MOLECULAR ECOLOGY

Effects of population characteristics and structure on estimates of effective population size in a house sparrow metapopulation

Journal:	Molecular Ecology
Manuscript ID:	MEC-13-1324.R3
Manuscript Type:	Original Article
Date Submitted by the Author:	23-Apr-2014
Complete List of Authors:	 Baalsrud, Helle; Norwegian University of Science and Technology, Dept. of Biology; University of Oslo, Department of Biosciences; University of Oslo, Department of Biosciences Sæther, Bernt-Erik; Norwegian University of Science and Technology, Dept. of Biology Hagen, Ingerid; Norwegian University of Science and Technology, Dept. of Biology Myhre, Ane; Norwegian University of Science and Technology, Dept. of Biology Ringsby, Thor Harald; Norwegian University of Science and Technology, Dept. of Biology Pärn, Henrik; Norwegian University of Science and Technology, Dept. of Biology, Dept. of Biology Pärn, Henrik; Norwegian University of Science and Technology, Dept. of Biology; Centre for Conservation Biology, Norwegian University of Science and Technology, Dept. of Biology Jensen, Henrik; Norwegian University of Science and Technology, Dept. of Biology
Keywords:	Conservation Genetics, Ecological Genetics, Population Genetics - Empirical, Birds

SCHOLARONE[™] Manuscripts

1 2	Title page:
3	Effects of population characteristics and structure on estimates of effective
4	population size in a house sparrow metapopulation
5	
6	Helle Tessand Baalsrud ^{1,2} , Bernt-Erik Sæther ¹ , Ingerid Julie Hagen ¹ , Ane Marlene
7	Myhre ¹ , Thor Harald Ringsby ¹ , Henrik Pärn ¹ and Henrik Jensen ¹
8	
9	¹ Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of
10	Science and Technology, NO-7491 Trondheim, Norway.
11	² Current address: Centre for Ecological and Evolutionary Synthesis, Department of
12	Biosciences, University of Oslo, NO-0316 Oslo, Norway.
13	
14	Key-words: Genetic drift, dispersal, population size, sex-ratio, microsatellites,
15	effective population size.
16	
17	Author for correspondence: Henrik Jensen, Centre for Biodiversity Dynamics,
18	Department of Biology, Norwegian University of Science and Technology, N-7491
19	Trondheim, Norway. E-mail: <u>henrik.jensen@ntnu.no</u> ; fax: +47 73596100; office: +47
20	73596949; mobile: +47 91897064.
21	
22	Running head: Effective population size in sparrows

23 Abstract

24	Effective population size (N_e) is a key parameter to understand evolutionary processes
25	and the viability of endangered populations as it determines the rate of genetic drift
26	and inbreeding. Low N_e can lead to inbreeding depression and reduced population
27	adaptability. In this study we estimated contemporary N_e using genetic estimators
28	(LDNE, ONeSAMP, MLNE and CoNe) as well as a demographic estimator in a
29	natural insular house sparrow metapopulation. We investigated whether population
30	characteristics (population size, sex ratio, immigration rate, variance in population
31	size, and population growth rate) explained variation within and among populations in
32	the ratio of effective to census population size (N_e/N_c) . In general, N_e/N_c -ratios
33	increased with immigration rates. Genetic N_e was much larger than demographic N_e ,
34	probably due to a greater effect of immigration on genetic than demographic
35	processes in local populations. Moreover, although estimates of genetic N_e seemed to
36	track N_c quite well, the genetic N_e estimates were often larger than N_c within
37	populations. Estimates of genetic N_e for the metapopulation were however within the
38	expected range ($\langle N_c \rangle$). Our results suggest that in fragmented populations, even low
39	levels of gene flow may have important consequences for the interpretation of genetic
40	estimates of N_e . Consequently, further studies are needed to understand how N_e
41	estimated in local populations or the total metapopulation relates to actual rates of
42	genetic drift and inbreeding.

43 Introduction

44 Effective population size (N_e) is a key parameter to understand the evolution of 45 populations in general and the viability of small and endangered populations in 46 particular, as it determines the rate of loss of genetic variation by genetic drift and 47 inbreeding (Wright 1938; Frankham 1996, 2010). Furthermore, Ne affects the 48 interplay between genetic drift and selection affecting for instance the probability of 49 fixation of advantageous alleles (Kimura & Crow 1963). N_e is defined as the size of 50 an ideal Wright-Fisher population in which the rate of change in heterozygosity 51 (inbreeding effective size, N_{el}) or allele frequencies (variance effective size, N_{eV}) is 52 the same as in the observed population (Wright 1931). Populations with small N_e risk 53 inbreeding depression and loss of evolutionary potential, which in turn may increase 54 the probability of extinction (Franklin & Frankham 1998). Census population size 55 (N_c) can be misleading in this context as $N_e \ll N_c$ for most natural populations 56 (Wright 1931, 1938; Frankham 1995; Nunney 1995). Thus, knowledge about the 57 effective population size is crucial for understanding the evolutionary processes in 58 populations. Furthermore, for endangered populations or species, knowledge of N_e 59 may help evaluating and minimizing any negative genetic effects. For instance, the 60 effective population size can be maximized by artificially increasing gene-flow or 61 carrying out strict breeding regimes (Templeton & Read 1984; Schwartz et al. 2007; 62 Hedrick & Fredrickson 2010). 63 There are two different approaches to estimating N_e ; using demographic 64 ecological data or using genetic markers, or, sometimes a combination of both

65 (Anderson & Garza 2009). The demographic approach provides an estimate of the

66 contemporary N_e and hence current rate of genetic drift, based on demographic

67	characteristics of the population. Unfortunately, most methods (e.g. Felsenstein 1971;
68	Hill 1972; Engen et al. 2005) require extensive data on several demographic variables
69	such as population size, variance in reproductive success, age-distribution, sex ratio
70	etc. Such data are rarely obtainable for most natural populations. In addition, many of
71	these methods are based on assumptions that are rarely fulfilled for most natural
72	populations (e.g. stable age-distribution, constant population size, no density
73	dependence). This is why considerable effort has been put into developing N_e
74	estimators based on genetic data in recent years. This development has been fueled by
75	a revolution in the advancement of techniques to efficiently genotype individuals on
76	polymorphic molecular markers (Anderson & Garza 2009; Luikart et al. 2010).
77	Genetic estimates of contemporary N_e can be derived from a single sample (in
78	time), which provides the basis for an estimate of inbreeding effective size (N_{el}) , or
79	multiple samples spaced by one or more generations (temporal method), which can be
80	used to estimate variance effective population size (N_{eV}) (Waples & Yokota 2007).
81	The choice of method has several important consequences for further interpretation:
82	N_{el} predicts the rate at which heterozygosity is lost and depends on the number of
83	individuals in the parent generation, whereas N_{eV} reflects the variance of change in
84	allele frequency from one generation to the next and depends on the number of
85	offspring (Kimura & Crow 1963; Crow & Denniston 1988; Waples 2005). As a
86	consequence, N_{el} will lag behind any reductions in population size or bottlenecks by at
87	least one generation because it is affected by the population decline only when
88	inbreeding accumulates due to increased mating between relatives (Luikart et al.
89	2010). In contrast, because the number of offspring usually is low in declining
90	populations N_{eV} will decline rapidly and thus be more sensitive to reductions in
91	population size (Luikart et al. 2010). Due to these differences N_{eV} may be more

92	relevant when monitoring endangered species (Schwartz et al. 2007). However, N_{el}
93	and N_{eV} should be equal in a single isolated population of constant size (Kimura &
94	Crow 1963).
95	Because of the fundamental importance of N_e in conservation, population
96	genetics and evolutionary biology, it is relevant to quantify N_e and particularly the
97	N_e/N_c -ratio. The N_e/N_c -ratio is affected by several factors such as sex ratio (Wright
98	1931), variation in family size (Wright 1938), inbreeding (Crow & Kimura 1970), age
99	structure (Hill 1972; Engen et al. 2005), fluctuating population size (Kalinowski &
100	Waples 2002), selection (Waples 1989); and spatial structure (e.g. Hedrick & Gilpin
101	1997; Wang & Caballero 1999). For more extensive reviews on N_e and N_e estimators,
102	see Wang (2005), Anderson & Garza (2009), Charlesworth (2009), Luikart et al.
103	(2010), and Waples (2010).
104	In this study we use data from a long-term study of an insular house sparrow
105	metapopulation at Helgeland, Norway, to estimate N_e with four different genetic
106	estimators; LDNE (Waples and Do 2008, 2010), ONeSAMP (Tallmon et al. 2008),
107	MLNE (Wang 2001, Wang & Whitlock 2003) and CoNe (Berthier et al. 2002,
108	Anderson 2005), and one demographic estimator (Engen et al. 2007). Our study
109	includes 15 islands, which allows us to analyze variation in N_e/N_c locally as well as in
110	the whole metapopulation. Estimates of several parameters known to affect N_e
111	(Caballero 1994) such as population size (census population size, N_c), recruitment
112	rates, adult mortality rates, sex-ratio, migration rates, and inter- and intra-individual
113	genetic variation are available because individual-based data have been collected
114	since 1993 (Jensen et al. 2003, 2004, 2008; Husby et al. 2006; Engen et al. 2007; Pärn

116	We have the following objectives with this study. Initially, the congruence of
117	different genetic estimators of N_e will be assessed by comparing estimates from
118	different methods based on the same data set. Then for each estimator we will
119	examine which population characteristics potentially explain variation in the N_e/N_c -
120	ratio across local populations and years within this metapopulation. Furthermore, we
121	will compare N_e estimates from analyses of genetic data with demographic estimates
122	of N_e (Engen et al. 2007). Finally, we will investigate how population structure and
123	gene-flow affect genetic N_e estimates by comparing N_e calculated for the entire
124	metapopulation ($metaN_e$) with the sum of N_c for local populations (meta N_c) under the
125	prediction that the $metaN_e/metaN_c$ -ratio > 1 in Wright's island model (Wang &
126	Caballero 1999). We will also compare $metaN_e$ with the sum of N_e for all local
127	populations (ΣN_e), predicting that given a Wright's island model <i>metaN_e</i> > ΣN_e , but
128	given more complex metapopulation dynamics this relationship will be the opposite
129	$(metaN_e < \Sigma N_e)$ (Hedrick & Gilpin 1997; Wang & Caballero 1999).

130 Materials and Methods

131 Study system

- 132 The study area consisted of fifteen islands in Northern Norway from Sleneset
- 133 (66°22´N, 12°36´E) in the southeast to Myken (66°46´N, 12°29´E) in the northwest
- 134 (Fig. 1). These islands were populated by house sparrows continuously or periodically
- during the 17 year study period (1993-2009). For more extensive information
- regarding this study system, see Sæther et al. (1999), Ringsby et al. (2002), Pärn et al.
- 137 (2009, 2012).

138 Data collection and sampling scheme

139 From 1993-2009 we captured adult and juvenile individuals using mist nets, while

140 nestlings were sampled from the nest. A blood sample (25 µL by venipuncture) was

- 141 collected from each individual. We designated each bird a metal ring with an
- 142 individual number and a unique combination of three colored bands on its tarsi. This
- allowed us to estimate various demographic parameters from recapture and
- 144 observation data. As the average generation time for the house sparrow is
- approximately 2 years (Jensen et al. 2008) we assumed that samples spaced by 3 years
- 146 were from separate generations. To represent six generations we selected the
- 147 following years: 1994, 1997, 2000, 2003, 2006 and 2009. For the single sample
- 148 estimators of N_e , we obtained one point estimate for each population in each of these
- 149 years. For the temporal estimators of N_{e_i} we used data from pairs of samples spaced
- by 1, 4 or 7 generations (i.e. 3, 9 or 15 years respectively) for each population.

151 **Population characteristics**

152	We estimated annual adult census population size (N_c) in one of two ways: on the
153	islands where the percentage of marked individuals was high (>70%, and usually
154	close to 100%) we estimated N_c as the number of marked adult individuals that were
155	either captured or observed in a given year, or captured/observed in both a previous
156	and a subsequent year (Jensen et al. 2006, 2013). Otherwise we estimated annual N_c
157	by counting number of adults present in the population at the start of the breeding
158	season (Pärn et al. 2012). There is a strong correlation between these two methods
159	(r=0.959, P<0.001; see Jensen et al. 2013), and N_c was assumed equal to actual adult
160	population size. For single sample estimators we compared N_c with \hat{N}_e , but for
161	temporal estimators we compared \widehat{N}_e with the harmonic mean census population size
162	(N_H) across the years since the previous sampling event (both years of sampling
163	included). This is because the single sample \widehat{N}_e represents N_e at the time of sampling,
164	whereas the temporal \hat{N}_e represents the harmonic mean N_e in the time interval
165	considered (Waples 2010). We calculated the variance in population size $(\sigma_{N_c}^2)$ and the
166	population growth rate (dN/dt) between two samples; for single sample \hat{N}_e between
167	the sampling year and the previous sampling year, for temporal \widehat{N}_e between the two
168	sampling years. The sex ratio (SR) was defined as the proportion of males in the
169	population (for temporal \hat{N}_e the SR was averaged over the two sampling years). We
170	calculated the average immigration rate (m) for either the generation preceding the
171	sampling event (single sample \hat{N}_e) or the time interval between sampling years
172	(temporal \widehat{N}_e). Information on sampling schemes can be found in Supporting
173	Information (Table S3 (single sample) and Table S4 (temporal)).

