
Adaptive Approximation-Based Estimation of Downhole Pressure in

Managed Pressure Drilling

Lars Imsland and Glenn-Ole Kaasa

Abstract— Low-complexity multi-model algorithms for adap-
tive bottomhole pressure estimation in drilling is derived, and
theoretical and practical conditions for convergence (persistency
of excitation) discussed, assuming a) topside measurements only,
b) topside measurements and bottomhole pressure measure-
ment, and c) topside measurements and delayed bottomhole
pressure measurement.

I. INTRODUCTION

The use of hydrocarbons is ubiquitous in modern society.

When extracting hydrocarbons from underground geological

formations it is usually necessary to create a well by drilling

a wellbore. During drilling, a mud circulation system is used

to transport cuttings from the drilling out of the wellbore, for

bit lubrication, and for controlling the downhole pressure in

the well.

The mud is pumped downhole inside the drill string

and through the drill bit, and returns to the top through

the annulus surrounding the drill string. The downhole

pressure needs to be controlled within its margins: above

the reservoir pore pressure and wellbore collapse pressure,

but below the wellbore fracture pressure. In many cases,

this margin is quite wide and the pressure can safely be

manually controlled, but as oil and gas reserves begin to be

depleted, reservoirs with narrower margins are being drilled,

demanding automated pressure control [5], [6]. The down-

hole pressure is usually measured, but with conventional

equipment this measurement has low bandwidth, is delayed,

and is unreliable. Good pressure control therefore requires

pressure estimation using also topside measurements [7], [3].

To infer downhole pressure from topside pressure mea-

surements, one needs to know the hydrodynamic (friction)

and hydrostatic (gravity) pressure drops in the mud flow path.

The hydrostatic pressure drop is usually fairly well known,

assuming reasonably accurate knowledge of the density

of the mud. However, the hydrodynamic pressure drop is

much harder to model beforehand, since the (temperature

and pressure-dependent) viscosity properties of the non-

Newtonian mud are not well known, and there is a significant

dependence on a somewhat uncertain well geometry.

The purpose of this paper is to look into low complexity

adaptation laws using multi-model function approximation
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techniques for modeling hydrodynamic friction loss, for

some common measurement configurations. Furthermore, we

want to study persistency-of-excitation (PE) requirements for

these laws, and take measurement-delays into account.

In the approach proposed here, we assume that the flow

of mud in the well is known/measured, while in reality it

typically has to be calculated/estimated from other measure-

ments. These measurements typically include measurements

of the flow into, and possibly out of, the well, so it is not

an unreasonable assumption to make. The reason for making

this assumption here is that it simplifies analysis considerably

(compare the work in [7], which estimates friction not using

a multi-model approach, but where the analysis does not

rely on knowledge of flow), and it facilitates PE-insights in

the multi-model case. It is the authors’ opinion that the PE

analysis of the approach considered herein can give insight

into PE requirements of other schemes for friction estimation

in drilling, also schemes using methods not based on ’local

learning’.

We start by describing the class of multi-model approx-

imators, and discuss modeling and problem description in

Section III. The adaptation laws are derived and analyzed

in Section IV, which ends with a simulation example. In

Section V we apply the adaptation laws to actual data from a

drilling operation, and we compare the estimated bottomhole

pressure to the measured bottomhole pressure that is logged

in the bit (and not available real-time).

II. FUNCTION APPROXIMATION

The approach to adaptive function approximation we will

employ, is a ’local learning/neuro/fuzzy’-type approach [1].

We approximate (an unknown) function h(x) with a normal-

ized weighted average of N local approximators ĥk(x). That

is, the approximator ĥ(x) is given as

ĥ(x) =
N

∑
k=1

φk(x)ĥk(x) = Φ(x)











ĥ1(x)

ĥ2(x)
...

ĥN(x)











,

where ĥi(x) are local approximators, and we use ’basis

functions’ φi(x) that (for each x) forms a ’partition of unity’,

φi(x) =
ωi(x)

∑
nθ
k=1 ωk(x)

.



The function ωk(x) is the local weighting function, or local

support. Examples of such functions can be

ωi(x) =











(

1−
(

|x−ci |
µi

)2
)2

, if |x− ci|< µi,

0, otherwise.

Here, ci is the center of the ’local support’ of the local

approximator ĥi(x), while µi describes the area (radius).
Conditions for when this class of approximators is a

universal approximator for a class of functions, can be

found [1].
We will assume that the local approximators are parame-

terized, ĥk(x) = ĥk(x,θk), where θk is a vector of parameters

for the local approximator, and design update laws for all

these local parameter vectors, θ = (θ1,θ2, . . . ,θN).

