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We consider theoretically domain wall motion driven by spin–orbit and spin Hall torques. We find that it
is possible to achieve universal absence of Walker breakdown for all spin–orbit torques using experimentally
relevant spin–orbit coupling strengths. For spin–orbit torques other than the pure Rashba spin–orbit torque, this
gives a linear current–velocity relation instead of a saturation of the velocity at high current densities. The

effect is very robust and is found in both soft and hard magnetic materials, as well as in the presence of the
Dzyaloshinskii–Moriya interaction and in coupled domain walls in synthetic antiferromagnets, where it leads
to very high domain wall velocities. Moreover, recent experiments have demonstrated that the switching of a
synthetic antiferromagnet does not obey the usual spin Hall angle-dependence, but that domain expansion and
contraction can be selectively controlled toggling only the applied in-plane magnetic field magnitude and not

its sign. We show for the first time that the combination of spin Hall torques and interlayer exchange coupling
produces the necessary relative velocities for this switching to occur.

I. INTRODUCTION

Domain wall motion in ferromagnetic strips is a central
theme in magnetization dynamics and has recently been in-
strumental to the discovery of several new current-induced
effects.1–6 The attainable velocity of a domain wall driven by
conventional spin-transfer torques (STTs)7–9 is limited by the
Walker breakdown,10 upon which the domain wall deforms,
resulting in a reduction of its velocity.

Current-induced torques derived from spin–orbit effects
(SOTs) such as the spin Hall effect4–6,11 or an interfacial
Rashba spin–orbit coupling12–14 have enabled large domain
wall velocities. We here consider the dependence of the do-
main wall velocity on the current and find that regardless of
the relative importance of the reactive and dissipative com-
ponents of the torque it is possible to achieve universal ab-
sence of Walker breakdown for all current densities for ex-
perimentally relevant spin–orbit coupling strengths. For spin–
orbit torques other than the pure Rashba SOTs, such as the
spin Hall torques, the velocity will not saturate as a func-
tion of current, but will increase linearly as long as a conven-
tional spin-transfer torque is present. This behavior is robust
against the presence of an interfacial Dzyaloshinskii–Moriya
interaction15–17 and is found both in perpendicular anisotropy
ferromagnets, in shape anisotropy-dominated strips and in
synthetic antiferromagnets (SAFs),18–22 where it enables very
high domain wall velocites for relatively small current densi-
ties. Moreover, the combination of SOTs with the interlayer
exchange torque was recently shown experimentally to pro-
duce novel switching behavior that circumvents the usual spin
Hall angle-dependence.22 We show that the combination of
spin Hall torques and interlayer exchange produces the re-
quired dependence of the domain wall velocity on the topolog-
ical charge to qualitatively reproduce the experimental data.

II. UNIVERSAL ABSENCE OF WALKER BREAKDOWN

We consider an ultrathin ferromagnet with a heavy metal
underlayer as shown in Figure 1. We describe the dynamics of
the magnetization m(r, t) using the Landau–Lifshitz–Gilbert
(LLG) equation,23

∂tm = γm × H −
α

m
m × ∂tm + τ, (1)

where γ < 0 is the gyromagnetic ratio, m is the saturation
magnetization, α < 0 is the Gilbert damping, H = −δF/δm
is the effective field acting on the magnetization and τ is the
current-induced torques. The free energy F of the ferromag-
net is a sum,

F =

∫

dr ( fZ + fex + fDM + fa), (2)

of the Zeeman energy due to applied magnetic fields, the
isotropic exchange, the interfacial Dzyaloshinskii–Moriya in-
teraction and the magnetic anisotropy.

