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Using the Lagrangian formalism, we solve analytically the equations of motion for current-induced
domain-wall dynamics in a ferromagnet with Rashba spin-orbit coupling. An exact solution for the
domain wall velocity is provided, including the effect of non-equilibrium conduction electron spin-
density, Gilbert damping, and the Rashba interaction parameter. We demonstrate explicitly that
the influence of spin-orbit interaction can be qualitatively different from the role of non-adiabatic
spin-torque in the sense that the former is sensitive to the chirality of the domain wall whereas
the latter is not: the domain wall velocity shows a reentrant behavior upon changing the chirality
of the domain wall. This could be used to experimentally distinguish between the spin-orbit and
non-adiabatic contribution to the wall speed. A quantitative estimate for the attainable domain
wall velocity is given, based on an experimentally relevant set of parameters for the system.

PACS numbers:

I. INTRODUCTION

The study of domain-wall motion in ferromagnetic ma-
terials has attracted much interest in recent years. Be-
sides its allure from a fundamental physics viewpoint,
electric control of magnetic textures is attractive in terms
of potential new applications such as magnetic memory.
A key concept in the context of domain wall motion is
the so-called spin-transfer torque [1–3]: in essence, it con-
sists of a transfer of a transverse spin-current component
to the ferromagnetic order parameter which may occur
in a non-collinear magnetization configuration. Active
control over domain-wall motion is a chief objective in
terms of realizing the ”magnetic race-track” technology
put forward in [4]. Other ways to manipulate domain wall
motion include energy redistribution in the presence of
an external magnetic field, by applying microwave radia-
tion [5–9], and by using magnons [10–13]. Moreover, the
concept of spin-transfer torque has recently been studied
in antiferromagnets [14–19] including the possibility to
move domain-walls.

Interestingly, it turns out that spin-orbit interactions
can substantially modify both the spin-transfer torque
and the resulting domain wall motion [20, 21, 25]. The
combined influence of a magnetic exchange field together
with spin-orbit interaction, typically taken in the Rashba
form, can be shown to give rise to a non-equilibrium
spin density perpendicular to the injected current flow.
In turn, this gives rise to an effective magnetic field
which causes magnetization dynamics and, for suffi-
ciently strong current density, magnetization switching.
The effective ”spin-orbit torque” arising in this manner is
qualitatively different from the conventional spin-transfer
torque due to the different mechanism at hand: it does
not require the presence of non-collinear magnetic ele-
ments and will cause magnetization dynamics in a single
ferromagnetic layer [28]. In addition, it is important to
note that whereas different types of domain walls behave
in the same way in the absence of spin-orbit interactions,
the exact magnetization texture plays a key role when

spin-orbit coupling is present due to the coupling between
the electron motion and the spin torque.

In light of the above, several experimental and theoreti-
cal works has recently explored the influence of spin-orbit
interactions on magnetization dynamics in various mag-
netic systems [22–30]. Since the addition of spin-orbit
terms in the equations of motion for the magnetization
texture complicates their solution, the large majority of
these works have relied on numerical methods to solve
the Landau-Lifshitz-Gilbert (LLG) equation. In this pa-
per, we utilize the Lagrangian formalism in order to write
down and solve analytically the equations of motion for
a domain wall within a collective-coordinate description.
The analytical nature of this approach allows us to iden-
tify a transparent expression for the domain wall velocity
and how it depends on parameters such as the spin-orbit
interaction, exchange field, and Gilbert damping of the
system. Alternatively, one could have derived this result
via the LLG equation, but the present formalism makes
it easier to accommodate non-equilibrium spin-density
terms and higher order corrections due to the spin-orbit
interaction. We show from the analytical expression that
the presence of spin-orbit interactions renders the domain
wall velocity to be chirality sensitive, in effect depend-
ing on whether the wall changes magnetization direction
from positive to negative or vice versa along the direction
of the current. We provide an estimate for the magnitude
of the domain wall velocity using a set of experimentally
relevant parameters and show that the velocity behaves
qualitatively differently depending on the chirality of the
domain wall and displays reentrant behavior. Our finding
suggests a way to experimentally distinguish between the
non-adiabatic and spin-orbit contribution to the domain-
wall speed.

