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Abstract: This paper deals with the design and evaluation of four controllers based on
backstepping and different adaptive control schemes, which are applied to the motion control
of a nonlinear 3 degrees-of-freedom model of a marine surface vessel. The goal is to make
a comparative analysis of the controllers in order to find out which one has the best
performance. The considered controllers are: Adaptive backstepping, adaptive backstepping with
command governor, L1 adaptive backstepping and L1 adaptive backstepping with command
governor. Numerical simulations are performed for target tracking along both straight-line and
circular paths, with uncertain model parameters and an unknown disturbance. Motion control
performance is evaluated by performance metrics such as IAE, ISE, ITAE and a novel metric
named IAEW which combines control accuracy and energy use in one single metric.
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1. INTRODUCTION

Automated motion control of marine surface vessels has
been a research topic since the early 20th century. In recent
years, the research has expanded from control of manned
vessels to also include unmanned vessels. When dealing
with surface vessels in general, uncertain nonlinear hydro-
dynamics and external disturbances must be considered.
To minimise uncertainties, experiments can be conducted
to find the hydrodynamical coefficients. Changes in co-
efficients nevertheless occur. Also, external disturbances
are difficult or impossible to measure. Adaptive control
methods can be employed to deal with such uncertainties
such that the vessel can still achieve its control objectives.

Even though the field of adaptive control dates back to
the early 1950s, it has experienced an increased amount
of interest and research effort during the last decade.
This effort has lead to some new and promising control
techniques such as L1 adaptive control (Hovakimyan and
Cao, 2010) and the novel command governor architecture
for adaptive stabilization and command following (Yucelen
and Johnson, 2012a).

The L1 adaptive control method has been used in many
fields, especially within aerial applications (Patel et al.,
2007), where parameters can change very rapidly. How-
ever, it has still not been widely used for motion control
of marine vessels. Examples include (Breu and Fossen,
2011), where L1 adaptive control was applied to deal with
the parametric resonance problem for ships. In (Svendsen
et al., 2012), an adaptive robust control system was de-
veloped to govern the steering of a high-speed unmanned
watercraft maintaining uniform performance across the
operational envelope. Based on these results, the authors

in (Theisen et al., 2013) developed an L1 adaptive hovering
control of an unmanned watercraft in a station-keeping
mode. In addition, (Ren et al., 2014) used L1 adaptive
control to improve the steering of a surface vessel along a
predefined path.

In (Yucelen and Johnson, 2012a), a linear command gover-
nor was combined with the model reference adaptive con-
trol method to improve transient performance. In (Yuce-
len and Johnson, 2012b), a lowpass filter was applied to
achieve a more robust adaptive control solution. Also, con-
strained adaptive control was combined with the command
governor in (Schatz et al., 2013).

This paper will compare and evaluate the performance of
the adaptive backstepping control method (Krstic et al.,
1995) and the L1 adaptive backstepping control method
applied to nonlinear motion control of marine surface
vessels. In addition, it will be investigated if it is possible
to improve the performance of these control methods
by combining them with a modified command governor
architecture.

The structure of this paper is as follows: A mathematical
model and assumptions are presented in Section 2; Section
3 presents the design of the adaptive control laws applied
to the vessel model; Section 4 includes simulation results
and performance evaluation; while Section 5 concludes the
paper.

2. SURFACE VESSEL MODEL

The motion of a surface vessel can be represented by the

pose vector η = [x, y, ψ]
> ∈ R2 × S and the velocity

vector ν = [u, v, r]
> ∈ R3, where S ∈ [−π, π]. Here, (x, y)



represents the Cartesian position in the local reference
frame, ψ is the yaw angle, (u, v) represents the body-fixed
linear velocities and r is the yaw rate.

The 3 DOF dynamics of a surface vessel can be stated as
(Fossen, 2011):

η̇ = R(ψ)ν (1)

M∗ν̇ +C∗(ν)ν +D∗(ν)ν = τ∗ + R>(ψ)w∗, (2)

where

R(ψ) =

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
(3)

is a rotation matrix R ∈ SO(3), and where M∗, C∗(ν),
D∗(ν), τ∗ and w∗ represent the real inertia matrix,
Coriolis and centripetal matrix, damping matrix, control
input vector and disturbance vector, respectively. Here,
the system matrices are assumed to satisfy the properties
M∗ = M∗> > 0, C∗(ν) = −C∗(ν)> and D∗(ν) > 0.