The Zeeman energy and the isotropic exchange can be
written respectively as fZ = −H0 · m, where H0 is the ap-
plied magnetic field, and fex = (A/m2)[(∇mx)

2
+ (∇my)

2
+

(∇mz)
2], where A is the exchange stiffness.23 Inversion sym-

metry breaking at the interface between the heavy metal and
the ferromagnet gives rise to an anisotropic contribution to
the exchange known as the Dzyaloshinskii–Moriya interac-
tion, which favors a canting of the spins.15–17 The resulting

Figure 1. Ultrathin ferromagnet with a heavy metal underlayer. We

consider transverse domain wall motion along the x axis. r, σl and
σs denote the three nontrivial operations of the symmetry group C2v .
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contribution to the free energy is fDM = (D/m2)[mz(∇ · m) −
(m · ∇)mz], where D is the magnitude of the Dzyaloshinskii–
Moriya vector. Ultrathin magnetic films are prone to exhibit
perpendicular magnetization due to interface contributions to
the magnetic anisotropy.24 Consequently, we write the mag-
netic anisotropy energy as fa = −Kzm2

z + Kym2
y, correspond-

ing to an easy axis in the z direction and a hard axis in the y

direction.

A. Current-Induced Torques

The current-induced torques τ are conventionally divided
into spin-transfer torques and spin–orbit torques. The spin-
transfer torques can be written as7–9

τSTT = u∂xm −
βu

m
m × ∂xm, (3)

where u = µBP j/[em(1+β2)] and j is the electric current, P is
its spin polarization, µB is the Bohr magneton, e is the electric
charge and β is the nonadiabacity parameter. The spin–orbit
torques can be written as4–6,11–14

τR = γm × HRey − γm ×

(

m ×
βHRey

m

)

, (4)

τSH = γm ×

(

m ×
HSHey

m

)

+ γm × βSHHSHey, (5)

where HR = αRP j/[2µBm(1 + β2)] and αR is the Rashba pa-
rameter and where HSH = ~θSH j/(2emt) and θSH is the spin
Hall angle and t is the magnet thickness. Since the spin Hall
effect changes sign upon time-reversal, the principal spin Hall
torque term is dissipative instead of reactive, in contrast to the
principal term of the STTs and the Rashba SOTs.

In fact, assuming that the stack can be described using the
C2v symmetry group (see Figure 1) it can be shown that these
torques exhaust the number of possible torque components.
Hals and Brataas25 describe spin–orbit torques and general-
ized spin-transfer torques in terms of a tensor expansion. As-
suming the lowest orders are sufficient to describe the essen-
tial dynamics, the reactive and dissipative spin–orbit torques
are described by, respectively, an axial second-rank tensor and
a polar third-rank tensor while the generalized spin-transfer
torques are described using a polar fourth-rank tensor and an
axial fifth-rank tensor. The torques that arise in a given struc-
ture are limited by the requirement that the tensors must be
invariant under the symmetry operations fulfilled by the struc-
ture. We have assumed that the physical systems we con-
sider are described by C2v symmetry. Combined with the
fact that the current is applied in the x direction only and
that ∂ym = 0 and ∂zm = 0, this implies that there is only
one relevant nonzero element in the axial second-rank tensor,
two elements in the polar third-rank tensor, three elements in
the polar fourth-rank tensor and six elements in the axial fifth-
rank tensor.26

The three relevant nonzero elements of the second- and
third-rank tensors give rise to three spin–orbit torques. A de-
tailed analysis shows that these torque components are cap-
tured by the Rashba and spin Hall torques in equations (4) and

(5). As an aside, we note that although the Rashba and spin
Hall effects may not necessarily capture all of the relevant mi-
croscopic physics27–29 these torques can still be used to model
the dynamics because they contain three ‘free’ parameters, αR,
θSH and βSH.

As has been shown in Ref. 25, the generalized spin-transfer
torques reduce to the ordinary STTs in the nonrelativistic limit.
Thus, by using the ordinary STTs we neglect possible spin–
orbit coupling corrections to these higher-order terms.

B. The Collective Coordinate Model

The magnetization is conveniently parametrized in spher-
ical coordinates as m/m = cos φ sin θex + sin φ sin θey +

cos θez . Using the assumption that there is no magnetic tex-
ture along the y and the z axes, ∇ = ∂xex , we can find the
domain wall profile by minimizing the free energy. The re-
sulting Euler–Lagrange equations are

A(θ′′ csc θ sec θ − φ′2) − Dφ′ sin φ tan θ = (Kz + Ky sin2 φ)

and

A(φ′′ + 2θ′φ′ cot θ) + Dθ′ sin φ = Ky cos φ sin φ.

