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Abstract 

The present paper evaluates two phenomenological plasticity models which account for the 

influence of strain-path change (SPC) on the stress-strain behavior. The HAH model (Barlat et 

al., 2014) is modified to capture SPC transients observed in aluminum, i.e., hardening stagnation 

after reverse SPCs and permanent softening after orthogonal SPCs. Predictions by the HAH 

model are compared to the MHH model (Mánik et al., 2015), which was originally developed for 

aluminum. The MHH model turned out to be directly applicable to an extra deep drawing quality 

(EDDQ) steel without any modifications. The MHH model predicts the stress-strain behavior 

after single SPCs slightly better than the HAH model for both aluminum and steel. It can also 

capture correctly R-value transients in aluminum after purely orthogonal SPCs. However, only 

the HAH model can capture transients after double SPCs qualitatively for low carbon steels. The 

applicability of these advanced continuum plasticity models to aluminum and steel and the 

differences in their mathematical formulation are discussed. 
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1. Introduction 

An important part of forming simulations is the constitutive model, which should be as 

simple and efficient as possible, but still accurate enough to describe the material behavior. Due 

to memory effects related to the prestraining history, SPCs may cause extra transients of 

hardening or softening, which have to be properly accounted for in the modeling.  

SPCs, which can be continuous or abrupt, are defined in terms of changes of the direction of 

the plastic rate-of-deformation tensor pD  or the deviatoric stress tensor σ . For abrupt SPCs, 

Schmitt et al. (1994) proposed the measure  

 1 2

1 2

:
cos

p p

D p p
 

D D

D D
  (1) 

while Barlat et al. (2011) used instead 
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Here, subscripts 1 and 2 refer to the strain path before and after the SPC, respectively, and 

further 
ij ijT TT  denotes the norm of the second order tensor T .  

Typically, SPCs lead to transients in the stress-strain curve, but after a certain strain the 

monotonic behavior resumes. Bauschinger effect (Bauschinger, 1881; Hasegawa et al., 1975) 

and hardening stagnation (Boers et al., 2010; He et al., 2014) may be observed after reverse 

SPCs, while orthogonal hardening or softening (Ha et al., 2013; Hasegawa et al., 1975; 

Manopulo et al., 2015; Peeters et al., 2000; Tarigopula et al., 2008) may happen after orthogonal 

SPCs. However, the transients may sometimes influence the subsequent part of the stress-strain 

curve. An example of this type of behavior is permanent softening (Li and Bate, 1991). After 

double SPCs, the transients depend mainly on the orientation between the previous and 

subsequent paths and less on the order in which they have been performed (Vieira and 

Fernandes, 1995). These anisotropic hardening behaviors can, in general, be described by a yield 

surface that changes shape and size during plastic deformation. A recent review can be found in 

Mánik et al. (2015).  

Two groups of models for SPCs have been suggested in the literature. In the first group, 

transients are modeled by shifting, expanding or shrinking the shape-invariant yield surface in 
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response to the SPC, by including a fading memory of the strain history. An important model 

based on this approach was proposed by Teodosiu and Hu (1995). Holmedal et al. (2010) 

proposed a plasticity model which applied second-order tensors to keep track of the strain 

history. The model was further modified by Mánik et al. (2015). In contradiction to the 

Teodosiu-Hu model, the permanent softening occurring after reverse or orthogonal loading is 

captured in this model. This modified model will henceforth be denoted the MHH model.  

The other group of models modifies the shape of the yield surface. Hence, these models will 

be referred to as distortional models, e.g. Levkovitch and Svendsen (2007). A method for 

distorting any “stable” homogeneous yield surface was proposed by Barlat et al. (2011) as an 

alternative to kinematic hardening, which is denoted a Homogeneous Anisotropic Hardening 

(HAH) model. Lee et al. (2012) used the HAH model to describe the springback during U-draw 

bend experiments. Later the model was further extended and enhanced to capture the orthogonal 

hardening/softening behavior after single and double SPCs (Barlat et al., 2014, 2013; Ha et al., 

2013; Lee et al., 2015).  

The earlier published HAH models cannot capture permanent softening after orthogonal 

SPCs, which occurs in some materials. Reverse hardening stagnation has been modeled for pure 

Bauschinger cases (Barlat et al., 2011) based on a dislocation-based work-hardening model 

(Rauch et al., 2007). However, in this paper, the HAH model is further developed to include both 

reverse and orthogonal SPC behavior and thus to describe the type of transients observed in 

aluminum. The modified HAH model is then compared with the MHH model using earlier 

published experimental data for aluminum and steel, i.e., the stress-strain curves subsequent to 

complex SPCs for commercially pure aluminum reported by Mánik et al. (2015) and similar 

results presented by Ha et al. (2013) for an extra deep drawing quality (EDDQ) steel.  

The EDDQ steel has high R-values, which makes it possible to distinguish between the two 

Schmitt angles D  and   , defined by Equations (1) and (2), respectively. The SPC experiments 

by Ha et al. (2013) indicate that the EDDQ steel exhibits a strong cross-hardening effect during 

orthogonal loading. The commercially pure aluminum investigated by Mánik et al. (2015) 

exhibits a strong and complex Bauschinger effect and also a strong cross-hardening effect. The 

EDDQ steel has earlier been modeled by the “extended” (Barlat et al., 2013) and “enhanced” 

(Barlat et al., 2014; Lee et al., 2015) HAH models, while commercially pure aluminum has been 
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modeled by the MHH model. Hence, a thorough evaluation of the capability of the enhanced 

HAH model and the MHH model to describe SPCs in aluminum and steel is of interest. 