III. PROBLEM DESCRIPTION AND MODELING

ASSUMPTIONS

A. Modeling

In drilling operations, one usually measures the standpipe

pressure, the pressure of the mud pumped into the drillpipe

going down the wellbore, denoted pp. The pressure of

the mud exiting from the wellbore through the drillpipe

annulus is conventionally atmospheric, but in cases where

the bottomhole pressure is of significant concern, one often

employs what is called Managed Pressure Drilling (MPD).

This implies that a choke is placed in the mud return line

and the pressure is measured upstream this choke. This is

assumed here, and we call this the pressure measurement

the choke pressure, and denote it pc.
One may then reasonably assume that the bottomhole

pressure pb is related to these two measurements as [3]

pb = pp −Fd(l,q)+Gd(h)

pb = pc +Fa(l,q)+Ga(h)

where q is an average flow in the mud circulation system,

assumed known. The drillstring (annulus) hydrodynamic

pressure is denoted Fd(l,q) (Fa(l,q)) and the hydrostatic

pressure Gd(h) (Ga(h)). The length of the well is denoted l,

and the true vertical depth of the well is denoted h. Both of

these are in general time-varying.
A reasonable model for the flow q can be found from a

momentum balance at the bit [3],

M(l)q̇ = pp − pc −Fd(l,q)−Fa(l,q)+Gd(h)−Ga(h),

where M(l) is a parameter that depends on well geometry

(and fluid density). We parametrize the unknown friction as

Fd(l,q) = fTd (l,q)θ d
, Fa(l,q) = fTa (l,q)θ a

,

where the vector functions fTd (l,q) and fTa (l,q) are based on

nominal friction models (see next section), and θ d and θ a

are unknown parameter vectors. For simplicity, we introduce

s(h) = Gd(h) − Ga(h) (“difference in static head”), and

use notation that suppress dependence on h and l in the

following. We assume that parameters variations due to these

are so slow (compared to the flow dynamics) that that we

can assume them constant.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

Flow [lpm]

F
ri
c
ti
o
n
 [
b
a
r]

Fig. 1. A model of drillstring friction (dashed line) with a two-parameter
approximation (solid line). The approximation is for θ d

1 = 1.2 and θ d
2 = 0.9.

B. Friction approximation

For a nominal friction model Fi(q), i ∈ {a,d}, let

us parameterize model error with a parameter vector

θ i ∈ R
nθ and accompanying basis functions1, Φ(q) =

(

φ1(q),φ2(q), . . . ,φnθ
(q)
)

T
, such that we can use

Fi(q)Φ(q)Tθ i
, i ∈ {a,d}

as an approximation to the real friction. Compared to Sec-

tion II, this means (loosely) that we use ĥk(q,θk) = Fi(q)θ
i
k,

and N = nθ . We assume (for sake of analysis) nθ large

enough such that we can use this to construct a universal

approximator to the real friction.

Let us use fi(q) as a shorthand for the vector function

Fi(q)Φ(q). Specifically, we will assume the annulus friction

is fTa (q)θ a and drillstring friction is fTd (q)θ d , for some

(unknown) paramaters θ a and θ d , that we want to adapt.

As an example of the friction approximation, we plot

a nominal model of drillstring friction together with an

approximation with nθ = 2, in Figure 1.

IV. SIMPLE ADAPTIVE SCHEMES FOR DOWNHOLE

PRESSURE ESTIMATION

In this section, we derive adaptation laws using surface

measurements only (Subsection IV-A), surface measurements

and bottomhole pressure measurement (Subsection IV-B),

and finally a scheme taking delay in bottomhole pressure

measurement into account (Subsection IV-C. The two first

approaches are illustrated in simulations in Subsection IV-D.

We then apply the final adaptation law, including delayed

bottomhole pressure measurement, to data from an actual

drilling operation in Section V.

A. Information from surface measurements only

Based on the previous section, we use the following model

for design:

Mq̇ = pp − pc − fTd (q)θ d − fTa (q)θ a + s, (1)

1We assume for simplicity that we use the same basis functions both for
annulus and drillstring



and assume that q, pp, pc and s are measured and bounded.

Even though we assume q measured, we introduce an

observer for q,

M ˙̂q = pp − pc − fTd (q)θ̂ d − fTa (q)θ̂ a + s+ k (q− q̂) , (2)

where we aim (with reservations regarding PE) to find update

laws for θ̂ =
(

(θ̂ a)T,(θ̂ d)T
)T

such that θ̂ → θ .