One solution of these differential equations is the Néel wall
solution φ = nπ and θ = 2 arctan exp[Q(x − X)/λ], where Q

is the topological charge of the wall,30 X is the wall position

and λ =
√

A/Kz is the domain wall width. n is even if D < 0

and Q = +1, and n is odd if D < 0 and Q = −1. This domain
wall profile is known as the Walker profile.10 To be sure that
φ = nπ is really the global minimum, we solve the full LLG
equation (1) for a single magnetic layer and let the solution re-
lax without any applied currents or fields. The angle φ(x) can
then be calculated as φ(x) = arctan[my(x)/mx(x)]. However,
φ(x) is ill defined in the domains where θ → 0 or π. Conse-
quently, we consider φ only inside the domain wall. As shown
in Figure 2(a), the solution φ = 0 works very well.

Substitution of the Walker profile into the full LLG equa-
tion (1) using H0 = Hx ex and Q = +1 gives the collective
coordinate equations, for the wall position X and tilt φ

α ÛX

λ
− Ûφ = + π

2
γ
(

HSH − βHR

)

cos φ +
βu

λ
, (6)

(1 + α2) Ûφ = −
αγKy

m
sin 2φ +

παγ(D − Hxmλ)

2mλ
sin φ (7)

−
u(α + β)

λ
− π

2
γ
[

HSH(1 − αβSH) − HR(α + β)
]

cos φ.

By doing this substitution, we are assuming that the domain
wall moves as a rigid object described by two collective coor-
dinates X(t) and φ(t) (Ref. 30). In particular, we are neglect-
ing any position dependence in the domain wall tilt φ. The col-
lective coordinate model, or one-dimensional model, has been
used previously to explain the qualitative behavior of both
spin-transfer and spin–orbit torques.4,5,7,10,18–20,28,30,31 How-
ever, it is important to remember that the model will always
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Figure 2. Position dependence of the domain wall tilt φ. In each
panel, the orange curve mx(x) shows the extension of the domain

wall while the black solid curve shows the domain wall tilt φ(x) ob-
tained by solving the full LLG equation (1) and the black dashed line
shows the prediction of the collective coordinate model. (a) Equi-
librium solution. (b) Spin-transfer torque dynamics. (c) Spin Hall
torque dynamics. (d) Rashba spin–orbit torque dynamics. (a)–(d) We
use the material parameters supplied in the first column of Table I

with j = 5 MA/cm2 except that J = 0.

be an approximation, and we cannot necessarily expect quanti-
tative agreement between experimental results and model pre-
dictions nor can we completely exclude the possibility of dy-
namics that is not captured by the one-dimensional model.31

We can nevertheless test the adequacy of the collective coor-
dinate model by calculating φ(x) from a solution of the full
LLG equation for a single magnetic layer, just as we did for
the static case. As shown in Figure 2(b) the x dependence of
φ is negligible for spin-transfer torques. The x dependence of
φ is larger for spin Hall [Figure 2(c)] and Rashba spin–orbit
torques [Figure 2(d)]. Nonetheless, the ability of the collec-
tive coordinate model to consistently qualitatively reproduce
experimental behavior indicates that it captures the generality,
if not all, of the physics in the system.

Equations (6) and (7) can be simplified by introducing a j =
π

2
γ(HSH − βHR), bj = βu/λ, c = −2αγKy/m, d = παγ(D −

Hxmλ)/(2mλ), e j = − π

2
γ[HSH(1 − αβSH) − HR(α + β)] and

f j = −u(α+β)/λ. Walker breakdown is absent when the time
derivative Ûφ vanishes, resulting in the condition

0 = c sin φ cos φ + d sin φ + j(e cos φ + f ). (8)

Provided that the transverse domain wall is not transformed
into for instance a vortex wall,31 Walker breakdown will be
universally absent if e > f because this equation always has
a solution for φ regardless of the value of j. For increasing
j, φ will level off to a value cos φ = − f /e. For realistic
material values e > f corresponds to a Rashba parameter
αR > 4µ2

