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Abstract In the trade-off between bidding in the day-ahead electricity mar-
ket and the real time balancing market, producers need good forecasts for bal-
ancing market prices to make informed decisions. A range of earlier published
models for forecasting of balancing market prices, including a few extensions, is
benchmarked. The models are benchmarked both for one hour-ahead and day-
ahead forecast, and both point and interval forecasts are compared. None of
the benchmarked models produce informative day-ahead point forecasts, sug-
gesting that information available before the closing of the day-ahead market
is efficiently reflected in the day-ahead market price rather than the balancing
market price. Evaluation of the interval forecasts reveals that models without
balancing state information overestimate variance, making them unsuitable
for scenario generation.

Keywords Balancing market price - Forecasting - Electricity markets -
Ancillary service market - Regulating market - Electricity price scenarios

1 Introduction

According to the European Wind Energy Association [8], solar PV and wind
power accounted for the two largest share of new installed capacity in the EU
in 2012. The increased penetration of intermittent renewable sources in the
power system will increase the need for and cost of balancing reserves in the
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power system [11]. For flexible generators, higher prices and volumes in the
balancing market offer new opportunities for profit. This raises the issue of how
the producers should allocate their capacity between the day-ahead market and
the balancing market. The question is analyzed by Glachant and Saguan [10]
who study equilibrium relationships between the day-ahead and the balancing
market, and by Boomsma et al [1] who constructed a stochastic programming
model, with scenarios for day-ahead and balancing market prices.

In order to formulate good bidding strategies that take all the subsequent
physical markets into account, the market participants need good price fore-
cast so that the trade-off between sales in the day-ahead market and sales
in the shorter-term markets can be properly evaluated. Fleten and Pettersen
[9] and Boomsma et al [1] formulate such bidding models from the retailer’s
and producer’s perspective, respectively. A challenge in this respect is to build
price forecasts for the balancing market that deliver useful information before
the closure of the day-ahead market, i.e. 12-36 hours ahead. The balancing
market is designed to take care of unforseen events or variations in the power
system, and if such events are known before the closing of the day-ahead mar-
ket, they are no longer unforseen and therefore reflected in the day-ahead
market price rather than in the balancing market price. The major question
is if it is possible at all to create informative forecasts for such a market?

Whereas the papers on modelling day-ahead electricity markets are nu-
merous, the modelling of balancing market prices has received less attention.
Weron and Misiorek [21] offer a good survey of day-ahead forecast methods
and benchmark a range of the time series methods against each other. Other
articles that benchmarks day-ahead forecasting methods include the work of
Conejo et al [4], who compare three different time series models, neural net-
work and wavelet models for the PJM Interconnection day-ahead price, and
that of Nogales et al [16], who compare two different time series models for
the Spanish and the Californian day-ahead market prices. When it comes to
balancing market prices, no survey exists to our knowledge. However, case
studies exist, including Skytte [19], Fleten and Pettersen [9],0lsson and Séder
[17], Jaehnert et al [12], Brolin and Séder [2] and Boomsma et al [1] - all of
them from the Nordic market. The contribution of this article is a systematic
review and benchmarking of time series based methods for balancing market
price forecasting. Emphasis is laid on the day-ahead horizon, but both one
hour ahead and one day ahead forecasts are benchmarked.

Since European balancing markets are operated by the national trans-
mission system operators (TSOs), the balancing markets have more country
specific rules than the day-ahead wholesale electricity exchanges. This study
will focus on only one balancing market - the Nord Pool price zone NO2 in
Norway. Price models for this area have previously been built by Skytte [19]
and Jaehnert et al [12].
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2 The role of the balancing market

In most deregulated markets, electricity is traded numerous times before actual
production and consumption takes place. There exist non-physical forward-
and future markets used by producers and retailers for hedging. The day-
ahead market (also referred to as the spot market) is normally the largest
market for physical trade, where producers and retailers commit to a physical
injection or withdrawal in the grid the following day. However, as Glachant
and Saguan [10] correctly point out, the day-ahead market is in fact also a
forward market, since the price the producers or retailers in the last instance
is exposed to, are the real-time balancing market price.

The electricity market is very special in the sense that demand and supply
must be in equilibrium in at every moment. Unlike other markets, failure of
supply or unusual high demand will not only result in a share of customers not
being served, but may, if not well perceived and proper measures taken, lead to
deterioration of the whole power system, and in the worst case, to a black out.
With a black out, no customer will be served, and it may have large adverse
effects on production and transmission equipment. To ensure safe operation
of the electricity grid, a third party is given monopoly on trading in the last
minutes (usually 60 or more) before real time operation with the mandate of
ensuring instantaneous balance between demand and supply. In Europe, this
third party is usually a national body named Transmission System Operator
(TSO), whereas in the various US markets the role is given to an Independent
System Operator (ISO).

