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Abstract

Communities have been a hot topic in complex network research the last years. Several
algorithms for detecting communities have been developed, and in this thesis we use the
sequential clique percolation algorithm to detect communities in a large social network.
Our network consists of 5.3 million mobile phone users, with mutual communication data
aggregated over 18 weeks.

In this thesis we do a visual study of the communities, and we clearly see the nested
community structure when we do clique percolation for different clique sizes. When
we threshold the edge weights we see that the strongest edges are in the densest sub-
communities and that the weakest edges keep the communities connected.

We also present numerical analysis of some selected structure and topology properties
of the communities. Lastly we confirm, by numerical analysis of the available demographic
data on the mobile phone users, that the communities are more conform with respect to
zip code, age and sex compared to a reference network where the demographic attributes
have been shuffled.





Sammendrag

Samfunn har vært et hett emne innen forskning p̊a komplekse nettverk de siste årene.
Det har blitt utviklet flere algoritmer for å finne samfunn, og i denne oppgaven bruker vi
sekvensiell klikkperkolasjon til å finne samfunn i et stort sosialt nettverk. Nettverket v̊art
best̊ar av 5.3 millioner mobiltelefonbrukere, med gjensidig kommunikasjonsdata aggregert
over 18 uker.

I denne oppgaven gjør vi en visuell studie av samfunnene, og vi ser tydelig den vevde
sammfunnsstrukturen n̊ar vi utfører klikkperkolasjon for ulike klikkstørrelser. N̊ar vi set-
ter terskler for lenkevektene ser vi at de sterkeste lenkene er i de tetteste undersamfunnene
og at de svakeste lenkene holder samfunnene i kontakt med hverandre.

Vi presenterer ogs̊a en numerisk analyse av noen utvalgte struktur- og topologiegen-
skaper hos samfunnene. Til slutt bekrefter vi, via numerisk analyse av den tilgjengelige
demografiske informasjonen om mobiltelefonbrukerne, at samfunnene er mer konforme
med tanke p̊a postkode, alder og kjønn sammenlignet med et referansenettverk hvor de
demografiske attributtene har blitt stokket om.
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Chapter 1

Introduction

The interest in complex social networks research has greatly increased in the last decade
as the increase of computational power has made it possible to analyse ever larger net-
works. The development of new digital channels for communication and information flow
has further made it feasible to collect enormous sets of precise data regarding human rela-
tionships. The largest network studied so far can easily be called “planetary”1, as it looks
at the communication patterns of 180 million people around the world using an instant
messaging service [1]. This is quite a leap from the study by Zachary, of the splitting
of a karate club with 34 members [2]. The karate club has been extensively studied by
sociologists since it was published in 1977.

Lately, the study of communities has been one of the focal points of complex network
research. Communities are interesting as they often correspond to the functional groups
of a system. Much effort has been put into the development of models and algorithms
for searching out the denser connected groups of nodes in a network, i.e., communities.
The concept of a community can take different shapes in different networks, however,
meaning that the community structure found is very much dependent on the algorithm
used. Both global optimization of communities and local topology only, are valid starting
points for community detecting methods. In social networks one wants to be able to
detect communities consisting of family, friends, coworkers and so on. Separating these
communities from each other can be practically impossible without extremely detailed
information about the persons in the network, though. In this thesis we will use a specific
clique percolation algorithm to detect the communities in our mobile phone user network.
We have chosen this model because of its logical definition of communities, its simple
interpretation, its speed and its high suitability to visualization.

The ever growing size of analysed networks hampers the possibility to make a mean-
ingful visual representation of them. A good representation of the subject under study
is something one should never underestimate, though, and the increasing computational
power can to some extent be put to good use also in this area. Presenting an acceptable

1“Global”, however, would not be a correct term to use. The use of instant messaging is not common in
several highly populated parts of the world like many African countries and rural China, quietly excluding
them from the data.
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layout of a large network in two dimensions is no longer a problem, but for the time being,
computers can neither improve the limited resolution of the human eye (save for some
on-screen zooming of course) or print out three-dimensional plots. One of the goals of this
thesis is therefore to put one of the many community detection models to action on a large
social network and present a good visualization of the resulting community structure. We
also want to learn more about the behaviour of communities by quantifying a selection of
their network properties. Since it is impossible to get such quantifiable information from
a visualization, we have also done numerical analysis on both structural and demographic
properties of the communities.

When one has taken the step up to do analysis of networks consisting of millions
of persons, the individuals can not have the same focus anymore. We are forced to use
statistics to present the average behaviour of people. This may seem alarming, but we will
see that several properties of our network have so broad distributions and large variances
that the individuality of human behaviour is not simply discarded.

1.1 The layout of this thesis

In chapter 2 we will first give an introduction to complex networks and communities.
Selected properties and interesting topics on the subjects will be discussed. We also
describe the algorithm we have used in this work to detect communities, sequential clique
percolation. The large social network we have been working with in this thesis comes
from mobile phone user data from a mobile phone subscription company. In chapter 3 we
describe this data and how we treat it in a network model.

In chapter 4 we present one of the first visual studies of communities in a large social
network. We have plotted the communities detected in four of the largest groups of nodes
in our network and also incorporated the demographic data available to us. To fully
understand the communities one also needs to do numerical analysis, and in chapter 5
we have analyzed certain properties of the detected communities. First we look at the
pure structure and topology of the network and then we take a look at the demographic
composition of the communities.



Chapter 2

About complex networks and
communities

2.1 Complex networks

A network (or graph) is mathematically defined as a pair G = (V,E), where V is a set of
nodes (or vertices) connected by a set of edges (or links) E. Any kind of items, organisms
or abstractions which have relations between them can be represented by a network model.

In most networks an edge e ∈ E may connect only two nodes i, j ∈ V, and may be
written as ek = (i, j). The nodes connected by e are neighbours. In a directed network
the edges eij and eji represent two different objects. One is the relation from i to j and
the other in the opposite direction. E.g., the original phone call data we are using in this
work, has a clear difference between caller and receiver, or a food web where species are
nodes and an edge (i, j) means that species i eats species j. In an undirected network, the
direction of relations is not taken into account, or may not even give any meaning. E.g.,
scientific collaboration networks are undirected: each node being one person, and an edge
(i, j) = (j, i) means that i and j have collaborated on some work.