174 Molecular analyses

- 175 We extracted DNA from blood samples as described in Elphinstone et al. (2003) and
- 176 used polymerase chain reactions (PCR) to amplify DNA and genotype each individual
- 177 on 13 polymorphic nuclear microsatellite loci (see Supporting Information Appendix
- 178 S1) that appeared to be selectively neutral, unlinked and in Hardy Weinberg
- 179 equilibrium. For more information on the genotyping and use of these loci in e.g.
- 180 population genetic studies see Griffith et al. (2007), Kekkonen et al. (2011), Billing et
- 181 al. (2012), Dawson et al. (2012) and Jensen et al. (2013). The widespread and
- 182 successful use of these loci suggests they are suitable for estimating genetic effective
- 183

population size. Estimation of genetic N_e 184

185

- 186 LDNE
- 187 The LDNE program implements a moment-based method for estimating N_e based on
- 188 linkage disequilibrium (LD), defined as the non-random association of alleles at
- 189 different loci, that arises due to random genetic drift (Waples & Do 2008, 2010).
- 190 Although single sample estimates of N_e usually apply to the parental generation,
- 191 estimates based on LD may provide information on N_e more than one generation prior
- 192 to the sampling because LD may take several generations to decay, particularly if
- 193 linked loci are used (Waples 2010, Luikart et al. 2010). Here we assumed random
- 194 mating, as the house sparrows in this study system appears not to be strictly
- 195 monogamous (Jensen et al. 2008).
- 196 **ONeSAMP**
- 197 The ONeSAMP program implements approximate Bayesian computation (ABC) to
- 198 estimate N_e by comparing eight summary statistics (including LD) obtained for the

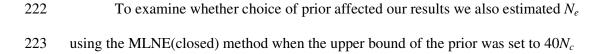
199 population in question with the same statistics calculated for 50 000 simulated

- 200 populations (Tallmon et al. 2008). We chose two as the lower bound of the prior, and
- 201 because N_e theoretically can be at most twice as high as N_c (Wright 1938), $2N_c$ was
- 202 chosen as its upper bound. The repeat motif was specified for each locus (for repeat
- 203 motif for the different loci, see Griffith et al. (2007) and Dawson et al. (2012)).
- 204 Temporal methods: Multiple samples estimators
- 205 For both temporal methods the upper bound of the prior in the estimation procedure
- 206 was chosen to be $2N_c$ for the sampling year with the highest N_c .
- 207 MLNE
- 208 The MLNE method estimates \hat{N}_e from temporally spaced samples using a pseudo-

209 likelihood method which assumes that temporal changes in allele frequencies are

210 caused by genetic drift alone (Wang 2001; Wang & Whitlock 2003). The estimation

- 211 procedure is based on the Wright-Fisher model, but has less restrictive assumptions as
- 212 it allows for migration (open populations) assumed to be from an infinite, unchanging
- source population, estimating \hat{N}_e and \hat{m} jointly (Wang & Whitlock 2003).


214 We estimated \hat{N}_e assuming both isolated populations ($\hat{N}_{e(MLNE, closed)}$), and

- 215 open populations ($\hat{N}_{e(MLNE, open)}$). Consequently, $\hat{N}_{e(MLNE, open)}$ are estimates for which
- 216 a "genetic immigration rate" (referred to as $(\hat{m}_{(MLNE)})$) has been taken into account.

217 When estimating $\hat{N}_{e(MLNE, open)}$ we pooled individuals from all the island populations

218 except the focal population, and defined this pool as the source population for any

- 219 migrants. Furthermore, MLNE requires that a relationship between drift and
- 220 migration is specified; we assumed non-equilibrium as this is more realistic for the
- small populations in this study.

224	for the sampling year with the highest N_c (see Supporting Information Tables S2 and
225	S4).
226	CoNe
227	The program CoNe gives the likelihood of N_e given genetic data sampled from the
228	same population at different points in time (Anderson 2005). This method is based on
229	coalescent theory and assumes that coalescent events are only driven by genetic drift
230	while ignoring mutations and dispersal (Anderson 2005).
231	Metapopulation N _e
232	Genetic data from each local population was pooled for each year or combination of
233	years to estimate $metaN_e$ for each estimator. Additionally, N_e -values were summed
234	across islands for each year/combinations of years, giving ΣN_e . Census population
235	size was summed across islands to give an estimate of $metaN_c$. When N_e for a local
236	population was not available (see Supporting Information Table S2) the same
237	population was excluded from the other estimates to make direct comparisons
238	possible. Note that neither the <i>metaN_e</i> nor the ΣN_e are expected to be entirely correct
239	estimates of N_e for a metapopulation. We therefore only qualitatively compared
240	estimates of metaN _e and ΣN_e with metaN _c , and metaN _e /metaN _c -ratios with
241	subpopulation N_e/N_c -ratios to examine variation in N_e at different population levels,
242	and thus indicate how ignoring population structure may affect estimates of N_e .
243	Estimation of demographic N_e
244	Demographic methods are often based on very restrictive assumptions (e.g.

- 245 Felsenstein 1971; Hill 1972) or a large number of parameters (e.g. Engen et al. 2005).
- Here we based our estimates on the approach of Engen et al. (2007), which assumes
- 247 constant mean vital rates independent of age. This simplifies the estimation
- 248 considerably. N_e was calculated for each sex separately as vital rates can be sex-

specific. N_e for females (N_{ef}) was based on a simplification of Engen et al. (2005) and is given by

$$N_{ef} = \frac{N_f}{\sigma_{dgf}^2 T_f} = \frac{N_f}{[b_f/4 + \sigma_f^2/4 + s_f(1 - s_f) + c_f]T_f}$$
(2)

where N_f is the number of females, σ^2_{dgf} is the demographic variance of a hypothetical 251 252 female subpopulation of heterozygotes carrying a rare allele, b_f is the mean number of 253 female offspring born to each female, σ_f^2 is the variance in number of female 254 offspring per female, s_f is the probability of survival for females, c_f is the covariance 255 between an individual's number of offspring and the indicator variable (0 or 1) for its 256 survival, and T_f is the generation time for the female population given by $T_f = \lambda I (\lambda - \lambda)$ 257 s_f) where λ is the deterministic growth rate. N_e for males (N_{em}) was calculated in the 258 same way. Second, the N_e of the total population was calculated as follows, based on 259 Wright's formula for uneven sex ratios modified to also allow for non-overlapping 2 260 generations (Engen et al. 2007)

$$N_e = \frac{4\lambda^2 b N_{ef} N_{em}}{b_f N_{ef} + b_m N_{em}}$$

(3)

 $\hat{N}_{e(demographic)}$ was obtained from the same sampling intervals as temporal genetic \hat{N}_{e} , 261 262 by multiplying the mean population size during the sampling interval for each island 263 with the N_e/N_c -ratio given in Table 1 in Engen et al. (2007). Note that this approach 264 assumes a constant N_e/N_c -ratio across years. Metapopulation N_e was not estimated 265 using the demographic method as this approach was currently only possible for a 266 limited number of years on 6 out of 15 islands. More information about the method 267 and exact values used in the calculations can be found in Engen et al. (2007). 268 Statistical analyses 269 We used Pearson's correlation coefficient (r) to investigate the relationship between estimates from different estimators ($\hat{N}_{e(LDNE)}$ and $\hat{N}_{e(ONeSAMP)}$, and $\hat{N}_{e(MLNE)}$ and 270 $\hat{N}_{e(CoNe)}$), and between \hat{N}_e and N_c (N_H for temporal estimates), and finally between \hat{N}_e 271 and $\widehat{N}_{e(demographic)}$. In order to determine the importance of population characteristics 272 for \hat{N}_e/N_c , we modeled \hat{N}_e/N_c and \hat{N}_e/N_H as a function of the following predictor 273 274 variables: SR, m, N_c or N_H, dN/dt, $\sigma_{N_c}^2$ and the number of generations between samples 275 (g). Additionally, the interactions were included in the *a priori* global models: $N_c \times SR$ 276 and $N_c \times m$ as the effect of SR and m on \hat{N}_e/N_c could vary with N_c (N_H for temporal 277 estimators). Hence, the global models included five or six covariates (for single 278 sample and temporal methods, respectively) and two two-way interactions. All 52 or 279 104 models nested within the global models were tested (for single sample and 280 temporal methods, respectively). Analyses were carried out using both generalized 281 linear models (GLM) with a Gaussian error structure (using the lm function in R; R 282 Development Core Team 2011) and generalized linear mixed models (GLMM, with a 283 Gaussian error structure, using the nlme package (Pinheiro et al. 2011)) with 284 population as a random factor. As GLMs and GLMMs gave similar results only the 285 results from the GLMs are presented. Model selection was carried out using Akaike's

- 286 Information Criterion with a correction for smaller sample sizes (AIC_C) following
- 287 Burnham & Anderson (2002). Detailed results of the model selection procedures are
- 288 given in Supporting Information Appendix S2. All statistical analyses were carried
- 289 out using R (R Development Core Team 2011). For an overview of removed data,
- 290 including justification for removing outliers, see Supporting Information Table S2.

291 **Results**

292	There was	large varia	tion in N_c	within	and	among	ınsular	house	sparrow	popula	ations

- in Northern Norway across the 17 year study period (Fig. 2, 3). Aldra was colonized
- in 1998 and populated continuously thereafter (see Billing et al. 2012). The
- 295 populations on Sundøy and Ytre Kvarøy went extinct in 2000 (see Ringsby et al.
- 2006), and the Selvær population went effectively extinct in 2000 (only four males
- 297 present), but quickly rebounded due to immigration (see Supporting Information
- Figure S2). For the other island populations the population sizes ranged from less than
- 299 10 individuals (e.g. Selsøyvik) to more than 150 individuals (e.g. Hestmannøy).

300 Estimates of local N_e

301 $\widehat{N}_{e(LDNE)}$ and $\widehat{N}_{e(ONeSAMP)}$ were both significantly positively correlated with N_c and

- 302 tracked fluctuations in N_c over time (Fig. 2, Table 1, Supporting Information Table
- 303 S3). The two estimators showed different patterns; $\hat{N}_{e(LDNE)}$ were mostly lower than
- 304 N_c in relatively large populations (i.e. populations larger than $N_c \approx 25$, see Supporting

305 Information Fig. S1), while $\hat{N}_{e(ONeSAMP)}$ typically were higher than N_c . For small

- 306 populations, the relationship between \hat{N}_e and N_c appeared to be opposite for both
- 307 estimators (Supporting Information Fig. S1).
- 308 $\hat{N}_{e(MLNE, \ closed)}$ and $\hat{N}_{e(MLNE, \ open)}$ were significantly positively correlated with 309 each other and with N_H (Table 1), whereas $\hat{N}_{e(CoNe)}$ was significantly correlated only 310 with $\hat{N}_{e(MLNE, \ open)}$ (Table 1). All three temporal estimators seemed to track
- 311 fluctuations in N_H over time (Fig. 3, Supporting Information Table S4). Temporal \hat{N}_e
- 312 was generally higher than N_H ; except for $\hat{N}_{e(MLNE, open)}$ (Fig. 3). Overall the MLNE

- and CoNe methods produced quite similar estimates, although the estimates given by
- 314 CoNe were generally higher than those from MLNE (Fig. 3).
- 315 Estimates of immigration rates from MLNE ($\hat{m}_{(MLNE)}$) ranged from 0.00 to
- 316 1.00, with a mean value of 0.43 (Supporting Information Table S4). These estimates
- 317 were much higher than the observed (ecological) migration rate *m* calculated based on
- 318 observed natal dispersal events of recruiting individuals between the islands (range:
- 319 0.00 0.14, mean = 0.04; see Pärn et al. 2009, 2012 and Supporting Information
- 320 Figure S2).

