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Abstract 29	

Dissecting the genetic basis of phenotypic variation in natural populations is a long-30	

standing goal in evolutionary biology. One open question is whether quantitative 31	

traits are determined only by large numbers of genes with small effects, or if variation 32	

also exists in large-effect loci. We conducted genome-wide association analyses of 33	

forehead patch size (a sexually selected trait) on 81 whole-genome-resequenced male 34	

collared flycatchers with extreme phenotypes, and on 415 males sampled independent 35	

of patch size and genotyped with a 50K SNP chip. No SNPs were genome-wide 36	

statistically significantly associated with patch size. Simulation-based power analyses 37	

suggest that the power to detect large-effect loci responsible for 10% of phenotypic 38	

variance was <0.5 in the genome resequencing analysis, and <0.1 in the SNP chip 39	

analysis. Reducing the recombination by two thirds relative to collared flycatchers 40	

modestly increased power. Tripling sample size increased power to >0.8 for 41	

resequencing of extreme phenotypes (N=243), but power remained <0.2 for the 50K 42	

SNP chip analysis (N=1,245). At least 1 million SNPs were necessary to achieve 43	

power >0.8 when analyzing 415 randomly sampled phenotypes. However, power of 44	

the 50K SNP chip to detect large-effect loci was nearly 0.8 in simulations with a 45	

small effective populations size of 1,500. These results suggest that reliably detecting 46	

large-effect trait loci in large natural populations will often require thousands of 47	

individuals and near complete sampling of the genome. Encouragingly, far fewer 48	

individuals and loci will often be sufficient to reliably detect large-effect loci in small 49	

populations with widespread strong linkage disequilibrium.  50	

 51	

 52	

 53	
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Introduction 54	

Understanding the genetic basis of traits that contribute to fitness differences among 55	

individuals in natural populations is a long standing goal in evolutionary biology 56	

(Ellegren & Sheldon 2008; Stinchcombe & Hoekstra 2007). Identifying genetic 57	

variants associated with fitness traits, and the distribution of their effect sizes, 58	

provides clues about the content of the standing genetic variation available for 59	

selection to act on. Additionally, identifying associated genes or regulatory sequences 60	

with known functions can help to pinpoint the developmental, biochemical, and 61	

physiological pathways through which selection acting on phenotypes translates into 62	

genomic changes over time (Schielzeth & Husby 2014).  63	

The genetic basis of traits closely associated with reproductive performance 64	

such as sexually selected traits is of particular interest because such traits may often 65	

be influenced by a combination of genes directly involved in trait expression and 66	

genes indirectly involved via their effects on condition. Theoretical predictions 67	

suggest that variation in condition-dependent, sexually-selected traits is likely to be 68	

highly polygenic, because of the large number of genes that could affect condition 69	

(Rowe & Houle 1996). Empirical data suggest that many sexually selected traits are 70	

indeed polygenic, but the distribution of effect sizes among contributing loci is not 71	

well described and seems to be highly variable (Chenoweth & McGuigan 2010; 72	

Santure et al. 2013). However, relatively few loci have explained a large proportion 73	

of variation in some sexually selected traits including eye-stalk length in stalk-eyed 74	

flies (Johns et al. 2005) and horn size in Soay sheep (Johnston et al. 2011). Thus, a 75	

general understanding of the genetic architecture of sexually selected traits is lacking 76	

in natural populations.  77	

 78	
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Until recently, discovering variants contributing to phenotypic variation and 79	

fitness (i.e., quantitative trait loci or ‘QTL’) in natural populations has been hindered 80	

by the lack of large-scale genomic data on wild individuals. However, genome 81	

sequences are accumulating rapidly for non-model species (Ellegren 2014), and 82	

technologies such as single nucleotide polymorphism (SNP) genotyping arrays, and 83	

genotyping by sequencing have made it possible to type many thousands of markers 84	

in any species. Yet, attempts to detect QTL in natural populations – where controlled 85	

crosses or breeding in captivity are usually not possible – have yielded mixed results, 86	

with some studies identifying QTL via genome-wide association (GWA) analysis 87	

(Comeault et al. 2014; Husby et al. 2015; Johnston et al. 2011, 2014; Parchman et al. 88	

2012) or pedigree-based linkage mapping (Poissant, Johnston), and others failing to 89	

detect candidate causal variants despite moderately high heritability (Santure et al. 90	

2013). Small sample sizes and small QTL effects sizes are likely reasons for the 91	

failure to detect QTL. An additional reason for the failure to detect QTL using 92	

association mapping is likely to be that strong linkage disequilibrium (LD) often 93	

extends only over short chromosome distances (Figure 1) (Slatkin 2008), which 94	

means the chances of strong associations between marker and trait loci – and thus 95	

between marker and phenotype – might be small even when large numbers of genetic 96	

markers are used.  97	

Whole genome resequencing has recently become a realistic and increasingly 98	

used approach in population genomics (e.g., Ellegren 2014; Lamichhaney et al. 99	

2015). Inspired by this progress, we reasoned that whole genome resequencing could 100	

potentially offer a novel means for mapping trait loci in natural populations. It would 101	

imply unprecedented genomic resolution in the search for loci contributing to 102	

phenotypic variation in the wild because, in contrast to approaches based on 103	
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genotyping of even very large sets of SNPs, the problem of low or no LD between the 104	

typed markers and causal variants is essentially eliminated by typing nearly all 105	

variable sites in the genome. Although large sample sizes may still be necessary to 106	

detect candidate loci for traits with polygenic genetic architectures (e.g., Allen et al. 107	

2010) this could potentially be alleviated by using the experimental design of 108	

sequencing extreme phenotypes. Sampling extreme phenotypes can dramatically 109	

reduce the number of individuals necessary to achieve high power relative to studies 110	

that sample randomly from the phenotype distribution (Barnett et al. 2013; Emond et 111	

al. 2012; Gurwitz & McLeod 2013; Li et al. 2011; Perez-Gracia et al. 2002). For 112	

example, Emond et al. (2013) identified a modifier of chronic infection in cystic 113	

fibrosis patients using the exome sequences of only 91 individuals with extreme 114	

phenotypes. Basically, this approach entails sequencing two groups of individuals – 115	

each representing the respective lower and upper tail from the phenotypic distribution, 116	

thereby maximizing the phenotypic and genetic variance of the trait of interest among 117	

the sampled individuals.  118	

Conducting GWA analyses on whole genome resequencing data by no means 119	

ensures that segregating large effect QTL will be detected (King & Nicolae 2014). 120	

The mean minor allele frequency (MAF) is often considerably lower in resequencing 121	

data compared to data from SNP chips where the mean MAF is often quite high 122	

(Kawakami et al. 2014). The power to detect phenotypic effects is lower at loci with 123	

low MAF (King & Nicolae 2014), so increasing the number of loci by adding large 124	

numbers of loci with low MAF might not translate into substantially increased power. 125	

