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Abstract: This paper considers the design, implementation and experimental verification of
two controllers for ship station keeping in extreme seas. In particular, the performance of
two dynamic positioning controllers are compared, namely a sliding mode controller and a
PID controller with acceleration feedback. The former has been tested in extreme seas before
because the acceleration feedback term virtually increases the inertia of the ship, making it
less sensitive to large wave loads. Sliding mode control is chosen because of its robustness to
parameter uncertainties such as frequency dependency of added mass and damping. Model-scale
experiments are performed in the Marine Cybernetics Laboratory at the Norwegian University
of Science and Technology. The performance is measured by new performance metrics combining
the energy consumption from thrusters onboard the ship with position and heading precision.
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1. INTRODUCTION

Marine operations are becoming more challenging due to
operations in deeper waters, further from shore, where
the sea state often can be characterized as extreme, with
large waves and wind gusts. With such environmental
effects, the need for dynamic positioning (DP) vessels with
enhanced positioning capabilities increases. The authors
are therefore motivated to find a safer, smarter and greener
DP algorithm for maintaining safety of personnel and
cargo while at the same time ensuring an energy efficient
operation. In extreme seas, large motion couplings in
six degrees of freedom (DOF) occur and it is therefore
important to have a robust controller.

Sea states with significant wave height Hs ≥ 3.5 m and
peak period of waves Tp ≥ 10 s are here referred to as
extreme seas. Such sea states, or higher, occur roughly
30% of the time in the Northern North Atlantic. When
extreme seas occur, waves are higher and have longer
periods so that the wave-frequency (WF) motions are
found in the same frequency regime as the low-frequency
(LF) motions of the vessel. This will cause a challenge
for an estimator separating the LF from the WF mo-
tions using a wave filter, because the wave filter removes
important LF vessel motions that the controller should
compensate for. To solve this problem, Sørensen et al.
(2002) proposed to neglect the wave filter for extreme seas
in order to maintain performance and stability. This has
been tested by Nguyen et al. (2007) and Brodtkorb et al.
(2014) with the use of hybrid controllers in simulations and
experiments with a model-scale ship. The hybrid controller

implemented in both works include proportional-integral-
derivative control with acceleration feedback (PID-AFB)
and a nonlinear passive observer (NPO) without wave
filtering. By comparing simulations of the hybrid controller
with a single PID controller with wave filtering, in a sea
state varying from calm to extreme seas, the hybrid con-
troller provided best performance. A PID-AFB controller
was first proposed by Lindegaard (2003), where a virtual
inertia is added to the physical inertia and increased by
using feedback of the measured acceleration of the system.

Sliding mode control (SMC) is recognized as an efficient
tool for designing robust controllers for complex high-
order nonlinear dynamic plants operating under uncertain
conditions. SMC has been adapted and used for multiple-
input, multiple-output (MIMO) nonlinear systems by Slo-
tine and Li (1991) and extended by Fossen and Foss
(1991), with the idea of designing a robust controller in the
case of unmodeled dynamics and modeling inaccuracies of
parameters such as inertia, external loads and actuators.
The robustness of the SMC algorithm is here achieved by
introducing uncertainties to the parameters added mass
and damping.

The main contributions of this paper include the imple-
mentation and experimental testing of two DP control
algorithms on a model-scale ship and evaluating perfor-
mance by applying new performance metrics. The per-
formance metrics include the pose (position and head-
ing) accuracy and energy consumption by the thrusters.
Experiments with the ship model in different sea states
were conducted in the Marine Cybernetics Laboratory



(MCLab) comparing the performance of PID-AFB and
SMC in DP when exposed to extreme seas. More details
from the experiments can be found in (Rabanal, 2015).

The paper is organized as follows: Section 2 presents the
mathematical modeling of the ship and a model-based
observer; Section 3 describes the design of the PID-AFB
and SMC controllers; Section 4 describes the lab setup, test
cases, parameter tuning and performance metrics; Section
5 presents the results and discussion, Section 6 concludes
the paper and the acknowledgments are found in Section
7.

2. MATHEMATICAL MODELING

This section considers mathematical modeling of marine
vessels and a model-based observer for extreme seas.