B/(πeγλ) = 1 to 6 meV nm (pure Rashba SOTs) or
a spin Hall angle θSH > 4µBPt/(π~γλ) = 0.05 to 0.09 (pure
spin Hall torques). To the best of our knowledge, the absence

of Walker breakdown for spin Hall torques has not been noted
previously, whereas absence of Walker breakdown for suffi-
ciently strong Rashba spin–orbit coupling was pointed out in
Ref. 32, and can also be noted in Refs 13 and 33–35.

Let us write ξ = cos φ and η = sin φ, so that ξ2 + η2
= 1.

Solving equation (8) for η to get η = − j(eξ + f )/(cξ + d), this
relation gives a quartic equation

c2ξ4+2cdξ3+[(e j)2+d2−c2]ξ2+2(e f j2−cd)ξ = d2−( f j)2.

The exact solutions of the quartic are hopelessly complicated.
However, they all have the same series expansion around j =

0 and j → ∞. We consider first the asymptotic expansion,

ξ = −
f

e
+

S1

j
+ O

(

j−2
)

, (9)

where S1 represents the solutions of the quadratic equation
e6ζ2

= d2e4
+ c2 f 4

+ (c2 − d2) f 2e2
+ 2cde f ( f 2 − e2). Using

equation (6), the wall velocity is then

α ÛX

λ
=

(

b −
a f

e

)

j + aS1 + aO
(

j−1
)

. (10)

Back substitution of the abbreviations a, b, e and f shows
that for pure Rashba SOTs the coefficient of the linear term
reduces to zero because the ratio of the reactive to the dissi-
pative torque is the same for the STTs and the Rashba SOTs.
Thus, for large j the domain wall velocity approaches a con-
stant. For pure spin Hall torques we get instead the linear term
−uα(1+ ββSH)/[λ(1−αβSH)]. This means that for large j the

velocity is actually independent of the sign of the spin Hall

angle and increases linearly with j. Note the importance of
including the STTs—which are always present—in these con-
siderations: in the absence of STTs (u → 0) both b and f go
to zero and the velocity levels off to a constant for large j for
any combination of SOTs.

For completeness, we also consider the series expansion
about j = 0, which gives

ξ = −1 +
(e − f )2

2(c − d)2
j2
+ O

(

j4
)

(11)

and

α ÛX

λ
= (b − a) j +

a(e − f )2

2(c − d)2
j3
+ aO

(

j5
)

. (12)

The key observation here is that in this regime the velocity
does depend on the sign of the spin Hall angle (a ∝ θSH for
pure spin Hall torques) and increases with the cube of j. Com-
bined with the spin Hall angle-independence of the velocity
in the j → ∞ limit, this implies that even in the absence
of Walker breakdown a nonmonotonic current–velocity rela-
tion is possible. Figure 3(a) shows a numerical solution of
the coupled equations (6) and (7) as a function of j for pure
Rashba SOTs and for pure spin Hall torques both in the cases
of θSH > 0 and θSH < 0 together with the analytical solutions
close to j = 0 and for large j for parameters that are typical
for a standard cobalt–nickel multilayer. We see that our ana-
lytical results successfully approximate the full solution in the
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Figure 3. Current–velocity relation for three different SOTs in the ab-

sence of Walker breakdown. The Rashba SOTs level off to a constant
velocity at large currents, whereas the spin Hall torques asymptoti-
cally approach a linear current–velocity relation. Dashed lines show
the asymptotic expansion and dotted curves show the series about
j = 0. We use the material parameters supplied in the (a) first and
(b) second column of Table I except that J = 0.

expected ranges of validity indicating the absence of Walker
breakdown in the numerical solution.

