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Abstract4

Numerical models of large civil engineering structures are prone to errors and uncertain system parameters, which

inevitably affect the ability of such models to accurately predict dynamic behaviour. Finite element (FE) model

updating can be used to calibrate the numerical models towards the observed behaviour. In this paper, a case study

of the sensitivity method in FE model updating is presented. The methodology is applied to the Bergsøysund Bridge,

which is a long-span floating pontoon bridge in Norway. A system identification is performed based on acceleration

data and thirty vibration modes are identified. The FE model is calibrated by reducing the difference between the

identified and numerical natural frequencies and mode shapes of the bridge. The model uncertainties are parametrized

with a total of 27 parameters. We demonstrate how an analytical sensitivity matrix can be constructed for floating

structures, where the system mass and damping matrices are functions of frequency due to fluid-structure interaction.

After updating, the mean error in natural frequencies is decreased from 3.23% to 2.34%, and the average MAC

number is increased from 0.87 to 0.94. Although the largest errors are significantly reduced, the updated parameters

are believed to be affected by noise from the system identification. Challenges related to the presence of very closely

spaced vibration modes are also shown, in which matching the identified modes to the modelled modes becomes

difficult. This study indicates that models of large bridges can be significantly improved, but many practical issues

still exist.
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1. Introduction6

The analysis of large civil engineering structures for predicting dynamic behaviour is generally based on numer-7

ical finite element (FE) models. These models are typically idealized representations, which may involve modelling8

simplifications or system parameters that are uncertain, e.g. boundary conditions, geometry, material properties or9

kinematic interactions. One approach for reducing the uncertainties of numerical models is to perform a model cali-10

bration or updating when measurement data of the relevant structure are available [1]. FE model updating has become11

popular because of its ability to estimate unknown system parameters by matching the predicted behaviour to the12
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observed structural behaviour, which can often be measured under operational condition. Structural health monitor-13

ing and damage detection [2–10] are also growing fields for the application of updating tools. The comprehensive14

survey by Mottershead and Friswell [11] summarizes many of the current model updating techniques. A distinction15

between the two classes of global and local methods can be made [6]. Global methods directly modify the stiffness16

and mass matrices to better fit a set of reference data [12], but such methods have the clear disadvantage that the17

physical meaning behind the system alterations is hidden. Local or parametric methods correct the mass and stiffness18

matrices by linking them to physical model parameters that can be regarded as uncertain. Parametric methods are the19

preferred approach for case studies, where learning about the physical significance behind the model alterations is also20

an objective, for example, an unknown material property or damage in a component. A drawback is that the updating21

process is generally not a one-step procedure; rather, iterations are required. Sensitivity-based methods [5, 7, 13–19]22

are by far the most popular approach when the model is parametrized. A review of sensitivity methods is given by23

Link [20]. Response surface methods are another widely used alternative [21–23], but such methods can be costly to24

establish when a large number of updating parameters is considered.25

Many engineering challenges are still encountered in FE model updating of large structures such as bridges.26

Updating applications to cable-stayed bridges [6, 24–29], suspension bridges [30–33] and other types of bridges27

[5, 15, 16, 34–37] are practical case studies found in the literature. Due to the scale of operation, ambient excitation28

is generally the preferred option when vibration measurements are performed. Using a vehicle with known axle loads29

in a controlled test is another option [38]. The errors in natural frequencies for very large bridges (prior to updating)30

are typically reported in the range 0-5%, although errors up to 10-20% for some modes are not unusual. The previous31

studies successfully demonstrate that a significant improvement of large FE models is attainable using simple model32

updating techniques.33

Although updating of cable-stayed bridges and suspension bridges is well documented, it has not been attempted34

on floating bridges. Research on large floating bridges is an area that is largely unexplored since few such structures35

have been constructed; an overview can be found in [39]. In a review process of the E39 Coastal Highway Project in36

Norway, however, the use of pontoon bridges and suspension bridges with floating towers to cross fjords is considered.37

The designated fjords are 1-3 km wide, and thus, the new bridges will have very long spans. Long span lengths coupled38

with the non-conventional design concepts pose a design challenge. State-of-the-art understanding of floating bridge39

dynamic behaviour is required to safely design and construct the new bridges. The dynamic behaviour of floating40

bridges is determined not only by structural vibrations but also by fluid-structure interaction (FSI), which means that41

greater model uncertainties are expected than for a conventional dry structure. Therefore, learning more about the42

performance of similar existing bridges is desired.43

One of the studied bridges is the Bergsøysund Bridge, which is a long-span pontoon bridge that only has end44

supports. A monitoring system is installed at the Bergsøysund Bridge to measure the dynamic activity and ambient45

conditions [40]. This bridge has already been subjected to previous research, including studies of stochastic load and46

response modelling [41], system identification [42] and studies on estimation of forces and response [43]. In this47
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Figure 1: Alongside view of the Bergsøysund Bridge. Photograph: K.A. Kvåle.

article, we demonstrate an application of the sensitivity method in model updating to a case study of the Bergsøysund48

Bridge. Herein, the methodology is tested on a system that has extremely closely spaced modes, which is a challenge49

when the modes of the measurement data are sought to be matched with the model. One characteristic that the50

Bergsøysund Bridge shares with other very large bridges is the presence of low natural frequencies. In these structures,51

many modes contribute to the total dynamic response under low-frequency ambient excitation, such as wind or wave52

loading. It is thus imperative to ensure that the numerical model is well calibrated towards multiple modes, which is53

an inquiry made in this case study. A strong motivation for performing model updating is that future studies of the54

bridge dynamics can be directly improved with higher confidence in the results.55

In the presented approach, the system matrices are parametrized. We present a procedure for establishing an56

analytical sensitivity matrix for floating structures, which takes the FSI not encountered in formulations of ordinary57

structures into account. In the chosen updating objective, the natural frequencies and mode shapes are calibrated58

towards the observed dynamic behaviour in an iterative optimization problem. The updating parameters are limited to59

bounds set by engineering judgement.60

2. Bridge description and system equations for floating bridges61

The Bergsøysund Bridge, which is shown in Fig. 1, is located in mid-western Norway. Placed into service in62

1992, this bridge was constructed as part of a larger infrastructural project connecting the archipelago cities to the63

mainland. The total length of the floating span is 840 m. The bridge has two main components: a steel superstructure64

and seven concrete pontoons. As shown in Fig. 2, the pontoons are distributed approximately 100 m apart. The65

superstructure consists of a plated bridge deck stiffened with trapezoidal profiles and a trusswork, which is connected66

to each pontoon by four ”feet”. The bottom chords and diagonals in the truss are circular tube profiles, whereas the67
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top chord is a welded box profile. Since the bridge is only supported at the end abutments, it is particularly susceptible68

to dynamic excitation from ambient wave loading.69
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Figure 2: Plan view drawing of the Bergsøysund Bridge with the locations of the tri-axial accelerometers shown.

