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Abstract: Nonlinear control algorithms are often designed with linear feedback terms. Such
linear feedback typically gives rise to nice exponential stability properties, but are not physically
realistic since all actuators have magnitude constraints. One way to address such constraints
can be to introduce nonlinear feedback terms. Hence, this paper investigates combinations of
linear and nonlinear feedback terms for pose and velocity control of marine surface vessels. Three
cascaded controllers are developed and compared through three simulation scenarios and one
model-scale experiment. The comparisons are made using performance metrics which consider
both control accuracy and energy use.
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1. INTRODUCTION

Automatic motion control of marine surface vessels has
been a research topic since the early 20th century. In recent
years, the research has expanded from control of manned
vessels to also include unmanned vessels. However, many
motion control algorithms found in the literature do not
inherently consider physical saturation constraints for the
actuators. For example, the nonlinear control algorithms in
(Fossen and Strand, 1999),(Fossen, 2000), (Refsnes et al.,
2008), (Fossen, 2011) and (Chen et al., 2013) are all de-
signed with linear feedback terms.

This paper therefore investigates combinations of linear
and nonlinear feedback terms for pose and velocity con-
trol of marine surface vessels. In particular, the nonlinear
feedback terms are developed based on constant bearing
(CB) guidance principles, inspired by the guided dynamic
positioning approach originally suggested in (Breivik et al.,
2006). Further inspiration has been found in (Breivik and
Fossen, 2007) on the concept of guided motion control, as
well as in (Breivik and Fossen, 2009). Also, the concept
of CB guided motion control was employed in (Breivik
and Loberg, 2011) for a virtual target-based underway
docking control system, achieving docking of an unmanned
surface vehicle with a mother ship moving in transit at sea.
Similarly, a CB guided heading controller was designed in
(Skejic et al., 2011) in order to maneuver a ship around a
floating object in deep and calm water under the influence
of a uniform current.

Specifically, three cascaded controllers are developed in the
paper, where the feedback connection between pose and

velocity which is traditionally found in backstepping con-
trol design has been removed. The controllers respectively
employ linear feedback for both the pose and velocity con-
trol errors (LP-LV), nonlinear feedback for the pose control
error and linear feedback for the velocity control error (NP-
LV), as well as nonlinear feedback for both the pose and
velocity control errors (NP-NV). The performance of the
controllers are compared through three simulation scenar-
ios and one model-scale experiment, where the compar-
isons are made using performance metrics which consider
both control accuracy and energy use.

The structure of the paper is as follows: A mathematical
vessel model and assumptions are presented in Section 2;
Section 3 presents the design of three different cascaded
control laws inspired by backstepping and CB guidance;
Section 4 includes simulation results, experimental results
and a performance evaluation; while Section 5 concludes
the paper.

2. MARINE SURFACE VESSEL MODEL

The motion of a surface vessel can be represented by the

pose vector η = [x, y, ψ]
> ∈ R2 × S and the velocity

vector ν = [u, v, r]
> ∈ R3, where S ∈ [−π, π]. Here, (x, y)

represents the Cartesian position in the local earth-fixed
reference frame, ψ is the yaw angle, (u, v) represents the
body-fixed linear velocities and r is the yaw rate. The 3
degrees-of-freedom dynamics of a surface vessel can then
be stated as (Fossen, 2011):

η̇ = R(ψ)ν (1)

Mν̇ +C(ν)ν +D(ν)ν = τ , (2)

where



R(ψ) =

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
(3)

is a rotation matrix R ∈ SO(3), and where M, C(ν),
D(ν) and τ represent the inertia matrix, Coriolis and
centripetal matrix, damping matrix and control input vec-
tor, respectively. Here, the system matrices are assumed to
satisfy the properties M = M> > 0, C(ν) = −C(ν)> and
D(ν) > 0.