The in-plane hard axis included in the magnetic anisotropy
is appropriate for narrow ferromagnetic strips, which gener-
ally host Néel walls. Wider strips give Bloch walls,24 and
by making the necessary modifications to the above calcula-
tions, we find that in this case the domain wall velocity re-
tains the qualitative features elucidated above. This is also
true for shape anisotropy-dominated strips, which host head-
to-head walls. This shows that universal absence of Walker

breakdown is a robust effect that does not depend on the de-

tails of the ferromagnetic material, unlike other SOT effects
studied previously.36 This fact is also illustrated by the numer-
ics. In Figure 3(b) we present numerical results obtained for a
Néel wall in a PMA ferromagnet with anisotropies weaker by

an order of magnitude, weaker magnetic damping and much
larger Rashba spin–orbit coupling and spin Hall angle in the
adjacent heavy metal. The results are qualitatively similar to
those obtained in Figure 3(a).

III. COUPLED DOMAIN WALLS IN A SAF STRUCTURE

We consider next an asymmetric stack of two ultrathin
ferromagnets separated by an insulating spacer as shown in
Figure 4(a). We describe the dynamics of each of the ferro-
magnets using separate LLG equations, but add to the free
energy a coupling term,

FIEC =

∫

dr1

m(1)

∫

dr2

m(2)
J(r1 − r2)

[

m
(1)(r1) · m

(2)(r2)
]

, (13)

representing the interlayer exchange (IEC). We assume that
the IEC is local in the plane, J(r1 − r2) = Jδ(x1 − x2)δ(y1 −
y2). Equation (13) then represent the lowest order coupling
proposed by Bruno.37

Following the same procedure as in the previous section
we may now derive four coupled collective coordinate equa-
tions. With an antiferromagnetic coupling the walls will
have opposite topological charges, Q2 = −Q1. Since a lo-
cal IEC can only affect the chiralities, and not the profiles of
the walls, we can use the static solution derived previously,

θ = 2 arctan exp[Q(x − X)/λ], where λ =
√

A/Kz is the do-
main wall width and Q is the topological charge. For a single
wall the azimuthal angle φ is given by φ = nπ. n is even if
D < 0 and Q = +1, and n is odd if D < 0 and Q = −1. To
limit the scope of the treatment, we consider only the case
where D1 and D2 have the same sign, D1 < 0 and D2 < 0.
Then the DMI and the IEC cooperate to give the static solu-
tion φ1 = 0 (Q1 = +1) and φ2 = π (Q2 = −1).

Substituting this static solution into the LLG equations us-
ing H0 = Hx ex gives the collective coordinate equations

(1 + α2)
ÛX1

λ
= −
γKy

m
sin 2φ1 +

πγ(D1 − Hxmλ)

2mλ
sin φ1 +

γJt2

2m

[

αU(s) cos(φ1 − φ2) + αW(s) + V(s) sin(φ1 − φ2)
]

−
u(1 − αβ)

λ
+

π

2
γ
[

H
(1)

SH

(

α + β
(1)

SH

)

+ H
(1)

R (1 − αβ)
]

cos φ1,

(14)

(1 + α2)
ÛX2

λ
= +

γKy

m
sin 2φ2 +

πγ(D2 + Hxmλ)

2mλ
sin φ2 −

γJt1

2m

[

αU(s) cos(φ1 − φ2) + αW(s) − V(s) sin(φ1 − φ2)
]

−
u(1 − αβ)

λ
+

π

2
γ
[

H
(2)

SH

(

α + β
(2)

SH

)

+ H
(2)

R
(1 − αβ)

]

cos φ2,

(15)

(1 + α2) Ûφ1 = −
αγKy

m
sin 2φ1 +

παγ(D1 − Hxmλ)

2mλ
sin φ1 −

γJt2

2m

[

U(s) cos(φ1 − φ2) +W(s) − αV(s) sin(φ1 − φ2)
]

−
u(α + β)

λ
− π

2
αγ

[

H
(1)

SH

(

1 − αβ
(1)

SH

)

− H
(1)

R
(α + β)

]

cos φ1,

(16)

(1 + α2) Ûφ2 = −
αγKy

m
sin 2φ2 −

παγ(D2 + Hxmλ)

2mλ
sin φ2 −

γJt1

2m

[

U(s) cos(φ1 − φ2) +W(s) + αV(s) sin(φ1 − φ2)
]

+

u(α + β)

λ
+

π

2
αγ

[

H
(2)

SH

(

1 − αβ
(2)

SH

)

− H
(2)

R
(α + β)

]

cos φ2.