The current work begins with a brief review of the mathematical formulations of the MHH 

model and our modified version of the HAH model in Section 2. The parameter identification for 

the two models and a detailed comparison of simulation results and experimental data are 

presented in Section 3. In Section 4, the capability, differences and limitations of the two models 

are discussed. Finally, Section 5 presents the conclusions of the study. 

2. Constitutive models 

2.1 The MHH model 

The MHH model modifies the yield surface by isotropic-kinematic hardening during plastic 

loading and by rapid expansion/shrinkage when the model detects a SPC. The yield condition is 

written in the form  

 

( ) ( ) ( ) 0

o r

f

R S S

  



  

 

  

S S

S σ X   (3) 

where S  is the overstress tensor, σ  is the stress tensor, X  is the back stress tensor,   is the size 

of the elastic range and   is the equivalent plastic strain. The isotropic hardening is described by 

R , whereas oS  and rS  represent the extra yield surface expansion and shrinkage after 

orthogonal and reverse SPCs, respectively. The equivalent stress ( ) S  with respect to the back 

stress can be based on any positive homogeneous yield function of order one. In this study, the 

high-exponent Hershey yield function (Hershey, 1954) is used for initially isotropic materials, 

while the Yld2000-2d yield function (Barlat et al., 2003) is adopted for materials with initial 

anisotropy.  

The associated flow rule is adopted and the plastic rate-of-deformation tensor is defined by 

using ( ) S  as a potential function, viz. 

 
 

 p 






S
D

S
  (4) 

where 0   is the plastic multiplier. The equivalent plastic strain   is taken as 
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The microstructure orientation tensor P , denoted the “delayed pointer” tensor in Mánik et 

al. (2015), is designed to memorize a representative direction in the strain-rate space and used in 

the modeling of relevant stress contributions from the recent microstructure evolution history. Its 

magnitude and direction are associated to the amount and orientation of dislocation structures. 

For well-annealed alloys, the magnitude of P  equals zero. During monotonic loading, P  

saturates at a magnitude equal to unity. Its evolution is given by 

  ,
Δ

1
P P

P




  P h h N P   (6) 

where /p pN D D  is the normalized plastic rate-of-deformation tensor and Δ P  controls the 

strain scale of the evolution process of P . The SPC between the memorized strain direction 

/P P  and the current strain path N  is mathematically defined by the Schmitt angle  

 cos :P 
P

N
P

  (7) 

The extra strength due to the orthogonal and pseudo-orthogonal SPC is described by a scalar 

oS with evolution equation 

  
1

sin , 
Δ

sat sat

o o P o o o

o

S S S S q R 


  P   (8) 

The constant oq  relates the maximal extra strength contribution to the isotropic hardening R   

and Δ o  represents a strain scale for the transient cross hardening to take place. The initial value 

of oS  is zero. The extra strength due to reversal or pseudo-reversal of the strain path is modeled 

by the scalar rS , which evolves according to 

   
1

min cos ,0 ,  
Δ

sat sat

r r P r r r

r

S S S S q R 


   P   (9) 

The constant rq  relates the maximal strength contribution due to the reverse SPC to the isotropic 

hardening, Δ r  controls the strain scale for rS  to saturate. The initial value of rS  is zero. 
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A two-term Voce hardening rule (Voce, 1948) is used for a precise modeling of the isotropic 

hardening and two extra terms are added to deal with SPC transients  

  
2

1

tr tr

i r o

i

R R h h 


     (10) 

where 

  
1

Δ
i

sat

i i i

R

R R R 


    (11) 

and 

  min cos ,0 , sintr tr

r r P o o Ph k h k   P P   (12) 

The parameters sat

iR  and Δ
iR  represent in turn the saturation value of the hardening variable iR  

and the strain scale for the saturation process. The initial yield stress is defined by giving R  an 

initial value 0R . The effects of SPCs involving reverse and orthogonal loading on the hardening 

rate are defined by the coefficients rk  and ok , respectively. A two-term Armstrong-Frederick 

rule (Armstrong and Frederick, 1966) is applied for the back stress 
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
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 
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S
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where S  is the deviatoric part of the overstress tensor, and the parameters sat

iX  and Δ
iX  

control the magnitude and strain scale of the two back stress tensors iX . 

2.2 The modified HAH model 

In order to improve the predictions of the HAH model, by accounting for hardening 

stagnation after reverse SPC and permanent softening after orthogonal SPC, some modifications 

are made here as compared to the formulation in Barlat et al. (2014). The HAH model is based 

on a positive homogeneous yield function of order one, which is regarded as the stable 

component, and which is combined with a fluctuating component. The fluctuating component 

consists of two hyperplanes in the deviatoric stress space with a common normal direction 

prescribed by the deviatoric tensor h , which is denoted the microstructure deviator as it 

memorizes the effect of the evolution history of the microstructure. The evolution equation for h  
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has the property that the magnitude of the tensor is conserved, and it is assumed here without 

loss of generality that 1h .  

The yield criterion reads 

     0f     σ   (14) 

where σ  is the deviatoric part of the stress tensor,   is the flow stress,   is the equivalent 

plastic strain, and the equivalent stress   σ  is defined by 

            
1

/2 /2 /22 2 3 3
1 28 8

: : : :
q qq q q qq q

A B f f             σ σ σ h σ h σ h σ h σ   (15) 

with 

        1 11 : , 4 1 :A L L B Sg g g           σ σ h σ h σ σ h σ h   (16) 

The exponent q  is constant, while Lg  and Sg  are functions of the strain history. The yield 

function   is any positive homogeneous function of order one. The reverse hardening stagnation 

cannot be predicted by the enhanced HAH model. To account for this behavior, 
1

qf  and 
2

qf  are 

modified as follows 

 
     

1 2

1 5 1 2 6 2

1 1
1,    1

1 1

q q

q q
f f

g g g g g g
   

   
  (17) 

The evolution equations for the functions 1g  and 2g  are taken from Barlat et al. (2014). To 

enable use of a simple, phenomenological isotropic hardening rule, in the same manner as in the 

MHH model, the two extra functions 5g  and 6g  are added to model the observed hardening 

stagnation after reverse SPC. The modification of the HAH model is an alternative to the 

dislocation based work hardening model (Rauch et al., 2007) which was used by Barlat et al., 

(2011). Note that the enhanced HAH model is obtained by setting 5 6 0g g  . Evolution 

equations for the g  functions will be defined below.  