We use N = |V| for the number of nodes and L = |E| for the number of edges.
Assuming no self-loops (edges on the form (i, i)), the maximum number of edges in a
network is N(N − 1)/2 for an undirected network (a situation where all the nodes are
connected to all the other nodes), and the double for a directed network (one edge in each
direction). The edge density is just the actual number of edges divided by the possible
number of edges.

What exactly does it mean that a network is “complex”? A small note on this subject
is required. First of all, complex networks distinguish one field of research from many
others dealing with or making use of graphs and networks. Secondly, the term points out
that the dynamics of all the components in the network and the emergence of certain
properties might not at all be obvious. A network of millions of nodes and edges is no
more complicated than an airplane with millions of parts itself, but while the airplane and
its components work in a well known way, the inner workings and dynamics of the network



4 About complex networks and communities

might be very hard to predict (see, e.g., the small-world effect in section 2.1.2). Social
networks, in particular, are very difficult to understand by their components alone. People
think and act in peculiar ways, and we have no possibility to handle all this information
if we even had it.

That was big words and it is tempting to fall back on the more casual explanation:
complex networks are big, millions of nodes and edges, but the number of edges is gen-
erally small compared to the possible number of edges. Furthermore, the structure of
interactions depicted by the edges is non-trivial, it is far from regular, but not entirely
random either.

2.1.1 Weighted and dynamic networks

Edges in a weighted network have a property called weight. This property usually gives
a measure (again usually, an integer or a real number) of the strength of the relationship
between two nodes. A plain edge in an unweighted network simply describes a generic
relationship. In many cases, introducing weights to a network model brings more realism
and definitely more opportunities for analysis. Take your average social network for
instance, people are closer connected to their families than to their friends, and one
has close and distant friends. Setting weights can be tricky unless one has a connection
between nodes which one can count and aggregate over a time period. For example, we use
the number of phone calls between people in our network, and the number of passengers
transported can be used in an airport network. One may also want to do analysis based on
different weights in the same network, e.g. calls versus SMS or passengers versus flights.

The next natural point of discussion is dynamical networks. Many networks obviously
evolve with time, they are dynamical. An unweighted network may evolve with the
addition of new nodes and links and the removal of old ones. In a weighted network one
might have the additional growing and shrinking of weights. The normal procedure for
analysis of a network is that one just take a snapshot of it at a certain point in time.
With counted weights you need a reference point to start counting from, of course. We
will later use calls between persons aggregated over half a year as weights in our network.
As long as there are no sudden global effects happening in the network to take into account
and your net is large enough, this method will give rise to some fine analysis. There is
also the possibility that the network one is looking at has reached a stable configuration.
This is in the sense that, sure, individual nodes have come and gone, but the overall
structure and properties of the network are more or less constant. This has been shown
with an US airport network over ten years in [3]. One could assume that it is also the
case for any large social network, with subtle changes with the ease of communication
by new technology, i.e., telephone, airplanes and the Internet. Researchers are currently
experimenting with shorter time scales. For example, on-line information flow has been
studied and a “distance” in the network has been formulated by the shortest time it takes
for information to transfer between two nodes [4].
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2.1.2 Additional definitions and properties of networks

Degree and strength

In an undirected network, a node’s degree is the number of edges connected to it. The
average degree of a network is, since each edge has two endpoints,

k̄ =
2|E|
|V|

=
2L

N
. (2.1)

The strength of a node is the sum of the weights of the connected edges

si =
∑
j

wij. (2.2)

In a directed network, the nodes will have both an in and an out value for degree and
strength.

One of the first points in any network analysis is usually to plot the degree distribution.
If the fraction of the nodes in the network with degree k is pk, one can plot pk for a network
by making a histogram of the degrees of the nodes. The problem is, however, that degrees
and many other properties of networks often have very fat-tailed distributions. Fat-tailed
meaning, in broad terms, that a large variance in the distribution is caused by a few
extreme deviations, as opposed to a great number of small deviations in a distribution
resembling the bell-shaped Gaussian curve. Real-world networks often follow power-laws
in the tail of their distributions, meaning that they have a long right tail with nodes with
degree far higher than the average. This was one of the focal points in early complex
network research [5]. The power law being on the form P (k) ∼ k−α, α > 1, with the
cumulative distribution P (K > k) ∼ x1−α. If 1 < α < 2 both the mean and the variance
of the distribution is infinite, if 2 < α < 3 the mean is finite and the variance infinite (many
real-world networks being in this range), and if α > 3 both are finite. The exponential
distribution, P (k) ∼ e−k/κ, with the same exponent in the cumulative distribution, is also
common to bee seen.

Getting a good measurement of the distribution’s tail and making the mentioned plot
can be very tricky. The direct histogram approach fails since one rarely has enough
samples in the tail to get good statistics. There are two accepted ways to deal with this
problem. One is to construct a histogram where the bins’ sizes increase exponentially
with degree. The number of samples in each bin is then divided by the bin width to
normalize the measurement. Thus the bins appear even sized when plotted in logarithmic
scale. This is how some of the plots in this work have been created. Another way is to
plot the cumulative distribution function. Such a plot has the advantage that it preserves
all the information from the data. When we make a binning histogram the differences
between data points falling in the same bin are lost. However, the cumulative plot does
not give an actual visualization of the data and the adjacent points on the plot are not
statistically independent, making it difficult to correctly fit the data.

Power-law and exponential distributions can be spotted experimentally by plotting the
cumulative distributions with logarithmic scales (power-law) or semi-logarithmic scales
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(exponential) and looking for straight lines. However, other distributions (e.g. lognormal
and stretched exponential) can disguise themselves to look like straight lines when plotted
and noise can also be a factor. In general, the naked eye can not have the final word.

Clustering coefficient and assortativity

A clear difference between real-world networks and random graphs is the property of
clustering. In many real-world networks we see that if there is a connection between node
A and node B and between B and node C, then there is a heightened probability that A
and C are also connected. In the language of social networks one would say: the friend
of your friend, is likely to also be your friend. So we have triangles in the network. One
way to mathematically define the clustering coefficient of node i is

ci =
ti

ki(ki − 1)/2
, (2.3)

where ti is the number of edges within i’s neighbours, and the denominator the possible
number of such edges. One does not have a defined c for nodes with k = 1. In most
observed networks, the clustering is higher than in a random reference network of the
same size [6].