The dynamic behaviour of floating bridges can be formulated by the combination of the structural vibration and70

the dynamic interaction with the surrounding fluid. For a system with nDOF degrees of freedom (DOFs), the equations71

of motion in a mixed time- and frequency-domain formulation are given as follows:72

(Ms + Mh(ω))ü(t) + (Cs + Ch(ω))u̇(t) + (Ks + Kh)u(t) = pw(t) (1)

Here, u ∈ RnDOF is the physical DOF vector and pw(t) ∈ RnDOF are wave forces. Ms, Cs and Ks ∈ RnDOF×nDOF are73

the structural mass, damping, and stiffness matrices, respectively. Furthermore, the following three hydrodynamic74

matrices account for the FSI: the added mass Mh(ω) ∈ RnDOF×nDOF and the potential damping Ch(ω) ∈ RnDOF×nDOF are75

frequency dependent, while the restoring stiffness Kh ∈ RnDOF×nDOF is constant. For elaborations on the modelling of76

floating structures, we refer to [44]. In this paper, Eq. 1 is not applied directly but rather reformulated through two77

steps. The first step considers only a subsystem of Eq. 1:78

Msü(t) + (Ks + Kh)u(t) = 0 (2)

The eigenvalue problem of the system in Eq. 2 is solved to obtain nm mass-normalized modeshapes Φ ∈ RnDOF×nm79

and the matrix Ω ∈ Rnm×nm , which is populated diagonally with the frequencies. A reduced-order model with nm80

modes is then constructed when the modal transform u(t) = Φz(t) is applied to Eq. 2:81

I z̈(t) +Ω2 z(t) = 0 (3)

In the second reformulation step, Eq. 1 is premultiplied with ΦT:82

(
I +ΦT Mh(ω)Φ

)
z̈(t) +

(
ΦTCsΦ +ΦTCh(ω)Φ

)
ż(t) +Ω2 z(t) = ΦT pw(t) (4)

We then consider the terms Mupd and Kupd ∈ RnDOF×nDOF , which contain the added (or removed) mass and stiffness83

and are later calibrated in a model updating scheme. These two matrices are separated from the other system matrices84
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to keep a clear and convenient formulation for updating. The modal forms of Mupd and Kupd are added to Eq. 4:85

(
I +ΦT Mh(ω)Φ +ΦT MupdΦ

)
z̈(t) +

(
ΦTCsΦ +ΦTCh(ω)Φ

)
ż(t) +

(
Ω2 +ΦTKupdΦ

)
z(t) = ΦT pw(t) (5)

The above system formulation has the benefit of adding the hydrodynamic mass and damping together with the86

updating terms to a modally truncated system to reduce the computational burden and better suit an implementation87

in which the total model is constructed using several modelling tools, as will be explained below. The eigenvalue88

problem of Eq. 5, rewritten in state-space form, reads as follows:89


iλr 0

0 (iλr)∗

 − A(ωd,r)


 ψr ψ∗r

ψr(iλr) ψ∗r (iλr)∗

 = 0 (6)

Here, A is the state matrix:90

A(ωd,r) =

 0 I

M−1(ωd,r)C(ωd,r) M−1(ωd,r)K

 (7)

The problem in Eq. 6 can be solved iteratively; see Kvåle et al. [41] for details. Assuming sub-critical damping, the91

solution has conjugate eigenvector pairs ψr,ψ
∗
r ∈ Cnm (r = 1, 2 . . . nm) related to the complex eigenvalues iλr, (iλr)∗ ∈92

C:93

iλr, (iλr)∗ = −ξrωr ±

√
1 − ξ2

rωri (8)

Here, the natural frequency is ωr and the critical damping ratio is ξr. The system matrices used in Eq. 7, in which the

hydrodynamic matrices are evaluated at the damped natural frequency ωd,r =
√

1 − ξ2
rωr, are defined as follows:

M(ωd,r) = I +ΦT Mh(ωd,r)Φ +ΦT MupdΦ (9)

C(ωd,r) = ΦTCsΦ +ΦTCh(ωd,r)Φ (10)

K = Ω2 +ΦTKupdΦ (11)

The eigenvectors ψr are collected in the matrix Ψ ∈ Cnm×nm . For completeness, the physical DOF can then be94

reconstructed from two modal transformations:95

u(t) = Φz(t) = Φ
[
Ψ Ψ∗

]  y(t)

y∗(t)

 (12)

where a modal coordinate vector y(t) ∈ Cnm was introduced. Note that the matrix Ψ is sensitive to the updating96

parameters, whereas Φ is constant. A convergence assessment reveals that nm = 100 is a sufficient number of modes97

for the solution of Eq. 6 to stabilize. This high number of modes is needed since the hydrodynamic mass significantly98
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Figure 3: Section of the Abaqus FE model. The pontoon is a dummy object for visualization only, and the red cross is the model replacement for

the rigidity of the pontoon.

contributes to the total mass, which implies that the modes for the wet system will be significantly different from the99

ones calculated in Eq. 3.100

A brief description of the employed modelling tools follows; for details, we refer to [41]. Specifications in the101

technical drawings are used as the basis for constructing the models. The steel superstructure is modelled in the102

FE software Abaqus. Two-node Timoschenko beam elements (B32) are utilized for the truss, and eight-node shell103

elements (S8R) are used for the plated steel deck. It is assumed that a pontoon behaves as a rigid body, which is a fair104

simplification since the pontoons are very stiff compared to the remainder of the structure. The pontoons are therefore105

replaced by massless rigid beams in the FE model. To retain the correct inertia properties, the 6x6 pontoon mass106

matrix is lumped to the pontoon node; see Fig. 3. Each of the different pontoon types are modelled in DNV HydroD107

