was
to include these factors into the model, and to test classification using estimated
reflectances. The purpose of these models is to interprete data by correction for
the effects of water.We have also briefly tested Principal Component Analysis for
explaining variation in the hyperspectral images. The project work and this master
thesis have been the first steps towards modelling systems containing UHIs.

To assess the correctness of the proposed model, experiments were performed
with a UHI measuring a scene illuminated by a single lamp. The scene contained
four Lego blocks resting on a grey plate. Reflectances of the five components in
the scene were measured, as well as the lamp’s spectra and emitted distribution. A
framework for analysing hyperspectral images in Python was developed, as well
as a 3D ray tracing engine for simulations.
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Chapter 2
Theory

This chapter introduces hyperspectral imaging, optical properties of water includ-
ing radiometry, and derives the equation governing radiative transfer. Principal
component analysis and partial least squares regression is also covered. The sec-
tion on optical properties in water is mostly based on the theory described in Mob-
ley’s excellent book Light and Water: Radiative Transfer in Natural water [10].

2.1 Hyperspectral Imaging

Digital images are built up of pixels. Each pixel in a conventional digital image
contains the irradiance measurement of three spectral bands in the red, green and
blue regions of the light spectrum. We call such cameras RGB cameras, and the
images they aquire RGB images. A band is defined as an extent in the spectral
domain centered around a wavelength, and irradiance describes how much incident
energy is measured per area and time. In other words, a pixel can be looked upon
as a sensor measuring the irradiance emitted, or reflected, of a part of 3D scene in
the real world. The entire digital image is a 2D representation of that scene.

RGB images are made such that they measure bands which are similar to those
human eyes can detect. They are able to describe everything humans see, but there
is more information to be gathered from the incoming light by increasing spectral
resolution. The resolution can be increased by increasing the number of bands
measured and/or making them narrower. Cameras that measure more than three
bands are grouped into two classes Multispectral Imagers (MI) and Hyperspectral
Imagers (HI). HIs can have hundreds of narrow bands while MIs usually have
ten or less broad bands. Since MIs are not used in this thesis, they will not be
discussed further. It is more useful to look into the workings of an HI, which is
further classified by two aspects [11]: the method of how they acquire spectral,
information and the method in which they acquire spatial information.
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Methods for acquiring the spatial information include whisk-broom, push-broom
and framing. Whisk-broom is a point scanning technique which has a field of view
(FOV) of one pixel. To capture the entire scene a camera needs to scan in both the
horizontal and vertical direction. A push-broom camera is similar, but scans the
entire length in e.g. the horizontal direction in one exposure, and line by line in
the vertical. A framing HI uses a 2D FOV that stays stationary while the image
is acquired. If a scene is bigger than the FOV, multiple images can be taken to
capture the entire scene.

Spectral information can be acquired through filtering, dispersive or interfero-
metric techniques. The filtering HIs take several images with tunable filters that let
different bands through for each exposure, and the dispersive variety uses gratings
or prisms to spread light of different wavelengths onto a detector. The interfer-
ometric methods are based on Fourier-transform spectrometers which consist of
two interferometers.

In this thesis, a push-broom HI with dispersive acquisition of spectral infor-
mation has been used. Figure 2.1a shows the most essential components of such a
camera. An HI is moving in the y-direction acquiring an image of a scene. In the
figure, the scene is represented by a dark grey rectangle. An objective lens L1 cap-
tures the scene and passes it to a slit S limiting the field of view to the bright grey
line of width ∆y. The light beam is then passed further to a lens L2, collimating
the beam before it hit a dispersive component P separating light of different wave-
lengths. Finally, a lens L3 collects each wavelength and projects them to specific
locations on an array detector. Each line is added to the image as a slice in the x-
and λ-plane. The result is a 3D datacube, as illustrated in Figure 2.1b, where each
pixel contains a spectrum of the irradiance E.

The primary goal of hyperspectral imaging is to be able to do classification and
clustering. Classification is the operation of finding objects in a dataset matching
preknown patterns, and clustering automatically finds objects of similarity with-
out any prior knowledge. These operations are possible since different materials
reflect different parts of the light spectrum. The amount of reflected light we call
reflectance, and this property is often unique to a given material. Therefore the
reflectance is also known as a material’s spectral fingerprint. HIs have been used
in medical science to diagnose diseases [12], and in food science for quality as-
sessment [13]. Remote platforms, like planes, drones and satellites, have been
deployed with HIs for vegetation mapping [14] and toxic cyanobacteria bloom
monitoring [15]. Seabed mapping have also been performed [16, 17], but such
monitoring is limited to shallow waters for airborne platforms due to light being
heavily attenuated in water. If HIs are to be used when monitoring the deep ocean
seabed, they need to be underwater close to the seafloor.
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Detector

Scene

(a) (b)

Figure 2.1: (a) Schematics of a push-broom HI with dispersive aquisition. Light is re-
flected from a scene, and enters the HI through an objective lens (L1), then it is passed
through a slit (S) and through a collimating lens (L2). The light is then dispersed by a
dispersive component (P ), and collected through a lens (L3) onto an array detector. The
imager is moving in the positive y-direction. (b) Visualization of a 3D datacube. x and y
represent spatial dimensions and λ the spectral.
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2.2 Optical Properties of Water

When light travels through a medium, it can either be scattered, absorbed or trans-
mitted. Consider a column of water with volume ∆V and thickness ∆r which
is illuminated by collimated light with power Φi(λ), as illustrated in Figure 2.2.
Here λ denotes wavelength. After entering the water column, an amount Φa(λ) of
the light is absorbed and another amount Φs(λ) is scattered. The remaining power,
Φt(λ), is transmitted. If no photons undergo a change in wavelength during the
scattering process Φi(λ) = Φa(λ) + Φs(λ) + Φt(λ) due to energy conservation.

Several fundamental quantities can be defined by the above definitions. The
absorptance A, which is the fraction of incident power absorbed within ∆V , is
defined as:

A(λ) = Φa(λ)
Φi(λ) , (2.1)

the scatterance B(λ) is the fraction of scattered power:

B(λ) = Φs(λ)
Φi(λ) , (2.2)

and transmittance T (λ) is the fraction of transmitted power:

T (λ) = Φt(λ)
Φi(λ) . (2.3)

Note that these quantities are wavelength dependent. The absorptanceA(λ) should
not be confused with the absorbance D(λ), which is defined as

D(λ) = log Φi(λ)
Φs(λ) + Φt(λ) . (2.4)

These ratios can further be used to find the absorption coefficient a(λ) and the
scattering coefficient b(λ). They describe the absorpance and scattering per unit
distance and, with regards to Figure 2.2, are defined as

a(λ) = lim
∆r→0

A(λ)
∆r , (2.5)

b(λ) = lim
∆r→0

B(λ)
∆r . (2.6)

For convenience, define their sum as the attenuation coefficient c(λ),

c(λ) = a(λ) + b(λ), (2.7)

8



Figure 2.2: Light with power Φi enters a water column of volume ∆V and width ∆r.
The power is reduced due to scattering Φs and absorption Φa. The remaining power Φt is
transimtted through.

which describes the total attenuation of light through water.
In the above, it is assumed that no inelastic scattering occurs. Inelastic scat-

tering, also known as transspectral scattering, is when a photon of wavelength λ1
is scattered into another wavelength λ2. This can happen if a molecule absorbs a
photon and at a later stage emits a photon with a different energy than before. The
remaining absorbed energy can either be emitted again as another photon or con-
verted to other energy forms. In natural waters transpectral scattering may occur
due to interaction with dissolved matter, or due to Raman and Brillouin scattering
from the water molecules themselves

2.2.1 Radiometry and Radiative Transfer

Radiometry is the science of measuring the distribution of radiated power in space,
and radiative transfer is a theory describing the evolution of radiant energy. This
section starts by introducing the concepts of radiance and irradiance, then the ra-
diative transfer equation is derived phenomenologically .

Radiance and Irradiance

The fundamental radiometric quantity in water optics is radiance. Imagine an
amount of radiant energy ∆J incident in a time interval ∆t onto a surface ∆A.
Let the surface be located at x and that the energy arrives through a solid angle
∆Ω centered at some direction ξ = (θ, φ). Also assume that the photon wave-
lengths are within an interval of length ∆λ centered at λ. An illustration of the
scenario is depicted in Figure 2.3a, where a device for measuring radiance is il-
lustrated. If we let the aforementioned ∆-quantities approaches the infinitesimal
limit, the radiance can be defined as

L(x, t, ξ, λ) = ∂4J

∂t∂A∂Ω∂λ. (2.8)
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Figure 2.3: Illustration of instruments used to define radiance (a) and irradiance (b). ξ
denotes the directions of the incoming light and ∆Ω the solid angle which is let through to
a detector with area ∆A. Before hitting the detector the light is divided into bands of width
∆λ. x is the position of the detector and θ is the angle in which the light hits the detector
measuring irradiance. L is the measured radiance and E is the measured irradiance.

L gives information about the entire light field, but in applications such complete
information is difficult to acquire and rarely needed. Instead, it is more common
to measure irradiances.

By removing the collection tube from Figure 2.3a, we have the situation in
Figure 2.3b, and light from all directions can hit ∆A. The irradiance E is then, in
the infinitesimal limit, defined as

E(x, t, λ) = ∂3J

∂t∂A∂λ
, (2.9)

and can be related to the radiance by integrating over all incoming directions in the
upper hemisphere Ξ,

E(x, t, λ) =
∫∫
ξ∈Ξ

L(x, t, ξ, λ)|cos θ|dΩ. (2.10)

The cosine factor is added because a light beam incident on a surface ∆A with an
angle θ effectively sees an area of size cos θ∆A.
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Radiative Transfer Equations

In the literature, there are several derivations of the radiative transfer equation
(RTE) describing radiance. Stamnes [18] derives it from a general Boltzmann
equation, Fante [19] from Maxwell’s equations and Measures [20] from quantum
mechanical descriptors of absorption and scattering. In the following, a more phe-
nomenological derivation is performed, as done by Mobley.

