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During the 1990s, some research showed that viscous effects contributed to a substantial increase in 
wave drift loads in high sea states for slender structures. Recently, the viscous contribution has been 
suggested as a possible explanation for some accidents with mooring line failures. In those cases, the 
sea states were within the operational limits for the mooring systems. This suggests that there exists a 
knowledge gap in connection with the wave loading. To account for viscous drift contributions, the 
state-of-the-art approach in the industry is to apply Morison equation to model drag loads on slender 
members. In the wave-drift problem, the most important contributions (both viscous and non-viscous) 
originate from the part of the structure in the free-surface zone. Here the uncertainties related to choice 
of drag coefficient is large, both due to nonlinear wave kinematics, local wave-body interactions 
leading to non-uniform water rise-up along the structure, and possibly due to variations in relevant 
flow parameters. Recently an empirical formula for the wave drift loads has been proposed within the 
"EXWAVE JIP" project for semis and other column-based floating platforms. 
 
Objective 
The present master thesis aims to contribute in enhancing the knowledge on the relevant 
effects for wave drift loading on slender marine structures. This will be done numerically, 
performing 2D and 3D simulations of the problem. As preliminary study, a project-thesis 
work examined relevant literature and identified an open-source CFD solver to carry out 
numerical investigations of the problem. The solver was verified for wave propagation and 
wave interaction against a fixed structure, assuming 2D flow conditions. Accuracy and 
numerical convergence were studied.  
 
The master-thesis work should be carried out in steps as follows: 

1. Summarize major findings/outcomes from the project thesis.  
2. Complement the literature study initiated in the project thesis.  
3. Apply the selected CFD solver to study a 2D problem with incident (regular and bi-

chromatic) waves interacting with a fixed body mimicking a platform column. 
Examine the loads on the structure and discuss contributions from linear and nonlinear 
effects as a function of the incident-wave parameters and the body slenderness. 

4. Compare results from selected cases of step 3 against a potential-flow fully nonlinear 
solution to assess importance of viscous effects. 

5. Select relevant incident-wave parameters from the investigations in step 3 and 4 and 
apply the CFD solver to study a 3D problem with incident waves interacting with a 
fixed body mimicking a platform column. The body beam-to-draft ratio should be 
selected from the 2D body geometries used in step 3 and 4. Examine the loads on the 
structure and discuss importance of 3D effects.  

6. Compare the drift-load results from the 3D simulations against the predictions from 
the available empirical formula recently proposed within the "EXWAVE JIP" project.  

7. Summarize the results and provide suggestions for future research investigations. 
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Preface

This is a master thesis within marine hydrodynamics concerning a numerical study on the wave

drift loading on slender marine structures as a part of the study program Marine Technology at

the Norwegian University of Science and Technology in Trondheim. The work has mainly been

carried out from April to August 2017. The work is a continuation of the preliminary project study

carried out from January to March 2017. The work has been performed in cooperation with Moss

Maritime who initially suggested the topic and emphasized the importance of research within this

particular area. Moss Maritime has provided a co-supervisor who has supported me throughout the

work with this master thesis.

The master thesis covers a brief introduction to the relevant theory related to the problem, a

description of the current methods used to calculate and predict the wave drift forces, the

methodology behind the numerical study by use of openFOAM, a summary of the results, discussion

of the main findings and recommendations for further work. A considerable amount of time has

been used to modify the numerical wave tank in OpenFOAM developed during the project phase to

include a damping area, by coupling the existing cases to the toolbox waves2foam. In addition,

performing computational analyses with openFOAM is of course time consuming.

Trondheim, 2017-07-30

Julie Vadholm
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Summary

This master thesis presents the first step in the investigation of wave drift forces acting on slender

structures through numerical simulations. Basic theory is presented along with an overview of

how the problem is treated in the industry and a description of the most commonly used methods.

The numerical study of how the wave drift forces act on a 2D geometry is performed using

the computational fluid dynamics (CFD) program OpenFOAM. The effect of viscosity is also

investigated. This is an in-depth study focusing on the methodology behind the problem and

presents the initial part of the comprehensive study of wave drift forces on semi-submersible

platforms. The study is a continuation of the preliminary project performed from January to March

2017.

Recent mooring line failures in the North Sea occurring at lower sea states than the design sea states

indicate the need for an investigation of the existing load prediction methods. A full understanding

of the problem is not yet obtained, even though many studies have been carried out during the

recent years. Several studies suggest that the wave drift forces are higher than initially anticipated,

especially the viscous contribution. Wave drift forces are of higher order and can be difficult to

calculate accurately. Potential flow theory is often applied together with simplified viscous theory.

However, these methods have shown to under-predict the drift forces. The viscous model is often

based on the drag term of Morison’s equation. The drag coefficient is case dependent and difficult

to predict accurately without the use of model tests. Predictions of wave drift forces using model

tests, CFD analysis and development of simplified empirical formulas are still an active research

field with the purpose of understanding the underlying physics properly.

The analysis using OpenFOAM is performed for a 2D column of quadratic cross section mimicking

one of the columns of a semi-submersible platform. The column is fixed in space, meaning that
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the diffraction problem is investigated. The column is subjected to both regular and bi-chromatic

waves with wave height 4.5, 6 and 7 m. The wave conditions have been chosen based on parameters

presented in relevant literature. The ratio between wave length to body size is always such that the

wave classifies as a long wave. The waves are generated in two ways; by a numerical wavemaker

and by using the built-in feature of the toolbox waves2Foam, both based on first-order wave

theory. An initial convergence study is performed in order to investigate the correct time step to

be used. The choices made during the modelling and simulations are discussed along with the

presented results. Selected inviscid cases have also been simulated in order to investigate the effect

of viscosity.

The presented results show that the expected dominating frequencies are present in the spectra

of the forces and wave elevation. For the bi-chromatic wave cases, the mean drift force in surge

is proportional to more than the wave amplitude squared. The slow drift forces are also clearly

increasing for higher wave amplitudes. Furthermore, the results show that the viscous contribution

to the wave drift loads is small and that non-viscous flow separation is present at the sharp corners

at the bottom of the column. The grid resolution might have been too low in order to fully capture

some details of the viscous effects, and a finer mesh could have been applied in order to investigate

this further. Future investigation of this problem would benefit from building up a 3D case to study

the importance of three-dimensional effects with an enhanced grid refinement.
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Sammendrag

Denne masteroppgaven studerer bølgedriftskreftene på en slank konstruksjon gjennom numeriske

simuleringer. Grunnleggende teori og en oversikt over hvordan problemet er behandlet i industrien

og hvilke metoder som er mest brukt blir presentert. Det numeriske studiet av bølgedriftskrefter på

en 2D geometri er gjennomført ved bruk av CFD-programmet OpenFOAM. Effekten av viskositet

har også blitt undersøkt. Studiet har fokusert på metodikken bak problemet og presenterer det

første steget i det omfattende studiet av bølgedriftskrefter på halvt nedsenkbare plattformer. Studiet

bygger på resultatene fra det innledende prosjektet som ble gjennomført fra januar til mars 2017.

De siste årene har det oppstått flere brudd på ankerliner i Nordsjøen, selv ved lavere laster

enn det de er designet for. Dette indikerer at det er et behov for å undersøke de gjeldende

lastberegningsmetodene. En fullstendig forståelse av problemet er ennå ikke oppnådd, på tross av at

det har blitt gjennomført mange studier på dette området de siste årene. De fleste studiene bemerker

at bølgedriftskreftene er større enn tidligere antatt, særlig det viskøse bidraget. Bølgedriftskrefter

er høyere ordens krefter og kan være vanskelig å beregne nøyaktig. Ofte er forenklet potensialteori

brukt sammen med enkle viskøse metoder som er basert på Morisons likning. Drag-koeffisienten

varierer ut fra tilfelle og er vanskelig å predikere uten sammenlikning opp mot modelltester.

Prediksjon av bølgedriftskrefter ved hjelp av modelltester, CFD analyser og utvikling av empiriske

formler er fortsatt interessante forskingsfelt i arbeidet mot å forstå den bakenforliggende fysikken

korrekt.

Den numeriske analysen ved hjelp av OpenFOAM er utført for en 2D cylinder med kvadratisk

tverrsnitt, som skal etterlikne en av søylene i en halvt nedsenkbar plattform. Søylen er fastholdt og

diffraksjonsproblemet er studert. Søylen har blitt utsatt for både regulære og bikromatiske bølger

med høyde 4.5, 6 og 7.5 m. Bølgeparametrene er valgt på grunnlag av det som er presentert i
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relevant faglitteratur. Forholdet bølgelengde over søylebredde er valgt slik at bølgene er klassifisert

som lange. Bølgene er generert på to forskjellige måter; med en numerisk bølgegenerator og ved

å bruke den innebygde metoden i verktøyskassen waves2Foam. Begge er basert på førsteordens

bølgeteori. En enkel konvergensstudie er gjennomført for å bestemme hvilket tidssteg som skal

brukes i simuleringen. Noen simuleringer har også blitt gjennomført uten viskositet.

De presenterte resultatene viser at de forventede dominante frekvensene er synlige i kraft- og

bølgehevingsspekteret. Koeffisientene til den gjennomsnittlige driftskraften i jag øker med mer

enn kvadratet av bølgeamplituden, det samme gjelder for den saktevarierende kraften. Resultatene

viser videre at det viskøse bidraget er lite og at ikke-viskøs separasjon oppstår ved søylens hjørner.

Elementstørrelsen kan ha vært for stor til å kunne kartlegge de viskøse effektene korrekt og

elementstørrelsen bør minkes for å studere dette videre. Videre arbeid med dette problemet vil dra

nytte av å gå videre til 3D for å undersøke kreftene og effekten av viskositet nøyere, og å minke

elementstørrelsen i et større område under søylen.
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Nomenclature

Acronyms

2D Two-dimensional

3D Three-dimensional

CFD Computational Fluid Dynamics

QTF Quadratic Transfer Function

KC Keulegan-Carpenter number

BC Boundary Condition

FFT Fast Fourier Transform

DOF Degree Of Freedom

TLP Tension Leg Platform

JIP Joint Industry Project

VOF Volume Of Fluid
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Symbols

B Bredth [m]
L Length [m]
ω Rotational frequency [rad/s]
f Frequency [1/s]
T Wave period [s]
λ Wave length [m]
CD Drag coefficient [-]
p Pressure [Pa]
φ Velocity potential [m2/s]
ρ Density [kg /m3]
A j Wave amplitude of wave component j [m]
AR Reflected wave amplitude [m]
AT Transmitted wave amplitude [m]
ζa Incident wave amplitude [m]
gi Gravitational acceleration [m/s2]

ε Phase angle [rad]
T i s

i j Second order transfer functions connected to sine term

T i c
i j Second order transfer functions connected to cosine term

Fi Force component i [N]
FD Drift force [N]
FV Viscous force [N]
M y Moment about y-axis [Nm]
U Velocity [m/s]
ui Velocity vector [m/s]
UM Velocity amplitude of oscillatory flow [m/s]
D Diameter [m]
A Area [m2]
Cu Current [m/s]
H Wave height [m]
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η Wave elevation [m]
Hs Significant wave height [m]
Tp Peak period [s]
k Wave number [rad/m]
µ Dynamic viscosity [kg /(m · s)]
δi j Kronecker delta [-]
x Displacement in x [m]
z Displacement in z [m]
S(z) Wave maker stroke [m]
S(ω j ) Wave spectrum [m2 s]
Co Courant number [-]
ei j Strain rate tensor [1/s]
h Water depth [m]
Toc Oscillation period [s]
w Relaxation weight [-]
α Volume fraction [-]
m exponent [-]
an Coefficients in Fourier transformation [-]
bn Coefficients in Fourier transformation [-]
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Chapter 1

Introduction

1.1 Background and Motivation

Recent mooring line failures of semi-submersibles in the North Sea occurring at sea states lower

than the design sea states, indicate that the predicted loads on these structures used in the design

phase are too low in some wave consitions. This has emphasized a need for further investigation

and improvement of the design predictions. Several studies have been carried out over the past

years, but a full understanding of the problem is not yet obtained. However, several studies suggest

that the wave forces, and especially the slow drift forces, are higher than anticipated. Wave

drift forces are of higher order, which can be difficult to calculate accurately. Usually, potential

flow theory is assumed to be applicable, which is further simplified by Newman’s approximation

using the first-order linear potential solutions. Comparison of model test results and results

from potential-flow codes show that potential codes generally under-predict the loads for slender

structures, particularly when the wave height increases. New empirical formulas are also developed

in order to prevent underestimation of the mooring line loads, but the accuracy and validity of these

formulas are not yet fully understood.

It has been shown that the viscous contribution to wave drift loading increases considerably with

increased wave steepness, and is of particular interest in long waves where the viscous forces are

dominating. Several studies have suggested that the viscous contribution to the wave drift loads is

larger than previously anticipated. In the industry, the drag term of Morison’s equation is used to
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account for viscous effects in potential theory. Drag coefficients are found empirically by tuning

against model tests. As stated by many studies, the most important contributions to the wave drift

loads, both potential and viscous, originate in the free-surface zone. The free surface zone is the

part of the structure which is in and out of water and there exist some uncertainties regarding the

correct choice of drag coefficient in this region in particular. The free surface zone is associated

with non-linearities both in the incoming and diffracted wave field, which make it difficult to obtain

accurate results with a simplified drag formulation.

Ideally, wave loads should be calculated using the Navier Stokes equations as the governing

equation when viscous effects are of importance. Due to the large processor capacity needed

to perform these calculations, it can be very time consuming and expensive. However, due to

the technological development within the area of computer performace, it becomes increasingly

important to test and verify the Navier Stokes solvers for such problems.

1.2 Objective and Scope

This master thesis is exploring the Navier Stokes solver OpenFOAM for calculation of the wave

drift forces on a slender cylinder of quadratic cross section in 2D, fixed in space. The cylinder is

subjected to selected wave conditions including regular and bi-chromatic waves. The work is a

continuation of a preliminary study performed from January to March 2017.

The main objectives of this project have been to

• Apply the Navier Stokes solver OpenFOAM on a two-dimensional problem for a fixed cylinder

in monochromatic and bi-chromatic waves

• Analyse the results in order to identify and discuss the wave drift forces

• Investigate the viscous contribution to the wave drift forces

2
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1.3 Challenges With the Numerical Study

The simulations with OpenFOAM are partly done on a regular MacBook Pro computer and partly

on the supercomputer Vilje, which is owned by both NTNU and the Norwegian Meteorological

Institute. The processing capacity and storage possibilities of the personal computer are limited, and

the number of elements and simulation time have therefore been kept low. In addition, OpenFOAM

is Linux based, and has therefore been run using the program VirtualBox. VirtualBox makes

it possible to run a different guest operative system than the existing operative system, but the

program is only allowed to use a limited part of the computer’s processing capacity. This may have

increased the time needed to perform the analyses. In addition, VirtualBox makes the data handling

challenging, as the only way of connecting the guest with the host operative system is via a shared

folder. This often requires several loops of copying and transferring data back and forth, which is

time consuming. Time limitations is always an issue when performing CFD analyses, however,

having access to Vilje has made it possible to run several cases at the same time and decrease the

time step.

A new toolbox for openFOAM called waves2Foam has been applied. This includes built-in methods

to create wave damping areas and a new wave generation method, different from the wave maker

used in the preliminary project. A considerable amount of time has been spent on getting familiar

with these methods. Therefore, the thesis work has been limited to deal with the 2D problem. The

project has been restricted to the diffraction problem, and the thesis represents the first step in the

systematic approach in order to numerically study the wave drift forces. The focus has been on the

methodology behind the study, and the simulated cases represent a small part of the real and more

complex problem, where also 3D effects and wave radiation effects are anticipated to be important.