WADAM, which is a commercial software implementing linearized potential theory. From this program, the matrices108

Mh(ω), Ch(ω) and Kh are obtained. For illustrative purposes, the added mass and damping for the midmost pontoons109

are plotted in Fig. 4. A strong frequency dependency is observed in the lower frequency range, and asymptotic values110

are reached for high frequencies. The hydrodynamic properties are also directly added to the pontoon nodes. For the111

damping originating from the structure, low damping ratios are realistic. A Rayleigh damping model is assumed:112

Cs = αMs + β(Ks + Kh) (13)

The coefficients α = 5×10−3 and β = 10−3 are used, which provide damping ratios of 0.2 to 0.8 % in the frequency113

range 0-15 rad/s. We refer to [41] for a description on how the two submodels (Abaqus and DNV HydroD WADAM)114

can be fused together.115

3. Model updating parameters116

Parametric approaches in model updating have the advantage of directly relating the parameters to the system117

matrices. It is preferred to retain a practical interpretation of the results and thus make the parameters physically118

meaningful. Next, a set of updating parameters is selected.119
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Figure 4: Added hydrodynamic mass (a), moment of inertia (b), damping in translation (c) and rotation (d) for pontoon type 3.

Figure 5: Left: technical drawing of end support; right: neoprene bearing

At each of the end supports, an axial rod and two neoprene bearings attach the steel superstructure to the concrete120

abutments, as shown in Fig. 5. Since the bridge is only supported at the ends, the stiffness of the bearings influences121

the global dynamic behaviour. In particular, the stiffness governs the torsional and horizontal modes since pontoons122

provide no lateral stiffness. The bearings are modelled as linear springs in the FE model. However, the spring stiffness123

has a high degree of uncertainty, which can be attributed not only to the neoprene material itself but also to unknown124

effects of the embedded steel plates and pretensioning. The idealization of a bearing as a single node can also cause125

errors. The bearing is parametrized by four stiffness parameters. The following 6x6 matrix is used to describe the126

stiffness:127



kx 0 0 0 0 0

0 ky 0 0 0 0

0 0 kz 0 0 0

0 0 0 krx 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(14)
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Figure 6: Displacement mode of the bridge at one metre tide (scaled 10 times).

Here, kx, ky and kz are translational spring constants, where the subscript indicates the direction in a local coordi-128

nate system. krx accounts for rotational stiffness. kry and krz have a negligible influence, and thus, they are excluded.129

The chosen stiffness model is applied to all four bearings because they are technically identical.130

Although the truss geometry is well defined and the elastic modulus of steel is generally not uncertain, the global131

dynamic behaviour is highly sensitive to the properties of the steel superstructure. The flexibility of joints and effective132

beam lengths are typical sources of uncertainty in a beam element model. The two parameters ηsteel and µsteel are133

introduced to account for errors in the stiffness and mass of the steel superstructure. These parameters are used as134

scaling factors of the steel stiffness and mass submatrix, respectively. The mass parameter mdeck, distributed uniformly135

on the bridge deck, is introduced to account for modelling errors in, e.g. asphalt and steel railing. The initial model is136

given 135 kg/m2 of non-structural mass, which has a total area of 11 × 840 = 9240 m2.137

Many of the uncertainties in the model can be attributed to the pontoons and the FSI. The pontoons are made from138

lightweight aggregate concrete, and variations in the density are typically in the range 2-5%. During finalization of the139

bridge, the pontoons were also ballasted with gravel until the desired draft was reached. The actual amount of ballast140

can therefore deviate from the quantity recommended in the technical drawings. A set of five inertia parameters for141

each of the three pontoon types, as illustrated in Fig. 2, is chosen. It is assumed that the mass deviation has two142

symmetry planes and has its mass centre shifted a distance dz from the pontoon node along a vertical axis, directed143

positively upwards. The following rigid body mass matrix is added locally to the pontoon nodes to calibrate the144

inertia:145



mi 0 0 0 −dzi · mi 0

0 mi 0 dzi · mi 0 0

0 0 mi 0 0 0

0 dzi · mi 0 Ixx,i + dz2
i · mi 0 0

−dzi · mi 0 0 0 Iyy,i + dz2
i · mi 0

0 0 0 0 0 Izz,i


(15)

m is a mass, I is a moment of inertia, and the subscripts x, y and z refer to a pontoon local coordinate system; ref.146

Fig. 2. The index i = 1, 2, 3 denotes the three different pontoon types. Although it is possible that deviations within147

one pontoon type could occur in reality, the classification is used to retain the symmetry of the model.148

Next, the hydrodynamic contribution is considered. The mean difference between low and high tides at the site149

is 1.5 m, which means that the waterline level at the pontoons can vary. When static buoyancy forces are applied150

to the numerical model, the displacement pattern shown in Fig. 6 is observed. For a unit metre of tidal water151
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increase, the five midmost pontoons are raised 1.04 m. The two outermost pontoons are restrained by the end supports152

and are only raised 0.74 m. The result is consistent with measurements of the waterline level performed at the site.153

Although changes in draft influence the terms Mh(ω) and Ch(ω), the sensitivity to the tidal water is very small since the154

pontoon displacement relative to the water plane is small. The largest changes in displaced water mass are at the ends,155

which generally have less influence on the dynamic behaviour. Including the tidal water level as a parameter is ruled156

unnecessary. The model is nevertheless still sensitive to possible errors in Mh(ω). Parameterizing the uncertainties157

from this term is difficult. For simplicity, a scale factor νhydro,i (i = 1, 2, 3) is used to scale the hydrodynamic mass for158

the three pontoon types. For consistency, the damping term Ch(ω) is also scaled by the same factor.159

For a rigid object that is floating freely, the restoring stiffness in rotation can be found in a straightforward manner160

by moment equilibrium in a state of unit rotation of the object. This is however not the case for a floating bridge where161

the pontoons are connected to the steel truss and are thus not allowed to rotate freely. Although basic assumptions can162

be made on the pontoon-truss displacement pattern, how the truss superstructure contributes to the rotational stiffness163

is uncertain. The parameter Kh,x,i (i = 1, 2, 3) is used to control the rotation stiffness about the x-axis (torsion).164