Four processes are necessary and sufficient for writing down an energy balance
equation for radiative transfer:

1. Loss and gain of photons by elastic scattering.

2. Loss of photons from absorption.

3. Loss and gain of photons by inelastic scattering.

4. Gain of photons by conversion of non-radiant energy to radiant.

Note that loss and gain do in this context not mean that the energy is lost or created,
but rather that it is converted to other forms or scattered from or into the lightbeam.
The first three processes have already been discussed in various detail earlier in this
chapter. The fourth process can, for example, occur by bioluminescence or other
chemical reactions.

Consider a beam of radiant energy that propagates a distance ∆x through a
volume of water ∆V . If the distance ∆x is small, it is reasonable to assume that
the change in radiance over ∆x due to absorption is proportional to the incident
radiance:

∆L(x, ξ, λ)
∆x = −a(λ)L(x, ξ, λ). (2.11)

In Equation (2.11), a(λ) is the absorption coefficient and ∆L is the change in
radiance over the distance ∆x. Similarly, the loss due to elastic scattering can be
written as

∆L(x, ξ, λ)
∆x = −b(λ)L(x, ξ, λ), (2.12)

where b(λ) is the scattering coefficient.
Assume that an incident radiance, with solid angle ∆Ω′ centered on direction

ξ′ 6= ξ, crosses the light beam. The change of radiance in direction ξ from elastic
scattering from light outside the ∆V can then be formulated as

∆L(x, ξ, λ)
∆x = L(x, ξ′, λ)β(ξ′ → ξ)∆Ω′, (2.13)
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where β(ξ′ → ξ) is the fraction of radiance scattered from direction ξ′ to ξ and
is called the angular scatterance. To get the full contribution we integrate over all
directions:

∆L(x, ξ, λ)
∆x =

∫∫
ξ′∈Ξ

L(x, ξ′, λ)β(ξ′ → ξ)dΩ′. (2.14)

The two last processes, loss and gain in energy from inelastic scattering and gain
from sources, need to be handled for each specific case. The change in radiance
will here be modelled with a generic source term S(x, ξ, λ):

∆L(x, ξ, λ)
∆x = S(x, ξ, λ). (2.15)

Let ∆x become infinitesimal. Then, by the definition of the derivative

∆L(x, ξ, λ)
∆x → dL(x, ξ, λ)

dx

By adding all the terms the standard form of the Radiative Transfer Equation (RTE)
is found:

dL(x, ξ, λ)
dx

= −c(λ)L(x, ξ, λ) +
∫∫
ξ′∈Ξ

L(x, ξ, λ)β(ξ′ → ξ)dΩ + S(x, ξ, λ).

(2.16)
As before, c(λ) is the attenuation coefficient. Although we now have a model for
the radiant transfer, there are shortcomings. The RTE presented here has been de-
veloped for unpolarised light. Scattering can however induce polarisation, even if
the original beam is unpolarised. Nevertheless, the RTE derived give accurate re-
sults for many oceanographic applications. Three arguments may explain this fact.
First, the particles responsible for scattering in the ocean are usually much larger
than the wavelength of light used in underwater remote sensing. Polarisation by
scattering is often larger for particles with size smaller than the incoming wave-
length. Second, multiple scattering can be significant in water. These multiple
scattering events lead to depolarisation of the light. Third, most often irradiances
are measured. Polarisation for different directions then tends to average out.

2.3 Reflectance

Reflectance is defined as the amount of light reflected from a surface. A surface
with surface normal N is depicted in Figure 2.4. Light is coming from direction
V onto the surface, and a measurement is made of the reflected light in direction
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Detector

Surface

Figure 2.4: Definition of the coordinate system used for describing reflectance. Light is
incident on a surface from direction V with angle θi to the surface normal N , and φi to
the x-axis. It then reflects from the surface and is measured by a detector, which is located
in direction W at an angle θr to N , and φr to the x-axis. The beige area illustrates the
area which is imaged by the detector.

W . V and W are defined by the polar angles (θi, φi) and (θr, φr) respectively. θi
and θr denote the zenith angles and φi and φr the azimuth angles. The reflectance
R can then be described by the irradiance Ei hitting the surface and the measured
radiance Lr from direction W

R(θi, φi, θr, φr, λ) = Lr(θi, φi, θr, φr, λ)
Ei(θi, φi, λ) . (2.17)

Phenomenologically reflectance can be divided into two categories: specular
reflection and diffuse reflection [21]. Specular reflection occurs for glossy mirror
like surfaces where the outgoing directionW is the mirrored direction of V about
the surface normalN such that (θr, φr) = (θi, φi+π). Light is not being reflected
into any other directions. Diffuse reflection happens when light hits a rough or
granular surface. The light will then reflect into multiple directions due to the
microscopic irregularities. An ideal diffuse reflecting surface will reflect irradiance
equally in all directions, but its size depends on the incident angle of the light. Such
a surface is called a lambertian surface [22]. In real world applications there are no
pure specular- or diffuse surfaces, however some materials show primarily either
specular or diffuse behaviour,

Reflectance can be measured directly using a gonioreflectometer [23] which
both illuminate a surface, and measure the radiance from it in several directions.
Such a measurement is time consuming because for each illuminated direction the
entire hemisphere around the surface needs to be measured. Other approaches
have been investigated, but they often include expensive and complex equipment
with mirrors, projectors etc. An option to avoid such equipment and simplify
measurements is to assume that the reflectance follows some parametric model.
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Figure 2.5: Illustration of V-cavities used in the Oran-Nayar reflectance model.

According to Mobley [24] it is usual in oceanographic applications to assume
lambertian reflectance. The reflected light can then be described by

Lr = R0Ei cos θi. (2.18)

Here R0 is the reflectance measured at normal incidence to the surface and Ei
is the incoming irradiance. The cosine factor is added since an incoming irradi-
ance at angle θi to an area A only sees an area of A cos(θi). A generalization
of the lambertian model was made by Oren and Nayar [25]. They assumed that
the irregularities in the surface could be represented by microscopic symmetric
V-cavities, as seen in Figure 2.5, and that the walls in those cavities reflected as
lambertian surfaces. To represent the random nature of granularities on the surface,
they further assumed that the area of each wall followed a gaussian distribution.
The Oran-Nayar model for the reflected irradiance can then be written as

Lr = EiR0 cos θi [C1 + C2max[0, cos(φi − φr)] sinα tan β] ≡ EiR, (2.19)

where R has been implicitly defined in the last equality. The parameters C1, C2,
α and β are defined as

C1 = 1− 0.5 κ2

κ2 + 0.57 ,

C2 = 0.45 κ2

κ2 + 0.09 ,

α = max(θi, θr),
β = min(θi, θr),

where κ determines the roughness of the surface. Note that when κ = 0, Equation
(2.19) equals Equation (2.18).

2.4 Principal Component Analysis

Principal Component Analysis (PCA) is a method that decomposes a dataset into
new variables called latent variables. These latent variables are linear combina-
tions of the original variables and span an orthogonal subspace of the original
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variable space. This subspace may thus represent the dataset even though it is of
a lower dimension than the original variable space. This is possible because the
latent variables are constructed in such a way that they point in the direction of
maximum variance [26]. Let us call the space spanned by the latent variables for
the latent variable space (LV -space). PCA is a dimentionality reduction method
since it reduces a dataset of many variables to only a few describing the most
variation. Each latent variable describe a part of the dataset called a principal
component (PC).

For explaining how PCA works let X ∈ Rm×n denote a dataset which consist
of m rows and n columns. Let each row be a sample from a measurement and let
each column describe a variable, or feature, in that measurement. In a UHI mea-
surement a pixel would correspond to a sample and the wavelengths to variables.
Assume the dataset is columnwise mean centered. The dataset can then be written
in the form

X = TP T + E =
d∑
i=1
tip

T
i + E. (2.20)

T ∈ Rm×d is called the score matrix and P ∈ Rn×d the loading matrix. ti and
pi are the ith columns of T and P . They are called the scores and loadings of PC
i, which is defined as the outer product PCi = tip

T
i ∈ Rm×n. d is the number

of dimensions in the LV -space and is equal to the number of PCs chosen. This
choice will be handled later. E ∈ Rm×n is the residual which contains the unstruc-
tured information and noise inside X , while T and P contains the structure. The
columns in P are of unit length and denote the directions of highest variance, and
are hence the unit directions in the LV -space. T denotes the projection of X onto
the LV -space and its rows represents the sample coordinates in that coordinate
system.

According to Höskuldsson [27], the latent variable of the ith PC can be derived
by finding the pi which gives maximum variance in zi subject to pip

T
i = 1,

max
p

i
pT

i
=1

[var(zi)] = max
p

i
pT

i
=1

[
zT
i zi

]
= max
p

i
pT

i
=1

[
pT
iX

TXpi

]
,

(2.21)

This can be done by using Lagrange multipliers. Define the Lagrange function L
with a Lagrange multiplier µ as

L(p, µ) =
(
pT
iX

TXpi
)
− µ

(
pip

T
i − 1

)
, (2.22)
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and solve the optimality conditions

∂L

∂pi
= XTXpi − µpi = 0,

∂L

∂µ
= pip

T
i − 1 = 0,

(2.23)

which then reduces to an eigenvalue equation

XTXpi = µpi. (2.24)

From statistics, XTX ∈ Rm×m is the covariance matrix of X . Thus, the loadings
are the eigenvectors of the covariance matrix. Let the first loading vector, p1, be
the eigenvector corresponding to the highest eigenvalue and p2 correspond to the
next highest and so on. This makes the loading vectors represent the directions of
most variance in decreasing order [28].