The plastic rate-of-deformation tensor is defined by the associated flow rule in the form 
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 p 






D

σ

σ
  (18) 
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where   is still the plastic multiplier. The equivalent plastic strain   is defined by Equation (5). 

The microstructural stress tensor h  evolves as (Barlat et al., 2014)  

   1/
sign cos cos cos

z

R

d
k g

d
  



 
     

h σ
h

σ
  (19) 

where k  and z  are constants, Rg  is a function, and further 

  cos :





σ
h

σ
  (20) 

For a well annealed material, the initial direction of h  is not defined, since no direction can 

be distinguished from any others. Apparently, this makes the model mathematically ill-posed, 

but the problem was overcome by Barlat et al. (2011) by taking the initial direction of h  equal to 

the direction of the deviatoric stress tensor during the first plastic strain increment. Since the 

functions 1g  and 2g  initially are equal to unity for a well annealed material, the fluctuating part 

of the yield surface vanishes and the degenerated problem can be solved to give the first plastic 

strain increment without knowing the initial value of h . As is evident from Equation (19), the 

microstructure deviator h  always rotates in the half-plane, towards the direction collinear with 

the current deviatoric stress direction. 

The evolution equations for the g functions are defined as 

   21 cosR
R R R

dg
k k g

d

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     (21) 
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  (29) 

where L , S , Lk , Sk , Rk , Rk   and 1 7,...,k k  are constants and further  0  is the initial yield 

stress. For a well annealed material, the initial values of Lg , Sg  and 1 4,...,g g  are unity, while 

Rg , 5g  and 6g  are initially zero. The magnitude of 2 /dg d  and 1 /dg d  starts from a very 

high value and then gradually decreases when the sign of  : h σ  is changed to be smaller and 

larger than zero, respectively. Thus, the functions 5g  and 6g  start from zero and then increase to 

a high value before they gradually decrease towards zero. During preloading, 6g  will not affect 

the stress-strain curve because 2g  remains equal to unity. The function 5g  provides hardening 

stagnation after reverse SPC, while 6g  contributes after double reverse SPC.  

Either the Swift hardening rule or the two-term Voce hardening rule is adopted to describe 

isotropic hardening in the HAH model. In order to capture the permanent softening behavior 

after orthogonal SPCs, an extra hardening term is included in the isotropic hardening rule. In the 

first case, the hardening rule is expressed as 

  
1

0

trn

oCn h   


   (30) 
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where C , n  and 0  are constants; in the second case, the hardening rule reads  

 
2

1

tr

i o

i

R h 


    (31) 

with 
iR  defined by Equation (11). The last term in Equations (30) and (31) is included to 

describe permanent softening subsequent to an orthogonal SPC. The modulus tr

oh  is defined by  

 sintr

o oh k     (32) 

where ok  is a constant. Subsequent to an orthogonal SPC, the modulus tr

oh  fades away as the 

microstructure deviator becomes parallel with the current deviatoric stress tensor, i.e., as sin   

approaches zero. Consequently, a permanent softening of the flow stress will be obtained. Note 

that the original model by Barlat et al. (2014) is obtained by setting 0tr

oh  .  

3. Parameter identification and simulation results 

The HAH model is calibrated using experimental data for commercially pure aluminum and 

EDDQ steel. The identification procedure used in Barlat et al. (2014) is employed. For the MHH 

model, the parameter set identified by Mánik et al. (2015) was applied for commercially pure 

aluminum, while a similar calibration procedure as used by Mánik et al. (2015) was performed to 

obtain parameters for EDDQ steel. The two-term Voce hardening rule gave a similarly good fit 

as the Swift hardening rule to the monotonic stress-strain curve of this material.  

The parameter set of the HAH model determined by Lee et al. (2015) based on the 

experiments presented by Ha et al. (2013) was adopted for EDDQ steel with two exceptions. The 

parameters Lk  and k  were slightly changed by including all tensile directions reported by Ha et 

al. (2013) for the second strain path. Lee et al. (2015) used only the tensile test in the 45° 

direction in their parameter identification. Owing to the lack of reversal tests for EDDQ steel and 

the experimental observation that this material does not exhibit permanent softening after 

orthogonal SPCs, the extra functions 5g , 6g  and tr

oh  were not employed. This can formally be 

achieved by setting 6k , 7k  and ok  equal to zero. In the case of commercially pure aluminum, a 

similar calibration of the parameters as for the EDDQ steel was performed, but an additional 
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iteration was made to determine the new parameters 6k , 7k  and ok , so that details of the reverse 

hardening stagnation and orthogonal permanent softening could be better described.  

3.1. Commercially pure aluminum 

In Mánik et al. (2015), isotropic sheets of commercially pure aluminum, cut by spark 

erosion from an as-cast billet, were applied to perform tensile tests prestrained by either 

compression or rolling to study the Bauschinger effect and the cross-hardening effect, 

respectively. The Hershey yield function (Hershey, 1954) with exponent of 8 is used for both the 

MHH and HAH models, since the commercial pure aluminum was initially isotropic. The 

calibrated coefficients of the HAH model using the two-term Voce hardening rule, are listed in 

Table 1. As the material did not exhibit orthogonal softening, 0sk   provided the best 

agreement with the experimental data. The parameter set used for the MHH model is given by 

Mánik et al. (2015).  