Rotation stiffness about the y-axis has an insignificant impact and is thus excluded from updating. Additionally, the165

vertical restoring stiffness Kh,z is included as a parameter. It is considerably less uncertain than the rotation, but it has166

a major influence on the vertical modes and should thus be included. Kh,z is made common for all pontoon types. The167

parameters related to hydrodynamics are assumed to be equal for pontoon types 2 and 3 (i.e. νhydro,2 = νhydro,3 , Kh,x,2 =168

Kh,x,3) since these should have identical exterior geometries and waterline levels.169

In total, the number of independent updating parameters is np = 27. A list is presented in Table 1 and a normalized170

sensitivity plot is shown in Fig. 7. The sensitivity plot is produced for the initial model and the sensitivities can highly171

change throughout the updating process. Note that since many of the parameters are related to the properties of the172

pontoon node, it can in a practical sense become problematic to distinguish them from each other.173

How this might affect the updating is addressed further in Section 6.174

4. Model updating framework175

The sensitivity method is chosen for updating; see, e.g., Mottershead et al. [19] for a tutorial. It is assumed that nq176

measured outputs are available. In this case study, the identified natural frequencies and the modal assurance criteria177

(MAC) numbers are used as objectives for calibration of the parameters in the numerical model. The sensitivity178

method is based on a linearization of the output difference:179

zm − z(θ) ≈ zm − (z(θi) + Gi|θ=θi∆θi) = ri − Gi|θ=θi∆θi (16)

Here, zm ∈ Rnq is the measured output and z(θ) represents the same quantities in the FE model as a function of the180

parameter set θ ∈ Rnp . The index i denotes a point of linearization, at which ri ∈ Rnq is the output residual:181
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Parameter Type Location Reference value Lower allowable Upper allowable Unit

change change

kx Spring stiffness End support 2e7 -1e7 1e10 N/m

ky Spring stiffness End support 5e7 -2e7 1e10 N/m

kz Spring stiffness End support 5e7 -2e7 1e10 N/m

krx Spring stiffness End support 0 0 1e12 Nm/rad

mi Mass Pontoons approx. 1.4e6 -2e5 2e5 kg

dzi Mass centre offset Pontoons - -8 0 m

Ixx,i Moment of inertia Pontoons approx. 1.6e8 -4e7 4e7 kgm2

Iyy,i Moment of inertia Pontoons approx. 8e7 -6e6 6e6 kgm2

Izz,i Moment of inertia Pontoons approx. 1.6e8 -1.5e7 1.5e7 kgm2

mdeck Distributed mass Bridge deck 135 -60 60 kg/m2

Kh,z Restoring stiffness Pontoons approx. 6e6 -1.8e5 1.8e5 N/m

Kh,rx,i Restoring stiffness Pontoons approx. 4e8 -1e8 1e8 Nm/rad

µsteel Stiffness scaling Steel superstructure 1 -0.1 0.1 -

ηsteel Mass scaling Steel superstructure 1 -0.1 0.1 -

νhydro,i Hydrodynamic scaling Pontoons 1 -0.1 0.1 -

Table 1: List of updating parameters and ranges for allowable changes.

ri = zm − z(θi) (17)

The sensitivity matrix G ∈ Rnq×np is a Jacobian matrix. In practice, the linear system in Eq. 16 is scaled in the182

following way [19]:183



zm,1 − z1(θ)
z0,1
...

zm,l − zl(θ)
z0,l
...

zm,nq − znq (θ)
z0,nq


=



r1

z0,1
...
rl

z0,l
...

rnq

z0,nq


−



∂z1

∂θ1

θ0,1

z0,1
. . .

∂z1

∂θk

θ0,k

z0,1
. . .

∂z1

∂θnq

θ0,np

z0,1
...

...
...

∂zl

∂θ1

θ0,1

z0,l
. . .

∂zl

∂θk

θ0,k

z0,l
. . .

∂zl

∂θnq

θ0,np

z0,l
...

...
...

∂znq

∂θ1

θ0,1

z0,nq

. . .
∂znq

∂θk

θ0,k

z0,nq

. . .
∂znq

∂θnp

θ0,np

z0,nq





∆θ1

θ0,1
...
∆θk

θ0,k
...
∆θp

θ0,p


(18)

The sub index zero indicates the normalization factors: θ0 is a reference (initial) value of a parameter, and z0 are184

either the identified natural frequency, or a constant equal to 1 for the rows which contain the MAC numbers. The185

scaling reduces ill-conditioning of the sensitivity matrix as well as equalizes the measured outputs such that weighting186

coefficients penalize relative residual errors. The objective function J is taken as a weighted sum of square errors:187
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Figure 7: Normalized sensitivity of the natural frequencies and MAC-numbers with respect to the updating parameters.

J(∆θi) =

nq∑
l=1

Wl
( zm,l − zl(θ)

z0,l

)2 (19)

The weighting is chosen according to the importance and uncertainty of the measured outputs. The parameters are188

updated iteratively:189

θi+1 = θi + ∆θi (20)

It is desired to constrain the parameters to a region that is considered realistic. Lower and upper bounds are190

enforced in the minimization problem:191

min J(∆θi) , θmin ≤ θi+1 ≤ θmax (21)

Engineering judgement is required to set the bounds, particularly for complex cases where large uncertainties are192

inherent in the problem. The chosen parameter limits are presented in Table 1. Note that the listed parameters193

represent adjustments in the model, not total quantities. A mass, for example, can therefore attain a negative value194

while the total mass in that node is still greater than zero.195

The sensitivity matrix for the problem is constructed analytically. A sequential perturbation of each parameter in196

every iteration would be too costly for the problem at hand due to the size and structure of the model. The analytical197

sensitivity of modal parameters in linear systems is well established in the literature. We perform a modification to198

accommodate for the case of frequency-dependent system matrices, which is the case for floating structures in general.199
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First, the sensitivity of the eigenvalues is presented, followed by the eigenvectors. Consider a system with stiffness K,200

damping C and mass M. The derivative of λr with respect to parameter θ j ( j = 1, 2 . . . np) can be formulated as [45]:201

∂λr

∂θ j
= λ j

ψT
r

[∂K

∂θ j
− λ2

r

∂M

∂θ j
+ iλr

∂C

∂θ j

]
ψr

ψT
r [λ2

r M + K]ψr

(22)