The power system has three levels of protection, on various timescales.
ENTSO-E [6] defines these as frequency containment, frequency restoration
and replacement reserves, commonly referred to as primary, secondary and
tertiary reserves, respectively. Due to the timescale, only replacement reserves
can be traded ex post an event. Thus, the balancing market in this context
is understood as replacement reserve trade between operator (SO) and the
producers.

2.1 Properties of the balancing market

Glachant and Saguan [10] point out that the pricing policy in the balancing
market can follow one of two main philosophies: Either the balancing market
is seen as a real time market, within a special institutional framework, or
the balancing market is perceived as a measure of last resort for producers or
retailers who fail to fulfill their commitments, with price mechanisms built in to
discourage trading. Depending on technology mix and the general regulatory
environment, the balancing market implementations usually lie somewhere
in between these two extremes. Based on the work of Rivero et al [18] and
van der Veen et al [20], we find six properties useful to describe a specific
implementation of a balancing market. These are:
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— Settlement granularity: What is the program time unit of the balancing
market? Is it equal to or different from the program time unit of the day-
ahead market.

— Remuneration: Is the producer paid for reservation of capacity or energy
delivered or both?

— Pricing scheme: Is the balancing market price set by the marginal cost of
the last activated unit, or by a cost covering scheme?

— Activation: Are replace reserves activated manually or automatically?

— Single vs dual pricing: Is the balancing market price paid to all producers
who deviate from their day-ahead market scheduling in a beneficial direc-
tion, or only to those who have actively entered the balancing market as
suppliers?

— Price caps/floors: Is the balancing market price floored by the spot market
price for upward regulation, and capped by it for downward regulation, or
can the balancing market price take any value?

In the Nordic countries, balancing market prices are hourly; they have the
same program time unit as the day-ahead market. This is in contrast to the
German system, where the balancing market is settled and prices defined for
every 15 minutes [15]. Remuneration and pricing schemes vary quite a lot
throughout Europe; the reader is referred to [18] for details. In the Norwegian
market, producers are remunerated for the utilization of balancing power, and
not for the reservation of capacity. ! Norwegian producers are paid for their
balancing power based on marginal price for the most costly activated bid
that hour - in contrast to, for instance, France, Germany and Italy where the
producer is paid-as-bid [18].When it comes to activation, the Nordic system
is somewhat special in the sense that tertiary reserves are activated manually,
implying a certain inertia from imbalance occurs until the activation of reserves
takes place. Also, the Nordic system has a dual imbalance pricing scheme,
which means that producers have to state their intention of participating in
the balancing market to receive the balancing market price. Producers who
just happen to be in imbalance in the opposite direction of the system (and
thus passively helping the system), will not benefit from balancing market
prices, like they would in a single pricing regime such as Spain and Greece
[20]. Furthermore, in the Norwegian balancing market, there are price caps
and floors stating that balancing prices can never be lower than the day-ahead
prices in case of upward regulation, and never higher than the day-ahead prices
in the case of downward regulation.

1 In Norway, there exists an option market for balancing power, RKOM, where producers
are paid for reservation of capacity in addition to normal payment for balancing power.
Since the turnover in this market is rather marginal, the discussion is omitted for clarity
reasons.
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Table 1 Characteristics of the Norwegian balancing market

Settlement granularity: ~ Hourly

Remuneration: Energy only
Pricing scheme: Marginal pricing
Activation: Manual
Singe/Dual pricing: Dual

Price cap/floor: Day-ahead price

2.2 The causes of imbalance and demand for balancing power

ENTSO-E [6] identifies three sources of imbalance under normal operation:
i)loss of major production, consumption or transmission unit, or ii)stochastic
fluctuation of consumption and production, or iii) weaknesses in market de-
sign - for instance the failure of hourly program time units to match the
continuous changing consumption. In addition to these causes, there is also
the issue of whether the market players influence the demand for balancing
services through economic incentives in the balancing market. van der Veen
et al [20] performed a simulation of the balancing market with random events
and found that the optimal balancing strategy (keep imbalances small, opt for
surplus rather than shortage) for players is fairly equal regardless of imbal-
ance payment regime. Moller [14] investigated the German balancing markets
and concluded that the producers anticipate the imbalances due to day-ahead
market design, and act to take advantage of it by producing more when there
is an expected need of upward balancing, and less when there is an expected
need of downward balancing 2.

If the demand for balancing services and the supply of these services are
truly random processes, balancing prices will also be a random process. How-
ever, although failure events are hard to predict, it is interesting to see whether
the the patterns in consumption and production fluctuation and the anticipa-
tion by the market players can be described in any time series model that give
more accurate prediction than the forecasts of a purely random process.

3 Data

Balancing prices, day-ahead prices, balancing states and balancing volumes,
as well as overall production volumes, are collected for the NO2 price area
for the period 19.07.2010-23.12.2012. The selection of estimation period was
motivated by the availability of data. The start date marks the day when
forecasts of estimated production and consumption for the next day was made
available. Except for two lesser adjustments, the price area borders have been
stable during the whole period. NO2 covers the southern and western part of

2 These patterns are probably quite pronounced in the German market, since it has a
single-price regime and also settlement time units of 15 minutes in the balancing market.
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Norway, with connections to price areas NO1, NO5 and DK1. Earlier, NO2
was a part of the NO1 area analyzed by [19] and [12].

