
Modelling the dependability in Network
Function Virtualisation

Wenqi Lin

Master of Telematics - Communication Networks and Networked Services

Supervisor: Bjarne Emil Helvik, IIK
Co-supervisor: Gianfranco Nencioni, IIK

Department of Information Security and Communication Technology

Submission date: June 2017

Norwegian University of Science and Technology

Modelling the dependability in Network
Function Virtualization

Wenqi Lin

Submission date: June 2017
Responsible professor: Bjarne Emil Helvik, IIK
Supervisor: Gianfranco Nencioni, IIK

Norwegian University of Science and Technology
Department of Telematics

Title: Modelling the dependability in Network Function Virtualization
Student: Wenqi Lin

Problem description:

• Background
Current service provisioning in telecommunication industry has long product
cycles, low service agility and heavy dependence on specific hardware. While at
the same time, the customers’ demands of having more diverse and new services
with high data rates keep increasing. Thus, telecommunication service providers
(TSP) intend to meet these high customer requirements, and reduce the high
capital expenditure (CAPEX) and operation expense (OPEX). Under these
circumstances, Network Function Virtualization (NFV) has been proposed to
address these challenges by leveraging virtualization technology to offer TSPs a
new way to build more a dynamic and service-aware network. The main concept
of NFV is the decomposing the services into a set of Virtual Network Functions
(VNF) which are implemented in software running on commodity servers.
The NFV management and orchestration (MANO) provides the functionality
required for the provisioning of VNFs and, therefore, focuses on all virtualization-
specific management task and the lifecycle management of VNFs. Another
concept which is closely related to NFV is Software Defined Networking (SDN).
SDN decouples the network control and forwarding functions which centralizes
the controller and simplifies the network management. Notably, NFV and
SDN have a lot in common and are highly complementary since they all use
automation and virtualization technology to achieve their goals respectively.
However, they are not depending on each other and have been brought up
to address different aspects. Even though the NFV has drawn significant
attentions from both academia and industry, the development is still at an
early stage. Therefore, efforts should be made on addressing various unexplored
research challenges such as dependability issues.
• Objective

In this project, the major concern is about the dependability of NFV network
services. The focus is to develop a dependability model of NFV that also
consider connectivity requirements.
• Technical approach
The work is planned to include the following activities:
• The functionalities and characteristic of NFV and NFV MANO shall be
studied already.

• The state of the art on the most relevant work on dependability of NFV
shall be briefly overviewed and summarized. In NFV, there are many

different possible sources of failures and some of these are depending on
the specific provided services, such as the virtualized Evolved Packet Core
(vEPC).
• After an accurate evaluation, the potential failures, such as MANO failures,
logic connection failures, in the selected scenario shall be categorized.

• A two-level model shall be developed based on the information. In the
first level, the structure of the NFV along with the connectivity among
different NFV elements in the network will be developed. The second level
which is used to evaluate the dependability of the different NFV elements
such as the VNF, the MANO and the NFV infrastructure.

• With the help of the model, analysis of evaluating how the different NFV
elements influencing the dependability of the network services shall be
conducted. Möbius software tool is one of the developing tool which will
be used in the project.

• If time allows, the model might be extended to evaluate NFV over SDN
architecture.

• Expected results:

• A dependability model of NFV addressing the NFV provisioning and the
relevant connectivity required for a working system. (If time allows, the
model may also include elements related to the dependability of NFV over
SDN.)

• One or more case studies of a simple or moderately complex network/sys-
tem.

Responsible professor: Bjarne Emil Helvik, IIK
Supervisor: Gianfranco Nencioni, IIK

Abstract

Network Function Virtualization has been brought up to allow the TSPs
to have more possibilities and flexibilities to provision services with better
load optimizing, energy utilizing and dynamic scaling. Network functions
will be decoupled from the underlying dedicated hardware into software
instances that run on commercial off-the-shelf servers. However, the
development is still at an early stage and the dependability concerns raise
by the virtualization of the network functions are touched on only briefly.
Particularly, the evaluation of the NFV-based services’ dependability has
never been conducted.

Towards this goal, this thesis aims to address the dependability con-
cern of NFV and uses a two-level availability approach to construct a
quantitative evaluation about how to assess the availability of an NFV-
based service and how NFV elements in the network shall be deployed to
provide a more dependable network service.

A two-level availability model has been developed based on the various
NFV-based network. The first level is focusing on the topology of the
network and the connectivity requirements for provisioning an NFV-
based service. In the second level, the Stochastic Activity Network (SAN)
model of different network elements such as VNF, NFV-MANO and
datacenter have been developed to evaluate the availability. Eventually,
these two types of models have been merged together to illustrate the
overall availability/unavailability of the NFV-based services in different
use cases.

In the end, analysis and evaluation have been conducted based on the
obtained results from the two-level availability model. There are seven
different scenarios have been simulated with regard to the deployment of
NFV across the network. And the outcome on how the variations of the
NFV elements deployment influence the dependability of the NFV-based
services will be presented along with some suggestions about the NFV
deployment in provisioning an end-to-end service.

i

Preface

The thesis is presented as an accomplishment for the Master of Science
degree at the Department of Telematics in Norwegian University of Science
and Technology (NTNU).

Firstly, I wish to express my sincere gratitude to my supervisor Gian-
franco, a postdoctoral researcher in NTNU for his support, guidance and
suggestion during these 21 weeks. He always gives me very constructive
suggestions and feedbacks that have enabled me to complete my thesis.

Secondly, I sincerely thank my responsible professor Bjarne Emil
Helvik for his guidance and encouragement in carrying out this project
work. I have learned a lot from him in the past two years. He gives me
valuable feedbacks not only to this thesis work but also to my profession
skills.

Furthermore, it is my privilege to thank my boyfriend Yuting Situ,
for his constant encouragement and caring in the research period.

Finally, I am truly grateful and thankful to my family in China, they
are very supportive, either morally, financially and physically. I could not
have done this without your help.

iii

Contents

List of Figures ix

List of Tables xi

List of Acronyms xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Methodology . 3

1.2.1 Literature study . 4
1.2.2 Quantitative evaluation . 4
1.2.3 Analysis . 4

1.3 Outline of the remaining thesis . 4

2 Background 7
2.1 NFV . 7

2.1.1 NFV architecture . 9
2.1.2 Related concept . 11
2.1.3 NFV Deployment . 12

2.2 Dependability . 15
2.3 Related work . 17

3 Two-level availability model of NFV-based services 19
3.1 Two-level availability model introduction 19
3.2 Structural model . 20
3.3 Dynamic model . 25
3.4 Merge the two-level models . 33

4 Evaluation and analysis 35
4.1 Six case studies . 35
4.2 Evaluation and analysis of the seven case studies 41

4.2.1 Comparison of the minimal-cut sets in the seven scenarios . . 41
4.2.2 Comparison of the availability of the NFV-based services . . 45

v

5 Conclusion and future work 49
5.1 Conclusion . 49

5.1.1 Future work . 50

References 51

Appendices

A Structural analysis script of Reference scenario in Mathematica 55

B Structural analysis script of Scenario 1 in Mathematica 63

C Structural analysis script of Scenario 3 in Mathematica 73

D Structural analysis script of Scenario 3 in Mathematica 83

E Structural analysis script of Scenario 4 in Mathematica 93

F Structural analysis script of Scenario 5 in Mathematica 103

G Structural analysis script of Scenario 6 in Mathematica 113

H Implementation and simulation parameters of Link SAN model
in Möbius 123

I Implementation and simulation parameters of Router SANmodel
in Möbius 125

J Implementation and simulation parameters of Datacenter SAN
model in Möbius 127

K Implementation and simulation parameters of VNF SAN model
in Möbius 129

L Implementation and simulation parameters of MANO SANmodel
in Möbius 131

M Merging two models script of Reference scenario in Mathematica 133

N Merging two models script of Scenario 1 in Mathematica 137

O Merging two models script of Scenario 2 in Mathematica 141

P Merging two models script of Scenario 3 in Mathematica 145

Q Merging two models script of Scenario 4 in Mathematica 149

vi

R Merging two models script of Scenario 5 in Mathematica 153

S Merging two models script of Scenario 6 in Mathematica 157

vii

List of Figures

1.1 Research methodology . 3

2.1 Current service provisioning. 8
2.2 NFV-based service provisioning. 8
2.3 High-level architectural framework of NFV [21]. 10
2.4 The NFV-MANO architectural framework [23]. 10
2.5 Example of end-to-end service chain. 13
2.6 Datacenter(NFVI) three-layers model. 14
2.7 Deployment options of VNFs (a) (b). 15
2.8 Deployment options of VNFs (c). 15

3.1 Structural analysis of a small-scale network. 21
3.2 Reference scenario. 23
3.3 SAN system model example. 25
3.4 SAN model of a link. 26
3.5 SAN model of a router. 27
3.6 SAN model of a datacenter that support VNFs. 30
3.7 SAN model of a VNF. 31
3.8 SAN model of a MANO. 32

4.1 Depiction of Scenario 1. 36
4.2 Depiction of Scenario 2. 37
4.3 Depiction of Scenario 3. 38
4.4 Depiction of Scenario 4. 39
4.5 Depiction of Scenario 5. 40
4.6 Scenario 6 of the structural analysis. 41

ix

List of Tables

2.1 Availability and the related downtime per year. 16

3.1 The distribution of the cardinality of the minimal-cut sets for a small-scale
network. 22

3.2 Minimal-cut sets of Scenario 1. 24
3.3 Link model parameters used in the case studies 27
3.4 Router model parameters used in the case studies. 28
3.5 Datacenter model parameters used in the case studies 30
3.6 VNF model parameters used in the case studies. 31
3.7 MANO model parameters used in the case studies. 32
3.8 Comparison of the unavailability of the five network elements SAN model. 32
3.9 The overall unavailability and availability of Scenario 1. 33

4.1 Minimal-cut sets of Scenario 1. 36
4.2 Minimal-cut sets of Scenario 2. 37
4.3 Minimal-cut sets of Scenario 3. 38
4.4 Minimal-cut sets of Scenario 4. 39
4.5 Minimal-cut sets of Scenario 5. 40
4.6 Minimal-cut sets of Scenario 6. 41
4.7 Comparison of the different scenarios’ low cardinality minimal-cut sets. 42
4.8 Comparison of elements of minimal-cut sets when cardinality=1 in all the

scenarios. 43
4.9 Comparison of elements of minimal-cut sets when cardinality=2 in all the

scenarios. 44
4.10 Comparison of the unavailability/availability of the NFV-based service in

different scenarios. 46

xi

xiii

List of Acronyms

BSS Business support systems.

CAPEX Capital Expenditures.
COTS Commercial Off-The-Shelf.
CPE Customer premises equipment.

EM Element Management.
EPC Evolved Packet Core.
ETSI European Telecommunication Standards Insti-

tute.