For convenience, the definitions of the system matrices are repeated:

Mr(ωd,r) = I +ΦT Mh(ωd,r)Φ +ΦT MupdΦ (23)

Cr(ωd,r) = ΦTCsΦ +ΦTCh(ωd,r)Φ (24)

K = Ω2 +ΦTKupdΦ (25)

Here, the modal index r is added to indicate that every solution of Eq. 6 yields a different system mass and202

damping matrix. This is, once again, due to the frequency dependency inherent in the problem. Furthermore, Mh(ω)203

and Ch(ω) are only explicitly influenced by the parameter νhydro,i. However, perturbations in any of the parameters204

change the natural frequencies and therefore also change Mh(ωd,r) and Ch(ωd,r) for the given mode. The sensitivity205

of Eq. 23-25 can therefore be written as follows:206

∂Mr(ωd,r)
∂θ j

= ΦT
[∂Mh(ωd,r)

∂ωd,r

∂ωd,r

∂θ j
+
∂Mh(ωd,r)

∂θ j
+
∂Mupd

∂θ j

]
Φ (26)

∂Cr(ωd,r)
∂θ j

= ΦT
[∂Ch(ωd,r)

∂ωd,r

∂ωd,r

∂θ j
+
∂Ch(ωd,r)

∂θ j

]
Φ (27)

∂K
∂θ j

= ΦT ∂Kupd

∂θ j
Φ (28)

Note that a dependency on
∂ωd,r

∂θ j
emerges in Eqs. 26–27. Next, Eqs. 26-28 are substituted into Eq. 22:

∂λr

∂θ j
=λr

ψT
rΦ

T
[∂Kupd

∂θ j
− λ2

r

(∂Mupd

∂θ j
+
∂Mh(ωd,r)

∂θ j

)
+ iλr

∂Ch(ωd,r)

∂θ j

]
Φψr

ψT
r [λ2

r Mr + K]ψr

(29)

+λr

ψT
rΦ

T
[
− λ2

r

∂Mh(ωd,r)

∂ωd,r
+ iλr

∂Ch(ωd,r)

∂ωd,r

]
Φψr

ψT
r [λ2

r Mr + K]ψr

∂ωd,r

∂θ j

Note that
∂ωd,r

∂θ j
is not yet known, but is found by:207

ωd,r = |Re(λr)| ,
∂ωd,r

∂θ j
= |Re

(∂λr

∂θ j

)
| (30)
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It is necessary to guess an initial value for
∂ωd,r

∂θ j
and perform iterations of Eqs. 29 and 30. In practice, less than208

ten iterations are required for convergence. The sensitivity of the undamped natural frequencies is then found by:209

ωr = |λr | =
√

Re(λr)2 + Im(λr)2 ,
∂ωr

∂θ j
=

Re(λr) Re
(∂λr

∂θ j

)
+ Im(λr) Im

(∂λr

∂θ j

)
ωr

(31)

The eigenvectors are now considered. The natural occurrence of conjugate modal pairs in Eq. 6 is exploited. The210

eigenvector sensitivity is then given by [45]:211

∂ψr

∂θ j
= −

1
2

ψT
r

[
∂Mr(ωd,r)

∂θ j
− i

2λr

∂Cr(ωd,r)
∂θ j

]
ψr

ψT
r [Mr(ωd,r) − i

2λr
Cr(ωd,r)]ψr

ψr +

nm∑
k,r

[αk(ψT
k
∂F̃r
∂θ j
ψr)ψk

λr − λk
−
α∗k(ψ* T

k
∂F̃r
∂θ j

∗

ψ∗r )ψ∗k
λr + λ∗k

]
(32)

where ∂F̃r
∂θ j

and αk are defined as follows:212

∂F̃r

∂θ j
=

[∂Kr

∂θ j
− λ2

r

∂Mr(ωd,r)

∂θ j
+ iλr

∂Cr(ωd,r)
∂θ j

]
(33)

αk =
1

ψT
k [2λk Mk(ωd,k) − iCk(ωd,k)]ψk

(34)

A modification of these expressions is not necessary; the FSI is implicitly accounted for when Eqs. 23–28 are used213

in Eqs. 32– 34. A relation with the MAC number sensitivity is sought. The MAC between analytical mode number r214

and an identified mode as ∈ Cnd is:215

MACrs =
aH

s vr vH
r as

vH
r vr aH

s as
, vr = Φaccψr (35)

where Φacc ∈ Rnd×nm is the subrows of Φ at the DOFs of the accelerometers. The MAC sensitivity is then found216

by differentiating Eq. 35:217

∂MACrs

∂θ j
=

aH
s (
∂vr

∂θ j
vH

r + vr

∂vH
r

∂θ j
) asvH

r vr − aH
s vrvH

r as (
∂vH

r

∂θ j
vr + vH

r

∂vr

∂θ j
)

(vH
r vr)2(aH

s as)
,

∂vr

∂θ j
= Φacc

∂ψr

∂θ j
(36)

This concludes the establishment of the analytical sensitivity matrix when natural frequencies and MAC numbers218

are used as updating objectives.219

5. System identification and output weighting220

The locations of the 14 tri-axial accelerometers are shown in Fig. 2. The monitoring system installed at the221

bridge is further described in [40]. A total of nd = 42 acceleration outputs were available for system identification.222

A 90 minute long time series recorded on 8 November 2015 was selected for acquiring the model updating output223
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Figure 8: Stabilization diagram for Cov-SSI when 100 block rows are used.

parameters. The wave elevation recorded in this period indicates a significant wave height varying between 0.4224

and 0.65 m, while the ten minute mean wind was between 8 and 16 m/s. System identification was performed225

using covariance-driven and data-driven stochastic subspace identification (Cov-SSI and DD-SSI [46]) and frequency-226

domain decomposition (FDD [47]). The acceleration data, originally sampled at 200 Hz, were low-pass filtered using227

a Chebyshev type II filter with a cut-off frequency of 5 Hz and then resampled to 10 Hz. For the FDD, the power228

spectral density was estimated using a Welch average. Using SSI, a number of identifications were performed with229

different time lags because all the modes are not equally well identified using the same set of algorithmic parameters.230