1.4 Outline of Project Thesis

Chapter 2 gives a brief introduction to the basic theory regarding wave drift forces, covers findings

in available and relevant literature and summarises major findings from the initial project work.
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Chapter 3 covers the general method used in the numerical study and the analysis of the results.

Chapter 4 contains explanations and discussion of the choices made during the modelling of the

domain and waves and throughout the simulations.

Chapter 5 includes force and wave elevation results from the simulations and visual illustrations

from selected time instants of the runs.

Chapter 6 discusses the results presented in Chapter 5.

Chapter 7 includes conclusions from the performed work and the obtained results, and provides

suggestions for further investigation and research of the problem.
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Chapter 2

Introduction to wave drift forces

This chapter will cover the theory of wave drift forces, a brief summary of selected literature and

results obtained during the preliminary study of this problem performed from January to March

2017.

2.1 The Theory of Wave Drift Forces

Unlike linear wave forces with a zero mean value, wave drift forces are, in the framework of

potential flow perturbation theory, second-order forces which generally have non-zero mean values.

Wave drift forces can be divided into mean drift forces and difference-wave frequency forces,

which are slowly varying loads. The slowly varying loads oscillate with low frequencies caused

by sea states with more than one wave frequency component present (Greco; 2012). With two

wave frequencies, ω j and ωi , the difference frequency is ∆ω=ωi −ω j . The second-order forces

are often neglected because they might be small compared to the first-order force, but they are

important for structures with low natural frequencies. Because the wave drift forces are of higher

order and propotional to the wave amplitude squared, A2, the importance of these forces typically

increase with increasing wave height (Greco; 2012).
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2.1.1 Potential-Flow Theory Approach

Methods based on potential flow theory are widely used to calculate the wave drift forces because

of their simplicity and due to the viscous contribution often being small enough to be neglected

(Berthelsen et al. (2009) and Stansberg et al. (1998)). The higher order forces can be calculated by

performing a perturbation analysis while keeping the terms up to the order of interest. For instance,

starting from Bernoulli’s equation and performing a perturbation analysis keeping the second-order

terms, the pressure accurate to the second-order can be expressed as (Greco; 2012)

p =−ρg z −ρ∂φ1

∂t
−ρ∂φ2

∂t
−ρ1

2
∇φ1∇φ1 (2.1)

where p is pressure, ρ is the density of water, φ1 and φ2 are the first and second-order velocity

potentials, g is the gravitational acceleration and z is the vertical position. Bernoulli’s equation,

Equation 2.1, includes both first and second-order potentials and products between the gradient of

the first-order potentials. As an example, the result of squaring the x-derivative of the first-order

potential, φ01 = A cos(ωt +ε), is

(∂φ
∂x

)2
= A2

2
+ A2cos[2(ωt +ε)]

2
(2.2)

where A is the wave amplitude of the wave component and ε is the phase angle. As shown in

Equation 2.2 this second-order term contributes to a non-zero mean load (Greco; 2012).

Mean Wave Drift Load

In potential-flow theory, the mean wave drift forces originate from the diffraction and radiation

of waves from the body. This implies that these loads are greater for large structures compared to

the wave length, because of their capability of wave making. The mean wave drift forces can be

estimated through either direct pressure integration or conservation of fluid momentum. Unlike

for the slowly-varying loads, it can be shown that it is only the first-order velocity potential that

contributes to the mean drift force. Hence, the mean drift force can be obtained from a linear

potential-flow analysis.
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For a body in first-order incident waves, diffraction occurs because of the presence of the body and

radiation because of the body motions. A simple way of calculating the mean wave drift of a 2D

body is described by Maruo’s formula, Equation 2.3, where the incident waves can split into the

sum of transmitted and reflected waves with amplitudes AT and AR , respectively. The transmitted

waves are the sum of incident waves, radiated waves and diffracted waves on the downstream side

while the reflected waves include the radiated and diffracted waves on the upstream side. The

largest mean wave drift forces using the formula occur when there are no transmitted waves or

when AR is very large. This can occur when waves are propagating towards a vertical fixed wall, if

the waves are short compared to the encountering structure or if the body motions are large as a

consequence of heave resonance (Faltinsen; 1990).

F = ρg

2
A2

R (2.3)

The mean wave drift force is proportional to the wave amplitude squared (Faltinsen; 1990), which

means that the transfer function can be written as Fi (ω)/ζ2
a . The transfer functions are of importance,

because they can be used to estimate the mean drift loads in irregular waves from the results in

regular waves by dividing the irregular waves into N regular wave components and summing over

all the components as given below (Faltinsen; 1990).

Fi =
N∑

j=1

Fi (ω j )

ζ2
a

A2
j (2.4)

Fi is the force in the i-th direction, ζa is the incident wave amplitude and A j is the amplitude of the

j-th wave component.

Difference-Wave-Frequency Oscillations: Slow Drift Loads

According to Faltinsen (1990), slow drift motions are resonance oscillations at low frequencies

compared to the incoming wave frequency. The slow drift motions are caused by loads connected

to second-order difference frequency effects. These non-linear loads can be critical for moored

structures with large natural periods if resonance occurs. The long period and small frequency
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imply that the linear wave radiation damping is small and that viscous contribution to damping

may be important. This means that slow drift motions can be larger than linear motion in certain

conditions.

Slow drift forces are caused by a sea state consisting of waves with at least two different frequencies,

ωi and ω j . Both first and second-order velocity potentials contribute to slowly varying loads. An

expression for the slow drift forces up to the second-order is given below (Faltinsen; 1990).

F SV
i = ζa1ζa2T i c

12 cos[(ω2 −ω1)t + (ε2 −ε1)]+ζa1ζa2T i s
12 sin[(ω2 −ω1)t + (ε2 −ε1)] (2.5)

Where T i s
12 and T i c

12 are the second-order quadratic transfer functions (QTF) for the slow drift loads

which are independent of sea state, but functions of the frequencies ωi and ω j (Faltinsen; 1990).

ε is the phase angle and ζ is the wave amplitude. This formula can be modified to be used for

a wave spectrum S(ω), by splitting the spectrum into regular wave components with amplitudes

A j =
√

2S(ω j )∆ω and performing a double summation over all the wave components. By using

this method, both the mean and slowly varying forces are found. The diagonal of the QTF matrix

constitutes the mean drift load and the off-diagonal values are related to the slow drift loads.

Generally, the second-order potential must be included in order to calculate the slow drift forces.

However, through Newman approximation, given below, the calculations are simplified considerably,

because the slowly varying loads then can be predicted based on the results from a linear analysis

(Faltinsen; 1990).

T i c
j k = T i c

k j =
1

2
(T i c

j j +T i c
kk ) (2.6)

T i s
j k =−T i s

k j = 0 (2.7)

The formulas above indicate the same as taking the values of the transfer functions along the line

ωk ≈ω j , i.e. the mean drift force, given that the difference ωk −ω j is small. According to Faltinsen

(1990), Newman approximation can be used when 1) the small difference frequencies and large

oscillation periods are of interest and 2) when the transfer functions, T i c
j k and T i s

j k does not change

much with frequency around the main diagonal. Newman approximation should not be used when

T i c
j k has a pronounced maxima or minima close to the line ω j = ωk . If both the conditions are
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satisfied, then

T i c
j j

∼= T i c
kk (2.8)

and

0.5(T i c
j j +T i c

kk ) ∼=
√

T i c
j j T i c

kk (2.9)

Introducing the mentioned simplifications, the resulting force expression for the slowly varying

force becomes (Faltinsen; 1990)

F SV
i

∼=
N∑

j=1

N∑
k=1

A j Ak

√
T i c

j j T i c
kk cos[(ωk −ω j )t + (εk −ε j )] (2.10)

This expression depends on the transfer functions of the mean drift loads and the first-order solution

in regular waves, and φ2 does not need to be calculated. Potential-flow theory with Newman’s

approximation is widely used in industry (Berthelsen et al.; 2009).

2.1.2 Viscous Effects

When the waves are long compared to the structure and the wave height increases, viscous effects

become increasingly important relative to the potential-flow loads, because the viscous contribution

is of higher order than second. Long waves are related to small wave generation causing less drift

loads due to potential drift. In order to add the viscous effects to the potential-flow theory methods,

the drag term of Morison’s equation, Equation 2.11, based on strip theory is widely used in the

industry (Berthelsen et al.; 2009). Morison’s equation is a long wave approximation, valid when

λ/D ' 5 for calculation of wave loads on cylindrical structures (Faltinsen; 1990). The drag term of

Morison’s equation is given below.

FV =−
∫

L

ρ

2
CDU |U |dl (2.11)

CD is the drag coefficient, L is the length of the structure and U is the velocity perpendicular to the

cylinder axis. The resulting force when the expression is integrated up to the instantaneous free

surface is proportional to the wave amplitude cubed (Dev and Pinkster; 1995). This means that

viscous load in the wave zone becomes very important for high waves that are long compared to
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the structure. The drag coefficient must be empirically determined and is dependent on several flow

variables (Faltinsen; 1990).

The choice of drag coefficient is not straightforward. The most accurate way of estimating CD is

by using results from model tests. However, the drag coefficient can also be estimated using the

Keulegan-Carpenter number, KC-number, which is defined as (Faltinsen; 1990)

KC = UM T

D
(2.12)

where UM is the velocity of an oscillatory planar flow, T is the oscillation period and D is the

characteristic cross-section dimension of the structure. From a defined KC-number, CD can be

found from relations and graphs based on previous experiments (Faltinsen; 1990).

2.2 Results and Methods Covered in Literature

A brief literature study has been performed, which covers some of the methods and results

emphasized in existing studies of drift forces in cases where both potential and viscous loads

matter. From the literature study, different methods used to calculate wave drift forces have been

investigated. Research within this field are based on numerical, empirical and experimental methods

in order to as accurately as possible analyse the wave drift forces and response. Model tests are

often used to validate the results obtained using empirical formulas or numerical methods.

Most of the literature investigated agree that results from methods based on potential-flow theory

show discrepancies when compared to experimental results regarding the wave drift forces on

semi-submersibles (Berthelsen et al. (2009), Stansberg et al. (1998), Hu and Zhou (2015), Stansberg

et al. (2016)). The potential-flow theory methods are most commonly based on Newman’s

approximation. Large deviations are observed in cases where the waves are long and for high

sea states. When the viscous effects are added to the potential-flow theory solutions, the results

show better agreement. Therefore, viscous effects are expected to be the main reason for the

discrepancies towards results based on potential-flow theory. The studies also show that the relative
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importace of the viscous contribution increases with increasing wave height and wave length.

In order to calculate the viscous contribution, the most common approach is through Morison’s

equation. The results are most accurate if the drag term, CD , is tuned against model tests and

separate drag coefficients are introduced for the free surface zone (Berthelsen et al.; 2009). CD

is case dependent and choosing a large value may result in too large damping (Berthelsen et al.

(2009), Stansberg et al. (1998)).

An empirical formula for calculation of the wave drift forces on slender structures has been

proposed by a joint industry project (JIP) called EXWAVE (Stansberg and Nestegård; 2014). The

formula includes the effect of current, and has been tested for different kinds of semi-sumbersible

platforms and compared to experimental and numerical results. It shows good agreement in some

cases and discrepancy in other (Stansberg et al.; 2016) without indicating a clear trend or pattern.

The formula is given below.

F = FD (ω,U , Hs)

A2
= fd ,pot (1+CpU )+b(GU +H s) (2.13)

b = b′Dsum

Dsum =ΣDi

b′ = k ·P

P = exp(−1.25(kD0)2)

The formula consists of two terms, the first one is related to the potential flow and the second

accounts for the viscous effects. fd ,pot is the second-order mean wave drift coefficient calculated

from first-order potential-flow theory. It can be found from potential-flow codes like WAMIT.

WAMIT is a linear and second-order potential-flow program based on the panel method, where the

output is in the frequency domain (WAMIT; 2017). Cp is the wave-current interaction coefficient

from potential-flow theory and is set to be 0.25 in the EXWAVE study. b is the viscous drift, Dsum

is the sum of the column diameters, b′ accounts for the upper limit of frequency where the viscous

effects are important, k is the wave number, D0 is the diameter of the main columns, U is the

current velocity parallel to the waves, A is the wave amplitude and Hs is the significant wave height.

11



CHAPTER 2. INTRODUCTION TO WAVE DRIFT FORCES

G, the viscous wave-current interaction term, is empirically determined and is equal to 10 in the

EXWAVE study.

Model tests of semi-submersibles with the purpose of investigating the wave drift forces have

recently been performed, and the results have been compared to the empirical formula (Fonseca

(2016), Thys and Ambrahamsen (2016), Braaten (2016)). One of the semi-submersibles consists

of columns with squared cross section with rounded corners (Fonseca; 2016), whereas the other

two consist of circular columns (Thys and Ambrahamsen (2016), Braaten (2016)). The two

semi-submersibles with circular columns differ by the size and number of columns. One of them

consists of several small interconnecting cylinders in addition to the larger main columns. The

reports show that there is a difference in the results for the three semi-submersibles. The large

quadratic columns cause a considerable amount of wave radiation, which is visible from additional

peaks in the foce coefficient plots. Another finding is that the force in the low frequency region is

largest for the semi-submersible with the largest amount of columns. This is most likely due to the

viscous effects as a consequence of large periods and small cylinder diameters of the interconnectig

cylinders. For the two semi-submersibles with circular cross section, the interaction of the cylinders

is visible in the results through less smooth force coefficient plots.

As for the geometry of the semi-submersibles investigated and covered in the literature, most are of

squared section with rounded corners (Berthelsen et al. (2009), Stansberg et al. (1998), Hu and

Zhou (2015), Fonseca (2016)). The draught is about 20 meters and the diameter of the columns are

about 15 meters.

A 3D numerical study on the wave run-up and forces on a vertical fixed squared cylinder in regular

waves has recently been published (Ali et al.; 2017). The main goal with the study was to validate

and verify the computational fluid dynamics software OpenFOAM in prediction of wave run-up.

The waves were validated against analytical and experimental results, and it was concluded that

openFOAM can produce results in good agreement with experimental data and that the accuracy is

satisfactory. The method used in this study is quite similar to the one used in this master thesis,

although the parameters differ. The experimental results used for verification have been taken from

Stansberg et al. (2005). This study also include an introductory CFD study on a circular vertical

column in which significant non-linear contributions are observed in the free surface area.
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2.3. Result from Preliminary Numerical Study

2.3 Result from Preliminary Numerical Study

The project thesis, performed from January to March 2017, covered a preliminary analysis of the

forces acting on a simple 2D geometry by use of the Navier Stokes solver OpenFOAM. For a

simple 2D geometry, useful observations and experiences were made. The results from this CFD

study were compared to model test results for the same body and wave parameters presented in the

paper by Tanizawa et al. (1999).

The most important experience from the initial numerical study has been that the numerical wave

tank needs to be made such that the resulting force time series is sufficiently long and not affected

by reflected waves. Because the desired waves to be investigated are long compared to the structure,

there will be a considerable amount of transmitted waves, which eventually will reflect back from

the downstream boundary wall. Results show that the wave drift force for the particular case

investigated is higher when the body is exposed to the reflected waves from the wall. In order

to avoid this effect, the wave tank can be made very long (Stansberg et al.; 2005), as done in the

preliminary project, or by introducing a damping zone in the downstream end of the wave tank.