321 Population characteristics and variation in local N_e/N_c

322 The most parsimonious model explaining 35% of the variation in $\hat{N}_{e(LDNE)}/N_c$ included

323 two parameters: sex ratio (SR) and immigration rate (m) (model 1, Table 2a). SR and

324 *m* were positively related to $\hat{N}_{e(LDNE)}/N_c$ (Table 3a), indicating that $\hat{N}_{e(LDNE)}$ was

- 325 relatively higher compared to N_c when the population was more male biased and there
- 326 were more immigrants.
- 327 The most parsimonious model explaining 31% of the variation in
- 328 $\hat{N}_{e(ONeSAMP)}/N_c$ included only N_c (model 1, Table 2b). This model showed that N_c was
- 329 positively related to $\hat{N}_{e(ONeSAMP)}/N_c$ (Table 3b), thus $\hat{N}_{e(ONeSAMP)}$ was relatively higher
- compared to N_c at higher values of N_c (see also Supporting Information Fig. S1b).
- 331 Variation in $\hat{N}_{e(MLNE, closed)}/N_H$ was best explained by population size (N_H) , sex
- ratio (SR), immigration rate (m) and population growth rate (dN/dt) (model 1, Table
- 333 2c). In this model, which explained 35% of the variance in $\hat{N}_{e(MLNE, closed)}/N_H$,
- 334 $\widehat{N}_{e(MLNE, closed)}/N_H$ was negatively related to N_H and SR, and positively related to m and
- 335 dN/dt (Table 3c). This implied that $\hat{N}_{e(MLNE, closed)}$ was relatively smaller compared to

336	N_H at higher population sizes and at higher proportions of males in the population,
337	and relatively higher than N_H at higher population growth rates and immigration rates.
338	According to the best model, which explained 47% of the variation in
339	$\widehat{N}_{e(MLNE, open)}/N_H$ (model 1, Table 2d), N_H was negatively related to $\widehat{N}_{e(MLNE, open)}/N_H$
340	and $\sigma_{N_c}^2$ were positively associated with $\hat{N}_{e(MLNE, open)}/N_H$ (Table 3d). Consequently,
341	$\widehat{N}_{e(MLNE, open)}$ was relatively larger compared to N_H at smaller values of N_H and with
342	higher $\sigma_{N_c}^2$.
343	The most parsimonious model explaining 71% of the variation in $\widehat{N}_{e(CoNe)}/N_H$
344	included population size (N_H) , immigration rate (m) , population growth rate (dN/dt)
345	and the interaction term $N_H \times m$ (model 1, Table 2e). Parameter estimates for model 1
346	(Table 3e) showed that <i>m</i> and dN/dt had a positive effect on $\widehat{N}_{e(CoNe)}/N_H$, whereas N_H
347	and the interaction term $N_H \times m$ had negative parameter estimates. However, the main
348	effect of N_H was not significant ($p = 0.20$). Thus, $\hat{N}_{e(CoNe)}$ was relatively higher
349	compared to N_H when the number of immigrants increased and with higher population
350	growth rate. The magnitude of the positive effect of m on $\widehat{N}_{e(CoNe)}/N_H$ was reduced

351 when population size increased.

352 The relationship between genetic and demographic local N_e

353 The estimates of N_e from the demographic method were significantly positively

354 correlated with estimates from the MLNE method, as well as with estimates from the

- 355 CoNe method (Table 1). Thus, this suggests that these methods reflected current rates
- 356 of drift in these populations. However, both the MLNE method and the CoNe method
- 357 always produced estimates that were larger than $\hat{N}_{e(demographic)}$ (see Supporting
- 358 Information Figure S1).

The effect of population structure

- 360 Metapopulation estimates of N_e based on the pooled samples from all local
- 361 populations for a given year (or two points in time for the temporal estimator) were
- 362 only estimated for ONeSAMP, LDNE and MLNE (closed). Metapopulation N_e could
- 363 not be estimated using CoNe due to too many missing estimates for each local
- 364 population (see Supporting Information Table S2) and estimating metapopulation N_e
- 365 using MLNE(open) is not possible as we currently do not have data on the genetic
- 366 composition of the potential source of immigrants into the house sparrow
- 367 metapopulation. Even though the sample size was too small for proper statistical
- testing, some patterns were apparent; for LDNE, ΣN_e was lower than meta N_c , while
- 369 for MLNE it was always higher (Figure 4, Supporting Information Table S5). For
- both LDNE and MLNE ΣN_e was in general more than twice the *metaN_e* (Figure 4,
- 371 Supporting Information Table S5). Also, for both LDNE and MLNE *metaN_e/metaN*
- 372 was in the range 0.260-2.521, and mostly below 1 (Supporting Information Table S5).

0,1

373 **Discussion**

374	As expected, estimates of local N_e within island populations were strongly positively
375	related to N_c (Table 1, Fig. 2 and 3). However, although estimates of genetic N_e
376	seemed to track N_c quite well, N_e estimates within local populations were in general
377	larger than census population size (Fig. 2 and 3), with $\widehat{N}_{e(LDNE)}$ being the only
378	exception (Fig. 2). On the metapopulation level we found that $metaN_e$ was usually
379	smaller than $metaN_c$ (Fig. 4).
380	There was an overall congruence between different genetic estimators of N_e ,
381	and between temporal genetic and demographic estimators of N_e (Table 1). Temporal
382	genetic N_e was however always larger than demographic N_e . The differences between
383	the estimators are partly due to the estimators being affected differently by
384	immigration and fluctuating population size (see discussion below). The estimators
385	can also be inaccurate, which is very likely in many natural populations given the
386	restrictive assumptions underlying the estimators (constant population size, no gene-
387	flow, non-overlapping generations etc.). As we do not know the true value of N_e it is
388	however difficult to assess the magnitude and direction of a potential bias. For
389	example, when the upper bound of the prior was increased from 2 times N_c to 40
390	times N_c many of the N_e -estimates from the MLNE(closed) method increased
391	considerably, showing that this estimator is sensitive to the prior distribution
392	(Supporting Information Table S4). The N_e -estimates increased on average by more
393	than 10-fold when the two population samples were spaced only one generation apart
394	but remained almost the same when spaced four or seven generations apart
395	(Supporting Information Fig. S3). This suggests that the bias introduced by age
396	structure when using a method which assumes non-overlapping generations (such as

397	e.g. MLNE) can be reduced by increasing the number of generations between the
398	samples (Waples & Yokota 2007). Furthermore, some estimates were either infinite
399	or clear outliers (see Supporting Information Tables S2, S3 and S4), perhaps due to
400	the combined effects of relatively few genetic marker loci and small sample sizes
401	(Waples 1989; England et al. 2006). Although these estimates were excluded from the
402	analyses, they do highlight a general concern with at least some of the genetic N_e
403	estimators; \hat{N}_e may in certain cases be very biased. Given that $N_e > N_c$ for most
404	estimates in our study (Table 1, Fig. 2 and 3) it seems likely that there exist an upward
405	bias for genetic N_e estimators on the local population level. The most likely cause of
406	this potential bias is immigration. We recommend the use of different estimators of N_e
407	to obtain some notion of how robust the estimate is, and that \hat{N}_e should be interpreted
408	with caution if no other information is available from the population in question.
409	Different bounds of the prior should also be tried out; if the estimates returned are
410	much higher and even equal to the upper bound of the prior this might indicate that
411	there is not enough information in the molecular data for the method to properly
412	quantify the genetic drift component and give reliable estimates of N_e , perhaps
413	because too few generations have passed between the temporal samples.
111	P opulation characteristics and variation in N/N

414 **Population characteristics and variation in** N_e/N_c

415 Contemporary estimates of N_e will mainly reflect local demographic and evolutionary

416 processes that have occurred during recent generations(Waples 2010), with single

- 417 sample estimators generally reflecting processes that occurred in the parental
- 418 generation, and temporal estimators reflecting the processes that have occurred during
- 419 the time span considered (Luikart et al. 2010). Accordingly, demographic
- 420 characteristics of the populations during one or a few generations prior to sampling

421	explained between 31 and 71 % of the observed variance in local N_e/N_c for the
422	different genetic estimators. This pattern was however complex, as the population
423	characteristics affecting the N_e/N_c -ratio differed between estimators (Table 2 and 3).
424	Population size and population growth rate
425	According to theory there should be no relationship between N_e/N_c and N_c
426	(Kalinowski & Waples 2002). However, N_c positively affected N_e/N_c for the
427	ONeSAMP method and negatively affected N_e/N_H for the MLNE and CoNe methods
428	(Table 3). A negative relationship between N_e/N_c and N_c was found in other studies as
429	well (Ardren & Kapuscinski 2003; Beebee 2009). These studies attributed this pattern
430	to either genetic compensation (which is a higher than expected N_e at low values of N_c
431	because reproductive variance may be lower in small populations), or simply an
432	artifact of plotting a fraction against its denominator. ONeSAMP gave relatively
433	higher N_e with higher N_c prior, consistent with results from Phillipsen et al. (2011),
434	and <i>metaN_e</i> estimates for this estimator were therefore extremely high (i.e. >2500).
435	This is most likely an artifact of the estimation procedure used in ONeSAMP, which
436	seems to be inappropriate for higher values of N_e as the signal from drift attenuates
437	with increasing N_e (see Phillipsen et al. (2011)), and not an effect of population
438	structure. As expected from theory, N_e/N_H was positively related to population growth
439	rate for the two temporal methods, which estimate N_{eV} (Waples 2005). Fluctuations in
440	population size are expected to influence N_{eI} and N_{eV} differently, as variance in allele
441	frequencies and inbreeding relates differently to population dynamics (Crow &
442	Denniston 1988). Changes in N_{eV} are expected to follow changes in N_c because
443	variance in allele frequency is directly dependent on N_c . On the other hand, N_{eI} will
444	lag by at least one generation, as it relates to the number of parents that produced the
445	sample. Although it may seem that the single sample estimators track N_c better than

446	the temporal estimators (Fig. 2, 3), there is no evidence that this is the case based on
447	the observed correlations between N_e estimates and N_c (Table 1).
448	Variance in population size should lead to a reduction in N_e and N_e/N_c
449	(Kalinowski & Waples 2002). Therefore, the positive relationship between
450	$\widehat{N}_{e(MLNE,open)}$ and $\sigma_{N_c}^2$ is puzzling. This relationship could however arise if there is a
451	positive relationship between population size and the magnitude of fluctuations in
452	population size.
453	Sex ratio
454	A prediction from Wright's theory is that a skewed sex ratio will decrease N_e toward
455	the effective size for the rarest sex (Wright 1931, 1938). Empirical studies have
456	reported that unequal sex ratio had a negative effect on N_e/N_c (Frankham 1995).
457	However, the effect of sex ratio on N_e/N_c depends on the mating system (Nunney
458	1993). The house sparrow mating system is probably dominance polygyny, resulting
459	in higher variance in reproductive success for males than females (Anderson 2006;
460	but see Jensen et al. 2004). The maximum value of N_e/N_c is then expected in a male
461	biased population (Nunney 1993). This is concordant with the results for the LDNE
462	method, where sex ratio (i.e. proportion of males) affected N_e/N_c positively (Table
463	3a). However, for MLNE(closed) the opposite result was found (Table 3c). This could
464	be due to effects of the other parameters included in the model (population size,
465	immigration and population growth rate), as other factors could interact with sex ratio
466	and influence its relationship with N_e/N_c .
467	Immigration
468	Immigration rate had a positive effect on N_e/N_c for three of the estimators: LDNE,

469 MLNE(closed) and CoNe (Table 3). The positive relationship between immigration

470 rate and N_e/N could be a direct consequence of the increased genetic variation

471	introduced by immigrants (Charlesworth 2009), because immigrants that are
472	genetically different from residents are expected to increase levels of LD and hence
473	reduce N_e in the local population (Waples & England 2011). The effect of
474	immigration will therefore depend on the genetic differentiation between the source
475	population and recipient population (Wang & Whitlock 2003). Preliminary analyses
476	suggest that the average pairwise F_{ST} value among the island populations in this
477	metapopulation is ca. 0.03, indicating moderate genetic differentiation (Jensen et al. in
478	prep.). Moreover, Jensen et al. (2013) found that genetic differentiation between
479	island populations increased with distance on a larger scale along the Norwegian
480	coast, and previous studies have shown that dispersal distances in the house sparrow
481	are generally very short (Tufto et al. 2005; Anderson 2006) and occur most frequently
482	between neighboring islands (Pärn et al. 2012). As a consequence, the average
483	immigrant seems likely to be sufficiently genetically similar to the average individual
484	in the recipient population to avoid increasing LD levels at the typed genetic markers,
485	and the direct effect of immigration to reduce the rate of loss of genetic variation is
486	probably the cause for its positive effect on N_e/N_c . This assumes that the recorded
487	migrants are a part of the breeding population, which is not always the case in our
488	study metapopulation in which male immigrants have lower fitness than resident
489	males (Pärn et al. 2009). A comparison of the temporal genetic estimates from MLNE
490	and CoNe and the demographic estimates of N_e revealed that demographic estimates
491	were not affected by immigration in the same way, as the values of local N_e fall
492	within what is expected with respect to N_H ($N_e < N_H$). The demographic method is on
493	the other hand sensitive to local population demography such as the mean and
494	variance in vital rates and deviation from a 1:1 sex ratio (Engen et al. 2005, 2007).
495	Thus, immigration is expected to reduce demographic N_e slightly because the lowered

496	fitness of male immigrants would reduce the mean and increase the variance in male
497	reproductive success (see eqn. 2). In contrast, genetic N_e will be directly affected and
498	elevated by immigration, because immigration counteracts the effect of genetic drift.
499	The true N_e probably lies between N_e estimated using the demographic approach and
500	N_e estimated using genetic methods.
501	Immigration rates estimated using the MLNE method ($\hat{m}_{(MLNE)}$, mean = 0.43)
502	were much higher than what is reasonable given the (ecological) m (mean = 0.044),
503	calculated based on observed dispersal events (Pärn et al. 2009, 2012; see also
504	Supporting Information Figure S2). The reason for the improbably high $\widehat{m}_{(MLNE)}$ may
505	be related to the fact that individuals from all other islands than the one for which N_e
506	was estimated were pooled and defined as the source population in our analyses.
507	Hence, a continent-island system was assumed, when in fact the metapopulation is an
508	island-island system, with local populations of very different sizes and asymmetrical
509	exchange of migrants (Pärn et al. 2012, Supporting Information Figure S2). Similarly,
510	improbably large estimates of <i>m</i> were also found in the frog <i>Rana pipiens</i> and were
511	also attributed to the MLNE method's assumption regarding source of immigrants
512	(Hoffman et al. 2004).