II. THEORY

We consider first a ferromagnetic domain wall with an
easy (hard) axis of magnetic anisotropy [36] along the
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ŷ (hard)

Current direction

(a)

(b)

Current direction

FIG. 1: (Color online) Sketch of the magnetization textures
considered in this paper. The domain wall nanowire extends
along the x-axis. (a) Hard axis along current direction (x) and
easy axis along z-direction. In equilibrium, the magnetization
of the domain wall rotates in the yz-plane exactly as in Ref.
[21] and similarly to Ref. [28]. Out of equilibrium, i.e. under
a current bias, a finite component may be acquired along the
x-axis as indicated by the tilt angle φ. This geometry is the
main focus of this article, relevant for nanowires with perpen-
dicular magnetic anisotropy. (b) Hard axis along y-direction
and easy axis along z-direction. In equilibrium, the magne-
tization rotates in the xz-plane. Out of equilibrium, a finite
component may be acquired along the y-axis as indicated by
the tilt angle φ.

y-axis (x-axis). An electric current is injected along the
x-axis [see Fig. 1a)], and the inversion symmetry is as-
sumed broken in the ẑ-direction. This gives rise to a
Rashba spin-orbit coupling term, which influences the
magnetization dynamics. More precisely, it can be shown
[20] that the spin-orbit coupling generates an effective
magnetic field

HSOC ∝ αRẑ × je (1)

where αR is the Rashba interaction strength and je is
the current density vector. In order to treat the domain
wall as rigid in a collective-coordinate framework, thus
making other modes of deformation apart from the tilt
angle φ irrelevant, the easy axis anisotropy energy K is
assumed larger than its hard axis equivalent K⊥ [31], i.e.
|K| � |K⊥|. As is normally done, we do not take into
account the effect of the end-boundaries of the nanowire,
assuming thus that the domain-wall center is located suf-
ficiently far away from these during its propagation.

The starting point is the Lagrangian for such a Bloch

domain-wall which was derived in Ref. [21]. For this type
of domain wall, the magnetization rotates in the plane
perpendicular to the extension of the wire (and current
direction), similarly to Ref. [28] (the only difference from
Ref. [28] is which of the perpendicular axes that is the
easy one, in both cases the hard axis is along the current
direction). It reads:

L = (φẋ− sin2 φ)− 2λxJ
∆

µ
− syxφ̇− φJ

(∆

µ
+ F(λ)

)
(2)

with the definition

F(λ) =
~2λ2

mL2

( 1

µ
+

2

∆

)
. (3)

Above, φ is the tilt angle of the domain wall (see Fig.
1) while x is the normalized position of the center of
the domain wall (x = X/L where L is the wall thick-
ness). The quantities λ and J are the Rashba interac-
tion strength and the current density normalized against
mL/~2 and evc, respectively, with vc being the drift ve-
locity of electrons at the intrinsic threshold current for
∆/µ = 1 without Rashba interactions. Moreover, ∆ is
the exchange splitting, µ is the Fermi energy while m
is the electron mass. Finally, sy represents the constant
non-equilibrium spin density induced by the applied elec-
tric field generating the current.

III. RESULTS AND DISCUSSION

We will model dissipation in this system by a Rayleigh
dissipation function of the form [31]

W =
α

2
(ẋ2 + φ̇2). (4)

The Lagrange equations are obtained via

d

dt

∂L
∂q̇
− ∂L
∂q

= −∂W
∂q̇

, q ∈ {x, φ}. (5)

where t is dimensionless time-coordinate normalized
against l/vc. Defining for convenience

c =
∆

µ
+ F(λ) (6)

we obtain the following Lagrange-equations, which were
studied numerically in [21]:

φ̇+ αẋ = syφ̇− 2λJ
∆

µ
, ẋ− αφ̇ = −syẋ+ sin 2φ+ cJ.

(7)

The role of the dissipative spin-transfer torque (also
known as non-adiabatic or β-torque) will be addressed
later on - we will see that it plays a similar role as the
spin-orbit coupling, but with one important difference.
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FIG. 2: (Color online) Plot of the terminal domain wall ve-
locity using α = 0.005, L = 75 nm, m = 0.04me, µ = 0.05
eV, ∆ = 0.02 eV, and vc = 150 m/s. (a) Positive chirality
λ > 0. (b) Negative chirality λ < 0.

By combining the above equations, we are able to elimi-
nate the ẋ-dependence and obtain a first-order differen-
tial equation for the tilt angle:

φ̇ = − α

1 + α2

1+sy − sy
( sin 2φ

1 + sy
+

cJ

1 + sy
+ 2J

λ∆

αµ

)
(8)

This equation may be cast into integral form as follows:

∫
dφ
α−1(1 + sy)(sy − 1− α2/(1 + sy))

a+ sin 2φ
= t. (9)

We define the quantities

a = cJ +
2λ∆J(1 + sy)

αµ
,

b = −α− α−1[1− (sy)2]. (10)

The formal solution of this integral is obtained after some
algebraic manipulation:

tanφ = −a−1 + a−1
√
a2 − 1 tan(b−1t

√
a2 − 1 + C0),

(11)

where C0 is an integration constant to be determined
from the initial conditions. In particular, φ(t = 0) = 0

and φ(t = 0) = π/2 yield C0 = atan(1/
√
a2 − 1) and

C0 = π/2, respectively.