FCAPS Fault, configuration, accounting, performance,
security.

IP Internet Protocol.
ISG Industry Specification Group.

MANO Management and Orchestration.

NAT Network Address Translation.
NF Network Function.
NFV Network Function Virtualization.
NFVI Network Function Virtualization Infrastructure.
NFVI-PoP NFVI Point of Presence.
NFVO NFV Orchestrator.
NIST National Institute of Standards and Technology.

xiv

O&M Operation and Maintenance.
OPEX Operating Expenditures.
OSS Operations support systems.

SDN Software Defined Network.

TSP Telecommunication Service Provider.

vEPC virtualized Evolved Packet Core.
VIM Virtualised Infrastructure Manager.
VM Virtual Machine.
VNF Virtual Network Function.
VNFM VNF Manager.

xv

Chapter1Introduction

This chapter provides a short introduction of the motivation and objectives of the
thesis work. A brief overview of the methodology that applied throughout the whole
thesis work procedures will be given. In the end, the outline of the thesis will be
presented.

1.1 Motivation

The telecommunication service provisioning infrastructure has been developed over
decades and has grown to an exceedingly complex system with a growing number
of physical proprietary devices and hardware [31]. To deliver an end-to-end service,
designated equipment shall be deployed for implementing the individual service
functions that make up the service. These service functions shall be chained together
in a specific order as a service and provided to the subscribers [29]. Hence, the
service provisioning is highly depending on specialized hardware. Moreover, since
the services shall be provided as high quality and dependability services, these all
contributes to the longer services’ life cycles and lower service agility [31].

In the past few years, the Internet has been evolved into a content-based network.
Accordingly, the Internet users are getting less satisfied with the existing services and
they require more and more different kinds of services at affordable prices [30]. Thus,
Telecommunication Service Providers (TSPs) need to adapt themselves to these
changes by purchasing more hardware, improving the technical skills, maintaining
the equipment and expanding the network. All these requirements will be achieved
at high capital expenditures (CAPEX) and operating expenditures (OPEX) for
TSPs. However, the TSPs cannot increase the subscription fee accordingly, since the
previous experience shows the rise in price only leads to a fierce competition among
TSPs and customer might churn. Meeting the customers’ growing demands and
at the same time maintaining low capital and operating costs become increasingly
unrealistic [32]. Therefore, TSPs need an innovative network service paradigm to

1

2 1. INTRODUCTION

cope with the declining profitability and alleviate the problems such as long product
cycles, low service agility, and so on [31][29].

Network Function Virtualization (NFV) has been brought up in to take advantage
of the virtualization technology to eliminate these problems. The virtualization
technology has emerged as a way to reduce the dependency on the dedicated hardware.
It decouples the software applications from where they originally belong— the
underlying hardware. Then the software applications are able to run in a virtualized
environment along with the virtualized hardware resources. NFV is appying the
virtualization technology so that the network functions will be decoupled from the
underlying dedicated hardware into software instances that run on commercial off-
the-shelf (COTS) servers. The main concept of NFV is decomposing the services into
a set of Virtual Network Functions (VNFs) which are software instances and can be
deployed either from the same geographical location or from the different geographical
location. By applying the NFV technology, the TSPs have more possibilities and
flexibilities to provision services with better load optimizing, energy utilizing and
dynamic scaling [31].

NFV has already drawn immense attentions from researchers in both academia
and industry, but the development is still at an early stage. Efforts should be
made on addressing various unexplored research challenges and the virtualization of
NFs raises performance, dependability and reliability concerns [10]. Dependability
issues are touched on only briefly. Particularly, the evaluation of the NFV-based
services’ dependability has never been conducted. To this purpose, this thesis
represents a step towards to the dependability concern of NFV and uses a two-level
availability approach to construct a quantitative evaluation on the dependability of
the NFV-based services. This thesis answers two quesions: how the availability of an
NFV-based service shall be assessed and how NFV-elements in the network shall be
deployed to provide a relatively more dependable network service.

This master thesis is regarding the dependability of the network services pro-
visioned in NFV-based networks. The major concerns of the thesis are identified
below:

– Literature studies of the difference between current service provisioning method
and NFV-based service provisioning method as well as the functionalities and
characteristics of NFV.

– Develop a model to evaluate the dependability of NFV-based services by
applying a two-level modelling approach. The first level is focusing on the
topology of the network and the connectivity requirements for provisioning
an NFV-based service. In the second level, the Stochastic Activity Network
(SAN) model of different network elements such as VNF, NFV-MANO and
datacenter have been developed to evaluate the availability of the selected

1.2. METHODOLOGY 3

network elements. Finally, these two types of models will be merged together
to illustrate the overall availability/unavailability of the NFV-based services in
different use cases.

– Analyze and evaluate the conducted use cases and present the outcome on how
the variations of the NFV elements deployment influence the dependability of
the NFV-based services.

1.2 Methodology

The methodology followed in this thesis work is divided into three parts. The first part
is the literature study and the second part is to construct a quantitative evaluation.
The third part is the analysis. These three steps are shown in the figure below and
will be briefly described below in the subsections.

Figure 1.1: Research methodology

4 1. INTRODUCTION

1.2.1 Literature study

The literature study is the foundation of the entire thesis work. In the beginning,
the basic concepts and related research on NFV and the dependability concerns of
NFV have been studied from the existing literature to form a theoretical background
of my research area. And then by comparing my research and the existing research,
it gives me inspirations and broaden my knowledge during the research methodology
development phase. In the later phase, the literature study helps to integrate my
findings into the existing body of knowledge [27].

1.2.2 Quantitative evaluation

A two-level availability model will be developed in this phase. This availability model
approach is inspired from [17] where the approach is used to address the dependability
issues in Software-Defined Networking (SDN).

In the two-level availability model, two different types of model will be developed.
The first level is structural model which is focusing on the network structure. The
network that deploys the NFV elements will be applied the structural analysis
method based on minimal-cut sets by using the Mathematica software tool [41]. The
obtained minimal-cut sets then will be analyzed. In the second level, the network
elements that composed of the NFV-based network in the first level will be modeled.
The possible reasons result in a failure in the network elements will be estimated
and modeled by using Möbius software tool [5]. Hence,the overall network service
availability can be obtained by merging the two level availability models together by
using inclusion-exclusion principle in Mathematica again. The final evaluation and
analyzation will be based on the obtained network service availabilities.

1.2.3 Analysis

In the analysis phase, the obtained minimal-cut sets and the overall network service
availability will be evaluated to present the variation of the network service availability
by deploying different number of NFV elements in the network.

1.3 Outline of the remaining thesis

The thesis is structured as five chapters, and the rest of this thesis is organized as
following:

– Chapter 2 provides the background knowledge that learned from the literature
studies. The related NFV concepts and deployment ways as well as the
dependability issue in NFV will be presented.

– Chapter 3 introduces the two-level availability model approach in detail.Firstly,
the structural model development approach will be explained along with a

1.3. OUTLINE OF THE REMAINING THESIS 5

reference scenario. Secondly, the dynamic model approach will be briefly
explained. The SAN model the five selected network elements will be developed
and demostrated. In the end, the principle of merging the results from two
models will be briefly presented so that the overall network service availability
will be achieved.

– Chapter 4 contains the evaluation and analysis of the results in each level.
– Chapter 5 summarizes the paper along with the contributions of the thesis
work.

Chapter2Background

The chapter presents an overview of the background knowledge as the outcome from
the literature studies. It starts with the introduction of the fundamental concepts
and architectures of NFV technology. Then the related two technology will be briefly
introduced. In addition, the deployment of NFV technology will be viewed and
explained as a basis for Chapter 3. At last, another key concept of dependability
which will be briefly carried out in the last section along with the related work.

2.1 NFV

As the current telecommunication network service provisioning shown in Figure 2.1,
the customer premises equipment (CPE) with several needed service functions have
been put at the premises of each subscriber to compose the needed services. For
example, if the two service network functions showed below are part of a service
chain, the firewall might need to be provided before the Network Address Translation
(NAT) to monitor and control the incoming traffic data.

To deliver a network service in such network infrastructure is highly on the
dedicated underlying hardware in the CPE, if the TSP has the willing to update
the existing service functions or add new service functions, the technicians from the
TSP must come to each CPE to do the maintenance work which not only takes time
but also costs money. Moreover, the network service delivering highly depends on
proprietary hardware appliances. When the TSP attempts to deliver a new service,
dedicated hardware must need, this may result in a long service life cycle. To that
end, NFV has been proposed by European Telecommunication Standards Institute
(ETSI) as a novel approach to accelerate the service delivering. By virtualizing the
network functions, the network functions do not rely on the underlying dedicated
hardware anymore but instead running on COTS servers as software instances as
Figure 2.2 shows.

7

8 2. BACKGROUND

Figure 2.1: Current service provisioning.

Figure 2.2: NFV-based service provisioning.

2.1. NFV 9

Figure 2.2 depicts the NFV-based service provisioning network. The network
functions are virtualized as software instances (for example vfirewall, vNAT) sending
from the different NFVI-based datacenters. The MANO located in other datacenter
is connected to each VNFs to manage and orchestrate the VNFs into a network
service function chain. The network service function chain then will be delivered to
each subscriber.

ETSI has established the Industry Specification Group (ISG) for NFV aiming
to provide a consistent approach to achieve the common architecture that supports
VNFs. In October 2012, the telecommunication carriers in the ISG published a
white paper that introduces the concept of NFV as well as the benefits, enablers,
and challenges this technology. The beginning of NFV starts from then, and the
NFV ISG has quickly attracted attentions from a large number of vendors and IT
specialists in many different countries. And the participants and members are still
increasing as time passes by.Initially, ETSI ISG NFV community published papers
about pre-standardization studies. As time goes by, the NFV community has already
evolved to the detailed specifications investigation and also the interoperability events.
In addition, they are still working on further development of the required standards
for NFV and at the same time sharing their experiences of NFV implementation and
testing [6].

2.1.1 NFV architecture

ETSI defined three key elements that composed of NFV architecture. The three ele-
ments are Network Function Virtualization Infrastructure(NFVI), NFV management
and orchestration (MANO) and VNFs which are presented in Figure 2.3.

NFVI
The NFVI contains both software resources and hardware resources to support VNFs.
The underlying hardware resources include computing, storage and network resources
that provide processing, storage and connectivity to VNFs. The virtualization layer,
more specifically, the hypervisor is used to abstract the physical resources into the
virtual resources that running in one or multiple Virtual Machines (VM). The virtual
resources then will be used by VNFs.

NFV-MANO
From the name of NFV MANO, it can be seen that this element deals with NFV
management and orchestration. NFV MANO provides the functionality required for
provisioning VNFs. It consists of three functional blocks: Virtualised Infrastructure
Manager (VIM), NFV Orchestrator (NFVO) and VNF Manager (VNFM) which are
presented in the blue area in Figure2.4.