Since this paper focuses on fundamental motion control
aspects, it is assumed that both the pose vector η and
velocity vector ν can be measured, and that no distur-
bances and uncertainties are affecting the system. Such
assumptions will be relaxed and investigated elsewhere.

3. FEEDBACK CONTROL DESIGN

The control objective is to make η̃(t)
4
= η(t) − ηt(t) → 0

as t → ∞, where ηt(t) = [xt(t), yt(t), ψt(t)]
> ∈ R2 × S

represents the pose associated with a target point which
is C2 and bounded. The motion of the target is typically
defined by a human or generated by a guidance system.

The control design is divided into two stages, including
definition of new state variables and deriving the control
laws through control Lyapunov functions (CLFs). The de-
sign is similar to the backstepping method, which has been
applied in e.g. (Fossen and Strand, 1999) and (Sørensen
and Breivik, 2015), but omits the coupling between the
pose and velocity control loops, resulting in a cascade
system. This cascade system represents a classical inner-
outer loop guidance and control structure, where the outer
loop handles the kinematics and the inner loop handles the
vessel kinetics. The total system can then be analysed by
cascade theory (Lamnabhi-Lagarrigue et al., 2005).

In particular, it is desirable to investigate the effect of
using nonlinear feedback terms, inspired by CB guidance
(Breivik and Fossen, 2009), compared to standard linear
feedback terms. Consequently, we investigate three combi-
nations of linear and nonlinear feedback terms.

For notational simplicity, the time t is omitted in the rest
of this section.

3.1 Linear Pose and Velocity Feedbacks

Start by defining the error variables z1 and z2:

z1
4
= R>(ψ)(η − ηt) (4)

z2
4
= ν −α, (5)

where α ∈ R3 is a vector of stabilising functions, which
can be interpreted as a desired velocity and which is to be
designed later.

Kinematic Control
Choosing the positive definite CLF

V1
4
=

1

2
z>1 z1, (6)

the derivative of V1 with respect to time along the z1-
dynamics gives

V̇1 = z>1 ż1

= z>1 (S(r)>R>(ψ)(η − ηt) + R>(ψ)(η̇ − η̇t))
= z>1 (S(r)>z1 + R>(ψ)(η̇ − η̇t)), (7)

where

S(r) =

[
0 −r 0
r 0 0
0 0 0

]
(8)

is a skew-symmetric matrix satisfying z>1 S(r)>z1 = 0,
which gives

V̇1 = z>1 (ν −R>(ψ)η̇t). (9)

Using (5), the CLF becomes

V̇1 = z>1 (z2 +α−R>(ψ)η̇t)

= z>1 z2 + z>1 (α−R>(ψ)η̇t), (10)

where the stabilising function can be chosen as

α = R>(ψ)η̇t −K1z1 (11)

with K1 > 0, which results in

V̇1 = −z>1 K1z1 + z>1 z2. (12)

It can be concluded that the origin of z1 is uniformly
globally exponentially stable (UGES) when seeing z2 as
an input with z2 = 0. Consequently, it can be concluded
by Lemma 4.6 from (Khalil, 2002) that the subsystem

ż1 = S(r)>z1 −K1z1 + z2 (13)

is input-to-state stable (ISS). Note that (12) shows that
S(r) in (13) does not affect the ISS property.

Kinetic Control
The z2-dynamics can be written as

Mż2 =M(ν̇ − α̇)

=τ −C(ν)ν −D(ν)ν −Mα̇, (14)

where the time derivative of (11) becomes

α̇ =R>(ψ)η̈t + S(r)>R>(ψ)η̇t −K1ż1 (15)

where ηt is the pose of the target point and ż1 given by
(13). The CLF for z2 is then defined as

V2
4
=

1

2
z>2 Mz2. (16)

Simplifying C(ν) = C, D(ν) = D, R(ψ) = R and S(r) =
S for notational brevity, the derivative of (16) becomes

V̇2 =z>2 Mż2

=z>2 (τ −Cν −Dν −Mα̇). (17)

The control input can be chosen as

τ =Mα̇+ Cν + Dν −K2z2, (18)

where K2 > 0, which results in

V̇2 = −z>2 K2z2 < 0, (19)

which makes the origin of the z2-dynamics

ż2 = −M−1K2z2 (20)

UGES.