The last alternative is desirable because it involves a smaller domain, less elements and thus a

shorter simulation time. The results from the analysis also show that that the wave drift force is

sensitive with regards to the wetted surface, which means that the elements in the free surface zone

need to be small enough to get accurate results. Another valuable experience is the quick increase

in computational time associated with decreasing the element size and time step. However, the

over-all numerical results match the experimental reference results quite well, which validates the

use of the numerical method and the simulation variables for the particular case tested.
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Chapter 3

Description of Method

This chapter covers the general methodology used in the nummerical study. It contains descriptions

of the CFD software, solver, mesh generation, wave generation, wave damping method, the choice

of time variables and post-processing methods.

3.1 Introduction to OpenFOAM

In order to numerically find the wave drift loads on a slender structure, the Navier Stokes solver

OpenFOAM (Open Source Field Operation and Manipulation) has been used. OpenFOAM is an

open source code to perform Computational Fluid Dynamics (CFD) simulations. The code is based

on the programming language C ++ and consists of different solvers and utilities designed to solve

specific problems and perform tasks with data manipulation (CFD Direct; 2016). OpenFOAM

comes with a post-processing utility based on ParaView, which is an open-source visualisation

application (CFD Direct; 2016). The structure of the program can be found in Appendix B. In

this thesis OpenFOAM is used to create a numerical wave tank in order to simulate wave drift

loads on fixed slender surface-piercing structures in a viscous fluid. The Navier Stokes equations,

conservation of momentum, and continuity equation, conservation of mass (see Equation 3.1 and

3.2 (Kundu and Cohen; 2007)), are solved for the defined elements in the domain for each time

step.
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ρ
Dui

Dt
=− ∂p

∂xi
+ρgi + ∂

∂x j

[
2µei j − 2

3
µ(∇·ui )δi j

]
(3.1)

∂ρ

∂t
+∇· (ρu) = 0 (3.2)

ui is the velocity, µ is the dynamic viscosity, ei j is the strain rate tensor and δi j is the Kronecker

delta function.

For an incompressible fluid, like water can be considered as in most cases, the conservation of

momentum of the Navier Stokes equations reduces to Equation 3.3 (Kundu and Cohen; 2007).

ρ
Dui

Dt
=− ∂p

∂xi
+ρgi +µ∇2ui (3.3)

A chosen set of cases with zero viscosity have also been run in order to investigate the effect of

viscosity on the forces. By defining the viscosity to be zero, µ= 0, the Navier Stokes equations

reduces to the Euler equation as given in Equation 3.4 (Kundu and Cohen; 2007).

ρ
Dui

Dt
=−∇p +ρgi (3.4)

3.2 Solver

OpenFOAM includes different solvers for different applications. In the preliminary project the

solver interFoam was used, which is valid for two incompressible and isothermal fluids. The solver

is based on VOF (Volume Of Fluid) phase-fraction to capture the interface between the fluid. The

two fluids are air and water. The solver can be used even though air is not incompressible, because

the force from the air is small compared to the force from the water. Using VOF method, fluids are

specified by giving the desired elements a defined phase-fraction at the initial time step where 1

corresponds to 100 % water and 0 corresponds to 100 % air. Due to the issue of damping, described
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in Chapter 2 Section 2.3, a new solver called waveFoam is used, which is a part of the toolkit

waves2Foam. This solver is very similar to interFoam, but together with waves2foam it includes

more features as will be covered later. The simulations have been run using a laminar turbulence

model, which means that the flow behaviour is assumed to be laminar, and turbulence has not been

modelled. The location of the separation points in a general boundary layer dependends on the flow

being laminar or turbulent, but because the investigated geometry has sharp corners, the separation

points are known.

3.3 Computational Power

The simulations are partly run on a personal MacBook Pro computer via Ubuntu Linux on

Virtual Box and partly on the super computer, Vilje, owned by both NTNU and the Norwegian

Meteorological Institute. Vilje runs the opreative system SUSE Linux Enterprise Server 11 and

have 1404 nodes with 16 cores per node (Hpc Group; 2017).

3.4 Domain and Mesh Generation

The domain of the numerical wave tank and the initial mesh generation has been made using

blockMesh, a built-in utility of OpenFOAM. The coordinates of the tank boundaries are defined,

and origo is placed upstream at the left bottom corner. For the 2D case, the thickness of the wave

tank is set to be 0.1 meters. The overall dimensions of the wave tank are based on the wave

parameters and will be presented in the next chapter. 70 % of the domain is water, while the rest is

air. The utility snappyHexMesh has been used in order to generate a finer mesh around geometries

and in the free surface zone, such that the surface elevation is defined as accurately as possible

and such that there is no artificial numerical damping. In the free surface zone, the ratio between

the wave height and the element size in the vertical direction, H/∆z, should ideally be larger than

10, and the ratio of wave length to horizontal element size, λ/∆x, should be larger than 20. In

addition, the elements should have a shape close to a quadrat. The mesh size increases outside the
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free surface region. SnappyHexMesh uses the existing blockMesh domain and refines the mesh

according to specified refinement levels in desired regions and around defined geometries described

in separate STL-files. The STL-files contains the information about the geometry and describes the

surface of an object approximated by triangles (3D Systems; 2017).

In addition, the domain boundaries must be defined, and there exist a variety of possible boundary

conditions that need to be chosen based on the problem and relevant theory. The boundaries of

relevance in this thesis is the bottom of the wave tank, inlet and outlet wall, the sides of the wave

tank, the cylinder boundaries and the boundary defining the vertical end of the wave tank.

3.5 Wave Making

During the first phase of this study the waves were generated in a similar way as in the preliminary

project work. Because the results from the project were compared to experimental results, the

waves were made using a numerical wavemaker based on first-order wavemaker theory. The

wavemaker was made by imposing a special boundary condition at the upstream (left) wall, so

that the wall acted as a wavemaker. The wave motion induced by a wavemaker can be determined

well from linear wave theory (Dean and Dalrymple; 1991). The waves are generated by forced

oscillation of the flap, or the upstream wall boundary. The flap type wavemaker is analogue with

a vertical wall being able to rotate about a point. The wavemaker concept is described in figure

3.1. The wavemaker has a horizontal displacement and a surface respectively described by the

following equations (Dean and Dalrymple; 1991).

x = S(z)sinωt (3.5)

S(z) is the wavemaker stroke. The ratio of wave height to stroke, H
S , satisfying the Laplace equation

and the boundary conditions, is described by the following equation for a flap type wavemaker.

H

S(0)
= 4(

sinhkh

kh
)

kh sinhkh −coshkh +1

sinh2kh +2kh
(3.6)
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k is the wave number for the progressive wave, h is the depth and z = 0 corresponds to the calm

water level. The resulting wave elevation can be described by the following equation.

η= H

S(0)
cos(kx −ωt ) (3.7)

Figure 3.1: Flap-type wavemaker

The goal has been to create the numerical wave tank as identical as a real wave tank environment

as possible. A flap type wave maker was initially of interest, because deep water is considered and

the desired wave particle orbits are circular and not elliptical, as is the case for shallow water. This

phenomenon is shown in figure 3.2 taken from Pettersen (2007). The flap type wave maker is more

efficient in resembling deep-water wave conditions (Dean and Dalrymple; 1991).

Figure 3.2: Wave particle orbits (Pettersen; 2007)

However, a new method of generating the waves has been implemented through the work with

this thesis. The method is a part of the toolkit waves2Foam. waves2Foam (Jacobsen; 2011) is a

library made in order to handle the free surface wave generation and damping better than the basic

openFOAM library. waves2Foam is built for the exact purpose of surface waves and is based on

VOF (Volume of Fluid) method, which is also the base of the interFoam solver used in the project

work. The library contains different wave theories, which means that different kinds of waves
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easily can be made without having to modify the wave maker. Stokes first-order wave theory has

been used, which generates linear waves described by the same equations as for the wavemaker

generated waves, Equation 3.7.

The wave length, period and height have been decided upon by looking at the wave conditions used

in the literature and former studies regarding wave drift forces on semi-submersibles.

In order to trace the surface elevation and analyse the waves, the actual free surface is measured

at different locations in the wave tank during the simulations. This is done by saving the vertical

position of the elements that have the volume fraction closest to the value of 0.5, which indicate

that the element is in a fluid state beween air and water. It is valuable to trace the wave elevation at

different locations in the wave tank in order to investigate how the waves are propagating both with

time and in space.

3.6 Damping

A very long wave tank was used in the preliminary analysis done during the project work in order to

generate a long enough steady state force time series without disturbance from the reflecting waves.

The project report emphasizes the need of a damping area for further analysis of the problem in

order to limit the number of elements that comes with a large domain. With a damping area present,

the domain can be made much smaller while preventing reflection of waves from the boundaries

and avoid interference with the force results.

There exist several methods of wave damping, for instance stretching the mesh in the end of the

wave tank, create a beach and construct a sponge layer to absorb the energy. The simplest and

most straight forward method is stretching the mesh. This has been tested, but because the waves

investigated in this project are long, the method of stretching the mesh is not efficient. The method

requires a smooth increase of the element size in order to avoid that the elements act as walls and

reflect the waves. This requires a very long domain for the waves to be satisfactory damped. Due

to the complexity of damping the waves properly, the toolkit waves2Foam has been introduced. It

is important to note that the goal with this master project is to investigate the wave drift forces on a
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3.6. Damping

slender body and not to make a perfect wave tank. Therefore, more time has been spent on trying

to make a simple working wave tank that is good enough, rather than developing and validating

different methods to make the perfect wave tank.

waves2Foam defines specific areas for damping and wave generation, called relaxation zones.

Different geometries for the damping area are available, which makes it convenient to use for a

variety of cases. As a default, damping areas at the inlet and at the outlet must be defined.

The damping zone in the waves2Foam toolkit is based on certain relaxation weights, w , included

in the equations for volume fraction and velocity. These equations are updated and solved every

time step in the relaxation zones. The equations are given below, Equation3.8 and 3.9

u = (1−w)ut ar g et +wucomputed (3.8)

α= (1−w)αt ar g et +wαcomputed (3.9)

αt ar g et and ut ar g et are the volume fraction and velocity at the outlet boundary and αcomputed and

ucomputed are the values calculated from the Navier Stokes Equations. There are different ways

of calculating the relaxation weight, w. Anyhow, the weight is defined to be 1 at the start of the

outlet damping area and decrease to zero at the end of the outlet damping area or at the outlet wall.

For the inlet, the opposite is defined, the weight is 1 at the end of the inlet damping area and zero

at the inlet boundary, corresponding to the beginning of the inlet damping area. The default way

of defining the weight is exponential with an exponent, m, of 3.5. The equation is given below,

Equation 3.10.

w = 1− exp(σm)−1

exp(1)−1
(3.10)
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3.7 Time Variables

There are several time variables that need to be defined in order for the simulation to run. An

appropriate simulation time must be chosen. The simulation time is dependent on how much time

it takes before the simulation reaches steady state, and how long the force time series need to be for

the analysis and the Fourier transformation to become accurate enough.

Another variable to be decided upon is the time step. The time step is chosen based on the wave

period, the element size and the Courant number. The Courant number is defined as Co = δt |U |
δx ,

which is the time step multiplied by the velocity through the cell divided by the element size in

the direction of the velocity. According to CFD Direct (2016), temporal accuracy and numerical

stability is obtained when the Courant number is less than one. Therefore, the final time step is

chosen in accordance with the element size in order to assure a Courant number smaller than one.

The last time variable, writeInterval, defines how often the results are going to be saved. The force

time series and the wave elevation time series are saved at each time step and are independent of

the writeInterval variable. Therefore, the saved results are only used to visualize and investigate

the flow characteristics in paraView, and there is no need to save the results too often.

3.8 Post-Processing

paraView has been used to get a first impression of the results, visualise the waves on the body and

to check the mesh generation. A picture of the user interface of paraView is shown in Figure 3.3.

Matlab is used for further analysis, because it is faster and more convenient when interpreting the

results.

In order to study the wave generation and find the actual wave height and period, the wave

elevation time series are transformed into the frequency domain through the FFT (Fast Fourier

Transformation) function in Matlab and the wave amplitudes and frequencies are collected. This

method is also used for the force time series in order to investigate the frequency of the force peaks.
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3.8. Post-Processing

Figure 3.3: User interface of paraView

In order to further evaluate and interpret the force results from the time domain simulations, the

time series are transformed into Fourier series. A force time series can be described by a Fourier

series as shown below

F (t ) = a0

2
+

∞∑
n=1

(an cos(nωt )+bn sin(nωt )) (3.11)

a0 = 1

N ·T

∫ t1+N ·T

t1

f (t )d t

an = 1

N ·T

∫ t1+N ·T

t1

f (t )sin(nωt )d t

bn = 1

N ·T

∫ t1+N ·T

t1

f (t )cos(nωt )d t

The first coefficient, a0, corresponds to the mean force, an and bn are the amplitude of the

oscillating, harmonic force, n defines up to which order of harmonics the analysis is to be performed,

T is the period, N is the number of periods and decides the size of the time series interval used in the

Fourier analysis and t1 is the start of the interval. In order to perform a good and accurate Fourier

Transformation, the interval of the time series used in the analysis has to be where steady-state

is obtained. The interval should also be chosen such that it includes a complete number of wave
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periods. The Fourier transformations of the force time series in this project have been performed

in Matlab by use of a script made by one of the co-supervisors of this project, Finn-Christian W.

Hanssen. The script outputs the mean wave drift force in x and z-direction, mean moment about the

y-axis, the harmonic forces in x and z-direction up to the chosen order, the moment in y-direction

up to the chosen order and the slow drift force in x and z direction and moment about y.

The mean force coefficients in x and z direction are made dimensionless by ρg L A2 and the moment

by ρg LB A2. The slow drift force in x and z-direction are made dimensionless by ρg L A2 and the

slow drift moment about y by ρg BL A2. The first to third-order coefficients in x direction are made

dimensionless by ρg Ld A, in z direction by ρg LB A and the moment about y by ρg LBd A. L [m]

is the length of the column in y-direction and is the same as the thickness of the wave tank in 2D,

A [m] is the wave amplitude, B [m] is the breadth of the column in x-direction and d [m] is the

draft of the column.
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Chapter 4

Modelling and Simulation

This chapter is discussing and summarising the choices made during the pre-processing, simulation

and post processing of the cases. All the case files have been generated through a MATLAB

script based on a script made by on of the co-supervisors, Babak Ommani. This has made the

change of parameters simple and clean. The chosen parameters are defined in or calculated by the

script which further generates the OpenFOAM case files in the correct folder and directories. The

MATLAB script can be found in Appendix C.

4.1 Domain Geometry

The chosen geometry of the wave tank can be seen in figure 4.1. The wave tank length, L, is made

11 times the incident wave length, λ. To satisfy the deep water condition the depth has been set

to 0.5λ. As stated in Chapter 3, the water covers 70 % of the wave tank. The applied boundary

conditions are presented and explained in Appendix A.2. As in the preliminary project, a flap-type

wavemaker is first placed at the left, upstream boundary to generate waves. The damping area is

placed at the downstream, right, end of the wave tank and can be seen in figure 4.1 by the striped

region.

In order to trace the free surface as accurately as possible and due to the recommendations presented

in the report from the preliminary project, the free surface is further refined. The initial blockMesh
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Figure 4.1: Domain geometry

grid has 20 elements per wave length and a refinement level of 3 is defined in the free surface

zone and close to the body using the snappyHexMesh utility. This causes the smallest element

size to be approximately 1.4 m, which means that the ideal ratio of 10 elements per wave height is

not fulfilled, as can be seen from the wave parameters presented i Section 4.3. Although it would

be desirable to have a smaller element size in the vertical direction, the choice of element size

is a matter of available time and nessesary accuracy. However, in the horizontal direction, the

amount of elements more than fulfil the recommended amount discussed in Chapter 3. Because the

simulation variables are connected, a smaller element size requires a smaller time step, which also

increase the simulation time considerably. Figure 4.2 and 4.3 show the meshed wave tank domain

as presented in paraView.