Define error variables q̃ = q − q̂, θ̃ = θ − θ̂ ,

and consider the Lyapunov-like function V (q̃, θ̃ ) =
1
2

(

Mq̃2 +(θ̃ a)TΓ−1
a θ̃ a +(θ̃ d)TΓ−1

d θ̃ d
)

where Γa and Γd are

positive definite. The derivative of this function is

V̇ = q̃ ˙̃q+(θ̃ a)TΓ−1
a

˙̃θa +(θ̃ d)TΓ−1
d

˙̃θd

=−kq̃2 − q̃ fTd (q)θ̃ d − q̃ fTa (q)θ̃ a

+( ˙̃θ d)TΓ−1
d θ̃ d +( ˙̃θ a)TΓ−1

a θ̃ a
.

Selecting parameter update laws

˙̂θ a =−Γa fa(q)(q− q̂) ,

˙̂θ d =−Γd fd(q)(q− q̂) ,

we obtain, under the assumption that the ’real’ parameters

are constant,

V̇ =−kq̃2
,

and hence we can conclude q̃ → 0 and boundedness of pa-

rameter estimates by standard arguments (Barbalat’s lemma)

under some technical assumptions on q and the friction

functions [4].

However, we want more than boundedness; we want

parameter convergence for the parameters that have local

support. For this, we need to examine the information content

in the data; i.e., whether the data is persistently exciting (PE).

Note that the parameters that do not have local support

(that is, the θk for which φk(q) = 0) will not be updated.

Therefore, a PE-analysis must take this into account.

1) PE analysis: PE analysis of the above estimation

problem is straightforward as the error system is essentially

LTV and we can resort to standard theory (e.g. [4], [2]). The

closed loop error system can be written as
(

˙̃q
˙̃θ

)

=

(

A Bφ(t)T

−φ(t)CT 0

)(

q̃

θ̃

)

where

θ̃ =

(
√

Γ−1
a θ̃ a

√

Γ−1
d θ̃ d

)

, φ(t) =

(

−
√

Γa fa(q)
−√

Γd fd(q)

)

,

and A=−k and B=C = 1. Since (A,B,C) is Strictly Positive

Real (SPR), this system is (globally) exponentially stable if

we have PE, that is, if there exists α such that at all time

instants t, there exists a T such that
∫ t+T

t
φ(τ)φT(τ)dτ ≥ αI.

If q varies within a small window, then only two param-

eters, one in each of θ a and θ d , are being estimated. The

interesting question is: Is there enough variation to estimate

both of these? Assume, as an approximation to this case,

that nθ a = nθ d = 1, that is fa(q) and fd(q) are scalars. The

question is then, does fa(q) and fd(q) vary “sufficiently

differently”, that is, will the matrix

∫ t+T

t

(

fa(q)
fd(q)

)(

fa(q)
fd(q)

)

T

dτ

become non-singular? Since both signals depend in a similar

manner on q, this requires significant variations in q that

really excite the nonlinearities in fa(q) and fd(q) differently.

2) PE in practice: If we look at typical drilling opera-

tions, this is unlikely to happen apart from short time-periods

(pipe connections), however, these time-periods are likely too

short to obtain robust parameter convergence. This means

that in practice there is only information to estimate one

parameter, and this parameter will only converge to its true

value provided the other parameter is set correctly.

However, it is easy to see that the total friction is estimated

correctly in steady state. Since q̃ → 0, when ˙̂q = 0 (in steady

state), then, from (2),

fTd (q)θ̂ d + fTa (q)θ̂ a = pp − pc + s.

Since the expression on the right hand side is the total

pressure loss from standpipe to choke due to friction, the

overall friction will be estimated correctly.

In conclusion, we claim it is only realistic to update one

part of the friction, and assume the other known, during a

drilling operation when using topside measurements only.

That is, one may either assume friction in the drillpipe

known, and estimate the parameters related to annulus fric-

tion, or the other way around. The fact that annulus friction

in general is the ’most unknown’ friction, speaks in favor of

estimating annulus friction. On the other hand, the following

issues,

• drillpipe friction often is about an order of magnitude

larger,

• annulus friction influences the main variable of interest

(bottomhole pressure) directly, and hence we should

be careful with updating annulus friction without using

measurements of bottomhole friction,

points towards estimating only drillpipe friction as long as

bottomhole pressure is not available.