In most social networks it is shown that nodes with larger degree tend to be connected,
they are said to be assortative. People with a lot of contacts tend to know other people
with many contacts. The common test is whether the average nearest-neighbour degree
increases or not with degree of the nodes. The opposite is true for many other networks
(e.g. technical, information and biological). This is interesting, since degree is a property
of the network topology itself.

Intensity and coherence [7]

The intensity I(g) of a sub-graph g with nodes vg and edges lg, such that the number of
links in g is |lg|, is defined as

I(g) =

 ∏
(ij)∈lg

wij

1/|lg |

, (2.4)

where wij is the weight of (i, j). It is basically the geometric mean of the edges’ weights.
Intensity measures the “weight” of a sub-graph, and it can be compared to the other sub-
graphs in a network. Due to the nature of the geometric mean, the intensity can be low
because one of the weights is very low or because all the weights are low. To distinguish
between these two extremes, sub-graph coherence Q(g) has been introduced as the ratio
of the geometric to the arithmetic mean of the weights

Q(g) =
I(g)

1/|lg|
∑

(ij)∈lg wij
. (2.5)
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Q ∈ [0, 1] and is close to unity only if the sub-graph edges’ weights do not differ much,
i.e., are internally coherent.

Shortest path length and diameter

The sequence of edges (i, j), (j, k), ..., (p, q) defines a path between nodes vi and vq. The
length of the path is just its number of edges. The geodesic distance (shortest path length)
dij between two nodes is the length of the shortest possible path connecting them. The
diameter d of a network is defined as the longest distance within it, d = max[dij], i, j ∈ V.
One has to be careful if the network has several components (groups of nodes without a
connecting path between the groups), and exclude node-pairs from different components
from any path calculations.

The small-world effect. It is hard to talk about distances in networks without men-
tioning the small-world effect (swe), known also by the ever so famous nickname, “six
degrees of separation”. In most real-world networks, most nodes are connected by a short
path, the swe. A fascinating experiment by Stanley Milgram in the 1960’s showed that
a letter given to a random person would take in average only six steps to reach another
target individual. This shows up because single random edges can connect large groups of
nodes which would otherwise be very distant in the network. See studies by, e.g., Watts
and Strogatz [6].

Watts and Strogatz also gave the swe a more precise definition: it is apparent in
networks where the mean geodesic length l scales logarithmically or slower with network
size for a fixed mean degree. This is mathematically obvious, if for some center node the
number of nodes inside distance r increases exponentially with r. This is true for many
networks, for example for the Erdös - Rényi random graph model [8]. In the E-R model,
the number of nodes is fixed, and each node-pair is connected with a constant probability
p. Some networks are even shown to increase l no faster than log n/ log(log n). An
interesting study done recently with mobile phone user data shows that the probability
of two users being connected decreases with the inverse square of the physical distance
between them [9].

The swe combined with percolation theory might be one of the most interesting parts
of complex network research for practical purposes. Take for example, the spreading of
information or the spreading of a disease in a population. Naturally something spreads
quicker the fewer steps it has to take. This analogy can be studied in a variety of ways,
e.g. computer virus [10].

Network resilience. Percolation brings us next to network resilience, which is the
effect on the network by removal of its nodes and/or edges. Most networks rely on
the connections between the nodes to function, and with the removal of nodes the path
lengths in the network will increase. Typically, at some point the paths will be so long
that communication will break down. It may seem intuitive, but studies of Internet
connections and web page networks show that if you remove nodes randomly it will take
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a long time before it makes an impact on the mean geodesic length. If you target the
nodes after decreasing degree on the other hand, only a small fraction need to be removed
before the network collapses. This is particularly the case for scale-free networks (power-
law degree distribution) [11]. The World Wide Web and the Internet are both scale-free
networks, and the studies showed that removal of the 2% highest degree nodes resulted
in a tripling of the mean geodesic length [12]. This has great relevance in epidemiology,
where e.g., you want to target vaccination against a disease so that it gives the best effect.
By vaccinating the highest degree nodes one will remove the most possible edges between
carriers and not yet infected individuals. So how to vaccinate a population in the most
effective way? We refer to the paper for the details, but vaccinating random people and
then vaccinating (totally) random acquaintances of these, will eventually lead you to the
highest degree nodes [13].

2.2 Communities

Many studies show that most social networks have a rich community structure, i.e., groups
of nodes with a high density of edges between themselves, with lower density of edges to
other groups of nodes. This definition is a bit vague, but it is common sense that people are
more likely to interact with people of similar age, interests, occupations and so forth. This
concept can be adopted by any type of network with different criteria, and since the criteria
differs, there is no universal definition of a community. We operate with three scales
in networks, the microscopic scale: nodes edges and their immediate surroundings, e.g.
clustering, the macroscopic scale: features at the network level, e.g. degree distribution,
hubs (very high degree nodes) and other global attributes, and the mesoscopic scale:
structures which are dense with nodes and edges - communities, the backbone of the
network. Communities are important because they often relate to functional units of
a system. Examples includes groups of people interacting with each other in a society
[14, 15], WWW pages related to similar topics [16], or proteins related to cancer metastasis
[17].

The field of study and the applications of communities is still wide open and no
universal definition of what constitutes a community has been adopted [18]. When you
think of a social network, people tend to be part of different communities. The family
can be one, the workplace another, and different groups of friends can be communities
without any interconnection except one single person. All these communities are then
overlapping at this node. Detecting overlapping communities requires more care from the
algorithm.

Different methods and algorithms have been published for community detection. Global
methods utilise the whole network structure for defining the communities, often optimizing
a function depending on node configuration to come to the desired community structure.
There are a variety of ways this can be done. Local methods take only the local topology1

1The structure and topology of a network is dependent on the edge configuration between nodes, path
lengths, degree of nodes and other properties of the nodes and edges.



2.2 Communities 9

into account. Both types of method have their advantages and shortcomings.

2.2.1 Clique percolation

The algorithm used in this work for detecting the communities is called sequential clique
percolation [19]. This is a development made from the original k-clique percolation
method published by Palla et al. in 2005 [20]. A k-clique is a set of k nodes, all connected
to each other. For example, a triangle is a 3-clique and in figure 2.1 we show cliques of
different sizes. As discussed earlier, under the section clustering coefficient and assorta-
tivity, triangles are abundant in most networks, and it is easy to believe that there should
be an even higher density of triangles within a community. The definition of a k-clique
community is therefore the nodes which are in adjacent k-cliques. Adjacent means here
that the nodes can be reached by the “rolling” of a k-clique, all the time containing k− 1
of the previous nodes. See figure 2.2 for an illustration of such clique rolling.