Due to the simplicity and convenience of the method, another way of generating waves using

waves2Foam has been implemented and is used to create all the results to be presented in Chapter

5. The new cases using waves2Foam also contains a damping area at the inlet as shown in figure

4.1. This was not present in the domain for the cases generating waves with the wavemaker.

Figure 4.2: Domain with mesh

The locations of the probes for measuring the actual wave elevation during the simulations are

shown in figure 4.4. Because the probes are placed at diffrent locations along the wave tank, it is

possible to trace the wave propagation and validate that the generated waves are as expected. The
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Figure 4.3: Close-up of domain with mesh

wave elevation results presented in Chapter 5 are collected from the probe located one cylinder

diameter in front of the cylinder, the rest of the probes are only used for validation.

Figure 4.4: Location of probes

The full domain with the mesh and the volume fraction is shown in figure 4.5. Red corresponds to

water and blue corresponds to air.

Figure 4.5: Domain with mesh and volume fraction

4.2 Body Geometry

The chosen body geometry is shown in figure 4.6. Due to the waves being long and that slender

bodies will be the main focus in this thesis, only one body geometry is studied. It is assumed
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that changing the geometry within the slender body condition in 2D will not affect the drift force

considerably. In the 2D case, vortex shedding and separation will only occur from the bottom

corners of the 2D cylinder. The chosen geometry is inspired by and chosen based on relevant

geometry in litarature.

Figure 4.6: Body geometry

4.3 Wave Parameters

Both regular and bi-chromatic waves have been simulated. The wave parameters are presented

below.

4.3.1 Regular Waves

First a set of regular wave runs with varying wave heights has been performed. The wave parameters

of these runs are summarised in table 4.1. The wave period is long and is chosen based on literature

and previous studies of the wave drift forces (Berthelsen et al. (2009), Stansberg et al. (1998),

Stansberg and Nestegård (2014)). Results from these studies show that the viscous contribution

to the wave drift forces increases for longer waves and larger wave heights. Even though it is

interesting to investigate and study waves with a high steepness, the chosen cases have smaller
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steepness than 1/30, because it can be difficult to model steeper waves in openFoam. In order to

accurately model steep waves, the elements must be even smaller which requires a further reduction

of the time step and the computational time will increase quickly.

Table 4.1: Wave parameters for regular wave runs with T = 12 s

Run Wave lenght [m] Wave height [m] Steepness H/λ[-] λ/D[m]

1 224.8 4.5 1/50 18.7
2 224.8 6 1/37 18.7
3 224.8 7.5 1/30 18.7

The regular wave cases listed in Table 4.1 have been run for waves both generated with the wave

maker created in the project phase and with the waves2Foam toolkit in order to test if the toolkit

could be used for the remaining of the simulations. These simulations were run with a time step of

0.05 s. The resulting wave elevation from these simulations are shown in Table 4.2 and 4.3. The

force time series are shown in Figure 4.7 and 4.8.

Table 4.2: Result from wave maker generated waves of T=12 s

Run 1 Run 2 Run 3
Actual wave amplitude [m] 1.899 2.521 3.035

Table 4.3: Result from waves2Foam generated waves of T=12 s

Run 1 Run 2 Run 3
Actual wave amplitude [m] 1.950 2.595 3.067

Looking at the wave elevation results, it is clear that wave generation using waves2Foam creates a

wave with an amplitude somewhat closer to the theoretical value. Regarding the force time series,

the figures show similar results for the steady state region. Because the plots show quite similar

results, waves2foam has been considered valid to use for the remaining of the simulations.

4.3.2 Bi-chromatic Waves

The cases performed for bi-chromatic waves are summarised in the three tables below, Table

4.4, 4.5 and 4.6. The difference frequencies are chosen to be in the range of natural periods of
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(a) Run 1 (b) Run 2

(c) Run 3

Figure 4.7: Force time series for simulation using a wavemaker

semi-submersibles covered in literature. This is of relevance because sea states containing these

frequencies can be the most severe conditions regarding slow drift wave loads and excitation.

Moored semi-submersibles generally have a natural period in surge of about 100 s. The two chosen

difference frequencies correspond to slowly varying periods of 125.6 s and 89.8 s. Simulations are

done for three different wave heights and two different difference frequencies in order to investigate

how they are related to the resulting wave loads.

Table 4.4: Wave parameters for bi-chromatic wave runs with H = 4.5 m

Run ω1 −ω2 [rad/s] T1 [s] T2 [s] H/λ1[-] H/λ2[-] λ1/D[-] λ2/D[-]
1 0.05 12 13.27 1/50 1/65 18.7 22.9
2 0.07 12 13.85 1/50 1/66 18.7 25.0
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(a) Run 1 (b) Run 2

(c) Run 3

Figure 4.8: Force time series for simulation using waves2Foam

Table 4.5: Wave parameters for bi-chromatic wave runs with H = 6 m

Run ω1 −ω2[rad/s] T1[s] T2[s] H/λ1[-] H/λ2[-] λ1/D[-] λ2/D[-]
1 0.05 12 13.27 1/37 1/46 18.7 22.9
2 0.07 12 13.85 1/37 1/50 18.7 25.0

Table 4.6: Wave parameters for bi-chromatic wave runs with H = 7.5 m

Run ω1 −ω2 [rad/s] T1[s] T2[s] H/λ1[-] H/λ2[-] λ1/D[-] λ2/D[-]
1 0.05 12 13.27 1/30 1/37 18.7 22.9
2 0.07 12 13.85 1/30 1/40 18.7 25.0

The cases summarised in Table 4.4 to 4.6 are also simulated without the body present in order

to only investigate and analyse the wave propagation. In addition, the cases with a difference
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frequency of 0.05 rad/s have been simulated with zero viscosity, µ = 0 kg /(m · s), in order to

investigate the viscous contribution to the forces. The results from these simulations are solutions

of the Euler equation.

Figure 4.9, 4.10 and 4.11 show details of the wave propagation for a wave height of 6 m and

difference frequency of 0.05 rad/s.

Figure 4.9: Overview of waves in the domain with mesh

Figure 4.10: Waves at the inlet of the domain with mesh

Figure 4.11: Waves around the body

4.4 Damping Parameters

The relaxation weight has been defined defined through an exponential function, as explained in

Chapter 3, where the exponent, m, in Equation 3.10 has been set to 3.5. The relaxation area is

rectangular and is defined at the inlet and at the outlet of the domain.
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4.5 Adjusting Time Variables

The initial time step used in the simulations was 0.05 s, and was chosen based on the smallest

element size, which is found in the free surface area and is approximately 1.4 m, together with

the Courant Number. With a time step of 0.05 s, element size of 1.4 m and a phase velocity of

approximately 18 m/s, the resulting courant number is Co = 0.64 which is below 1. After studying

the wave elevation results and getting access to Vilje, the time step has been reduced to 0.01 s.

Comparison of the simulated and theoretical wave elevation, according to linear wave theory, for

the time steps 0.05 s and 0.01 s can be seen in figure 4.12, 4.13 and 4.14, corresponding to the

regular waves presented in Table 4.1 with wave height 4.5, 6 and 7.5 m.

(a) ∆t = 0.05 (b) ∆t = 0.01

Figure 4.12: Comparison of time step and simulated and theoretical wave elevation for H=4.5 m

(a) ∆t = 0.05 (b) ∆t = 0.01

Figure 4.13: Comparison of time step and simulated and theoretical wave elevation for H=6 m
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(a) ∆t = 0.05 (b) ∆t = 0.01

Figure 4.14: Comparison of time step and simulated and theoretical wave elevation for H=7 m

From the figures, it is clear that the accuracy of the wave elevation decreases as the steepness of

the wave increases. Figure 4.14 a) shows that the wave elevation is decreasing with time, which

indicates that steady state is not obtained. In addition, the wave frequency is varying, causing a

phase difference with the theoretical wave. Looking at Figures 4.12 to 4.14 from the simulations

with a time step of 0.01 s, the plots indicate that the simulated waves are closer to the desired

waves and that steady state is more or less obtained. The wave elevation shows some discrepancies

towards the wave through, which is most likely due to the element size being too big. These plots

also show that the wave frequency is more constant. Therefore, a time step of 0.01 s has been used

in the simulations producing the final results presented in Chapter 5.

The total simulation time for the cases where a wave maker is used to generate waves is about 550

s and is based on and limited by the waves’ return time after reflecting from the body and traveling

back to the body again. When the toolbox waves2foam is used, a damping area at the inlet of the

wave tank is applied which means that reflections from the body will die out as it reaches the inlet.

In this case, the simulation time is chosen to be 800 s for the cases where the cylinder is subjected

to bi-chromatic waves. This result in about four steady state periods of the slowly varying wave in

case of the smallest difference frequency. In regular waves a simulation time of 500 s is considered

sufficient for the post processing of the results to be accurate enough. Regardless of which method

is used to produce waves, a damping zone is placed at the downstream boundary, which means that

there are no reflected waves from the domain boundary at the downstream side of the body.
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4.6 Post Processing

Fonseca et al. (2011) is used as an inspiration for the post-processing methods and appearance of

the results presented in Chapter 5. The post processing of the results from the simulations consist

of mostly Fourier analyses of the force and wave elevation time series. For the analysis to be

accurate enough, the data interval used must be taken from where steady state has been reached, as

discussed in Chapter 3. For the regular waves, the analysed interval from the time series consists

of 10 wave periods, 10 ·T [s], and the interval starts at the time equal to 30 wave periods, 30 ·T

s. For the irregular waves, 4 periods of the envelope of the waves are used in the analysis and

the start of the interval depends on the difference frequency of the bi-chromatic wave. With a

difference frequency of 0.05 [rad/s] the interval starts at 2.22 ·T s and for a difference frequency of

0.07 [rad/s] the interval starts at 4.05 ·T s. This is descided upon through close investigation of the

time series. The nominal amplitude has been used to non-dimensionalize the forces, because it is

dificult to measure the exact actual wave amplitude of the wave components at the location of the

body in case of bi-chromatic waves from the simulations.

A selection of the MATLAB scripts used for post processing of the results are included in Appendix

C.

The main interest throughout this thesis has been towards the mean wave drift and slow drift forces,

and the presented results are reflecting this.
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Chapter 5

Results from the Numerical Study

5.1 Regular Waves

This section includes a selection of both the wave elevation results and the force results from the

regular wave simulations. The results will be discussed in Chapter 6.

5.1.1 Wave Elevation Results

Figure 5.1: Regular waves: wave elevation analysis for H = 6m and T = 12s
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The time series of the wave elevation and the wave elevation spectrum from the regular wave

simulations with wave amplitude 6 m and period 12 s are shown in figure 5.1. The vertical lines

in the spectra show the most important existing frequencies in the wave condition. ω has the unit

[rad/s]. The wave elevation data is measured at the probe located one cylinder diameter upstream

of the body. The results from the remaining simulations can be found in Appendix B.

5.1.2 Force Results

Figure 5.2 show the force time series and Figure 5.3 show the force spectrum from the Fourier

analysis of the force time series for wave height 6 m and period 12 s. The colored lines show the

frequencies of the force peaks and the y-axis marks the peaks of the mean force. The results for the

remaining simulations can be found in Appendix B.

Figure 5.2: Regular waves: force time series for H = 6m and T = 12s
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Figure 5.3: Regular waves: force spectrum for H = 6m and T = 12s

The force coefficients from the regular wave simulations with wave period 12 s are shown in figure

5.4 to 5.7.

Figure 5.4: Regular waves: coefficients of mean drift force
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Figure 5.5: Regular waves: coefficients of force in x direction

Figure 5.6: Regular waves: coefficients of force in z direction

Figure 5.7: Regular waves: coefficients of moment about y axis
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Table 5.2 summarises the percentage of change of the force coefficients presented in Figure 5.4 to

5.7.

Table 5.1: Regular waves: percentage change of force coefficient from lowest to highest amplitude

Force Direction Mean Drift 1. Order
Force in x 5.19 % 0.17 %
Force in z -6.48 % 2.46 %
Moment about y 8.78 % -2.00 %
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5.2 Bi-Chromatic Waves

This section includes a selection of the wave elevation and force results from the bi-chromatic

wave simulations. In addition, it contains pictures and illustrations from the simulations made in

paraView.

5.2.1 Results from paraView

The figures below are taken from post processing in paraView of results from the simulations of

bi-chromatic waves with a difference frequency of 0.05 rad/s and where the two individual wave

components have a wave height of 6 m.

Figure 5.8: Plot of the dynamic pressure distribution during wave propagation

Figure 5.9: Plot of fluid velocity during wave propagation

Figure 5.10: Plot of fluid velocity vectors around the body
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Figure 5.11: Plot of fluid velocity vectors at the inlet

Figure 5.12: Plot of velocity vectors around the body for H=4.5 m and dω= 0.05 at t=700 s

Figure 5.13: Plot of velocity vectors around the body for H=6 m and dω= 0.05 at t=700 s

Figure 5.14: Plot of velocity vectors around the body for H=7.5 m and dω= 0.05 at t=700 s
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Figure 5.15: Plot of velocity around body for H=4.5 m and dω= 0.05 at two different time instants

5.2.2 Wave Elevation Results

Figures 5.16 to 5.19 show the time series of the wave elevation together with the spectra of the

time series made from the interval marked on the plot. The wave elevation data is measured at

the probe located one cylinder diameter upstream of the body. Selected results from the runs with

bi-chromatic waves with a difference frequency of 0.05 rad/s and wave height 4.5, 6 and 7.5 m and

difference frequency of 0.07 rad/s for wave height 6 m are included, the results for the remaining

simulations can be found in Appendix B.

Figure 5.16: Bi-chromatic waves with dω= 0.05: wave elevation time series for H = 4.5m
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Figure 5.17: Bi-chromatic waves with dω= 0.05: wave elevation time series and spectrum for H = 6m

Figure 5.18: Bi-chromatic waves with dω= 0.07: wave elevation time series and spectrum for H = 6m
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Figure 5.19: Bi-chromatic waves with dω= 0.05: wave elevation time series for H = 7.5m

5.2.3 Force Results

Figure 5.20 to 5.27 show the force time series and the spectra from the Fourier analysis of the force

time series. The time series interval used in the Fourier analysis is marked in the plots of the time

series . The colored lines in the plots of the spectra show the frequencies of the force peaks. The

unit of ω is rad/s.
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Figure 5.20: Bi-chromatic waves with dω= 0.05: force time series for H = 4.5m

Figure 5.21: Bi-chromatic waves with dω= 0.05: force spectrum for H = 4.5m
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Figure 5.22: Bi-chromatic waves with dω= 0.05: force time series for H = 6m

Figure 5.23: Bi-chromatic waves with dω= 0.05: force spectrum for H = 6m
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Figure 5.24: Bi-chromatic waves with dω= 0.07: force time series for H = 6m

Figure 5.25: Bi-chromatic waves with dω= 0.07: force spectrum for H = 6m
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Figure 5.26: Bi-chromatic waves with dω= 0.05: force time series for H = 7.5m

Figure 5.27: Bi-chromatic waves with dω= 0.05: force spectrum for H = 7.5m
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The mean drift force coefficients for the runs with bi-chromatic waves are shown in figure 5.28

to 5.30. The slow drift coefficients are presented in figure 5.31 to 5.33. The first-order force

coefficients related to the single wave components’ frequency for the bi-chromatic runs with a

difference frequency of 0.05 rad/s and 0.07 rad/s are presented in figure 5.34 and 5.35, respectively.