2.1 Control Plant Model (CPM)

A control plant model (CPM) is a mathematical model
describing only the most important physical properties of
a dynamical process and is used for model-based observer
and controller design Sørensen (2013).

In sea states with peak wave periods from 5-9 seconds,
corresponding to sea state codes calm-rough (Price and
Bishop, 1974), a DP control system counteracts low-
frequency (LF) wave motions caused by wind, current
and slowly-varying wave loads. It is common to filter
out the wave-frequency (WF) vessel motions from the
measurements caused by first-order wave loads in order
to avoid wear and tear of the propulsion system.

When the vessel experiences extreme seas, such an ob-
server wave filter will remove important LF vessel motions,
leading to poor estimates of the pose. Maintaining pose
when the vessel is experiencing motions due to large waves
then becomes a challenge. Such waves have long periods
and are most likely generated by wind (Fossen, 2011).
Sørensen et al. (2002) proposes to solve this problem by re-
formulating the CPM by neglecting the WF model. When
disabling the wave filter, the controller has to compensate
for both LF and WF motions, which will cause more sud-
den movements and increased thrust in the corresponding
directions.

A CPM for DP in extreme seas (Sørensen et al., 2002) is:

η̇ = R(ψ)ν (1a)

Mν̇ = −Dν +R>(ψ)b+ τ (1b)

ḃ = −T−1
b b+Ebwb (1c)

y = η + v, (1d)

where η ∈ R3 is the position and heading (pose) vector
and the velocity vector is written as ν ∈ R3. The rota-
tion matrix R(ψ) ∈ R3×3 transforms the velocity from
the body-fixed to the north-east-down (NED) reference
frame. A bias model with state b ∈ R3 represents slowly-
varying environmental forces and is driven by the zero-
mean Gaussian white noise vector wb ∈ R3 with the distur-
bance scaling matrix Eb ∈ R3×3. In addition, T b ∈ R3×3

is a user-specified diagonal matrix of positive bias time
constants. The matrix M ∈ R3×3 is the inertia matrix
consisting of the rigid-body and added-mass terms, while

linear damping is represented by the matrix D ∈ R3×3.
The commanded forces and moment vector τ ∈ R3 is
generated by the controller, and the measurement from
sensor output is written as y ∈ R3. The measurement
noise vector is v ∈ R3.

2.2 Nonlinear Passive Observer (NPO)

The observer is an important part of a DP system because
of its capabilities of state estimation and filtering. If
sensors become faulty or too expensive, the observer can
perform state estimation of non-measured states. If the
vessel experiences signal losses because of sensor failure,
one can use dead reckoning and trust the prediction model
in the observer.

The following observer without wave filtering is proposed
by Sørensen et al. (2002) for extreme seas:

˙̂η = R(y)ν̂ +K1ỹ (2a)

˙̂b = −T−1
b b̂+K2ỹ (2b)

M ˙̂ν = −Dν̂ +R>(y)b̂+ τ +R>(y)K3ỹ (2c)

ŷ = η̂, (2d)

where η̂ and ν̂ are the estimated pose and velocity vectors,
b̂ is the estimated bias state, ŷ is the estimated output,
while matrices such as M and D are given above. The
rotation matrix is written as R(y) = R(ψ) and K1 ∈
R3×3, K2 ∈ R3×3 and K3 ∈ R3×3 are positive definite
observer gain matrices.

3. CONTROLLER DESIGN

This section presents the control design of PID with
acceleration feedback (PID-AFB) and sliding mode control
(SMC) algorithms for generating the control input τ .

3.1 PID with Acceleration Feedback (PID-AFB)

This subsection is inspired by Fossen et al. (2002) and Lin-
degaard (2003). The PID-AFB controller is different from
the conventional PID controller due to an extra inertia
term Km that is fed back with measured acceleration and
added to the system inertia matrix M . This makes the
system less sensitive to external disturbances and hence
more robust. The control input τ from (1b) is generated
by the following control law:

τ = τPID−AFB = R>(ψ)τPID −Kmν̇, (3)

with

τPID = −Kpη̃ −R(ψ)Kdν −Ki

∫ t

0

η̃(τ) dτ. (4)

The control objective is to force η̃ → 0 when t → ∞,
where η̃ = η − ηd is the error between the actual and
desired pose. As the aim is station keeping, the desired
pose is constant and η̇d ≈ 0. The positive definite gain
matrices Kp ∈ R3×3, Kd ∈ R3×3 and Ki ∈ R3×3 belong
to the PID-part of the controller.