However, there are uncertainties associated with the real
matrices and vectors. Therefore, we assume that the rela-
tionship between the real and considered system matrices
is parametrised as

M∗ = δM, (4)

C∗(ν) = δC(ν), (5)

D∗(ν) = σD(ν), (6)

τ∗ = ρτ , (7)

where δ ∈ R+ is the uncertainty associated with the inertia
matrix, σ ∈ R+ is the uncertainty associated with the
damping matrix and ρ ∈ R+ is the uncertainty associated
with the control input vector. Additionally, it is assumed
that δ̇ = 0, σ̇ = 0, ρ̇ = 0 and ẇ∗ = 0, i.e., that
the uncertainties and disturbance are constant or slowly
varying relative to the vessel dynamics.

Applying (4)-(7) into (2), the vessel model can also be
stated as

η̇ = R(ψ)ν (8)

δ[Mν̇ + C(ν)ν] + σD(ν)ν = ρτ + R>(ψ)w∗. (9)

3. NONLINEAR ADAPTIVE MOTION
CONTROLLERS

In this section, a step-by-step design procedure for the
different nonlinear adaptive motion controllers will be
presented. It is assumed that both the pose vector η
and velocity vector ν can be measured. In addition, it is
assumed that there are no magnitude or rate saturations
for the control input τ ∗.

The control objective is to make |η(t)−ηd(t)| → 0, where
ηd(t) is C2 and bounded. This reference signal is typically
defined by a human or generated by a guidance system.

3.1 Adaptive Backstepping

The design approach of an adaptive backstepping con-
troller is divided into several stages, including the def-
inition of new state variables, finding the control law
through control Lyapunov functions (CLF) and designing
the adaptation laws. For notational simplicity, the time t is
omitted. The design procedure of this approach is inspired

by (Krstic et al., 1995), (Fossen and Strand, 1999) and
(Fossen, 2011).

Start by defining the error variables z1 and z2:

z1
4
= R>(ψ)(η − ηd) (10)

z2
4
= ν −α, (11)

where α ∈ R3 is a vector of stabilising functions to be
designed.

Step 1:
Choosing a positive definite (CLF)

V1 =
1

2
z>1 z1, (12)

the derivative of V1 with respect to (w.r.t) time along the
z1-dynamics gives

V̇1 = z>1 ż1

= z>1 (S(r)>R>(ψ)(η − ηd) + R>(ψ)(η̇ − η̇d))
= z>1 (S(r)>z1 + R>(ψ)(η̇ − η̇d)),

where

S(r) =

[
0 −r 0
r 0 0
0 0 0

]
,

and by applying the skew-symmetric property z>1 S(r)>z1
= 0, gives

V̇1 = z>1 (ν −R>(ψ)η̇d).

Using (11), the CLF becomes

V̇1 = z>1 (z2 +α−R>(ψ)η̇d)

= z>1 z2 + z>1 (α−R>(ψ)η̇d).

The stabilising function can now be chosen as

α = R>(ψ)η̇d −K1z1, (13)

where K1 > 0, which results in

V̇1 = −z>1 K1z1 + z>2 z1,

which concludes Step 1.

Step 2:
By defining

δρ
4
=
δ

ρ
, σρ

4
=
σ

ρ
, w∗ρ =

1

ρ
w∗, (14)

the z2 dynamics can be written as

δρMż2 =δρM(ν̇ − α̇)

=τ + R>(ψ)w∗ρ − δρC(ν)ν − σρD(ν)ν − δρMα̇,

where

α̇ =R>(ψ)η̈d + S(r)>R>(ψ)η̇d −K1ż1.

By including both z1 and z2, the CLF is modified to

V2 =
1

2
z>2 δρMz2 + V1. (15)

Rewriting C(ν) = C, D(ν) = D and R(ψ) = R for nota-
tional brevity, the derivative of this CLF is

V̇2 =z>2 δρMż2 + V̇1,

=z>2 [τ + R>w∗ρ − δρCν − σρDν − δρMα̇]

− z>1 K1z1 + z>2 z1.