The third order force coefficients related to the frequencies 2ω1 −ω2 and 2ω2 −ω1 are plotted in

figure 5.36.

Figure 5.28: Bi-chromatic waves: coefficients of mean drift force in x direction

Figure 5.29: Bi-chromatic waves: coefficients of mean drift force in z direction
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Figure 5.30: Bi-chromatic waves: coefficients of mean drift moment in y direction

Figure 5.31: Bi-chromatic waves: slow drift force coefficient in x direction

Figure 5.32: Bi-chromatic waves: slow drift force coefficient in z direction
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Figure 5.33: Bi-chromatic waves: slow drift moment coefficient about y

Figure 5.34: Bi-chromatic waves: first-order force coefficients for dω= 0.05

Figure 5.35: Bi-chromatic waves: first-order force coefficients for dω= 0.07
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Figure 5.36: Bi-chromatic waves: third order force coefficients for dω= 0.05

The following tables show the percentage of change of the presented force coefficients from

smallest to largest amplitude. Table 5.2 shows the mean drift force, 5.3 shows the slow drift force

and 5.4 and 5.5 show the first-order force.

Table 5.2: Percentage change of mean drift force coefficient from lowest to highest amplitude

Force Direction dω= 0.05 dω= 0.07

Force in x 21.32 % 30.23 %
Force in z -3.97 % - 15.42 %
Moment about y 2.43 % - 0.69 %

Table 5.3: Percentage change of slow drift force coefficient from lowest to highest amplitude

Force Direction dω= 0.05 dω= 0.07

Force in x 28.14 % 28.58 %
Force in z 6.86 % 7.17 %
Moment about y 11.40 % 18.26 %

Table 5.4: Percentage change of first-order force coefficient from lowest to highest amplitude for dω= 0.05

Force Direction ω1 = 0.5236 ω2 = 0.4736

Force in x -15.94 % 5.46 %
Force in z -7.86 % 13.56 %
Moment about y -25.83 % -3.00 %
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Table 5.5: Percentage change of first-order force coefficient from lowest to highest amplitude for dω= 0.07

Force Direction ω1 = 0.5236 ω2 = 0.4536

Force in x -21.07 % 5.59 %
Force in z -8.81 % 15.50 %
Moment about y -30.68 % -1.29 %
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5.3 Inviscid Flow Case

Selected results from the inviscid flow simulations for bi-chromatic waves with a difference

frequency of 0.05 rad/s and zero viscosity, µ= 0 kg /(m · s), are included in this section. The rest

of the results and figures are included in Appendix B.

5.3.1 Wave Elevation Results

The wave elevation results from the inviscid simulation with bi-chromatic waves of height H = 6m

are presented in figure 5.37.

Figure 5.37: Inviscid flow case with dω= 0.05: wave elevation time series and spectrum for H = 6m

A plot of the velocity vectors around the column is shown in Figure 5.38.
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Figure 5.38: Inviscid flow case with dω= 0.05: plot of velocity vectors around the column

5.3.2 Force Results

Force results, force time series and force spectra, from the inviscid simulations for bi-chromatic

waves of height H = 6m are presented in figure 5.39 to 5.43. In figure 5.41 to 5.43, the force

coefficient results from the inviscid flow simulations are plotted together with the viscous flow

results. Figure 5.41 shows the coefficients of the mean drift force, Figure 5.42 shows the first-order

force coefficients and Figure 5.43 the slow drift force coefficients.

Figure 5.39: Inviscid flow case with dω= 0.05: force time series for H = 6m
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Figure 5.40: Inviscid flow case with dω= 0.05: force spectrum for H = 6m

Figure 5.41: Inviscid and viscous flow results for dω= 0.05: mean drift force coefficients
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Figure 5.42: Inviscid and viscous flow results for dω= 0.05: first-order force coefficients

Figure 5.43: Inviscid and viscous flow results for dω= 0.05: slow drift force coefficients
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Chapter 6

Discussion of Results from Numerical Study

This section covers a discussion of the results and findings presented in Chapter 5. As discussed in

Chapter 1, this study is intended as the first step of a comprehensive study of wave drift forces on

semi-submersible platforms. The focus has been on the numerical methodology and the analysis

and understanding of the results. More attention has been directed towards the surge force as a

consequence of what has been focused on in the literature.

6.1 Regular Waves

The wave elevation time series and the Fourier analysis of the time series shown in Figure 5.1

in Chapter 5 and B.1 and B.2 in Appendix B show three peaks at the wave frequencies which

are present in the wave field, ω = 0, ω1 and 2ω1. These force peaks represents the mean force,

first-order force and second-order force, respectively. The single wave frequency component,

corresponding to ω1, is much larger than the double-frequency component. This is expected. From

the time series it can be seen that some time is required for the wave field to stabilise. The figures

of the interval of the wave elevation time series presented in Section 4.5 show that the difference

between the actual and theoretical wave increases slightly with increasing wave amplitude. As the

wave height increases, the wave becomes more non-linear, and the wave will deviate from linear

wave theory. This means that the run with an amplitude of 4.5 m most likely will give a more

accurate result compared to the run with an amplitude of 7.5 m in terms of linear wave theory.
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In the Fourier analysis of the force time series for the regular wave with 6 m wave height, presented

in Figure 5.3 in Chapter 5, three major peaks are visible. These peaks represent the expected

harmonic components, corresponding to the frequencies of the peaks in the wave elevation spectrum.

The same can be noted from the rest of the results presented in Appendix B. As expected, the

first-order force is the largest for all the runs, and is followed by the mean force and the second-order

force. The force time series in Figure 5.2 show the interval in which the force spectrum has been

calculated. It shows that steady state is reached quite quickly after the waves meet the column.

From the plots of the mean drift force coefficients in Figure 5.4 it is clear that the magnitude of

the mean drift moment about y is the largest. The graphs are more or less constant with wave

amplitude, which means that the mean drift forces are proportional to the amplitude squared. The

mean drift force coefficients in x and z direction, surge and pitch, have about the same magnitude,

however the vertical force is negative. It is important to note that the hydrostatic force has been

subtracted from the heave force.

Figure 5.5, 5.6 and 5.7 show the same as stated from the Fourier analysis, namely that the first-order

force components are much bigger than the second and third order force components. In x-direction,

the coefficients are more or less constant with wave amplitude, however in z-direction and for the

moment coefficient about y, the second-order force coefficients are increasing with increasing wave

amplitude.

6.2 Bi-Chromatic Waves

The figures taken from paraView presented in Section 5.2.1, show the velocity and pressure

distribution in the domain at fixed timesteps. Figure 5.8 shows the pressure distribution of the

travelling wave when the hydrostatic pressure has been subtracted. High pressure, red, correspond

to a wave crest and low pressure, blue, correspond to a wave trough. The modulated wave is clearly

visible. Figure 5.9 shows the velocity distributon. The highest velocities are found close to the free

surface and the highest wave amplitudes cause the air to flow faster. Figure 5.10 and 5.11 show the
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velocity vectors around the column and at the inlet of the domain. The circular wave particle orbits

are visible.

Figure 5.15 show the velocity distribution around the bottom of the column at two different time

instants. High velocities are found close to the column and a pattern that look like vortices is

present, although it is only slightly visible. Vortices are expected, because the flow separates at the

sharp corners, but the element size might be too large in order to capture the vortex propagation

clearly.

The effect of simulating bi-chromatic waves is clearly visible in the time series of the wave elevation,

because of the modulated amplitudes. The wave spectra in Figure 5.16 to 5.19 show that non-linear

effects from the wave-body interaction are present, because the wave spectra are broader. The sea

states contains a wider range of excitation frequency content compared to the regular wave runs and

all the wave frequencies are present. The same is visible in the result for the other cases included

in Appendix B. As the wave height increases, the spectra becomes less clean and the energy is no

longer limited and present only at the expected frequency peaks, additional force peaks appear.

This might indicate that running cases with higher wave heights in openFoam are less accurate and

appear more noisy, likely because of the difficulty of simulating steep waves accurately.

For the force time series and the associated Fourier analysis of the time series presented in Figure

5.20 to 5.27, the same harmonic components are present as in the wave spectra. The force time

series show the same behavior as the wave elevation time series. The force spectra show that the

first-order force components related to the single wave frequencies, ω1 and ω2, are the largest

components in all cases. However, for the heave force, in particular, the mean drift force is quite

large relative to the first-order force components. The magnitude of the slow drift force peaks, for

all the force components, are much smaller than the first-order and mean force peaks, but increase

with increasing wave height.

An interesting observation from the wave amplitude and force spectra is the peaks at frequencies

2ω1 −ω2 and 2ω2 −ω1. This is an effect caused by interaction of first and second-order harmonics

Fonseca et al. (2011). The Fourier analysis show that this effect is larger than the second-order
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effect related to 2ω1 and 2ω2. The corresponding force coefficients are presented in Figure 5.36.

The figure shows that the coefficients are increasing with wave amplitude.

The plots of the mean drift force coefficients in Figure 5.28 to 5.30 show that the mean drift force

is increasing with increasing amplitude in surge and partly in pitch and decreasing in heave. From

Table 5.2, it is clear that the change is most significant in surge and that the mean pitch moment is

changing very little. The mean coefficient plot suggest that the surge coefficient is proportional to

more than the amplitude squared. This may be explained by looking at Figure 5.12, 5.13 and 5.14.

As shown in these figures, the asymmetry of the wave elevation on the upstream and downstream

side of the column increases with growing wave height. This asymmetry can cause a considerable

surge force and may explain the increasing coefficient. In addition, vortex shedding from the

bottom of the column may become stronger with larger wave heights causing an increasing force

coefficient.

Figure 5.29 shows that the mean force in heave is decreasing with increasing amplitude, especially

when the difference frequency is 0.07 rad/s. A possible explanaition can be that the local hydrostatic

pressure, as a consequence of the wave run-up along the column wall, increases for higher wave

heights and counteracts the dynamic pressure such that the total force decreases. This, however,

needs to be further validated.

Considering the mean drift force coefficients, the cases behave in a similar manner regardless of

difference frequency, except for pitch. However, the cases with a difference frequency of 0.07 rad/s

have somewhat smaller values compared to the cases with difference frequency 0.05 rad/s, except

for the highest amplitude in heave.

Figure 5.31, 5.32 and 5.33, presenting the slow drift force coefficients, show that the slowly varying

forces are increasing with increasing wave amplitude for all the force directions. Table 5.3 shows

that the relative increase is largest for surge and for a difference frequency of 0.07 rad/s. In addition,

the figures imply that the slow drift force coefficients are proportinal to more than the amplitude

squared. The behaviour is similar regardless of difference frequency, but a difference frequency of

0.07 rad/s is connected to the largest force coefficients in surge and heave.
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The first-order force coefficients with respect to ω1 and ω2 are shown in Figure 5.34 and 5.35.

These plots together with Table 5.4 and 5.5 show that the first-order force coefficients connected to

ω2 increase while the coefficient related to ω1 decrease with increasing wave amplitude. This is

also shown in Table 5.4 and 5.5. However, the rate of change of the coefficients are varying.

6.3 Inviscid Flow Case

The results from the simulations with zero viscosity presented in Chapter 5 are very similar and

almost equal to the results from the simulations with viscosity. This is clearly visible from the force

coefficient plots in Figure 5.41 to 5.43. After defining the viscosity to be zero, the Euler equation is

solved, as explained in Chapter 3. This means that the flow still is rotational and that vortices may

exist in the fluid, and flow separation will occur at the sharp corners of the cylinder. The presented

results indicate that non-viscous flow separation is more important than viscous flow separation.

In addition, the viscous effects are most likely very small for the presented cases. This might be

different in case of 3D simulation, when the flow of water around the cylinder can cause additional

drag and frictional forces.

From Figure 5.38 it is clear that separation occurs at the two corners at the bottom of the column,

and that vortces develops close to the column wall. However, the grid resolution is most likley too

low to capture the possible vortices further downstream of the column. This means that the grid

size may be too large in order to correctly capture the viscous effects in the visocus flow cases as

well.

6.4 General Remarks

When discussing the force results it is important to keep the natural periods of the structure in

mind. Even though this study has focused on a simple, fixed 2D geometry of quadratic shape, the

overall goal is to eventually releate the results to a complete semi-submersible platform. The main
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focus has been towards the mean and slowly varying drift forces in surge, which means that the

sum-frequency components generally have been neglected in the discussion.

Although the first-order force components related to the frequencies of the two single waves are

the largest, the slow drift force can become of great importance if the semi-submersible platform

has a natural period close to the slowly varying wave period. The slowly varying wave periods

are 125.6 s and 89.8 s which is in the range of the natural surge periods for semi-submersibles. In

heave, the natural period is proportional to the water plane area and are over 20 s, corresponding to

an angular frequency of about 0.3 rad/s. Looking at the wave elevation spectra for heave, there are

no considerable energy located around this frequency, meaning that the heave excitation will be

low. The surge excitation is therefore of greater interest.

However, there are limited connections to draw between these results and the total expected

behaviour of a complete semi-submersible platform. A platform consists of several columns and

pontoons that will cause coupled effects and interaction. In a real environment, the bottom of the

column will not experience force directly from the wave, there will be forces on the pontoon. The

behaviour and excitation of a structure depends on the system characteristics, and to be able to say

anything definite and certain about a structures excitation or behaviour, the correct geometry must

be investigated.

It is important to emphasize that this study has investigated the fundamental mechanisms for a

simple geometry, which is important in order to understand the mechanisms in a real environment.

It is difficult to understand the total picture when studying all the effects at the same time, and

isolating and identifying the induvidual contributions, as done in this study, is valuable.

Due to the simple geometry, the presented force results can also be valuable for and related to other

floating structures than semi-submersibles, for instance such as spread moored FPSO’s (Floating

Production, Storage and Offloading) subjected to incoming waves from the side and SPAR-buoys.
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Conclusions and Recommendations for Further Work

7.1 Conclusion

The presented results show that the expected dominating frequencies are present in the spectra

of the forces and wave elevation. For the bi-chromatic wave cases, the mean drift force in surge

is proportional to more than the wave amplitude squared. This is also the case for the slow drift

forces, which clearly increase for higher wave amplitudes. Furthermore, the results show that the

viscous contribution to the wave drift loads is small and that non-viscous flow separation is present

at the sharp corners at the bottom of the column. However, the grid resolution might have been

too large in order to capture the viscous effects correctly and the elements should be smaller, at

least further below the column. The problem in this thesis has been limited to 2D, and 2D cases are

quite far from a real situation. However, the findings and the methodology presented are valuable

as a basis for a future study of the wave drift forces in three dimensions with additional features as

for instance wave-current interaction.

7.2 Recommendations for Further Work

Further work on this problem is of great interest. This thesis has been more of an in-depth

systematic study in order to clarify the general methodology of a numerical study of the wave drift
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forces. This thesis represents the first step in the comprehensive numerical investigation, and it

will be valuable to build the cases further. The grid resolution should be increased in order to be

able to capture the viscous effects better, at least below the column. It would also be interesting to

simulate steeper waves, which will require careful consideration and evaluation of the simultion

and mesh parameters to ensure a stable solution.

Future investigation will benefit from building up the 3D case to study the 3D effects on the

structure as well as the effect of vicosity. A 3D case allows for flow around the body which result

in a larger wetted surface and probably larger drag forces. In addition, more model test results are

available for 3D cases than for 2D cases. Furthermore, the empirical formula presented in Chapter

3 can be applied to investigate and compare against the simulation results.