Variables with large magnitudes tend of influencing the PCA model more than
variables with smaller magnitudes [26]. Standardization can be used to ensure
that each variable have an equal opportunity to influence the model irrespective
of magnitude. Standardization is the combined operation of columnwise mean
centering and scaling each column by its standard deviation. Given a dataset X ,
the standardized dataset X̃ is given as

X̃ = (X − X̄)S. (2.25)

X̄ is a matrix whose columns contain the column means, and S is a diagonal scal-
ing matrix with the reciprocals of the column standard deviation on the diagonal.

Choosing the number of PCs

In order to choose the number of PCs needed to describe a dataset, the variance
explained by each component can be estimated. This estimate can be found by
looking at the ratio of the eigenvalue corresponding to the current PC to the sum of
all eigenvalues. Denote the explained variance of PC i by fi, and the ith eigenvalue
of XTX by µi. Then the explained variance is given by [28]

fi = µi∑m
j=1 µi

. (2.26)

The variance explained by the first k components, Fk, is then

Fk =
k∑
i=1

fi. (2.27)
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The number of required components depends on both complexity and nonlinearity
of the latent structures. A sufficient number of PCs should be included to account
for most of the structure in the data.

Figure 2.6 shows an example of an explained variance plot. The explained
variance from each component is plotted against the component number. In this
example one would choose to keep the two or three first PCs since they explain the
majority of the variance.

2 3 4

0.7

0.2

0.04
0.01

1

Figure 2.6: An example of an explained variance plot, fi denotes the expleined variance
of PC i.

2.5 Partial Least Squares regression

While PCA is a method to investigate the variance within independent x-variables,
the Partial Least Squares Regression (PLS) investigates the connection between in-
dependent x-variables and dependent y-variables. PLS builds a regression model
between a multivariate sample matrix X and a response matrix Y based on latent
structures within both datasets. This is done in such a way as to maximize the
covariance between the latent variables [27]. Like PCA it is a dimensionality re-
duction technique, and hence one needs to choose how many dimensions to reduce
to.

Assume a mean centered dataset X ∈ Rm×n and a response matrix Y ∈
Rm×k. X and Y are matrices with m samples, and n and k features respectively.
The PLS model can then be written as [29]
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X = TP T + Ex, (2.28)

Y = ZQT + Ey, (2.29)

T = XW (P TW )−1 ≡ XW ′. (2.30)

T ∈ Rm×d and Z ∈ Rm×d are called the x- and y- score matrices, P ∈
Rd×n and Q ∈ Rk×d the x- and y-loading matrices, and Ex ∈ Rm×n and Ey ∈
Rm×k the x- and y-residuals. W ∈ Rn×d are the PLS weights, and W ′ is the
transformation matrix from X to T . d is the chosen number of PLS components,
and thus also the number of dimensions in the latent variable spaces.

Analogously to PCA, PLS has an intuitive geometric interpretation. Denote the
ith column vectors in the loading matrices for pi and qi and the ith score column
vectors for ti and zi. We call zi and ti the latent variables ofX and Y respectively,
and pi and qi the latent directions. The LV -subspace in the X-space is spanned
by the x-loadings pi, and the LV -subspace in the Y -space by the y-loadings qi,
i = 1, . . . , d. The x- and y-scores are the projections from the original feature
spaces along pi and qi onto the LV -spaces.

The latent variables in X can be used as predictors for Y [30]

Ŷ = TQT. (2.31)

Ŷ is the predicted response matrix. To get the prediction directly from X , define
the regression coefficients B = W ′QT, and get

Ŷ = XB, (2.32)

which is the final regression model.

Discriminant analysis using PLS

Discriminant Analysis (DA) is a method for discerning the relationship between
predefined groups, or classes, and a set of samples [31]. Given a set of m sam-
ples and n features the task is to assign each of these samples into the predefined
classes. The class affiliation should be decided purely on the samples themselves.
A DA model is created by training it with samples of known class labels. From
those training samples a discriminant function separating the different classes in
the feature space [32] is constructed, and this separator can be used to assign class
labels to new samples.
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PLS can be applied to create such a classification method [33]. It is named
Partial Least Squares Discriminant Analysis (PLSDA) and creates linear separa-
tors. An advantage of this method is that it creates the separator in a latent variable
space instead of the original feature space. This can create a larger separation
between classes and a more robust classification model.

To train the PLSDA model, create a dummy response matrix Y ∈ Rmxk, where
m is the number of training samples and k the number of classes. The columns of
Y describe the class labels for the m samples:

yj,i =
{

1, if sample j belongs to class i
0, otherwise

, (2.33)

As an example, consider the following: We have a dataset X with samples
belonging to three different classes

X =


1 4 3
1 5 3
2 2 1
2 3 3

 ,
The first two rows are samples from the first class, the third sample from the second
class and the last sample from the third class. The dummy matrix would then have
the following form

Y =


1 0 0
1 0 0
0 1 0
0 0 1

 .
In practice PLSDA should be used with care when the number of variables

are larger than the number of samples. The method is greedy in the sense that it
might find that some variables correlate by chance. Validation of the method is
hence important. Brereton and Loyd have made a nice review over the pitfalls and
dangers of PLSDA in Ref. [34].

The class prediction is obtained by performing the PLS regression Ỹ = XB.
Each column in Ỹ describes how well a sample in X belongs to the corresponding
class. Let ỹj denote the jth row in Ỹ . We set the class membership of the jth
sample to the column index which corresponds to the largest value in ỹj [35].

Validation and choosing PLS components

A simple way of validating the classification model is the macro averaged F1-
score which is a combination of recall (REC), and precision (PRE) [36]. Assume
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a prediction has been made for some samples. Denote the predicted class labels as
g. g is a vector where element j contains the predicted class label for samples j
and so on. For binary classification REC and PRE are defined as as

REC = tp

tp+ fn
, (2.34)

PRE = tn

tn+ fp
. (2.35)

(2.36)

tp is the number of true positive predictions by g, tn the true negative, fp the false
positive and fn the false negative. Binary classification is classification with only
two classes. Let PREi and RECi denote the precision and recall for class i, then
the F1-score for a multiclass prediction is defined in Equation (2.37) [37].

F1 = 2
k∑
i=1

PREi ·RECi
PREi +RECi

. (2.37)

k is the total number of classes. Since the optimal score ofRECi and PREi is 1.0,
it follows that the optimal F1-score also is 1.0. The number of PLS components
can be chosen to optimize the F1-score.

To this end, assume X̃ is a dataset and g̃ a vector describing known class af-
filiation for each sample in X̃ . Let Xtrain be a matrix constructed from random
samples of X̃ , and let Xtest be made from the remaining samples. The PLSDA
model is trained on Xtrain and applied to Xtest. The result is a vector g containing
the predicted class labels. Several PLSDA models can now be created with dif-
ferent number of PLS components. Then, the F1-score from each prediction can
be compared with the ground truth g̃. The optimal number of PLS components is
the one giving the prediction the best F1-score. The same methodology can be
applied to check for random correlations by keeping the PLS components constant
and training on different, randomized, test- and training sets.
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Chapter 3
Modelling and experimental work

This chapter introduces the proposed model for underwater hyperspectral images.
The model is divided into three main parts: a model of a lamp, of attenuation in
water and a reflectance model. After explaining the model the experiments used to
determine model parameters is presented.

3.1 Proposed model for underwater hyperspectral images

The system which we want to model is depicted in Figure 3.1. A UHI and a lamp
is placed a height h over a scene. The lamp is positioned a distance ls beside the
UHI, and is facing downwards in direction ds. We then assume the lamp emits
beams of light to each position x, and denote the direction from the lamp to x for
d. The beam travels a distance s0 before it hits the scene and is reflected. It then
travels the distance s1 and hits the UHI, which measures the light.

For modelling the lamp it is proposed that a lamp emitting a conelike shape can
be modelled as a point source positioned a distance l behind the real light source in
direction−ds, as illustrated in Figure 3.2a. P is the imagined point source, S is the
real lamp, and s′0 is the length from the point source to the position illuminated.
The rationale is that we expect the light from a real lamp to behave more collimated
than a point source positioned in the same location.

A point source emits light equally in all directions which gives rise to a spher-
ical wave. When this wave propagates in space, its total area increases, but for
energy to be conserved the total energy needs to stay constant. Hence the irradi-
ance needs to decrease with the same speed as the increase in area. Let us call this
phenomenon for the spatial spread of light. The scenario is shown in Figure 3.2b.
A point source is emitting light with power Q. After the light has propagated a
distance s, it forms a sphere of radius s. Since the area of a sphere is A = 4πs2,
the irradiance is E(s) = Q/(4πs2). The drop in irradiance from a distance s to
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Figure 3.1: A system where a UHI measures incoming irradiance E. A lamp emits light
with spectra Q, and angular distribution Θ centered around the lamp’s direction ds. d is
the direction to the illuminated position x, and θs is the angle between ds and d. s0 and
s1 are the lengths traversed by the lightbeam, and N is the surface normal at position x.
When incident light hit the scene, it is incident with an angle θi to the surface normal, and
the reflected light is measured by the UHI at angle θr. h is the height from a scene to the
UHI, and ls is the horizontal distance between the UHI and the light source.
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(a) (b)

Figure 3.2: a ) An illustration of the light source model. s′0 is the distance from the
imagined point source to the position illuminated, and other variables are the same as
defined in Figure 3.1. b) Illustration of spatial spread. As light is spread into space, the
energy is distributed across larger and larger areas. s denoted the length the light has
propagated, and the yellow areas represent areas at different s.

s+ δs is therefore
E(s+ δs)
E(s) =

(
1 + δs

s

)−2
. (3.1)

The motivation for including the parameter l was to be able to adjust the col-
limation of the lamp. We now do a sanity check to see if the model has the ap-
propriate properties. If l → ∞ the change in irradiance dissapears for finite δs
and the lamp emits parallel rays and is completely collimated. The spherical wave
has such a large radius that the rays seem parallel. So the larger the l the more
collimated the light behaves, which is what we want. l should be determined using
experimental data.