Additionally, thresholds for statistical significance of course become more stringent 126	

as the number of loci increases, regardless of the MAF of the additional loci. Lastly, 127	

sample sizes tend to be limited in whole genome resequencing studies compared to 128	
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studies using less expensive SNP arrays. Lower sample sizes for resequencing-based 129	

GWAS means that the power to detect strong QTL effects may be low, even though 130	

causal variants are likely to be directly screened for phenotypic effects.  131	

Collared flycatchers (Ficedula albicollis) are a cavity-nesting, sexually 132	

dichromatic species, which breeds in central and eastern Europe, and winters in 133	

Southern Africa. They have a mating system where males defend territories and males 134	

with higher quality territories tend to have higher reproductive success (Pärt 1994). 135	

Males have a sexually-selected white forehead patch which is used as an honest signal 136	

of quality in male-male competition for territories (Qvarnström 1997). Males with 137	

large patches tend to be in better condition, win territorial disputes, and to produce 138	

more offspring than males with smaller patches (Gustafsson et al. 1995; Pärt & 139	

Qvarnström 1997).   140	

Our objective was to test whether sequencing of extreme phenotypes in 141	

collared flycatchers could identify loci contributing to variation in forehead patch size 142	

in this species. Specifically, we conducted a genome-wide association (GWA) 143	

analysis of forehead patch size based on whole genome resequencing of 81 male 144	

collared flycatchers sampled from the extreme ends of the phenotypic distribution. 145	

We also tested whether we could detect loci associated with forehead patch size using 146	

genotypes of 415 males from a custom 50K SNP chip for the collared flycatcher. 147	

To our knowledge, this is the first study to use whole genome resequencing in 148	

conjunction with extreme phenotype sampling to study the genetic basis of 149	

phenotypic variation in a natural population. Having found no genome-wide 150	

statistically significantly associated SNPs, we used coalescent simulated genomic data 151	

to evaluate the power to detect loci with large phenotypic effects in this study. We 152	

also evaluated statistical power of association analyses when using larger sample 153	
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sizes, and in populations with either a lower recombination rate or smaller effective 154	

population size (Ne). Previous work has evaluated the power of pedigree-based QTL 155	

linkage mapping methods (Slate 2013). Additionally, the power of GWA analysis for 156	

study designs typical of human research has been assessed using simulations (Spencer 157	

et al., 2009). Our simulations are motivated by the need to evaluate whether 158	

association mapping is likely to detect large effect QTL given a range of sample sizes, 159	

and genomic and demographic characteristics typical of studies in natural populations.  160	

 161	

Materials and Methods 162	

Sampled individuals and forehead patch size measurements 163	

Individuals included in this study were part of a long term study (2002-2012) on the 164	

Baltic island of Öland (57° 10´ N, 16° 58´ E), where the first breeding pair of collared 165	

flycatchers was observed in the 1960s (Qvarnström et al. 2009), although an earlier 166	

colonization cannot be excluded. We sampled 81 individuals for GWA analysis based 167	

on whole genome resequencing, and 415 separate individuals for GWA analysis using 168	

a 50K SNP. To select individuals for sequencing, we first calculated the mean patch 169	

size (patch height times patch width (mm)) among all yearly measurements on 819 170	

adult males who were not involved in manipulative experiments that had the potential 171	

to influence patch size (e.g., brood size manipulations). We then preferentially 172	

selected males from the extreme upper and lower ends of the distribution of mean 173	

patch size for sequencing in order to maximize the phenotypic and genetic variance 174	

for patch size among the sequenced individuals. The distribution of patch size 175	

measurements is shown for the resequencing and SNP chip typing data sets in Figure 176	

S1. The mean number of yearly patch size observations per individual among the 81 177	

resequenced males was 2.1 (min. = 1, max. = 5).  178	
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415 male collared flycatchers were selected independent of patch size and 179	

genotyped with a custom-made Illumina 50K SNP chip (Kawakami et al. 2014a). The 180	

mean number of patch size observations across years among these 415 males was 2.2 181	

(min = 1, max = 7).  182	

 183	

Whole genome resequencing, variant calling and filtering 184	

The 81 males selected with extreme phenotypes were subjected to 100 base pair 185	

paired-end whole genome resequencing on an Illumina HiSeq instrument. Sequence 186	

reads were aligned to the collared flycatcher reference genome assembly version 187	

FicAlb1.5 (Kawakami et al. 2014b) using the Burrows-Wheeler Aligner (BWA) (Li 188	

& Durbin 2009). We used the Unified Genotyper in the Genome Analysis Toolkit 189	

(GATK, McKenna et al. 2010) to identify single nucleotide polymorphisms (SNPs) 190	

among the whole genome resequenced individuals. We applied variant quality score 191	

recalibration (VQSR) in GATK, with the top 20% scoring variants used as a training 192	

set for quality score recalibration of the remaining variants. We applied a strict 193	

tranche sensitivity threshold of 90% when filtering SNPs after VQSR. Filtering loci 194	

based on the strict 90% tranche sensitivity threshold selectively removed low MAF 195	

SNPs (see results below). Repeating the analyses while applying a less stringent 196	

tranche sensitivity threshold of 99% did not substantively affect the results (data not 197	

shown).  198	

We used VCFtools (Danecek et al. 2011) for post variant calling SNP 199	

filtering. First, we discarded all genotypes with a genotype quality score ≤ 20. We 200	

then removed SNPs where the minor allele was observed only once, genotypes were 201	

missing for ≥ 4 individuals (i.e., missing in more than approximately 5% of 202	

individuals), genotypes deviated significantly (α = 0.01, exact test) from Hardy 203	
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Weinberg proportions, or where more than two alleles were present. Sampling 204	

extreme phenotypes may enrich the data set for large effect loci being out of Hardy-205	

Weinberg proportions, where a large number of homozygotes for different alleles 206	

could be found in the large- and small-patch samples of individuals. Repeating the 207	

analyses without filtering SNPs based on conformation to Hardy-Weinberg 208	

proportions did not qualitatively change the results (data not shown). 209	

50K SNP chip genotyping was conducted at the SNP & Seq Technology 210	

Platform at Uppsala University 211	

(http://www.molmed.medsci.uu.se/SNP+SEQ+Technology+Platform/) on an Illumina 212	

iScan instrument. We discarded 50K SNP chip loci with minor allele frequency 213	

(MAF) ≤ 0.01, genotyping rate of < 95%, and loci failing a test for Hardy-Weinberg 214	

proportions (α = 1.0×10-5). After these filtering steps, 37,803 out of 45,183 SNP loci 215	