513 **Population structure and the importance of spatial scale**

Given that gene-flow between local populations has such a large impact on N_e it may be more appropriate to study N_e for the total metapopulation (*metaN_e*). However, this may be very challenging as the metapopulation N_e is not equal to the sum of all the local population N_e -values (Hedrick & Gilpin 1997). Under Wright's island model, N_e for a metapopulation is higher than the equivalent panmictic population. However, many assumptions of the island model are unrealistic in natural populations. For example, if there is higher variance in reproductive success between local populations

521	than expected by a Poisson distribution or if extinction-recolonization dynamics are
522	accounted for, then metapopulation N_e will be (much) smaller than N_e for a panmictic
523	population with the same N_c (Hedrick & Gilpin 1997, Whitlock & Barton 1997, Wang
524	& Caballero 1999, Ovaskainen & Hanski 2004). In our house sparrow study
525	metapopulation we have shown that $metaN_e$ generally is smaller than the
526	metapopulation census population size $(metaN_c)$ and clearly smaller than the sum of
527	the local population N_e -values (ΣN_e ; Fig. 4, Supporting Information Table S5). The
528	true value of N_e for the total metapopulation probably lies in the range between
529	<i>metaN_e</i> and <i>metaN_c</i> . Proper estimation of genetic metapopulation N_e using e.g. the
530	model of Whitlock & Barton (1997) was not possible in this study, but should be
531	carried out when information on the variance among local populations in reproductive
532	success is available and can be combined with information on local population sizes
533	and the level of genetic differentiation among populations (measured by Wright's F_{st} ,
534	which depends on dispersal rates).
535	Our results strongly show the importance of identifying the proper spatial
536	scale for estimating N_e ; if unaware of population structure and metapopulation
537	dynamics one might risk either overestimating local N_e or underestimating
538	metapopulation N_e (see also Fraser et al. 2007, Palstra & Ruzzante 2011). Our study
539	also suggests the importance a metapopulation structure can have for preserving
540	genetic variation, especially when the environmental stochasticity is high. The
541	different island populations have undergone major fluctuations in population size,
542	including severe bottlenecks and extinction events (Fig. 2 and 3). However, LDNE
543	$metaN_e$ (but not single-generation MLNE $metaN_e$) remains relatively stable across
544	years (Fig. 4). One can speculate whether this may be due to the stabilizing effect of

- 545 migration between islands; we have shown here that migration has a positive impact
- on local N_e and thus maintenance of genetic variation.

547 **Conclusions and implications**

- 548 Genetic N_e estimated with proper caution with respect to potential biases or
- 549 imprecisions, can be used to guide management decisions (Leberg 2005). Identifying
- 550 N_e and the factors causing low values of N_e is vital for conservation (Wang 2009).
- 551 Knowledge of how N_e can be maximized by management is also necessary. From our
- analyses it is clear that population size itself is an important factor, as N_e increased
- 553 with N_c for all estimators. Frankham (1995) conclude that a fluctuating population
- size is the most important factor responsible for reducing the N_e/N_c ratio. Immigration
- had a positive effect on N_e/N_c and facilitating gene flow in fragmented habitats may
- therefore be an important conservation measure to reduce loss of genetic variation.
- 557 We suggest that more effort should be put into providing empirical estimates of N_e for
- 558 both local populations and metapopulations. Because more populations will become
- 559 fragmented in the future, an increased understanding of how different factors affect
- 560 the rate of genetic drift at every level in such systems is essential (Hedrick & Gilpin
- 561 1997, Waples 2010).

Acknowledgements 562

- 563 We thank the inhabitants in our study area whose hospitality and friendliness made this study
- 564 possible. We are also grateful to our many field workers for assistance in collecting the data,
- 565 Atle Torvik Kristiansen for help with the genotyping, Ivar Herfindal and Thomas Kvalnes for
- 566 help with R, and four anonymous referees for helpful comments on previous versions of the
- 567 paper. This work was supported by grants from the European Research Council (ERC-2010-AdG
- 568 268562), the Research Council of Norway (FRIBIO 204303 and 221956), and NTNU. The
- 569 research was carried out in accordance with permits from the Norwegian Environment Agency "
 Inger Mus
- 570 and the Bird Ringing Centre at Stavanger Museum, Norway.

571

572 Literature cited

- 573 Anderson EC (2005) An efficient Monte Carlo method for estimating Ne from temporally spaced
- 574 samples using a coalescent-based likelihood. Genetics, **170**, 955-967.
- 575 Anderson EC, Garza JC (2009) Estimation of population size with molecular genetic data,
- 576 Technical Memorandum NMFS. NOAA, California.
- 577 Anderson TR (2006) Biology of the ubiquitous house sparrow From genes to populations.
- 578 Oxford University Press, New York.
- 579 Ardren WR, Kapuscinski AR (2003) Demographic and genetic estimates of effective population
- 580 size (Ne) reveals genetic compensation in steelhead trout. Molecular Ecology, **12**, 35-49.
- 581 Beaumont MA (2003) Estimation of population growth or decline in genetically monitored

582 populations. Genetics, **164**, 1139-1160.

- 583 Beebee TJC (2009) A comparison of single-sample effective size estimators using empirical toad
- 584 (*Bufo calamita*) population data: genetic compensation and population size-genetic

585 diversity correlations. Molecular Ecology, **18**, 4790-4797.

- 586 Berthier P, Beaumont MA, Cornuet JM, Luikart G (2002) Likelihood-based estimation of the
- 587 effective population size using temporal changes in allele frequencies: A genealogical
 588 approach. Genetics, 160, 741-751.
- 589 Billing AM, Lee AM, Skjelseth S, Borg AA, Hale MC, Slate J, Parn H, Ringsby TH, Sæther B-
- 590 E, Jensen H (2012) Evidence of inbreeding depression but not inbreeding avoidance in a
 591 natural house sparrow population. Molecular Ecology, 21, 1487-1499.
- 592 Burnham KP, Anderson DR (2002) Model selection and multimodal inference: A practical
- 593 information-theoretic approach. 2nd edition. Springer Verlag, New York.
- 594 Caballero A (1994) Developments in the prediction of effective population size. Heredity, 73,

595 657-679.

596	Charlesworth B (2009) Effective population size and patterns of molecular evolution and
597	variation. Nature Reviews Genetics, 10, 195-205.
598	Crow JF, Denniston C (1988) Inbreeding and variance effective population numbers. Evolution,
599	42 , 482-495.
600	Dawson DA, Horsburgh GJ, Krupa AP, Stewart IRK, Skjelseth S, Jensen H, Ball AD, Spurgin
601	LG, Mannarelli ME, Nakagawa S, Schroeder J, Vangestel C, Hinten GN, Burke T (2012)
602	Microsatellite resources for Passeridae species: a predicted microsatellite map of the
603	house sparrow Passer domesticus. Molecular Ecology Resources, 12, 501-523.
604	Elphinstone MS, Hinten GN, Anderson MJ, Nock CJ (2003) An inexpensive and high-
605	throughput procedure to extract and purify total genomic DNA for population studies.
606	Molecular Ecology Notes, 3 , 317-320.
607	Engen S, Lande R, Sæther B-E (2005) Effective size of a fluctuating age-structured population.
608	Genetics, 170 , 941-954.
609	Engen S, Ringsby TH, Sæther B-E, Lande R, Jensen H, Lillegard M, Ellegren H (2007) Effective
610	size of fluctuating populations with two sexes and overlapping generations. Evolution,
611	61 , 1873-1885.
612	England PR, Cornuet JM, Berthier P, Tallmon DA, Luikart G (2006) Estimating effective
613	population size from linkage disequilibrium: severe bias in small samples. Conservation
614	Genetics, 7, 303-308.Felsenstein J (1971) Inbreeding and variance effective numbers in
615	populations with overlapping generations. Genetics, 68, 581-597.
616	Frankham R (1995) Effective population size / adult population size ratios in wildlife: a review.
617	Genetical Research, 66, 95-107.
618	Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conservation
619	Biology, 10 , 1500-1508.

620 Frankham R (2005) Genetics and extinction. Biological Conservation, **126**, 131-140.

- 621 Frankham R (2010) Challenges and opportunities of genetic approaches to biological
- 622 conservation. Biological Conservation, **143**, 1919-1927.
- Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential?
 Animal Conservation, 1, 69-70.
- 625 Fraser DJ, Hansen MM, Ostergaard S, Tessier N, Legault M, Bernatchez L (2007) Comparative
- 626 estimation of effective population sizes and temporal gene flow in two contrasting
- 627 population systems. Molecular Ecology, **16**, 3866-3889.
- 628 Griffith SC, Dawson DA, Jensen H, Ockendon N, Greig C, Neumann K, Burke T (2007)
- 629 Fourteen polymorphic microsatellite loci characterized in the house sparrow *Passer*
- 630 *domesticus* (Passeridae, Aves). Molecular Ecology Notes, 7, 333-336.
- 631 Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican

632 wolves and Florida panthers. Conservation Genetics, **11**, 615-626.

- 633 Hedrick PW, Gilpin ME (1997) Genetic effective size of a metapopulation. in I. A. Hanski and
- M. E. Gilpin, editors. Metapopulation biology Ecology, genetics, and evolution.

635 Academic Press, London.

Hill WG (1972) Effective size of populations with overlapping generations. Theoretical

637 Population Biology **3**:278-&.

- Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium.
 Genetical Research, 38, 209-216.
- 640 Husby A, Sæther B-E, Jensen H, Ringsby TH (2006) Causes and consequences of adaptive
- seasonal sex ratio variation in house sparrows. Journal of Animal Ecology, **75**, 11281139.
- Jensen H, Moe R, Hagen IJ, Holand AM, Kekkonen J, Tufto J, Sæther B-E (2013) Genetic

644 variation and structure of house sparrow populations: is there an island effect? Molecular

645 Ecology, **22**, 1792-1805.

646 Jensen H, Steinsland I, Ringsby TH, Sæther B-E (2008) Evolutionary dynamics of
--

- 647 ornament in the house sparrow (*Passer domesticus*): The role of indirect selection within
 648 and between sexes. Evolution, **62**, 1275-1293.
- 649 Jensen H, Svorkmo-Lundberg T, Ringsby TH, Sæther B-E (2006) Environmental influence and
- 650 cohort effects in a sexual ornament in the house sparrow, *Passer domesticus*. Oikos, **114**,
- 651 212-224.
- Jensen H, Sæther B-E, Ringsby TH, Tufto J, Griffith SC, Ellegren H (2003) Sexual variation in
- heritability and genetic correlations of morphological traits in house sparrow (*Passer*
- 654 *domesticus*). Journal of Evolutionary Biology, **16**, 1296-1307.
- 55 Jensen H, Sæther B-E, Ringsby TH, Tufto J, Griffith SC, Ellegren H (2004) Lifetime
- 656 reproductive success in relation to morphology in the house sparrow *Passer domesticus*.
- 657Journal of Animal Ecology, 73, 599-611.
- 658 Kalinowski ST, Waples RS (2002) Relationship of effective to census size in fluctuating

659 populations. Conservation Biology, **16**, 129-136.

- 660 Kekkonen J, Seppä P, Hanski IK, Jensen H, Väisänen RA, Brommer JE (2011) Low genetic
- differentiation in a sedentary bird: house sparrow population genetics in a contigous

662 landscape. Heredity, **106**, 183-190.

- Kimura M, Crow JF (1963) The measurement of effective population number. Evolution, 17,
 279-288.
- Leberg P (2005) Genetic approaches for estimating the effective size of populations. Journal of
 Wildlife Management, 69, 1385-1399.
- 667 Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census
- and effective population sizes: the increasing usefulness of DNA-based approaches.
- 669 Conservation Genetics, **11**, 355-373.