10 2. BACKGROUND

Figure 2.3: High-level architectural framework of NFV [21].

Figure 2.4: The NFV-MANO architectural framework [23].

2.1. NFV 11

The VIM is to manage and control both the physical and virtual resources in
NFVI through the different reference point interfaces. An NFV architecture may have
more than one VIM so that different infrastructure providers are able to manage and
control the NFVI resources [33]. Each VNF instance supposes to have an associated
VNFM to manage the life cycle of the VNF. However, VNFM does not have the
network management to deal with the Fault, configuration, accounting, performance,
security (FCAPS) management for the VNF it manages. Therefore, the Element
Management (EM) will be used to manage the FCAPS issues as a complement. The
NFVO aims to orchestrate different VNFs together into a service function chain so
that a given service will be provisioned from a TSP. In addition, NFVO is also able
to interact with the existing Operations support systems (OSS)/Business support
systems (BSS) [26].

MANO is also a software instance just as VNF, but the difference is MANO do
not need to base on an NFVI but rather use the different types of reference points to
manage and interact with NFVI and VNF just as Figure 2.2 showed.

VNF
VNFs are software instances that running in one or more VMs. A Network Function
(NF) is a function block that resides in the network infrastructures. For example:
firewalls, Residential Gateway (RGW), etc [24]. Instead of implementing a NF in
a dedicated hardware, a VNF is a just a software instance running in a common
commercial-off-the -shelf (COTS). Furthermore, a single VNF might compose of
several components, therefore it could be deployed in multiple VMs. However,
whether the service is provided through VMs or dedicated physical equipment, the
users should not notice the performance difference.

2.1.2 Related concept

NFV is not the only technology that takes advantages of virtualization. There are
two other concepts that are similar to NFV and closely related to the virtualization
evolvement. The first concept is cloud computing and the second concept is SDN.
These three technologies can either work together or work individually.

A. Cloud computing
National Institute of Standards and Technology (NIST) in the USA published
the definition of cloud computing in [15]. Cloud computing can be seen as a
shared pool, the resources such as storages, services and so on are running in the
pool and can be accessed conveniently and ubiquitously. Thus, it offers a new
mechanism to provision and releases service in a more effective, and at the same
time, it reduces the management effort and service provider interaction.

12 2. BACKGROUND

The traditional way to provision a service will be changed from a TSP’s prospec-
tive. The providers will be divided into two types in this regard. One is infras-
tructure providers which are responsible for managing and maintaining the cloud
platform, at the same time leasing the resources to service providers. The service
provider then can rent the resources from either one infrastructure provider or
multiple infrastructure providers to deliver the service to the consumers [42].

B. SDN
SDN is currently one of the most attracting technologies in both academia and
industry. It deals with large-scale complex networks. Originally, these large-scale
complex networks may require re-policing or re-configurations from time to time.
SDN decouples the network control and the basic forwarding functions. Therefore,
SDN makes network control become directly programmable via an open interface.
The underlying infrastructure simply do the forward action.

C. Relationship between NFV and the other two concepts
These three technologies all can help the telecommunication operators to achieve
a scalable, agile and automated network with cost and resource effective. But
they address different aspects of the network. Cloud computing is the abstraction
of compute resources, SDN is the abstraction of network resources and NFV is
the abstraction of function resources.

Cloud computing has already been implemented in most industries and many
IT applications have already run on commodity servers in the cloud [39]. And
since the performance and reliability requirements of carrier-grade functions
are stricter than those of IT applications. If NFV wants to rely on the could
computing, many things should be considered and prepared.

SDN and NFV are highly complementary, but they also are two independent
technologies. NFV can be used without SDN and vice versa. By applying the
SDN concept in NFV, the configuration can be managed in a remote centralized
controller to ensure the maintenance and operation procedures become agility
and take a shorter time. Meanwhile, it provides a simple way to compatible
with the existing deployment [3]. And for SDN applies NFV in the network, the
physical hardware resources can be virtualized as software resources. Hence, it
reduces the dependence on the dedicated computing hardware which reduces the
CAPEX.

2.1.3 NFV Deployment

In the specification [22] published by ETSI, nine different use cases have been proposed
that can be implemented by deploying NFV as an attempt to eliminate the existing
problems. Based on these use cases, the research community has implemented some
of the use cases and try to determine performance characteristics. For example, [35]

2.1. NFV 13

is the implementation of Evolved Packet Core (EPC), [38] is the implementation
of CPE. There are also a number of equipment vendors deployed NFV from the
industry view, such as CloudNFV [2], Huawei NFV Open Lab [4] and etc. Most
of the implementations are taking advantage of current SDN and cloud computing
technology [31]. As we mentioned in the previous subsection, these three technologies
can be used independently, however, using SDN and cloud computing to support
NFV can be a better solution.

Among all the NFV implementations, the NFV deployment in our thesis work
focuses on a more general service provisioning method. The NFV element shall
be deployed either in the same location or distributed in all possible locations.
Furthermore, the different VNFs shall be logically chained together so that it could
compose of the service that delivered to the end-point. In Figure 2.5 below, there is
an example regarding VNF forwarding graph.

Figure 2.5: Example of end-to-end service chain.

NFVI Point of Presence (NFVI-PoP) represents a place that an NF could be
deployed as a VNF [24]. An NFVI-PoP could be a datacenter, a commercial server or
other suitable options. In this thesis context, the datacenter and NFVI-PoP will be
used interchangeable. The solid lines represent the physical links that connected to
different hardware and the dashed lines without an arrow represent the logic links. In
addition, the dashed lines with an arrow connect the NFVI-PoPs with the appointed

14 2. BACKGROUND

VNFs meaning the appointed VNF is a software instance running in that NFVI-PoP.
The end-to-end network service 1 is provisioned to End-point A from End-point B
and it consists of three VNFs which locate in different NFVI-POPs. The sequences
of chaining the different VNFs are defined in VNF forwarding graph. And the VNF
forwarding graph not only provides a logical connectivity between VNFs but also
interconnect with physical NFs to provide a network service to end users [22].

Since the datacenter will be used to support VNFs, the structure of the datacenter
will be studied. A datacenter with NFVI consists of three layers presented in Figure
2.6.

Figure 2.6: Datacenter(NFVI) three-layers model.

The underlying layer is the hardware layer that providing the physical resources,
and the middle layer is the virtualization layer which virtualizes the physical resources
to be used in the virtual machines by VNF.

There are three types of VNF deployment showing in Figure 2.7 and Figure 2.8.
The simplest approach is showed in (a). VNF1 is a software instance that running in
a dedicated VM1 along with the virtual resources abstracted by a single hypervisor
that locates in a single hardware. Another deployment method is having multiple
different VNFs with dedicated VMs that sharing the resources in the same hypervisor
and hardware. Example (b) shows VNF1 and VNF2 are sharing the same hardware.
That is to say, the physical resources are divided into two sets of resources for VNF1
and VNF2 respectively. An advantage of this approach is that the high utilization of
hardware will be achieved [20].

2.2. DEPENDABILITY 15

(a) (b)

Figure 2.7: Deployment options of VNFs (a) (b).

The most complex VNF deployment is showed in Figure 2.8. VNF1 is composed
of three VNF components that executed in dedicated VMs. Two of the VMs are
sharing the virtual resources from the same hardware-hardware 1. The other VNF
component is executing in another VM1 and using the virtual resources that offered
by hardware 2.

(c)

Figure 2.8: Deployment options of VNFs (c).

2.2 Dependability

As the title stated, the focus of this thesis work is related to the dependability
concerns of NFV-based networks. Before we take a further step into the thesis, the
dependability concept and attributes shall be well explained to gain some insights.

16 2. BACKGROUND

Dependability is referring to the ability of a system that is able to deliver the
services to the users [28]. It is a crucial non-functional property of a system, a
subsystem, or even an atomic component that forming a unified whole [12]. Faults,
errors and failures are the three major threats of system dependability. And to
prevent such threats, a dependable system shall equip approaches such as fault
prevention, fault tolerance and so on. Depending on the different system or service
requirements, different means of avoiding threats will be used in the system.

Dependability has many attributes such as availability, safety, maintainability and
so on. These attributes intend to emphasize different facets of system dependability.
In reality, there are fewer systems that designed to operate constantly without
interruption and other maintenance actions. In many occasions, the number of
failures, the probabilities of these failures and the repair time for these failures are
significant to measure. To that end, with respect to our thesis work, only availability
attribute will be introduced.
Availability: Ability of a system to provide a set of services at a given instant of time
or at any instant within a given time interval [12].
Normally, availability is used as a measure of dependability to evaluate systems that
short interruptions can be tolerated. For example, when a person watches videos
online, he expects to have a good quality and smooth watching experience. And
if the video pauses for 100 milliseconds or the quality of the video is not good for
2second, it typically considered acceptable. The time that video supposed to function
but not function is considered as downtime. In the table listed below shows the
availability and the related downtime per year [11].

Availability (%) Downtime
99 3.65days/year
99.9 8.76h/year
99.99 52.56min/year
99.999 5.26min/year
99.9999 31.54s/year

Table 2.1: Availability and the related downtime per year.

In telecommunication, “five nines” are often used to represent as a high availability
standard. It indicates a system can have downtimes or it can fail at most 5.26 minutes
per year. A system that achieves or exceeds this standard often called as carrier
grade and it refers to the system is extremely reliable and capable of recovery very
fast through redundancy. Usually it takes less than 50 milliseconds to recover [1].

2.3. RELATED WORK 17

2.3 Related work

Even though NFV has drawn a lot of attention in many, and dependability is
becoming a significant issue that makes NFV a success. There is still not much
research work that deals with the dependability issue.

In [10], by applying fault injection method to the NFV Infrastructures (NFVI),
a dependability evaluation was conducted. The aim is to build confidence in the
reliability of NFVIs, to expose the weak points and to provide a practical guidance
for designers [10]. This work focuses on the dependability concern in the NFV
infrastructure part.

European Telecommunication Standards Institute Industry Specification Group
(ISG) NFV published a set of requirements and specifications for designers to help
them to develop robust NFV based services in [25]. Moreover, a few techniques and
mechanisms are defined in there to ensure reliability and availability in an operational
virtual environment [13]. To complement the requirements and specifications in [25],
[13] presented the SAN system models to study the sensitivity of the network
availability to the main parameters in one of the NFV use cases, vEPC. And in
[17], a two-level availability model has been brought up to address the dependability
issues in SDN. Only structural vulnerabilities were demonstrated in the paper to
be compared in between the traditional Internet Protocol (IP) network and SDN
network. Additionally, [34] performed a quantitative assessment to investigate the
factors that influence the overall availability in SDN backbone networks. A two-level
availability model was developed both in Norwegian national backbone network
and a worldwide backbone network. The evaluations were carried out based on the
availability models to evaluate which and how the different SDN elements affect the
overall network availability.