(84%) remained and were used in the GWA analysis. 216	

 217	

GWA analyses 218	

For GWA analyses, we used linear mixed effects models included as an add-on 219	

(RepeatABEL; Husby et al. 2015) to the GenABEL package (Aulchenko et al. 2007) 220	

for the program R (R Core Team 2015). The mixed effect models account for both 221	

repeated measurements within individuals and relatedness among individuals. 222	

Specifically, we fitted a linear mixed effects model of the form 223	

 224	

Y ~ Xβ + XSNPβSNP + Zg + Wp + e 225	

 226	

where X is the design matrix for non-genetic fixed effects (age and year of sampling) 227	

and β are the corresponding fixed effects. XSNP is the design matrix for the SNP 228	
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genotype predictor (coded 0, 1, or 2) and βSNP are the corresponding SNP effects. g is 229	

a random genetic effect, p is a permanent environmental effect for each individual, 230	

and e is the error term. Patch size has been shown to increase with age (Pärt & 231	

Qvarnström 1997), and age was thus included as a fixed effect in our GWA analyses. 232	

Year of sampling was also included as a fixed effect to account for the effects of 233	

temporal environmental fluctuations on patch size (Figure S2).  234	

Simultaneously including SNPs with large phenotypic effects in the fixed 235	

effects (i.e., to estimate the individual SNP effects) and in the random effects by 236	

including them when estimating the genetic relatedness matrix can result in reduced 237	

power to detect effects of individual SNPs (Yang et al. 2014). Therefore, we repeated 238	

the GWA analyses and ran the analyses separately for each chromosome. For GWA 239	

analysis of each chromosome, we estimated the genetic relatedness matrix using 240	

SNPs on all of the chromosomes other than the chromosome included in the GWA 241	

analysis. The analysis did not substantively affect the results (data not shown).  242	

The P-values reported from GWA analyses are from Wald tests and are 243	

corrected for relatedness among individuals, repeated measurements, and genomic 244	

inflation (see below). We estimated the narrow sense heritability (h2) of patch size 245	

from GWA analyses as 246	

 247	

 248	

 249	

where Va is the additive genetic variance, Vpe is the permanent among-individual 250	

variance due to environmental differences, and Ve is residual error variance.  251	

 252	

epea

a

VVV
Vh

++
=2
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Correcting for multiple tests 253	

Stringent thresholds of statistical significance are necessary in order to control the 254	

probability of false positive genotype-phenotype associations. The simplest 255	

approaches to correct for multiple tests such as Bonferroni correction and false 256	

discovery rate techniques are overly conservative in GWA studies such as this one 257	

where SNP density is high and many SNPs are in substantial LD. Genotype-258	

phenotype tests at closely linked SNPs are in such cases non-independent (Clarke et 259	

al. 2011). Therefore, in order to determine if the chosen type of statistical correction 260	

affected the results, we used both a Bonferroni correction and a permutation approach 261	

that accounts for LD among closely linked loci (Clarke et al. 2011) and controls the 262	

probability of a single false positive occurring. For the permutation approach, we 263	

repeated the GWA analysis as described above 1,000 times, each time after randomly 264	

reassigning patch size measurements among individuals. We saved the P-value from 265	

each of the 2,039,641 genotype-phenotype association tests on each randomized data 266	

set. This was done in order to derive the distribution of P-values expected when no 267	

SNPs are truly related to patch size. We then identified the statistical significance 268	

threshold for the empirical GWA analysis as the P-value below which a single false 269	

positive was identified in 5% or fewer of the randomized data sets. The threshold of 270	

statistical significance determined with permutation for the GWA analyses of the 271	

whole genome resequenced individuals was P = 1.002×10-7.  272	

Many of the 50K SNP chip loci were in substantial LD in our study population 273	

(Kawakami et al. 2014a). Thus, we used the same permutation approach as described 274	

above as well as a Bonferroni correction to control for multiple testing in the GWA 275	

analysis of these data. Here, the threshold of statistical significance determined by 276	

permutation was P = 2.18×10-6.  277	
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 278	

Controlling for genomic inflation 279	

We corrected P-values from GWA analyses for genomic inflation by dividing the test 280	

statistic (χ2) by the genomic inflation factor (λ). λ was estimated as the slope from a 281	

regression of observed χ2 versus expected χ2 assuming that patch size was not affected 282	

by variation at any loci. This approach is conservative because genomic inflation is 283	

expected in GWA studies involving highly polygenic traits (Yang et al. 2011), which 284	

is very likely the case for sexually selected traits (Rowe & Houle 1996) such as patch 285	

size in collared flycatchers. However, repeating the analyses without correcting for 286	

genomic inflation did not qualitatively change the results (data not shown).  287	

 288	

Simulations to evaluate power to detect QTL for patch size 289	

We used coalescent simulations to evaluate the power to detect loci with large effects 290	

on patch size. We simulated genomic data with fastsimcoal2 v. 2.5.1 (Excoffier et al. 291	

2013). We tested a range of values for the simulated Ne, and recombination and 292	

mutation rates in order to identify a set of parameter values that resulted in a LD 293	

pattern similar to the empirical data (Figure S3). We simulated populations with 294	

constant diploid Ne = 37,500. Recombination and mutation rates were set to 3.1×10-8 295	

(Kawakami et al. 2014b), and 5.0×10-9 (Ellegren 2007) per base pair per generation, 296	

respectively. For computational efficiency, we simulated only two single 200 kb 297	

chromosomes in each population. Chromosomes of this size are sufficient because LD 298	

is substantially greater than the genomic background level only for markers separated 299	

by less than approximately 10-20 kb in our study population (Figure 1; Kawakami et 300	

al. 2014a) and in the simulated data (Figure S3). We generated 1,500 diploid 301	
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individuals from each simulation repetition by randomly pairing 3,000 simulated 302	

haploid chromosomes. 303	

We used RepeatABEL to simulate a normally distributed quantitative trait 304	

associated with SNP variation among the 1,500 individuals sampled from each 305	

simulated population. The number of simulated repeated measurements per individual 306	

was selected randomly from the empirical distribution of measurements among the 81 307	

whole genome resequenced individuals. The simulations assumed the variance 308	

components estimated from the SNP chip-based GWA analysis (Table 1). We used 309	

these variance components because RepeatABEL simulates a normally distributed 310	

quantitative trait and the distribution of the phenotypes in the SNP chip-based 311	

empirical analysis was approximately normal. For each simulated population, the 312	

phenotype was associated with a single SNP having a MAF of at least 0.2 as close as 313	

possible to the physical center of the first chromosome. Our simulations therefore 314	

assume that QTL effects are due to common variants, which are more easily detected 315	

than rare variants. We varied the genotypic effect of the simulated QTL (a = half the 316	

expected phenotypic difference between homozygotes) so that the additive genetic 317	

variance attributed to the QTL (Vqtl) was equal to 5, 10, 15, and 20% of the total 318	

phenotypic variance (Vp, which was set equal to the total phenotype variance from the 319	

empirical SNP chip based GWA analysis described above), respectively. We 320	

determined values of a by solving the expression Vqtl = 2pqa2 (where p and q are the 321	

frequencies of the minor and major allele, respectively, Lynch & Walsh (1998)) for a, 322	

after setting Vqtl equal to 0.05, 0.1, 0.15, or 0.2 times Vp. For each simulation, the 323	

simulated polygenic additive genetic variance (Va*) was set to Va* = Va - Vqtl, where 324	