 

Table 1. Model parameters for commercially pure aluminum 

HAH model 

m   q    0   
1

satR   
1R   

2

satR   
2R   

1k   2k   3k   4k   5k   

[–] [–] [MPa] [MPa] [–] [MPa] [–] [–] [–] [–] [–] [–] 

8 2 13.39 62.5 0.17 25.79 0.0165 30 200 0.8 0.63 5.0 

6k   7k   ok   Lk   L   Sk  S  k   z   Rk   Rk     

[–] [–] [–] [–] [–] [–] [–] [–] [–] [–] [–]  

7.5 40 50 1000 1.15 0 0 25 5 15 0.20  

 

Fig. 1 shows the experimental and simulated stress-strain curves from tensile tests in 

different directions after prestraining by rolling. The tensile direction is defined with respect to 

the rolling direction. In addition, the experimental and simulated tensile stress-strain curves of 

the as-cast material are presented. The experimental results show that commercially pure 

aluminum exhibits stress overshooting and permanent softening after orthogonal SPCs. It is 

evident that the MHH model captures the stress overshooting and permanent softening as 
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function of tensile direction. An exception is the stress overshooting in the 0° direction after a 

prestrain of 8% which is overestimated. The HAH model captures the stress overshooting and 

permanent softening in the 90° direction after prestrains of 5% and 9%, while the stress 

overshooting is underestimated for the tensile tests in the 0°, 30° and 50° directions after 8% 

prestrain.   
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Fig. 1. Experimental and simulated stress-strain curves for commercially pure aluminum (CP-Al) 

from tensile tests in different directions subsequent to prestraining by rolling and tensile tests of 

the as-cast material.  

 

Fig. 2 presents the stress-strain curves from tensile tests after prestraining in compression to 

2% and 4.4% along with the stress-strain curve for monotonic loading. After the strain reversal, 

the stress-strain curves exhibit reverse softening and hardening stagnation, and permanent 

softening is observed in the strain range investigated. The calculation of the initial yield stress is 

acceptable for both models, even though the stress levels are slightly different. Due to the rapid 

initial hardening, it is difficult to judge experimentally exactly when the material starts to yield 

during reverse loading. With the modifications of the HAH model it can, in the same way as the 

MHH model, successfully reproduce not only the Bauschinger effect, but also the hardening 

stagnation and the permanent softening effect during reverse SPC.   

 

Fig. 2. Experimental and simulated stress-strain curves for commercially pure aluminum (CP-Al) 

from tensile tests after prestraining by uniaxial compression (UC) to (a) 2% and (b) 4.4% 

together with the stress-strain curve for monotonic loading. 

 

The R-value is defined as the width-to-thickness strain-rate ratio in uniaxial tension and can 

be calculated from the gradient of the yield surface. Without predeformation the R-value 

normally changes little during monotonic loading. However, subsequent to an orthogonal SPC a 

transient rapid variation was reported by Mánik et al. (2015) for the commercial pure aluminum 

alloy.  Fig. 3 presents the experimental evolution and corresponding simulation of the R-value in 
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a tensile test in the 90° direction subsequent to 5% prestraining by rolling. This corresponds to 

an orthogonal SPC. The variation of the R-value is due to the microstructurally induced transient 

behavior subsequent to the orthogonal SPC. It is evident that only the MHH model is capable of 

describing the experimental evolution of the R-value with good accuracy.  

 

Fig. 3. Experimental and simulated evolution of the R-value with straining for commercially 

pure aluminum based on a tensile test in the transverse direction after a prestrain of 5% by 

rolling. 

 

The evolution of the yield surface of the MHH and HAH models is illustrated in Fig. 4 for 

commercially pure aluminum. Fig. 4a shows the evolution during a tension test in the rolling 

direction. Kinematic hardening shifts the yield surface of the MHH model in the loading 

direction as compared to an isotropically expanding yield surface, which is included for 

comparison. The HAH model, on the other hand, distorts the yield surface by compressing and 

flattening it in the direction opposite to the tensile direction. 

The preloading by rolling in the x-direction in Fig. 4b has shifted the yield surface of the 

MHH model in the x-direction. Subsequently, the tensile test in the orthogonal y-direction starts 

shifting the yield surface mainly in the y-direction, but also in the negative x-direction, as the 

back stress tensor adapts to the second strain path. The influence of the prerolling on the yield 

surface of the HAH model is significant flattening in the negative x-direction. Subsequent to the 

SPC, this distorted and flattened part starts rotating counter-clockwise towards the direction 

defined by the second strain path. 
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Fig. 4. Evolution of the yield surface of the MHH and HAH models for commercially pure 

aluminum: (a) uniaxial tension in the rolling direction (x-direction) and (b) uniaxial tension in the 

transverse direction (y-direction) subsequent to 5 % prestraining by rolling in the x-direction. The 

yield surfaces are plotted for equivalent plastic strains equal to 5 %, 10 % and 19.5 %. 