Figure (2.1): Cliques of different sizes. A k-clique is per definition a set of k nodes which
are fully connected to each other. The figure is from the complex network course held by
Jari Saramäki at TKK.

Figure (2.2): Illustration of the idea of k-clique percolation for k = 4. We see that ABCD
is a 4-clique. Releasing node A, we make a new 4-clique with node E, BCDE, and finally
BDEF by releasing node C. The new clique always contains k−1 nodes from the previous
clique. All nodes which can be reached by this type of rolling belong to the same k-clique
community. In this case we have a 4-clique community of size 6. The figure is included
in [18], but the original source could not be determined.

The k-value is used to determine the community structure, triangles will usually give
a structure with some very loose and large communities, while a higher k gives smaller,
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but tight and dense communities. A k between 3 and 6 is usually preferred. One problem
with this algorithm is that one can not detect hierarchical community structures, i.e.,
communities within communities. Running the algorithm again with higher k-value is
how we will solve this, though. Note that communities can overlap each other with this
method. Since it is based on topology only, the algorithm is deterministic and gives out
the same result at each run. The result is easy to interpret and the resolution is easy to
vary, with the k-value and the possible thresholding of edge weights (explained below).

The sequential clique percolation algorithm works by removing all the edges from the
network and then putting them back one by one and updating the chosen k-community
structure as it emerges. We refer to [19] for the details, but this algorithm is very compu-
tationally efficient compared to the original clique percolation algorithm which searches
out the highest k in the network every time. By ordering the edges by weight one can also
in one single run obtain the community structure for any threshold wanted, i.e., when
only cliques with edges with weights above or below a certain threshold is added to the
network. This is interesting, since e.g., it might not be reasonable that a few certain
weak edges can hold big communities together. Full cliques can also be thresholded by
intensity.



Chapter 3

The mobile phone data

The Department of Biomedical Engineering and Computational Science at TKK, has got
some of the user and call/SMS statistics from a mobile phone subscription company in
Europe. (From now on, the term call will be used as a common reference to both calls
and SMS unless the context implies differently.) The different data covers different time
periods from the first of January 2007. Naturally, since there is competition, this mobile
phone subscription company does not have a 100 % market share. In this sence we have
already lost some information, but we have to assume that such a large sub-group behaves
more or less like the population as a whole.

Due to a no-disclosure agreement we are not at liberty to reveal any more information
on the origin of the data, but we are free to use all the information we can learn from
it. It is sufficient to know that this data is probably one of the best samples of this type
we could have hoped to have in the last couple of years. On a note about privacy, we
make clear that no content from the communication or actual phone numbers have been
revealed to us. This makes it practically impossible to identify a single user from the
data.

It is important to recognize that this data represents human behavior and that even
though we can see clear trends in the data, some phenomena can not be easily explained in
our field of science. This makes for a good opportunity for cooperation between network
scientists and social scientists.

3.1 Description of the data

The original, unprocessed data consists of the following three parts:

3.1.1 Aggregated network

This data runs over a time period from the 1st of January to the 6th of May 2007, exactly
18 weeks, and is the sum of the number of calls and duration made from one user to
another:
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• Caller ID, which is unique and corresponds to a single phone number

• Receiver ID

• Number of calls in the period

• Number of SMS in the period

• Total length of calls in the period

How to transfer the data over to a network model should be fairly intuitive: each user
is a node, and calls between users are edges. Here we have a clear directed network,
because each call has a caller and a receiver. In the whole data material we have different
information we can use as weight on the edges, the number and the duration of calls being
the most obvious.

In the original, unprocessed data there are a bit over 6.5 million users. However, we
want to make it a more “true” social network, where random interactions are ruled out.
We do this by looking at the directed network, and remove all edges between nodes which
point in only one direction, i.e, we remove the connections between users which have not
been returned. We then remove all the users from the data which is no longer connected
to the network (or never was in the first place, by not making or receiving any calls in
the time period) and is left with a network which we now let be undirected. We can then
choose a measure for the weights, and let the total between the users be the weights of
the edges between them. This whole cleanup operation has led to a data set which is
called the mutual data (calls has been mutual, i.e., made in both directions), and all our
following analysis is based on this mutual data.

In the end we have 5 343 749 nodes in our network. Do note, though, that all the
nodes are not connected in one giant component. There are many groups of users who
have just been calling within themselves.

3.1.2 Event data

This data covers only the 31 days of January 2007, compared to the 18 weeks of the
aggregated data, and describes each individual call made in this period. From this data
we can see some of the calling patterns in the network. This data is also mutual and is
presented in figure 3.1 and 3.2:

• Event date

• Event time

• Caller ID

• Receiver ID

• Type, call or SMS
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• Duration, 0 for SMS

The total number of calls for the whole 18 week period is roughly 384 million, which
leaves us about 64 million calls with detailed information. For SMS the numbers are,
respectively, 133 and 22 million.
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Figure (3.1): The number of calls made and SMS sent on each day of January 2007. (a)
The first day is a Monday, the sixth day a public holiday (explaining the peak at the
fifth), the spike pairs are Fridays and Saturdays and the muted spikes are Sundays. (b)
Note the number of SMS sent on new year. The muted spike pairs are Saturdays and
Sundays, but the reason for the sudden increase in SMS on Sunday the 28th is not known.
We see that both plots have a deviating shape during the first week of January, which is
maybe not so surprising.

3.1.3 User demographics

In theory, for each mobile phone user in the data we should know the following:

• ID, as mentioned earlier

• Age

• Sex

• Zip code

• User subscription type, pre or postpaid
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Figure (3.2): The average hourly statistics for each weekday from the 8th to the 31st of
January. The first week of January has been filtered out. As seen here and in figure 3.1,
calls and SMS play different roles in mobile phone communication, naturally (but maybe
non-trivially) related to the social implications of their technical differences.