B. Surface measurements and bottomhole pressure measure-

ment

Consider the system (1), but assume now (somewhat unre-

alistically) that we have available the additional measurement

pb,

pb = pc + fTa (q)θ a +Ga. (3)

We incorporate this information by extending the ob-

server (2) for q in the following manner:

˙̂q = pp − pc− fTd (q)θ̂ d − fTa (q)θ̂ a + s

+ kq (q− q̂)+ kp (pb − p̂b) , (4)



where

p̂b = pc + fTa (q)θ̂ a +Ga.

This gives the following error dynamics:

˙̃q =− fTd (q)θ̃ d − fTa (q)θ̃ a − kqq̃− kp p̃b.

We first note that since p̃b = − fTa (q)θ̃ a, it is straight-

forward to extend the design in Section IV-A to obtain the

parameter update law

˙̂θ a = Γa(1− kp) fa(q)(q− q̂) .

The information in the bottomhole pressure is now used only

indirectly (through q̂) to affect the parameter estimates (in

θ a). It is of interest to see if we can obtain parameter update

laws that use the information more explicitly.

We therefore propose

˙̂θ a =−Γa(1− kp) fa(q)(q− q̂)+Ka(q)(pb − p̂b) ,

˙̂θ d =−Γd fd(q)(q− q̂) ,

where the matrix Ka(q) has a specific form, Ka(q) =
Γa fa(q)ka. This gives the tuning parameters Γa, Γb, kq, kp,

and ka.
Considering the same Lyapunov function as before, we

obtain

V̇ =−kqq̃2 − q̃ fTd (q)θ̃ d − q̃ fTa (q)θ̃ a

− kpq̃p̃b +(θ̃ a)TΓ−1
a

˙̃θa +(θ̃ d)TΓ−1
d

˙̃θd

Inserting the parameter update laws and using p̃b =
− fTa (q)θ̃ a, we get

V̇ =−kqq̃2 − (θ̃ a)TΓ−1
a Ka(q) fTa (q)θ̃ a

.

Now, since Ka(q) = Γa fa(q)ka,

V̇ =−kqq̃2 − ka

(

fTa (q)θ̃ a
)2
,

allowing us to conclude that q̃ → 0 and fTa (q)θ̃ a → 0 (using

Barbalat’s lemma, provided the derivatives of q and fa(q)
are bounded).

1) PE analysis: Since we now have a measurement

equation involving (some of) the unknown parameters, the

analysis is not entirely standard anymore. Define

A (t) =





−kq −(1− kp) fTa (q) − fTd (q)
(1− kp)Γa fTa (q) −kaΓa fa(q) fTa (q) 0

Γd fTd (q) 0 0



 ,

C (t) =

(√

kq 0 0

0
√

ka fTa (q) 0

)

.

Then, the closed loop system is given by ẋ = A (t)x,

and the derivative of the Lyapunov function is V̇ (x) =
−xTC T(t)C (t)x. We see that compared to Section IV-A.1,

we have obtained a ’stabilizing’ (2,2)-element, which should

improve the stability properties, and an increased output

dimension (larger C -matrix), which should relieve some of

the excitation requirements.

Since the system is LTV, we will have exponential stability

of x = 0 if the pair (A (t),C (t)) is uniformly observable [4].

Uniform observability of (A (t),C (t)) is equivalent to uni-

form observability of (A (t)−K (t)C (t),C (t)). Choose

K (t) =











−
√

kq − (1−kp)√
ka

1−kp√
kq

Γa fTa (q) 0

1√
kq

Γd fTd (q) 0











, (5)

then

A (t)−K (t)C (t) =





0 0 − fTd (q)
0 −kaΓa fa(q) fTa (q) 0

0 0 0



 .

Due to the decoupled structure of the system

(A (t)−K C (t),C (t)), we can divide the problem in

two. That is, the pair (A (t),C (t)) is uniformly observable

if the systems

ξ̇1 =

(

0 − fTd (q)
0 0

)

ξ1, ζ1 =

(√

kq 0

0 0

)

ξ1, (6a)

ξ̇2 =−kaΓa fa(q) fTa (q)ξ2, ζ2 =
√

ka fTa (q)ξ2, (6b)

are uniformly observable.

• Uniform observability of (6a) is implied by fd(q)
T

being PE, that is, by the existence of T and α such

that for all t,

∫ t+T

t
fd(q) fd(q)

Tdτ ≥ αI.