For out-of-sample verification, the balancing market prices and volumes
for NO2 in the period 02.01 — 22.03.2013 were selected. These are displayed
in Fig. 1 and 2. This period represent the non-holidays of the first quarter of
2013. All the data was downloaded from the Nord Pool ftp server.

In most models for balancing price forecasting, we work with the balancing
premium, rather than the balancing price directly. The balancing premium, ¢
is defined as:

3

BM spot (1)

Where possible, we have stayed faithful to the original model formulations
which we aim to benchmark. Therefore the data was log transformed and mean
differenced in some of the models, but not in others. The only deviation from
the original formulation is the EXO model, inspired by Jaehnert et al [12]. We
opted to log-transform the prices and exogenous inputs in order to compress
the variance and obtain better fit.

As the focus of this article is on the balancing market, we have not at-
tempted to forecast price or turnover in the day-ahead market where this
is needed as input for the balancing market forecasts. In the models where
day-ahead market prices or volumes were used as input, we have simply used
observed data.
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Fig. 1 Realized balancing market volumes in the out-of-sample period. 02.01.2013-
22.03.2013
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Fig. 2 Observed balancing market premium. [NOK/MWh]

4 Model families

There are generally two families of models for forecasting balancing prices -
those which explicitly model the balancing state and those which model it
implicitly. Explicitly modeling the balancing state offers some advantages. It
enables the analyst to make different assumptions about the balancing prices
depending on direction, and gives the opportunity to include an explicit no-
balancing state. As described in Section 2, the manual activation of reserves
in the Nordic market creates a quite large dead band around zero, causing
50% of the hours in our data set to be in the no-balancing state. If balancing
state is modeled implicitly, the balancing state is determined by the sign of
the balancing price forecast, and the no-regulation state will only occur if the
balancing price is equal to the spot price. Models which explicitly forecast the
balancing state include those of Olsson and Séder [17] and Jaehnert et al [12],
whereas Boomsma et al [1] and Brolin and Séder [2] use models that forecast
the balancing market price without regard to the balancing state.

The other main distinction is whether the model takes in exogenous expla-
nation factors or only relies on current and past price information. A commonly
used exogenous explanation factor is the balancing volume, as used by [19], [12]
and [2]. Another frequently used explanation factor is the day-ahead market
price. The balancing market price is alternatively modelled directly, as in [1],
or as the difference to the day-ahead market price, as is done in [12] and [19].
If the balancing market price is modelled as the difference to the day-ahead
price, we will not regard this as using the day-ahead market price as exogenous
input, but if the day-ahead market price is used as an explanation factor in
itself, we will regard it as an exogenous explanation factor. Skytte [19] finds
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that the day-ahead market price explains the balancing market price, whereas
Jaehnert et al [12] find no correlation. It will therefore be interesting to further
test the relation.

4.1 Models for state determination

State determination and forecasts conditional on state are natural topics for
regime switching models. However, they are unsuitable for the purpose of de-
termining balancing states and prices due to the fact that states are observable,
and that there are no exogenous driving forces that can predict the states. In-
stead, we turn to Markov models and arrival rate models for predicting the
balancing state. Jachnert et al [12] use a SARIMA model and determine the
balancing state the from the price forecasts. We prefer to utilize SARIMA
models for price directly, and will come back to it in Section 4.3.

The possible states that we aim to model are summarized in Table 2. As
described in [17], there is a fourth possible state which is balancing in both
directions within the same hour. Typically there might be a regulation in
one direction in the beginning of the hour and regulation in another towards
the end. However, this state is so rare that we exclude that possibility. The
balancing price and volume for hours with two balancing states were replaced
by figures for the dominating direction when estimating parameters.

Table 2 Definition of balancing market states

State Balancing volume Balancing price

v p
no regulation Vup, Vdown = 0 Pup; Pdown = Pspot
up regulation Vup > 0,Vdown =0 pup > pspot

down regulation  vgown > 0,vup =0 |Pdown| < pspot

Markov models for determining the balancing state have been used by
Olsson and Séder [17]. They used a non-time-homogenous Markov model, with
different transition probabilities depending on the duration of the balancing
state. In this article, we benchmark a duration dependent Markov model, with
7 different transition matrices. Balancing incidents with durations 0-5 hours
had individual transition matrices, whereas a separate matrix was estimated
for incidents lasting 6 hours or more.