A lamp does not emit light in all directions like a point source, but rather in a
finite set of directions. The orientation of the lamp and angular distribution of the
light is included by assuming the light is spread in a gaussian shape

Θ(θs) = e−ξ(θs)2/(2σ2), (3.2)

where ξ(θs) is the position to the illuminated area relative to the lamp on the x-
axis. It can be determined as ξ(θs) = −h tan(θs) by using trigonometry. σ is the
standard deviation and needs to be fitted to experimental data. We have assumed
that the angular distribution is only a function of θs which lies in the xz- plane.
This means that we only model a slice of the entire light cone. Because the UHI
and lamp moves with the same speed, only a single slice is measured, and hence
we only need to model that particular slice.

Reflection is modelled using the Oran-Nayar model described in Section 2.3.
As before θi and θr in Figure 3.1 are respectively the incident and reflected zenith

23



angle. The UHI and the lamp are both in the same plane, and hence φi = 0 and
φr = π for all x.

Attenuation of light in water is assumed to be described by Equation (2.16). It
is also assumed that there are no internal sources, transspectral scattering and no
elastic scattering coming from outside the water. Then the equations for radiance
can be solved analytically to become

L(s, λ) = L0(θs, λ)e−c(λ)s. (3.3)

L0 = Q(λ)Θ(θs) is the radiance emitted from the lamp at angle θs. The RTE is
widely usedfor compensation for the attenuation in water, and has been used in
commercial software like HydroLight [38].

We assume that all light beams which are hitting the area A covered by a pixel
are parallel with angle θi to the surface normal. Then the irradiance Er reflected
of that area into angle θr can be written as

Er(λ, θs) = Li(λ, θs)
4πs′20

R(λ, θi, θr)A. (3.4)

Here Li = Q(λ)Θ(θs)e−c(λ)s0 and is the radiance incident at each point within A.
Propagating each reflected ray into the UHI we end up with the proposed model

E(s′0, s1, θs, λ) = Q(λ)Θ(θs)
(4πs′0s1)2 e−c(λ)(s0+s1)R(θs, λ)A. (3.5)

The UHI is modelled as a point and we assume it captures all the reflected rays
from area A. We have written R as a function of θs since θi and θr are given by
θs if we know the geometry of the seabed. For simplicity we also assume that the
areaA is constant for the heights we will be using. Equation (3.5) can then be used
to simulate an underwater hyperspectral image by simulating a line at a time. It
can also be used to estimate reflectances from measurements.

For simulating a UHI measuring a scene a simulation tool has been made along
with a tools for analysing hyperspectral images. The simulation tool is a 3D ray
tracing engine implemented in Python which simulates a line scanning hyperspec-
tral camera acquiring data of a simulated scene. Lamps with adjustable spectra can
be placed anywhere in space and can be set to move with the same speed as the
UHI. From the lamps beams of light is traced to each pixel in the scene, reflected
and traced into the UHI. The UHI is considered a point detector. Different mate-
rials can be added by setting reflectances to each pixel. Height differences and an
inclination in the scene, can also be represented, however shadow and boundary
effects are neglected. See Appendix A for a short documentation of the code.
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3.2 Experiments and determination of model parameters

To asses the proposed model with theory we need to measure a scene with a UHI,
measure the lamps properties Q and Θ, and the attenuation coefficient c. This
section explains the experiments performed and how the model parameters were
estimated.

3.2.1 Measuring a scene

For measuring a scene, the UHI was mounted on a rig inside a tank which was
filled with tap water. See Figure 3.3a for a sketch of the side view and Figure
3.3b for the front view of the setup. The dimensions of the tank were H = 80 cm,
W = 75 cm, and L = 129 cm. The interior of the tank was painted in a dull,
low-reflecting, dark color to reduce reflection from the tank walls. The rig had
two motors which could move the camera up and down to change the camera’s
altitude h over the tank floor and its position along the length of the tank. The
motors are illustrated as black boxes in Figure 3.3a. Since the camera is using
push-broom technology, a scan along the length of the tank is necessary to acquire
a full hyperspectral image of the tank floor. Images were taken at 2.5 cm intervals
from h = 28.5 cm to h = 53.5 cm with an exposure time of 20 ms.

The camera measured the incoming irradiance as digital counts on 12-bit scale
and was submerged during all measurements. By using an attenuation meter
(Viper, Trios) the attenuation of the water in the tank was measured before the
experiment was performed. Because the attenuation measured by the attenuation
meter is relative to pure water, we need to add the attenuation coefficient of pure
water to the measured coefficient to get the total attenuation coefficient. For the
pure water attenuation coefficients we used the values measured by Pope and Fry
[39]. The program for using the attenuation meter was written in Python using a
modbus and the RS485 communications protocol.

Four Lego blocks in different colours were placed on the tank bottom to form
the scene. The Lego blocks were placed in a line as showed in Figure 3.3c on top
of a grey plate. The grey plate made for easy modification of the Lego blocks’
position and alignment. For calculating the extent of one pixel in each image,
lines were drawn every 5 cm on the edges of the grey plate. The Lego blocks were
0.5 cm high and 7 cm long and wide.

The room was kept dark during the measurements. The only light source was
a halogen lamp (Osram Decostar 35 Titan 50 W) which was attached to the side
of the camera angled at 24◦ towards the center of the scene. A constant current of
3.3 A and voltage of 8.4 V were given to the lamp for all measurements.

Before starting the measurements, the camera had been calibrated to measure
bands between 380 nm and 750 nm. The calibration was performed using an Oriel
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Instruments 6034 Mercury-Neon calibration lamp with known sharp spectral lines.
After calibration, the noise standard deviation in the irradiance was 0.8 counts. The
wavelengths measured had an uncertainty of 1 nm.

Scanning direction

(a) (b)

(c)

Figure 3.3: (a): Side view of the experimental setup. H = 80 cm is the tank height,
L = 129 cm the tank length , and h the camera’s distance to the tank floor. (b): Front view
of the experimental setup. W = 75 cm is the tank width. (c): Top view of the tank floor
with the four Lego blocks and the grey plate. The figures are not to scale.
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3.2.2 Measuring reflectances

The reflectance of the objects were measured by using a spectrometer (JAZ, Ocean
Optics) a reflection probe (premium-grade reflection probe, Ocean Optics) and a
light source (HL-2000, Ocean Optics). These components were connected through
a fiberoptic cable as seen in Figure 3.4a. The light from the source travels through
the cable and is emitted from the tip of the probe shown in Figure 3.4b. The
yellow circles are openings where the light is emitted. There is also an opening
in the middle which captures reflected light and sends it back through the cable to
be measured by the spectrometer. The probe was positioned on top of the Lego
blocks and the grey plate in a holder (Reflection Probe Holder, Ocean Optics).

To convert the measured reflected light to reflectance we need to measure a ref-
erence object of known reflectance. Assume a measurement of the reflected light,
E, has been made of some material and another measurement Er is made of the
reference which has known reflectanceRr. Then, assuming that light attenuates as
in Equation (3.5) also for air, we can write

E

Er
= R

Rr
, (3.6)

which can be solved for the unknown reflectance,R. The relation will hold as long
as the distance from the probe to the reflectance object and the object of interest
are the same. Constant distances were ensured by the holder. The holder had two
slots in which the probe could be mounted, one at normal incidence to the surface
at θi = 0◦ and one at θi = 45◦. θi is the incoming angle defined in Figure 2.4.

Each Lego block was rubbed with grinding paper to reduce specular reflection.
These rubbed blocks were the same as the ones used in the tank experiment. The
spectroscopic measurements were performed at four places on each block and two
on the grey plate. A grey 20% reflectance spectralon plaque from Labsphere Inc.
was used as the reference object.

To compare the reflectance in air with the reflectance in water the above pro-
cedure was repeated for submerged probe and objects. The transition is not com-
pletely trivial. According to Fresnel the reflectance changes when the surround-
ing media changes. For specular surfaces this change is given by Fresnels equa-
tions [40]. The relation is however not applicable to diffuse reflection as from the
roughened Lego blocks or from the spectralon. For calculating the underwater re-
flectances the known reflectance Rr was used without any compansation for the
water.
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(a) (b)

Figure 3.4: a) Setup for measuring reflectances. A light source L is connected to a fiberop-
tic cable ending in a probe P. The probe emits the light onto the surface of a Lego block
B, which reflects it back into the probe. The fiberoptic cable then carries the light into
a spectrometer. b) The tip of the probe. Light is emitted from the yellow circles and is
collected by the red circle. (Figure: Ocean Optics).

3.2.3 Measuring lamp properties

Energy spectrum

To measure the energy spectrum of the lamp it was positioned at the bottom of
the tank in Figure 3.3, replacing the Lego blocks. It pointed upwards while a
measurement by the UHI was made. During the measurement the UHI was 1 cm
above the lamp and the tank was not filled with water. We approximate Q as the
total radiance captured in the pixels which makes up the lamp.

Collimation and angular distribution

(a)
measured line

(b)

Figure 3.5: a) Sideview of the UHI and striped plaque. The dotted line shows the line
which is imaged by the UHI. b) Illuminated striped plaque from the front showing the
UHI position as xUHI and the distance to the lamp ls.

To determine the parameters σ from Equation (3.2) and l from Figure 3.2a,
we repurposed the rig above the tank in Figure 3.3. The lamp and the UHI were
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placed on the left side facing a striped plaque. The plaque was attached to a base
which could be moved back and forth with a motor. A sideview of the setup is
shown in Figure 3.5a and the front of the striped plaque in Figure 3.5b. Each stripe
had a width of δw = 0.5 cm. The fixed center of the lamp was x = ls = 10 cm
away from the center of the UHI at x = 0 in the x-direction and level in the y-
direction. We estimate an uncertainty of 0.5 cm in these position measurements.
The lamp was directly facing the plaque, with an uncertainty of 3◦ in its orientation
in the xz-plane and 1◦ in the yz-plane. While the lamp needed to be placed on an
improvised platform, the UHI was placed in a pre-existing holder making it face
the plaque directly with low uncertainty.