 

Fig. 5 illustrates, in the π-plane, the rotation of the microstructure deviator tensors of the two 

models for the same loading sequence as in Fig. 4b, namely 5% prestraining by rolling in the x-

direction followed by uniaxial tension in the y-direction. Each arrow corresponds to a specific 

equivalent plastic strain. Prior to the SPC the directions of the microstructure deviator tensors 

remain paralell. These arrows are shifted slightly from the origin so that they can be 

distinguished in the figure. During prerolling, the microstructure deviator tensor h  keeps its 

direction and magnitude, whereas P  starts from zero magnitude and gradually grows in the 

direction defined by the rolling. As the strain path is changed to uniaxial tension in the y-

direction, h  rotates but never changes its magnitude, while P  rotates with a simultanious change 

of its magnitude, taking the shortest route towards its new saturated state.  
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Fig. 5. Magnitude and direction of the microstructure deviator tensors P and h  used in the MHH 

and HAH models, respectively, during 5% prestraining by rolling in the x-direction followed by 

uniaxial tension in the y-direction. The initial parallel tensors are shifted to make it possible to 

distinguish them in the figure. 

 

3.2. EDDQ steel 

Stress-strain curves of the EDDQ steel in uniaxial tension at various directions after 

prestraining have been reported by Ha et al. (2013). The HAH model has earlier been calibrated 

to some of these experiments by Lee et al. (2015) and with a slightly improved calibration made 

here, as described above. The difference between the two calibrations of the HAH model is that 

the transient after a SPC lasts slightly longer in the simulations using the new parameter set, as 

illustrated in Fig. 6 for one of the tests used in the calibration. Note that the improved calibration 

preserves the same level of accuracy for the stress-strain curves considered by Lee et al. (2015). 

The Yld2000-2d yield function (Barlat et al., 2003) with exponent of 6 and coefficients from Lee 

et al. (2015) was used for EDDQ steel in both the MHH and HAH models. The remaining 

parameters identified for the MHH and HAH models are listed in Table 2. The two-term Voce 

hardening rule is selected for the MHH model, while as in the calibration by Lee et al. (2015), 

the Swift hardening rule is applied for the HAH model. Owing to the lack of experimental data 

for the Bauschinger effect of the EDDQ steel, kinematic hardening was not employed in this 

calibration of the MHH model. Furthermore, the material did not exhibit orthogonal softening, 

hence 0sk   provided the best calibration. 
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Table 2 Model parameters for EDDQ steel 

HAH model 

m   q   C   0  n  k   ok   1k   2k   3k   4k   5k   

[–] [–] [MPa] [–] [–] [–] [–] [–] [–] [–] [–] [–] 

6 2 538.0 0.0075 0.267 14 0 880.0 63.0 0.64 1.0 0.0 

6k   7k   Lk   L   Sk  S  z   Rk   Rk       

[–] [–] [–] [–] [–] [–] [–] [–] [–]    

0 0 500 1.65 0 0 5 15 0.20    

MHH model 

m   0R   
1

satR   
1R   

2

satR   
2R   

1

satX   
1X   

2

satX   
2X   

P   o  

[–] [MPa] [MPa] [–] [MPa] [–] [MPa] [–] [MPa] [–] [–] [–] 

6 150 323 0.5 97 0.04 0 – 0 – 0.05 0.002 

r  0q  rq   0k   rk          

[–] [–] [–] [MPa] [MPa]        

0.05 0.18 0.2 0 0        

 

 

Fig. 6. Experimental and simulated stress-strain curves for EDDQ steel in uniaxial tension in the 

60° direction after 10 % prestraining by uniaxial tension along RD, using the original and new 

parameter sets for the HAH model. 



19 

 

The experimental and simulated stress-strain curves for monotonic, uniaxial tension and 

uniaxial tension in various directions subsequent to 4 % and 10 % prestraining in tension along 

RD are presented in Fig. 7 - Fig. 9. As shown in Fig. 7, both models are capable of representing 

the monotonic stress-strain curve. The simulations of the stress-strain curves after 4 % 

prestraining are similar and mostly in agreement with the experimental results, see Fig. 8. Larger 

differences are found between the experimental and simulated stress-strain curves after 10 % 

prestrain in  Fig. 9. Owing to the higher prestrain level, the stress overshoots are markedly larger 

than in Fig. 8. It is evident from Fig. 9 that the MHH model is in better agreement with the 

experiments than the HAH model, which is only able to capture the stress overshoot in the 45° 

and 60° tensile tests. In the other directions, the HAH model underestimates the stress overshoot.  

 

Fig. 7. Monotonic stress-strain curve in uniaxial tension along RD for EDDQ steel. 
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Fig. 8. Stress-strain curves in uniaxial tension at various direction with respect to RD after 4 % 

prestraining in uniaxial tension along RD for EDDQ steel. 
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Fig. 9. Stress-strain curves in uniaxial tension at various direction with respect to RD after about 

10 % prestraining in uniaxial tension along RD for EDDQ steel. 
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Simulations of double SPCs were made with the two models based on the parameters for 

EDDQ steel. Experimental data for double SPCs is lacking. The orthogonal distortion of the 

yield surface introduced into the HAH model by Barlat et al. (2014) was designed to 

qualitatively agree with the experimentally observed behavior of a low carbon steel reported by 

Vincze et al. (2013). The results from simulations of double SPCs are presented in Fig. 10. The 

loading sequence consists of uniaxial tension along RD, followed by uniaxial tension along the 

45° direction and finally uniaxial tension along RD. The straining between the first and second 

SPC is varied. When the second SPC occurs early during the transient of the first SPC, see Fig. 

10a, the HAH model will nearly return to the monotonic stress-strain curve in uniaxial tension 

along RD. Even when the second SPC occurs at a later stage of the transient of the first SPC, as 

in Fig. 10b, the HAH model almost returns to the monotonic stress-strain curve. A significant 

stress overshoot is only obtained when the second SPC takes place during the final stages of the 

transient after the first SPC, see Fig. 10c. Since the yield surface of the MHH model is not 

distorted, it starts from its expanded state during the transient of the first SPC. When the second 

SPC is made early in the transient, as in Fig. 10a, the yield surface rapidly shrinks from a higher 

stress level than the monotonic stress-strain curve, which is only approached after a prolonged 

transient. In the two other cases, see Fig. 10b and c, for which the second SPC occurs at a later 

stage, the MHH model responds with a new overshooting caused by the memory of the first SPC. 