It should be noted that it is possible to choose τ in (18)
as e.g.

τ =Mα̇+ Cα+ Dα−K2z2, (21)



but this choice is not desirable since it changes (20) to

ż2 = −M−1(C + D + K2)z2, (22)

where the convergence rate of the z2-dynamics becomes
influenced by the vessel C and D matrices.

Stability Analysis
The total closed-loop dynamics become

ż1 = S>z1 −K1z1 + z2 (23)

ż2 = −M−1K2z2. (24)

Since the origins of both subsystems are UGES if the
z1-dynamics in (23) is unperturbed (z2 = 0), and the
kinematic control loop has linear growth in the pertur-
bation term z2, all the conditions of Theorem 2.1 and
Proposition 2.3 from (Lamnabhi-Lagarrigue et al., 2005)
are satisfied, and therefore the origin of the overall system
(z1, z2) = (0,0) is UGES.

3.2 Nonlinear Pose Feedback and Linear Velocity Feedback

We now introduce nonlinear pose feedback inspired by
constant bearing (CB) guidance, which was originally used
for vessel control in (Breivik et al., 2006). CB guidance
is a so-called two-point guidance scheme developed for
interceptor missiles, where the interceptor is supposed to
align the relative interceptor-target velocity along the line-
of-sight (LOS) vector between the interceptor and the
target.

The most common method of implementing CB guidance
is to make the rotation rate of the interceptor velocity di-
rectly proportional to the rotation rate of the interceptor-
target LOS, which is widely known as proportional nav-
igation. However, CB guidance can also be implemented
through the direct velocity assignment

vd = vt − κ
p̃

||p̃||
, (25)

where vt ∈ R2 is the target velocity and

p̃
4
= p− pt (26)

is the LOS vector between the interceptor position p =
[x, y]> and the target position pt = [xt, yt]

>, such that

||p̃|| 4=
√

p̃>p̃ ≥ 0, (27)

is the Euclidean length of p̃. Additionally, κ ≥ 0, which
can be chosen as

κ = Ua,max
||p̃||√

p̃>p̃ + ∆2
p̃

, (28)

where Ua,max > 0 represents the maximum approach
speed toward the target and ∆p̃ > 0 is a tuning parameter
which affects the transient convergence behavior between
the interceptor and target. The concept of using such
nonlinear feedback is shown in Fig. 1.

By introducing nonlinear feedback based on CB guidance
to the controller, the stabilising function can now be
chosen as

α = R>η̇t −K1(z1,∆i)z1, (29)
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Fig. 1. LF is a linear feedback term as a function of the
control error e, while NF is a nonlinear feedback term
based on a sigmoid function of e

where

K1(z1,∆i) = K1


1√

z>1,p̃z1,p̃ + ∆2
p̃

I2×2 02×1

01×2
1√

z2
1,ψ̃

+ ∆2
ψ̃


(30)

and K1 > 0 as before, z1,p̃
4
= [z1,1, z1,2]>, z1,ψ̃

4
= z1,3,

∆p̃ > 0 and ∆ψ̃ > 0. However, it is also possible to choose

K1(z1,∆i) = K1

[
1√

z>1 z1 + ∆2
I3×3

]
, (31)

if ∆p̃ = ∆ψ̃ = ∆ > 0, but then it is not possible to define a
different transient behavior for the position and heading.