Some age, sex and prescription statistics are shown in figure 3.3. There is some incomplete
information for a number of users in form of not valid zip codes, age zero years and
unknown sex. This is probably mainly due to the nature of sloppy registration of people
who buy a prepaid subscription. From our data, the default entry for a prepaid user seem
to be: a man of age zero without a valid zip code. As there are roughly 1.3 million such
prepaid users without known information, it is clear that they increase the uncertainty
of any analysis incorporating the demographic information. Phone numbers may also
change between actual persons when people end their subscriptions, but the number of
such occurrences is assumed to be so low that it can be disregarded as noise. All in
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all, there are about 2.2 million men and 1.8 million women with complete demographic
information out of a total of 5.3 million people in our network.
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Figure (3.3): The number of users in the real network at each age and their sex. This
is before the network is made mutual, but should reflect the general distribution of the
mutual network. Prepaid users with age zero and unknown sex have been cut from the
plot.

3.2 Basic analysis

In figure 3.4 and figure 3.5 we present the first and elementary steps of the analysis of the
mobile phone network.
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Figure (3.4): Degree distribution of the aggregated, mutual phone network. (a) The
degree distribution has almost exponential behaviour for degree up to 20, corresponding
to an exponential distribution p(k) ∼ e−0.25k. (b) Typically for a social network, we can
see a long tail of nodes with degrees well above the average, k̄ = 4.476. This corresponds
to a power-law p(k) ∼ k−5.5. What these figures not so clearly tell is that only 0.6 % of
the nodes have a degree above 20, making the majority of the node degrees exponentially
distributed.
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(a) Weight distribution (b) Strength distribution

Figure (3.5): Weight and strength distributions of the aggravated network. (a) Three
possible weights is used for calculating the strength distributions (sum of the weights of
the edges of a node). (b) We have both incoming and outgoing strength. The strength
averages over the 18 weeks are: call count - 65.6, call length - 9741 s or 163 m, SMS count
- 23.8. Again the fat tailed distributions give rise to certain conclusions, for example with
call counts, 69 % of all users make less than the average number of calls, and 0.29 % of
users make more than 10 times the average number of calls.
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Chapter 4

Visualization of communities in the
phone call network

Since communities is such an important part of any social network, we have decided to
do an extensive visual study of communities in our network. We have discussed in section
2.2 what a community is and everyone can recognize social communities in daily life. But
how do they look in the actual network topology when we deal with networks in theory?
Having a good visual background will help us in the further research on communities.

Our phone call network contains over 5.3 million nodes with almost 12 million edges.
Since it is so large and also consists of many disconnected components, it is not feasible to
present a plot of the whole network. We have therefore concentrated our visualization on
the four largest 4-clique communities found by the clique percolation algorithm. These
communities have sizes from 229 to 518 nodes. We have chosen k = 4 as the lowest
k-value to study. When we tried k = 3, we found that more than 1.5 million people were
in the largest community. Naturally, that does not rhyme with reality.

Just plotting the 4-clique communities, saying that they are large and be done with
it, would be pretty dull. It is expected, however, that such big communities would show
some kind of nested community structure, or hierarchical community structure. Common
sense says that within large groups of people who have something in common, there
are smaller groups of people who just know each other better. By running the clique
percolation algorithm on these communities again for cliques of size 5 and higher, we see
that a remarkable inner community structure reveals itself in the plots.

4.1 Himmeli graph plotting software

Automatic graph drawing is one of the advantages of computers in our field. The software
used to make the plots in this work is Himmeli1 created by V-P. Mäkinen from TKK.
Himmeli is based on a force-directed algorithm which is capable of making an acceptable

1Himmeli v3.3 for Linux could as of May 2009 be found on the web page:
http://www.finndiane.fi/software/himmeli/
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2D node layout for almost any type of network. The input to Himmeli is a configuration
file where all your parameters and instructions to the program are specified. The most
important parameter is of course the edge-file2 of the network. Other parameters let
you influence the visuals of the output, or let you do more advanced modifications like
thresholding of edge weights (which we will show). Since the algorithm in Himmeli for
creating the optimal layout of the nodes is time dependent and generally not deterministic,
we have used the output of a single run to fix the coordinates of the nodes in the next
plots. This means that all the plots of the same 4-clique community have the nodes in
the same places.

4.2 Description of the plotting scheme

For each of the four 4-clique communities we will present four plots. Note that not only
the edges needed to create the actual k-clique community is plotted, but also other edges
within the community which not necessarily make cliques. The first plot is just the
generic plot of the 4-clique community, see e.g. figure 4.1. The weight used on the edges
is the total number of calls and SMS between two users. We choose to use this weight
as it is the most straightforward measure of the strength of the relationship between two
users. We could also have used the duration of calls, but we would have had to give some
relative weight to those who have only sent SMS. Right now we decided against trying
this approach, as deciding the relative strength between calls and SMS is maybe a job
better suited for sociologists. The color of the edges represent their weights, the higher
the weight of an edge is, the darker its color will be. The thickness also increases slightly
with weight. We have used the demographic data described in section 3.1.3 to give each
node a look after the following system:

• White circles are users without reliable age, sex and zip code information.

• Squares are men, triangles are women, users with reliable information.

• The colors give the ages of the users: yellow: under 30, green: 30-39, blue: 40-49,
red: 50 and up.

• The sizes of the nodes represent the degree (the number of edges attached to the
node), the bigger the node, the higher the degree.

In the last three plots the different k-clique communities detected have been plotted on
top of each other (see, e.g., figure 4.2, 4.3 and 4.4). One has to remember that a k-clique
has to consist of several k−1 and lower ordered cliques, so in the plots the higher cliques’
colors are just shadowing for the lower cliques’ colors. Each k-clique community have

2The edge-file is the common way to store a network. It is all you need to use your favourite computer
algorithms to make a representation and analysis of it. Usually, each line in the file describes an edge on
the format: edge source (node n) edge destination (node n) weight (if any). The size of the edge-file of
our phone call network, after the earlier mentioned modifications, is just over 200 MB.
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been given its own color for the edges and the basic colors are the same in all four 4-clique
communities:

• Yellow for the 4, green for the 5 and blue for the 6-clique communities. Other colors
used for higher ordered clique communities are described in the relevant figure texts.

The coloring of the edges lets us see which nodes belong to the nested communities. If a
node has edges to it from one color, it also belongs to the looser underlying communities
of lower ordered k-cliques.

4.2.1 Thresholding the edge weights

In the two last figures of each 4-clique community we have removed a fraction of the
weakest edges (lowest weights) to see how the communities hold together then (see, e.g.,
figure 4.3 and 4.4). First 40 % and then 70 % of the weakest edges have been removed.