Utilising the fact that ν = z2 +α, we obtain

V̇2 =z>2 [z1 + τ + R>w∗ρ − δρCα− σρDα− δρMα̇]

− z>1 K1z1 − z>2 δρCz2 − z>2 σρDz2.



Applying the skew-symmetric property z>2 δρCz2 = 0,
yields

V̇2 =z>2 [z1 + τ + R>w∗ρ − δρCα− σρDα− δρMα̇]

− z>1 K1z1 − z>2 σρDz2.

The control law can be chosen as

τ =−R>w∗ρ + δρ[Mα̇+ Cα] + σρDα

− z1 −K2z2, (16)

where K2 > 0. This results in

V̇2 = −z>1 K1z1 − z>2 (K2 + σρD)z2 ≤ 0.

Step 3:
The parameters δρ, σρ andw∗ρ are not known in the control
laws in (16), and the CLF is expanded to

V3 =
1

2

[
1

γδρ
δ̃2ρ +

1

γσρ

σ̃2
ρ +

1

γwρ

w̃ρ
>w̃ρ

]
+ V2, (17)

where γδρ , γσρ
and γwρ

are the adaptation gains. Also,

δ̃ρ
4
= δ̂ρ− δρ, σ̃ρ

4
= σ̂ρ−σρ, w̃ρ

4
= ŵρ−w∗ρ. The derivative

of V3 then becomes

V̇3 =
1

γδρ
δ̃ρ

˙̂
δρ +

1

γσρ

σ̃ρ ˙̂σρ +
1

γwρ

w̃ρ
> ˙̂wρ + z>2 [δ̃ρ(Mα̇+ Cα)

+ σ̃ρ(Dα)− (K2 + σρD)z2 −R>w̃ρ]− z>1 K1z1.

To eliminate the uncertainty terms δ̃ρ and σ̃ρ, the update
laws are chosen as

˙̂
δρ =− γδρz>2 [Mα̇+ Cα], (18)

˙̂σρ =− γσρ
z>2 Dα, (19)

˙̂wρ =γwρRz2, (20)

which results in

V̇3 = −z>1 K1z1 − z>2 K2z2 ≤ 0, ∀z1, z2 6= 0.

It can be concluded that the origin of the error sys-
tem (z1, z2, δ̃ρ, σ̃ρ, w̃ρ) is uniformly globally asymptoti-
cally stable (UGAS) by utilising Theorem A.6 from (Fos-
sen, 2011).

3.2 L1 Adaptive Backstepping

The design of the L1 adaptive backstepping controller is
divided into two stages. The first stage concerns design of
the adaptation laws and the second stage of the control
law, inspired by the approach in (Lee et al., 2012).

State Predictor and Adaptation Laws
First, a state predictor is designed, where the prediction
errors are defined as

η̃
4
= η̂ − η, ν̃

4
= ν̂ − ν, (21)

where η̂, ν̂, η and ν represent the estimated pose, esti-
mated velocity, real pose and real velocity, respectively.
The ideal prediction error dynamics are chosen to be

˙̃ηideal = −L1η̃, ˙̃νideal = −L2ν̃,

where L1 > 0 and L2 > 0, such that their origins
are exponentially stable. The convergence rate is decided
through the positive definite gain matrices. The state
predictor dynamics becomes

˙̂η = −L1η̃ + Rν, (22)

˙̂ν = −L2ν̃ + M−1(ρ̂δτ + R>ŵδ −Cν − σ̂δDν), (23)

where σ̂δ
4
= σ̂

δ̂
, ρ̂δ

4
= ρ̂

δ̂
, ŵδ

4
= 1

δ̂
ŵ, and σ̂, ρ̂ and δ̂

are estimates of the damping, control input and inertia

uncertainties. Here, it is assumed that δ̂ ∈ R+. The
dynamics of σ̂δ, ρ̂δ and ŵδ must subsequently be designed.