Another take on avoiding static transition probability matrices is to include
calender information by making the transition matrices dependent on the hour
of the day. In this way, we can accommodate the fact that the probability of
transition from one state to another is greater in the transition hours from
day to night and night to day, whereas states are generally more stable in the
middle of the night and during mid day. We applied Pearson’s chi-square test
to check whether a Markov transition matrix estimated for each individual
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Table 3 Summary of balancing state determination models for benchmarking

Name State determination model

Markov transition matrix
Hour specific Markov dependent on the hour of the day

Markov transition matrix
Duration dependent Markov  dependent on the duration of the state

Time between arrivals is
Arrival rate a moving-average process

hour was significantly different from a transition matrix for all hours. As 5
hours (basically the day-night transition hours) were significantly different,
and suitable alternative clustering of hours was hard to find, we continued
with a Markov model with individual transition matrices for each hour of the
day.

The other model that was tested in this article is inspired by inventory
control theory, and based on the work of Croston [5] (see also [22]). This
model only separates demand from non-demand, but does not discriminate
between the balancing directions. In fact, it is a moving-average arrival rate.
The time between the occurrence of two events is updated as a moving average
every time an event occurs. Thus, in this model the state model discriminates
between no regulation and regulation states, whereas the distinction between
up- and down regulations is determined by separate price- or volume processes.

The main idea of Croston [5] was to separate the probability of the arrival
of demand and the size of the demand into two different stochastic processes.
Applying the approach of Willemain et al [22], the time between arrivals is
modeled as a moving average in the following way: Let p; be the (moving)
average time between arrivals and let ¢; be the specific number of time steps
since last event. Let 14 be the balancing volume in time step t. Then:

Pt—1 ifvy, =0
bt = . (2)
Pi—1+ax(q—1 —pi—1) vy #0

The probability of regulation (the arrival rate) for each time step is expressed
as 1/p;.

The average time between regulation was calculated as 1.98 from the his-
torical data. In his original article Croston [5] suggested using values of « in
the range of 0.05-0.2, based on experience. In this work, o was estimated by
minimizing the sum of squared residuals from the empirical arrival rate and the
estimated arrival rate (described in (2)) in the historical data. The optimum
was found at a = 0.01, suggesting a rather slow-moving average.

A summary of state determination models that will be benchmarked can
be found in Table 3.
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4.2 Models for balancing volume forecasting

In forecasting balancing volume, we test the model from Jaehnert et al [12]
with a randomly drawn volume given a balancing state. As in the original
article, the general extreme value distribution was found to offer the best fit
among all the tested probability distributions. However, since the fit was not
particulary good, we also tested with random sampling from historical values.

Additional literature on time series forecasting of balancing volume is
rather meagre. Whereas Moller [14] performs advanced analysis of the German
market demand for balancing volume, we take a simpler approach and fit an
ordinary SARIMA model. Since the augmented Dickey-Fuller test showed that
the volume time series is not integrated, a SARMA-model will be sufficient.
We found a SARMA(1,2)(1,1) model suitable.

As the Nordic market has many hours with no regulation state, a time
series model that does not distinguish between incidents and the size of the
incident has been showed to yield too low prediction with too high variability
(cf [5]). We therefore also build a new model for balancing volume forecasting,
with states determined by a moving average arrival rate model, as described in
section 4.1. The model was originally formulated for inventory control prob-
lems, where the demand usually has two states: Either there is demand, or
there is none. For balancing power, the state is more complicated, as demand
either is zero, positive (upward regulation) or negative (downward regulation).
However, we choose to discretize the state in two: regulation or no regulation.
We could have imagined having two arrival rate processes - one each for up-
ward and one for downward regulation. However, since there is no way of
excluding the arrivals of both states in the same time step, we found that ap-
proach unsuitable for modelling the Nordic market. Instead, we let the arrival
rate model determine the arrivals of balancing incidents, and the sign of the
balancing volume forecast determine whether there is an upward or downward
regulation. An added advantage, is that we then can take correlation between
demands of different signs into account.

The balancing volume itself is modelled as a stationary unevenly spaced
autoregressive process of order 1 (AR1), with parameters estimated according
to the algorithms in [7]. Ordinary time series analysis techniques will fail,
since they require evenly spaced data measurements, which would imply either
artificially compressing the time series, or inserting 0 values where there really
are no observations, thus distorting the variance (for more on uneven time
series, see [13]). Instead, we use algorithms that acknowledge that adjacent
observations are more strongly correlated than events further spaced apart in
time, and that variance increase over time, and therefore should be scaled by
the time between incidents.

A summary of the models benchmarked for volume can be found in Table
4.
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Table 4 Summary of volume models for benchmarking

Name State model  Volume forecast method

RAND Markov Random from distribution

HIST Markov Random from historical values

SARMA  None Standard ARMA model

CROST  Arrival AR1-model for unevenly spaced time series

4.3 Models for balancing premium forecasting

As a reference, a standard SARIMA time series model will be defined and
benchmarked. Jachnert et al [12] find a SARIMA(1,1,2)x(1,1,2)24 model suited
for short term forecasting of balancing market prices. The analysis of our data
set revealed that the balancing premium time series was not integrated, and
seasonal effects are so weak that they could be ignored. An ARMA(1,1) model
was found to be sufficient and suitable.