(17)
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Figure 4. (a) Two ultrathin ferromagnets separated by an insulating
spacer with heavy metal over- and underlayers. The ferromagnets are
identical except for their thicknesses, but the different heavy metals

induce different DMIs and SOTs. (b) Dependence of the IEC terms
V(s), U(s) and W(s) on the wall separation.

where we have assumed that the bulk parameters of the two
ferromagnets are equal and where s is the separation between
the two walls, s = (X1 − X2)/λ. The IEC terms are expressed
using the three functions V(s), U(s) and W(s);

V(s) = 2s csch s,

U(s) = 2 csch s − 2s coth s csch s,

W(s) = 2 coth s − 2s csch2 s.

These functions are plotted in Figure 4(b).
Equations (14) and (16) reduce to equations (6) and (7)

when J → 0. To solve equations (14)–(17) numerically, we
rescale the equations to obtain dimensionless variables. The
dimension of equations (14)–(17) is Hz. A convenient scal-
ing factor with the same dimensions is µ0γm. By dividing
equations (14)–(17) by µ0γm we get the rescaled variables
t̃ = tµ0γm, X̃i = Xi/λ, H̃x = Hx/µ0m, K̃y = Ky/µ0m2,

D̃i = Di/µ0m2λ, t̃i = ti/λ, J̃ = Jλ/µ0m2 and ũ = u/µ0γmλ.
We solve the equations using an explicit fourth order Runge–
Kutta scheme with adaptive stepsize control, implemented as
a Dormand–Prince pair.38

A. Universal Absence of Walker Breakdown in SAF structures

For parameter values representative of a standard cobalt–
nickel multilayer we obtain the current–velocity and current–
tilt relations shown in Figure 5(a) and (b) for t1/t2 = 1 in the
case where only STTs are present and in the case where spin
Hall torques are additionally present. We see that the presence
of the IEC delays Walker breakdown when the wall is driven
by ordinary STTs, but the subcritical differential velocity re-
mains unaffected. This can also be shown analytically by solv-
ing for the tilt angle of the wall as a function of current. Such a
calculation shows that the tilt angle is suppressed by the IEC
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Figure 5. Domain wall dynamics in interlayer exchange coupled
ferromagnets. (a) and (b) The IEC delays Walker breakdown for
STT driving, but the subcritical differential velocity remains unaf-
fected. With spin Hall torques the tilt angle stabilizes at a finite

value, indicating universal absence of Walker breakdown. The tilt an-
gle approaches its limiting value more slowly in the presence of IEC.
(c) and (d) The IEC gives the velocity a nonmonotonic thickness-
dependence resulting in a peak close to t1/t2 = 1. [ j = 3 GA/cm2,
corresponding to the dashed vertical line in (a).] We use the material
parameters supplied in the first column of Table I. (e)–(h) These re-

sults are robust against a change in parameters to those in the second
column of Table I.

(but the breakdown angle is still π/4). Back-substitution of
this angle into the torque acting on the wall shows that this
torque is independent of J, explaining why there is no change
in the differential velocity.

When spin Hall torques are included, the domain wall tilt
levels off to a finite value and the current–velocity relation is
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Table I. Parameters used for the numerical solution of equations (14)–
(17) and for analytical estimates in the text.