It is desired to design adaptation laws for the uncertainties.
The derivation of these laws are based on Lyapunov
functions. However, the prediction error dynamics are first
defined as

˙̃η = −L1η̃, (24)

˙̃ν = −L2ν̃ + M−1(ρ̃δτ + R>w̃δ − σ̃δDν). (25)

Then consider the positive definite CLF

Vpred =
1

2

(
1

γρδ
ρ̃2δ +

1

γσδ

σ̃2
δ +

1

γwδ

w̃δ
>w̃δ

)
+

1

2
ν̃>Mν̃ +

1

2
η̃>η̃. (26)

Taking the derivative of (26) yields

V̇pred =
1

γρδ
ρ̃δ ˙̂ρδ +

1

γσδ

σ̃δ ˙̂σδ +
1

γwδ

w̃δ
> ˙̂wδ − η̃>L1η̃

+ ν̃>(−ML2ν̃ + ρ̃δτ + R>w̃δ − σ̃δDν)

=ρ̃δ

(
1

γρδ
˙̂ρδ + ν̃>τ

)
+ σ̃δ

(
1

γσδ

˙̂σδ − ν̃>Dν

)
+ w̃δ

>
(

1

γwδ

˙̂wδ + Rν̃

)
+ ν̃>(−ML2ν̃)

− η̃>L1η̃. (27)

By introducing the following adaptation laws

˙̂ρδ = −γρδ ν̃>τ , (28)

˙̂σδ = γσδ
ν̃>Dν, (29)

˙̂wδ = −γwδ
Rν̃, (30)

then (27) becomes

V̇pred = −η̃>L1η̃ − ν̃>ML2ν̃ ≤ 0, ∀η,ν 6= 0.

Control Law
By following Step 1 and 2 in the design procedure of
adaptive backstepping, the control law is derived through
the following CLF

Vctrl =
1

2
z>2 Mz2 +

1

2
z>1 z1, (31)

where the derivative is

V̇ctrl =z>2 [z1 + ρ̂δτ + R>ŵδ −Cα− σ̂δDα−Mα̇]

− z>1 K1z1 − z>2 σ̂δDz2 (32)

and chosen to be

ρ̂δτ =−R>ŵδ + Mα̇+ Cα+ σ̂δDα

− z1 −K2z2, (33)

which leads to

V̇ctrl = −z>1 K1z1 − z>2 K2z2 ≤ 0, ∀z1, z2 6= 0. (34)

The adaptation of the uncertainties may contain high-
frequency signals. To avoid introducing such frequencies
into the control input, a lowpass filter is applied to the
control signals such that

τ c = C(s)τ ,

where

C(s) =
ρ̂0k

s+ ρ̂0k



and the gain k > 0 represents the design parameter of the
lowpass filter, while ρ̂0 = ρ̂(0) is the initial guess of ρ.

3.3 Adding a Command Governor

The idea of making a virtual command signal seems to
have originally been introduced in (Bemporad and Mosca,
1995). Recently, the papers by (Yucelen and Johnson,
2012a) and (Schatz et al., 2013) discuss a novel command
governor algorithm to improve both transient and steady
state tracking of a reference signal for the model refer-
ence adaptive control algorithm. However, the command
governor in (Yucelen and Johnson, 2012a) is not directly
applicable to nonlinear controllers. Hence, we propose the
following dynamics for the command signal ηi as

η̇i
4
= η̇d −Ka(η − ηi) + Kb(ηd − ηi), (35)

and

η̈i = η̈d −Ka(η̇ − η̇i) + Kb(η̇d − η̇i), (36)

where Kb > Ka > 0 and the initial condition of the
command governor is ηi,0 = η0.

Using the command governor means that

z1
4
= R>(η − ηi), (37)

which means that the vessel tracks an intermediate pose
ηi, which tracks the desired pose ηd, in order to improve
transient control performance.