- 670 Nunney L (1993) The influence of mating system and overlapping generations on effective
- 671 population size. Evolution, **47**, 1329-1341.
- Nunney L (1995) Measuring the ratio of effective population size to adult numbers using genetic
 and ecological data. Evolution, 49, 389-392.
- 674 Ovaskainen O, Hanski IA (2004) Metapopulation dynamics in highly fragmented landscapes.in
- 675 I. A. Hanski and O. E. Gaggiotti, editors. Ecology, genetics, and evolution of
- 676 metapopulations. Elsevier Academic Press, San Diego.
- 677 Palstra FP, Ruzzante DE (2011) Demographic and genetic factors shaping contemporary
- 678 metapopulation effective size and its empirical estimation in salmonid fish. Heredity,
- **107**, 444-455.
- 680 Phillipsen IC, Funk WC, Hoffman EA, Monsen KJ, Blouin MS (2011) Comparative analyses of
- 681 effective population size within and among species: Ranid frogs as a case study.
 682 Evolution, 65, 2927-2945.
- Pinheiro J, Bates D, DebRoy S, Sarkar D (2011) nlme: Linear and nonlinear mixed effects
 models. R Core team.
- 685 Pärn H, Jensen H, Ringsby TH, Sæther B-E (2009) Sex-specific fitness correlates of dispersal in
- a house sparrow metapopulation. Journal of Animal Ecology, **78**, 1216-1225.
- Pärn H, Ringsby TH, Jensen H, Sæther B-E (2012) Spatial heterogeneity in the effects of climate
 and density-dependence on dispersal in a house sparrow metapopulation. Proceedings of
 the Royal Society Biological Sciences, 279, 144-152.
- 690 R Development Core Team (2011) R: A languange and environment for statistical computing.*in*
- 691 R. D. C. Team, editor. R Foundation for Statistical Computing.
- 692 Ringsby TH, Sæther B-E, Jensen H, Engen S (2006) Demographic characteristics of extinction
- in a small, insular population of house sparrows in northern Norway. Conservation
- 694 Biology, **20**, 1761-1767.

695	Ringsby TH, Sæther B-E, Tufto J, Jensen H, Solberg EJ (2002) Asynchronous spatiotemporal
696	demography of a house sparrow metapopulation in a correlated environment. Ecology,
697	83 , 561-569.
698	Schmeller DS, Merilä J (2007) Demographic and genetic estimates of effective population and
699	breeding size in the amphibian Rana temporaria. Conservation Biology, 21, 142-151.
700	Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for
701	conservation and management. Trends in Ecology & Evolution, 22, 25-33.
702	Sæther B-E, Ringsby TH, Bakke Ø, Solberg EJ (1999) Spatial and temporal variation in
703	demography of a house sparrow metapopulation. Journal of Animal Ecology, 68, 628-
704	637.
705	Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate
706	effective population size using approximate Bayesian computation. Molecular Ecology
707	Resources, 8 , 299-301.
708	Templeton AR, Read B (1984) Factors eliminating inbreeding depression in a captive herd of
709	speke's gazelle (Gazella spekei). Zoo Biology, 3, 177-199.
710	Tufto J, Ringsby TH, Dhondt AA, Adriaensen F, Matthysen E (2005) A parametric model for
711	estimation of dispersal patterns applied to five passerine spatially structured populations.
712	American Naturalist, 165 , E13-E26.
713	Wang JL (2001) A pseudo-likelihood method for estimating effective population size from
714	temporally spaced samples. Genetical Research, 78, 243-257.
715	Wang JL (2005) Estimation of effective population sizes from data on genetic markers.
716	Philosophical Transactions of the Royal Society B-Biological Sciences, 360, 1395-1409.
717	Wang JL (2009) A new method for estimating effective population sizes from a single sample of
718	multilocus genotypes. Molecular Ecology, 18, 2148-2164.

- Wang JL, Caballero A (1999) Developments in predicting the effective size of subdivided
 populations. Heredity, 82, 212-226.
- Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates from
 genetic samples over space and time. Genetics, 163, 429-446.
- 723 Waples RS (1989) A generalized approach for estimating effective population size from
- temporal changes in allele frequency. Genetics, **121**, 379-391.
- 725 Waples RS (2005) Genetic estimates of contemporary effective population size: to what time
- periods do the estimates apply? Molecular Ecology, **14**, 3335-3352.
- 727 Waples RS (2006) A bias correction for estimates of effective population size based on linkage
- disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167-184.
- 729 Waples RS (2010) Spatial-temporal stratifications in natural populations and how they affect
- 730understanding and estimation of effective population size. Molecular Ecology Resources,
- **10**, 785-796.
- Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on
 linkage disequilibrium. Molecular Ecology Resources, 8, 753-756.
- 734 Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly
- variable genetic markers: a largely untapped resource for applied conservation and
- right evolution. Evolutionary Applications, **3**, 244-262.
- 737 Waples RS, England PR (2011) Estimating contemporary effective population size on the basis
- of linkage disequilibrium. Genetics, **189**, 633-644.
- Waples RS, Yokota M (2007) Temporal estimates of effective population size in species with
 overlapping generations. Genetics, 175, 219-233.
- Whitlock MC, Barton NH (1997) The effective size of a subdivided population. Genetics, 146,
 427-441.
- 743 Wright S (1931) Evolution in Mendelian populations. Genetics, 16, 98-159.

744 Wright S (1938) Size of population and breeding structure in relation to evolution. Science, 87,

745 430-431.

746 Data Accessibility

- For microsatellite genotypes, genetic single-sample and temporal samples N_e -estimates and
- 748 corresponding population characteristics see Dryad doi:10.5061/dryad.nb260. For
- individual-based data used to estimate demographic N_e see Dryad
- 750 doi:10.5061/dryad.d02cn.

751 Author Contributions

- 752 HJ had the original idea and designed the study together with HTB. All authors performed
- the research. HTB analyzed the data with supervision and help from AMM, HJ, HP and
- 154 IJH. AMM, BES, HJ, HTB and IJH wrote the paper with input from HP and THR.

755 Supporting Information

- Additional Supporting Information may be found in the online version of this article.
- 757 **Table S1:** Overview of removed individuals/loci for the ONeSAMP estimation procedure.
- **Table S2:** Overview of missing data/excluded data along with justification for removal ofoutliers.
- 760 **Table S3:** Estimates of effective population size using the single sample estimators LDNE
- and ONeSAMP.
- 762 Table S4: Estimates of effective population size using the temporal methods MLNE and763 CoNe.

764	Table S5: Estimates of effective population size for the total metapopulation for the two
765	methods LDNE and MLNE.

- Figure S1: The relationship between N_e and N_c or N_H within local populations for the four
- 767 genetic estimators (LDNE, ONeSAMP, MLNE and CoNe) and the demographic estimator.
- 768 Appendix S1: Brief description of genotyping procedures.
- 769 Appendix S2: Description of model selection procedures.
- Figure S2: The number of immigrants to each island population during three year
- 771 intervals.
- Figure S3: The relative increase in N_e -estimates from the MLNE(closed) method when the
- upper prior limit was increases from 2 times N_c to 40 times N_c , for temporal samples
- spaced either 1, 4 or 7 generations apart.
- 775

776 Figure Legends

777

778	Figure 1 T	he house spari	ow metapor	oulation study	system consi	sting of 18	island

- populations (shown in black) off the coast of Norway. The 15 islands included in this study
- are named.
- Figure 2 Single sample effective population size estimates and population size over time
- in 15 house sparrow populations in Northern Norway. Census population size (N_c) is
- indicated as orange dots, N_e -estimates from LDNE are shown as green triangles, and N_e -
- restimates from ONeSAMP are shown as blue squares.

Figure 3 Temporal effective population size estimates and population size over time in 15

house sparrow populations in Northern Norway. Census population size (N_c) is indicated

- as orange dots, N_e -estimates from MLNE(closed) are shown in red, N_e -estimates from
- 788 MLNE(open) are shown in green, and N_e -estimates from CoNe are shown in blue. For each
- restimator triangles show estimates based on samples separated by one generation, dots
- show estimates from samples separated by four generations, and squares show estimates
- from samples separated by seven generations.

792 Figure 4. Estimates of effective population size from (a) LDNE and (b) MLNE(closed) for

the whole metapopulation, consisting of 15 insular house sparrow populations in Northern

- Norway. Census population size (N_c) is indicated as orange dots. For (a) LDNE the N_e -
- restimates for the total metapopulation $(metaN_e)$ are shown in yellow whereas the sums of
- local population $N_e(\Sigma N_e)$ are shown in green. For (b) MLNE(closed) the N_e -estimates for
- the total metapopulation ($metaN_e$) are shown in blue whereas the sum of local population
- 798 $N_e(\Sigma N_e)$ are shown in red; triangles show estimates based on samples separated by one

- generation, dots show estimates from samples separated by four generations, and squares
- 800 show estimates from samples separated by seven generations.

802 Tables

803 **Table 1:** Correlation between different estimators of effective population size (\hat{N}_e) in a

804 house sparrow metapopulation, and between \hat{N}_e and adult census population size (harmonic

805 mean census population size N_H or annual census population size N_c). The upper left section gives

- 806 the correlations between the temporal estimators (MLNE and CoNe) and demographic N_e ; the
- 807 lower right section gives the correlations for the single sample estimators (LDNE and ONeSAMP).

808 P-values and the number of estimates (n) included in the correlation analyses are shown in

809 brackets.

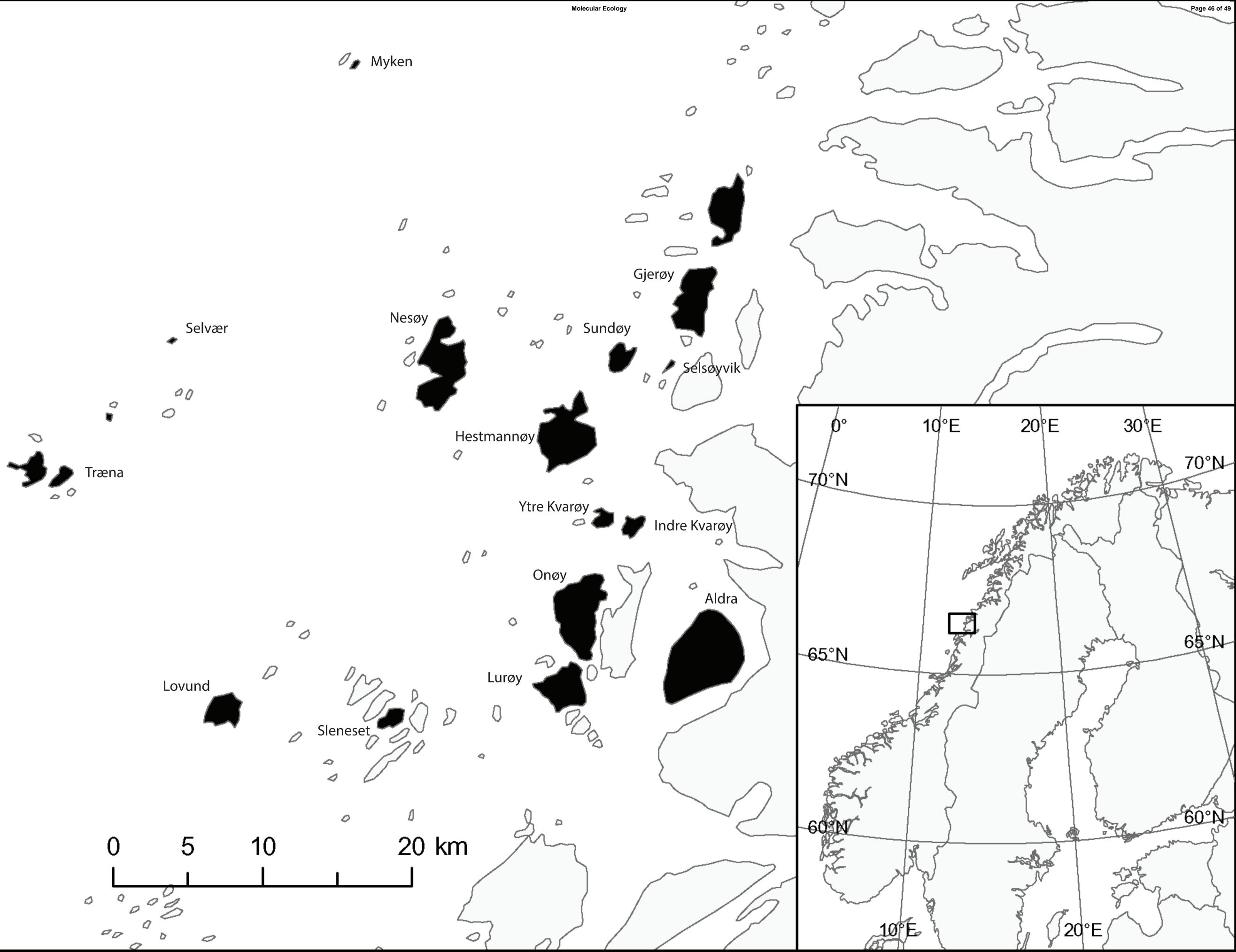
	$\widehat{N}_{e(MLNE, open)}$	$\widehat{N}_{e(MLNE, \ closed)}$	$\widehat{N}_{e(CoNe)}$	$\widehat{N}_{e(demographic)}$	$\widehat{N}_{e(LDNE)}$	$\widehat{N}_{e(ONeSAMP)}$
N _H	0.63	0.83	0.16	0.99		
	(p<<0.001,	(p<<0.001,	(p=0.269,	(p<<0.001,	-	-
	n=86)	n=86)	n=51)	n=41)		
$\widehat{N}_{e(MLNE, open)}$		0.69	0.23	0.55		
	-	(p<<0.001,	(p=0.122,	(p<0.001,	-	-
		n=86)	n=51)	n=41)		
$\widehat{N}_{e(MLNE,\ closed)}$			0.36	0.83		
	-	-	(p=0.012,	(p<<0.001,	-	-
			n=51)	n=41)		
$\widehat{N}_{e(CoNe)}$				0. 40		
	-	-	-	(p=0.035,	-	-
				n=29)		
N_c					0.63	0.93
	-	-	-	-	(p<<0.001,	(p<<0.001,
					n=65)	n=70)
$\widehat{N}_{e(LDNE)}$	-	-	-	-	-	0.62