The motivation for doing this goes all the way back to the hypothesis published by
Granovetter in 1973: weak edges tend to contribute to a low number of triangles, while
strong edges contribute to a high number of triangles [21]. This means that the pro-
portional overlap of two persons’ individual friendship networks varies directly with the
strength of the edge between those two persons. Mobile phone user networks have later
been studied extensively, and we will tie our work together with the roles of weak versus
strong edges found in such networks in [22, 23].

By studying information flow and the fragmentation of the network by removal of
edges, the mentioned studies conclude that weak edges tie communities together, while
communities consist of stronger inner edges. The overlap of an edge eij is introduced
as a measure of how many of their neighbours do i and j have in common. It is shown
that strong links have higher overlap, which is natural to be found inside communities
[22]. The next study uses the concept betweenness centrality for an edge, which is a
measure of how many of the shortest paths between nodes in the network goes through
the edge. Naturally, edges which are inside a local community have more or less the
same low betweenness centrality, since there are more paths to choose from, while an
edge connecting two separate communities has to connect all the nodes, and will have a
marked higher betweenness centrality. It is shown in [23] that edges with high betweenness
centrality are weaker links, and therefore connections between communities.

The question which remains is whether the strongest links within a community is
associated with the even denser sub-communities, and we can visually confirm that they
are.

4.3 The visual plots

To help the reader enjoy the visual plots to the fullest, we will present the information we
have learned from them before the actual plots. This will hopefully ease the experience of
the otherwise somewhat cryptic plots, and help the reader to know what to look for. To
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avoid cluttering in the plots we decided against putting any kind of label on the nodes.
We are aware of the problems this creates regarding referring to the figures, so rather than
giving lengthy descriptions to where one can see this or that phenomenon, we just hope
that the reader has enough time to let the visual plots sink in together with the following
résumé.

4.3.1 What we have learned from the visual plots

First of all, we are extremely pleased with the quality of the plots. The hierarchical
community structures are presented clear as day. This gives us a good feeling about the
use of the clique percolation method for detecting communities in a large social network.
Also, it is a true joy to be able to actually see the consequences of the Granovetter
hypothesis in effect. The number of edges between the different communities is clearly
reduced during the thresholding, confirming the earlier studies on the subject. There is
no doubt that the amount of yellow in the plots is more reduced with the increased edge
weight threshold than the other colors. The structure of the higher ordered communities
are still clearly present, even at the 70 % threshold. The structure obviously breaks at
higher thresholds, but the higher ordered communities keep more single edges, which we
show in the numerical analysis in figure 4.17. This indicate that there is a core or cores
in a community, which is a topic currently under study.

Note that the communities are not required to be perfect clique communities anymore
when we do thresholding, we simply remove the weakest edges and replot the figure. It
is just logical that any community will shrink bit by bit when the threshold is increasing.
Following the strict definition of k-clique communities would quickly leave us without any
communities at a very low threshold.

Overlapping communities are abundant in our plots, but they are quite hard to spot
due to the huge number of crisscrossing edges. Two certain examples of overlapping
communities have guides so one can spot them in the figure text of figure 4.10 and 4.14.

It takes only a quick glance to understand that the demographic part of our plots is
worth close to nothing. There is an overweight of white circles in three of the four 4-
clique communities. Other than that, there seems to be a lot of young people in these big
communities and the only thing conclusive we can say about the demographic properties
is that the valid zip codes are almost always within the same area. We have chosen to not
plot the zip codes, but write a note about it for each community in the figure text. For
further analysis of the demographic properties we resort to numerics in the next chapter.
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Figure (4.1): The fourth largest 4-clique community, 229 nodes, ∼1200 edges. Darker
colors mean stronger edges. The color of the node gives age, in ascending order: yellow,
green, blue, red, triangles are women, squares are men and white circles are users without
information. Of the valid zip-codes, only a few were not within the same area.
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Figure (4.2): Plot of the 4-7-clique communities in the 4th largest 4-clique community.
Red denotes the 7-clique communities.
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Figure (4.3): Plot of the 4-7-clique communities in the 4th largest 4-clique community.
Red denotes the 7-clique communities. The 40 % weakest edges have been removed.
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Figure (4.4): Plot of the 4-7-clique communities in the 4th largest 4-clique community.
Red denotes the 7-clique communities. The 70 % weakest edges have been removed.
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Figure (4.5): The third largest 4-clique community, 254 nodes, ∼1350 edges. Darker
colors mean stronger edges. The color of the node gives age, in ascending order: yellow,
green, blue, red, triangles are women, squares are men and white circles are users without
information. Of the valid zip-codes, only a few were not within the same big city.
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Figure (4.6): Plot of the 4-8-clique communities in the 3d largest 4-clique community.
Black denotes the 7 and red denotes the 8-clique communities.
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Figure (4.7): Plot of the 4-8-clique communities in the 3d largest 4-clique community.
Black denotes the 7 and red denotes the 8-clique communities. The 40 % weakest edges
have been removed.
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Figure (4.8): Plot of the 4-8-clique communities in the 3d largest 4-clique community.
Black denotes the 7 and red denotes the 8-clique communities. The 70 % weakest edges
have been removed.
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Figure (4.9): The second largest 4-clique community, 430 nodes, ∼2300 edges. Darker
colors mean stronger edges. The valid zip-codes seem to fall into 5 distinct groups.
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Figure (4.10): Plot of the 4-9-clique communities in the 2nd largest 4-clique community.
Black denotes the 7, red the 8 and pink denotes the 9-clique communities. The green
sub-net at the top in the middle (including one green, one blue square and seven white
circles) consists of two overlapping communities. The five lower nodes are one community
and the seven upper nodes are another.