This study has been focusing on a part of the over-all problem by concentrating on a single column

representing a platform column. It will be valuable to eventually study and build up the case

towards a complete semi-submersible, including the pontoons, in order to study how the different

parts interact and influence the wave drift forces. Further, it will be valuable to include the radiation

problem and not only the diffraction problem by creating a floating platform in order to simulate

a more real environment. This, however, is a quite large task and it is assumed to be very time

consuming to reach this step.

In general, CFD simulations should be performed together with model tests in order to verify

the results against empirical data. In addition, the empirical formulas should be investigated and

developed further, because they can be valuable for quick estimations of the forces. Comparing

results from potential codes with CFD calculations can also be practical and efficient in order to

investigate conditions where the potential and viscous theory differ.
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Appendix A

OpenFOAM Details

A.1 Overview of OpenFOAM Case Set-Up

Figure A.1: Overview of initial programming set-up

Figure A.1 shows roughly how OpenFoam is organised. The boxes represent the different

directories.
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The folder 0.org contains the initial conditions of the problem and the boundary conditions for the

different parts of the domain boundaries.

The folder constant consists of several files that describe the constant properties of the problem,

for instance the gravitational acceleration, the viscosity of the fluid, the structure geometry and

mesh information. The folder also contains the files containing information about the waves and

relaxation zones.

The system folder contains the information that controls how the problem is solved, for instance

what kind of interpolation, integration and solver that are used. In addition, it contains the files that

control the time step, the simulation time and how the meshing is performed.

After running the code and solving the problem, additional directories with results are saved. Figure

A.2 shows some of these files.

Figure A.2: Overview of programming set-up with result folders

The wave elevation information and the forces on the structure at each time step are found in the

postProcessing folder. The writeInterval i folders contain the field solutions at the defined times.

How many of these directories that appear are controlled by the writeControl option, described in

3., defines how often the results are saved.
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A.2 Boundary Conditions and Explanation

Table A.1: Boundary Conditions

Surface Velocity BC Pressure BC Volume fraction BC
inlet waveVelocity zeroGradient waveAlpha

outlet fixedValue zeroGradient zeroGradient

bottom fixedValue zeroGradient zeroGradient

atmosphere pressureInletOutletVelocity totalPressure inletOutlet

front empty empty empty

back empty empty empty

hull fixedValue zeroGradient zeroGradient
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Table A.2: Boundary Condition Description (CFD Direct; 2016)

Boundary condition Description
waveVelocity Special bc connected to waves2Foam toolbox

waveAlpha Special bc connected to waves2Foam toolbox

fixedValue Specified by a value

pressureInletOutletVelocity Allow some inflow with unknown velocity

empty For 2D cases

fixedFluxPressure Adjusts pressure gradient to match velocity BC

zeroGradient Normal gradient is zero

totalPressure Fixed value condition from specified total pressure

inletOutlet zeroGradient if fluid flows out of domain and fixedValue into domain
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Appendix B

Additional Simulation Results

B.1 Regular Waves

B.1.1 Wave Elevation Results

Figure B.1: Regular waves: wave elevation analysis for H = 4.5m
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Figure B.2: Regular waves: wave elevation analysis for H = 7.5m

Figure B.3: Regular waves: force time series for H = 4.5m

B.1.2 Force Results
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B.1. Regular Waves

Figure B.4: Regular waves: force spectrum for H = 4.5m

Figure B.5: Regular waves: force time series for H = 7.5m
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Figure B.6: Regular waves: force spectrum for H = 7.5m
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B.2. Bi-Chromatic Waves

B.2 Bi-Chromatic Waves

B.2.1 Wave Elevation Results

Figure B.7: Bi-chromatic waves with dω= 0.07: wave elevation time series for H = 4.5m

Figure B.8: Bi-chromatic waves with dω= 0.07: wave elevation time series for H = 7.5m
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B.2.2 Force Results

Figure B.9: Bi-chromatic waves with dω= 0.07: force time series for H = 4.5m

Figure B.10: Bi-chromatic waves with dω= 0.07: force spectrum for H = 4.5m
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B.2. Bi-Chromatic Waves

Figure B.11: Bi-chromatic waves with dω= 0.07: force time series for H = 7.5m

Figure B.12: Bi-chromatic waves with dω= 0.07: force spectrum for H = 7.5m
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B.3 Inviscid Flow Case

B.3.1 Wave Elevation Results

Figure B.13: Inviscid flow case with dω= 0.05: wave elevation time series and spectrum for H = 4.5m

Figure B.14: Inviscid flow case with dω= 0.05: wave elevation time series and spectrum for H = 7.5m
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B.3. Inviscid Flow Case

B.3.2 Force Results

Figure B.15: Inviscid flow case with dω= 0.05: force time serie forH = 4.5m

Figure B.16: Inviscid flow case with dω= 0.05: force spectrum forH = 4.5m
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Figure B.17: Inviscid flow case with dω= 0.05: force time series for H = 7.5m

Figure B.18: Inviscid flow case with dω= 0.05: force spectrum forH = 7.5m
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MATLAB Scripts

C.1 Case Generation Script

Bi-Chromatic Wave Case

1 % Prepares bi-chromtic wave cases to be simulated in openFOAM

2 % Based on script made by Babak Ommani

3

4 function generateRun ()

5 workPath =...

6 ’/Users/julie/Documents/Marin5/Delt/runGeneration/MasterCases/Bichromatic ’;

7 sourcePath = ’/Users/julie/Documents/Marin5/Delt/runGeneration ’;

8 templatePath = [sourcePath ’/’ ’projectfilesBodyBi ’];

9

10 %% CASE PARAMETERS

11 T1 = 12; % Period 1

12 H=[4.5 6 7.5]; % Wave height

13 draft = 20;

14 B = 12; % Body breadth

15 dw = 0.05; % Difference frequency

16

17 for i=1:3

18 omega1 = 2*pi/T1;

19 omega2 = omega1 - dw;

20 T2 = 2*pi/omega2; %Period 2

21 frequency1 = 1/T1;

22 frequency2 = 1/T2;

23 g = 9.81;

24 k1 = omega1 ^2/g;
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25 k2 = omega2 ^2/g;

26 lambda1 = (2*pi)/k1;

27 lambda2 = (2*pi)/k2;

28 steep1_ka(i) = k1*(H(i)/2);

29 steep1_lam(i) = H(i)/lambda1;

30 steep2_ka(i) = k2*(H(i)/2);

31 steep2_lam(i) = H(i)/lambda2;

32 depth = 0.5* lambda2;

33 air = (depth /0.7) -depth;

34 tankL = 11* lambda2;

35 sizeCells = lambda2 /20;

36 nCellXs = round(tankL/sizeCells);

37 nCellZs = round((depth+air)/(tankL/nCellXs));

38 dampstart = 0.82* tankL; %DAMPING AREA

39 damp_Yn = -1;

40 damp_Yp = 1;

41 inletDamp = 400;

42

43 endtime = 800;

44 vel_g = g/(2* omega1); % Group speed

45 vel_ph = g/( omega1); % Phase velocity

46

47 %stl file

48 yNeg=-5;

49 yPos =5;

50 LeftX =0.7* tankL;

51 rightX =0.7* tankL+B;

52 midX=LeftX+(B/2);

53 lowZ =-20;

54 midZ =0;

55 highZ(i)=2*H(i)+H(i)/2;

56 rotmomX = midX;

57 rotmomY = 0.15;

58 rotmomZ = 0;

59

60 %Snappyhexmesh

61 fsboxZlow = lowZ -4;

62 fsboxZhigh(i) = highZ(i)+2;

63 fsboxX = tankL +5;

64 fsrefine = 3;

65 brefone = 3;

66 breftwo = 3;

67 bodyXmin = LeftX -5;

68 bodyXmax = rightX +5;

69 bodyZmin = lowZ -2;

70 bodyZmax(i) = highZ(i)+1;
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71

72 %Probe in front and back of body

73 front=midX -(2*B);

74 back=midX +(2*B);

75

76 %Coords for porbes

77 one = 0.2 * tankL;

78 two = 0.5 * tankL;

79 three = 0.7 * tankL;

80 four = LeftX - B;

81 five = rightX + B;

82 six = 0.79 * tankL;

83 seven = 0.9 *tankL;

84

85 end

86 %%

87 for ind = 1:3

88 %input parameters

89 inputs.nCellX = nCellXs;

90 inputs.L = tankL;

91 inputs.D = depth;

92 inputs.f = frequency1;

93 inputs.wH = H;

94 inputs.domend = air;

95 inputs.endt = endtime;

96 inputs.yNeg = yNeg;

97 inputs.yPos = yPos;

98 inputs.LeftX = LeftX;

99 inputs.rightX = rightX;

100 inputs.midX = midX;

101 inputs.lowZ = lowZ;

102 inputs.midZ = midZ;

103 inputs.highZ = highZ(ind);

104 inputs.fsboxZlow = fsboxZlow;

105 inputs.fsboxZhigh = fsboxZhigh(ind);

106 inputs.fsboxX = fsboxX;

107 inputs.fsrefine = fsrefine;

108 inputs.brefone = brefone;

109 inputs.breftwo = breftwo;

110 inputs.bodyXmin = bodyXmin;

111 inputs.bodyXmax = bodyXmax;

112 inputs.bodyZmin = bodyZmin;

113 inputs.bodyZmax = bodyZmax(ind);

114 inputs.nCellZ = nCellZs;

115 inputs.front = front;

116 inputs.back = back;
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117 inputs.rotmomX = rotmomX;

118 inputs.rotmomY = rotmomY;

119 inputs.rotmomZ = rotmomZ;

120 inputs.dampstart = dampstart;

121 inputs.dampYn = damp_Yn;

122 inputs.dampYp = damp_Yp;

123 inputs.one = one;

124 inputs.two = two;

125 inputs.three = three;

126 inputs.four = four;

127 inputs.five = five;

128 inputs.six = six;

129 inputs.seven = seven;

130 inputs.T1 = T1;

131 inputs.T2 = T2;

132 inputs.inletDamp = inletDamp;

133 inputs.H = H(ind);

134

135 caseName = [’caseBi ’ num2str(ind),’Inviscid ’];

136

137 casePath = [workPath ’/’ caseName ];

138 mkdir(casePath);

139 copyfile ([ templatePath ’/*’], casePath);

140

141 applyInput(casePath , inputs);

142 end

143 end

144

145 function applyInput(casePath , inputs)

146

147 %---------------------------------------------------------------------

148 % block Mesh dic file

149 file = fullfile(casePath ,’constant ’,’polyMesh/blockMeshDict ’);

150 params ={};

151

152 param.name = ’__nCellX__ ’;

153 param.value = inputs.nCellX;

154 params{end+1} = param;

155

156 param.name = ’__L__’;

157 param.value = inputs.L;

158 params{end+1} = param;

159

160 param.name = ’__domend__ ’;

161 param.value = inputs.domend;

162 params{end+1} = param;
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163

164 param.name = ’__D__’;

165 param.value = - inputs.D;

166 params{end+1} = param;

167

168 param.name = ’__nCellZ__ ’;

169 param.value = inputs.nCellZ;

170 params{end+1} = param;

171

172 replaceParams(file ,params);

173 %---------------------------------------------------------------------

174 %stl file

175 file = fullfile(casePath ,’constant ’,’triSurface/hull.stl’);

176 params ={};

177

178 param.name = ’__yPos__ ’;

179 param.value = inputs.yPos;

180 params{end+1} = param;

181

182 param.name = ’__yNeg__ ’;

183 param.value = inputs.yNeg;

184 params{end+1} = param;

185

186 param.name = ’__LeftX__ ’;

187 param.value = inputs.LeftX;

188 params{end+1} = param;

189

190 param.name = ’__midX__ ’;

191 param.value = inputs.midX;

192 params{end+1} = param;

193

194 param.name = ’__rightX__ ’;

195 param.value = inputs.rightX;

196 params{end+1} = param;

197

198 param.name = ’__lowZ__ ’;

199 param.value = inputs.lowZ;

200 params{end+1} = param;

201

202 param.name = ’__midZ__ ’;

203 param.value = inputs.midZ;

204 params{end+1} = param;

205

206 param.name = ’__highZ__ ’;

207 param.value = inputs.highZ;

208 params{end+1} = param;
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209

210 replaceParams(file ,params);

211 %---------------------------------------------------------------------

212 %snappyHexMesh file

213 file = fullfile(casePath ,’system ’,’snappyHexMeshDict ’);

214 params ={};

215

216 param.name = ’__fsboxZlow__ ’; %for blocks

217 param.value = inputs.fsboxZlow;

218 params{end+1} = param;

219

220 param.name = ’__fsboxZhigh__ ’; %for blocks

221 param.value = inputs.fsboxZhigh;

222 params{end+1} = param;

223

224 param.name = ’__L__’; %for one block

225 param.value = inputs.L;

226 params{end+1} = param;

227

228 param.name = ’__fsrefine__ ’;

229 param.value = inputs.fsrefine;

230 params{end+1} = param;

231

232 param.name = ’__brefine1__ ’;

233 param.value = inputs.brefone;

234 params{end+1} = param;

235

236 param.name = ’__brefine2__ ’;

237 param.value = inputs.breftwo;

238 params{end+1} = param;

239

240 param.name = ’__bodyXmin__ ’;

241 param.value = inputs.bodyXmin;

242 params{end+1} = param;

243

244 param.name = ’__bodyZmin__ ’;

245 param.value = inputs.bodyZmin;

246 params{end+1} = param;

247

248 param.name = ’__bodyXmax__ ’;

249 param.value = inputs.bodyXmax;

250 params{end+1} = param;

251

252 param.name = ’__bodyZmax__ ’;

253 param.value = inputs.bodyZmax;

254 params{end+1} = param;
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255

256 replaceParams(file ,params);

257 %---------------------------------------------------------------------

258 % waveProperties.input

259 file = fullfile(casePath ,’constant ’,’waveProperties.input’);

260 params ={};

261

262 param.name = ’__D__’;

263 param.value = inputs.D;

264 params{end+1} = param;

265

266 param.name = ’__damping__ ’;

267 param.value = inputs.dampstart;

268 params{end+1} = param;

269

270 param.name = ’__dampYn__ ’;

271 param.value = inputs.dampYn;

272 params{end+1} = param;

273

274

275 param.name = ’__dampYp__ ’;

276 param.value = inputs.dampYp;

277 params{end+1} = param;

278

279 param.name = ’__L__’;

280 param.value = inputs.L;

281 params{end+1} = param;

282

283 param.name = ’__T1__ ’;

284 param.value = inputs.T1;

285 params{end+1} = param;

286

287 param.name = ’__T2__ ’;

288 param.value = inputs.T2;

289 params{end+1} = param;

290

291 param.name = ’__inletDamp__ ’;

292 param.value = inputs.inletDamp;

293 params{end+1} = param;

294

295 param.name = ’__H__’;

296 param.value = inputs.H;

297 params{end+1} = param;

298

299 replaceParams(file ,params);

300 %---------------------------------------------------------------------
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301 % controldict

302 file = fullfile(casePath ,’system ’,’controlDict ’);

303 params ={};

304

305 param.name = ’__end__ ’;

306 param.value = inputs.endt;

307 params{end+1} = param;

308

309 param.name = ’__midX__ ’;

310 param.value = inputs.midX;

311 params{end+1} = param;

312

313 param.name = ’__midZ__ ’;

314 param.value = inputs.midZ;

315 params{end+1} = param;

316 replaceParams(file ,params);

317

318 param.name = ’__rotmomX__ ’;

319 param.value = inputs.rotmomX;

320 params{end+1} = param;

321

322 param.name = ’__rotmomY__ ’;