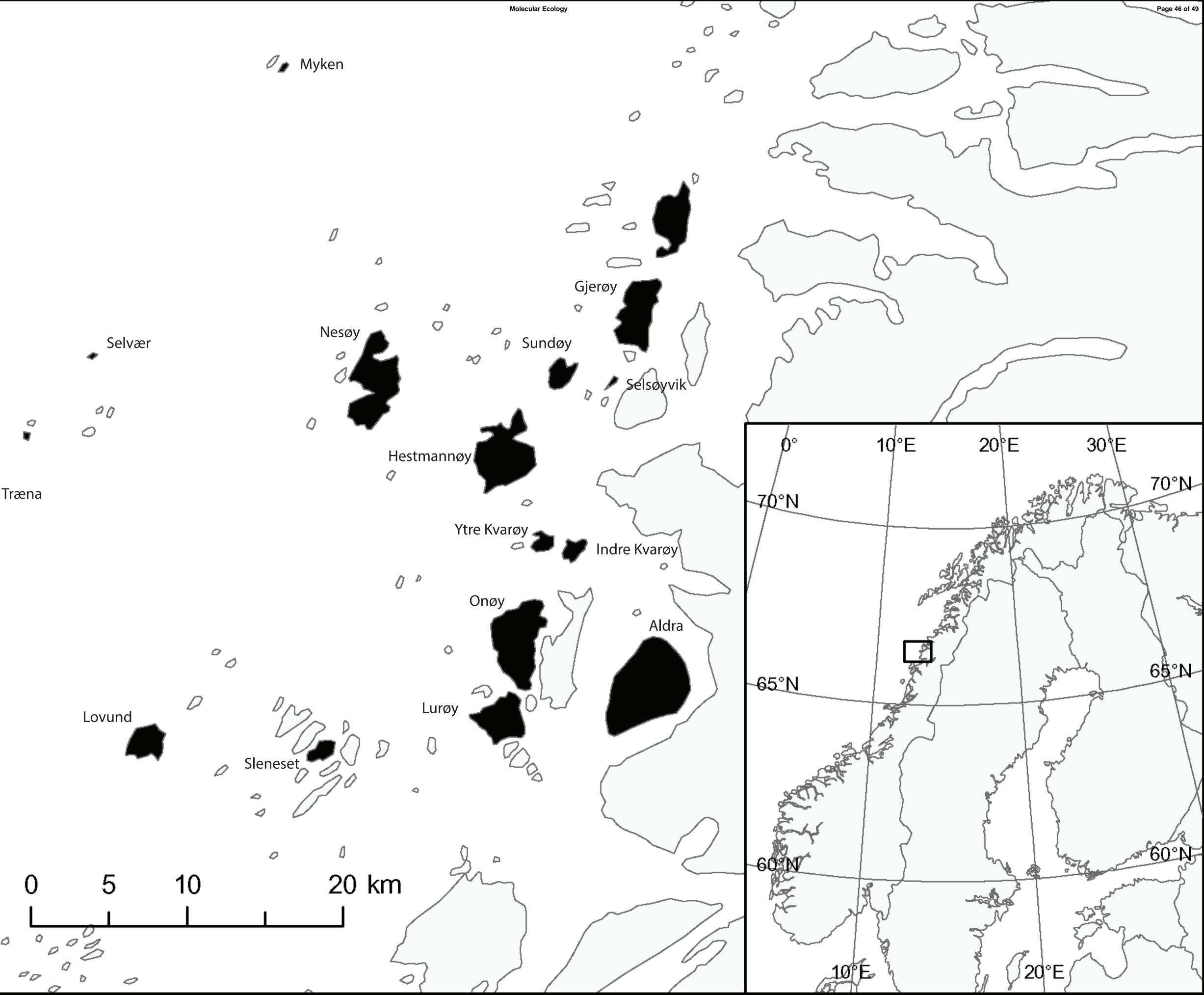
(p<<0.001,

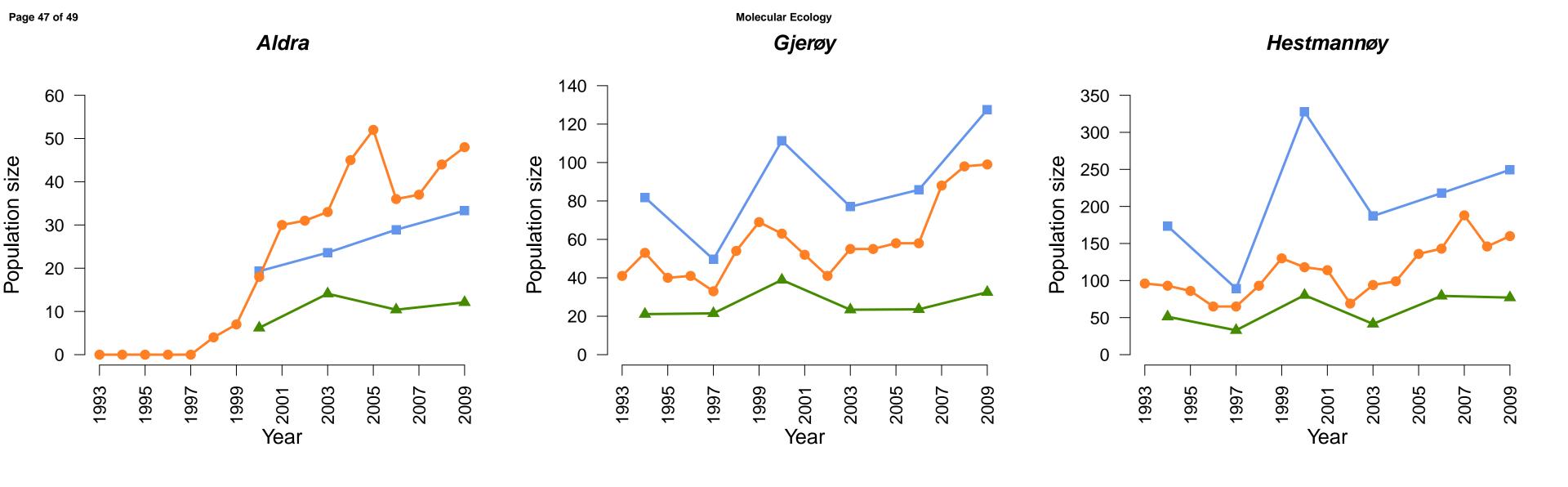
n=65)

811	Table 2. Modeling variation in \hat{N}_e/N_c in a house sparrow metapopulation for the genetic
812	estimators of effective population size (LDNE, ONeSAMP, MLNE and CoNe,
813	respectively), as a function of population characteristics (sex ratio (SR), immigration rate
814	(<i>m</i>), census population size (N_H or N_c), number of generations between samples (<i>g</i> ; for the
815	temporal estimators), population growth rate (dN/dt) and variance in population size $(\sigma_{N_c}^2)$). All
816	models nested within the global models were tested (see Statistical analyses), however
817	only a subset containing the highest ranked models are listed. K denotes the number of
818	parameters, L is the log Likelihood of the model, AIC_C is Aikaike's information criterion
819	for small sample sizes, Δ_i is the difference in AIC_C between the best model and model <i>i</i> , w_i
820	is the Aikake weight of model <i>i</i> , and <i>ER</i> is the evidence ratio. The "best" model for each

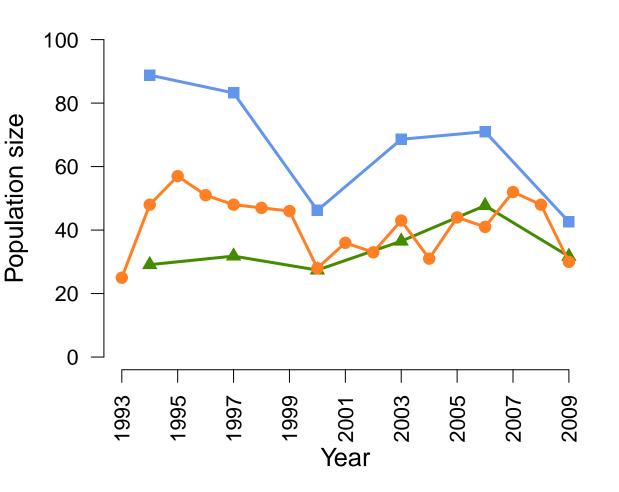
estimator is indicated in bold. 821

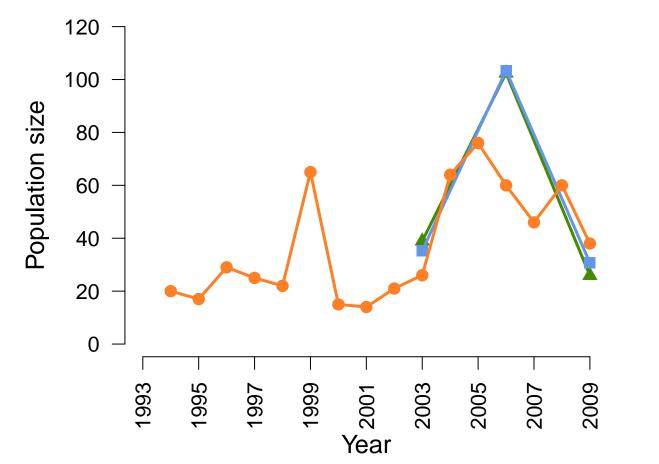

V _e IN and model	K	L	AIC_C	\varDelta_i	Wi	ER
) $\hat{N}_{e(LDNE)}/N_c$						
SR + m	2	-43.96	96.61	0.00	0.155	1.00
$N_c + SR + m + N_c * SR$	4	-41.87	97.24	0.63	0.114	1.36
SR + m + dN/dt	3	-43.26	97.57	0.96	0.096	1.61
$N_c + SR + m$	3	-43.34	97.72	1.11	0.089	1.74
$N_c + SR + m + dN/dt + N_c^*SR$	5	-40.99	98.02	1.41	0.077	2.01
) $\widehat{N}_{e(ONeSAMP)}/N_c$						
N_c	1	-20.41	47.19	0.00	0.227	1.00
$N_c + \sigma_{N_c}^2$	2	-19.96	48.55	1.36	0.115	1.97
) $\hat{N}_{e(MLNE, \ closed)}/N_H$						
$N_H + SR + m + dN/dt$	4	-93.70	200.47	0.00	0.072	1.00
$N_H + SR + \sigma_{N_c}^2 + m + dN/dt + N_H * m$	6	-91.35	200.56	0.09	0.069	1.04
$N_H + SR + \sigma_{N_c}^2 + m + dN/dt$	5	-92.61	200.65	0.18	0.066	1.09
$N_H + SR + \sigma_{N_c}^2 + m + dN/dt + N_H * SR + N_H * m$	7	-90.44	201.25	0.78	0.049	1.47
$N_H + SR + m + dN/dt + N_H * m$	5	-92.91	201.25	0.78	0.049	1.47
$N_H + SR + \sigma_{N_c}^2 + m + N_H^*m$	5	-92.93	201.30	0.83	0.048	1.50
$N_H + SR + \sigma_{N_c}^2 + m$	4	-94.22	201.50	1.03	0.043	1.67
$N_H + SR + m + dN/dt + N_H * SR$	5	-93.23	201.89	1.42	0.035	2.06

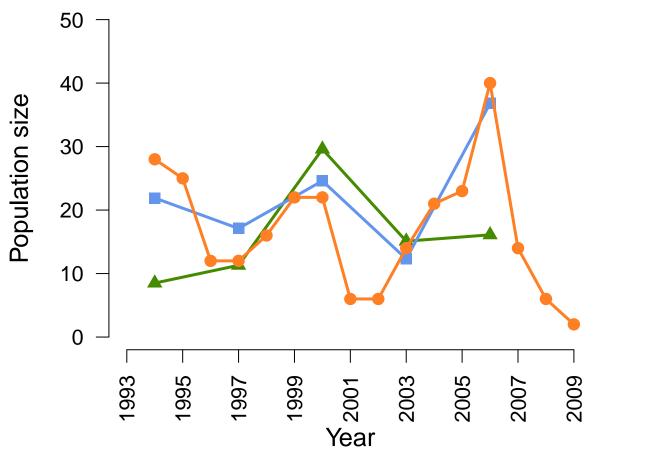

	$N_H + SR + m + dN/dt + N_H * SR + N_H * m$	6	-92.10	201.97	1.50	0.034	2.12
	$N_H + SR + \sigma_{N_c}^2 + m + dN/dt + N_H * SR$	6	-92.17	202.21	1.74	0.030	2.40
	$N_H + SR + \sigma_{N_c}^2 + m + N_H * SR + N_H * m$	6	-92.26	202.38	1.91	0.028	2.57
d)	$\widehat{N}_{e(MLNE, open)}/N_{H}$						
	N_H + $\sigma_{N_c}^2$	2	-132.80	274.03	0.00	0.200	1.00
	$N_H + SR + \sigma_{N_c}^2$	3	-132.54	275.80	1.77	0.082	2.44
	$N_H + \sigma_{N_c}^2 + m + N_H * m$	4	-131.41	275.85	1.82	0.080	2.50
	$N_H + \sigma_{N_c}^2 + m$	3	-132.60	275.92	1.89	0.077	2.60
e)	$\widehat{N}_{e(CoNe)}/N_H$						
	$N_H + m + dN/dt + N_H * m$	4	-70.64	155.44	0.00	0.232	1.00
	$N_H + \sigma_{N_c}^2 + m + dN/dt + N_H * m$	5	-69.64	156.23	0.79	0.156	1.49
822							
012							
823							


- 824 **Table 3.** Parameter estimates (coefficient) and standard error (*SE*) for the explanatory
- 825 variables (sex ratio (SR), immigration rate (m), census population size (N_H or N_c), population
- 826 growth rate (dN/dt) and variance in population size $(\sigma_{N_c}^2)$ in the "best" models explaining
- 827 variance in a) $\hat{N}_{e(LDNE)}/N_c$ and b) $\hat{N}_{e(ONeSAMP)}/N_c$, c) $\hat{N}_{e(MLNE, closed)}/N_H$, d) $\hat{N}_{e(MLNE, open)}/N_H$
- 828 and e) $\hat{N}_{e(CoNe)}/N_{H}$, respectively, in a house sparrow metapopulation.