The AFB gain matrix Km ∈ R3×3 is chosen as proposed
by Fossen et al. (2002) with Km = M∗+∆K, where M∗



is a modified inertia matrix M? =

[
Xu̇ 0 0
0 Yv̇ 0
0 Nv̇ −Yṙ 0

]
and

∆K = ∆K>. The AFB gain matrix is written as:

Km =

[
K11 K12 0
K21 K22 0
K31 K32 0

]
=

[
Xu̇ + ∆K11 0 0

0 Yv̇ + ∆K22 0
0 Nv̇ −Yṙ 0

]
(5)

where Xu̇, Yv̇, Nv̇, Yṙ are hydrodynamic added-mass
terms. For tuning advantages with DP, Fossen et al. (2002)
proposes to choose ∆K11 = ∆K22 = ∆K ≥ 0 which
provides equal mass in the x- and y-directions such that
the PID controller is independent of the heading angle.
Consequently, a new virtual inertia H is made:

H = M +Km = H> > 0, (6)

with

M =

[
m−Xu̇ 0 0

0 m−Yv̇ mxg −Yṙ

0 mxg −Nv̇ Iz −Nṙ

]
(7)

and

H =

[
m+ ∆K 0 0

0 m+ ∆K mxg −Yṙ

0 mxg −Yṙ Iz −Nṙ

]
. (8)

The AFB gain matrix parameter ∆K is measured in [kg]
and K11, K12, K21, K22, K31 and K32 are chosen as shown
in (5) such that H = H> > 0.

By inserting (3) into (1b), the resulting closed loop system
becomes:

Hν̇ + (D +K?
d)ν +R>(ψ)(Kpη̃

+Ki

∫ t

0

η̃(τ) dτ) = R>(ψ)b, (9)

where K?
d = R>(ψ)KdR(ψ). For the following analysis,

the integral action is assumed to cancel out the bias
exactly. When integral action and bias are included, local
asymptotic stability can be proven as described in Arimoto
and Miyazaki (1984). The proposed Lyapunov function
candidate is:

V =
1

2
η̃>Kpη̃ +

1

2
ν>Hν. (10)

Differentiating with respect to time and inserting (8) gives:

V̇ = ν>Hν̇ + ˙̃η
>
Kpη̃ (11)

= ν>(Hν̇ +R>(ψ)Kpη̃), (12)

yielding V̇ negative semi-definite:

V̇ = −ν>[D +K?
d]ν ≤ 0, ∀ν 6= 0. (13)

Global asymptotically stability of the equilibrium point
(η̃,ν) = (0,0) can be proven with Krasovskii-LaSalle’s
Theorem for PD control as shown in (Fossen, 2011).

3.2 Sliding Mode Control (SMC)

This section is inspired by Slotine and Li (1991), Fossen
and Foss (1991), Fossen (2011) and Khalil (2002). The
aim of the SMC algorithm is to account for parameter
uncertainties in mass and damping, unmodeled dynamics,
neglected time-delays, etc. (Slotine and Li, 1991).

First, a measure of tracking is defined:

s := ˙̃η + 2Λη̃ + Λ>Λ

∫ t

0

η̃(τ)dτ, (14)

where s is the sliding surface dependent on the pose error η̃
and the NED velocity error ˙̃η = η̇. The tuning parameter
Λ ∈ R3×3 with Λ > 0 represents the bandwidth of
the controller. Defining a virtual reference vector ηr and
rewriting (14):

s = η̇ − η̇r, (15)

η̇r = η̇d − 2Λη̃ −Λ>Λ

∫ t

0

η̃(τ)dτ, (16)

so that

ṡ = η̈ − η̈r. (17)

When s = 0, we have that (14) describes a sliding surface
where η̃ converges exponentially to zero.

The equations of motion will now be described in the NED
frame, as it is control of the pose that is of interest. The
integral part in (14) is added separately to the control
input in the implementation. The equations of motion are
according to Fossen (2011, Chapter 7):

M?(η)η̈ +D?(η)η̇ = b+ τ ?, (18)

with M?(η) = R(ψ)MR>(ψ), D?(η) = R(ψ)DR>(ψ),
τ ? = R(ψ)τSMC , where τSMC is shown in (28).