4.3 The visual plots 33

Figure (4.11): Plot of the 4-9-clique communities in the 2nd largest 4-clique community.
Black denotes the 7, red the 8 and pink denotes the 9-clique communities. The 40 %
weakest edges have been removed.
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Figure (4.12): Plot of the 4-9-clique communities in the 2nd largest 4-clique community.
Black denotes the 7, red the 8 and pink denotes the 9-clique communities. The 70 %
weakest edges have been removed.
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Figure (4.13): The largest 4-clique community, 518 nodes, ∼2800 edges. Darker colors
mean stronger edges. Of the valid zip-codes, only a few were not within the same big city.
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Figure (4.14): Plot of 4-7-clique communities in the largest 4-clique community. Red
denotes the 7-clique communities. Note the red triangle node between the two lower 7-
clique communities. This person belongs to two clearly distinctive 7-clique communities.
This is probably the best example of overlapping communities in our plots.
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Figure (4.15): Plot of 4-7-clique communities in the largest 4-clique community. Red
denotes the 7-clique communities. The 40 % weakest edges have been removed.
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Figure (4.16): Plot of 4-7-clique communities in the largest 4-clique community. Red
denotes the 7-clique communities. The 70 % weakest edges have been removed.
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4.3.2 Thresholding analysis

Here we present the numerical analysis of the edge weight thresholding for our four com-
munities. The colors in the plots corresponds to the ones used on the edges in the visual
plots.
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(b) 3d largest 4-clique community
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(c) 2nd largest 4-clique community
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(d) Largest 4-clique community

Figure (4.17): Remaining fraction of edges in the different clique communities as the
weakest edges is removed. The 4-clique line is linear since all the higher cliques are
just even denser 4-cliques. We see that in general the higher k-value cliques resist the
thresholding better. Interesting is it though, how the second highest (b) or highest (c)
and (d) k-cliques seem to fall through for high thresholds in the three largest community
plots. Unfortunately we have not done enough analysis to say if this is a very common
trend for the highest k-clique communities.
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Chapter 5

Numerical community analysis

Visualization does little to help us quantify the behaviour of communities. Therefore we
have studied certain properties of the communities numerically. We have omitted the
k-clique communities with a k higher than 8 from the plots as there are less than 30 of
them all together. These communities can be said to be some extreme social phenomena.
The highest k found in the network is 12 with 14 nodes in the community. Even for
the lower k-values, we see in the plots that we would have liked to have more statistics
for larger communities. We have divided the analysis in two parts, first we look at the
structure and topology and then the demographics.

5.1 Structure and topology analysis

The following figures show the analysis of some of the properties discussed in chapter 2.
These properties are not dependent on the demographics and are based on just the actual
phone communication between the users. To give a better idea of the diversity of the
communities we present both the scatter-plot and the binned average plot of the different
properties studied. Note that we do not use the rather unpleasant color yellow in the
following plots and have instead shifted the color scheme one place.

In figure 5.1 we first show the community size distribution. We see that there are “gi-
ant” communities forming for every k, containing a number of nodes much higher than the
average. This is partly a percolation phenomenon, and if we could have used non-integer
k-values we could have found the exact k for the percolation threshold between many
small communities and one large one. This is also called a continuous phase transition,
analogous to many phenomena in physics. Mentioned earlier was the giant community at
1.5 million people for k = 3.

The edge density naturally drops with community size, as shown in figure 5.2, and the
average edge weight gets smaller when the community grows. The bigger the community
gets, the looser connected people are. This is a bit interesting when compared to a study
of dynamical communities. We have used the aggregated network over 18 weeks, but this
study show that larger communities are more stable if there is a continuous exchange of
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Figure (5.1): Community size distribution. (The straight line at the bottom is at one on
the y-axis.) The distributions decrease sharply like a power law and the different k-cliques
all have several “giant” communities with a number of nodes far above the average. The
giants start to form at a fixed community size resembling a cutoff value.

members of the community. Small communities, on the other hand, are more stable if
the members are the same in the whole period of study [24]. It might be that we have
captured this observation in the plot of the edge weights, i.e., people have come and gone
from the large communities without making a lot of calls. Even if these people have not
called much, they have contributed with nodes and edges to our network.

In figure 5.3 we see the average intensity and coherence. The intensity clearly drops
for larger communities, but seems to flatten at some value. If we compare with figure
5.1, we see that the flattening appears to correspond to the community sizes where the
mentioned giant communities start to appear. This seems to have some logic in the sense
that those big communities are more random people not knowing all the others. Therefore
the intensity of large communities is not as high as in smaller where people actually know
each other.

The coherence has a very peculiar trend. We do have too little statistics in the
tails of the plots to be certain, but we dare to propose that in both small and large
communities people call more in an evenly fashion. From figure 5.2d we deduce that in
small communities everyone call everyone more while in large communities everyone call
everyone less.

In figure 5.4 we see the average shortest path length and diameter. When we see
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(a) Edge density, scatter-plot
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(b) Edge density, binned plot
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(c) Edge weight, scatter-plot
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(d) Edge weight, binned plot

Figure (5.2): Average edge density and edge weight as a function of community size.
(a) The edge density scatter-plot has a very unified shape, and a clear resemblance to a
power law. The analogy here is that with our definition one does not have to know all the
persons in a community personally to be a part of it, and therefore the edge density will
naturally go down as the community grows. (d) For all k it appears clear that the average
weight is stronger for smaller communities. One could think that in a large community
one has to divide one’s time between more people, so one makes less calls to each other
person.

these plots, it is time to question whether a group of people with an average shortest path
length over two (or diameter over four, for example) should be considered as a community
at all. Going more than two steps in a community for finding someone with something in
common seems a bit strange. Exceptions could be made for large companies, universities,
big cities and so on, of course. However, there are only a hundred communities or so in
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this range in the network, and they are almost exclusively 4-clique communities. This also
raises the question if 4-cliques are the right basis to start from, or if some other measure
to deal with the large diameter communities should be taken.
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(a) Intensity, scatter-plot
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(b) Intensity, binned plot
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(c) Coherence, scatter-plot
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(d) Coherence, binned plot

Figure (5.3): Average intensity and coherence as a function of community size. (b) The
intensity is clearly decreasing for larger communities, but seems to flatten at the cutoff
value mentioned in the text of figure 5.1. (d) The coherence seems to be highest for both
small and large communities.
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(a) Shortest path length, scatter plot
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(b) Shortest path length, binned plot
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(c) Diameter, scatter plot
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(d) Diameter, binned plot

Figure (5.4): Average shortest path length and diameter as a function of community size.
(a), (c) We see that the shortest path length and diameter grows logarithmically quite
uniformly. (b), (d) The highest k-values, 6 and 7, on the other hand, flatten for larger
communities. This is quite naturally, since the increased number of edges required to
form a clique shorten the paths and diameter of the community.