parameter Co–Ni strong SOC Bi et al. unit

gyromagnetic ratio γ −0.19 −0.19 −0.19 THz/T

domain wall width λ 4 16 2 nm

hard axis anisotropy Ky 200 20 2 kJ/m3

saturation magn. m 1 1 1.1 MA/m

DM constant D −1.4 −1.0 −0.1 mJ/m2

Gilbert damping α −0.25 −0.1 −0.5

spin-polarization P 0.5 0.5 0.5

nonadiabacity param. β 0.5 0.4 2

Rashba parameter αR 6.3 75 meVnm

spin Hall angle θSH 0.1 0.2 0.12

spin Hall β-term βSH 0.02 0.02 0.02

interlayer exchange Jt1t2 5 5 1.5 mJ/m2

thickness t1 1.2 1.2 0.6 nm

thickness t2 1.2 1.2 1.7 nm

linear in the j → ∞ limit. This shows that universal absence

of Walker breakdown is also found in SAF structures. The
effect of the IEC can be understood simply as a rescaling of
the constant S1 and the higher order constants S2, S3, . . . in
the expansion (9), making the tilt angle approach its limiting
value more slowly. Thus, the effect of the IEC on both the
STT and spin Hall results is to suppress the domain wall tilt,
as shown in Figure 5(b). We note that the combination of spin
Hall torques and IEC produces much higher domain wall ve-
locities than in single ferromagnets for comparatively small
current densities.20

In a single ferromagnet the velocity of a wall driven by spin
Hall torques decreases with t as 1/t. When changing t2 from
t2 = t1/2 to t2 = 2t1 in a SAF structure, we find that the veloc-
ity peaks close to t1/t2 ≈ 1, which maximizes the IEC torque
[see Figure 5(c); the deviation from 1 is due to the DMI]. This
can be understood by considering Figure 5(d); at t1/t2 ≈ 1

the magnetizations in both layers are tilted in the y direction.
Increasing (decreasing) t2 to t2 = 2t1 (t2 = t1/2) reduces (in-

creases) H
(2)

SH
and increases (reduces) H

(1)

IEC
, thus (φ2 − φ1) ap-

proaches π and the IEC torque is reduced.
Just as for the single ferromagnetic layer the results for the

coupled walls are robust against a change of parameters, as
shown in Figure 5(e)–(h).

B. Novel Switching Behavior in SAF Structures

Bi et al. 22 have very recently demonstrated completely
novel switching behavior in SAF structures. In single ferro-
magnets, domain walls with one topological charge will travel
faster than those with the opposite topological charge if an
in-plane magnetic field is applied.39 If the relative velocity is
large enough the favored domains can overcome the destabi-
lizing action of the current (see Refs 40–43) and merge.44–46

The favored magnetization direction is uniquely determined
by the spin Hall angle and the applied magnetic field for a
fixed direction of the current. Bi et al. observed this behavior
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Figure 6. Qualitative reproduction of the experimental results of Bi
et al.22 The sign of the relative velocity of walls with (Q1,Q2) =

(+1,−1) and (Q1,Q2) = (−1,+1) can be toggled only by changing
the magnitude of the applied field. We use the material parameters
supplied in the third column of Table I.

in SAF structures for small in-plane fields, but by toggling be-
tween large and small values of the in-plane field (same sign),
they were able to toggle the sign of the relative velocity of the
walls and thereby the favored magnetization direction. Using
material parameters that approximate the samples of Bi et al.,
our model is the first to qualitatively reproduce this behavior,
as shown in Figure 6. Under an in-plane field in the range
0.3 T to 1.4 T, walls with (Q1,Q2) = (+1,−1) travel faster
than walls with (Q1,Q2) = (−1,+1) and ‘up’ magnetization
is favored. If the field is increased beyond 1.4 T, the relative
velocity changes sign, and ‘down’ magnetization is favored.
(The offset from zero is due to the DMI.)

IV. CONCLUSION

We have shown that complete suppression of Walker break-
down is possible in a wide range of domain wall systems
driven by spin–orbit torques, including head-to-head walls
in soft magnets, Bloch and Néel walls in perpendicular
anisotropy magnets, in the presence of the Dzyaloshinskii–
Moriya interaction and in coupled domain walls in syn-
thetic antiferromagnets. For spin–orbit torques other than
pure Rashba spin–orbit torques this leads to a linear current–
velocity relation instead of a saturation of the velocity for large
currents. In combination with interlayer exchange coupling,
spin–orbit torque driven domain wall motion in synthetic anti-
ferromagnets gives rise to novel switching behavior and very
high domain wall velocities.
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