The modes were then selected accordingly, where it was believed that a fair consistency in the poles occurred. The 30231

modes that were identified are listed in Table 2. SSI, which assumes a white noise input realization, has the drawback232

that false poles tend to occur at dominant frequencies of the load [48]. For this case, the poles of the modes in the233

frequency range of the wave loading therefore experience inconsistencies or bias of varying degrees. The stabilization234

diagram in Fig. 8 shows that many poles in the range 1-5 rad/s are spurious. From Fig. 9, which show the singular235

values of the acceleration spectrum, it is also clear it is difficult to distinguish the peaks in the low frequency range.236

The estimation errors or ”noise” manifest to a larger extent in estimated mode shapes, and the natural frequencies are237

observed to be more consistent across different model orders and time lags.238

Note that due to noise, the choice of weighting coefficients in the objective function affects the optimization239

results. Ideally, the weighting should be assigned with regard to uncertainties, i.e. more uncertain outputs should240

be assigned smaller weights. At the same time, selected natural frequencies or mode shapes are often sought to be241

prioritized (weighted higher), e.g. a good representation of a few modes is often considered to be important. In242
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Figure 9: The three largest singular values of acceleration spectra.

Mode no. s ω̄s [rad/s] Identification method

1 0.5862 Cov-SSI

2 0.9810 DD-SSI

3 1.012 DD-SSI

4 1.055 DD-SSI

5 1.187 Cov-SSI

6 1.345 FDD

7 1.481 Cov-SSI

8 1.946 DD-SSI

9 1.974 Cov-SSI

10 2.112 DD-SSI

11 2.249 DD-SSI

12 2.472 DD-SSI

13 2.857 DD-SSI

14 3.017 DD-SSI

15 3.181 DD-SSI

Mode no. s ω̄s [rad/s] Identification method

16 3.620 Cov-SSI

17 3.851 Cov-SSI

18 4.149 Cov-SSI

19 5.382 Cov-SSI

20 6.759 Cov-SSI

21 7.639 Cov-SSI

22 8.012 Cov-SSI

23 8.531 Cov-SSI

24 9.358 Cov-SSI

25 10.187 Cov-SSI

26 11.364 Cov-SSI

27 12.510 Cov-SSI

28 12.742 Cov-SSI

29 13.207 DD-SSI

30 14.322 DD-SSI

Table 2: Identified modes

practice, when noise is present and a priori uncertainty information is not available, firm engineering judgement is243

necessary. For the presented case, the lower half of the listed modes primarily contribute to the dynamic response.244

On the one hand, it is desired to sternly penalize errors in the lower modes because these are most integral for future245

applications of the updated model. On the other hand, as discussed above, these modes are more prone to noise, which246

may severely contaminate the estimated updating parameters. The opposite is also true; the higher modes are viewed247

as less important in the updated model but are believed to be better identified. The sketched weighting coefficients248

are shown in Fig. 10. Natural frequencies are considered to be more important and more reliable than MAC numbers.249

Note that there are alternative approaches, such as multi-objective optimization [49, 50], in which a set of optimal250

solutions is obtained. Further information on managing uncertainties in model updating is extensively covered in [1].251
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Figure 10: Weighting in the objective function. The coefficients sum to unity.

6. Updating results and discussion252

The MATLAB function lsqlin with a trust-region algorithm is used to solve the constrained least squares problem253

defined in Eq. 21. Initially, the parameters are free to take large steps, and the step bounds are made smaller as the254

objective becomes closer to convergence. Note that the system is overdetermined (nq = 60 > 27 = np), which is255

preferred to avoid non-unique solutions.256

Since the natural frequencies are very closely spaced, the modes are initially not necessarily in the correct order. A257

mode matching is necessary before the minimum of the objective function (Eq. 19) can be found. Here, the combined258

measure259

(1 − γ) MACrs − γ
|ω̄s − ωr |

ω̄s
(37)

with γ = 0.5 was an useful indicator; high values indicates a match between an identified mode (s) and a model260

mode (r). However, we experienced the largest matching difficulties not in the iterations but at the initial point. In261

particular, higher modes are sensitive to the bearing stiffness, which has a high degree of uncertainty. Initially, a clear262

match was not observed for four of the identified modes. A manual adjustment to stiffen the bearings was required263

to produce a definite match; however, even in this case, engineering judgement control was essential to confirm that264

the pairing was reasonable. After an initial match in the first iteration is successful, the model quickly adapts, and the265

quantity in Eq. 37 becomes a definite metric for distinguishing the modes.266

Nine iterations were performed until a fair stabilization in the objective function was reached. The objective267

function decreased from 16.4e-3 to 2.98e-3. The updated frequencies and MAC numbers are listed in Table 3. Prior268

to the update, the mean frequency error was 3.23%, which was reduced to 2.34%. The largest initial errors were269

observed for mode 10 (+10.22%), mode 14 (+8.59%), mode 16 (+8.83%) and mode 17 (+11.59%). The updating270

reduced these errors considerably, but they are still the largest frequency discrepancies. Other than the four mentioned271

modes, no clear trend was observed regarding whether the initial model is too stiff or too soft. Unfortunately, the error272

also increased for some modes.273

An updated MAC plot is presented in Fig. 11. Three pairs of modes, namely, 10/11, 14/15 and 17/18, appear274
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Mode no. s Measured ω̄s Initial ωr (error) Updated ωr (error) Initial MAC Updated MAC (change)

1 0.586 0.587 (0.15%) 0.580 (-1.05%) 0.987 0.987 (≈ 0)

2 0.981 1.001 (2.01%) 0.987 (0.61%) 0.819 0.816 (-0.004)

3 1.012 1.039 (2.64%) 1.032 (1.97%) 0.936 0.935 (≈ 0)

4 1.055 1.086 (2.98%) 1.050 (-0.41%) 0.742 0.787 (+0.045)

5 1.187 1.193 (0.50%) 1.175 (-1.00%) 0.801 0.839 (+0.037)

6 1.349 1.358 (0.67%) 1.379 (2.22%) 0.834 0.820 (-0.014)

7 1.481 1.480 (-0.07%) 1.449 (-2.18%) 0.939 0.939 (≈ 0)

8 1.946 1.919 (-1.40%) 1.878 (-3.51%) 0.954 0.980 (+0.026)

9 1.974 1.947 (-1.38%) 1.951 (-1.16%) 0.917 0.939 (+0.023)