Boomsma et al [1] use an autoregressive model with external input in
order to make scenarios for the balancing market price (p?M), as specified
in (3)(where L() is the lag operator, ¢ is the autocorrelation coeffcient, g is
the coefficient of the external input, and e is the random error). The external
input is the current and previous values of the spot market price (p*P°?). These
authors forecast the balancing market price directly, rather than as defining it
as the difference to the day-ahead market price. The balancing market state
is then defined implicitly, depending on whether the balancing market price is
higher or lower than the day-ahead market price.

(L= oL)(pP™ — Bp"") = @ 3)

Reconstructing this model for our data set gave a fairly well specified
model. An inspection of the residuals revealed thick tails and a slight au-
tocorrelation in the residuals. The model could have been slightly improved
through another error specification. However, the fit is well enough, and since
our objective is benchmarking rather than tweaking the models to perfection,
we leave it as in the original paper.

Olsson and Séder [17] also use a pure time series models to forecast bal-
ancing market prices. However, they use two different time series - one for
upward regulation and one for downward regulation. A Markov model deter-
mines the switch between different balancing states. The continuous upward
and downward regulation time series are assumed to be independent, but up-
ward balancing time steps are assumed to be correlated with other upward
balancing time steps and vice versa for downward balancing. The time series
for upward- and downward balancing market premiums are assumed to be
continuous. But we must use techniques for unevenly spaced time series to
estimate the parameters, since the observed upward and downward balancing
prices are not defined for all time steps. Using similar techniques as those



12 G. Klzboe et al

of Olsson and Soder [17], we estimated the parameters from analysis of the
autocovariance function.

Our implementation differs from that of Olsson and Séder [17] in three
ways: First, we use a hour-specific Markov model for transition probability,
rather than a duration-dependent Markov model, due to better performance
on longer-term forecast. Second, we do not find strong evidence for seasonality,
and therefore limit our search for suitable models to the ARIMA-family of
models. Third, we find that a simpler model with no differencing (i.e., we
stick to ARMA-models) and fewer orders for the continuous up- and down
processes is sufficient. An ARMA(1,1) process (with no intercept) was chosen
for upward regulation, whereas an ARMA(2,1) with intercept was deemed
suitable for downward regulation.

Jaehnert et al [12] found that balancing premiums to a large degree can be
explained by the balancing volumes. We wanted to include a model that ex-
plained balancing market premiums from exogenously given time series. How-
ever, upon investigating the data, we found the correlation between the bal-
ancing volume and the balancing market premium to have weakened since
the publication of Jaehnert et al [12]. Pearson’s correlation coefficient had
declined from 0.78 in the 2003-2007 NO1 data set to 0.47 in the 2010-2012
NO2 dataset.> We tried to include the balancing demand in neighboring price
zones, without improved explanation power. In the end, we settled for two
models (one for each balancing direction) where the balancing market premi-
ums are determined by the balancing volume, the day-ahead market price and
the overall power production in the NO2 price zone. The balancing volume
was forecast using the CROST model of Section 4.2

As observed by Conejo et al [4], naive forecasts can be hard to beat when
forecasting spot prices, and in industry these practices for predicting balancing
prices are common too. For short-term forecasts, we will use the balancing
market price from the last hours, but for day-ahead forecasts we will use the
price for the same hour in a similar day. Although balancing market prices
are less seasonal than day-ahead market electricity prices, we use a similar
definition as that of Conejo et al [4].

A summary of the models that will be benchmarked can be found in Table

3 The current NO2 price zone was formerly a part of NO1

4 For Mondays, Saturdays and Sundays, we use the balancing market price of the same
hour the previous week, whereas for Tuesdays,Wednesdays, Thursdays and Fridays, we use
the same hour on the last workday. However, for day-ahead forecasts it must be taken
into account that the balancing market price on Monday is not revealed entirely before
the bidding for Tuesday closes at Monday noon, so the remaining hours are collected from
Tuesday the last week.
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Table 5 Description of balancing market price models for benchmarking

Name State model  Volume model Price forecast method
ARMA  None None ARMA time series model
ARX None None AR1 model with spot price as

exogenous input
ARM Markov None ARMA models
EXO Arrival ARL fOIT uneV(?nly
spaced time series
NAIVE  None None Erice equal to price in similar
our

Regression on exogenous factor

5 Test performance measurement
5.1 One step ahead vs multiple steps ahead

In short term forecasting, the one step ahead forecast is often used as a bench-
mark for how well a model performs. For the power producerd the one step
ahead forecast may be relevant for intra-day operations, for instance in the
trade-off between trading on a multilateral intra day market or taking part in
the balancing market. The most important trade-off is however often between
the day-ahead market and the balancing market. If a producer is to make co-
ordinated bids between the day-ahead market and balancing market (see for
instance [1]), a price forecast for the balancing market is needed before the
day-ahead market closes, 12-36 hours ahead of the operating hour. Thus, both
the one-step ahead and the 12-36 step ahead will be tested.