By choosing the CLF

V0 =
1

2
z>0 z0, (38)

where

z0 = ηi − ηd, (39)

the derivative of V0 will be

V̇0 = z>0 (−Ka(η − ηi)−Kb(ηi − ηd))
= z>0 (−Ka(η − ηi)−Kbz0)

= z>0 (−KaRz1 −Kbz0)

= −z>0 KaRz1 − z>0 Kbz0 (40)

To cancel the term −z>0 KaRz1, the stabilising function α
is altered to be

α = R>η̇i + R>Kaz0 −K1z1, (41)

which means that

α̇ = R>η̈i + S>R>η̇i + R>Każ0 + S>R>Kaz0 −K1ż1
(42)

Hence, introduction of the command governor does not
change the stability of the closed-loop system. A general
schematic of the proposed adaptive controller scheme with
command governor is displayed in Fig. 1.

4. SIMULATION RESULTS AND PERFORMANCE
EVALUATION

This section starts with the structure and parameters
of the vessel model, followed by the initial states and
control parameters used in the simulations. Subsequently,
the metrics used to evaluate the performance are stated.
Finally, the results associated with the different controllers
are presented and discussed. For simulation purposes, the
controllers are implemented in Matlab.

VesselAdaptive controller

Change of variables

Command governor

τ

[η,ν]
z

[ηi, η̇i, η̈i]

[ηd, η̇d, η̈d]

Fig. 1. Schematic of the command governor principle

4.1 Simulation Setup

Vessel Model Parameters
The model ship CyberShip II from (Skjetne et al., 2004)
will be used to verify the performance of the proposed
adaptive control methods. CyberShip II is a 1:70 scale
replica of a supply ship, with a length of L = 1.255 (m).
It is fully actuated and can maximum produce 2 (N) in
surge and sway.

The inertia matrix is given as

M∗ 4= MRB + MA,

where

MRB =

[
m 0 0
0 m mxg
0 mxg Iz

]
, MA =

[−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

]
,

and m represent the mass of the ship, while xg is the
distance along the x-axis in the body from the centre of
gravity. As displayed in (5), the real Coriolis matrix has
the same uncertainty as (4) since

C∗(ν)
4
= CRB(ν) + CA(ν),

with

CRB(ν) =

[
0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

]
,

CA(ν) =

[
0 0 c13(ν)
0 0 c23(ν)

−c13(ν) −c23(ν) 0

]
,

where c13(ν) = Yv̇v + 1
2 (Nv̇ + Yṙ)r and c23(ν) = −Xu̇u.

Finally, the damping matrix D∗(ν) is given as

D∗(ν)
4
= DL + DNL(ν),

where

DL =

[−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

]
,

DNL(ν) =

[−d11(ν) 0 0
0 −d22(ν) −d23(ν)
0 −d32(ν) −d33(ν)

]
,

where d11(ν) = X|u|u|u| + Xuuuu
2, d22(ν) = Y|v|v|v| +

Y|r|v|r|, d23(ν) = Y|v|r|v| + Y|r|r|r|, d32(ν) = N|v|v|v| +
N|r|v|r| and d33(ν) = N|v|r|v| + N|r|r|r|. The parameter
values are listed in Table 1.



m 23.8 Xu̇ -2 Nv̇ 0
Iz 1.760 Yv̇ -10 Nṙ -1
xg 0.046 Yṙ 0

Xu -0.72253 Yv -0.88965
X|u|u -1.32742 Y|v|v -36.47287

Xuuu -5.86643 Nv 0.03130
N|v|v 3.95645

Y|r|v -0.805 N|r|v 0.130

Yr -7.250 Nr -1.900
Y|v|r -0.845 Y|v|r 0.080

Y|r|r -3.450 N|r|r -0.750

Table 1. Parameters for CyberShip II from
(Skjetne et al., 2004)

Reference Signal, Initial States and Control Parameters
For a straight-line path, the reference pose ηd(t) is derived
from

ηd(t) = [xd(t), yd(t), ϕ]
>
, (43)

where

xd(t) = 1 + ωt cos(ϕ)

ẋd(t) = ω cos(ϕ)

ẍd(t) = 0

ω̇ = 0,

and

yd(t) = ωt sin(ϕ)

ẏd(t) = ω sin(ϕ)

ÿd(t) = 0.

It is assumed that the reference target has a constant speed
ω = 0.15 (m/s). For the full scale vessel, this corresponds
to 1.255 m/s using the Bis scale (Fossen, 2011). It is
desired to have a constant orientation of the path relative
to the x-axis ϕ = 0.9273 (rad), which is equivalent to 53
(deg). The initial condition of the reference signal is chosen
to be ηd(0) = [1 (m), 0 (m), 0.9273 (rad)]>.