• By looking at the measurement equation for (6b), it is

clear that the corresponding condition,

∫ t+T

t
fa(q) fa(q)

Tdτ ≥ αI

is a conservative2 condition for uniform observability

of (6b).

In the case of nθ = 1 (or, analysis within a local support),

this reduces to that (the scalar) fa(q) and fd(q) must be

positive.

2) PE in practice: That is, as long as the model predicts

friction, we have enough information to obtain estimates of

both annulus and drillpipe friction friction (within a local

support). As we basically estimate two parameters from two

equations ((1) and (3)), this is not surprising. We have less

information when there is little friction (for small flows),

which is not surprising either, since then the parameters do

not influence the equations.

C. Time-delayed bottomhole pressure measurement

Assume now that the bottomhole pressure measurement is

T time-units delayed, that is,

pb(t) = pc(t −T)+ fTa (q(t −T ))θ a + sa.

2In this case, it is likely that less conservative conditions exist, in contrast
to for the first system.
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Fig. 2. Simulation of adaptive law using topside measurements only, with Γd = diag([0.2,0.02]), Γa = diag([0.5,0.2]), kq = .001.

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

B
it
 f

lo
w

 [
lp

m
]

0 10 20 30 40 50 60
232

234

236

238

240

242

244

246

p
b

Time [min]

(a) Top: simulated (whole) and estimated (dashed) bit flow;
bottom: simulated (whole) and estimated (dashed) bottom-
hole pressure.

0 10 20 30 40 50 60

0.7

0.8

0.9

1

1.1

1.2

θ
d
 [

−
]

0 10 20 30 40 50 60

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

θ
a
 [

−
]

Time [min]

(b) Top: drillstring parameters; bottom: annulus parameters.
Red (whole): parameters valid for large flows, blue (dashed):
parameters valid for small flows.

Fig. 3. Simulation of adaptive law using topside measurements and bottomhole pressure measurement, with Γd = diag([0.2,0.02]), Γa = diag([0.5,0.2]),
kq = .001, kp = 2 ·10−4 , ka = 2 ·10−4 .

Using the same setup as in Section IV-B except for setting

kp = 0, that is, we use the observer (4) (with kp = 0) and the

parameter update laws

˙̂θa =−Γa fa(q)(q(t)− q̂(t))+Ka(q(t −T ))(pb(t)− p̂b(t)) ,

˙̂θd =−Γd fd(q(t))(q(t)− q̂(t)) ,

with Ka(q(t −T )) = Γa fa(q(t −T ))ka and

p̂b(t) = pc(t −T )+ fTa (q(t −T ))θ̂ a(t)+ sa.

Noting that now, p̃b(t) = − fTa (q(t − T ))θ̃ a, we use the

same Lyapunov function as above to arrive at

V̇ =−kqq̃2 − ka

(

fTa (q(t −T ))θ̃ a
)2
.

Note that even though we have a time-delayed measurement,

the system we analyze (q̃, θ̃ a, θ̃ d) is not a time-delay system,

it merely involves a time-delayed signal, and therefore an

analysis based on Barbalat’s lemma can be readily invoked.

That is, using Barbalat’s lemma, we can conclude that V̇ → 0

and hence q̃ → 0 and fTa (q(t −T))θ̃ a → 0.

For PE analysis, set the (2,1)-element of K (t) in (5) to

zero to get

A (t)−K (t)C (t) =

(

0 − fTa (q(t)) − fTd (q(t))

0 −kaΓa fa(q(t−T )) fTa (q(t−T )) 0
0 0 0

)

.

Decoupling the system as in Section IV-B.1, we see that (6b)

is as before (and therefore observable under the same condi-

tion), while the state of (6b) becomes an input to system (6a).

Due to linearity, this input does not influence observability,

and we can conclude uniform observability under the same

conditions.

It is notable that the way we have included time-delay

in this section is considerably less complex than by state

augmentation, as is a much-used way to include time-delays

in an extended Kalman filter.
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Fig. 4. The algorithm in Section IV-B with Γd = 5 ·10−3 diag([2,1]), Γa = 3 ·10−2 diag([2,1]), kq = .001, kp = 0, ka = 2 ·10−3 .
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Fig. 5. The algorithm in Section IV-C with Γd = 5 ·10−3 diag([2,1]), Γa = 3 ·10−2 diag([2,1]), kq = .001, kp = 0, ka = 2 ·10−3 .