Va is the empirical estimate of the polygenic additive genetic variance, so that the total 325	

and additive genetic components of variance in the simulated phenotype was 326	
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representative of the empirical data, and held constant across all of the simulations. 327	

We consider these simulated effect sizes to be large, as they account for 328	

approximately 1/6 to 2/3 of the total heritability of the simulated phenotype.  329	

To evaluate the power to detect QTL in the sample of individuals with 330	

extreme phenotypes, we randomly sampled 81 individuals from the upper (46 331	

individuals) and lower (35 individuals) 10% quantiles of mean simulated patch size. 332	

We randomly sub-sampled SNPs on the first simulated chromosome (where the 333	

simulated QTL was located) without including singletons, so that SNP density was 334	

equal to the empirical whole genome resequencing data after filtering steps. The loci 335	

were randomly selected using the sample function in R, with the probability of a SNP 336	

being selected weighted by the squared MAF so that the least variable loci would be 337	

selectively removed as in our analysis of the empirical resequencing data. We defined 338	

power as the proportion of simulations where any SNP located on the first 339	

chromosome was statistically significantly associated with phenotype after correcting 340	

for multiple tests (see below).  341	

We used the same simulated populations as above to evaluate the power to 342	

detect QTL in the 415 males with 50K SNP chip genotypes. Here, we randomly 343	

selected 415 simulated diploid individuals for analysis of each simulation. For the 344	

GWA analyses of these simulated data, we randomly subsampled SNPs so that 345	

marker density was as close as possible to the average density observed in the 346	

empirical GWA analyses based on the SNP chip. The SNP chip loci had a relatively 347	

high mean MAF of 0.28 (s.d. = 0.13). Therefore, we preferentially selected high MAF 348	

loci from the simulated data to maximize the power of SNP chip GWA analysis of the 349	

simulated data. We achieved this in the same way as above for the simulated analyses 350	

of the resequencing data by using the sample function in R to randomly select SNPs 351	
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after weighting the selection probabilities by the squared MAF. We repeated the 352	

GWA analyses of simulations of the 415 males after subsampling SNPs as described 353	

above so that the marker densities were equivalent to 50K, 100K, 250K, 500K, 1 354	

million, and 2 million SNPs (nearly equivalent to SNP density in our whole genome 355	

resequencing data set) in the flycatcher genome assembly to evaluate the effects of 356	

marker density on power to detect QTL. We again defined power as the proportion of 357	

simulations where one or more SNPs located on chromosome one were statistically 358	

significantly associated with the simulated phenotype after correcting for multiple 359	

tests.  360	

We ran the GWA analyses on the simulated data for power analysis as 361	

described above for the empirical data. However, there were a few necessary 362	

exceptions. First, age and year of sampling were not simulated, and were therefore not 363	

included as fixed effects in GWA analyses of simulated data for power analysis. 364	

Additionally, initial testing showed that the power to detect simulated large effect 365	

QTL was reduced when the QTL and linked SNPs were used to estimate the GRM 366	

(consistent with the findings of Yang et al. (2014)). Therefore, in the analyses 367	

presented below, we estimated the GRM using only the loci on the second 368	

chromosome (i.e., only using SNPs that were not linked to the simulated QTL). We 369	

used all of the simulated SNPs on the second chromosome (690 loci on average) to 370	

estimate the GRM. This approximates the general scenario where a candidate QTL 371	

region is excluded from estimation of the GRM, and a large number of loci unlinked 372	

to the candidate region are used to estimate the GRM and thus to account for 373	

polygenic effects and relatedness among the sampled individuals.  374	

We evaluated statistical power using statistical significance thresholds ranging 375	

from very conservative to very liberal. Using permutation on each simulated dataset 376	
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was unreasonable due to the enormous computational requirements. We determined 377	

‘conservative’ adjusted α values by applying the same Bonferroni-corrected statistical 378	

significance thresholds as in the empirical analyses so that the power estimates would 379	

reflect the probability of detecting large effect QTL in our empirical data. The 380	

Bonferroni adjusted α values were determined by dividing 0.05 by 2,039,641 when 381	

evaluating the power of the analysis of whole genome resequenced individuals with 382	

extreme phenotypes. We divided 0.05 by each of the number of loci of interest 383	

(37.8K, 50K, 100K, 250K, 500K, 1 million, and 2 million SNPs) when evaluating the 384	

power of the SNP chip-based GWA analysis of patch size. To derive ‘moderate’, and 385	

‘liberal’ adjusted statistical significance threshold values, we multiplied the 386	

Bonferroni corrected statistical significance thresholds by 5 and 10, respectively. We 387	

then estimated statistical power using the conservative, moderate, and liberal adjusted 388	

statistical significance thresholds. 389	

 390	

Effects of sample size, recombination rate, and effective population size on power of 391	

GWA analyses 392	

The power of GWA analyses is expected to be higher with increased sample size and 393	

in populations where strong LD extends over longer chromosomal distances. To 394	

extend inferences related to power beyond our empirical study, we evaluated power to 395	

detect QTL with GWA analyses in simulated populations with a lower recombination 396	

rate, and small Ne. We also evaluated the effects on power of increasing the sample 397	

size by 3 times compared to our empirical study.  398	

The pattern of LD in collared flycatchers (Figure 1) is not representative of all 399	

populations where GWA analyses will be done in the future. The relatively large Ne 400	

and a high recombination rate (3.1 cM/Mb on average, (Kawakami et al. 2014b)) in 401	
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the collared flycatcher act to reduce the chromosomal distance over which strong LD 402	

extends compared to smaller populations, or populations with lower recombination 403	

rates. Note, however, that LD is expected to extend even shorter distances in 404	

populations with larger Ne (e.g., as in some invertebrates). We conducted power 405	

analyses using simulated populations with recombination rate of 1.03 cM/Mb (1/3 406	

times the recombination rate in collared flycatchers, Kawakami et al. 2014b), which is 407	

typical of the distribution of recombination rates among mammals (Dumont & 408	

Payseur 2008). We also ran power analyses on simulated populations with diploid Ne 409	