Choosing (30) leads to

α̇ =R>η̈t + S>R>η̇t − K̇1(z1,∆i)z1 −K1(z1,∆i)ż1,
(32)

where

K̇1(z1,∆i) =−K1


z>1,p̃ż1,p̃I2×2

(z>1,p̃z1,p̃ + ∆2
p̃)

3
2

02×1

01×2
z1,ψ̃ ż1,ψ̃

(z2
1,ψ̃

+ ∆2
ψ̃

)
3
2

 .
(33)

Stability Analysis
The total closed-loop dynamics now changes to

ż1 = S>z1 −K1(z1,∆i)z1 + z2 (34)

ż2 = −M−1K2z2. (35)

Here, we can see that

||z1|| � 1⇒ ż1 = S>z1 −K1 + z2 (36)

and

||z1|| ≈ 0⇒ ż1 = S>z1 −K1


1

∆p̃
I2×2 02×1

01×2
1

∆ψ̃

 z1 + z2.

(37)



Hence, by introducing nonlinear pose feedback, the sta-
bility of the origin of the unperturbed z1 subsystem is
changed to uniform semiglobal exponential stability (US-
GES), since the values ∆i in (30) can be chosen arbitrarily
large, see also Theorem 1 in (Fossen and Pettersen, 2014).
This also changes the stability of the origin of the total
system to USGES.

3.3 Nonlinear Pose and Velocity Feedbacks

We now also introduce nonlinear velocity feedback, which
changes the control law (18) to

τ =Mα̇+ Cν + Dν −K2(z2,∆i)z2, (38)

where

K2(z2,∆i) = K2


1√

z>2,ṽz2,ṽ + ∆2
ṽ

I2×2 02×1

01×2
1√

z22,r̃ + ∆2
r̃


(39)

with K2 > 0 as before, and where z2,ṽ and z2,r̃ are defined

as z2,ṽ
4
= [z2,1, z2,2]> , z2,r̃

4
= z2,3, ∆ṽ > 0 and ∆r̃ > 0.

Stability Analysis
The total closed-loop dynamics become

ż1 = S>z1 −K1(z1,∆i)z1 + z2 (40)

ż2 = −M−1K2(z2,∆i)z2. (41)

The stability of the origin of the z2 subsystem is now
also changed to USGES, and utilizing Theorem 2.1 and
Proposition 2.3 from (Lamnabhi-Lagarrigue et al., 2005),
it can be concluded that the origin of the total system is
USGES.

4. SIMULATION AND EXPERIMENTAL RESULTS

The model-scale ship Cybership Enterprise I, with pa-
rameters from (Sandved, 2015), will be used to test the
performance of the proposed motion controllers through
both numerical simulations in Matlab and model-scale
experiments in an ocean basin. Cybership Enterprise I
is a 1:70 scale replica of a supply ship, with a length
of L = 1.105 (m). It is fully actuated with two Voith-
Schneider propellers aft and one bow thruster. We have
limited the output of the actuators such that they can only
produce a maximum of 2.0 (N) in surge and sway and 1.5
(Nm) in yaw. Hence, the commanded control input with
saturation τ s is bounded as follows

τs,i(τi) =

{
τi,min if τi ≤ τi,min
τi if τi,min < τi < τi,max

τi,max if τi ≥ τi,max
, ∀i ∈ {1, 2, 3}

(42)

where τ is the commanded control input without satura-
tion, such as in (18) and (38), while τmin = [τ1,min, τ2,min,
τ3,min]> with negative and bounded elements and τmax =
[τ1,max, τ2,max, τ3,max]> with positive and bounded ele-
ments, which represent the magnitude saturation limits.
Details about the ship are given in (Sandved, 2015). The
experiment is conducted in the Marine Cybernetics Lab-
oratory (MCLab) at NTNU, where it is possible to get

accurate pose measurement through a Qualisys motion
capture system.

In this section, the abbreviation LP-LV refers to linear
feedback for both the pose and velocity control errors, NP-
LV refers to nonlinear feedback for the pose control error
and linear feedback for the velocity control error, while
NP-NV refers to nonlinear feedback for both the pose and
velocity control errors.