Measurements of the plaque were made for h = 25 cm to h = 100 cm in
5 cm intervals. All measurements were done in air with no other light sources than
the lamp. The UHI and lamp were kept stationary, and the plaque was moved to
each position with an uncertainty of 0.05 cm. Since this is a push-broom cam-
era, only one line of the stripe plaque were measured, as illustrated by the dot-
ted rectangle in Figure 3.5b. Let the measured irradiance at position x along the
plaque be Em(h, x) for some wavelength. We assume that Em follows the pro-
posed model in Equation (3.5) and that Θ(h, x) is wavelength independent. Then
denote Êm(h, x) as the maxima normalised irradiance. The measured spatial light
distribution Θm(href, x) is then found as

Θm(href, x) = s′20 (href, x)s2
1(href, x)

s′20 (href, xmax)s2
1(href, xmax)

Ê(href, x)Θ(href, xmax) (3.7)

where xmax is the position where Em is at its largest and href is the distance to
the measurement which will be used to fit Θ to Θm. The normalization is needed
since we neither have the reflectance of the plaque nor a good measurement of the
size of Q, which we will come back to later in Chapter 4. The reflectance can in
principle be measured like in Section 3.2.2.

By using a least square fit we can determine σ by fitting the gaussian in Equa-
tion (3.2) to the measured distribution in Equation (3.7). A problem is that we do
not know Θ(href, xmax) from Equation (3.7). The problem is easily solved since
Θ should equal 1 at θs = 0, and can normalise Θm such that it’s maximum is 1
before fitting.

Θ was above written as a function of h and x since it is more convenient during
the fit and for describing the measured distribution for several heights. To use the
fitted Θ on measurements from other heights than href, we change variables from
x to θs. Since xUHI is defined to x = 0, and the lamp is ls beside the UHI, ξ from
Equation (3.2) is ξ = x− ls = −href tan θs(h, x). Remember that θs is the angle
between the lamp direction ds and the direction to the location imaged d. Then we
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can write Equation (3.2) as

Θ(h, x) = e−href tan(θs(h,x))/(2σ))2
. (3.8)

Because there is two model parameters to be determined we need one more
equation. It can be found from the change in irradiance from one distance h0 to
another distance h1

Ê(h1, x1)
Ê(h0, x0)

= Êm(h1, x1)
Êm(h0, x0)

≡ ∆E(h0, h1, x0, x1). (3.9)

Here x0 and x1 are the positions measured in measurements at h0 and h1 respec-
tively. By writing the Equation out we get a second order polynomial for l:

l2
[
s2

1(h0, x0)−∆E∆Θs2
1(h1, x1)

]
+2l

[
h0s

2
1(h0, x0)−∆E∆Θs2

1(h1, x1)
]

+(h2
0 + (ls − x0)2)s2

1(h0, x0)− (h2
1 + (ls − x1)2)∆E∆Θs2

1(h1, x1) = 0.
(3.10)

where ∆Θ = Θ(h0, x0)/Θ(h1, x1) .
Having Equation (3.7) and (3.10) there are at least two approaches for deter-

mining the parameters l and σ. The first approach uses equation (3.10) and lets
the positions measured be set as x0 = ls and x1 = ls. Then ∆Θ = 1 and finding
l reduces to finding the roots of the polynomial. σ can then later be estimated by
Equation (3.7). The second approach is an iterative one. First set l large and fit a
gaussian according to Equation (3.7). Then use the σ estimated and use Equation
(3.10) to calculate l and put it back into Equaiton (3.7), and repeat the procedure
until σ and l changes minimally.

We have to be cautious when estimating Θ of the lamp in air when it is to be
used under water. The housing around the coil inside the lamp is surrounded by air
and we expect the light to refract when the media is changed. To account for the
refraction between the air inside the lamp and the water outside we apply Snell’s
law of refraction [40] on θs to get the refracted angle θwater

s

θwater
s = arcsin

(
sin(θs)

nwater

nair

)
. (3.11)

Where nwater = 1.33 and nair = 1 is the refractive indicies of water and air. The
spectral dependence in the refractive indecies are ignored.
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Chapter 4
Results and Discussion

This chapter presents and discusses the main findings in this thesis. We start by
briefly looking at PCA as a method for investigating attenuation and illumination,
then at the reflectance measurements, and continue by determining the model pa-
rameters describing the lamp. Thereafter, a comparison of the tank experiments
and simulations will be made, and lastly we look at classification.

4.1 Explaining variances using Principal Component Analysis

A method which was briefly investigated in this thesis was PCA, and we include
here a short summary of the result. As seen in Section 2.4, PCA finds the latent
variables describing the most variation in a dataset. One could imagine that the
effect of illumination and attenuation could be sorted into separate principal com-
ponents. By using the ray tracer to simulate the tank floor, from the experiment in
Section 3.2.1, we created several images taken at different heights. In each image
we extracted areas containing the Lego blocks and applied PCA to the combined
set of samples. In this way variations with height could be investigated. To only
look at the variation in attenuation, we set Θ(θs) = 1 for all θs. Later, illumina-
tion was added and we looked at variations along the grey plate in the x-direction.
Using PCA we were in general only able to tell that there were some variation
in the image connected to height and position, but nothing quantitative about the
processes causing the variation.

We believe PCA is more usefull when investigating correlations in systems
where direct modelling is not possible, or situations where one has measurements,
but no developed theory. In other words, PCA is more appropriate when little prior
knowledge about the system is known, and we want to qualitatively investigate the
sources for variation. Since it is unlikely that PCA will be used in future work for
modelling illumination and attenuation, we will not focus on it further on.
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Figure 4.1: Calculated reflectances for air and water for the Lego blocks and the grey
plate at 0◦ and 45◦ incidence. The color of a graph represents corresponding color of the
Lego block and the black lines represents the grey plate.

4.2 Reflectance of test objects

In Figure 4.1 the calculated reflectances from the roughened Lego blocks are
shown. They were found by solving for R using Equation (3.6). The yellow line
corresponds to the yellow block, the red line to the red block, and so on. Each line
represents one measurement. Before calculating the reflectances, the measured
reflected light was smoothed using a Savitzky-Golay filter [41]. The reference
reflectance Rr was given digitally from the producer (Labsphere), but the wave-
lengths given and the wavelengths measured from the spectrometer were different.
Hence, to calculate the reflectances, we needed to interpolate Rr to match the
wavelengths measured, which was performed using a cubic spline. A cubic spline
is a piecewise cubic polynomial used for interpolation [42].

For the reflectances measured at θi = 0◦ in air there are, large variations in
magnitude. This is probably caused by two factors: there are local variations in
the reflectance caused by uneven grinding, damages, or other contaminations. Ad-
ditionally these differences are increased since the light is coming in at normal
incidence giving rise to specular reflection. Using the mean for each color, and
fitting κ in the Oren-Nayar model in Equation (2.19), we get κ ≈ 0. In other
words, the Lego blocks reflect much like a lambertian surface with mainly diffuse
reflection.

The reflectance for the submerged samples are curious. Both angles of inci-
dence, θi = 0◦ and θi = 45◦, gave approximately the same reflectance spectra with
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the reflectance at normal incidence tending to be slightly larger. The reflectance
measurements for the Lego blocks in water were performed twice to check for
experimental errors, however both measurements showed the same results. We
expect that there is another systematic error tied to this experiment. A candidate
is that we have not accounted for the change in reflectance of the reference object
when it is under water. Most likely the change would not affect the angular distri-
bution, but rather the magnitude of the reflectance for each wavelength, and hence
is probably not the cause.

Another thing to note is that the reflectances from the Lego blocks tend to be
grouped into two separate sets for each of the reflectance plots. It is most promi-
nent for the yellow block. Each Lego block was built up of six smaller blocks. The
reflectance measurements were performed on two of these, two locations on each.
The grouping could be caused by the fact that those smaller blocks have a small
difference in reflectance. The effect was also seen for the second reflectance mea-
surement. We also observe that both the submerged reflectances are very similar
to the dry reflectance at 45◦.

It is evident that the change of medium affects the reflectance of a diffuse ob-
ject, especially its angular dependence. It is however not certain how this can be
corrected for in a proper way. Therefore, since the measured reflecance is ap-
proximately the same at θi = 45◦ and at normal incidence, we have assumed that
reflectance of the Lego blocks is constant in the simulations further described in
this thesis. We further assume it is equal to the submerged reflectance at θi = 45◦.
A disadvantage of this approach is that the energy of the simulated system might
not be conserved since there is equally emitted light in all directions. In the future,
a proper treatment of reflectance should be measured with a gonioreflectometer.
Optimally such measurements should be done both above and below water for
comparison.

4.3 Determining lamp properties

This section presents the results from the experiments determining illumination
properties. We will start by presenting the measurement for determining the lamps
spectrum Q. Figure 4.2a shows an image of the measurement of the lamp for
λ = 615 nm. Note that it has been normalized such that the colorbar describes
irradiance from 0 to 1. We clearly see the reflector surrounding the coil in the
middle and notice that the irradiance seems to have a maximum on the reflector
and not on the coil. This is probably caused by the coil emitting most light to the
sides and not in the forward direction. In Figure 4.2b the measured spectrum is
shown. Note that it has been normalized because we were not able to measure the
energy emitted from the lamp sufficiently well. Doing simulations using the model

33



0

0.5

1

(a)

400 450 500 550 600 650 700 750
 [nm]

0.0

0.2

0.4

0.6

0.8

1.0

E 
[1

]

(b)

02004006008001000
pixel number

0

1000

2000

3000

4000

5000

E 
[c

ou
nt

s]

201612840-3-7-11-15-19
x [cm]

(c)

23 18 13 8 3 2 7 12 17 22
x [cm]

0.0

0.2

0.4

0.6

0.8

1.0

 [1
]

measured
gaussian fit

(d)

Figure 4.2: a) Image of the lamp represented through one wavelength, λ = 615 nm. The
measurement in each pixel was normalized to the maximum in the image. b) Normalized
lamp spectrum. c) Measurement from the striped plaque at h = 25 cm in digital counts.
The orange dots mark the peaks which define Θm d) The measured Θm is depicted with
blue dots, and the green line is the fitted Θ. c) and d) are plotted for λ = 615 nm

of the lamp, and comparing with the measurements of the striped plaque and the
measurements in the tank, it was clear that the energy was underestimated. We
have hence chosen to use the normalized spectrum in the simulations discussed
further.