= 1,500, assuming a higher mutation rate of µ = 2×10-7 to ensure enough polymorphic 410	

sites for the GWA analyses of these data to be comparable to the analyses of 411	

simulated populations with larger Ne. The physical size of the simulated chromosomes 412	

was increased to 600 kb for simulations with low recombination rate and for 413	

simulations with small Ne in order to accommodate the increased extent of strong LD 414	

in these scenarios (Figure S3). We held all other simulation parameters the same as 415	

before. We ran the GWA and power analyses on the simulated populations with lower 416	

recombination or smaller Ne as described above. 417	

 418	

Results 419	

Whole genome resequencing 420	

81 male collared flycatchers were resequenced to a mean genome-wide coverage of 421	

18.4 X (range 9.6 - 27.0 X) and mapped to a repeat-masked version of the 1.1 Gb 422	

reference assembly of the collared flycatcher genome. We applied highly stringent 423	

filters for inclusion of sites in variant identification by requesting that a genotype had 424	

been called for ≥95% of all individuals. After VQSR (with tranche sensitivity 425	

threshold of 90%) and discarding singletons, 2,039,641 SNPs remained (1,928,286 426	
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SNPs on autosomes and 111,373 SNPs on the Z chromosome) with mean MAF of 427	

0.29 (s.d. = 0.13). Analysis of the resequencing data was repeated using a less 428	

stringent tranche sensitivity threshold of 99% in the VQSR; this less stringent filtering 429	

resulted in 4,376,065 SNPs remaining with mean MAF = 0.20 (s.d. = 0.13). We also 430	

repeated the analysis of the resequencing data using SNPs called for ≥90% of all 431	

individuals; this filtering resulted in 2,777,500 SNPs remaining after filtering. The 432	

repeated analyses applying tranche sensitivity threshold of 99%, and retaining SNPs 433	

called in ≥90% of all individuals did not substantively affect the results (data not 434	

shown). The strict tranche sensitivity threshold of 90% preferentially removed low 435	

MAF SNPs from the data set. The resulting high mean MAF means that the power to 436	

detect QTL was maximized for the given number of SNPs distributed across the 437	

genome.  438	

 439	

GWA analysis of whole genome resequencing data 440	

No SNP was genome-wide statistically significantly associated with patch size in the 441	

analysis of whole genome resequenced males. The two SNPs with the lowest P-values 442	

were located 14 base pairs apart within a large intergenic region located on 443	

chromosome 2 (Figures 2 & S4). The closest annotated gene to these SNPs (CSMD3) 444	

was located ~300 kb away. The GWA analysis indicated genomic inflation of the test 445	

statistic (λ = 1.11; Figure S5). The genomic estimate of patch size heritability in the 446	

whole genome resequenced males was h2 = 0.48. 447	

 448	

GWA analysis of 50K SNP chip data 449	

There were also no SNPs genome-wide statistically significantly associated with 450	

patch size in the analysis of SNP chip genotyped males (Figure 2). There was little 451	
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genomic inflation in this analysis (λ = 1.02; Figure S5). The genomic estimate of 452	

heritability was h2 = 0.32. The values of h2 from analyses of whole genome 453	

resequenced and SNP chip genotyped males are in the range of estimates based on 454	

previous pedigree-based analyses (Qvarnström 1999). There were no SNPs that 455	

simultaneously had exceptionally low P-values in the GWA analyses of whole 456	

genome resequencing and SNP chip data sets (Figure S6). Further, the P-values from 457	

the SNP chip- and resequencing-based GWA analyses were not even weakly 458	

correlated (r2 < 0.01). Variance component estimates with 95% confidence intervals 459	

from each analysis are shown in Table 1. 460	

 461	

Power analyses 462	

Our simulations suggested that the power to detect QTL with large effects was 463	

insufficient in both of the empirical analyses (Figures 3a, S7, and S8). The results 464	

presented here in the main text are from analyses that used a medium statistical 465	

significance threshold. The results from analyses that applied Bonferroni and liberal 466	

statistical significance thresholds are presented in detail in Figures S7 and S8. Power 467	

was high (> 0.8) only in the case of extreme phenotype sampling with whole genome 468	

resequencing when Vqtl/Vp was ≥0.15. The power to detect QTL with effect sizes of 469	

Vqtl/Vp = 0.05 and Vqtl/Vp = 0.10 in our whole genome resequencing analysis was then 470	

0.06 and 0.44, respectively. The power to detect QTL with effect sizes of Vqtl/Vp = 471	

0.05 and Vqtl/Vp = 0.2 in our analysis of the 415 SNP chip genotyped individuals 472	

sampled independent of phenotype was 0.06 and 0.13, respectively.  473	

The relationship between GWA analysis P-values and physical distance from 474	

the simulated QTL with effect size of Vqtl/Vp = 0.05 is shown in Figure 4a. The great 475	

majority of SNPs closely linked to the simulated QTL were not close to being 476	
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statistically significantly associated with phenotype. For example, the median P-value 477	

for SNPs located within 1 kb of the simulated QTL among 1,000 simulations of 81 478	

whole genome resequenced individuals with extreme phenotypes was P = 0.15, which 479	

is eight orders of magnitude larger than the Bonferroni corrected threshold of 480	

statistical significance for the GWA analyses of resequenced individuals (2.5 × 10-8). 481	

The median P-value for SNPs within 1 kb of the QTL in simulations of 415 482	

individuals sampled independent of patch size was P = was 0.084, which is four 483	

orders of magnitude larger than the Bonferroni corrected threshold of statistical 484	

significance for the SNP chip-based GWA analysis (1.3 × 10-6). 485	

 486	

Effects of number of loci, sample size, recombination rate, and Ne on power to detect 487	

QTL 488	

The number of loci used in the SNP chip scenario had a strong effect on statistical 489	

power. However, using hundreds of thousands or millions of SNPs did not ensure that 490	

power was high (Figure 3a). For example, power with 100K and 500K SNPs was less 491	

than 0.3 and 0.75, respectively, for all simulated QTL effect sizes. Power to detect 492	

QTL with effect size of Vqtl/Vp = 0.05 was <0.5 when using 2 million SNPs. At least 1 493	

million SNPs were necessary to achieve power of 0.8 or higher for QTL with effect 494	

sizes of Vqtl/Vp = 0.15 or 0.2 in this scenario (N = 415 individuals, Figure 3a).  495	

Tripling the sample size (N = 243) substantially increased the power to detect 496	

large effect QTL in the simulations of whole genome resequencing of extreme 497	

phenotypes (Figure 3b). Specifically, power was > 0.8 for all simulated effect sizes, 498	

and 100% of QTL with effect size of Vqtl/Vp ≥ 0.1 were detected.  Power was >0.9 for 499	

all QTL effect sizes in the simulations of the SNP chip scenario when 1-2 million 500	