Chapter3Two-level availability model of
NFV-based services

In this chapter, the two-level availability modeling approach will be introduced in
detail along with an example use case to fully illustrate. The approach will be used
to evaluate the dependability of NFV-based services in Norwegian national backbone
network.

3.1 Two-level availability model introduction

A two-level hierarchical availability model is used to evaluate the dependability
of the network services that provided in the NFV-based networks. It consists of
the structural model of the NFV-based network topology and the dynamic model
of the network elements. Importantly, this approach is used to model not only a
large-scale network but the details of the network as well. The two-level availability
modeling methodology has already been considered and used in [34] to measure
the dependability in SDN network. In [25], ETSI defines service availability is on
a service basis. In other words, service availability in NFV refers to end-to-end
service availability which includes all the network elements such as VNFs, NFVI,
NFV-MANO. in an end-to-end service. Notably, the endpoints are not included in
the measurement [25].

In the structural modeling, the network components in the topology are considered
as independent elements. That is to say, a component can be a set of elements that
are interdependent and/or experience several failure modes and an advanced recovery
strategy [25]. And it applies the structural analysis method based on minimal-cut
sets.

In the dynamic modeling, each of the network elements is considered as a single
network element with one failure mode. Therefore, Markov model [19] or Stochastic
Petri net [16] can be used for modeling. In our case, SAN system model will be
used. After developing the two different kinds of models individually, the results

19

20 3. TWO-LEVEL AVAILABILITY MODEL OF NFV-BASED SERVICES

must be merged together to achieve the overall availability of the NFV-based network
services.

In the merging phase, the inclusion-exclusion principle shall be used. In addition,
the dependability will be measured in terms of steady state availability, hence, the
term dependability and availability can be used interchangeably in this thesis context.

3.2 Structural model

Unlike the way that current telecommunication network providing a service to its
users, NFV offers a new scheme that the control logic will be moved to centralized in
NFV-MANO. And additionally, the different VNFs need to be provided in a chain
with a certain order to the user, otherwise, the provided service might not the one
that the service provider initially intend to provide. Due to the various added NFV
elements, the complexity of the network will increase and the dependability risks will
increase accordingly. The focus on the dependability issue will base on providing a
service function chain from a service provider node o to a user end-point node d in
an NFV-based network.

To provision such a service, the following connectivity requirements must be
fulfilled in an NFV-based network:

• Service function chain.
In an NFV-based network, a service will be split into different VNFs which
might locate either in different datacenters or in the same datacenters. In
the interest of providing the service to the end-users, these functions shall be
chained together followed with a specific order defined by TSPs.

• Connectivity in between at least one NFV-MANO and all endpoints.
To provide a service to a user endpoint, the NFV-MANO must connect with
the all the endpoints. Hence, the MANO is able to know where to deliver the
service and where does the service originate from.

• Connectivity in between at least one NFV-MANO and all VNF.
NFV-MANO is responsible for managing the lifecycle of VNFs and also used to
orchestrate the different VNFs together so that a service can be delivered from a
service provider endpoint target to a user endpoint. In an NFV-enabled network,
VNFs and NFV-MANO might locate in different geographical locations or the
same geographical location.

An endpoint is considered as a node or a network that data transmission originates
or terminates [40]. The first two requirements are about the necessary NFV elements
should connect with all end-points. There is no need to connect all the VNFs to all
endpoints, only the first VNF and the last VNF in a service function chain must be
connected with the user end-points and the provider end-points respectively. The

3.2. STRUCTURAL MODEL 21

last requirement is about the NFV-MANO should be connected to all VNFs, so that
it can manage and orchestrate all the VNFs.

To evaluate the dependability of the NFV-based services, the structure-function
analysis approach will be applied in Mathematica software tool [41]. By way of
explanation, providing a service successfully in a network needs all the components in
the network operate successfully or at least one of the minimal-cut set of components
are working properly. A cut is a set of components, if all the components in the cut
fail, then the system will fail, no matter how other components in other sets behave
[9]. Particularly, the minimal set means if remove any component in a set results in
the set not to be a cut anymore.

The example shown in below aims at giving a better explanation of the structure-
function analysis and minimal-cut set concepts. Specifically, the structural analysis
will be applied for the connection from node n1 to the destination node n5 in a
small-scale network. In the network, there are only 6 nodes and 9 links. And we
assume that both the nodes and links might fail.

Figure 3.1: Structural analysis of a small-scale network.

By applying structural analysis in Mathematica, the minimal cut sets S will be
identified. S is comprised of 31 minimal cut sets.

22 3. TWO-LEVEL AVAILABILITY MODEL OF NFV-BASED SERVICES

S =
{
n1,
{
n2, n6, l1,4

}
,
{
n2, n3, l4,5

}
,
{
n2, n4

}
,
{
n4, l1,2

}
, n5,

{
n2, l1,4, l1,6

}
,{

n2, l1,4, l4,6
}
,
{
n2, l3,4, l4,5

}
,
{
n2, l3,5, l4,5

}
,
{
n3, n4, l2,5

}
,{

n3, n6, l1,4, l2,5
}
,
{
n3, l1,2, l4,5

}
,
{
n3, l1,4, l1,6, l2,5

}
,
{
n3, l1,4, l2,5, l4,6

}
,{

n3, l2,5, l4,5
}
,
{
n4, l2,3, l2,5

}
,
{
n4, l2,5, l3,5

}
,
{
n6, l1,2, l1,4

}
,{

n6, l1,4, l2,3, l2,5
}
,
{
n6, l1,4, l2,5, l3,4, l3,5

}
,
{
l1,2, l1,4, l1,6

}
,
{
l1,2, l1,4, l4,6

}
,{

l1,2, l2,3, l3,5, l4,5
}
,
{
l1,2, l3,4, l4,5

}
,
{
l1,4, l1,6, l2,3, l2,5

}
,
{
l1,4, l1,6, l2,5, l3,4, l3,5

}
,{

l1,4, l2,3, l2,5, l4,6
}
,
{
l1,4, l2,5, l3,4, l3,5, l4,6

}
,
{
l2,3, l2,5, l3,4, l4,5

}
,
{
l2,5, l3,5, l4,5

}}
We present the minimal-cut sets into Table 3.1 and use cardinality Ci to categorize

the result. When Ci = k, the minimal-cut set is composed of a number of sets that
only contained k components. For example: if Ci = 1, the number of the minimal-cut
sets is 2. It implies that there are only two components make up the minimal-cut
sets. Either component fails, the whole system will fail as well, even though other
components in other sets operate correctly.

C1 C2 C3 C4 C5 Sum
A small-scale network 2 2 16 8 3 31

Table 3.1: The distribution of the cardinality of the minimal-cut sets for a small-scale
network.

After equipped the needed background knowledge about the structural analysis
and the concept of the minimal-cut sets. An NFV-based network scenario will be
conducted as an example and a reference scenario in the later stage. The structural
analysis illustrates the vulnerability of an NFV-based network by identifying the
minimal-cut sets of the network scenario. The reference scenario is based on the
Norwegian backbone network with a single MANO and 3 different VNFs that located
in the same datacenter.

The following assumptions shall be considered during the structural analysis:
• Nodes, links, MANO and datacenters in the system may fail;
• The two endpoints and the links between endpoints and nodes will not fail;
• VNF nodes will not fail because they are just abstractions that state the
referred VNF;

• The network is working when all the connectivity requirements are fulfilled so
that the needed service will be delivered.

Scenario 1 presented in Figure 3.2 contains a three-layer network. The first layer
of the network is the national backbone network that consists of 10 nodes. Three

3.2. STRUCTURAL MODEL 23

major cities (TRD, BRG, and STV) have duplicated nodes in the backbone network,
while Oslo has four nodes in total. The second layer includes the NFV-MANOs and
datacenter networks that have built-in NFVI that support NFV-VNFs. Moreover,
the third layer is the NFV-VNFs.

Figure 3.2: Reference scenario.

Significantly, since VNFs are just software instances based on NFVI, we present
them as different nodes so that it will be presented in a more intuitional way. But
the presented VNF nodes are just abstractions of the actual VNF instances. And
the links in between datacenters and VNF nodes are considered as the actual VNF
instances. MANO is considered as a whole component which includes both the
underlying hardware infrastructure and the software running it.

Furthermore, besides the NFV elements, there are still two end-points in the
network. One of the end-points is on the user side that is connected to STV and
STVb nodes so that user can request and receive the service. The other end-point
which connects with TRD and TRDb is on the service provider side which provides
the service.

To obtain the minimal-cut set in an NFV-based network, there are four steps:
1 Define the third-layer NFV-based network.

Firstly, the Norwegian backbone network shall be defined as the first layer along
with two end-points. Secondly, the datacenter network and the NFV elements
shall be defined. Importantly, due to the different use cases, the geographical
locations of datacenters and NFV elements may vary. Lastly, combine the
defined networks and network elements together into the third-layer NFV-based
network.

24 3. TWO-LEVEL AVAILABILITY MODEL OF NFV-BASED SERVICES

2 Find paths.
Based on the connectivity requirements on provisioning an NFV-service that
have written in the beginning, the paths in between the different elements must
be found. Including the paths start with the provider end-point and go to
different VNFs in the service function chain and end up in the user end-point.
Additionally, paths in between MANOs and the two endpoints as well as in
between MANOs and VNFs must be found.

3 Map to the network elements.
These found paths need to be mapped into the vertexes of all the network
elements such as links, VNFs, and etc. so that the failed component could be
clearly located.

4 Calculate the minimum-cut sets.
Finally, the minimum cut sets of the NFV-based networks will be calculated.

After applying Mathematica software tool on Scenario 1, all the possible connec-
tions will be found and all the minimal-cut sets that exist will be obtained. Hence, the
minimal-cut sets are shown in Table3-2 below and presented as different cardinality
k. Each column represents the number of minimal-cut sets that have cardinality k.
In addition, the sum contains the total number of minimal-cut sets.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Sum
S1 5 9 8 59 232 442 446 320 195 57 12 1785

Table 3.2: Minimal-cut sets of Scenario 1.

The highest cardinality is 11, it means there are at most 11 network elements
that listed in the same minimal-cut set. If all of the 11 network elements are failed
simultaneously will result in a system failure.

When the cardinality k = 1, there exists five network elements. It indicates
that if just one network element among the five is not functioning anymore, the
whole system considered as down, regardless how excellent other network elements
in the system are working. These five crucial network elements are lDC1−V NF1,
lDC1−V NF2, lDC1−V NF3, NMANO1 and NDC1. As we mentioned before, the link
between a datacenter and a VNF is the actual VNF. Therefore, the three VNFs,
MANO1 and Datacenter1 have a have a significant impact on the system vulnerability.