When illuminating the striped plaque, the white stripes appear as peaks when
plotting E(h, x), as shown in Figure 4.2c. The physical location of these peaks
can be estimated. Assume that the UHI is positioned in the center of the image,
and define xUHI = 0. Then the position of the lamp in the image is xs = ls. Since
we know that the width of each stripe is 0.5 cm the distance between each peak
(white stripe) is 1 cm. By counting the number of pixels between each peak we
can estimate how many pixels there are per centimeter and determine the location
of the peaks relative to the UHI. It has been assumed that the peaks are located
in the middle of each stripe. For the calculations below, measurements taken at
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λ = 615 nm will be used as it was the wavelength with the strongest signal.
For the iterative estimation of the lamp parameters, l was initiated to 10m and

x0 = x1 = ls = 10 cm before estimating the initial σ. Remember that l was the
position of the point source from Figure 3.2a, and σ was the standard deviation of
the lamp’s emitted distribution. After three iterations we end up with the values
l = 19 m and σ = 7.13 cm. For the direct approach of estimating l and σ we set
θs = 0, which implies x0 = x1 = ls, and gives l = 11 m and σ = 7.13 cm. This
l differs significantly from the iterative method, and we further test for different
values of θs in the direct method, and x0 and x1 in the iterative method. What
is found is that there are large fluctuations from l = 60 cm to l = 19 m in both
approaches, wheras σ however stays at a fairly constant value, that is between
σ = 7.13 cm and σ = 7.18 cm. The small variations in σ even though there is large
variation in l can be explained by the fact that when l� hwe get Θm ≈ Êm(h, x)
in Equation (3.7).

The large variations in l are probably caused by the roots in Equation (3.10)
being sensitive to errors in ∆Θ and ∆E. Since we only have discrete samples of
Êm(x, h) due to the nature of the aquisition method, x0 and x1 is not accurate.
This inaccuracy makes ∆Θ and ∆E innacurate. Errors are also introduced in ∆Θ
by the fitting of Θ itself. Figure 4.2d shows Θm and the fitted Θ with l = 11 m and
σ = 7.13 cm. Note that the peak is not located at x = 10 cm, which is the lamp’s
location, but rather about 2 cm to the right of it. This is probably caused by the
lamp not facing the plaque directly, but at an angle causing the peak to be shifted to
the left. It could also be that Θ should include an offset due to the construction of
the lamp. When simulating further on, we will not add such an offset to the model
due to the uncertainty involved. In the fit we see that there are absolute errors of
up to 0.15. Introducing such an error into ∆Θ in the calculation of l gives rise to
changes of 500 cm. The problem of determining l accurately from Equation (3.10)
hence seems like an ill posed problem. Estimating l and σ from measurements at
other heights gives the same qualitative behaviour.

In Figure 4.3 measurements and simulations of the experiment of the striped
plaque is plotted for each distance h. The blue dots are the measured Êm(h, x),
the red line is from a simulation where l = 19 m, the orange line for l = 11 m and
the green line for l = 560 cm. The last l was found by visual optimisation by the
criteria that the reduction in irradiance from the simulated peak at h = 100 cm to
the one at h = 25 cm should be the same as the reduction for the measured peaks.
Note that all measurements are normalized to the maximum of the measurement at
h = 25 cm, and the same is done for the simulations. This normalization is done
because we do not know the energy put into the system, and the irradiances for the
simulation and the measurements are thus bound to be different in size. This also
makes it easy to compare how much the measured and simulated irradiances drop
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between each height. We notice that the reduction in irradiance in the simulation
with calculated ls is too low. The model describes the reduction in irradiance
fairly accurately for the visually optimised l. The value of l is not really important
as such, it is a fictive distance which is used at a tool for describing collimation.
Even though l varied much, we always got l > 0 when estimating l, which implies
that there is need to account for collimation.

The distribution in the simulations evolves in a qualitatively correct way with
distance, but there are asymmetries in the measured shape which are not captured
by the current model. Looking at the image of the lamp from earlier in Figure
4.2, this should be expected. An effect which we do not expect is the change in
location of the peak in the measured irradiance. If the lamp was not facing the
plaque directly, but at an angle, we would expect the peak to drift away from the
simulated peak. We observe however that from h = 35 cm to h = 55 cm the peak
drifts as expected, but after that it drifts in the opposite direction and seems to
overlap with the location of the simulated peak.

4.4 Tank experiment and comparison with simulations

In this section we will present the results from the measurements in the water tank,
illustrated in Figure 3.3, along with simulations. We split this section into the
spatial- and spectral properties of the model.

4.4.1 Spatial properties of the model

As with the experiment with the striped plaque x = 0 cm is defined as the position
of the UHI, which again is assumed to be in the middle of the image. y = 0 cm is
defined to be at the bottom of the grey plate. The black lines drawn onto the grey
plate were used to determine the physical length of each pixel and determine their
position in each image, in the same way as was done with the white stripes earlier.

On the right hand side of Figure 4.4 is an RGB representation of the hyper-
spectral images taken at h = 28.5 cm, h = 41 cm and h = 53.5 cm. The simu-
lated images are shown on the left in the same figure. Both have been cropped to
show only the region of the image containing the Lego blocks and the grey plate.
Qualitatively the images look similar, that is, they have the same qualitative distri-
bution of light and colouring. The green block however looks too dark compared
to the measurement, and the location of the peak in the light distribution seems to
be slightly off. However, this is expected, since we also observed such an error in
with the striped plaque experiment.

For a more quantitative assessment, the normalized irradiance across the grey
plate is plotted in Figure 4.5. As in Figure 4.3, all irradiances are normalized to the
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Figure 4.6: Illustration of a light cone hitting the tank floor , and two slices which could
be measured by an UHI.

maximum in the first measurement, that is, the one at h = 28.5 cm. The blue line
is the measured irradiance, and the green line is the simulation. In the simulation
σ = 6.3 cm and l = 560 cm have been used, which differ from those used in the
earlier discussion. This change was done since the earlier found σ gave a bad fit,
which was probably caused by a different slice of the light cone being measured
in this experiment. In Figure 4.6, the light distribution from a light cone hitting
the tank floor is shown with two slices. Remember that the lamp moves with the
UHI and hence the same slice of the light cone is measured for the entire image.
Slice 1 is hitting the light cone in the center and is hence wider than slice 2 which
is off center. If the UHI measured slice 1, we would expect σ to be larger than if
slice 2 was measured. The orientation of the lamp has probably also changed for
this experiment. Since the lamp is asymmetric, which may also lead to different
illumination conditions.

We notice that the simulated irradiance in Figure 4.5 drops quicker than in the
measurement. One could think that this difference comes from an error in l, since
such a behaviour was seen when estimating l with the striped plaque. However,
modifying this parameter gave no improvements. Which suggests adding the at-
tenuation term has a collimating effect on the model. Another source for error
could be that the lamp does not point in the correct direction ds. We see that the
peak of the distributions moves slightly, but that is expected after the measure-
ments with the plaque. We do not see a shift which indicates that the direction is
significantly wrong, i.e. that the locations of the simulated peak and the measured
peak move further apart with increased height. A third possibility is that the atten-
uation coefficient c from Equation (3.5) is too large. Redoing the simulation and
scaling c down slightly improves the situation, but even removing the attenuation
altogheter by setting c(λ) = 0 for all λ did not completely make up for the high
dropoff. It is not likely that the error in the attenuation coefficient is large. A fourth
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possibility is that there is a systematic error when measuring the heights so that the
distance between each image is overestimated. Again redoing the simulation, and
this time adjusting the simulated heights, we are able to achieve a reduction in
irradiance which matches the measured one for each height. However, to entirely
compensate for the increased dropoff, the distance between each measurement had
to be reduced by 0.5 cm, which is large compared to the uncertainty in the mea-
surements. Therefore, given that the reduction in irradiance was accurate in air, it
is believed that there is an aspect of attenuation in water which is not captured by
the proposed model.

4.4.2 Spectral properties of the model

Attenuation in water effects light in two ways. It both dampens and changes its’
shape. The change in shape arises due to different wavelengths being attenuated
differently. Due to the illumination on the tank floor being uneven, and different
for each height imaged, it is difficult to conclude anything specific regarding the
magnitude of the attenuation. Hence, only the change in shape could be considered
from the performed tank experiment. This was done by normalising and then mean
centering the measured spectra before and after correcting for attenuation. By
correcting for attenuation we imply using Equation (3.3) to remove the effect of
propagation in water. This is done by solving for L0, and then use that we have
assumed that all rays incident on the area covered by each pixel are parallel. Then
the irradiance also attenuate exponentially.

Figure 4.7a-c) shows the measured-, pure water-, and total attenuation. Note
that the measured attenuation was smoothed with a Savitzky-Golay filter before
adding it to the pure water attenuation to form the total attenuation. The spectra
shown in d, h, l, p) are the measured spectra from the yellow, blue, green and red
Lego blocks respectivelY[i] at x ≈ 0. PCA has been used for noise reduction,
and the spectra has been normalised to the maximum from the measurement at
h = 28.5 cm. e, i, m, q) shows the maximum normalized spectra. From these
figures we observe that there is a change in shape, but over the distances measured
it is small. For a clearer visual comparison, the spectra are both normalised and
mean centered in Figure 4.7f, j, n, r).