Performance Metrics
To evaluate and compare the performance of the different
controllers, some performance metrics must be used.
For this, we will use the norm of the pose error e, which
can be calculated by

e(t)
4
=
√
η̃(t)>η̃(t). (43)

The performance metric IAE (integral of the absolute
error) is then

IAE(t)
4
=

∫ t

0

|e(τ)|dτ, (44)

which simply integrates the temporal evolution of the
absolute value of the error without adding any weight to
the error. We will also use the integral of the absolute error
multiplied by the energy consumption (IAEW), which was
proposed earlier in (Sørensen and Breivik, 2015). The
IAEW can be computed as

IAEW (t)
4
=

∫ t

0

|e(τ)|dτ
∫ t

0

P (τ)dτ, (45)

where

P (t) = |ν(t)>τ (t)| (46)

represents the mechanical power. IAEW thus indicates
which controller has the best combined control accuracy
and energy use through one single metric.

4.1 Simulation Results for Straight-Line Motion Control

For a straight-line target motion, the target pose ηt(t) is
derived from

ηt(t) = [xt(t), yt(t), ψt]
>
, (47)

where

xt(t) = 1 + vtt cos(ψt) (48)

ẋt(t) = vt cos(ψt), (49)

and

yt(t) = vtt sin(ψt) (50)

ẏt(t) = vt sin(ψt), (51)

where ψt is a constant.

The reference target has a constant speed vt = 0.15 (m/s)
and v̇t = 0. Hence, the acceleration of the target point
is ẍt(t) = 0 and ÿt(t) = 0. For the full-scale vessel, this
corresponds to 1.275 m/s using the Bis scale (Fossen,
2011). Also, the straight-line trajectory has a constant
orientation relative to the x-axis ψt = 0.9273 (rad), which
is equivalent to 53 (deg).

The initial condition of the target pose is chosen to be
ηt(0) = [1 (m), 0 (m), 0.9273 (rad)]> and η̇t(0) = [0.09



(m/s), 0.12 (m/s), 0 (rad/s)]>.

In the following, we consider three simulation scenarios to
compare and evaluate the different controllers.

Scenario 1: Non-Saturated Control Inputs
The initial vessel states are chosen to be η(0) = [0.5
(m), 0 (m), π/8 (rad)]> and ν(0) = [0 (m/s), 0 (m/s), 0
(rad/s)]>, which leads to ||z1(0)|| = 0.7320, ||z2(0)|| =
0.1961 for LP-LV and ||z2(0)|| = 0.2262 for NP-LV and
NP-NV. Notice that α is changed when nonlinear feed-
back terms are introduced, which also affects ||z2(0)||. The
normed pose error starts at e(0) = 0.7320. The constant
gain matrices K1 and K2 are chosen such that the LP-LV
controller does not saturate, and hence neither the NP-LV
nor NP-NV controllers, see Table 1.

LP-LV NP-LV NP-NV

K1 diag([0.13, 0.13, 0.01]) −||− −||−

K2 diag([7, 8, 6]) −||− −||−

∆p̃,ψ̃ - [0.4 , 0.2] [0.4 , 0.2]

∆ṽ,r̃ - - [0.97 , 0.2]

Table 1. Control gains for scenarios 1 and 2

In Fig. 2, the vessel and target pose outlines are plotted
to show the transient convergence behavior. Here, the
blue outline represents the LP-LV-controlled vessel, the
dash-dotted black outline represents the NP-LV-controlled
vessel, the dashed green outline represents the NP-NV-
controlled vessel, while the red outline represents the tar-
get.
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Fig. 2. Scenario 1: The vessel tracking the target moving
in a straight-line motion

Fig. 3a illustrates the normed pose error e scaled by the
vessel length L, showing that all the controllers are able to
track the target. It is worth noting that the introduction
of nonlinear feedback control terms lead to significantly
faster convergence despite identical gain matrices K1 and
K2 for all the controllers.