10 2.112 2.328 (10.22%) 2.246 (6.31%) 0.865 0.830 (-0.035)

11 2.249 2.104 (-6.42%) 2.225 (-1.06%) 0.585 0.909 (+0.323)

12 2.472 2.454 (-0.75%) 2.409 (-2.56%) 0.984 0.978 (-0.006)

13 2.857 2.839 (-0.62%) 2.763 (-3.26%) 0.958 0.953 (-0.005)

14 3.017 3.276 (8.59%) 3.167 (4.97%) 0.987 0.978 (-0.009)

15 3.181 2.975 (-6.48%) 3.106 (-2.34%) 0.949 0.967 (+0.018)

16 3.620 3.940 (8.83%) 3.874 (7.02%) 0.693 0.986 (+0.293)

17 3.851 4.297 (11.59%) 4.134 (7.37%) 0.973 0.982 (+0.009)

18 4.149 4.036 (-2.74%) 4.056 (-2.25%) 0.331 0.963 (+0.631)

19 5.382 5.227 (-2.87%) 5.258 (-2.29%) 0.981 0.987 (+0.006)

20 6.759 6.615 (-2.14%) 6.720 (-0.58%) 0.984 0.983 (-0.002)

21 7.639 7.506 (-1.74%) 7.315 (-4.23%) 0.983 0.984 (+0.001)

22 8.012 7.952 (-0.75%) 7.894 (-1.47%) 0.978 0.974 (-0.003)

23 8.531 8.402 (-1.51%) 8.530 (-0.01%) 0.970 0.971 (+0.001)

24 9.358 9.107 (-2.69%) 9.294 (-0.68%) 0.954 0.956 (+0.001)

25 10.187 9.895 (-2.86%) 10.121 (-0.65%) 0.960 0.969 (+0.009)

26 11.364 11.130 (-2.06%) 11.312 (-0.45%) 0.955 0.955 (≈ 0)

27 12.510 12.474 (-0.28%) 12.306 (-1.63%) 0.948 0.966 (+0.018)

28 12.742 12.580 (-1.28%) 12.704 (-0.30%) 0.874 0.975 (+0.100)

29 13.207 12.713 (-3.74%) 13.585 (2.86%) 0.571 0.953 (+0.383)

30 14.322 13.310 (-7.07%) 14.864 (3.79%) 0.588 0.877 (+0.289)

Table 3: Natural frequencies and MAC numbers before and after updating.

off-diagonal, which testifies to the closeness in frequency. Generally, the MAC numbers were less sensitive than the275

natural frequencies. Of the 30 modes, the MAC numbers improved more than 0.01 for 12 modes and decreases more276

than 0.01 for two modes. For the remainder, the absolute difference was less than 0.01. Mode 10 decreased the most277

(-0.035), whereas the largest improvement was observed for mode 11 (+0.323), mode 16 (+0.293), mode 18 (+0.631),278

mode 29 (+0.383) and mode 30 (+0.289). The lowest MAC values were found for modes 2, 4, 6 and 10, which are not279

surprisingly modes with a high susceptibility to noise in the identification process. In fact, many of the lower modes280

tended to have low MAC numbers. Apart from the problems of accuracy in modal identification, the lower modes281
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Figure 11: MAC numbers between the identified and modelled modes for the updated model.

were highly influenced by the FSI. A high hydrodynamic contribution means that errors in hydrodynamics matrices282

particularly transfer to these modes. As shown in Fig. 4, the rate of change in Mh(ω) was also large around ω = 1283

rad/s, which, in practical terms, translates to a higher degree of uncertainty for modes in this frequency range.284

The updated parameters are shown in Table 4. The stiffness of the bearing springs increased substantially, except285

in the x-direction, where the axial rod (cf. Fig. 5) already provides support. Since the springs in general display a286

low sensitivity (cf. Fig 7), large changes are required for the spring parameters to influence the modal properties. In287

the initial model, the stiffness of the neoprene pads was roughly estimated. Embedded steel plates can also contribute288

to increased stiffness. In addition, the geometries of the bearings are in reality more complex than in the model; it is289

therefore expected that the modelled springs represents the mechanical behaviour but do not replicate the bearings at290

a detailed level.291

Many of the parameters are related to uncertainties at the pontoons. A problem emerges when a distinction292

between two parameters is sought. For example, the pontoon point mass mi can compensate for an erroneous hydro-293

dynamic mass and vice versa. A looser interpretation of what a parameter represents may be necessary. The updated294

inertia of the pontoons likely contains corrections in the hydrodynamic mass. For pontoon type 3, the modelled con-295

crete mass is 1480 tonnes, and the hydrodynamic mass is on the order of magnitude 100 and 4000 tonnes for the y296

(lateral) and z (vertical) directions, respectively. The point mass corrections are m1 = 136 tonnes, m2 = −138 tonnes297

and m3 = 148 tonnes. It is unrealistic that the concrete mass as built should deviate by up to 10% from the drawings.298

The mass corrections must therefore be viewed as a whole between the concrete pontoons and the hydrodynamic299

mass. The same holds for the moments of inertia. Izz has less influence than Ixx and Iyy and therefore reaches the limit300
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Parameter Updated value (change) Reference in initial model Reference value Change [%]