323 param.value = inputs.rotmomY;

324 params{end+1} = param;

325

326 param.name = ’__rotmomZ__ ’;

327 param.value = inputs.rotmomZ;

328 params{end+1} = param;

329

330 replaceParams(file ,params);

331 %---------------------------------------------------------------------

332 % coords

333 file = fullfile(casePath ,’postProcessing ’,’coords ’);

334 params ={};

335

336 param.name = ’__one__ ’;

337 param.value = inputs.one;

338 params{end+1} = param;

339

340 param.name = ’__two__ ’;

341 param.value = inputs.two;

342 params{end+1} = param;

343

344 param.name = ’__three__ ’;

345 param.value = inputs.three;

346 params{end+1} = param;
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347

348 param.name = ’__four__ ’;

349 param.value = inputs.four;

350 params{end+1} = param;

351

352 param.name = ’__five__ ’;

353 param.value = inputs.five;

354 params{end+1} = param;

355

356 param.name = ’__six__ ’;

357 param.value = inputs.six;

358 params{end+1} = param;

359

360 param.name = ’__seven__ ’;

361 param.value = inputs.seven;

362 params{end+1} = param;

363

364 replaceParams(file ,params);

365 end

366

367

368 function replaceParams(filePath , params)

369

370 txt = fileread(filePath);

371

372 for ind = 1: length(params)

373 param = params{ind};

374 txt = strrep(txt , param.name ,num2str(param.value));

375 end

376

377 fid = fopen(filePath ,’wt’);

378 fprintf(fid , ’%s’, txt);

379 fclose(fid);

380

381 end

C.2 Post-Processing Scripts

C.2.1 FFT of Wave Elevation

1 % Script to perform FFT on the wave elevation time series and plot the

2 % Time series together with the spectra

3
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4 close all;

5 clear;

6 clc;

7 %SET PARAMETERS

8 wavemax =12;

9 wavemin =-12;

10 numProbes =7;

11 legend1 ={};

12 legend2 ={};

13 legend3 ={};

14

15 %IMPORT WAVEDATA FROM FILES

16 for i=1: numProbes

17 name=[’probe ’,num2str(i)];

18 pathname =[’elevationVsTime ’,num2str(i-1)];

19 data.(name) = importdata(pathname);

20 depth(i)=mean(data.(name)(:,2));

21 end

22

23 %SET WAVE PARAMETERS

24 w = 0.05;

25 %w = 0.07; % MUST CHANGE WITH CASE

26 omega = [0.05 0.5236 0.4736];

27 %omega = [0.07 0.5236 0.4536]; % MUST CHANGE WITH CASE

28 Tw=2*pi/w; % MUST CHANGE WITH CASE

29 g =9.81;

30 numT = 4; % Number of periods to use in validation

31 Tstart = 2.22; %4.05; % Number periods at interval start

32 delT =0.001; % Timestep in interpolation

33 dt =0.01; % Time step used in OpenFOAM simulation

34 t_start_sec=Tstart*Tw; % Time in sekunder

35 t_start=t_start_sec *1/dt; % Time in "elements"

36 t_delta_sec=numT*Tw; % Delta time in seconds

37 t_delta=t_delta_sec *1/dt; % Delta time in elements

38 t_end_sec=round(t_start_sec+t_delta_sec ,1); % End time seconds

39 t_end=t_start+t_delta; % End time in elements

40

41 %RUN AND PLOT

42 for i=4

43 name=[’probe ’,num2str(i)];

44 m=1/dt;

45

46 t=data.(name)(t_start:t_end ,1);

47 y=data.(name)(t_start:t_end ,2) - mean(data.(name)(t_start:t_end ,2));

48 newt = t_start_sec:delT:t_end_sec;

49 newy = interp1(t,y,newt);
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50 newy(isnan(newy)) = 0;

51 newL=length(newt)*1;

52 newFs =1/ delT;

53 freq =2*pi *((0:newL -1)*newFs/newL);

54 x=fft(newy);

55 mag=abs(x);

56

57 if i==4

58 fig = figure;

59 hold on;

60

61 set(gcf , ’PaperUnits ’, ’centimeters ’);

62 paperSize = [18 1.4*18* sqrt (2) /3]*2;

63 figureSize = [0 0 paperSize (1) paperSize (2) -0.01];

64 axesfontSize = 14;

65

66 subplot( 2, 1, 2 )

67 plot(freq (1: newL /2) ,(2/newL*mag(1: newL /2)));

68 title(’Single Sided Amplitude Spectrum of \eta(t)’)

69

70 h = zeros(6, 1);

71 h(1)=line([omega (1) omega (1)], [0 4],’Color ’,’m’); % line through freq

72 h(2)=line([omega (2) omega (2) ], [0 4],’Color’,’r’);

73 h(3)=line([omega (3) omega (3)], [0 4],’Color ’,’b’);

74 h(4)=line ([2* omega (2) 2* omega (2)], [0 4],’Color ’ ,...

75 [204/255 102/255 0/255]);

76 h(5)=line ([2* omega (3) 2* omega (3)], [0 4],’Color ’,’c’);

77 h(6)=line([omega (2)+omega (3) omega (2)+omega (3)], [0 4],’Color’,’k’);

78 h(7)=line ([2* omega (2)-omega (3) 2* omega (2)-omega (3)], [0 4],...

79 ’Color ’,’y’);

80 h(8)=line ([2* omega (3)-omega (2) 2* omega (3)-omega (2)], [0 4],’Color’ ,...

81 [0/255 102/255 0/255]);

82 legend1 = [’\omega = ’, num2str(omega (1))];

83 legend2 = [’\omega_1 = ’, num2str(omega (2))];

84 legend3 = [’\omega_2 = ’, num2str(omega (3))];

85 legend4 = [’2\ omega_1 ’];

86 legend5 = [’2\ omega_2 ’];

87 legend6 = [’\omega_1 +\ omega_2 ’];

88 legend7 = [’2\omega_1 -\ omega_2 ’];

89 legend8 = [’2\omega_2 -\ omega1 ’];

90 legObj=legend(h,legend1 ,legend2 ,legend3 ,legend4 ,legend5 ,legend6 ,...

91 legend7 , legend8);

92 legObj.FontSize =14;

93 xlabel(’Frequency [rad/s]’)

94 ylabel(’|\eta|’)

95 xlim ([0 1.4])
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96 ylim ([0 1.1* max (2/ newL*mag(1: newL /2))])

97 box on;

98 set( gca , ’FontSize ’, axesfontSize );

99

100 subplot( 2, 1, 1)

101 plot(data.probe4 (:,1),data.probe4 (:,2))

102 h = zeros(2, 1);

103 h(1)=line([ t_start_sec t_start_sec], [-10 10],’Color’,’g’);

104 h(2)=line([ t_end_sec t_end_sec], [-10 10],’Color’,’r’);

105 legend1 = [’Interval Start ’];

106 legend2 = [’Interval End’];

107 legObj=legend(h,legend1 ,legend2);

108 legObj.FontSize =14;

109 title(’Time Series of Wave Elevation ’)

110 xlabel(’Time [s]’)

111 ylabel(’wave elevation , \eta’)

112 ylim([ wavemin wavemax ])

113 xlim ([0 data.probe1(end ,1)])

114 grid;

115 box on;

116 set( gca , ’FontSize ’, axesfontSize );

117

118 plotname =...

119 ’/Users/julie/Documents/Marin5/Master/Master -set -up/fig/H7/dw005FFT ’;

120 set(gcf ,’PaperSize ’,paperSize *1.05)

121 set(gcf ,’PaperPosition ’,figureSize *1.05)

122 set(gca , ’LooseInset ’, get(gca , ’TightInset ’));

123 print(gcf ,’-dpng’, plotname);

124 end

125 end

C.2.2 FFT of Force Data

1 % Performs FFT on the force results and plots the firce time series and the

2 % force spectra

3

4 close all;

5 clear;

6 clc;

7 fourierData ={};

8 hAll = [4.5 6 7.5 8]; %j

9 zetaAll =[2.25 3 3.75 4];

10 progressBar =0;

11 output ={};

12
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13 for kk=1:2;

14 if kk==1

15 w = [0.05 0.5236 0.4736]; %i

16 elseif kk==2

17 w = [0.07 0.5236 0.4536];

18 else

19 disp(’error1 ’)

20 end

21 for j=1:3;

22 H=hAll(j);

23 for i=1;

24 %close all;

25

26 B = 12;

27 d = 20;

28 L = 0.1;

29 zeta_A = zetaAll(j); % NOMINAL AMPLITUDE

30 if w(1) ==0.05

31 nTStart =2.22;

32 elseif w(1) ==0.07

33 nTStart =4.05;

34 else

35 disp(’error ’);

36 end

37

38 numT = 4.00; %number of periods in fourier analysis

39

40 rho = 1000.0;

41 g = 9.81;

42 Tw = 2.0*pi/w(1);

43 k = (w(1) ^2.0)/g;

44 % Load data , wave loads

45

46 filename =[’BiH’,num2str(floor(H)),’dw00’,num2str(w(1) *100) ,...

47 ’t001’];

48 output= [output; filename num2str(i) num2str(j) num2str(kk)];

49

50 run(filename);

51

52 t0 = time (4:end);

53 dt0 = t0(2)-t0(1);

54 fx0 = fpx(4:end)+fvx(4:end);

55 fz0 = fpz(4:end)+fvz(4:end)- rho*g*d*B*L;

56 my0 = mpy(4:end)+mvy(4:end);

57

58 % Harmonic components
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59 % Analysis window

60 t_start= nTStart*Tw;

61 t_end = t_start + numT*Tw; %+0.1*dt;

62 t_end = round(t_end);

63 delT = 0.001; %timestep in interpolation

64

65 % FORCE X (SURGE)

66 newt = t_start:delT:t_start +(numT*Tw);

67 newfx = interp1(t0,fx0 ,newt);

68 newLx = length(newt)*1;

69 newFsx = 1/delT;

70 freq = 2*pi*((0: newLx -1)*newFsx/newLx);

71 fftx = fft(newfx ,length(freq));

72 magx = abs(fftx);

73 [ampx , I] = max (2/ newLx*magx);

74 Fq = freq(I);

75

76 % FORCE Z (HEAVE)

77 name=[’fz’];

78 newt = t_start:delT:t_start +(numT*Tw);

79 newfz = interp1(t0,fz0 ,newt);

80 newLz=length(newt);

81 newFsz =1/ delT;

82 freq =2*pi *((0: newLz -1)*newFsz/newLz);

83 fftz=fft(newfz ,length(freq));

84 magz=abs(fftz);

85 [ampz , I]=max(2/ newLz*magz);

86 Fq=freq(I);

87

88 % MOMENT Y (PITCH)

89 name=[’my’];

90 newt = t_start:delT:t_start +(numT*Tw);

91 newmy = interp1(t0,my0 ,newt);

92 newLy=length(newt)*1;

93 newFsy =1/ delT;

94 freq =2*pi *((0: newLy -1)*newFsy/newLy);

95 fftmy=fft(newmy ,length(freq));

96 magmy=abs(fftmy);

97 %magmy (1) =0;

98 [ampmy , I]=max(2/ newLy*magmy);

99 Fq=freq(I);

100

101 % FIGURES

102 fig=figure;

103 hold on;

104 set(gcf , ’PaperUnits ’, ’centimeters ’);
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105 paperSize = [18 1.4*18* sqrt (2) /3]*2;

106 figureSize = [0 0 paperSize (1) paperSize (2) -0.01];

107 axesfontSize = 14;

108

109 subplot( 3, 1, 1 )

110 plot(freq (1: floor(newLx /2)) ,(2/newLx*magx (1: floor(newLx /2))));

111 title(’Surge Force ’)

112 h = zeros(6, 1);

113 h(1)=line([w(1) w(1)], [0 1.1* ampx],’Color ’,’m’); %plot line

114 h(2)=line([w(2) w(2)], [0 1.1* ampx],’Color ’,’r’);

115 h(3) = line([w(3) w(3)], [0 1.1* ampx],’Color’,’g’);

116 h(4)=line ([2*w(2) 2*w(2)], [0 1.1* ampx],’Color’ ,...

117 [204/255 102/255 0/255]); % []

118 h(5)=line ([2*w(3) 2*w(3)], [0 1.1* ampx],’Color’,’c’);

119 h(6)=line([w(2)+w(3) w(2)+w(3)], [0 1.1* ampx],’Color’,’k’);

120 h(7)=line ([2*w(2)-w(3) 2*w(2)-w(3)], [0 1.1* ampx],’Color’,’y’);

121 h(8)=line ([2*w(3)-w(2) 2*w(3)-w(2)], [0 1.1* ampx],’Color’ ,...

122 [0/255 102/255 0/255]);

123 legend1 = [’\omega = ’, num2str(w(1))];

124 legend2 = [’\omega_1 = ’, num2str(w(2))];

125 legend3 = [’\omega_2 = ’, num2str(w(3))];

126 legend4 = ’2\ omega_1 ’;

127 legend5 = ’2\ omega_2 ’;

128 legend6 = ’\omega_1 +\ omega_2 ’;

129 legend7 = [’2\omega_1 -\ omega_2 ’];

130 legend8 = [’2\omega_2 -\ omega1 ’];

131 legObj=legend(h,legend1 ,legend2 ,legend3 ,legend4 ,legend5 ,...

132 legend6 ,legend7 ,legend8);

133 legObj.FontSize=axesfontSize;

134 xlabel(’Frequency [rad/s]’,’FontSize ’, axesfontSize)

135 ylabel( ’F_x [N]’, ’FontSize ’, axesfontSize );

136 xlim ([0 1.3])

137 ylim ([0 1.1* ampx])

138 box on;

139

140 set( gca , ’FontSize ’, axesfontSize );

141

142 subplot( 3, 1, 2)

143 plot(freq (1: floor(newLz /2)) ,(2/newLz*magz (1: floor(newLz /2))));

144 title(’Heave Force’)

145 h = zeros(8, 1);

146 h(1)=line([w(1) w(1)], [0 1.1* ampz],’Color’,’m’); %plot line

147 h(2)=line([w(2) w(2)], [0 1.1* ampz],’Color’,’r’);

148 h(3)=line([w(3) w(3)], [0 1.1* ampz],’Color’,’g’);

149 h(4)=line ([2*w(2) 2*w(2)], [0 1.1* ampz],’Color’ ,...

150 [204/255 102/255 0/255]);
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151 h(5)=line ([2*w(3) 2*w(3)], [0 1.1* ampz],’Color’,’c’);

152 h(6)=line([w(2)+w(3) w(2)+w(3)], [0 1.1* ampz],’Color’,’k’);

153 h(7)=line ([2*w(2)-w(3) 2*w(2)-w(3)], [0 1.1* ampz],’Color’,’y’);

154 h(8)=line ([2*w(3)-w(2) 2*w(3)-w(2)], [0 1.1* ampz],’Color’ ,...

155 [0/255 102/255 0/255]);

156 legend1 = [’\omega = ’, num2str(w(1))];

157 legend2 = [’\omega_1 = ’, num2str(w(2))];

158 legend3 = [’\omega_2 = ’, num2str(w(3))];

159 legend4 = [’2\ omega_1 ’];

160 legend5 = [’2\ omega_2 ’];

161 legend6 = [’\omega_1 +\ omega_2 ’];

162 legend7 = [’2\omega_1 -\ omega_2 ’];

163 legend8 = [’2\omega_2 -\ omega1 ’];

164

165 legObj=legend(h,legend1 ,legend2 ,legend3 ,legend4 ,legend5 ,...