The phase-portrait relation between the normed error
variables z1 and z2 is shown in Fig. 3b. Here, we can
see that the controllers with nonlinear feedback terms are
able to reduce the initial increase in z1 faster than the pure
linear feedback controller, and achieve a sharper trajectory
toward the origin of the z-dynamics.
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The commanded control inputs in Fig. 4 show that all
the controllers stay below the saturation limits of 2.0 (N)
in surge and sway and 1.5 (Nm) in yaw, which was the
criterium when choosing the gain matrices K1 and K2.
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Fig. 4. Scenario 1: The commanded control inputs and
force/moment saturation limits

Fig. 5 shows the performance metrics IAE and IAEW for
Scenario 1. In particular, Fig. 5a confirms the fact that the
nonlinear feedback controllers have the fastest transient
response since they quickly establish the smallest IAE
value. In addition, Fig. 5b shows that these controllers
have the significantly smallest value for combined control
accuracy and energy use, thus achieving the best overall
control performance for this scenario.
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Scenario 2: Large Initial Errors
By increasing the initial pose error, we can see how sensi-
tive the controllers are to variations in this error. For this
scenario, the initial pose of the vessel is therefore changed
to η(0) = [−3 (m),−1.4 (m), 0.6π (rad)]>, which changes
the initial errors to e(0) = 4.3448, ||z1(0)|| = 4.3448,
||z2(0)|| = 0.6807 for LP-LV and ||z2(0)|| = 0.2675 for
NP-LV and NP-NV. The control gains remain unchanged,
as in Table 1.
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Fig. 6a shows that the LP-LV-controlled vessel has the
fastest convergence of the normed pose error until about
40 s. However, as seen in Fig. 7, this can be explained by
the fact that the LP-LV controller significantly exceeds the
saturation limits, which makes it more sensitive to changes
in the control errors than its nonlinear counterparts. Fig.
8 is particularly interesting since the IAEW metric shows
that the nonlinear feedback controllers achieve a smaller
value even from the start, thus achieving the best overall
control performance also for this scenario, while staying
within the saturation bounds.

0 50 100 150

0.5

1

1.5

2

τ
1
[N

]

 

 

LP−LV

NP−LV

NP−NV

Max/min limits

0 50 100 150

−6

−4

−2

0

2

τ
2
[N

]

0 50 100 150

0

0.5

1

1.5

Time [s ]

τ
3
[N

m
]

Fig. 7. Scenario 2: The commanded control inputs and
force/moment saturation limits
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Fig. 8. Scenario 2: IAE and IAEW performance metrics

Scenario 3: Adjusted Nonlinear Gain Parameters
The control parameter ∆ is usually known as the looka-
head distance in LOS-based control (Breivik and Fossen,
2009). In (Pavlov et al., 2009) it is shown that a small
∆-value corresponds to fast convergence to the path, but
with a large overshoot. At the same time, a large ∆-
value reduces overshoot and results in smooth but slow
convergence. In this scenario, we will investigate the effects
of changing the ∆i parameters for the nonlinear feedback
controllers. The initial pose of the vessel is the same as
in Scenario 1, with η(0) = [0.5 (m), 0 (m), π/8 (rad)]>,
which means that the initial errors become e(0) = 0.7320,
||z1(0)|| = 0.7320, ||z2(0)|| = 0.1961 for LP-LV and
||z2(0)|| = 0.2305 for NP-LV and NP-NV. The updated
control gains can be seen in Table 2.