D. Simulations

We test the approach on a simulator based on the model

in [3], with pressure loss (hydrodynamic and hydrostatic)

taken from a model of a real well. To make things slightly

more realistic, we add noise to the pump flow input, and

use estimated bit flow in friction calculation for the adaptive

estimation (the latter improves adaption since it gives more

excitation).

The scenario is initially full circulation, then rapid tran-

sition to low circulation (not zero flow, so not a pipe

connection), then rapid transition to full circulation again.

1) Simulation using topside measurements only: See Fig-

ure 2. As predicted by theory, the estimated flow converges,

and the estimated parameters are bounded, but does not

converge to their ’true’ values (which in the simulation is

1 for all parameters). This gives large errors in predicted

downhole pressure.

If we fix one of the parameter sets to its true value, then

the other will converge to the true value for full circulation

(not shown). However, for low circulation, low gain in the

adaptation loop gives convergence problems.

2) Simulation using topside measurements and bottomhole

pressure measurement: See Figure 3. Now all parameters

converge, as predicted by theory. For small flows, conver-

gence of θ d is slow. This seems rather generic, increasing

the gain gives faster convergence but larger ’overshoot’ (and

hence probably less robustness).

V. TESTING USING MEASUREMENTS FROM ACTUAL

DRILLING OPERATION

We test the algorithm using actual measurements from on

offshore well in the North Sea. During the period of data it

is drilled horizontally, with two pipe-connections. Being real

data, there are factors complicating the picture:

• “Downlink”-procedures (topside communication with

bottomhole assemply through pulsing in mud) causes
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Fig. 6. Adaptation based (blue, whole), measurement transferred to topside
(cyan, dashed) and tool logged (magenta, whole/dotted) annulus bottomhole
pressure for the algorithm in Section IV-B.

large disturbances to the stand-pipe/bottomhole pressure

measurements at ca. 65 min., 100 min., and 170 min..

• At ca. 90 min. the main choke become plugged,

whereby the operators commands a large opening to

the second choke, giving a dip in choke pressure which

propagates to downhole and standpipe pressure.

We use nθ = 2. The default adaptation algorithm is the

one in Section IV-B. During pipe connections (when flow is

stopped), the bottomhole pressure measurement is lost, and

the adaptation algorithm used is the one in Section IV-A.

For offline analysis, the bottomhole pressure measurement is

logged in the bottomhole assembly (bit) during periods with

no communication, and is therefore available for comparison

in this study (but not used in the adaptation/estimation

algorithms).

We first try without correcting for time-delay in the

pressure measurement, then with.

A. Assuming no time-delay

Figure 4 shows flow, pressure, and estimated parameters

for a specific tuning of the adaptation algorithm. Figure 6

plots the calculated downhole pressure (again) together with

the measurement transferred to topside (when available) and

measurements logged in the bit (at other times).

We see that the pressure follows fairly well, but:

• The downlink events severely affect parameter adapta-

tion, best seen in the plot of θ d (Figure 4b). Probably,

one should turn off estimation during these events. This

would allow lower gains.

• The parameters corresponding to friction at small flows

are seldom updated. This follows since the flow is

zero most of the time with small flows, and the model

predicts that friction does not affect q or pb at zero flow.

B. Including time-delay in measurement

Lastly, the estimation algorithm is run with the same

parameters, but accounting for time-delay in the bottomhole

pressure measurements. We assume the delay is 30s. See Fig-

ure 5, and especially 7 and 8. It is seen that by taking delay
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Fig. 7. Adaptation based (blue, whole), measurement transferred to topside
(cyan, dashed) and tool logged (magenta, whole/dotted) annulus bottomhole
pressure for the algorithm in Section IV-C. Note that estimated bottomhole
pressure has been shifted to facilitate comparison with topside measurement.

in pressure measurement into account, we more accurately

capture the dynamic changes in the bottomhole pressure.

This could be important in demanding control applications

relying on this pressure estimate.

VI. CONCLUDING REMARKS

A low-complexity multi-model friction estimation algo-

rithm is proposed, analysed, and tested in simulations and

using actual data. The tests are fairly successful, but it

seems that the way a typical pipe-connection procedure is

performed makes it challenging to get convergence in the

friction model for the parameters that cover small flows.

The derivation of the algorithm is based on a simplifying

assumption of measured bit flow. However, it is believed the

PE analysis give insights that to some degree is general (in

“single-model” cases, and for cases with no assumption of

measured bit flow).

Taking delays in the pressure measurement into account

improved pressure estimation significantly. This observation

is expected to also hold true for other adaptive estimation

algorithms using bottomhole pressure measurement.
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