Similarly, the number of minimal-cut sets when cardinality k = 2 is 9. It means
there are 9 sets of network elements and each of them includes 2 network elements.
The 9 network elements are:

3.3. DYNAMIC MODEL 25

S1k=2 =
{{
nTRD, nTRDb

}
,
{
nSTV , nSTV b

}
,
{
nBRG, nBRGb

}
,
{
nTRD, lTRDb−DC1

}
,{

nTRDb, lTRD−DC1
}
,
{
lTRDb−DC1, lTRD−DC1

}
,
{
nBRG, lBRGb−MANO1

}
,{

nBRGb, lBRG−MANO1
}
,
{
lBRGb−MANO1, lBRG−MANO1

}}

From the minimal-cut sets, it can be seen that all the network elements are
routers and physical links in the network. The analysis will be conducted in next
chapter. However, with this in mind, the network elements that can influence the
state of the systems generally can be categorized as five network elements. Namely,
VNF, MANO, datacenter, router and link. Hence, let’s take a further step into the
reasons that make these network elements fail and the time it takes to recover from
the different failures.

The structural analysis script is shown in Appendix A.

3.3 Dynamic model

After deploying the structure-function analysis of the network structure, the individual
network element model shall be developed to evaluate the availability/unavailability.
As mentioned before, the methods that can be applied are Markov model or Stochastic
Petri net. For the purpose of this thesis work, the dynamic modeling approach is
Stochastic Activity Network model which is one stochastic extension of Stochastic
Petri nets [36]. The simulations and models were implemented in the Möbius software
tool.

Figure 3.3: SAN system model example.

26 3. TWO-LEVEL AVAILABILITY MODEL OF NFV-BASED SERVICES

A simple example in Figure 3.3 is given above for demonstrating the SAN model.
Stochastic activity network is a probabilistic extension of activity network which is
comprised of 4 primitive objects: activities, places, input gates and output gates.
Activities are about the actions happened in the modeled system. Places are the
states of the modeled system. Input gates and output gates can be seen as controllers
that control the activities. Furthermore, after an activity “completes”, output gates
are used to change the state of the system [7]. There are two types of activities: timed
activities and instantaneous activities. A timed activity means the duration of the
activity has an influence on the system’s ability to perform. While an instantaneous
activity of duration of 0 seconds related to the performance variable and is completed
in a changeable period [36].

Moreover, the availability of the selected five network elements will be evaluated
by use of SAN system models. These network elements were selected since they are
all appearing in the lower cardinality minimal-cut sets. These five network element
SAN models are link SAN model, router SAN model, datacenter SAN model, VNF
SAN model and NFV-MANO SAN model. The SAN model of a link and a router
are inspired by and taken from [34], [25], [9], [19]

A. Link
A link failure in our model is assumed to be related to the physical link failures.
Hence, these links only have two states, either up or down due to hardware
failures. Significantly, the aim is to provide a general model without considering
the link length. The geographical location of the nodes could variate due to
different cases so that the link length in between the different nodes will vary as
well. Generally, the failure rate shall be proportional to the link length. However,
in our model, we only consider that the link would fail if there is a hardware
failure and the link length is not in our consideration [17].

Figure 3.4: SAN model of a link.

The failure rate λL and repair rate µL are given in Table 3.3, and therefore the

3.3. DYNAMIC MODEL 27

availability of a link is ”AL = µL

λL+µL
. All the failure rate, repair rate and the

availability equation should be valid for all the links in the structure analysis
model [34].

Parameter Value Description
λL 10−6 Link failure rate
µL 0.01 Link recovery rate

Table 3.3: Link model parameters used in the case studies

B. Router
The purpose is to develop a SAN model for a general router despite the various
types of router architecture. Therefore, the components in the router will not
be considered in our case. In other words, we consider the router as a black box
[34].

Figure 3.5: SAN model of a router.

The router model is based on a 1+1 redundancy router architecture. Additionally,
there are a number of failures are not included in our model because they

28 3. TWO-LEVEL AVAILABILITY MODEL OF NFV-BASED SERVICES

considered as seldom happen and will not affect the expected accuracy of our
model [34].
• Operation and Maintenance(O&M) failure. (failed_Man)
• Hardware failure on one controller. (failed/spare_CHW)
When there is a hardware failure occurs on the working controller, the controller
will fail. However, the redundancy controller either successfully activated or
unsuccessfully triggered. If the redundancy controller is activated on time, the
router will not fail. Vice versa.
• Hardware failures on both controllers. (failed_CHW)
• Permanent hardware failures in forwarding plane. (failed_FHW)
• Transient hardware failure in forwarding plane. (failed_FHWt)
• Software failure. (failed_SW)

Parameter Value Description
MAN_F 5.0E-7 Router O&M failure rate
MAN_R 9.0E-5 Router O&M recovery rate
CHW_F 0.97 Router hardware failure rate on one controller and the router will fail.

0.03 Router hardware failure rate on one controller and the router will not fail.
UCHW_R 3.0E-5 Router hardware repair rate (on one controller)
CHW_F2 9.0E-9 Router hardware failure rate (on two controllers)
CHW_R2 2.0E-5 Router hardware recovery rate (on two controllers)
CHW_R 9.0E-9 Router hardware fail rate (on the redundancy controller)
SW_F 2.0E-6 Router software failure rate
SW_R 0.006 Router software recovery rate
FHW_F 9.0E-9 Router permanent hardware failure rate (in forwarding plane)
FHW_R 2.0E-5 Router permanent hardware repair rate (in forwarding plane)
FHWT_F 2.0E-6 Router transient hardware failure rate (in forwarding plane)
FHWt_R 0.006 Router transient hardware recovery rate (in forwarding plane)

Table 3.4: Router model parameters used in the case studies.

The SAN model and parameters can be applied in all the routers in our case. In
addition, for the sake of simplicity, only homogeneous routers are considered.

C. Datacenter
Datacenter can be seen as a cluster of processors(servers) that have built-in
NFVI to support NFV-VNFs [41]. NFVI are embedded in the datacenter and by
using the provided physical resources as well as the software resources to provide
the environment for VNF. To deploy the physical resources, these resources must
be decoupled and abstracted by the virtualization layer to virtual resources.
More specifically, the virtualization layer is based on a hypervisor to achieve
this goal. These virtualized resources hence can be used in correspondent one
or many Virtual Machine (VM) instances. Therefore, to consider the different
types of failures that might cause datacenter unavailable, we must not only

3.3. DYNAMIC MODEL 29

consider the underlying infrastructure but also consider the virtualization layer
and software upon it.
Here are some possible failures can occur in a datacenter infrastructure due to
different reasons:
⇒ Network protocol
⇒ Hardware failures (link/server/rack failure)
⇒ Software failures
⇒ Battery failure (power failure)
⇒ Accidental/human error/misconfiguration
⇒ Water, heat failure
⇒ Weather related or nature disasters
⇒ Generator failure
⇒ Common O&M
⇒ Malicious attack

Generally, a datacenter should have redundant data communication connections
to ensure the consistent communication. A backup power should be also supplied
to ensure proper functioning of the datacenter. In addition, the environmental
control should be equipped to prevent or reduce the risk that the datacenter will
be brought down by the natural disaster or fire disaster and so on [16].
To provide a secure environment, a datacenter shall be highly integrated and
the data shall be encrypted so that security issues such as malicious attack will
be resisted. In a datacenter cluster, especially those with large-scale datacenter
cluster, it is difficult to keep proper values for a large great deal of configuration
parameters. Not to mention the “hidden” misconfigurations that could be re-
vealed only when the system is not working properly. Thus, the misconfiguration
detection method should be used in the datacenter to prevent this kind of failure
[36]. Consequently, the possible risks in our case will be only between hardware
failures and software failures.
As we mentioned in the previous chapter, there are three types of VNF deploy-
ment. All things considered, the second deployment approach (b) will be applied
in our case for the sake of simplicity. In Figure ?? (b), VNF1 and VNF2 are
sharing the same hardware. The underlying physical resources are divided to
support two different VNFs. Since each VNF has a dedicated VM, the VM
failure will not be considered as a failure resource in a datacenter(NFVI) in our
case and will be considered in the VNF model development.
Therefore, in our case, the datacenter model only consists of the underlying
hardware and the hypervisor. The supported VNFs will share the physical and
virtual resources based on the same hardware and hypervisor. Notably, the
specific components will not be considered in here and the datacenter is assumed
as a black-box. Due to the different datacenter architectures, the SAN may vary,
however, we only consider there is one server (hardware) in the datacenter with
two types of failure resources showed in Figure 3.6. And the parameters are

30 3. TWO-LEVEL AVAILABILITY MODEL OF NFV-BASED SERVICES

shown in Table 3.5.

Figure 3.6: SAN model of a datacenter that support VNFs.

Parameter Value Description
DC_hardware_fail 0.97 Datacenter hardware failure rate

DC_hardware_recovery 9.0E-9 Datacenter hardware recovery rate
DC_hypervisor_fail 2.0E-6 Datacenter hypervisor failure rate

DC_hypervisor_recovery 0.006 Datacenter hypervisor recovery rate

Table 3.5: Datacenter model parameters used in the case studies

The SAN model and parameters can be applied in all the datacenters in our
case. In addition, for the sake of simplicity, only homogeneous datacenters are
considered. The datacenter model parameters showed above is inspired by and
taken from [7]. Since the hypervisor is a software, we consider the failure and
recovery rate as same as the general software failure rate and recovery rate.

D. VNF
As we mentioned before, VNFs are just software instances running in correspond-
ing VMs. Therefore, in our case, we consider the VNFs and their correspondent
VMs as a whole component. In the VNF model showed in Figure 3.7, there are
only two failure source: VM failure and VNF software failure.

3.3. DYNAMIC MODEL 31

Figure 3.7: SAN model of a VNF.

Parameter Value Description
Vvirtualmachine_fail 2.0E-6 VNF virtual machine failure rate

Vvirtualmachine_recovery 0.006 VNF virtual machine recovery rate
Vsoftware_fail 2.0E-6 VNF software failure rate

Vsoftware_recovery 0.006 VNF software recovery rate

Table 3.6: VNF model parameters used in the case studies.

The SAN model and parameters can be applied in all the VNFs in our case.
Since VM and VNF are software, we consider the failure and recovery rate as
same as the general software failure rate and recovery rate. The VNF model
parameters showed above is inspired by and taken from [7].

E. NFV-MANO
Since NFVI resources are supposed to support VNFs and partially VNFs, the
MANO is not considered to be based on NFVI, but rather in a simple datacenter.
For the sake of simplicity, the components inside the hardware will not be
considered at all and there is no redundancy within the datacenter infrastructure.
Hence, the SAN model of the MANO is shown in Figure 3.8.

32 3. TWO-LEVEL AVAILABILITY MODEL OF NFV-BASED SERVICES

Figure 3.8: SAN model of a MANO.

Parameter Value Description
Mhardware_fail 0.97 MANO hardware failure rate

Mhardware_recovery 9.0E-9 MANO hardware recovery rate
Msoftware_fail 2.0E-6 MANO software failure rate

Msoftware_recovery 0.006 MANO software recovery rate

Table 3.7: MANO model parameters used in the case studies.