5.2 Demographic analysis

Here we take a closer look at the statistics of the demographic data available. As we saw
in the visualization part of this thesis, the demographics have to be analyzed numerically.
To ready the data for analysis we first looked at how many communities which had two
or more users with complete demographic information. We found that only 1-2 % of the
communities, at all the k-values we have included in our analysis, had less than two users
with complete information. We decided that our qualitative understanding of the results
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would not suffer from dropping these communities from the analysis all together. Next,
we show in figure 5.5a the distribution of the average fraction of users with complete
information versus community size in the remaining communities. From this result we
decided to cut the largest communities at each k-value from our analysis. When the
fraction of users with known information is below 30 %, combined with the very low
number of such large communities, we simply can not know if any analysis will give us
any trustworthy information at all. The updated data we are using for the further analysis
is then shown in figure 5.5b.
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(a) Initial data
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(b) Processed data used in further analysis

Figure (5.5): Average fraction of users with complete demographic information as a func-
tion of community size. (b) This is the data material we use in the further analysis.

For the analysis of age and zip code we used the average variance. Taking the variance
of zip codes is clearly not an optimal solution, as the numbers scale with physical distance
in a non-trivial way. From the data we have on the zip codes, however, we have verified
that there is a system where ranges of numbers are reserved for geographical areas. This
let us do a pure qualitative analysis compared to our network where the demographic
properties of the users have been shuffled. We took an average of the variances over a
thousand shuffles of the ages and zip codes and they are presented with the analysis of
the original network. This kind of shuffling is common in network analysis, as one want to
make sure that one is not just analysing something which is totally random. In figure 5.6
and 5.7 we see that our network is much more conform in the communities with respect
to zip code and age than the shuffled reference.

We have done two separate analysis of the homogeneity of the communities with
respect to sex. We have looked at the variance of the fraction of girls within each k-value,
compared to one shuffling of the the sex of the users. And we have plotted the average
largest fraction of one sex at each community size. As we see in figure 3.3, the number
of men and women with known sex is not equal. Therefore we have to keep in mind that
there is a possibility that our results are slightly biased because of it being four hundred
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thousand more men than women in our network. In an ideal large social network there
are probably equal amounts of both sexes. In figure 5.8 we see that the network is also
more conform in the communities with respect to sex than the shuffled reference.
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(a) Zip code variance, original
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(b) Zip code variance, shuffled

Figure (5.6): Average zip code variance as a function of community size. It is clear
that people have more conform zip codes in real communities compared to the shuffled
reference. Qualitatively, we do mean that it proves that people tend to know more people
in the neighbourhood or at least in the same city, than elsewhere in the country. Why
the largest 7 and 8-clique communities hold together over such long distances has to be
attributed to one or more random factors.
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(a) Mean age
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(b) Age variance, original
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(c) Age variance, shuffled

Figure (5.7): Average age statistics as a function of community size. (a) The average
mean age is clearly higher for smaller communities before it drops and flattens. For the 7
and 8-clique communities the mean age seems to rise again for large communities, though.
(b) The average age variance grows for larger communities, which is natural, with some
random extremes for the largest communities. We see that the variance for the original
network is clearly lower than for the shuffled in (c). This confirms the hypothesis that
communities are more conform with respect to age than a random reference.
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(b) Variance of the fraction of women
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(c) Average of the largest fraction of one sex

Figure (5.8): Statistics concerning the sex homogeneity of the communities. (a) The
average fraction of women in each community reflect the fact that there are less women
than men in our data, as seen in figure 3.3. (b) When taking the variance of the fraction
of girls in each community, we see that the numbers are bigger for the original network
than for the shuffled. That means that there are more communities with a fraction further
from the mean in the original network, meaning again that there are more communities
with a higher number of women than men and vice versa. (c) Taking the average of the
largest fraction of one sex, we see that small communities tend to be more homogeneous
with respect to sex than large ones. One could wonder if adding more women to the
network would change the shape of these curves or not.
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Chapter 6

Conclusions and further work

In this thesis we used the sequential clique percolation algorithm to detect communities
in a large mobile phone user network. We then analyzed the detected communities and
their properties both visually and numerically. The combined results of our analysis have
given us reasons to recommend the use of the clique percolation method for detecting
communities in social networks. The simple definition of a community leaves no doubt of
what we have detected, and the detected communities show no signs of illogical behaviour
in the results.

The high quality visual plots of the network let us clearly see two of the things we
have been most excited about in social networks. First of all, we see nested communities,
or a hierarchical community structure in the network. This indicates that we may be
able to detect, e.g., different groups of friends within a workplace or university, or several
families within a neighbourhood.

Secondly, our thresholding of edge weights shows that the strongest edges in the net-
work are found within the densest sub-communities. This is our main result and both
the visual plots and the numerical analysis give the same conclusion. We have also con-
firmed that weak edges keep different communities connected while the members of the
communities have strong edges among themselves.

From the structure and topology analysis we have learned a lot about the average
behaviour and calling patterns between the members of a community. Highlights include
the fact that the average edge weight is less in large communities than in small ones.
Also, the intensity drops for larger communities, and it has possibly a characteristic value
for the giant communities which appear for all clique sizes. We also mention that the
coherence seems to be equal in small and large communities.

From the demographic analysis we can conclude that all the commonsensical assump-
tions about the composition of communities are correct. We see that communities are
more conform with respect to zip code, age and sex compared to the same network where
the demographic properties have been shuffled.
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6.1 Next steps

This thesis has only taken the first steps in the study of communities in social networks
and there are several more topics to investigate. We have used the sum of the number
of calls and SMS as weights in our analysis, but both duration of calls and the number
of calls and SMS separately could also be checked. One could see some differences in
behaviour and community composition with the different weights. The properties of the
communities we have plotted as a function of the community sizes could also be plotted
against each other to investigate any correlation between them.

As we saw earlier, our analysis suffered from the lack of complete demographic infor-
mation of the users. In addition to what we know we would have liked to also know, e.g.,
the occupation of each user. It might also be a wise choice to do the same analysis for
only the users with complete information in our network. If so, one have to lessen the
already limited sample of mobile phone users we have. With this in mind, one is always
on the lookout for new and more reliable data to do research on. If we could do the same
analysis on other kinds of social networks we could be able to see some real patterns in
social communities. E-mail, instant messaging or some of the increasingly popular online
communities could all be the next source of a good data set. The process of getting access
to such a data set as we have had is lengthy and laborious, however, and it is difficult to
find data sets with even better demographic information than the one we have already
investigated.
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