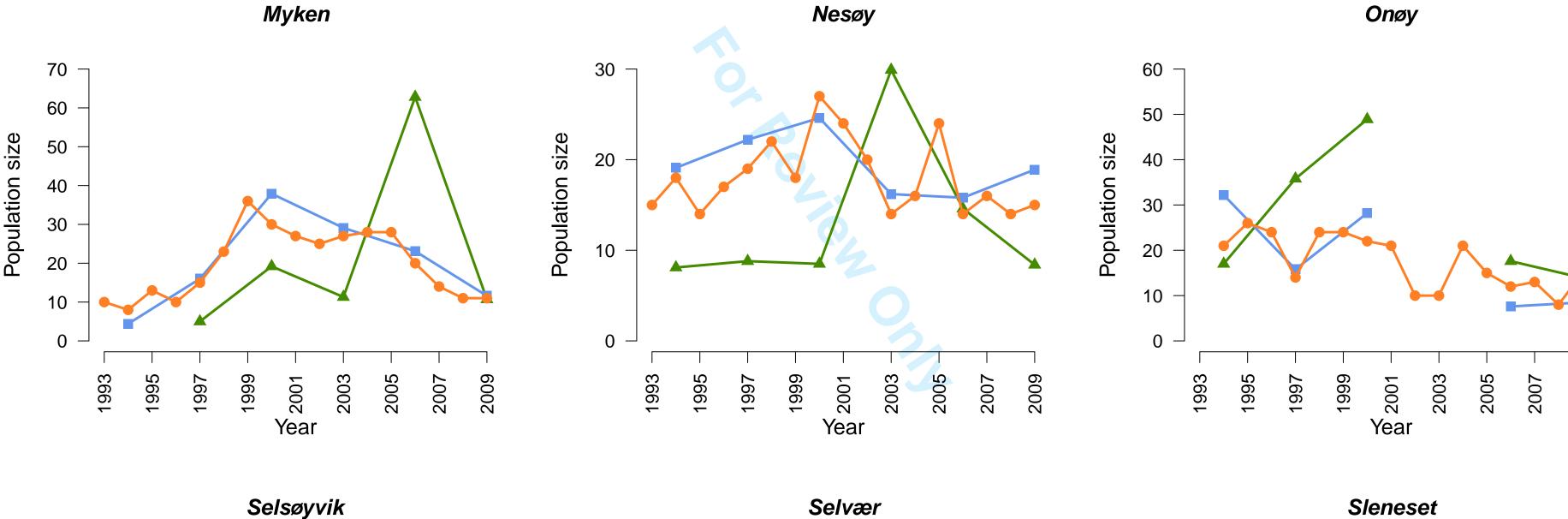
Model parameter	β	SE	p-value
a) $\hat{N}_{e(LDNE)}/N_c$			
Intercept	-0.502	0.368	0.178
SR	2.083	0.674	0.003
m	6.563	1.489	< 0.001
b) $\widehat{N}_{e(ONeSAMP)}/N_c$			
Intercept	0.934	0.066	<< 0.001
N_c	0.007	0.001	< 0.001
c) $\widehat{N}_{e(MLNE, closed)}/N_H$			
Intercept	4.352	0.787	< 0.001
N_H	-0.017	0.003	< 0.001
SR	-2.992	1.369	0.032
m	7.004	2.646	0.010
dN/dt	0.260	0.120	0.033
d) $\widehat{N}_{e(MLNE, open)}/N_H$			
Intercept	3.170	0.200	< 0.001
N_H	-0.031	0.004	< 0.001
$\sigma^2_{N_c}$	0.002	0.000	< 0.001
e) $\widehat{N}_{e(CoNe)}/N_H$			
Intercept	2.574	0.600	< 0.001
N_H	-0.015	0.011	0.197
m	52.220	10.268	<< 0.001
dN/dt	0.938	0.310	0.004
N_H^*m	-0.549	0.248	0.032