The SAN model and parameters can be applied in all the MANOs in our case.
The MANO model parameters showed above is inspired by and taken from [7].
The unavailability of the five SAN models are presented below along with the

95% confidence interval.

Unavailability
Link SAN 1.0066 ∗ 10−4 ± 2.86 ∗ 10−6

Router SAN 6.0092 ∗ 10−3 ± 2.46 ∗ 10−4

Datacenter SAN 7.7881 ∗ 10−4 ± 7.56 ∗ 10−5

VNF SAN 6.5884 ∗ 10−4 ± 9.10 ∗ 10−6

MANO SAN 7.7881 ∗ 10−4 ± 7.56 ∗ 10−5

Table 3.8: Comparison of the unavailability of the five network elements SAN
model.

3.4. MERGE THE TWO-LEVEL MODELS 33

In addition, the documentations of the SAN models and on the simulation (reward
and study) in Möbius will be presented in Appendix H-L.

3.4 Merge the two-level models

After achieving the minimal-cut sets from the structural models and the unavailability
of network elements from the dynamic models, the overall network availability can
be obtained by merging the results together by applying the inclusion-exclusion
principle [37].

The inclusion-exclusion principle is a well-known instrumental in evaluating the
system reliability of uncertainty over Boolean formulas [8]. The formula is:

AS = P (∪ni=1Ci) =
n∑
k=1

(−1)(k−1)
∑

Ø6=⊆|n|
|l|=k

P (∩i∈ICi) (3.1)

The Ci represents the minimal-cut sets that obtained from structural models.
P (Qi) equals to the probability of set Ci [18].

The overall unavailability/availability are presented below.

Scenario Unavailability Availability
S1 0.00232 0.99767

Table 3.9: The overall unavailability and availability of Scenario 1.

From the result, it can be seen that the NFV-based network service in Scenario 1
only achieved “two nines” which is far from the carrier grade services. Therefore,
more scenarios will be conducted to evaluate the availability of NFV-based services
in different network structures.

Moreover, the merging model script in Mathematica will be presented in Appendix
M to Appendix S.

Chapter4Evaluation and analysis

As Chapter 3 illustrates the two-level availability approach used in obtaining the
overall availability of the NFV-based services, one use case has been conducted as a
reference scenario to show how the overall availability of the service can be achieved.
Not surprisingly, the availability of the service still needs to improve to get to the
carrier-grade standard.

In chapter 4, there are six more scenarios will be used to demonstrate the
availability fluctuation when the NFV-elements are distributed in different NFVI-
PoP. The structural analysis in different NFV-based network use cases will be
illustrated along with the obtained minimal-cut sets. The evaluation and analysis
will be conducted based on the use cases and related minimal-cut sets.

4.1 Six case studies

All the network scenarios below are based on the same underlying network structure
which is the Norwegian backbone network. In the Reference scenario which presented
in the last chapter, all the VNFs are running in the same datacenter that connects
to TRD and TRDb nodes along with the MANO1 infrastructure. However, the
VNFs and MANOs can be deployed either in the same geographical location or
various geographical locations. NFV-MANO shall support geographically distributed
deployment in order to complement the disaster recovery strategies [25]. Additionally,
VNF instances can be also implemented either in the same location or be geograph-
ically dispersed when the overall end-to-end service performance and other policy
regulations are met [21]. Therefore, six more network scenarios will be simulated to
perform the distributed NFV deployment.

In Scenario 1, 2 and 3, there is only one MANO (MANO1) and the different VNFs
are deployed either in the same datacenter or distributed in different datacenters.
The same applies Scenario 4, 5 and 6, however, in these scenarios, two NFV-MANOs
(MANO1 and MANO2) have been deployed.

35

36 4. EVALUATION AND ANALYSIS

A. Scenario 1
In Figure 4.1, there are 2 datacenters that locate in different geographical
locations. Datacenter 1 connects with 2 nodes (TRD and TRDb), datacenter 3
connects to 4 nodes (OSL, OSL1, OSL1b and OSL2b). Both VNF1 and VNF2
are located in Datacenter 1 and VNF3 is located in Datacenter 3. MANO1 is
connected to 2 nodes (BRG, BRGb) as depicted in Figure 4.1.

Figure 4.1: Depiction of Scenario 1.

After applying the structural analysis by going through all the possible con-
nections in Scenario 1, the minimal-cut sets have been calculated as Table 4.1
showed.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Sum
S1 6 9 8 120 360 639 687 500 281 112 49 6 6 2783

Table 4.1: Minimal-cut sets of Scenario 1.

The highest cardinality is 13, as we explained in the last chapter, it means there
are at most 13 network elements in one minimal-cut set. Together with the
minimal-cut set with different cardinality value, the overall number of minimal-
cut sets are also showed. S1=2783. Compared to the Reference scenario, Scenario
1 has a more complex network structure since it has two datacenters which added
5 network elements in the system. Just because the added network elements,
the total number of the minimal-cut sets are increasing, and the maximum
cardinality is increasing as well.

4.1. SIX CASE STUDIES 37

B. Scenario 2
In Scenario 2 showed below, similarly, there are also two datacenters. The only
difference is VNF2 are deployed by two datacenters (Datacenter 1, 2). And
VNF1 and VNF3 locate in Datacenter 1 and Datacenter 3, respectively. MANO1
connects to 2 nodes (BRG and BRGb).

Figure 4.2: Depiction of Scenario 2.

After applying the structural analysis and going through all the possible con-
nections in Scenario 2, the minimal-cut sets have been calculated as Table 4.2
showed.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 Sum
S2 5 10 8 120 354 643 709 525 394 183 119 32 11 4 3117

Table 4.2: Minimal-cut sets of Scenario 2.

The highest cardinality is 14 and the overall number of minimal-cut sets are
S2=3117. Scenario 1 and Scenario 2 only have one difference, a link in between
VNF2 and Datacenter 2. As we explained earlier in the last chapter, the node
VNF2 is considered as fault-free since it is just representing the abstraction of
VNF2. The real VNF2 software instance replications are presented by using
links in between node VNF2 and datacenters. Even there is only one extra link
in Scenario 2, the overall possible connections are increasing which result in the
growth of the total number of the minimal-cut sets and the maximum cardinality
in a minimal-cut set.

38 4. EVALUATION AND ANALYSIS

C. Scenario 3
In Scenario 3, a new datacenter (Datacenter 3) is added into the NFV-based
network structure. The newly added datacenter connected with BRG, BRGb,
STV and STVb. VNF1 still locates in Datacenter 1. VNF2 are owned by
two datacenters (Datacenter 1, 2) just as Scenario 2 showed. And VNF3 has
replications in both Datacenter2 and Datacenter3. MANO1 is still in the same
location as the previous scenarios presented before.

Figure 4.3: Depiction of Scenario 3.

After applying structural analysis in Scenario 3, the minimal-cut sets have been
calculated as Table 4.3 showed.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 Sum
S3 3 15 8 65 431 766 1038 1389 1431 1619 1559 1198 875 532 268 142 60 13 3 11415

Table 4.3: Minimal-cut sets of Scenario 3.

The overall number of minimal-cut sets are S3=11415 which is exceedingly larger
than the previous 3 scenarios and the highest cardinality is 19. Scenario 3 is
the most complex scenario so far, there are 6 extra network elements have been
added to the network compared with Scenario 3 and 12 extra network elements
compared to the Reference scenario.

D. Scenario 4
Unlike the three scenarios showed above, the last three scenarios all have two
redundant MANOs in different geographical locations to manage and orchestrate
VNFs. Since there are two MANOs, so at least one MANO must be reachable
from all the VNFs and all the endpoints. MANO 1 connects to BRG node and

4.1. SIX CASE STUDIES 39

BRGb node. MANO2 connects to TRD node and TRDb node just as Datacenter
1 does. Datacenter2 is connected with four nodes: OSL, OSL1, OSL1b and
OSL2b. VNF1 and VNF2 are running in Datacenter1, while VNF3 locates in
Datacenter2.

Figure 4.4: Depiction of Scenario 4.

After going through all the possible connections in Scenario 4, the minimal-
cut sets have been calculated as Table 4.5 showed and the overall number of
minimal-cut sets are S4=6474.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 Sum
S4 5 6 7 121 335 668 1251 1339 1157 752 451 236 80 51 10 5 6474

Table 4.4: Minimal-cut sets of Scenario 4.

The only difference of the network structure in Scenario 4 and Scenario 1 is that
one NFV-MANO (MANO2) is added. Consequently, three network elements
have been added to the network structure in Scenario 4. Thus, due to the added
complexity the overall number of minimal-cut sets has increased to 6474 from
2783.

E. Scenario 5
In Scenario 5, VNF2 has replications in 2 datacenters: Datacenter 1 and Data-
center 2. Other than that, everything is the same as Scenario 4.

40 4. EVALUATION AND ANALYSIS

Figure 4.5: Depiction of Scenario 5.

After going through all the possible connections in Scenario 5, the minimal-cut
sets have been calculated as Table 4.5 showed. The overall number of minimal-cut
sets are S5=8284.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 Sum
S5 4 7 7 121 323 628 1159 1492 1537 1225 898 476 262 83 48 9 5 8284

Table 4.5: Minimal-cut sets of Scenario 5.

Scenario 5 has only added one extra network element based on the network
structure in Scenario 4, the link between Datacenter2 and VNF2. It leads to an
increase in all the possible connections in Scenario 5 and hence results in the
growth on the sum of the number of minimal-cut sets.

F. Scenario 6
Scenario 6 has the most complex network structure. There are two redundant
MANOs and three datacenters. Two of the different VNFs have replications in
multiple datacenters.

4.2. EVALUATION AND ANALYSIS OF THE SEVEN CASE STUDIES 41

Figure 4.6: Scenario 6 of the structural analysis.

After going through all the possible connections in Scenario 6, the minimal-cut
sets have been calculated as Table 4.6 showed.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 Sum
S6 2 12 7 66 432 793 1477 2605 3708 5136 5714 3576 2367 1388 730 344 117 35 6 33372

Table 4.6: Minimal-cut sets of Scenario 6.

The overall number of minimal-cut sets are S6=33372. Noteworthily, the sum
number of all the minimal-cut sets is the largest among the seven scenarios,
and the network structure is the most complex one. The highest cardinality
is 19, meaning, if the whole 19 network elements in a minimal-set are failed
simultaneously regardless the reason, the system will fail.

4.2 Evaluation and analysis of the seven case studies

4.2.1 Comparison of the minimal-cut sets in the seven scenarios

There are 7 scenarios have been conducted to present the minimal-cut sets of all the
possible connections in delivering NFV-based services. The number of the overall
minimal-cut sets varied depending on the network structure of each scenario. As we
explained in Chapter 3, the state of the network element in a minimal-cut set can
decide the state of the whole system, meaning whether the system is functioning
and whether the service will be delivered to the dedicated user are depending on the
network elements in the minimal-cut sets. If all the subsystems in the minimal-cut

42 4. EVALUATION AND ANALYSIS

set are failed, the system considered as fail and the service can not be delivered to
the users.