5.2 Point vs interval forecast

Forecasts are often evaluated by how well the forecast mean matches the ob-
served value. Deviations can be measured, for instance, by using the mean
absolute error (MAE). We will measure the models’ ability to offer a point
forecast in this way too. As by Weron and Misiorek [21], we will compare per-
formance by looking at the MAE averaged over the week. Weron and Misiorek
[21] calculate a quasi mean average percentage error (MAPE) by introducing a
weighed MAE. The weekly average MAE is divided by the average price that
week, so that one can avoid trouble calculating MAPE when the simulated
prices are close to zero. For balancing prices, the problem is even worse, since
balancing market premiums can take both positive and negative values, and
the expected values are close to zero. Therefore, we choose to report the MAEs
directly, but for the sake of comparison, we also provide the average absolute
balancing market premiums of that week, |d|.

Models for trade-off between trading in different markets are often based
on stochastic optimization and the construction of scenario trees [1]. In these
applications, the distribution of the forecast is equally or more important
than the forecast mean. Therefore, the models are evaluated for their ability
to produce correct probabilistic forecasts as well. We will evaluate the interval
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forecasts by their unconditional coverage: Let y; be an observed value in the
out-of-sample period, and let L;(p) and Ui(p) be the upper and lower limits
of the probabilistic forecasts for coverage probability, p, respectively. We then
define an indicator variable as follows:
It _ 1; lf Yt € [Lt(p)V Ut(p)] (4)
0, ify: ¢ [Le(p), Ur(p)]

[3] points out that the unconditional coverage can be a misleading measure
if heteroskedasticity is present. Even if the unconditional coverage fits the the-
oretical percentiles on aggregated level, outliers may come clustered in times
with higher variability. However, we find the unconditional coverage measure
a sufficient sophisticated measure for benchmarking, and caution future po-
tential users of these models to take a closer look at the conditional coverage
before implementing them.

6 Forecasting performance
6.1 Benchmarking of state determination models

In order to determine which state determination model is better, we simulated
3000 out-of-sample scenarios (1920 time steps) for the two variants of each
model: one hour ahead forecasts and 12-36 hours ahead forecasts. Then we
compared the simulated states to the observed states. Every time the model
predicted the correct state, a score of 1 was assigned, otherwise the score was
0. We then compared the mean for all the 3000 scenarios, both for each time
step and averaged over all the 1920 time steps.

The two alternative Markov models were benchmarked directly against
each other. In order to compare with the arrival rate model, we assessed the
Markov models ability to discriminate between a regulation state and a non-
regulation state, and compared the results with those of the arrival rate model.

The performance of the two Markov models are illustrated in Figure 6.1.
The average score for both models are found in Table 6. The comparison
shows that the duration dependent model performs better on short horizon
forecasts, whereas the hour dependent Markov model is slightly better in the
long run. Neither model has an impressive hit rate for the day-ahead forecasts,
the duration dependent model being slightly worse. This is not too surprising,
as the duration dependent Markov model uses two state information measures
(current state and current duration), and both errors grows larger with the
time horizon.

The two Markov models’ and the arrival rate models’ ability to predict the
correct state when considering only two states (regulation and no regulation)
can be found in Table 7. For short-horizon forecasts, the duration depen-
dent Markov model is best. However, it performs worst when it comes to the
day-ahead horizon. The score of the arrival rate model is remarkably stable,
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Fig. 3 Share of correct predicted balancing state from the three state Markov models, hour
by hour in the out-of-sample period. The week numbers are displayed on the horizontal axis.
Forecasts are for a) one hour ahead, hour specific Markov model b) one hour ahead duration
dependent Markov model, ¢) day-ahead forecast, hour specific Markov model, d) day-ahead
forecast, duration dependent Markov model

Table 6 Share of correctly predicted balancing states (up, down, no balancing)

Forecast horizon (hours ahead) 1 12-36
Hour specific Markov 0.63 0.37
Duration dependent Markov 0.73 0.35

probably due to the relative stable arrival rate (moving average coeflicient «
as low as 0.01).

Table 7 Share of correctly predicted balancing state. Two states : balancing, no balancing

Forecast hours ahead 1 12-36
Arrival rate 0.59 0.59
Hour specific Markov 0.67 0.54

Duration dependent Markov — 0.73  0.51

For day-ahead forecasts it seems that the hour specific Markov model and
the arrival rate model give the best forecast. As they are qualitatively different
in the number of states they are able to predict, the analyst must weigh the
arrival rate model’s precision against the disadvantage of operating with only
a binary balancing state.
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6.2 Benchmarking of balancing volume forecasting models

The mean average error of the four different models can be found in Table 8.
The ranking of the different model is quite clear: for short-term forecasting (one
hour ahead), the SARMA-model outperforms all other models in all weeks. For
day-ahead forecast, the CROST model with unevenly spaced time series is best
for all weeks, except week 1 and 8 where the SARMA-model is better. The task
of predicting the day-ahead balancing market volume is difficult; the SARMA
model has the worst performance in week 10 and 12, whereas the CROST
model is the worst in week 1. Thus, for day-ahead forecasting, no model is
unambiguously the best. The models without memory - RAND and HIST -
perform badly in times of spikes - for instance in week 1, 9 and 11 (cf Fig 1).