The initial vessel states are chosen to be η0 = [0.5 (m), 0
(m), π/4 (rad)]> and ν0 = [0 (m/s), 0 (m/s), 0 (rad/s)]>.

The uncertainties for the system are chosen to be δ = 2,
σ = 2, ρ = 0.7 and w∗ = [−0.3536 (N), 0.3536 (N), 0
(Nm)]>, which becomes active at t = 150 sec. Hence,
the disturbance w∗ has a magnitude of 0.5 (N) and
direction of 135 (deg). The initial values for the estimated
uncertainties are δ0 = 1, σ0 = 1, ρ0 = 1 and w0 =
[0, 0, 0]>.

The adaptive backstepping control parameters are chosen
as K1 = diag([0.05, 0.05, 0.02]), K2 = diag([5, 7, 15]),
γδρ = γσρ = 40 and γwρ = 6.

The L1 adaptive backstepping method has a lowpass filter
integrated in the control law to reject high frequency oscil-
lations in the estimation of the uncertainties. Utilising this
benefit, the L1 adaptive backstepping control parameters
are chosen as K1 = diag([0.05, 0.05, 0.02]), K2 = diag([5,
7, 15]), L1 = L2 = 100I, k = 100, γρδ = γσδ

= 40 and
γwδ

= 500. Notice that the L1 adaptive backstepping
method has higher adaptation gains than the adaptive
backstepping method.

The command governor uses the gains Ka = [0.01, 0.01,
0.005] and Kb = [0.05, 0.05, 0.01].

Since it was assumed that there are no magnitude or rate
saturations for the control input τ ∗, the control param-
eters and adaptation gains were obtained after iterative
tuning.

Performance Metrics
To evaluate and compare the performance of the different
control algorithms, performance metrics must be used.
These include the integral of the absolute error (IAE),
integral of the square of the error (ISE) and integral of
the absolute error multiplied by time (ITAE) for the cross-
track error. The cross-track error e will be used, which can
be calculated by

e = − sin(ψ)(x− xd) + cos(ψ)(y − yd). (44)

The formula for the IAE is then given as

IAE(e) =

∫ t

0

|e|dt, (45)

which simply describes the temporal evolution of the
absolute value of the error without adding any weight to
the error. The ISE is defined as

ISE(e) =

∫ t

0

e2dt (46)

and penalises large errors more than smaller ones, indi-
cating how good the particular algorithm is at eliminating
large errors. The calculation of ITAE is given as

ITAE(e) =

∫ t

0

t|e|dt, (47)

which penalises errors which have been present for a long
time more heavily than those present at the beginning.
ITAE will show if there is a stationary error present in the
system.

Finally, a new evaluation criterion is proposed, namely
the integral of the absolute error multiplied by the energy
consumption (IAEW), which can be computed by

IAEW (e) =

∫ t

0

|e|dt
∫ t

0

Pdt, (48)

where

P = ||ν>τ || (49)

represents the mechanical power. IAEW thus indicates
which control algorithm has the best tracking performance
versus energy consumption, in one single metric.

4.2 Results for Straight-line Motion

In the following, AB, AB-CG, L1-AB and L1-AB-CG re-
fer to adaptive backstepping, adaptive backstepping with
command governor, L1 adaptive backstepping and L1

adaptive backstepping with command governor, respec-
tively.

Fig. 2 displays the desired path and the actual trajectory
of the vessel in a North-East plot.

Fig. 3 illustrates the cross-track error of the methods
scaled by the vessel length. The results of this figure
show that all the methods have good tracking performance
both with and without the presence of a disturbance.
However, the L1 adaptive backstepping methods are faster
to track the predefined trajectory and compensate for the
disturbance, but overshoot the trajectory somewhat.
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Fig. 2. Vessel tracing the desired straight-line path

A particular reason to why the L1 adaptive backstepping
methods have a faster tracking performance is due to the
choice of adaptation gains. The L1 adaptive backstepping
then gets a tracking performance which is similar to the
performance of a backstepping implemented to the vessel
without the uncertainties and the disturbance.
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Fig. 3. The cross-track error scaled by the vessel length,
in the straight-line motion scenario

The control signals are shown in Fig. 4. From this figure it
is not possible to differentiate between the method with
and without the command governor. However, there is
a small difference between adaptive backstepping control
and L1 adaptive backstepping control at the beginning.