Fossen and Foss (1991) derived a control law for MIMO
SMC of underwater vehicles and the following is based on
this work. The Lyapunov function candidate is chosen to
be:

V =
1

2
s>M?s, M? = (M?)> > 0, (19)

where s is the sliding surface in (14)-(16). By adding and
subtracting s>C?s, the time derivative of (19) becomes:

V̇ = s>M?ṡ+
1

2
s>Ṁ

?
s+ s>C?s− s>C?s (20)

Using the skew-symmetry property s>(Ṁ−C?)s = 0, we
get the following for low velocities in station keeping:

V̇ = s>M?ṡ. (21)

Inserting (17) into (21) yields:

V̇ = s>M?(η̈ − η̈r) (22)

= s>(−M?η̈r −D
?η̇ + b+ τ ?) (23)

= −s>D?s+ s>(−M?η̈r −D
?η̇r + b+ τ ?). (24)

Now simplifying this expression by transforming the vir-
tual reference velocity νr and acceleration ν̇r from the
NED to BODY frame:

νr = R>(ψ)η̇r (25)

ν̇r = R>(ψ)(η̈r − Ṙ(ψ)νr). (26)

For small motions, Ṙ(ψ) ≈ 0 and (24) can be written as:

V̇ =− s>D?s+ s>R(ψ)(−Mν̇r

−Dνr +R>(ψ)b+ τSMC). (27)



In the implementation, the integral part of the sliding

surface Λ>Λ
∫ t

0
η̃(τ)dτ from (14) is multiplied with the

gain matrixKd and added separately to the sum of control
inputs. With this in mind, the control input is written as:

τSMC = M̂ν̇r + D̂νr︸ ︷︷ ︸
Feedforward term

− R>(ψ)Kds︸ ︷︷ ︸
PD-controller term

−Ks.× tanh(Φ−1R>(ψ)s))︸ ︷︷ ︸
Robustifying term

, (28)

where M̂ is a chosen estimate of the system’s inertia
matrix and D̂ is an estimate of the system’s damping
matrix. The gain matrixKd ∈ R3×3 withKd > 0 is meant
for tuning and is comparable with the derivative gain
matrix used in PD control. The tuning matrix Ks ∈ R3×3

with Ks > 0 is chosen as shown in (31) with .× as
element-wise multiplication. Chattering is known to occur
when using the sgn(R>(ψ)s) function, causing oscillations
around zero. The solution for solving this is to use a
hyperbolic tangent function tanh(Φ−1R>(ψ)s) in order to
reduce wear and tear of the vessel actuators. This function
has the advantage of producing a smooth control input.
The boundary layer matrix Φ ∈ R3×3 with Φ > 0 is
tunable and describes the boundary layer thickness for
every DOF.

For simplicity, the integral action shown in (14) is assumed
to still be a part of the sliding surface s. With this in mind
and by including τ from (28), the following is derived:

V̇ =− s>(D? +Kd)s+ s>R(ψ)(R>(ψ)b+ M̃ν̇r

+ D̃νr −Ks.× tanh(Φ−1R>(ψ)s)). (29)

Hence, we get:

V̇ =− s>(D? +Kd)s+ s>R(ψ)(R>(ψ)b+ M̃ν̇r

+ D̃νr)−Ks |s>R(ψ)||tanh(Φ−1R>(ψ)s)|︸ ︷︷ ︸
≥0

, (30)

with M̃ = M̂ −M and D̃ = D̂ −D.

Choosing Ks as:

Ks ≥ |R>(ψ)b+ M̃ν̇r + D̃νr|+ δ, δ > 0 (31)

where Ks dominates the bias in addition to the error
between estimated and actual inertia and damping uncer-
tainties. The positive constant δ ensures that Ks > 0.

By applying (31), the time derivative of the Lyapunov
function (30) becomes:

V̇ ≤ −s>(D? +Kd)s− δ|s>R(ψ)||tanh(Φ−1R>(ψ)s)|
< 0, ∀s 6= 0. (32)

The Lyapunov function is negative definite when Ks is
chosen according to (31). Then the origin of the sliding
surface s = 0 is exponentially stable. From (14) we know
that s = 0 also means that the pose error η̃ = 0 becomes
exponentially stable.