SNPs were used and the sample sizes were tripled to N=1,245 (Figure 3b). However, 501	
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power was quite low (<0.4) for all QTL effect sizes when 100 K or fewer SNPs were 502	

used and the sample sizes were tripled.  503	

Next we evaluated the effects on power of increased LD due to lower 504	

recombination rate (1.03 cM/Mb instead of 3.1 cM/Mb) in the simulated populations. 505	

The recombination rate did not strongly affect the power to detect QTL with whole 506	

genome resequencing of extreme phenotypes or when 2 million SNPs were used in 507	

the SNP chip typing of randomly sampled phenotypes scenario (Figure 3c). However, 508	

the lower recombination rate resulted in moderately higher power to detect QTL in 509	

the SNP chip scenario when relatively few loci were used and the QTL effect size was 510	

large. For example, the power to detect QTL with Vqtl/Vp = 0.2 with 100K SNPs was 511	

0.48 in simulations with a low recombination rate, and 0.27 in simulations with a high 512	

recombination rate. The general effect of a lower recombination rate in the SNP chip 513	

scenario was that power was closer to that of the whole genome sequence for any 514	

given number of SNPs used for GWA analysis (Figure 3c).  515	

 Reducing the Ne of the simulated populations substantially increased power of 516	

the GWA analyses for all numbers of loci considered (Figure 3d). Increased power 517	

with smaller Ne was limited to relatively small effect size QTL in the whole genome 518	

resequencing or extreme phenotypes scenario, and in the SNP chip scenario when 2 519	

million SNPs were used in the GWA analyses (Figure 3d). Power increased 520	

dramatically with smaller Ne in the SNP chip scenario for analyses based on relatively 521	

few SNPs. For example, power to detect QTL with effect size of Vqtl/Vp = 0.1 using 522	

37.8K SNPs was 0.08 in populations with large Ne, and 0.76 in populations with small 523	

Ne (Figure 3). Power was ≥ 0.67 for all QTL effect sizes and numbers of loci in the 524	

SNP chip scenario with small Ne (Figure 3d).  525	

 526	



22	
	

Discussion 527	

Our analyses revealed no genome-wide significant loci for variation in male forehead 528	

patch size, despite moderate narrow sense heritability and typing nearly all 529	

polymorphic sites in the genome in 81 individuals with extreme phenotypes. This 530	

finding suggests that the additive genetic component of the variance in patch size is 531	

determined by a large number of loci with individually small effects (i.e., that patch 532	

size is polygenic), and that large effect loci for patch size do not exist. This is 533	

consistent with previous studies showing that patch size is condition-dependent 534	

(Gustafsson et al. 1995) and with previous suggestions that condition-dependent, 535	

sexually selected traits are likely to be governed by a large number of loci with 536	

individual small effects (Rowe & Houle 1996), largely due to the potentially huge 537	

number of genes affecting condition. However, as discussed below, low power of the 538	

GWA analyses of patch size means we cannot confidently conclude that large effect 539	

loci for patch size were not present.  540	

 541	

Patch size heritability 542	

Our results suggest that patch size had moderately high heritability. We found higher 543	

estimated narrow sense heritability of patch size in the analysis of whole genome 544	

resequenced individuals with extreme phenotypes (h2 = 0.48) than for SNP chip 545	

genotyped individuals sampled independent of patch size (h2 = 0.31). This difference 546	

in h2 between analyses is likely due to an enrichment of the genetic variance in patch 547	

size in the group of sampled individuals with extreme phenotypes. Thus, the strategy 548	

of sampling extreme phenotypes appears to have been successful in maximizing the 549	

additive genetic variance for the trait, and thus increased the power of this analysis 550	

relative to analyses based on individuals sampled randomly with respect to patch size. 551	



23	
	

However, this difference could be due to a lower number of whole genome 552	

resequenced males (81) compared to SNP chip genotyped males (415). Indeed, the 553	

number of samples has been found to have stronger effects than the number of typed 554	

sites on the precision of h2 estimates (Stanton‐Geddes et al. 2013). Nevertheless, both 555	

estimates of heritability suggest that patch size is considerably heritable.  556	

 557	

Power to detect large effect QTL 558	

The inference of the absence of large effect SNPs for patch size assumes that we 559	

would have detected loci with large effects on patch size if they existed. We sampled 560	

81 males from the ends of the distribution of patch size distribution to enrich for total 561	

and additive genetic variance of patch size, thus maximizing power given the number 562	

of individuals available for sequencing (Gurwitz & McLeod 2013). Whole genome 563	

sequencing of these males means that essentially all SNPs in the genome were 564	

screened, thereby nearly eliminating the problem of low or no LD between the typed 565	

SNPs and causal loci. SNP chip typing a larger number of samples (415) as in the 566	

analysis of males selected independent of patch size is expected to reduce the 567	

sampling error of estimated SNP effects at the typed loci. However, as previously 568	

noted, random sampling with respect to the phenotype reduces the phenotypic and 569	

additive genetic variance for the trait compared to when samples are selected from the 570	

phenotypic extremes. Additionally, using a low density SNP chip means that only a 571	

very small fraction of the genome was effectively screened for phenotypic effects 572	

because strong LD extended less than 10-20 kb in our study population (Figure 1). 573	

Our power analyses suggest that the power to detect large effect QTL was low in all 574	

cases, even when the causal loci were directly screened for genotype-phenotype 575	

associations (Figures 3a and 4a). Thus, the power analyses suggest that our empirical 576	
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data were not sufficient to confidently determine whether SNPs with large effects on 577	

patch sized segregated in the study population.  578	

The power analysis results presented here should be useful to future attempts 579	

to dissect the genetic basis of complex traits in natural populations. First, the problem 580	

of very low LD between typed markers and the great majority of functional positions 581	

in the genomes is likely to be characteristic of many studies on natural populations in 582	

the future. The distance over which strong LD persists is determined by Ne (the 583	

strength of genetic drift), historical fluctuations in population size, population 584	

subdivision, population admixture, and the recombination rate (Slatkin 2008). Thus, 585	

genomic patterns of LD vary considerably among species and populations. For 586	

example, strong LD extends over large chromosomal distances in humans (Reich et 587	

al. 2001), domesticated sheep and cattle (McKay et al. 2007; Meadows et al. 2008), 588	

and three-spined sticklebacks (Hohenlohe et al. 2012). However, LD decays much 589	

more rapidly in the collared flycatcher (Kawakami et al. 2014a) (Figure 1), and 590	

invertebrates such as the nematode Caenorhabditis remanei (Cutter et al. 2006), the 591	

fruitfly Drosophila melanogaster (Mackay et al. 2012) and the mosquito Anopheles 592	

arabiensis (Marsden et al. 2014). Rapid decay of LD with increasing chromosomal 593	

distance means that QTL are more difficult to detect via association analyses of linked 594	