It is seen that the MHH model predicts a qualitatively different behavior than the HAH model 

and thereby it differs from the behavior observed for low carbon steel by Vincze et al. (2013). 
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Fig. 10. Simulated double SPCs for EDDQ steel. The sub-figures present simulated stress-strain 

curves in monotonic, uniaxial tension along RD and in uniaxial tension along the 45° direction 

with tensile prestraining along RD. These two curves are obtained with the HAH model. The 

simulated stress-strain curves in uniaxial tension along RD after prestraining in tension first 

along RD and then along the 45° direction, are obtained by both models. The straining of the 

second step along the 45° direction increases from (a) to (c). 
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4. Discussion 

The HAH and MHH models are phenomenological models designed to capture transients 

that occur subsequent to changes in the strain path. The material has a short-term memory of its 

previous strain path, which is described mathematically in terms of differential equations. This 

fading memory is by both models obtained by a microstructure deviator, namely P  in the MHH 

model and h  in the HAH model, which is a second-order symmetric deviatoric tensor with five 

corresponding differential equations describing its evolution. In this work, the MHH model 

applies two back stress tensors iX  adding five coupled scalar differential equations each to be 

integrated. In many cases, one back stress tensor is sufficient to provide a satisfactory 

description. Furthermore, the MHH model has two more differential equations describing the 

expansion of the yield surface due to the extra strength contributions after SPCs, represented by 

the internal variables 0S  and rS . In total, this amounts to 17 extra scalar equations to integrate 

for the case of commercially pure aluminum in addition to the isotropic hardening rule. Similarly 

there are 12 extra scalar differential equations in the HAH model for this alloy. The added 

computational cost related to solving these extra scalar differential equations is only a few times 

higher than the additional cost of applying a kinematic hardening model, which adds five 

differential equations per back stress tensor. Hence, the computational cost does not prevent 

industrial applications of such models. It is mentioned that the HAH model may suffer from 

numerical challenges when calculating purely orthogonal SPCs, because the local curvature of 

the yield surface may become large, which will delay or even destabilize the iteration process of 

the return map. 

A more important issue impeding industrial applications is the complex calibration 

procedure of the significant number of model parameters that comes in addition to the basic 

parameters describing the monotonic stress-strain curve and the initial shape of the anisotropic 

yield surface. The HAH model has the advantage that the basic description is not altered by the 

additional equations added to model SPC effects. In contrast, the kinematic hardening 

contributes to the monotonic stress-strain curve in the MHH model, which means that the 

parameters governing isotropic and kinematic hardening have to be calibrated together. Provided 

a sufficient number of adequate mechanical tests are available, the calibration requires a non-

linear minimization of the error. Such a calibration depends on how the measure of the error with 
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respect to the experiments is defined and weighted, and the solution may not be unique. A good 

calibration depends on a decent first guess of the parameters. The equations and the 

corresponding parameters of the MHH model have more straightforward interpretations in terms 

of experimental observations. The constitutive equations of the MHH model are simple first-

order differential equations with well-defined strain scale parameters and stress saturation terms, 

for which a first guess can be reasonably estimated based on visual inspection of the stress-strain 

curves. In practice, it is important to inspect that all calibration experiments are matched 

satisfactorily after such a complex calibration. 

The chief challenge for industrial applications is the added number of mechanical tests 

required for calibration and their complexity. In many applications with plates or sheets, reverse 

tensile tests are possible to perform only for very small tensile specimens with a length that 

equals a few times the thickness in order to avoid buckling. Alternatively, techniques with 

sideways support to avoid buckling during compression have been suggested (Boger et al., 2005; 

Yoshida et al., 2002) but are difficult to perform. An alternative is reverse simple shear tests, but 

for anisotropic materials these are more complex to analyze, since the transverse normal stress is 

not measured. Two-step tests for other SPCs with lower Schmitt angles may be obtained by pre-

deformation; either by a large tensile specimen or by rolling in various directions. Anyhow, a 

rather large test matrix is required, and limited data are available, as of today few alloys have 

been systematically tested. 

The microstructure deviator P  in the MHH model is defined in the strain-rate space, while 

the counterpart h  in the HAH model is defined in the deviatoric stress space. While P  can point 

in any direction during the forming process, h  can only change direction in a half plane. The 

corresponding Schmitt angles, which are used to quantify any abrupt SPC, are based on SPCs in 

these two spaces, respectively. A comparison of the two definitions is provided by Holmedal et 

al. (2008) and Mánik et al. (2015). In the case of prestrain in uniaxial tension followed by 

uniaxial tension in another material direction, the Schmitt angle defined in strain-rate space 

depends on the R-values of the two tensile tests, whereas the Schmitt angle defined in the 

deviatoric stress space does not. The EDDQ steel has a high R-value, about 2.5 in the rolling 

direction. If the EDDQ steel is prestrained by uniaxial tension in the rolling direction and then 

subjected to uniaxial tension in another direction   with respect to the rolling direction, the 
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Schmitt angle will be 90° (orthogonal) near   equal to 45° and 55° when measured in the strain-

rate space and deviatoric stress space, respectively.  