LP-LV NP-LV NP-NV

K1 diag([0.13, 0.13, 0.01]) −||− −||−

K2 diag([7, 8, 6]) −||− −||−

∆p̃,ψ̃ - [0.35 , 0.01] [0.4 , 0.2]

∆ṽ,r̃ - - [0.8 , 0.02]

Table 2. Control gains for Scenario 3

Comparing tables 1 and 2, the parameters ∆p̃ and ∆ψ̃ have
been decreased for the NP-LV controller, which means that



the region of exponential convergence is decreased. This
can be seen in Fig. 9a where the convergence behavior
becomes almost discontinuous, which would be unrealistic
for a vessel with actuator rate constraints. By not changing
the ∆p̃,ψ̃ parameters and decreasing the ∆ṽ,r̃ parameters
for the NP-NV controller, Fig. 10 shows a slight violation
of the saturation limit of τ1. However, both nonlinear feed-
back controllers continue to perform significantly better
than their linear counterpart, as shown in Fig. 11.
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Fig. 9. Scenario 3: The normed pose error scaled by the
vessel length (top) and the phase portrait of the
normed z-dynamics (bottom)
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Fig. 10. Scenario 3: The commanded control inputs and
force/moment saturation limits

4.2 Experimental Result for Point Stabilisation

The LP-LV and NP-NV controllers have been implemented
and experimentally tested for the model-scale ship Cyber-
ship Enterprise I in the Marine Cybernetics Laboratory
at NTNU, for a scenario concerning point stabilisation
toward a stationary target, where the initial vessel states
are η(0) = [0 (m), 0 (m), 0 (rad)]> and ν(0) = [0
(m/s), 0 (m/s), 0 (rad/s)]>, while the initial target pose is
ηt(0) = [2 (m), 2 (m), 1.6 (rad)]>. The control parameters
are given in Table 3.
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Fig. 11. Scenario 3: IAE and IAEW performance metrics

LP-LV NP-NV

K1 diag([0.2, 0.2, 0.04]) −||−

K2 diag([7, 8, 6]) −||−

∆p̃,ψ̃ - [0.4 , 0.2]

∆ṽ,r̃ - [0.97 , 0.9]

Table 3. Control gains for the experiment

Fig. 12 shows the transient convergence behavior of the
LP-LV-controlled vessel outlined in blue, and the NP-NV-
controlled vessel outlined in dashed green, where the dots
indicate the final position. For easier viewing, the size of
the plotted vessel outline has been made smaller than the
real one. As can be seen, the nonlinear feedback controller
gives a smooth and energy-efficient motion toward the
target, while its linear counterpart moves almost sideways
in the beginning, only changing heading toward the end.
The final steady-state error is due to a poorly designed
control allocation, which means that the actual output
from the actuators is zero even though the controllers
command a non-zero output, which can be seen in Fig.
13. This figure also shows that the LP-LV controller’s
commands exceed the saturation limits in the beginning,
resulting in a rapid-as-possible convergence toward the
target, which can also be observed through the IAE metric
in Fig. 14a. However, the NP-NV controller still has the
best overall performance as shown by the IAEW metric
in Fig. 14b, and the NP-NV-controlled ship is seen to be
located closer to the target at the end.

5. CONCLUSION

This paper has investigated combinations of linear and
nonlinear feedback terms for pose and velocity control of
marine surface vessels. Three cascaded controllers were
developed and compared through numerical simulations
and a model-scale experiment. Two performance metrics
were used to compare the behavior of the controllers.
Interestingly, the nonlinear feedback controllers outper-
formed their linear counterpart in all scenarios, concerning
both the handling of actuator saturation limits and the
combined performance of control accuracy and energy
use. Another lesson is that the nonlinear gain parameters
should not be chosen too small. Future work includes in-
troducing model uncertainties and unknown disturbances
to the vessel system. It is also relevant to consider actuator
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Fig. 12. Experiment: Vessel point stabilisation
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force/moment saturation limits

0 20 40 60 80 100
0

50

100

I
A
E

 

 

LP−LV

NP−NV

0 20 40 60 80 100
0

100

200

300

I
A
E
W

Time [s ]

 

 

LP−LV

NP−NV

Fig. 14. Experiment: IAE and IAEW performance metrics

rate saturation in addition to magnitude saturation, and
thus investigate the effect of time-varying ∆i-parameters.
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