SNPs. However, the flipside of this problem is that causal variants are more difficult 595	

to pinpoint within QTL regions in species with low recombination rates or small Ne 596	

where genotype-phenotype correlations may be due to causal variants located far 597	

away from genotyped loci (Figure 4b).  598	

Our results suggest that it will often be necessary to have many SNPs very 599	

closely linked to a QTL with large effects to reliably detect its phenotypic effects 600	

(Figures 3 and 4), particularly in populations where strong LD extends over only short 601	
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distances. We suggest that extremely high marker density (approaching whole 602	

genome sequence) and very large samples will often be necessary to reliably detect 603	

QTLs in populations with weak LD (e.g., due to high recombination rates or large Ne). 604	

However, investing in whole genome resequencing will result in smaller increases in 605	

power to detect QTL compared to very high density SNP genotyping approaches in 606	

study systems with low recombination rate and/or small Ne and thus strong LD 607	

extending over larger chromosome segments (Figures 3 and 4).  608	

A notable result of the simulation-based power analyses is that the power to 609	

detect a large effect QTL (e.g., Vqtl/Vp = 0.1) can be low when the causal SNP itself is 610	

directly screened for a genotype-phenotype association (Figure 4). Clearly, this is 611	

caused by relatively small sample sizes and adjusting statistical significance 612	

thresholds to correct for multiple testing. For example, P-values smaller than 2.5×10-8 613	

are necessary to identify candidate QTL when 2 million loci are used in a GWA 614	

analysis and a standard Bonferroni correction is applied along with an α value of 0.05. 615	

Thus, having every SNP in the genome genotyped means that the sample sizes may 616	

often need to be very large for large effect QTLs to consistently surpass reasonable 617	

statistical significance thresholds. However, as our simulations (Figure 3) and other 618	

results from humans (Barnett et al. 2013; Emond et al. 2012; Gurwitz & McLeod 619	

2013; Li et al. 2011; Perez-Gracia et al. 2002) demonstrate, sampling from the ends 620	

of the distribution of phenotypes can dramatically decrease the number of individuals 621	

necessary to achieve high power. Resequencing of samples from the ends of the 622	

phenotype distribution is therefore a promising approach to identify the genetic basis 623	

of phenotypic and fitness variation in natural populations where budgets and sample 624	

sizes are often small.  625	

 626	
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QTL mapping prospects in natural populations 627	

Several affordable and relatively large-scale genotyping technologies including 628	

genotyping by sequencing and SNP genotyping arrays have emerged in the last 629	

several years, making it possible to genotype thousands to hundreds of thousands of 630	

SNPs in any organism (Allendorf et al. 2010; Davey et al. 2011). There has been 631	

much excitement about the potential for new genotyping or genotyping-by-632	

sequencing technologies to help elucidate the genetic basis of phenotypic and fitness 633	

variation in natural populations (Slate et al. 2009; Stapley et al. 2010). However, the 634	

simulations here along with previous results (Spencer et al. 2009) suggest that reliable 635	

detection of QTL with large effect sizes will often require on the order of several 636	

hundred thousand SNPs or whole genome sequence, along with very large sample 637	

sizes to reliably detect large effect size QTL with GWA analyses. Thus it may be the 638	

case that sub-genome scale genomic data will be insufficient to reliably detect large 639	

effect QTLs in many other study systems where LD decays rapidly.   640	

A notable result from our simulations is the dramatically higher power of 641	

GWA analyses based on relatively few loci (e.g., 50K- 100K SNPs) in populations 642	

with small Ne (Figure 3d and 4b). This suggests that the prospects are good for 643	

detecting large effect QTL in populations with small Ne where LD is likely to extend 644	

over very large distances (e.g., in long term studies of isolated populations on habitat 645	

islands). Our simulations of small populations assumed Ne = 1500 and a 646	

recombination rate of 3.1 cM/Mb. Populations with smaller Ne and/or lower 647	

recombination rates are expected to have strong LD extending over longer distances 648	

than in these simulations. Therefore power to detect large effect QTL with GWA 649	

analyses based on tens of thousands of SNPs and sample sizes only in the hundreds 650	

may be quite high in some study populations.   651	
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The genomic pattern of LD has been described in detail in relatively few non-652	

model species. Given its importance for the development of efficient tools for the 653	

detection of the genomic basis of phenotypic and fitness variation, describing LD in 654	

detail in taxa where fitness and phenotypic data are accumulating will greatly aid in 655	

the efforts to identify QTLs in these species. We suggest that future GWA studies 656	

should report the genomic pattern of LD and estimates of power to detect large effect 657	

QTL, and interpret results in light of whether power is likely to be high or low given 658	

the observed pattern of LD and the sampling design. 659	

Clearly, if LD is weak and few SNPs are used for GWA analyses only a small 660	

fraction of the genome can be effectively scanned for QTL and therefore QTL with 661	

even very large phenotypic effects will frequently be missed. Nevertheless, QTL have 662	

been detected via GWA analysis in natural populations using small numbers of loci. 663	

For example, a recent GWA analysis of parasite burden in red grouse (Lagopus 664	

lagopus scotica) based on only 271 SNPs identified 5 genome-wide statistically 665	

significant QTL (Wenzel et al. 2015). How can the low power of GWA association 666	

analyses using sparse SNPs be reconciled with the successful identification of 667	

candidate QTL in such studies? One possibility is of course that many of the QTL 668	

reported in highly underpowered studies (e.g., where only hundreds to a few thousand 669	

SNPs are typed in large genomes) represent false positives, because very low power 670	

means that a large proportion of positive results are expected to be false (Christley 671	

2010). Ideally, reported QTL should be replicated in an independent sample(s), 672	

though this is not always possible in studies on natural populations. As a result of low 673	

power in combination with a possible bias towards publication of positive results, 674	

false positives could be overrepresented in the literature. Alternatively, underpowered 675	