As the seven use cases demonstrated, when the network structure gets more
complex, the cardinality will increase accordingly and so is the sum of the minimal-
cut sets. And as we stated earlier, in Scenario 6, the maximum number of sub-elements
among all the minimal-cut sets is 19. That is to say, the 19 sub-elements in a minimal-
cut set are failed at the same time can result in a system failure. This is a rare case
in reality. Therefore, we only consider the low cardinality sets (C1-C4) in our thesis
work since they are most likely to happen. The number of low cardinality cut sets get
higher, then the system is easier to fail. We regard the fewer simultaneous network
elements failures to indicate the vulnerability of the network. The low cardinality
minimal-cut sets of the seven scenarios are presented below along with the sum of
the first four low cardinalities sets and the overall minimal-cut sets in each scenario.

C1 C2 C3 C4 Sum (C1 + C2 + C3 + C4) Sum (overall)
R-S 5 9 8 59 81 1785

One MANO
S1 6 9 8 120 143 2783
S2 5 10 8 120 143 3117
S3 3 15 8 65 91 11415

Two MANOs
S4 5 6 7 121 139 6474
S5 4 7 7 121 139 8284
S6 2 12 7 66 87 33372

Table 4.7: Comparison of the different scenarios’ low cardinality minimal-cut sets.

The Reference scenario has the simplest network structure only with 10 nodes, 1
datacenter, 3 VNFs and 1 MANO. Just because of the simple network structure, the
first four cardinality number of the minimal-cut sets is only 81 which is the smallest
number of the 7 scenarios. It indicates the network structure in the Reference scenario
is the least vulnerable one. The rest of the scenarios are just variations based on the
Reference Scenario.

Scenario 3 and 6 also have smaller numbers in the sum of first four cardinality
sets, however, both network structures are the most complex network structures
among the 7 use cases. Therefore, it reveals that adding complexity into the network
structure may not always have a bad impact on the service dependability. To achieve
relatively dependable network service by deploying NFV elements, the elements in
the low cardinality minimal-cut sets shall be listed and analyzed.

4.2. EVALUATION AND ANALYSIS OF THE SEVEN CASE STUDIES 43

One MANO Two MANOs
C1

element
R-S S1 S2 S3 S4 S5 S6{

lDC1−V NF1
} {

lDC1−V NF1
} {

lDC1−V NF1
} {

lDC1−V NF1
} {

lDC1−V NF1
} {

lDC1−V NF1
} {

lDC1−V NF1
}{

lDC1−V NF2
} {

lDC1−V NF2
} {

lDC2−V NF3
} {

NMANO1
} {

lDC2−V NF2
} {

lDC2−V NF3
} {

NDC1
}{

lDC1−V NF3
} {

lDC2−V NF3
} {

NMANO1
} {

NDC1
} {

lDC2−V NF3
} {

NDC1
}{

NMANO1
} {

NMANO1
} {

NDC1
} {

NDC1
} {

NDC2
}{

NDC1
} {

NDC1
} {

NDC2
} {

NDC2
}{

NDC2
}

Sum 5 6 5 3 5 4 2

Table 4.8: Comparison of elements of minimal-cut sets when cardinality=1 in all
the scenarios.

In Table 4.8, all the network elements of in minimal-cut sets when cardinality
is 1 in each scenario are listed. When cardinality=1, one of the elements’ failure
will cause the whole system state change. More formally, the service will not be
provided to the user. From Table 4.8, it can be clearly seen that the number of sets
starts to decrease when the NFV elements have replications. Specifically, the number
in Scenario 2 and Scenario 3 is smaller than Scenario 1. Similarly, the number in
Scenario 5 and Scenario 6 is smaller than all the other scenarios.

In the Reference scenario, all the VNFs are in the same datacenter which is
very risky. If the datacenter is failed regardless the reason, the service will not be
provided to its subscriber. In scenario 1, there are two datacenters, but similarly,
all the NFV elements have no backup replications in any other datacenter, so that
one link failure or one datacenter failure will cause the whole system out of service.
From the observation, it can be seen if NFV-elements do not have any replications
or redundancy in the datacenter, adding a new extra datacenter only increase the
network vulnerability.

In scenario 2, VNF2 are deployed by two datacenters, so the number of minimal-
cut sets with cardinality one decreases to 5 which is the same number as in Reference
scenario. In addition, in scenario 3, VNF2 and VNF3 are both deployed by two
different datacenters. The same results apply to the scenarios with 2 MANOs, there
are only two network elements exists in Scenario 6. It indicates that having a backup
or replications of NFV elements in the network make the network less vulnerable.

Since the datacenters, MANOs are connected with at least 2 nodes to access the
backbone network. Another investigation shall be made based on the minimal-cut
sets with cardinality 2. When cardinality=2, it means if the two listed network
elements failed simultaneously, the system will fail. If only one element in the set
failed, the system is still in its working state. The reason for this type of result is

44 4. EVALUATION AND ANALYSIS

because of the redundancy, i.e. two nodes connected with an endpoint or a MANO
or a datacenter. And in Scenario 4, 5, 6, there are also redundancy of MANOs.

One MANO
C2

element
R-S S1 S2 S3{

nTRD, nTRDb
} {

nTRD, nTRDb
} {

nTRD, nTRDb
} {

nTRD, nTRDb
}{

nSTV , nSTV b
} {

nSTV , nSTV b
} {

nSTV , nSTV b
} {

nSTV , nSTV b
}{

nBRG, nBRGb
} {

nBRG, nBRGb
} {

nBRG, nBRGb
} {

nBRG, nBRGb
}{

nTRD, lTRDb−DC1
} {

nTRD, lTRDb−DC1
} {

nTRD, lTRDb−DC1
} {

nTRD, lTRDb−DC1
}{

nTRDb, lTRD−DC1
} {

nTRDb, lTRD−DC1
} {

nTRDb, lTRD−DC1
} {

nTRDb, lTRD−DC1
}{

lTRDb−DC1, lTRD−DC1
} {

lTRDb−DC1, lTRD−DC1
} {

lTRDb−DC1, lTRD−DC1
} {

lTRDb−DC1, lTRD−DC1
}{

nBRG, lBRGb−MANO1
} {

nBRG, lBRGb−MANO1
} {

nBRG, lBRGb−MANO1
} {

nBRG, lBRGb−MANO1
}{

nBRGb, lBRG−MANO1
} {

nBRGb, lBRG−MANO1
} {

nBRGb, lBRG−MANO1
} {

nBRGb, lBRG−MANO1
}{

lBRGb−MANO1, lBRG−MANO1
} {

lBRGb−MANO1, lBRG−MANO1
} {

lBRGb−MANO1, lBRG−MANO1
} {

lBRGb−MANO1, lBRG−MANO1
}{

lV NF2−DC1, lV NF2−DC2
} {

lV NF2−DC1, lV NF2−DC2
}{

lV NF3−DC3, lV NF3−DC2
}{

nDC2, nDC3
}{

nDC2, lDC1−V NF2
}{

nDC2, lDC3−V NF3
}

Sum 9 9 10 15

Two MANOs
C2

element
S4 S5 S6{

nTRD, nTRDb
} {

nTRD, nTRDb
} {

nTRD, nTRDb
}{

nSTV , nSTV b
} {

nSTV , nSTV b
} {

nSTV , nSTV b
}{

nTRD, lTRDb−DC1
} {

nTRD, lTRDb−DC1
} {

nTRD, lTRDb−DC1
}{

nTRDb, lTRD−DC1
} {

nTRDb, lTRD−DC1
} {

nTRDb, lTRD−DC1
}{

nMANO1, nMANO2
} {

nMANO1, nMANO2
} {

lTRDb−DC1, lTRD−DC1
}{

lTRDb−DC1, lTRD−DC1
} {

lTRDb−DC1, lTRD−DC1
} {

lV NF2−DC1, lV NF2−DC2
}{

lV NF2−DC1, lV NF2−DC2
} {

lV NF3−DC3, lV NF3−DC2
}{

nDC2, nDC3
}{

nDC2, lDC1−V NF2
}{

nDC2, lDC3−V NF3
}{

nDC3, lDC2−V NF3
}{

nMANO1, nMANO2
}

Sum 6 7 12

Table 4.9: Comparison of elements of minimal-cut sets when cardinality=2 in all
the scenarios.

Table 4.9 listed the network elements in minimal-cut sets with cardinality 2.

Even though Scenario 4, 5, 6 has a smaller number than Scenario 1, 2, 3. It does
not reveal the fact that having two redundant MANO can achieve a more dependable
network structure since the added MANO2 are connected the same nodes as the
service provider endpoint o and Datacenter 1 connected. However, in other word, it
shows that adding new NFV-elements that locate as same as the existing network

4.2. EVALUATION AND ANALYSIS OF THE SEVEN CASE STUDIES 45

elements may lead the network structure less vulnerable.

The network elements in minimal-cut sets with cardinality 4 and 5 will not be
presented for the sake of simplicity. In the Reference scenario, we conducted a
situation that all the VNFs are running in the same datacenter. This may lead to
a less vulnerable situation than any other scenarios we have conducted. However,
this deployment is highly counting on the dependability of the datacenter. If the
datacenter crashes for any reason, the services can not be provisioned anymore.
And putting everything in one datacenter is not practical due to the geographical
restrictions.

In [14], there are suggestions from ETSI that the NFV deployment should have a
geographical distribution for the failure recovery issues. Therefore, Scenario 1 and 4
have been conducted that the VNFs are distributed in different geographic locations,
but none of them are hosted by more than one datacenter. While in the rest of the
scenarios, there are at least one VNF is deployed by more than two datacenters in
different geographic locations. The results are obvious that Scenario 1 and 4 provide
the most vulnerable network structure. Thus, there are some suggestions just based
on the structural analysis of the seven scenarios.

• If the datacenter is used only to provide one single VNF without replications,
then it is not necessary to use this datacenter, but rather use the existing
datacenters to provide. Just as Scenario 2 showed, Datacenter 2 is used only
to support VNF3 and the network becomes more vulnerable than the original
(Reference scenario).
• If the datacenter is used to deploy multiple VNFs and especially for those VNFs
have replications in other datacenters, the network structure tends to be less
vulnerable than the original, just as Scenario 3 and Scenario 6 showed.
• If a new NFV-element will add into the network structure, it is better to connect

the element with the nodes that already connected with other NFV-element or
the endpoints, just as MANO2 in Scenario 4, 5 and 6 showed.