Fig. 5 and 6 display the curves of IAE, ISE, ITAE and
IAEW for the cross-track error. Both Fig 5 and 6 indicate
that the L1 adaptive backstepping control methods have
a better performance than the adaptive backstepping
counterparts. Both IAE and ISE indicate that a command-
governor improves the performance when the disturbance
is introduced.
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Fig. 4. The control inputs in the straight-line motion
scenario
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Fig. 5. The IAE and ISE of the cross-track error in the
straight-line motion scenario

The ITAE displayed in Fig. 6a indicates that all the
methods yield convergence of the cross-track error to zero.
The plots of the IAEW illustrate that introducing the
command governor improves the tracking performance
versus energy consumption when a disturbance is affecting
the system.

4.3 Results for Circular Motion

Here, motion control for a circular trajectory is considered.
Note that this scenario does not satisfy the assumption
about the uncertainty dynamics from Section 2, since the
disturbance will get similar dynamics as the manoeuvring
vessel.

For the circular motion, the reference pose ηd(t) is derived
from

ηp(t) = [xp(t), yp(t), atan2 (ẏp(t), ẋp(t))]
>
,

where

xp(t) = rc cos

(
ωt

rc

)
, yp(t) = rc sin

(
ωt

rc

)
,
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Fig. 6. The ITAE and IAEW of the cross-track error in
the straight-line motion scenario

with speed ω = 0.15 (m/s) and circle radius rc = 6 (m).
By applying ηp(t) to a third-order lowpass filter, we get

ηd(t) ∈ C2. The initial condition of the reference signal
is chosen to be ηd(0) = [6 (m), 0 (m), 1.5708 (rad)]>,
while the initial vessel states are chosen as η0 = [5.5
(m), 0 (m), 1.5708 (rad)]> and ν0 = [0 (m/s), 0 (m/s), 0
(rad/s)]>. The rest of the parameters are equivalent to
those in Section 4.1.

Fig. 7 illustrates the desired and real trajectory of the
vessel. The performance metrics are used to evaluate
the performance of the different methods. Results are
displayed in figures 8-11.
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Fig. 7. Vessel tracing the desired circular path

The performance metrics give the same conclusion as they
did for straight-line motion, which is that the L1 adaptive
backstepping method is better than the adaptive back-
stepping methods, and that the transient is improved by
combining the adaptive control method with a command
governor. The growing ITAE indicates that there is a sta-
tionary error in performance of all the controllers, which is
because of the assumption about the external disturbance
is not satisfied for circular motion.
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Fig. 8. The cross-track error scaled by the vessel length,
in the circular motion scenario
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Fig. 9. The control inputs in the circular motion scenario
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Fig. 10. The IAE and and ISE of the cross-track error in
the circular motion scenario

5. CONCLUSION

We have presented the design of four control laws based on
adaptive backstepping, L1 adaptive backstepping and the
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Fig. 11. The ITAE and IAEW of the cross-track error in
the circular motion scenario

command governor concept, with the purpose of control-
ling the motion of a nonlinear 3 DOF model of a marine
surface vessel. A comparative analysis of the methods
have been made in order to find out which controller
has the best performance. The simulation results have
shown that all the considered controllers have good track-
ing performance and ability to compensate for internal
and external uncertainties. However, utilising the benefit
which L1 adaptive control gives, we are able to choose
higher adaptation rates without encountering the problem
of high-frequency oscillations in the control signal and
therefore get a better tracking performance than for adap-
tive backstepping. Through the simulations, we have also
observed that by combining an adaptive controller with
a command governor, it is possible to improve transient
performance.

Future work includes proving stability and robustness of
the closed-loop adaptive systems. Additionally, it is desir-
able to experimentally verify the results by implementing
the methods on a model-scale test vessel in a controlled
environment.
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