Having obtained an explicit expression for the tilt
angle, we are now in a position to identify the time-
dependence of the domain-wall center x, thus also ob-
taining the domain-wall velocity ẋ. To do so, we first
obtain φ̇ from Eq. (11) as:

φ̇ =
(a2 − 1)

ab

cos−2(b−1t
√
a2 − 1 + C0)

1 + [−a−1 + a−1
√
a2 − 1 tan(b−1t

√
a2 − 1 + C0)]2

. (12)

Substituting this into the first Lagrange-equation, one obtains an explicit expression for the domain-wall velocity vDW

vDW = −2J
λ

α

∆

µ
− (1− sy)

(a2 − 1)

abα

cos−2(b−1t
√
a2 − 1 + C0)

1 + [−a−1 + a−1
√
a2 − 1 tan(b−1t

√
a2 − 1 + C0)]2

. (13)

Eqs. (11) and (13) determine an exact analytical expression for the time-dependence of the domain wall tilt-angle
and velocity, respectively, which we will analyze in more detail below.

By integration, Eq. (13) may be used to identify the
time-evolution of the domain-wall center:

x = −2Jt
λ

α

∆

µ
− (1− sy)

α

∫
dtφ̇. (14)

The integral over φ̇ is evaluated by making use of the
formula∫

dy cos−2(y + γ)

[1 + (η + ζ tan(x+ γ))2]
= ζ−1atan[ζ tan(x+ γ) + η],

(15)

resulting in the following equation describing the instan-

taneous position of the domain-wall center

x− x0 = −2Jt
λ

α

∆

µ
− 1− sγ

α
×

tan−1[a−1
√
a2 − 1 tan(b−1t

√
a2 − 1 + C0)− a−1],

(16)

with x0 being an integration constant related to the ini-
tial position of the domain-wall.

It is worth noting here that there exists a particularly
simple solution to the equation set Eq. (7) in the spe-
cial case of a constant tilt angle, i.e. a domain-wall that
preserves its shape and magnetization direction and thus
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only propagates. This amounts to setting φ̇ = 0, which
dictates that the tilt angle must be constant:

sin(2φ0) = −cJ − 2(1 + sγ)J
λ

α

∆

µ
, (17)

and gives for the domain-wall velocity:

vDW ≡ ẋ = −2J
λ

α

∆

µ
. (18)

This is identical to the first term in Eq. (13). Physically,
this implies a constant drift velocity of the domain-wall
under the application of a current. Interestingly, it is
seen that vDW = 0 in the absence of λ, meaning that the
spin-orbit interaction is fully responsible for the domain-
wall motion. In a more general scenario where the tilt
angle is not restricted to being constant, i.e. allowing for
domain-wall deformation, the general expression for the
velocity is given by Eq. (13). As we shall discuss later,
this corresponds to the Walker breakdown threshold.

The necessity of spin-orbit coupling to drive the
domain-wall motion is a feature pertaining specifically
to the Bloch-domain wall with anisotropy axis chosen
as described in the beginning of this section [see Fig.
1a)]. In fact, for different choices of anisotropy directions,
spin-orbit coupling mainly contributes as a quantitative
correction to the domain-wall velocity without being a
prerequisite for its existence. To see this, one may con-
sider instead a domain-wall where the magnetic easy and
hard axes lie along the z and y-axes, respectively [see
Fig. 1b)]. In this case, the appropriate Lagrangian to
consider is [21]

L = (φẋ− sin2 φ) + cosφφ̇− πsy

2
(ẋ cosφ− sinφφ̇)

− szxφ̇− φJ(
∆

µ
− ~2

2∆mL2
) + πλ sinφJ∆/µ. (19)

Using the same approach as above, one arrives at the
following set of integro-differential equations for the time-
evolution of the domain-wall center and tilt angle:

φ̇+
πsy

2
sinφφ̇+ szφ̇ = −αẋ (20)

in addition to

∫
dφα−1[α2 + (1 +

πsy

2
sinφ+ sz)2]/[πλ cosφJ∆/µ

− sin 2φ− J(
∆

µ
− ~2λ2

2∆mL2
)] = t− t0. (21)

Unlike the situation considered formerly, this equation
set may be solved exactly analytically only under simpli-
fying circumstances. For instance, by assuming that the
final term in the denominator of the integral equation
above dominates and moreover using sγ � 1, γ = {y, z},
one identifies the domain-wall velocity in the strong-
current regime J � 1 as

vDW = − J

1 + α2

(∆

µ
− ~2λ2

2∆mL2

)
. (22)

As seen, the presence of spin-orbit coupling in this case
brings about a minor correction to the final velocity, es-
pecially for a strong ferromagnet where ∆/µ dominates
the expression in parantheses. The domain-wall is driven
directly by the current J with a velocity that increases
with decreasing dissipation α. The above result for the
domain wall velocity shows that the spin-orbit coupling
has a qualitatively different effect on different domain
wall textures.