The amount of cross hardening can be quantified as the maximum stress overshoot, which is 

here defined as the maximum ratio between the flow stress after the SPC and the flow stress 

during monotonic straining at the same equivalent plastic strain. The maximum stress overshoot 

obtained with the two models during a SPC defined by prestraining to 9.4 % by uniaxial tension 

in the RD followed by uniaxial tension in a material direction   with respect to RD for EDDQ 

steel is shown in Fig. 11a. Since the R-value is large, the two models predict different variation 

of the stress overshoot with the angle  , due to the different definitions of the microstructure 

deviator. In Fig. 11b, the predictions obtained by the two models are compared with the 

experimental findings reported by Ha et al. (2013) for EDDQ steel, where the stress overshoot is 

taken at a constant specific plastic work of 0.5 MPa subsequent to the SPC. Both definitions of 

the Schmitt factor match reasonably well the stress overshoot of the reloading curves. The MHH 

model gives the maximum stress overshoot at the correct angle, while the overall behavior is 

somewhat better represented by the HAH model. 

 

Fig. 11. Stress overshoot after SPC: (a) Simulated maximum stress overshoot versus direction of 

second strain path ( ) for EDDQ steel; (b) Stress overshoot at a specific plastic work of 0.5 

MPa subsequent to SPC from simulations and experiments by Ha et al. (2013). 
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In Fig. 1 and Fig. 8, the stress overshoot predicted by the HAH model, will be slightly lower 

than the experiment data. The reason is that the stress overshoot ratio controlled by Lg , is a little 

small for SPCs with Schmitt angles far from 90°. In order to compensate the reduction, 

orthogonal softening term is  

During monotonic loading, the distorted yield surface predicted by the HAH model will 

expand due to work hardening, but shrink in the reverse direction relative to the loading 

direction. The undistorted yield surface of the MHH model will expand isotopically, but become 

shifted. During subsequent reverse loading, the relative shrinkage in the reverse direction will 

vanish and instead the yield surface of the HAH model becomes compressed in the preloading 

direction. Subsequent to a reverse SPC, the yield surface of the MHH model starts shifting back 

again and then in the opposite direction. The permanent softening subsequent to the reverse 

loading is obtained in a similar manner in both models, namely by reducing the isotropic work 

hardening during the transient response following a load reversal. The commercially pure 

aluminum also exhibits slight hardening stagnation after a reverse SPC. This is described by both 

models as an extra stress contribution during the transient behavior after load reversal. This is a 

new feature added to the HAH model in this work. In the MHH model, the load reversal is 

identified by the microstructure deviator P  having the opposite direction of the current plastic 

rate-of-deformation tensor pD . The microstructural deviator h  in the HAH model does not 

distinguish positive and negative directions, therefore the functions 5g  and 6g  are constructed so 

that they contribute only during reverse transients.  

During orthogonal loading, the part of the yield surface of the HAH model that is orthogonal 

to the first loading direction will suddenly expand and distort subsequent to the orthogonal SPC. 

The yield surface of the MHH model will also make a suddenly expansion, but isotropically, and 

in addition it will translate along the second loading direction after the orthogonal SPC. The 

permanent softening after an orthogonal SPC is achieved in both models by decreasing the 

isotropic hardening rate during the transient.  

From a mathematical point of view, the need in the HAH model to make a choice of the 

initial direction of h  as the first stress direction for which plasticity occurs, is troublesome. An 

arbitrarily small pre-loading step, made initially in any chosen direction, would efficiently 

change the initial condition of h . This does not seem realistic. However, from a practical point 
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of view, the initial direction of h  only influences the first few percent of deformation, where 

Bauschinger transients anyway are very small, hence the model is applicable for most cases. The 

way the microstructure deviator is modeled is a major difference between the MHH and HAH 

models. The magnitude of h  in the HAH model remains constant and its rotation is restricted to 

a positive half-plane in the deviatoric stress space. In the MHH model, the microstructure 

deviator P  is in the strain-rate space and not only its rotation, but also its magnitude evolves and 

is part of the modeling. The initial condition is trivial with all components equal to zero, and it 

may evolve in any direction, reflecting the direction and magnitude of the loading history. The 

two models are phenomenological, but one can interpret the microstructure deviator as a 

representation of the microstructure anisotropy. 

The reverse tests in tension after prestraining in compression for commercially pure 

aluminum cf. Fig. 2, exhibit hardening stagnation after quite small prestrains. From the literature 

(Barlat et al., 2011; Haddadi et al., 2006), hardening stagnation is common and more pronounced 

in reverse simple shear tests after large prestrains. The modification of the HAH model offered 

here will predict augmented hardening stagnation with increasing prestrain as observed 

experimentally. But, as the HAH model was only calibrated for small prestrains in this study, 

more experiments are required to evaluate whether the proposed modification is applicable for 

large prestrains. 

In the HAH model, the initial yield surface can be divided into two half-planes during 

preloading: an “isotropic expansion” half-plane and a “distortional shrinkage” half-plane. When 

reloading in the purely orthogonal direction, the R-value starts from the value prescribed by the 

initial yield surface (unity in this case) as the reloading direction is located in the “isotropic 

expansion” half-plane, as shown in Fig. 3. Then, the R-value evolves due to the transient, 

anisotropic expansion of the HAH yield surface in the orthogonal directions. When the 

microstructure deviator has rotated to the current strain path, the R-value again approaches unity. 

In the MHH model, the back stress leads to deformation-induced anisotropy even though the 

Hershey yield function is employed. With the evolution of the back stress, the yield surface 

translates in the stress space, giving an R-value different from unity after an orthogonal SPC. 