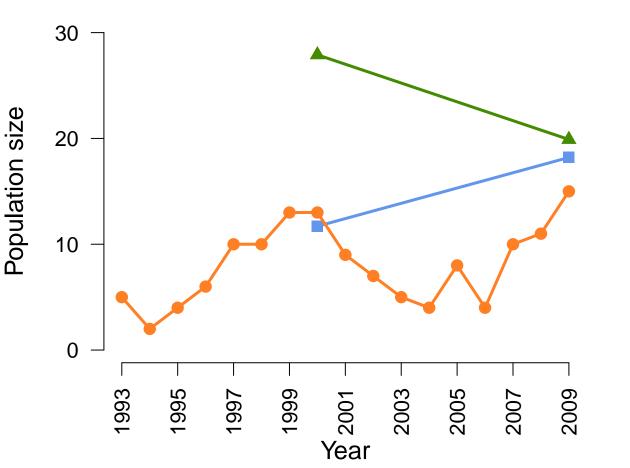


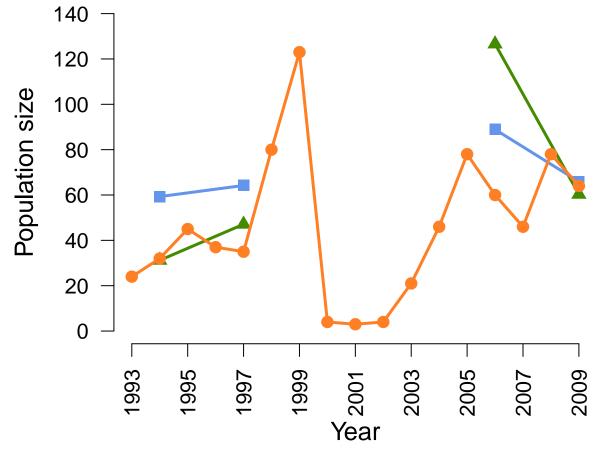


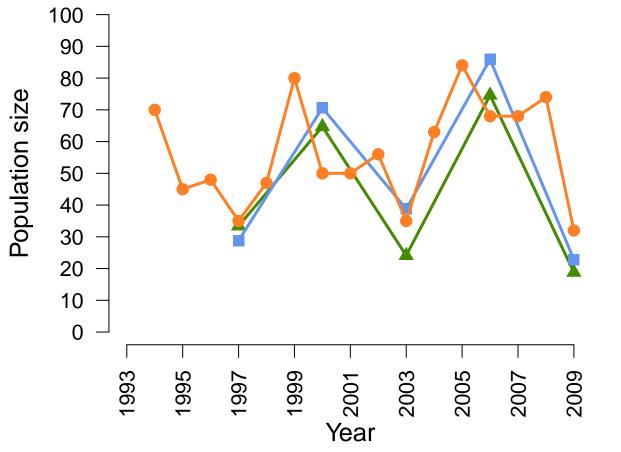


Indre Kvarøy

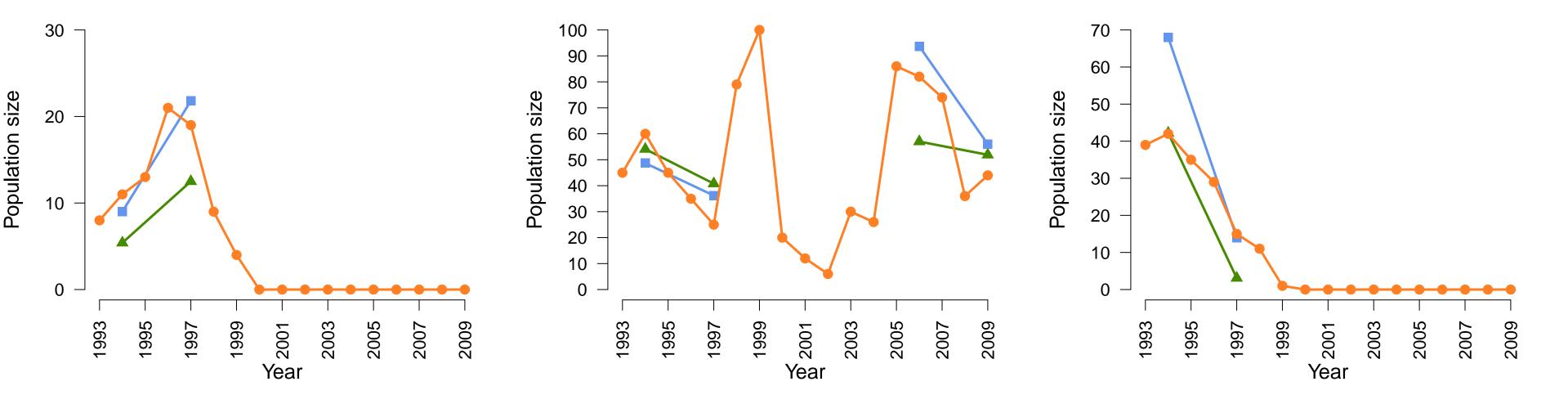


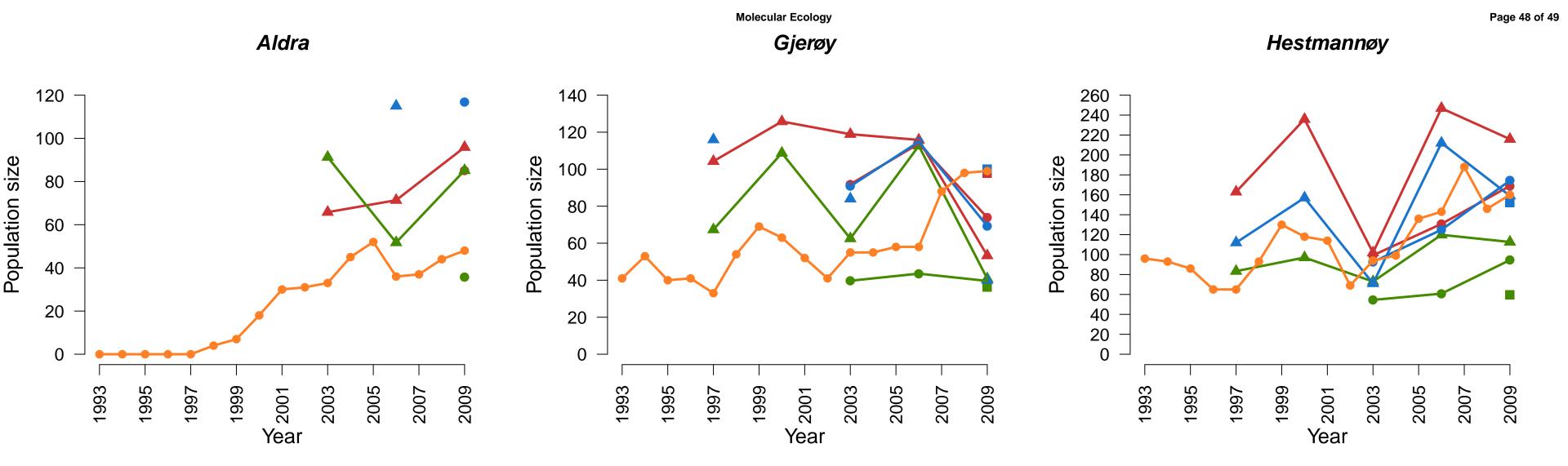

Lovund




Lurøy

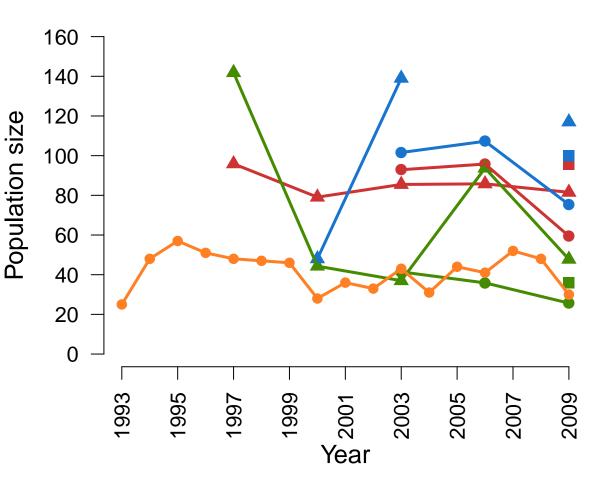
2009

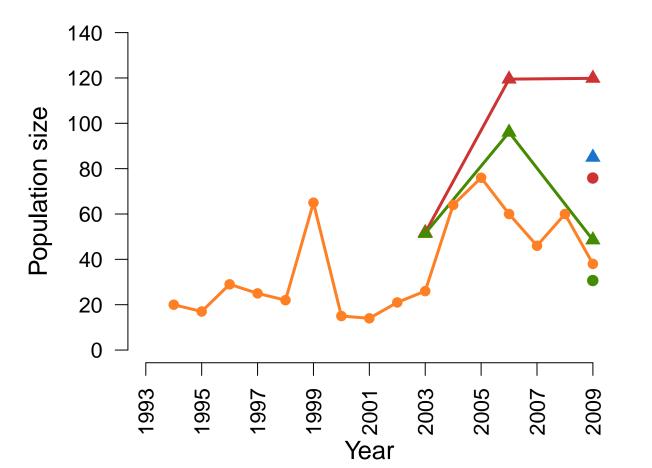


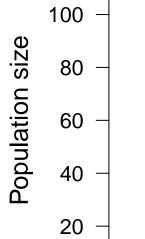


Sundøy

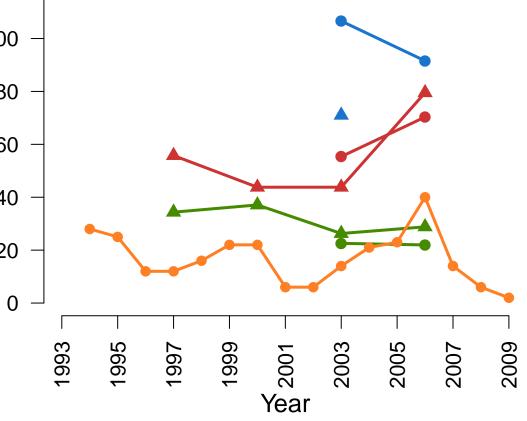
Træna

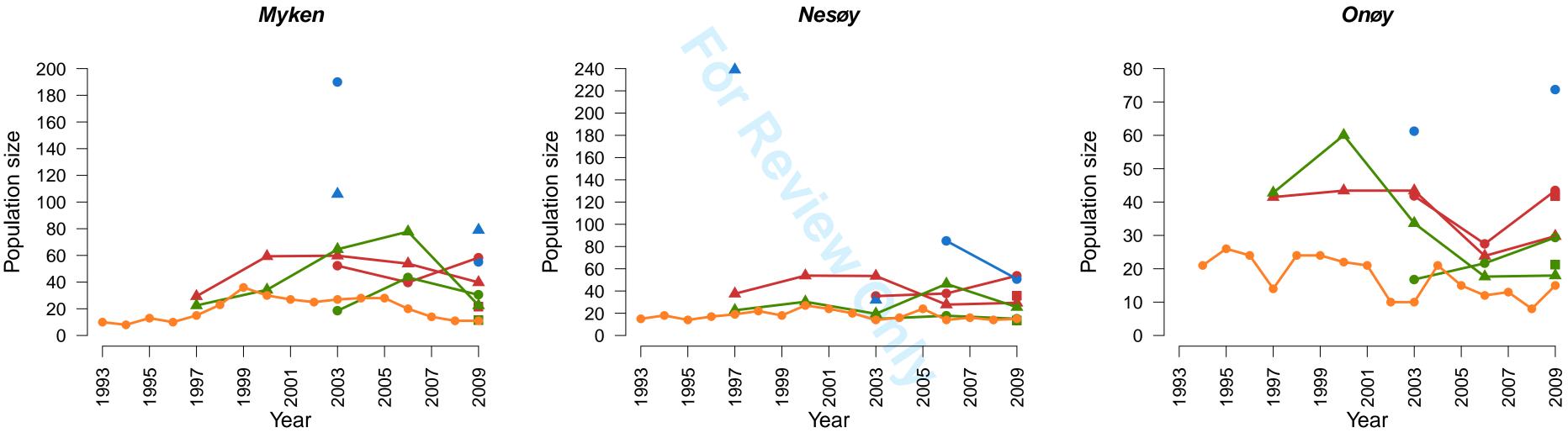

Ytre Kvarøy

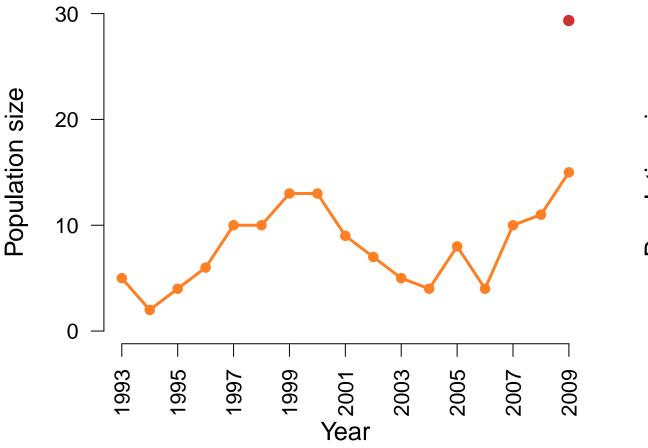


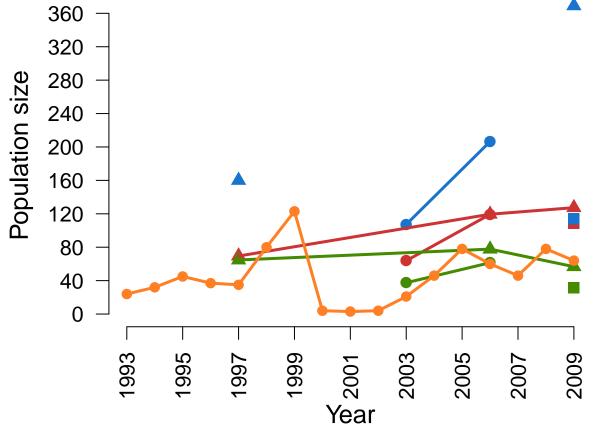


Lovund

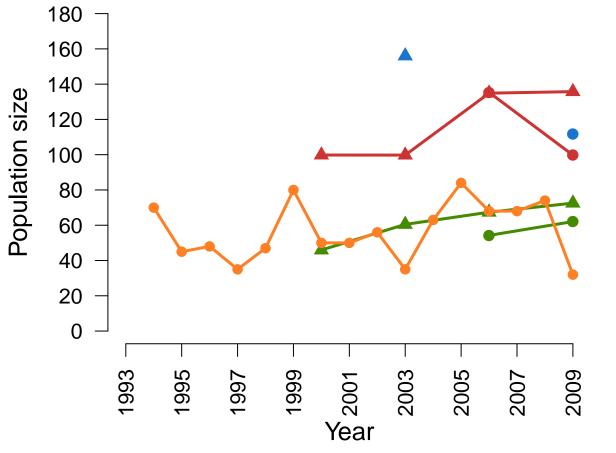

Indre Kvarøy



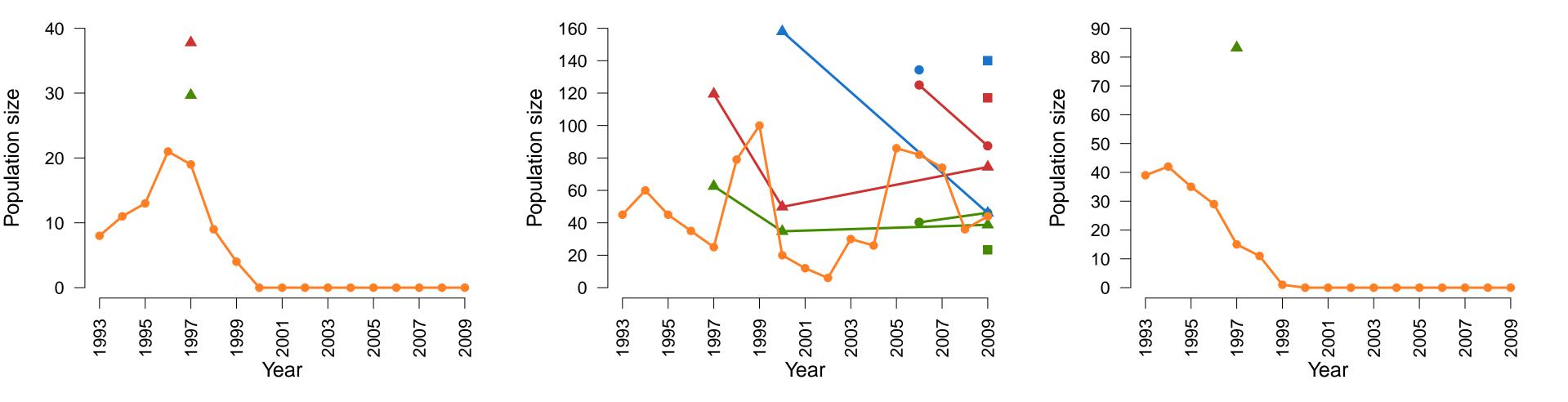

120

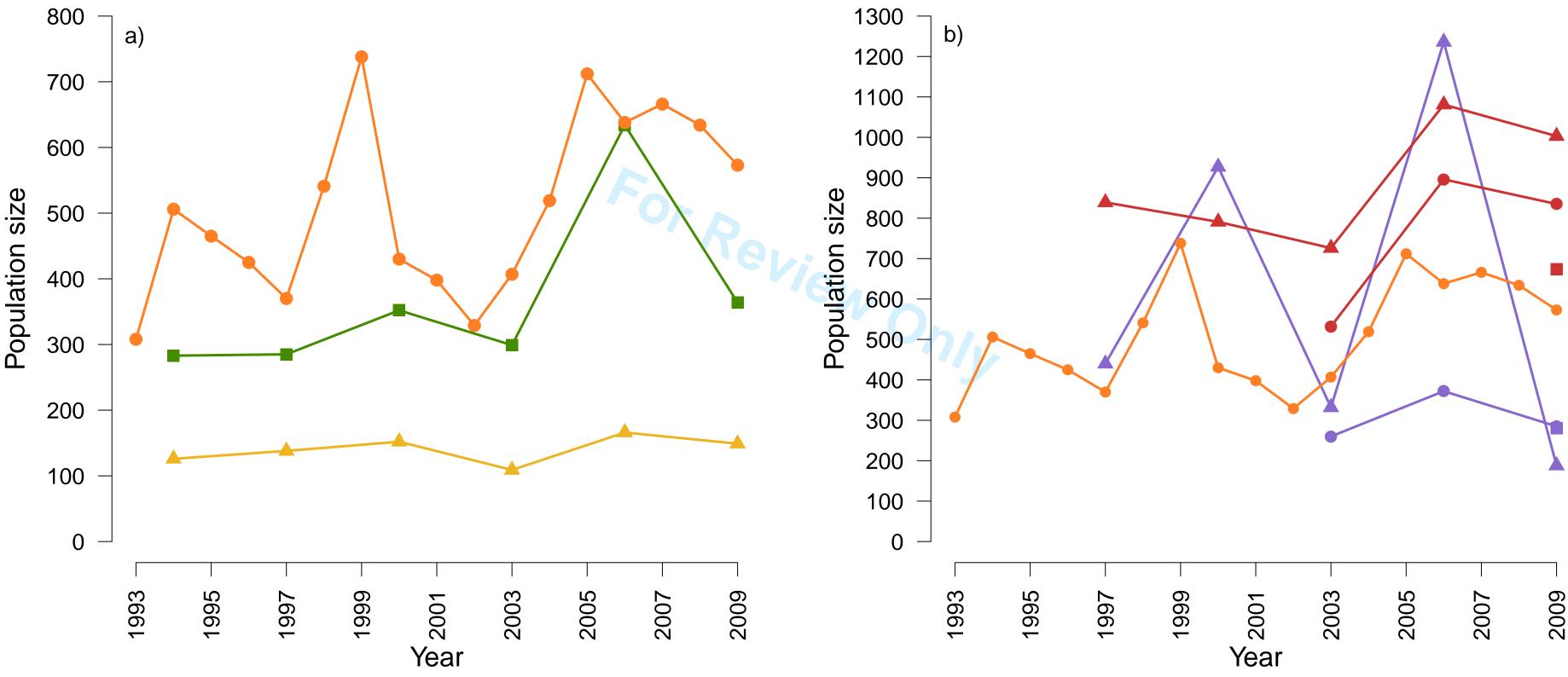


Lurøy


Selsøyvik

Selvær


Sleneset



Sundøy

Træna

Ytre Kvarøy

1995	1997	1999	Foot Year	2003	2005	2007	2009