Focusing on the modified yellow spectra in Figure 4.7e) and f), we see that the
main difference in shape is at wavelengths greater then 600 nm. This harmonizes
with the attenuation coefficient in Figure 4.7c). From 480 nm to 600 nm, c changes
little compared to the jump at 600 nm. Since we expect exponential damping, such
a jump should have noticeable effects on the shape of the spectra. For wavelengths
larger than 600 nm, c continues to rise and we observe increased difference in the
spectra’s shape towards longer wavelengths. The same is observed for the spectra
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Figure 4.7: a,b,c) measured-, pure water- and total attenuation coefficients respectively.
d, h, l, p) Measured spectra from the yellow, blue, green and red Lego blocks respectively
at x ≈ 0 for h = 28.5 cm to h = 53.5 cm. e, i, m, q) The same spectra normalised to
their maximum values. f, j, n, r) The spectra normalised and then mean centered. g, k,
o, s) Spectra after correcting for attenuation, normalised and mean centered. The legend
applies to figures d-s)
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from the red and green block, but the spectra from the blue block shows slightly
different behaviour.

When correcting for attenuation, we expect there to be small corrections for
the blue and green spectra, since they are located at relatively constant c. How-
ever, for the blue spectra there seems to be an overcompensation for longer wave-
lengths. There the variance increases, while for lower wavelengths it decrease.
The situation is reversed for the corrections to the yellow and red spectra. There
the variation clearly decreases for longer wavelengths, and slightly increases for
shorter. This suggest that the model does not accurately describe the attenuation.
It seems it is able to partly correct for attenuation for short distances, but to make
any definitive conclusions, measurements taken further apart has to be made.

A comparison between simulated- and measured irradiance spectra from the
tank experiment are shown in Figure 4.8. These are from pixels close to x = 0
from the image acquired at 28.5 cm. Figure 4.8a) shows the normalised simulated
spectra from the Lego blocks and the grey plate, and 4.8b) the normalised mea-
sured spectra. These spectra are normalised relative to the maximum in the yellow
spectra. The color of each line shows which block it is from and striped lines indi-
cate measured spectra. Other than the simulated blue spectra being slightly higher
than it should in the upper figure, the simulation seems to give qualitative good
spectra. The same behaviour were seen at images acquired at the other heights and
the model represents the relative magnitudes of the spectra well.

Figures 4.8c-f) show comparisons between the spectra from each Lego block in
the simulation and the measurement. They are normalised to their maximum value
to compare shapes. Directly comparing the simulated spectra and the measured
ones, we see a systematic deviation. The simulated red, blue and green spectra are
shifted noticably to lower wavelengths and the yellow spectrum is too wide. Such
a shift hints to an error in the calibration of either the UHI, spectrometer and/or
the attenuation meter. These calibrations were checked and proved to be correct
within 1 nm. By shifting the reflectance such that the measured and simulated
spectra overlap, we get a good similarity. Hence it is believed that the shift comes
from systematic errors in the reflectance measurements. Similar shifts in the lamps
emitted spectra or the attenuation coefficient did not produce any good corrections.

The measured spectra and estimated reflectance for a randomly chosen pixel
in each height are shown in the first two columns in Figure 4.9. The estimation is
done by solving Equation (3.5) for R and inserting the measured spectra and all of
he remaining known variables. Note that the scaling is not correct since we have
not accounted for the energy emitted from the lamp, but rather used the normalized
emitted spectra. The shown reflectance is hence not the true reflectance, which
should be on the interval [0, 1].

To obtain a quantitative measure for how much variation there is within the
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Figure 4.8: Comparison between simulated- and measured spectra from the tank exper-
iment. These spectra are taken from pixels close to x = 0 from the measurement at
h = 28.5 cm. Striped lines show the measured spectra and whole lines the simulated.
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Figure 4.9: Spectra from random pixels on the Lego blocks. a, d, g, j) shows the spectra
from the yellow, blue, green and red Lego blocks respectively. b, e, h k) show estimated re-
flectances using said spectra, and the c, f, i, l) show the normalised estimated reflectances.
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spectra from each block, we calculated the variances for each color. The same was
done for the estimated reflectances. Since the scalings are different for the mea-
surements and the estimations, we first divided by the respective means. For these
pixels, we observe that the relative variance decreases after reflectances have been
estimated, but how much depends on both color and wavelength. Decreased vari-
ance means a better classification since the samples to be classified resemble the
training samples. We see a 70−80% decrease in relative variance for these spectra.
However, when estimating reflectance for other random pixels we notice that the
variation may also increase. This probably occurs because the lamp model over-
and undercompensated illumination. By normalizing the estimated reflectances,
we see that the shapes correspond well, as seen in Figures 4.9c, f, i, l).

4.5 Classification

In this section we will investigate the classification of images taken by an UHI,
and how the water column and illumination affect classification accuracy. We
will also use Equation (3.5) to estimate reflectances, and see if this improves the
classification.

Before doing the classification, we needs to define which pixels will be used
to train the classification models. In total, four models were made for each prepro-
cessing strategy. First we trained three models using the closest measurement at
h = 28.5 cm. Rectangles were defined within each Lego block which contain the
training set, as seen in Figure 4.10. The three training sets are marked by numbers
1-3. Training set 1 contains essentially the whole block, set 2 a portion of the right
side of each block and set 3 contains a portion of the left side. Note that training
set 1 also contains the pixels of training sets 2 and 3. The purpose of these three
training sets is to see how variations in illumination influences the classification.
Training set 2 contains the brightest pixels, and training set 3 the dimmest. A clas-
sification model was also trained on the image taken at h = 53.5 cm. In this case
the illumination is fairly uniform compared to the image taken at h = 28.5 cm, and
only one classification model was made, using a rectangle containing the whole
Lego block. Denote this set training set 4, and also denote a model trained by
training set i for model i.

Cross validation was performed for all classification models by creating them
with 70% of the training set and testing on 30%. All models were performing with
good classification within the test set with 7 PLS components.

To calculate the F1 scores, given by Equation (2.37), the training sets contain-
ing the entire blocks are regarded as ground truth. Such sets were made for the
measurements at all heights. The F1 scores from a classification using the raw
spectra can be seen on the left in Figure 4.11. Model 2 clearly gives the worst clas-

44



3

3

3

3

3

1

1

1

1

1

2

2

2

2

2
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Figure 4.12: Prediction from a classification with model 2 on the image taken at h =
28.5 cm. The colors denote which class the pixels are classified as: yellow, blue, green
and red for the Lego blocks and black for the grey plate. The striped rectangles shows the
pixels used as ground truth for each class.

sification with a maximum F1 score of 0.8 on the height at which it was trained
on. Then the F1 score quickly drops as pixels in other images taken further away
are classified. The other models seem to classify fairly well. We note however that
the F1 score for model 3 and 4 also drops when used on images taken far away.

The bad prediction of model 3 probably stems from the fact that it is trained
on bright pixels. When the model misclassifies it misclassifies pixels to grey plate
pixels, as seen in Figure 4.12 for the image at h = 36 cm. The black pixels are
where the model predicts the grey plate and the other colors are for the different
Lego blocks. The stapled rectangles show the ground truth. The reason the Lego
blocks are classified as a part of the grey plate is twofold. The spectrum for the
grey plate covers all wavelengths as well as being the dimmest of all the classes
in the model. This combination makes the dimmer spectra from the Lego blocks
look like the grey plate when classifying. In other words, the variation in the
spectras’ magnitude is not covered by the classification model. This is true both for
variances in spectra due to illumination and due to propagation in water. Models
1, 2 and 4 perform better since they better capture the variation in the spectra. It
is however expected that if images had been taken farther away they would also
perform poorly.

We see that the classification is heavily dependent on the training set, and so far
the failed classification is caused by the differences in irradiance between training

46



samples and the samples to be classified. We have two methods of compensating
for such differences, by using the proposed model to estimate reflectances, and
normalizing the spectra in each image.

By normalizing the spectrum in each pixel to their maximum value, we get a
very good classification as seen from the F1 scores in the middle plot of Figure
4.11. This tells us that the change in shape of each spectrum is small over the dis-
tance the light propagates in these measurements. We expect that normalizing the
measurements will not work for classification done on images from different water
bodies, for water bodies with large c or for measurements where the propagation
length is long. This is because each wavelength attenuates differently.

In the plot on the right in Figure 4.11 the F1 scores of a classification using
the estimated reflectances is shown. The classification is clearly worse than for
the other preprocessing methods. This is tied to the classification models being
sensitive to variations in the size of the reflectances and that the illumination model
over- and undercompensates, as discussed earlier. By normalizing the estimated
reflectances, we get equally good classification as for the normalised raw spectra,
which again indicates that the shapes of the estimated reflectances for each block
are similar.

4.6 Note on earlier work

Earlier, in project work [9], we made a simpler model for modelling attenuation
in water. In this model we neglected the spatial spread of light, and assumed even
illumination at all times. It was on the following form

E(h, λ) = RE0(λ)e−c(λ)h, (4.1)

where E is the measured irradiance, E0 is the irradiance emitted from the lamp
and h the distance from the UHI to the tank floor. Note that h enters the equation
instead of s like in Equation (3.5).

In the project we did not have the equipment available for measuring the re-
flectance R or the attenuation coefficient c. Hence, we estimated c by using the
relative difference between the measurered heights h and the measurement at the
lowest height h0

c = −hln
(
E(h, λ)
E(h0, λ)

)
. (4.2)

Then, by using linear regression, c could be estimated. After estimating c, we
mapped the measured irradiances from all heights to h0. We then got a good
similarity in both the spectras’ magnitude and shape.
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The results was not reproducable with the current experimental setup. Most
likely this is due to the previous work using two lamps instead of one, and there-
fore aquiring significantly more even illumination. As commented in the earlier
work, we were using a subset of the data in which we were applying the model, to
estimate c. Which could have led to artificially good results. The effect of small
changes in illumination with height, and spatial spread could have been caught
unintentionally by the simpler model.