4. EXPERIMENTAL SETUP AND PERFORMANCE
METRICS

This section describes the lab setup, test cases, controller
tuning and performance metrics associated with model-
scale tests on the Cybership 3 in the Marine Cybernetics

Laboratory (MCLab) at the Norwegian University of Sci-
ence and Technology (NTNU).

4.1 Marine Cybernetics Laboratory (MCLab) Setup

The MCLab is equipped with a water basin, DHI Wave
Synthesizer wave generator, motion capture system in-
cluding a motion camera PC and a vessel with a host
PC as shown in Figure 1. The basin has the dimensions
40×6.5×1.5 m3. Among different types of waves, the wave
generator can generate irregular waves by pre-modeling
and specifying wave parameters in the wave generator PC
for the desired wave spectra. Wave parameters related to
sea states generated in the MCLab are downscaled with
Froude scaling (Steen, 2014) and the waves encounter the
bow of the ship. Cybership 3 is a 1:30 scale model of a
supply vessel and weighs 75 kg.

VesselCybership 3

WLAN
Model basin

Host PC

Motion capture system units

Joystick

Fig. 1. Communication between all units in the MCLab.

A National Instruments CompactRio is mounted onboard
Cybership 3 and communicates with the host PC, which
has NI Veristand software through a WLAN connection.
This computer is necessary for the operator to log and
observe measurements, adjust controller settings and en-
able/disable the thrusters. Instrumentation onboard Cy-
bership 3 provides acceleration measurements and are
calibrated by lab staff. The measured acceleration used
for the AFB-part of the PID-AFB controller is barely
filtered by a low-pass filter due to very god measurements.
The maximum measured variance of the acceleration was
found to be ±0.0004 m/s2. The thrust allocation setup for
Cybership 3 is shown in Figure 2. All azimuth thrusters
were set in fixed positions and the third thruster was used
to simulate a bow thruster as shown in the figure.

Azimuth 1

Azimuth 2 Azimuth 3

Fig. 2. Cybership 3 thrust allocation setup.



4.2 Test Cases

As mentioned in Section 3, the objective for Cybership 3 is
to achieve η̃ → 0 when t→∞. This corresponds to station
keeping at the center of the basin, 2 meters away from the
wave flap. Test cases were performed in the MCLab with
waves as the only environmental force, which were chosen
to encounter the bow of the ship. For tuning purposes, the
controllers were first tested in a calm sea state, providing
a better basis for tuning prior to tests in extreme seas.
First, the model-scaled sea state was calm with Hs = 0.03
m and Tp = 0.8 s, and afterwards the wave parameters
were increased to Hs = 0.1 m with Tp = 1.5 s, which is
referred to as rough (Price and Bishop, 1974). The latter is
here referred to as extreme seas corresponding to Hs = 3.5
m and Tp = 10 s in full scale. The reason for not using
larger wave heights and longer waves is due to limitations
in the MCLab. The sea state still provides wave trains and
couplings between the DOFs.

Tests related to the PID-AFB controller are found in Case
1, while Case 2 concerns tests with the SMC controller.
Cases a-b in tables 2-3 were used for tuning in the calm
sea state, while cases 1c-1f and 2c-2g were performed in
extreme seas. The sea state parameters used in Case 1
and 2 are shown in Table 1.

Table 1: Sea state parameters.

Case Significant wave Peak period Description
height, Hs [m] of wave Tp [s] of sea

1a-1b, 2a-2b 0.03 0.8 Calm
1c-1f, 2c-2g 0.1 1.5 Extreme

4.3 Controller Tuning

The PID-AFB controller was tuned manually and the
PID-part was tuned prior to the AFB-part. The tuning
parameters are shown in Table 2 and they were also
used to find tuning parameters for the SMC controller by
comparing the PD-part of the PID-AFB control law (3)
with the PD-controller term from (28) of the SMC control
law. By choosingKd,SMC and Λ of the SMC gain-matrices
(34) with respect to the PD-part of the PID-AFB gain
matrices (33) in the BODY frame, the controllers became
more comparable in test cases:

τPID = −Kpη̃ −Kd
˙̃η −Ki

∫ t

0

η̃(τ)dτ, (33)

R>(ψ)τSMC,PD = −Kd( ˙̃η + 2Λη̃

+ Λ>Λ

∫ t

0

η̃(τ)dτ), (34)

where

Kd,PID = Kd,SMC , (35)

Kp,PID = 2Kd,SMCΛ, (36)

implying that

Λ = (2Kd,SMC)−1Kp,PID. (37)

By applying (35)-(37) with the gain matrices found in
Table 2, the gain matrices Λ and Kd were found for the
SMC. The gain matrix Ks was found by satisfying (31) in
combination with tuning. In addition, the boundary layer
matrix Φ was found by tuning and is shown in Table 3
among the rest of the gain matrices.

The tuning parameter of interest for the PID-AFB con-
troller is ∆K, while overestimations of the inertia and
damping matrices M and D are of interest for the SMC.
Both controllers depend on more tunable parameters as
shown in Table 2 and 3. In Table 2, the tuning parameter
∆K provides an extra virtual inertia to the vessel that
the control system uses during station keeping. This extra
virtual inertia is tested with 0 kg, 10 kg, 30 kg and 50
kg. As shown in Table 3, estimations of the inertia and
damping M̂ and D̂ are tested with 0%, +10%,+20%,
+30%,+40%, +50%, because of increased model uncer-
tainties, disturbances and added mass when Cybership 3
is exposed to extreme seas. By guessing such parameter un-
certainties, the robustifying term (28) of the SMC control
law has to dominate the errors induced by the feedforward
terms in order to achieve the control objective. Considering
that the PID-AFB strategy increases the virtual inertia of
the system, it was reasonable to make the SMC inertia
and damping matrix estimates larger than the real vessel
parameters.

Table 2: Controller parameters for Case 1, PID-AFB. d{·
· ·} denotes the diagonal matrix with values ·, ·, · on
the diagonal and zeros off the diagonal. Arrows indicate
repetitive values.

Case Kp Kd Ki Extra mass ∆K
[kg]

1a d{1.1 1 0.5} d{5 5 5} d{0.03 0.06 0.03} 0
1b d{1.1 1 0.5} d{5 5 5} d{0.03 0.06 0.03} 30

1c d{1.5 1 0.5} d{8 8 8} d{0.05 0.1 0.05} 0
1d 10
1e 30
1f 50

Table 3: Controller parameters for Case 2, SMC.
Case Λ Kd Ks Φ Uncert.

M̂ ,D̂ [%]

2a d{0.03 0.01 0.2 } d{5 5 3} d{1 1 1} d{1 1 2} 0
2b d{0.03 0.01 0.2} d{5 5 3} d{5 1.3 1.8} d{1 1 2} +30

2c d{0.06 0.03 0.02} d{13 12 5} d{1 1 1} 0
2d d{2 1.5 1.5} +10
2e d{5 1.3 1.8} +20
2f d{6 3 2} +40
2g d{7 4 2.2} +50

4.4 Performance metrics

In order to minimize error and improve PID-controller
tuning, Murrill and Smith (1984) proposed three measures
of performance, namely the integral of absolute value of
error (IAE), integral of squared error (ISE) and integral
of time multiplied by the absolute value of error (ITAE).
But instead of using IAE, ISE and ITAE for tuning
purposes, the cost functions are here used to quantify
the performance of the PID-AFB and SMC controllers
with respect to precision. Comparison of controllers with
such performance metrics have been done in earlier work
(Sørensen and Breivik, 2015). The IAE integrates the
absolute error over time and does not add any weight to
the errors:

IAE =

∫ t

0

|ε|dτ, (38)

where ε is the pose error. The ISE integrates the square
of the error over time, meaning that large errors will be



penalized more than smaller ones:

ISE =

∫ t

0

ε2dτ. (39)

The ITAE integrates the absolute error multiplied by time,
such that errors which appear far into a time series will be
penalized more than errors appearing early:

ITAE =

∫ t

0

τ |ε|dτ. (40)