With further plastic straining along the new strain path, the R-value again approaches unity due 

to the evolution of the back stress. 
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The pre-distortional orthogonal softening term changes the shape of the yield surface and 

hence modifies the reloading R-value subsequent to SPCs. Even though this term was designed 

to deal with materials exhibiting orthogonal softening behavior, one might in principle gain a 

higher instant reloading R-value, as observed in the commercially aluminium experiments, if this 

term is included simultaneously as the orthogonal hardening term. Hence such a re-calibration of 

the orthogonal SPC of the commercially pure aluminum was tried. The orthogonal hardening 

parameter L  was adjusted to compensate for an orthogonal pre-softening by 10% ( 0.9S  ). In 

order to apply the pre softening term for cross hardening cases, it must vanish during a very 

small strain scale, of similar length as the measured R-value transient, by a very rapid initial 

work hardening of the re-loading curve. This requires a very large 200Sk  . The other model 

parameters are not affected and were not changed. However, it turned out that the resulting 

change of the initial R-value was so small for the considered yield surface, that it could hardly be 

distinguished from the results with only the orthogonal hardening term in Fig. 3. Furthermore, a 

negative consequence of this recalibration was that the reloading in 0° gave an even lower stress 

than before.  

In this paper, both models have quite successfully been capable of modeling experiments for 

commercially pure aluminum and EDDQ steel, including various angles of single SPCs. More 

complex double SPCs experiments would possibly distinguish the prediction accuracy of the two 

models. Unfortunately such experiments have not been done along with other tests required to 

identify model parameters related to the yield surface, the monotonic stress-strain curve, and 

single and double SPCs. However, double SPCs experiments have earlier been reported for low 

carbon steel (Vincze et al., 2013). These results are qualitatively similar to the predictions by the 

HAH model for the EDDQ steel, while the MHH model behaves differently because it is 

restricted to isotropic expansion of the yield surface. Additional experiments are required to 

investigate whether a distorted yield surface can quantitatively reproduce double SPCs.  

5. Conclusions 

Two phenomenological plasticity models with potential for industrial applications to 

complex forming operations are evaluated with respect to describing the behavior of 

commercially pure aluminum and EDDQ steel during SPCs. Both models are reasonably cost 

effective and can qualitatively capture the transient behavior after single SPCs, i.e., the 
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Bauschinger effect, hardening stagnation and permanent softening after reverse SPCs, and stress 

overshooting and permanent softening after orthogonal SPCs. The suggested modifications of the 

HAH model enable simulations of the hardening stagnation after reverse SPCs and the 

permanent softening after orthogonal SPCs. For EDDQ steel, the MHH model gives somewhat 

better agreement with the available experimental data for single SPC than the HAH model for 

the largest prestrain. Qualitatively the HAH model can better reproduce features of double SPCs 

reported earlier for a low carbon steel, but more experiments are required to make a firm 

conclusion. For commercially pure aluminum, both models describe the single SPC with similar 

accuracy, but the HAH model fails to predict the transient change of the R-value subsequent to 

an orthogonal SPC, even if both distortional pre-softening and post expansion terms are allowed 

to act simultaneously.  
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Figure Captions: 

 

Fig. 1. Experimental and simulated stress-strain curves for commercially pure aluminum (CP-Al) 

from tensile tests in different directions subsequent to prestraining by rolling and tensile tests of 

the as-cast material. 

Fig. 2. Experimental and simulated stress-strain curves for commercially pure aluminum (CP-Al) 

from tensile tests after prestraining by uniaxial compression (UC) to (a) 2% and (b) 4.4% 

together with the stress-strain curve for monotonic loading. 

Fig. 3. Experimental and simulated evolution of the R-value with straining for commercially 

pure aluminum based on a tensile test in the transverse direction after a prestrain of 5% by 

rolling. 

Fig. 4. Evolution of the yield surface of the MHH and HAH models for commercially pure 

aluminum: (a) uniaxial tension in the rolling direction (x-direction) and (b) uniaxial tension in 

the transverse direction (y-direction) subsequent to 5 % prestraining by rolling in the x-direction. 

The yield surfaces are plotted for equivalent plastic strains equal to 5 %, 10 % and 19.5 %. 

Fig. 5. Magnitude and direction of the microstructure deviator tensors P and h  used in the MHH 

and HAH models, respectively, during 5% prestraining by rolling in the x-direction followed by 

uniaxial tension in the y-direction. The initial parallel tensors are shifted to make it possible to 

distinguish them in the figure. 

Fig. 6. Experimental and simulated stress-strain curves for EDDQ steel in uniaxial tension in the 

60° direction after 10 % prestraining by uniaxial tension along RD, using the original and new 

parameter sets for the HAH model. 

Fig. 7. Monotonic stress-strain curve in uniaxial tension along RD for EDDQ steel. 

Fig. 8. Stress-strain curves in uniaxial tension at various direction with respect to RD after 4 % 

prestraining in uniaxial tension along RD for EDDQ steel. 
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Fig. 9. Stress-strain curves in uniaxial tension at various direction with respect to RD after about 

10 % prestraining in uniaxial tension along RD for EDDQ steel. 

Fig. 10. Simulated double SPCs for EDDQ steel. The sub-figures present simulated stress-strain 

curves in monotonic, uniaxial tension along RD and in uniaxial tension along the 45° direction 

with tensile prestraining along RD. These two curves are obtained with the HAH model. The 

simulated stress-strain curves in uniaxial tension along RD after prestraining in tension first 

along RD and then along the 45° direction, are obtained by both models. The straining of the 

second step along the 45° direction increases from (a) to (c). 

Fig. 11. Stress overshoot after SPC: (a) Simulated maximum stress overshoot versus direction of 

second strain path ( ) for EDDQ steel; (b) Stress overshoot at a specific plastic work of 0.5 

MPa subsequent to SPC from simulations and experiments by Ha et al. (2013). 
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Table Captions: 

 

 

Table 1. Model parameters for commercially pure aluminum 

Table 2 Model parameters for EDDQ steel 
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