GWA analyses may frequently detect a small number of true QTL (usually 676	
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overestimating their effect sizes, Göring et al. (2001)) due to the presence of a large 677	

number of QTL with individually small effects if the trait is polygenic. In either case, 678	

both of these scenarios will not substantially advance our understanding of the genetic 679	

basis of quantitative traits in natural populations. Identifying a handful of QTL that 680	

together explain a tiny fraction of trait heritability is of limited use because many 681	

other undetected genes and biochemical pathways are involved but overlooked. 682	

Indeed, focusing interpretation of results on the functions of a few small effect QTL 683	

that happen to reach statistical significance is likely to provide a biased view of the 684	

genetic and biochemical mechanisms underpinning trait variation. 685	

Insufficient power to detect large effect QTL has other important implications 686	

for investigations into the genetic basis of phenotypic and fitness variation in natural 687	

populations. For example, one question of great interest in evolutionary biology is 688	

whether quantitative traits are generally governed by a very large number of genes 689	

with individually small effects or whether a substantial proportion of variation is due 690	

to large effects of a small number of genes. As demonstrated here, caution is required 691	

in interpreting the apparent absence of large effect loci as evidence for a polygenic 692	

architecture of quantitative trait variation if power to detect QTL is low. Low power 693	

to detect large effect QTL also makes it difficult to rigorously compare the genetic 694	

architecture of different traits within natural populations. Describing architectural 695	

differences in such traits is important for our understanding of how standing genetic 696	

variation affects different traits and how these traits might respond to selection. Large 697	

effect loci may be detected for some traits while QTL with similarly large effects are 698	

not detected for other traits of interest. We emphasize that it should clearly be 699	

acknowledged that apparent differences in the genetic architectures of different traits 700	

may be caused by low power to detect large effect QTL, rather than differences in the 701	
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distribution of effect sizes of QTL among different phenotypic characteristics or 702	

fitness components.  703	

 Pedigree-based QTL linkage mapping studies might often have higher power 704	

than GWA approaches to detect large effect QTL because LD will obviously extend 705	

over longer chromosomal distances within families than in samples of unrelated 706	

individuals typical of GWA studies (Schielzeth & Husby 2014). Indeed, candidate 707	

QTL have been detected via linkage mapping (e.g., Poissant et al. 2012; Johnston et 708	

al. 2010), with some studies involving controlled crosses (Laporte et al. 2015) or 709	

breeding in captivity (Knief et al. 2012; Schielzeth et al. 2012). However, previous 710	

simulations suggest that the power to detect large effect QTL has been quite low (e.g., 711	

power was estimated at 0.33 for QTL explaining >10% of phenotypic variance) in 712	

some of the most powerful linkage mapping studies carried out to date (Slate 2013). 713	

Another limiting factor is that multiple generation pedigrees are only available in few 714	

study systems, thus limiting the usefulness of pedigree-based QTL mapping to 715	

relatively few species and phenotypic traits. Potentially increased power due to longer 716	

range LD is balanced by decreased precision in pinpointing causal loci among those 717	

linked to identified QTL. A more general understanding of the genetic basis of 718	

phenotypic and fitness variation in natural populations will likely require application 719	

of very large-scale genotyping or sequencing technologies in GWA studies of large 720	

samples of individuals in many natural populations representing a broad diversity of 721	

taxa and evolutionary histories. Fortunately, this goal is becoming within reach as the 722	

repertoire of genomic resources available for non-model organisms expands rapidly 723	

(Ellegren 2014).  724	

 725	

 726	
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Table 1. Variance component estimates from GWA analyses. 95% confidence 906	
intervals calculated in RepeatABEL are provided in parentheses. 907	
Sample Va Vpe Ve 
Whole Genome (N = 81) 251.67(161.4, 392.5) 171.91(102.1,289.5) 101.82(75.6, 137.1) 
50K SNP Chip (N = 415) 69.82(55.8, 87.4) 57.43(45.4, 72.7) 88.45(79.2, 98.8) 
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 937	
Figure 1. The relationship between the strength of linkage disequilibrium (r2) and 938	
physical distance in 81 whole genome resequenced collared flycatcher males The data 939	
shown are from 250,000 randomly selected SNPs from the 81 whole genome 940	
resequenced collared flycatchers. r2 was calculated using the --r2 function in PLINK 941	
(Purcell et al. 2007), and is shown for each pair of SNPs separated by 50 or fewer kb. 942	
The solid line represents a loess function fitted to the rolling mean of r2 calculated in 943	
non-overlapping windows of 100 base pairs. The dashed lines represent loess 944	
functions fitted to the rolling 5% and 95% quantiles of r2 in the same non-overlapping 945	
100 base pair windows. 946	
 947	
 948	
 949	
 950	
 951	



36	
	

 952	
 953	
Figure 2. Manhattan plots of -log10(P-value) from GWA analyses of patch size based 954	
on whole genome resequencing of 81 males (a) and 50K SNP chip genotypes from 955	
415 males (b). Chromosome identity is shown on the x-axis, and the P-values are 956	
arranged according to physical SNP positions on each chromosome (assuming 5 kb 957	
gaps between adjacent scaffolds). Dashed lines are permutation-based statistical 958	
significance thresholds, and the dotted lines are the Bonferroni statistical significance 959	
thresholds of statistical significance. Only SNPs with –log10(P-value) ≥ 2 are shown 960	
for clarity in a.  961	
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 969	
 970	
Figure 3. Influence of QTL effect size, sample size, recombination rate, and Ne on 971	
statistical power in GWA analyses. Results are shown from simulations with samples 972	
sizes equal to the empirical GWA analyses (a), when the simulated sample sizes are 973	
tripled (b), when the recombination rate was low (1.03 cM/Mb instead of 3.1 cM/Mb) 974	
(c), and when the simulated populations had Ne = 1,500 instead of Ne = 37,500 (d). 975	
Left panels show results from GWA analyses of whole genome resequenced 976	
individuals sampled with extreme phenotypes. Right panels show results from GWA 977	
analyses of individuals sampled independent of phenotype and genotyped with a 50K 978	
SNP chip. The results shown here are from analyses using the medium statistical 979	
significance threshold as described in the methods. Results from analyses of the same 980	
simulated data using conservative and liberal statistical significance thresholds are 981	
shown in Figures S7 and S8, Supplementary Materials. 982	
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 983	
Figure 4. Effects of physical distance from a QTL on P-values from GWA analyses 984	
of simulated data. Results are shown from simulations where the effect size of the 985	
QTL was Vqtl/Vp = 0.05 in populations with Ne = 37,500 (a) and Ne = 1500 (b). The P-986	
values are from every SNP in 1000 simulations mimicking our GWA analyses of 81 987	
whole genome resequenced individuals with extreme phenotypes (left panels) and 988	
GWA analyses of 415 males sampled independent of patch size (right panels). The 989	
solid lines represent the median P-value calculated in 1 kb windows across the 990	
simulated chromosome. The broken lines represent the ‘medium’ statistical 991	
significance thresholds as indicated in the legends. Blue points at position zero on the 992	
x axis represent P-values from the simulated causal SNPs, and orange points represent 993	
P-values from SNPs linked to the causal locus. Note the range of the x axis is 994	
different in a and b.  995	