4.7 Further work

This thesis has been quite broad encompassing both an illumination model, a
model for propagation in water, and tested classification. Some of the challenges
with modelling images taken by a UHI has been uncovered, and in further work
these challenges should be handled separately for the best results. Some sugges-
tions follow.

If the magnitudes of the irradiance is to be modelled correctly, the illumination
model needs to be improved. The model of the lamp assumes a Gaussian distribu-
tion in the plane. An asymmetric shaped function which is more peaked should be
tested. Also, the assumption that the center of the lamp and the center of the UHI
is in the same plane should be removed. A complete 3D model of the lamp should
be made. Then it would be possible to set the parameters of the model once, and
thereafter be able to use the lamp in arbitrary positions and orientations relative to
the UHI.

For validating a 3D model of the lamp there are two alternatives. One option
is to make a bigger striped plaque with striped in both the horizontal and vertical
direction, and replacing the push-broom hyperspectral imager with a camera that
has a 2D FOV. The same methodology used in this thesis could then be applied
to create the 3D model. For a better validation of the model, the experimental
setup should be improved. During this thesis, the measurements with the striped
plaque, described in Section 3.2.3, were partly improvised. A rig for doing this
exact experiment should be constructed with more precision. It should be able to
rotate the lamp along its center, and angle it in both the xz-plane and yz-plane.

The other option is to measure angular distribution directly using a goniometer.
Also in this scenario, the UHI should be switched with another, more practical,
measuring device. As a design suggestion, such a goniometer could relatively
cheaply be made with microcontrollers and stepper motors controlling the position
of the measurement device. Then, human error would be removed and the time
used for taking the measurements could be spent elsewhere.

An effect which has not been the focus of this thesis, but which is going to be a
problem in field measurements, is shadows. The lamp was in these measurements
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positioned perpendicular to the scanning direction. It might be beneficial to place
it in the front of the camera, and thus creating shadows behind the UHI instead of
in the measured line. Adding more lamps to the system might also be favourable.

By using the experiment in Section 3.2.1, we were not able to say anything
about the magnitudes of the attenuation. We could have done an approximation
and found a position in the scene where the illumination is constant over height,
but the uncertainty would have been very high. What should be done is to use
a collimated light source and measure it’s emitted light under water at different
distances. A natural extension would also be to do that experiment in different
water bodies.

Eventually, the attenuation model should be expanded to include backscatter-
ing, transpectral scattering, effects of particles etc. Due to the complicated nature
of such effects, an analytical solution to the RTE, Equation (2.16), is not possi-
ble. The developed ray tracing simulation should be expanded to solve the RTE
for each light beam traced. Other more computationally efficient methods might
also exist. As mentioned earlier, a commercial software solving the RTE is Hy-
droLight. However, it makes the assumption that the seafloor is flat, and that the
lightfield is only dependant on depth. For the usage of UHIs close to the seabed,
where the geometry of the seafloor may have a large impact, these assumptions do
not hold.

Other classification methods than PLSDA should be tested and tweaked for
the specific problem at hand. Especially, methods which is insensitive to scaling
would be preferred. While we want to classify spectra on both measured irradi-
ance and shape, we should strive for a balance. Normalizing did prove to be an
effective method for classification, but this involves throwing away the information
contained within the magnitude of irradiance measured. An approach where dif-
ferent preprocessing strategies and classification methods are combined could lead
to improved overall classification. An alternative is to use PLS as a preprocessing
step to extract latent variables of most covariance, and then use a classification
method like support vector machines [43] to do the classification itself.
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Chapter 5
Conclusion

This thesis has been the first step towards creating a model for underwater hyper-
spectral images. We have proposed a model for such a system built up of three
submodels: a model lamps, a model for how light attenuates in water, and a model
for reflectance. Experiments were performed to determine the validity of the model
and to determine model parameters. The intent of the model is to correct for the
effects of attenuation, such that analysis of images taken at different distances, and
between water bodies can be made.

The lamp was modelled as a point source positioned a distance l behind the
real lamp. The rationale is that a real light source is more collimated than a point
source. For larger l the light behaves more collimated, and for l → ∞ it emits
parallel rays. When estimating l from data, we found that the equation for finding
it was ill-posed. However, by manually optimising l, we were able to describe the
reduction of irradiance with distance accurately in air. In water, we experienced a
reduction with distance which was larger than expected.

For modelling the angular distribution of the emitted light, we assumed that the
lamp emits light in a Gaussian shape. Apart from the measured distribution being
slightly asymmetric and more peaked than the assumed one, it is a reasonable first
approximation.

Attenuation in water was modelled using the radiative transfer equations for
light in water. We assumed there was no transpectral scattering involved, no inter-
nal sources, and that no stray light entered the detector. Over the distances imaged,
the change in shape of the spectra due to attenuation was small, but noticeable, and
the proposed model was able to partly correct for the effect of attenuation.

Reflectance was attempted modelled through the Oran-Nayar reflectance model.
The reflectance from the Lego blocks measured above water seemed to follow the
model with roughness κ ≈ 0. When the Lego blocks were submerged under wa-
ter, the reflectance from θi = 0 and θi = 45◦ were essentially similar. Hence, we
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observe that the angular dependence of the reflectance changes when submerged.
Comparisons with experiments showed that the simulated spectra were quali-

tatively similar to the measured ones. We observed however that there were shifts
to shorter wavelengths, which are believed to arise from a systematic error in the
reflectance measurement.

Classification was performed using partial least squares discriminant analysis.
Four training sets were defined, three on the image taken at h = 28.5 cm, describ-
ing areas of different illumination, and one at h = 53.5 cm. The choice of training
set proved to be very important when it comes to prediction strength, and the clas-
sification method seemed more sensitive when classifying on brighter pixels than
dimmer.

We tested two methods for improving classification: normalization and esti-
mating reflectances. To measure if the spectra across images became more similar
when estimating reflectances, we took samples from each lego block at several
heights and calculated the variance. We saw a decrease in variance across all
wavelengths, and qualitatively the shapes of the estimated reflectances were simi-
lar to the measured ones. Directly estimating reflectance proved to perform worse
than classifying on the spectra themselves. This was probably caused by the lamp
model over- and undercompensating for the illumination.

Normalization proved to be the most effective preprocessing step. This was
probably due to the classification models being sensitive to variations in irradiance,
and that the shape of each spectra did not change significantly. Normalization as a
preprocessing method is not sufficient when doing classification in different water
bodies, nor when images are taken far apart. This is due to the attenuation being
different for different wavelengths. Currently, the preprocessing method which
can be applied across different water bodies, and which also gives good classifica-
tion, is to first estimate reflectances and then normalize. We then circumvent the
problem with uneven illumination, and are able to classify between water bodies
as long as the attenuation is known.

Several tools for analysing, simulating and processing hyperspectral images
have been developed through this thesis, and the software will be useful in further
investigation of underwater hyperspectral imaging.
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Appendix

A Code documentation

This chapter quickly summarizes the main classes developed in this thesis. In to-
tal a couple of thousand lines have been written and several utilities for handling
hyperspectral datacubes.

class HypImgs:
Class for loading hdf5 files and has basic visualization tools.

class Datacube:
Container for hyperspectral image cubes. Has the ability to hold one dataset which
it can do several operations on. Some operations include PCA, basic statistics and
advanced plotting features. Each Datacube instance has the ability to hold several
Window instances which describe subparts of the Datacube. When a Window is
set all functionality of the Datacube is performed on this Window as if the limited
range described by the Window was the entire dataset.

class Window:
Each Window is a subpart of the Datacube and each Datacube contains at least one
window which cover the entire dataset contained within it. Additional windows
can be added if one want to look at specific sections of the dataset without copying
the data over to a new Datacube. In this way a dataset only needs to be loaded
once. A Window also holds statistics on the dataset in the specified range.

class Datacubes: Wrapper class around the Datacube container. Allows for con-
venient storage of several datasets at the same time. Operations which can be
performed on a single Datacube is implemented in such a way that they can be
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called from a Datacubes instance and be applied to all Datacubes within it.

class PCADatacubes: Performes PCA on a Datacube object and stores loading
vectors and other important parameters related to PCA. Since a datacube may not
be on the expected form for PCA PCADatacubes does checks to see wheter the
expected form is given and converts the data to the correct form if not.

class PLSDA: Performs PLSDA on a dataset given number of PLS components.
It has functionality to fit the classification model and then predict samples later on.
There is also visualization functionality for easy interpretation of the results.

class ClassGenerator: Given a Datacube object and a range it outputs samples
and a response matrix which can be used to train a PLSDA model.

class PerformanceEvaluator: Contains functionality for evaluating classification
performance and visualizing the result.

Class Simulation: Performs a simulation involving an UHI. It has member vari-
ables including all the classes defined below and information on resolution, which
parts of the scene should be simulated etc. For each pixel in the scene simulated
a lightbeam is propagated, using the Lightpropagator class, from the position of a
Lightsource object to the location of the pixel. Then after reflection the lightbeam
is propagated to the position of a UHI and the measured irradiance is stored.

Class UHI: Holds the measured dataset in the simulation as a Datacube instance
and holds other relevant information tied to the UHI simulated.

Class Lightsource: Holds information of a particular lightsource, including spec-
tra, spatial distrubution and model parameters.

Class Lightpropagator: Propagates light from one point in space to another.
Holds the propagation model and paramters related to the propagation of light.

Class Bottom: Keeps all information related to the scene simulated. It has infor-
mation on the geometry and reflectances contained within it as well as functionality
for light to interact with the scene.

Class HeightProfileGenerator: Generates predefined height profiles which can
be passed on to a Bottom instance.
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Class ReflectanceGenerator: Generates predefined reflectance profiles which
can be passed on to a Bottom instance.
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