In addition, a new cost function (42) is proposed, which is
the product of one of the precision performance metrics
(38)-(40) multiplied by the energy consumption of the
thrusters for every time step during the test cases. This
provides a combined measure of how precise the controller
is with the energy consumption. A DP operation is green
when the thrusters have low energy consumption and safe
when the controller provides precise pose control. With
this cost function, the measure of performance determines
if the control strategy is smart by achieving the best
possible combination of both a green and a safe operation.
By logging the power consumption from each of the three
thrusters on Cybership 3, the energy is found by:

E =

∫ t

0

Pdτ (41)

The power was found by deriving relations between mea-
sured propeller rpm together with the motor constants for
the thrusters. Defining Etot := Ethruster1 + Ethruster2 +
Ethruster3 and Υ as the measure of performance (38)-(40)
with respect to η̃, the new cost function becomes:

JΥ =

n∑
i=1

Etot,iΥi (42)

with n as the number of measurements for chosen simula-
tion time and Υ = {ISE, IAE, ITAE}.

5. EXPERIMENTAL RESULTS

Results from cases 1a-1f and 2a-2g have been evaluated by
the new performance metric (42) and are shown in Table
4. As mentioned, cases 1a-1b and 2a-2b were meant for
tuning purposes. When evaluating performance of 1a and
1b with JISE , the total cost from each case is compared
and the best result is shown in Table 4. Case 1b provided

lower total cost than Case 1a, so Case 1b is shown in the
table. Next, Case 2a and 2b has to be compared the same
way. The tuning strategies providing best performance for
PID-AFB and SMC in different sea states are compared.
Lower total cost indicates better performance.

An increase of the inertia for the PID-AFB improved the
performance for the calm sea state. The SMC provided
best performance with no overestimations of the inertia
and damping, acting as a pure PID controller.

However, when exposing the vessel to extreme seas, the
control strategies for PID-AFB and SMC had to be
changed. As shown in Table 4, increasing the inertia and
uncertainties with the PID-AFB and SMC controllers pro-
vided better performance.

Table 4: The best performance out of all test cases for PID-
AFB and SMC. Tests performed in the calm sea state are
shown above the mid line while tests performed in extreme
seas are shown below. The gray/white marked rows are
test cases evaluated by the same performance metric.

Cost Sea Controller Extra Mass/ Case Total
Type State Type Uncertainty Cost

[kg] / [%] JΥ

JISE PID-AFB 30 1b 0.04
JISE SMC 0 2b 0.02
JIAE Hs = 0.03 m PID-AFB 30 1b 2.18
JIAE Tp = 0.8 s SMC 0 2a 1.55
JITAE PID-AFB 30 1b 356
JITAE SMC 0 2a 268

JISE PID-AFB 30 1e 0.29
JISE SMC 40 2f 0.15
JIAE Hs = 0.1 m PID-AFB 30 1e 7.01
JIAE Tp = 1.5 s SMC 40 2f 5.16
JITAE PID-AFB 30 1e 1267
JITAE SMC 40 2f 960

By examining Table 4, the SMC is seen to provide the best
performance overall compared with PID-AFB control. In
particular, Case 2f gave the best set of tuning parameters
and an excerpt from the pose time series is shown in Figure
3 where the SMC was tuned with +40% uncertainty of the
inertia and damping matrices. The controller is able to
maintain a stable oscillation around the desired pose (red
line). The heading shows that the vessel experiences wave
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Fig. 3. Pose from Case 2f, SMC with +40% uncertainty of M and D. Significant wave height Hs = 0.1 m and peak
period of wave Tp = 1.5 s. Marked intervals shows oscillations as a result of wave trains.



trains that may be observed by the oscillations during the
periods 42-105 s and 195-305 s.

6. CONCLUSION

PID with acceleration feedback and sliding mode control
were designed and implemented on the model-scale ship
Cybership 3 in the Marine Cybernetics Laboratory at
the Norwegian University of Science and Technology. The
performance of the controllers were compared when oper-
ating with ship station keeping in extreme seas using new
performance metrics combining pose accuracy with energy
consumption. Sliding mode control provided the best per-
formance when overestimating the inertia and damping
matrices by +40%. For future work, the test cases may be
extended by exposing Cybership 3 to waves encountering
the vessel in more challenging angles than directly towards
the bow. For example, waves may encounter the vessel at
30 degrees off the bow from either side. In addition, more
uncertainties and estimations of the inertia and damping
matrices may be tested.
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