Table 8 Mean absolute error of balancing market volume forecasting for various models.
MWh. Weekly average.

One hour ahead forecast Day ahead forecast
w |v¢]  ranD HIST SARMA  CROST RAND HIST SARMA  CROST

1 109.80 77.68 76.73 37.99 67.53 108.44 107.25 103.63 110.18
2 59.12  59.74 53.96 33.56 46.73 88.97 86.50 54.64 30.60
3 86.65 65.54 60.36 44.57 68.79  100.28 98.39 72.20 45.17
4 35.06 66.18 54.83 34.13 33.79 63.47 60.97 61.09 20.61
5 90.43 68.02 56.23 41.69 96.00 79.61 80.41 71.47 47.40
6 43.03 61.29 43.23 25.02 33.21  73.88 70.54 53.46 25.54
7 21.45 49.28 3597 15.22 19.38 51.82 50.19 27.99 14.69
8 43.02  53.49 44.04 18.97 33.62 56.60 56.10 19.04 25.89
9 121.85 83.81 80.12 35.90 78.31 106.29 107.01 78.69 65.02
10 94.84 89.05 77.7T7 35.48 58.70 87.94 87.48  145.74 50.86
11 98.37 73.21 71.35 43.86 65.66 117.01 113.50 57.52 55.78
12 39.88  45.85 36.59 30.60 39.85 66.52 64.10  104.29 41.55

The models’ ability to create well calibrated probabilistic forecasts can be
evaluated by studying Table 9. The table shows how many of the observed
values that fall within the limits of four specified interquantile ranges: 50, 75,
90 and 99 %. Generally, the models are too narrow in the middle range, except
for the SARMA model, which is too wide. Extreme values are captured quite
well for all the models. No model captures the probabilistic structure for one-
hour ahead forecast very well, but for day-ahead forecast the CROST model
has a better performance.

Conclusively, the models with memory generally perform better than those
without memory on both short and day-ahead horizons. No model is unam-
biguously the best in all respects; however, the CROST model has satisfactory
performance on the day-ahead forecasts both in terms of capturing the spread
and having a mean average error lower than the other models for all but two
weeks. The SARMA model has relatively low mean average errors in forecast-
ing the balancing volume an hour ahead, but the variance is too large. This
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Table 9 Unconditional coverage. Percentage of observed balancing volume that fall within
the interval specified by the simulated values’ median +- range/2

One hour ahead forecast Day ahead forecast
Range RrAND HIST SARMA CROST  RAND HIST SARMA  CROST

50 % 24.90 30.94 77.76 24.32 15.16 15.36 74.01 43.18
75 % 42.03  43.07 87.66 82.60 7L.77 T71.98 84.64 77.60
90 % 87.86  82.24 93.75 93.44 90.36  91.82 91.30 88.13
99 % 99.32  98.65 97.55 98.18 99.95 99.69 97.92 97.45

result was anticipated by [5] for models that do not separate the stochastic
processes of arrival and size of demand.

6.3 Benchmarking of price forecasts

In Table 10, the weekly average mean absolute error for forecasts of balancing
market premium is shown. For the one hour ahead forecast, the naive model
is hard to beat. In 8 of the 12 weeks, the naive model has the best short-term
performance. The ARM model generally performs well, and is best in 3 of 12
weeks, whereas the pure ARMA model is best in one week. The EXO model
seems to be a little less accurate for one hour ahead forecast. This is to be
expected, since the linkage from time step to time step in the EXO model is
based on balancing state and balancing volume, and not on balancing premium
directly. Since the correlation between balancing market volume and price is
lower than it historically has been, balancing volume acts as a worse predictor
for the balancing premium than the lagged values of the premium itself.

For the day-ahead forecasts, the striking result is how similar the four non-
naive models perform. Moreover, the mean average error of the models is very
close to the mean absolute balancing market premium of that week. Thus, the
accuracy of the model is comparable to a model where the balancing market
premium forecast is constant and zero. A practitioner of forecasting might
find this a disappointing result, but keeping the structure of the power mar-
ket in mind, the result is not too surprising. Factors that could influence the
balancing market price, such as the outage of plants, weather conditions or pro-
duction from intermittent sources, will be taken into account when performing
day-ahead bidding if known before the closure of the day-ahead market, and
thus are reflected in the spot market price rather than the balancing market
price. Thus, there is no information basis that can aid the forecasting of next
day’s balancing prices before the day-ahead market has closed.

The naive model, which uses the balancing prices from the day before
(shifted back to account for weekend effects if necessary), performs worse than
the other models in all but two weeks.

The evaluation of the methods’ probabilistic forecasts are displayed in Ta-
ble 11. The table shows a clear distinction between the models which includes
state information (EXO and ARM) versus those which are purely time series
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Table 10 Mean absolute error for various BMpremium models. NOK/MWh. Weekly aver-
age.