In the following, we focus on the more interesting case where the spin-orbit coupling influences qualitatively the
domain-wall motion [Eqs. (11) and (13)] and investigate the precise dynamics using the derived analytical expressions.
For concreteness, we consider initial conditions such that the tilt angle of the domain-wall at t = 0 is zero, meaning
that we may write:

tanφ =
1

a

[√
a2 − 1 tan

( t√a2 − 1

b
+ atan

( 1√
a2 − 1

))
− 1
]
,

vDW = −2J
λ

α

∆

µ
− α−1(1− sy)

(a2 − 1)

ab
× cos−2(b−1t

√
a2 − 1 + atan(1/

√
a2 − 1))

1 + 1
a2 [
√
a2 − 1 tan(b−1t

√
a2 − 1 + atan(1/

√
a2 − 1))− 1]2

. (23)

In the limit α→∞, we find that φ(t)→ 0 and vDW → 0
as expected. The analytical expression for vDW above
reveals that the velocity has non-monotonic behavior as
a function of time. In particular, there is a resonance
condition t = tres at which the velocity increases in mag-

nitude:

tres =
(n+ 1/2)πb√

a2 − 1
− b

a2 − 1
, (24)

assuming that a ≥ 1. In effect, vDW exhibits oscillations
which persist even for its terminal behavior t→∞. It is
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therefore of interest to establish the average domain wall
velocity by averaging over one period T = πb/

√
a2 − 1:

〈vDW〉 =
1

T

∫ T

0

dtvDW. (25)

Note that for a < 1, only the drift-term in vDW survives
as t→∞ [since cos2(±it)→∞ in this limit]. Performing

the integral with this in mind, one finds for arbitrary a
that

〈vDW〉 = −2J
λ∆

αµ
− 1− sy

αb
sign{a}Re{

√
a2 − 1}, (26)

which written out in terms of the original physical pa-
rameters reads

〈vDW〉 = −2J
λ∆

αµ
+

(1− sy)sign{J}
α2 + (1− sy)

× sign
{2λ∆(1 + sy)

αµ
+

∆

µ
+ F(λ)

}
×Re

{√[2λ∆(1 + sy)

αµ
+

∆

µ
+ F(λ)

]2
J2 − 1

}
(27)

Eq. (27) is the main result of this work and constitutes
a generally valid analytical expression for the terminal
domain wall velocity taking into account both Rashba
spin-orbit coupling, the non-equilibrium spin density, and
Gilbert damping. For consistency, we have verified that
a fully numerical solution of the equations of motion give
identical results as the above analytical expression for the
domain wall velocity.

We will proceed to analyze this velocity quantitatively
for a realistic set of parameters and investigate how it de-
pends in particular on the applied current and the mag-
nitude of the spin-orbit coupling. Before doing so, one
should note that it follows from Eq. (27) that there exists
both a threshold current Jc for which the second term in
Eq. (27) is non-zero:

|Jc| =
∣∣∣2λ∆(1 + sy)

αµ
+
(∆

µ
+

~2λ2

mL2µ
+

2~2λ2

mL2∆

)∣∣∣−1.
(28)

In the limiting case of zero spin-orbit interaction, one ob-
tains |Jc| = (∆/µ)−1 in agreement with previous studies.
The presence of spin-orbit interaction is seen from the
analytical expression of |Jc| to reduce the threshold cur-
rent monotonically with increasing λ, consistently with
the numerical study in Ref. [21]. This monotonic be-
havior appears also when tuning the chemical potential
µ: increasing µ lowers the polarization and increases the
threshold current.