166 legend6 ,legend7 , legend8);

167 legObj.FontSize=axesfontSize;

168 xlabel(’Frequency [rad/s]’,’FontSize ’, axesfontSize)

169 ylabel( ’F_z [N]’, ’FontSize ’, axesfontSize );

170 xlim ([0 1.3])

171 ylim ([0 1.1* ampz])

172 box on;

173

174 set( gca , ’FontSize ’, axesfontSize );

175

176 subplot( 3, 1, 3)

177 plot(freq (1: floor(newLy /2)) ,(2/newLy*magmy (1: floor(newLy /2))));

178 title(’Pitch Moment ’)

179

180 h = zeros(6, 1);

181 h(1)=line([w(1) w(1)], [0 1.1* ampmy],’Color ’,’m’); %plot line

182 h(2)=line([w(2) w(2)], [0 1.1* ampmy],’Color ’,’r’);

183 h(3)=line([w(3) w(3)], [0 1.1* ampmy],’Color ’,’g’);

184 h(4)=line ([2*w(2) 2*w(2)], [0 1.1* ampmy],’Color ’ ,...

185 [204/255 102/255 0/255]);

186 h(5)=line ([2*w(3) 2*w(3)], [0 1.1* ampmy],’Color ’,’c’);

187 h(6)=line([w(2)+w(3) w(2)+w(3)], [0 1.1* ampmy],’Color’,’k’);

188 h(7)=line ([2*w(2)-w(3) 2*w(2)-w(3)], [0 1.1* ampmy],’Color’ ,...

189 ’y’);

190 h(8)=line ([2*w(3)-w(2) 2*w(3)-w(2)], [0 1.1* ampmy],’Color’ ,...

191 [0/255 102/255 0/255]);

192 legend1 = [’\omega = ’, num2str(w(1))];

193 legend2 = [’\omega_1 = ’, num2str(w(2))];

194 legend3 = [’\omega_2 = ’, num2str(w(3))];

195 legend4 = [’2\ omega_1 ’];

196 legend5 = [’2\ omega_2 ’];
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197 legend6 = [’\omega_1 +\ omega_2 ’];

198 legend7 = [’2\omega_1 -\ omega_2 ’];

199 legend8 = [’2\omega_2 -\ omega1 ’];

200 legObj=legend(h,legend1 ,legend2 ,legend3 ,legend4 ,legend5 ,...

201 legend6 ,legend7 ,legend8);

202 legObj.FontSize=axesfontSize;

203 xlabel(’Frequency [rad/s]’,’FontSize ’, axesfontSize)

204 ylabel( ’My [Nm]’, ’FontSize ’, axesfontSize );

205 xlim ([0 1.3])

206 ylim ([0 1.1* ampmy])

207 box on;

208 set( gca , ’FontSize ’, axesfontSize );

209

210 plotname =...

211 [’/Users/julie/Documents/Marin5/Master/Master -set -up/fig/fftForceBiH ’ ,...

212 num2str(floor(H)),’dw00’,num2str(w(1) *100),’t001’];

213 set(gcf ,’PaperSize ’,paperSize *1.05)

214 set(gcf ,’PaperPosition ’,figureSize *1.05)

215 set(gca , ’LooseInset ’, get(gca , ’TightInset ’));

216 print(gcf ,’-dpng’, plotname);

217 progressBar=progressBar +1;

218 progress=round(progressBar /6*100);

219 clc; %clearing "chat"

220 loadingText =[’Simulation is ’,num2str(progress),’% done’];

221 disp(loadingText);

222 hold off;

223 close all;

224 end

225 end

226 end

227 clc;

228 disp(’Complete ’)

C.2.3 Fourier Analysis of Force Data

1 % Script to perform Fourier analysis on the force results

2 % Based on the script made by Finn -Christian Hanssen

3 % Uses the function intergral values.m and fourier_comp.m

4 % Outputs a matrix with all the dimensionless force coefficients

5

6 clear all; clc; close all;

7

8 %Basic data

9 fourierData ={};

10 fourierDataThird ={};
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11 hAll = [4.5 6 7.5]; %Wave heigt , index j

12 zetaAll =[2.25 3 3.75]; %Wave Amp

13 progressBar =0;

14

15 for kk=1:2;

16 if kk==1

17 w = [0.05 0.5236 0.4736]; % frequencies , index i

18 elseif kk==2

19 w = [0.07 0.5236 0.4536];

20 else

21 disp(’error1 ’)

22 end

23 for j=1:3;

24 H=hAll(j);

25 for i=1:3;

26

27 B = 12; % Breadth of column

28 d = 20; % Draft of column

29 L = 0.1; % Domain size in y - thickness of body

30 zeta_A = zetaAll(j);% NOMINAL AMPLITUDE

31 if w(1) ==0.05

32 nTStart =2.22; %Start of interval for diff. freq 0.05

33 elseif w(1) ==0.07

34 nTStart =4.05; %Start of interval for diff. freq 0.07

35 else

36 disp(’error ’);

37 end

38

39 n_Tw = 4.00; %Number of periods in fourier analysis

40

41 rho = 1000.0;

42 g = 9.81;

43 Tw = 2.0*pi/w(1);

44 k = (w(i)^2.0)/g;

45

46 % Load data , wave loads

47 filename =...

48 [’BiH’,num2str(floor(H)),’dw00’,num2str(w(1) *100),’t001.m’];

49

50 run(filename); %Runs script collecting force data from file

51

52 t0 = time (4:end);

53 dt0 = t0(2)-t0(1);

54 fx0 = fpx(4:end)+fvx(4:end);

55 fz0 = fpz(4:end)+fvz(4:end);

56 my0 = mpy(4:end)+mvy(4:end);
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57

58 % Resample data . interpolate

59 t = t0( 1 ):( dt0/10 ):t0( end );

60 dt = t( 2 ) - t( 1 );

61 t = t’;

62 fx = interp1( t0 , fx0 , t );

63 fz = interp1( t0 , fz0 , t ) - rho*g*d*B*L;

64 my = interp1( t0 , my0 , t );

65

66 % Harmonic components

67 % Analysis window

68 t1 = nTStart*Tw;

69 t2 = t1 + n_Tw*Tw + 0.1*dt;

70

71 % Zeroth order

72 n = 0;

73 [ a0.fx, b0.fx ] = fourier_comp( n, t, fx, w(i), t1 , t2 );

74 [ a0.fz, b0.fz ] = fourier_comp( n, t, fz, w(i), t1 , t2 );

75 [ a0.my, b0.my ] = fourier_comp( n, t, my, w(i), t1 , t2 );

76 a0.fx = a0.fx/2.0;

77 a0.fz = a0.fz/2.0;

78 a0.my = a0.my/2.0;

79

80 % First order

81 n = 1;

82 [ a1.fx, b1.fx ] = fourier_comp( n, t, fx, w(i), t1 , t2 );

83 [ a1.fz, b1.fz ] = fourier_comp( n, t, fz, w(i), t1 , t2 );

84 [ a1.my, b1.my ] = fourier_comp( n, t, my, w(i), t1 , t2 );

85

86 % Second order

87 n = 2;

88 [ a2.fx, b2.fx ] = fourier_comp( n, t, fx, w(i), t1 , t2 );

89 [ a2.fz, b2.fz ] = fourier_comp( n, t, fz, w(i), t1 , t2 );

90 [ a2.my, b2.my ] = fourier_comp( n, t, my, w(i), t1 , t2 );

91

92 % Third order

93 n = 3;

94 [ a3.fx, b3.fx ] = fourier_comp( n, t, fx, w(i), t1 , t2 );

95 [ a3.fz, b3.fz ] = fourier_comp( n, t, fz, w(i), t1 , t2 );

96 [ a3.my, b3.my ] = fourier_comp( n, t, my, w(i), t1 , t2 );

97 nn = 1;

98 w1 = 2*w(2)-w(3);%2w1 -w2

99 w2 = 2*w(3)-w(2);%2w2 -w1

100 [ a3w1.fx, b3w1.fx ] = fourier_comp( nn, t, fx, w1, t1, t2 );

101 [ a3w1.fz, b3w1.fz ] = fourier_comp( nn, t, fz, w1, t1, t2 );

102 [ a3w1.my, b3w1.my ] = fourier_comp( nn, t, my, w1, t1, t2 );
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103

104 [ a3w2.fx, b3w2.fx ] = fourier_comp( nn, t, fx, w2, t1, t2 );

105 [ a3w2.fz, b3w2.fz ] = fourier_comp( nn, t, fz, w2, t1, t2 );

106 [ a3w2.my, b3w2.my ] = fourier_comp( nn, t, my, w2, t1, t2 );

107

108

109 % Nondimensional forces

110 fd_x = a0.fx/( 0.5* rho*g*L*zeta_A ^2.0 );

111 fd_z = a0.fz/( 0.5* rho*g*L*zeta_A ^2.0 );

112 fd_my = a0.my/( 0.5* rho*g*L*B*zeta_A ^2.0 );

113

114 fx1 = sqrt( a1.fx^2 + b1.fx^2 )/( rho*g*L*d*zeta_A );

115 fz1 = sqrt( a1.fz^2 + b1.fz^2 )/( rho*g*L*B*zeta_A );

116 my1 = sqrt( a1.my^2 + b1.my^2 )/( rho*g*L*B*d*zeta_A );

117 fxSlow = sqrt( a1.fx^2 + b1.fx^2 )/( rho*g*L*zeta_A ^2 );

118 fzSlow = sqrt( a1.fz^2 + b1.fz^2 )/( rho*g*L*zeta_A ^2 );

119 mySlow = sqrt( a1.my^2 + b1.my^2 )/( rho*g*L*B*zeta_A ^2 );

120

121 fx2 = sqrt( a2.fx^2 + b2.fx^2 )/( rho*L*d*g*zeta_A );

122 fz2 = sqrt( a2.fz^2 + b2.fz^2 )/( rho*L*B*g*zeta_A );

123 my2 = sqrt( a2.my^2 + b2.my^2 )/( rho*g*L*B*d*zeta_A );

124

125 fx3 = sqrt( a3.fx^2 + b3.fx^2 )/( rho*L*d*g*zeta_A );

126 fz3 = sqrt( a3.fz^2 + b3.fz^2 )/( rho*L*B*g*zeta_A );

127 my3 = sqrt( a3.my^2 + b3.my^2 )/( rho*g*L*B*d*zeta_A );

128 fx3w1 = sqrt( a3w1.fx^2 + b3w1.fx^2 )/( rho*L*d*g*zeta_A );

129 fz3w1 = sqrt( a3w1.fz^2 + b3w1.fz^2 )/( rho*L*B*g*zeta_A );

130 my3w1 = sqrt( a3w1.my^2 + b3w1.my^2 )/( rho*g*L*B*d*zeta_A );

131 fx3w2 = sqrt( a3w2.fx^2 + b3w2.fx^2 )/( rho*L*d*g*zeta_A );

132 fz3w2 = sqrt( a3w2.fz^2 + b3w2.fz^2 )/( rho*L*B*g*zeta_A );

133 my3w2 = sqrt( a3w2.my^2 + b3w2.my^2 )/( rho*g*L*B*d*zeta_A );

134

135 fourierData =[ fourierData; fd_x fx1 fz1 my1 fx2 fz2 my2 fx3 ...

136 fz3 my3 fd_z fd_my fxSlow fzSlow mySlow i j kk];

137 fourierDataThird =[ fourierDataThird ;...

138 fx3w1 fz3w1 my3w1 fx3w2 fz3w2 my3w2 i j kk];

139 progressBar=progressBar +1;

140 progress=round(progressBar /18*100);

141 clc;

142 loadingText =[’Simulation is ’,num2str(progress),’% done’];

143 disp(loadingText);

144 end

145 end

146 end

147 fourierData = cell2mat(fourierData);

148 fourierDataThird = cell2mat(fourierDataThird);
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149 clc;

150 disp(’Done’);

C.2.4 Input Function in fourier_analysist001.m

1 % Made by Finn -Christian Hanssen

2 % Used by the script fourier_analysist001.m

3 % Uses the function integral_values.m

4

5 function [ an, bn ] = fourier_comp( n, t, y, w, t1, t2 )

6

7 % Determine vectors for integration

8 ind = find( ( t >= t1 ) & ( t <= t2 ) );

9 ti = t( ind );

10 yi = y( ind );

11 T = ti( end ) - ti( 1 );

12

13 for i = 1: length( ti )

14 tt = ti( i );

15 yy = yi( i );

16 [ ian( i ), ibn( i ) ] = integral_values( n, w, tt , yy );

17 end

18

19 % Perform trapeziodal integration

20 an = ( 2/T )*trapz( ti, ian );

21 bn = ( 2/T )*trapz( ti, ibn );

22

23 end

C.2.5 Input Function in fourier_comp.m

1

2 % Made by Finn -Christian Hanssen

3 % Input function to fourier_comp.m

4

5 function [ ia, ib ] = integral_values( n, w, t, y )

6 ia = y*cos( n*w*t );

7 ib = y*sin( n*w*t );

8 end

C.2.6 Script Used to Plot Mean Drift Force Coefficients
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1 % Script to plot the mean drift force coefficients

2 % Uses Matrix output from fourier_analysis.m

3

4 run fourier_analysist001.m

5

6 close all;

7 figure

8

9 grid on

10 hold on

11 colorVector =[’b’ ’r’];

12 lineVector ={’-’,’-.’,’:’};

13 legendString ={};

14

15 for kk=1:2;

16 if kk==1

17 w = [0.05 0.5236 0.4736]; %i

18 elseif kk==2

19 w = [0.07 0.5236 0.4536];

20 else

21 disp(’error1 ’)

22 end

23 for i=1

24 plotY=fourierData (9*(kk -1) +((i-1) +1:3:(i-1)+9) ,1);

25 plotXentry=fourierData (9*(kk -1)+((i-1) +1:3:(i-1)+9) ,17); %track wave height

26 heightVector =[2.25 3 3.75];

27 plotX =[ heightVector(plotXentry (1)) heightVector(plotXentry (2))...

28 heightVector(plotXentry (3))];

29

30 set(gcf , ’PaperUnits ’, ’centimeters ’)

31 paperSize = [18 1.1*18* sqrt (2) /3]*2;

32 figureSize = [0 0 paperSize (1) paperSize (2) -0.01];

33 axesfontSize = 16;

34

35 plotOption = [cellstr(lineVector(i)), colorVector(kk)];

36 plotOption = strjoin(plotOption);

37 plot(plotX ,plotY ,plotOption ,’LineWidth ’ ,1.5)

38 legendString =[ legendString [’d\omega = ’ num2str(w(1))]];

39 legend(legendString ,’Location ’, ’NorthEast ’);

40

41 xlim ([2 4]);

42 %ylim ([0.75 1]);

43

44 set(gca ,’GridLineStyle ’,’:’)

45 set(gcf ,’PaperSize ’,paperSize *1.05)

46 set(gcf ,’PaperPosition ’,figureSize *1.05)
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C.2. Post-Processing Scripts

47 set(gca , ’LooseInset ’, get(gca , ’TightInset ’));

48 set(gca ,’FontSize ’,axesfontSize)

49 prcentChangeMeanForceX (:,kk) = ((plotY (3)-plotY (1))/plotY (1))*100;

50 end

51 end

52

53 plotname =...

54 ’/Users/julie/Documents/Marin5/Master/Master -set -up/fig/MeanCoeffX ’;

55 legend(legendString);

56 xlabel(’Wave Amplitude [m]’);

57 ylabel(’Fx_{mean }/0.5\ rhogLA ^2 [-]’);

58 title(’Mean Drift Force Coefficients in x-Direction ’);

59 box on;

60 print(gcf ,’-dpng’, plotname)

61 hold off
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