One hour ahead forecast Day ahead forecast
w |6:]  ArmA ARX ARM EXO NAIVE  ARMA ARX ARM EXO  NAIVE
1 40.82 14.89 19.39 11.51 26.50 9.68 40.92 41.11 40.31 40.76 46.61
2 53.19 29.21 49.61 28.76  45.68 29.41 53.37 52.89 54.55 53.31 64.91
3 9319 4863 6832 5092 8298 42,56 93.03 94.77 93.39 94.12 145.76
4  64.23 41.05 7261 43.64 62.56 4263 64.81 65.12 64.20 65.69 85.62
5 40.86 14.70  18.02 9.78  26.95 9.57 41.06 41.18 39.17 41.13 42.84
6 30.15 15.32 23.80 15.28 22.81 15.19 30.36 30.28 31.21 30.18 38.52
7 36.98 18.03 25.51 17.02 32.70 16.03 37.66 37.44 37.89 37.63 47.43
8 31.38 1238 16.09 9.98 25.88 9.10 31.75 31.79 30.57 32.39 35.26
9 32.90 11.90 14.73 8.24 19.44 7.52 33.13 3297 3191 33.16 21.19
10 32,66 1244 14.63 10.26 19.53 8.58 32.69 32.62 31.61 32.06 29.08
11  89.66 49.27 82.98 49.16 78.58 52.48 89.74 90.22 88.40 90.28 131.84
12 87.58 63.25 88.48 57.07 81.80 64.68 87.58 88.39 87.98 87.85 145.47

based (ARMA and ARX). The models without state information generally
have forecasts that are too wide. This illustrates the point of Croston [5] - not
discriminating between demand and non-demand in forecasting may lead to
an overestimation of variance. Although admittedly not perfect, the models
that include state information better reflect the distribution of the observed
values. For day-ahead forecasts, the EXO-model performs slightly better than
the ARM-model. This may be due to the fact that the ARM-model is based
on a Markov model for state determination, whereas the EXO-model is based
on a balancing volume model that utilises a moving average arrival rate for
determining the balancing state. As seen in Section 6.1, the arrival rate model
performs better than Markov models for day-ahead forecasts.

Table 11 Unconditional coverage. Percentage of observed balancing market premiums that
fall within the interval specified by the simulated values’ median +- range/2

One hour ahead forecast Day ahead forecast
range  ARMA ARX ARM EXO  ARMA ARX ARM EXO

50% 86.51 79.01 39.01 58.44 80.36 80.63 37.76 14.27
75% 9198 89.22 79.84 67.71 9297 92.76 7813 77.19
90%  94.48 9245 88.70 83.07 95.21 95.21 89.32 91.56
99%  96.77 94.69 94.64 96.09 97.08 97.24 9536 96.41

The results from the evaluation of the probabilistic forecast shown in Table
11 imply that building models for forecasting balancing market prices is not
futile, even though the forecasts are outperformed by naive models on an hour-
ahead horizon, and even though the average errors for day-ahead forecasts are
on the same level as a constant forecast of zero would have delivered. The
shape of the simulated distribution is important for making good operational
decisions in real bidding situations. Studying the day-ahead forecasts we note
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that models without balancing state descriptions severely overestimate vari-
ance, and create too wide forecasts. The models with explicit information on
balancing state (ARM and EXO) create better interval forecasts.

7 Conclusions

In this paper, we have recreated and developed three models for the prediction
of balancing state, four models for the prediction of balancing volume and five
models for forecasting of the balancing market price premium. All models have
been benchmarked, with special emphasis of the ability of the model to create
balancing market premium forecast that can assist the bidding process where
a producer has to decide on how to allocate power between the day-ahead
market and the balancing market.

Our analysis confirms that it is hard to predict the balancing market before
the closure of the day-ahead market. The balancing market is designed to han-
dle unforeseen events and fluctuation, and therefore we are not surprised by
concluding that the volume and the premium in the balancing market are ran-
dom. In fact, it could be interpreted as a sign of an efficient electricity market
that it is not possible to predict the balancing market price. Any predictable
relation between the information available before the closing of the day-ahead
market and the balancing market would open speculative possibilities, as the
producers then could make a profit by buying in the day-ahead market and
sell in the balancing market (or vice versa).

However, stating that it is impossible to capture the expected balancing
market premium precisely, does not mean that balancing market forecasting
is futile or that it does not matter which forecasting model that is used. The
evaluation of the interval forecasts clearly shows that models which include
balancing state describe the distribution of the forecasted premium or volume
far better than models without balancing state information. Thus, we have
shown that the observations of Croston [5] also applies to the balancing market:
Separating between demand and non-demand is important for estimating the
variance correctly. Getting the distribution of scenarios right is crucial for
stochastic optimization models, thus for that purpose we strongly recommend
using models with balancing state information for scenario generation.
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