Eq. (28) is in fact the Walker threshold value which
separates the regimes of domain wall motion with a fixed
profile, i.e. φ̇ = 0 and the regime with a domain wall
rotating its spatial profile as time increases, i.e. φ̇ 6= 0.
To see this, one may revert to the original equations of
motion in Eq. (7). There exists a tilt angle φ which

satisfies φ̇ = 0 if the following equation is satisfied:

sin 2φ = −
(2λ∆(1 + sy)

αµ
J + cJ

)
. (29)

Since the left-hand side varies between ±1, one may find
a solution if the following equation holds:

|J |
∣∣∣2λ∆(1 + sy)

αµ
+ c
∣∣∣ < 1. (30)

which is completely equivalent to Eq. (28) after rewrit-
ing. For larger currents J , there exists no time-
independent solution φ and domain wall distortion φ̇ is
now inevitable past the Walker breakdown.

It has previously been suggested that the spin-orbit
interaction and non-adiabatic spin-torque influence the
magnetization dynamics in the same manner, since the
latter may be included by substituting λ → β + λ [21].
However, it was noted in Ref. [25] that the chirality of the
domain wall determines the effective sign of the spin-orbit
coupling λ in the equations of motion. Formally, this
corresponds to taking the domain wall profile represented
with polar angles φ and θ as M = M0(− sin θ sinφx̂ +
cos θŷ+sin θ cosφẑ) and performing the transformations
φ → (−φ) and cos θ → (− cos θ). The parameter φ =
φ(t) is the time-dependent tilt angle, whereas θ is defined
by

sin θ = sech[(x̃−X(t))/LDW], (31)

where x̃ is the position along the magnetic wire, X(t)
is the time-dependent center position of the domain-
wall, whereas LDW is the domain wall width. This sug-
gests that the role of spin-orbit coupling is chirality-
sensitive and in this regard differs qualitatively from non-
adiabaticity. Below, we will investigate this effect and
show that the chirality indeed gives rise to highly differ-
ent behavior for the domain wall velocity. The chirality
is changed in our analytical expression Eq. (27) by let-
ting λ → (−λ). We note that our conclusions remain
unchanged even when including the β-term, as long as it
is small (which is typically the case).

In the remainder of this paper, we fix the following pa-
rameters: α = 0.005, L = 75 nm, m = 0.04me, µ = 0.05
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eV, ∆ = 0.02 eV, and vc = 150 m/s to model an exper-
imentally realistic semiconductor system [32], where me

is the bare electron mass. We restrict our attention to a
scenario where the electron-spin density satisfies sy � 1.
In Eq. (27), note that J and λ are normalized quanti-
ties. To make a quantitative estimate for the domain wall
velocity, we define the non-normalized current J = Jvc
and spin-orbit interaction Λ = ~λ/(mL) which have units
m/s and eV·m, respectively. Similarly, we restore the di-
mension of the terminal domain wall velocity by defining
〈VDW〉 = vc〈vDW〉 with units m/s.

We show in Fig. 2 a plot of the terminal domain wall
velocity as a function of the applied current for several
values of the spin-orbit interactions. To illustrate the ef-
fect of the chirality, we plot in (a) the case Λ > 0 while
in (b) Λ < 0. The latter results are consistent with the
numerical study of Ref. [21], and shows that the spin-
orbit interaction can greatly enhance the domain wall
velocity at low currents up to the Walker breakdown. In
the former case, however, the domain wall velocity be-
haves differently when changing the current J . The spin
torque induced by the effective Rashba-field is now di-
rected opposite to the conventional current-driven spin
torque and there is a competition between the two. For
non-zero Λ, the domain wall velocity starts by moving in
the direction opposite to the current, whereas it eventu-
ally changes sign with increasing J (above the threshold
current). Thus, experimentally observing a sign-reversal
of the domain-wall velocity with applied current would
be an indication of precisely this chirality sensitive spin-
orbit coupling effect. We note that this sign-reversal of
the wall velocity is different from the one predicted in
[25], which originated from a Slonczewski-like spin-orbit
torque proportional to β and when considering a differ-

ent type of domain wall profile. In our case, the field-
like spin-orbit torque is sufficient to cause the velocity-
reversal.

IV. SUMMARY

In conclusion, we have used the Lagrangian formalism
to derive an exact analytical expression for the domain
wall velocity in a spin-orbit coupled ferromagnet. We
have shown that a chirality-sensitive domain wall
velocity appears in this system, which qualitatively
differs from the role of the non-adiabatic spin-transfer
torque stemming from a spatial mistracking between the
conduction electrons and the local magnetization. A
candidate system for the observation of this effect would
be hybrid structure comprised of a thin ferromagnetic
wire in contact with a heavy metal and an oxide, which
would break structural inversion symmetry and this pro-
vide a gradient in the electric potential which generates
the Rashba spin-orbit coupling. This type of structure
has indeed recently been experimentally considered in
Refs. [27, 28] (Pt/Co/AlOx) whereas similar systems
were studied in Refs. [33–35] (Ta/CoFeB/MgO).
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