kx -5.90e+06 Bearing spring 2.00e+07 -29.5

ky 1.64e+08 Bearing spring 5.00e+07 328.5

kz 8.04e+07 Bearing spring 5.00e+07 160.8

krx 2.09e+09 Bearing spring 0.00e+00 N/A

m1 1.06e+05 Mass pontoon type 1 1.47e+06 7.2

m2 -1.38e+05 Mass pontoon type 2 1.39e+06 -9.9

m3 1.48e+05 Mass pontoon type 3 1.48e+06 10.0

dz,1 ≈ 0 - - -

dz,2 -4.71 - - -

dz,3 ≈ 0 - - -

Ixx,1 -7.38e+06 Ixx pontoon type 1 1.65e+08 -4.5

Ixx,2 7.53e+06 Ixx pontoon type 2 1.47e+08 5.1

Ixx,3 9.99e+06 Ixx pontoon type 3 1.61e+08 6.2

Iyy,1 -5.56e+06 Iyy pontoon type 1 9.02e+07 -6.2

Iyy,2 5.08e+05 Iyy pontoon type 2 7.75e+07 0.7

Iyy,3 -4.49e+06 Iyy pontoon type 3 8.11e+07 -5.5

Izz,1 -2.53e+06 Izz pontoon type 1 1.89e+08 -1.3

Izz,2 1.50e+07 Izz pontoon type 2 1.76e+08 8.5

Izz,3 1.50e+07 Izz pontoon type 3 1.88e+08 8.0

Kh,z -1.80e+05 Restoring stiffness pontoon types 1, 2, 3 5.97e+06 -3.0

Kh,rx,1 7.46e+07 Restoring rot. stiffness pontoon type 1 3.57e+08 20.9

Kh,rx,23 -1.70e+07 Restoring rot. stiffness pontoon types 2, 3 4.00e+08 -4.2

ηsteel -0.0640 Steel superstructure 1.0000 -6.4

µsteel -0.0619 Steel superstructure 1.0000 -6.2

mdeck -59.91 Asphalt 135.00 -44.4

νhydro,1 -0.0227 Hydrodynamic properties pontoon type 1 1.0000 -2.3

νhydro,23 0.0170 Hydrodynamic properties pontoon types 2, 3 1.0000 1.7

Table 4: Values of updated parameters and comparison with reference values in the initial model

of approximately 8% of the pontoon moment of inertia in the initial model. This issue points to a major robustness301

challenge encountered in FE model updating of complex structures. As an alternative, the parameters related to the302

same node could be merged. Here, however, this was not considered an option since the hydrodynamic mass is special303

(frequency dependent, non-uniform) compared to the structural mass.304

The frequency dependency in the FSI brings further challenges to the updating. Here, uncertainties in hydrody-305

namic mass and damping were only represented by a global scaling factor (νhydro,i). It might be that the hydrodynamic306

mass for one particular frequency is accurate but incorrect at an other frequency. The frequency dimension adds a307

level of complexity that is difficult to handle. Ideally, the hydrodynamic mass could be parametrized further, e.g. by308

parameterizing each DOF or calibrating the hydrodynamic mass at each natural frequency. The parameters νhydro,1309

and νhydro,23 are both on the order of 2%.310
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The stiffness of the steel superstructure highly influenced all the modes. A stiffness reduction of 6.4% was reached.311

This result is within reasonable uncertainty limits considering not only the material properties but also general simpli-312

fications from representing the truss with beam elements. The truss joints are modelled with full fixity, i.e. the beams313

are continuous through the joints. A softer degree of fixity can occur in reality. The steel superstructure might be bet-314

ter represented by a lower elastic modulus. On the other hand, the beams are modelled centre-to-centre joint, whereas315

the effective beam lengths in reality are shorter. The non-structural distributed mass on the bridge deck is reduced by316

60 kg/m2, which corresponds to a 44% reduction of the initially modelled asphalt layer. A 6.2% reduction of the steel317

mass is also obtained. Kh,z also reaches the lower limit. The limit should not be extended since it is unrealistic that318

the buoyancy should deviate more than 3%. The restoring stiffness, however, is far more uncertain, and it is here seen319

to change up to 20.9 %.320

Overall, caution should be taken in accepting the updated parameter set as definite physical quantities, not only321

because the result generally depends on the choice of output residual weighting. Since many of the parameters322

affect the system similarly, many combinations of parameters can solve the optimization problem equally well from a323

practical perspective.324

Note that the updating also improved the results for applications of inverse response prediction of using data325

measured at the bridge. Furthermore, note that prior to updating, the model was first modified manually to closer326

resemble the specifications of the structural drawings. Among the modifications was adding non-structural mass,327

refining the end support geometry, detailing the boundary conditions and re-estimating the pontoon inertia. This effort328

also improved the model before the updating scheme was implemented.329

7. Conclusion330

FE model updating as a methodology for calibrating numerical models is a field that is still in development.331

The application of model updating to suspension bridges and cable-stay bridges is well represented in the literature.332

However, no attempts have been made to update a floating bridge model. This paper presents a case study of the333

sensitivity method in FE model updating with application to the Bergsøysund Bridge, a floating pontoon bridge.334

In floating structures, the fluid interaction governs the dynamic behaviour. Commonly, this can be modelled by335

including frequency-dependent added hydrodynamic mass and damping matrices obtained from software based on336

linearized potential theory. The established model of the bridge combines an FE model of the structure with the337

added hydrodynamic matrices. A technique for establishing an analytical sensitivity matrix was shown, taking the338

frequency-dependent system matrices of the model into account.339

A system identification of the bridge was performed using data from 14 triaxial accelerometers. Thirty global340

modes with natural frequencies in the range 0.58−14.3 rad/s were identified. The relative errors in natural frequencies341

and MAC numbers between the modelled and identified modes were used as objectives for calibration. A total of 27342

parameters were selected to reflect the model components believed to be uncertain and that also had an influence on343
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the dynamic characteristics. After 9 iterations with the sensitivity method were performed, the largest initial errors344

in natural frequencies and MAC numbers were improved. The average natural frequency error was decreased from345

3.23% to 2.34%. In general, the largest initial errors were improved, but not all errors were reduced. The MAC346

numbers generally improved or did not change significantly; the updated MAC numbers ranged from 0.79 to 0.98.347

The case study demonstrated that numerical models of large floating bridge can be improved by FE updating,348

but many practical challenges still exist. A general improvement of the modal characteristics is possible. Further349

reduction of the errors, however, requires a significant reduction of noise and a refinement of the updating parameters.350

When several parameters are related to the same node, for instance, the structural pontoon mass and hydrodynamic351

mass, it is challenging to practically distinguish these parameters from each other because different combinations352

of these parameters may solve the minimization problem equally well. The choice of weighting coefficients in the353

objective function will affect the end results, particularly when noise (bias) is present in the natural frequencies and354

MAC numbers from the system identification. Therefore, engineers must make an error penalty selection that reflects355

both the uncertainties and the prioritization of selected modes, which often becomes a job of trial and error.356

This study also demonstrates the challenge of matching the identified and model modes when natural frequencies357

are very closely spaced. Here, both utilizing MAC numbers and comparing natural frequencies is vital. In addition, it358

was observed that the initial model must sufficiently represent the structure for an initial match to succeed, which is359

an issue since the initial model often contains errors.360
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