In spite of the low cardinality minimal-cut sets are used to reflect the network
vulnerability, the structural analysis of the network scenario is not sufficient to achieve
the network availability evaluation. The overall service unavailability/availability
must be included since the failure rate and repair rate of different network elements
are various.

4.2.2 Comparison of the availability of the NFV-based services

Merging the obtained minimal-cut sets and the unavailability that achieved from
the dynamic SAN models in the previous chapter, the overall unavailability of the
service in different NFV-based networks are obtained and presented in Table 4.10.

46 4. EVALUATION AND ANALYSIS

Scenario Unavailability Availability

One MANO

S1 0.002326 0.997674
S2 0.004415 0.995585
S3 0.00376 0.99624
S4 0.002329 0.99671

Two MANOs
S5 0.003046 0.996954
S6 0.00239 0.99761
S7 0.001514 0.998486

Table 4.10: Comparison of the unavailability/availability of the NFV-based service
in different scenarios.

The availability of the services provided in 7 different NFV-based networks have
the same pattern as the number of the minimal-cut sets in lower cardinalities. It is
mainly because of the SAN model results. For the sake of simplicity and limited
time, only the general and dominant failure resources are considered in the modelling
process. Therefore, the unavailability of the network elements did not influence the
result too much.

Firstly, the availability of the service in all the scenarios has not reached even
“3 nines”. In Chapter 2, we have mentioned that the carrier-grade service always
achieves the “5 nines” standard or even beyond the “5 nines”. The idea of deploying
NFV technology is to adding complexity to the network to handle complexity. By
applying NFV technology in the existing network, the dependency on the specialized
hardware will greatly reduce and increase the service agility. But if the service
dependability does not reach the standard, then the technology is not ready to be
used.

Moreover, in all the scenarios, the NFV-based service availability model only
considers the network connectivity aspects. There are still many correlation failure
resources exist in the real deployment that may further influence the availability of
the NFV-based services.

Secondly, having VNF replications in two datacenters can increase the service
dependability. Scenario 2, 3, 5 and 6 are proof of this. Distributed NFV deployment
can take advantage of the cloud computing as well. The VNFs might host and
managed by different infrastructure providers in the cloud, and the service providers
rent the needed VNFs for service provisioning.

Thirdly, adding two MANO redundancies can increase the service dependability.
But how much they increased are debatable, since in our case MANO2 is taking

4.2. EVALUATION AND ANALYSIS OF THE SEVEN CASE STUDIES 47

advantage of the existing node connections. More than two MANO redundancies
have not simulated in our case. However, adding MANO redundancies to increase
the service dependability may have a threshold. If there are too many MANO
redundancies, the service dependability might decrease due to the increasing network
elements in the network structure.

As a conclusion, the approach of deploying the NFV-element in the telecommu-
nication network to provide services still need to be improved so that its service
availability can reach carrier grade. It is also a trade-off among economic input, the
network complexity and the dependability. To achieve a better service availability,
more links and datacenters will be used, and more expensive it is. However, if the
economy does not allow, put all the VNFs in one datacenter and deploy the NFV-
MANO in the same nodes that connect with either the datacenter or the endpoints
to achieve a higher availability. In contrast, if money allows, deploy redundancy
NFV-MANO and VNFs to achieve the higher availability. But how many replications
and redundancies should be deployed is a debatable question and is highly depending
on the realistic network situation.

Chapter5Conclusion and future work

5.1 Conclusion

As NFV plays a significant role in changing the way of provisioning network services,
it is important for TSPs to know the challenges, risks as well as the influences on the
existing telecommunication infrastructures. However, there are still many unexplored
areas in NFV need to be studied. For example, the dependability concern in NFV.
Therefore, this thesis work is focusing on the service dependability in NFV-based
networks.

The two-level availability model approach has been applied in the seven different
NFV-based Norwegian backbone network scenarios. By utilizing the two-level avail-
ability model, both the network structure and the network elements behavior in the
structure can be fully studied and simulated to present the impacts of the service
dependability from various NFV deployment. The main contributions of the thesis
work are:

• Provide a literature study with regard to the NFV architecture and NFV
deployment.
• Illustrate the way to apply the two-level availability model approach along with

seven scenarios to obtain the minimal-cut sets and the overall dependability of
NFV-based services.
• Analysis the obtained results and evaluate the impact of the NFV deployment
on the service availability.

This thesis work is a step towards the dependability concerns regarding NFV. In
order to gain insight, the two-level availability model approach is taken, where the
goal is to evaluate the impact of the NFV deployment on the service dependability.
Using NFV technology in the current service provisioning network will add complexity
and bring unknown challenges, risks in the network. Therefore, it is important to be
aware of the potential side effects brings by the NFV deployment. In the scenarios as
we developed, adding datacenter to host single VNF software instance may reduce

49

50 5. CONCLUSION AND FUTURE WORK

the service dependability while adding VNF replications and NFV-MANO redundant
may increase the service dependability. It is always a trade-off between complexity
and dependability and adding complexity into the network to handle complexity
might increase the risks and at the same time reduce the service dependability.

5.1.1 Future work

Due to the limited time and for the sake of simplicity, there are several things could
be done in the future. Firstly, the approach and the evaluation are only applied in
the Norwegian backbone network which is a simple but realistic scenario. However,
it also can be applied in a world-wide backbone network to perform the service
availability changes when the network topology becomes more complex. Secondly,
the network services, in our scenarios, are only composed of three VNFs. However,
in reality, the network service function chain might have more network functions
involved in it. Lastly, the SAN models of datacenter, VNF and MANO are very
simple and only have limited failure resources.

References

[1] Carrier grade. https://en.wikipedia.org/wiki/Carrier_grade.

[2] Cloudnfv. http://cloudnfv.com/.

[3] A comparison of nfv, sdn and cloud computing. http://telecomdrive.com/
comparison-nfv-sdn-cloud-computing/.

[4] Huawei nfv open lab. http://pr.huawei.com/en/news/hw-411889-nfv.htm#
.WULZVsaF9sQ.

[5] Möbius model-based environment for validation of system reliability, availability,
security, and performance. https://www.mobius.illinois.edu/.

[6] Network functions virtualisation. http://www.etsi.org/technologies-clusters/
technologies/nfv.

[7] San atomic formalism. https://www.mobius.illinois.edu/wiki/index.php/SAN_
Atomic_Formalism.

[8] F. Aguirre, S. Destercke, D. Dubois, M. Sallak, and C. Jacob. Inclusion–exclusion
principle for belief functions. International Journal of Approximate Reasoning,
55(8):1708 – 1727, 2014.

[9] Richard E Barlow and Frank Proschan. Statistical theory of reliability and life
testing: probability models. Technical report, DTIC Document, 1975.

[10] D. Cotroneo, L. De Simone, A. K. Iannillo, A. Lanzaro, and R. Natella. De-
pendability evaluation and benchmarking of network function virtualization
infrastructures. In Proceedings of the 2015 1st IEEE Conference on Network
Softwarization (NetSoft), pages 1–9, April 2015.

[11] Elena Dubrova. Fault-Tolerant Design. Springer-Verlag New York, 2013.

[12] PJ Emstad, Poul E Heegaard, Bjarne E Helvik, and L Paquereau. Dependability
and performance in information and communication systems-fundamentals, 2008.

[13] A. Gonzalez, P. Gronsund, K. Mahmood, B. Helvik, P. Heegaard, and G. Nencioni.
Service availability in the nfv virtualized evolved packet core. In 2015 IEEE
Global Communications Conference (GLOBECOM), pages 1–6, Dec 2015.

51

https://en.wikipedia.org/wiki/Carrier_grade
http://cloudnfv.com/
http://telecomdrive.com/comparison-nfv-sdn-cloud-computing/
http://telecomdrive.com/comparison-nfv-sdn-cloud-computing/
http://pr.huawei.com/en/news/hw-411889-nfv.htm#.WULZVsaF9sQ
http://pr.huawei.com/en/news/hw-411889-nfv.htm#.WULZVsaF9sQ
https://www.mobius.illinois.edu/
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
https://www.mobius.illinois.edu/wiki/index.php/SAN_Atomic_Formalism
https://www.mobius.illinois.edu/wiki/index.php/SAN_Atomic_Formalism

52 REFERENCES

[14] Andres J. Gonzalez and Bjarne E. Helvik. Characterisation of router and link
failure processes in uninett’s ip backbone network, 2012.

[15] P. Mell T. Grance. The nist definition of cloud computing. Technical report,
National Institute of Standards and Technology.

[16] Peter J. Haas. Stochastic Petri Nets. Springer New York, 2002.

[17] P. E. Heegaard, B. E. Helvik, and V. B. Mendiratta. Achieving dependability in
software-defined networking; a perspective. In 2015 7th International Workshop
on Reliable Networks Design and Modeling (RNDM), pages 63–70, Oct 2015.

[18] Poul E. Heegaard, Bjarne E. Helvik, Gianfranco Nencioni, and Jonas Wäfler. Man-
aged Dependability in Interacting Systems, pages 197–226. Springer International
Publishing, Cham, 2016.

[19] H. Heffes and D. Lucantoni. A markov modulated characterization of packetized
voice and data traffic and related statistical multiplexer performance. IEEE
Journal on Selected Areas in Communications, 4(6):856–868, Sep 1986.

[20] F. Hu, Q. Hao, and K. Bao. A survey on software-defined network and openflow:
From concept to implementation. IEEE Communications Surveys Tutorials,
16(4):2181–2206, Fourthquarter 2014.

[21] ETSI NFV ISG. Network functions virtualisation (nfv) architectural framework.
Technical report, ETSI, October 2013.

[22] ETSI NFV ISG. Network functions virtualisation (nfv) use cases. Technical
report, ETSI, October 2013.

[23] ETSI NFV ISG. Network functions virtualisation (nfv) management and orches-
tration. Technical report, ETSI, December 2014.

[24] ETSI NFV ISG. Network functions virtualisation (nfv) terminology for main
concepts in nfv. Technical report, ETSI, December 2014.

[25] ETSI NFV ISG. Network functions virtualisation (nfv) resiliency requirements.
Technical report, ETSI, January 2015.

[26] ETSI NFV ISG. Network functions virtualisation (nfv); management and orches-
tration; report on architectural options. Technical report, ETSI, July 2016.

[27] R. Kumar. Research Methodology: A Step-by-Step Guide for Beginners. SAGE
Publications, 2010.

[28] Jean-Claude Laprie. Dependable computing and fault-tolerance. Digest of Papers
FTCS-15, pages 2–11, 1985.

[29] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba. Topology-
aware prediction of virtual network function resource requirements. IEEE Trans-
actions on Network and Service Management, 14(1):106–120, March 2017.

REFERENCES 53

[30] R. Mijumbi, J. Serrat, and J. L. Gorricho. Self-managed resources in network
virtualisation environments. In 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM), pages 1099–1106, May 2015.

[31] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba.
Network function virtualization: State-of-the-art and research challenges. IEEE
Communications Surveys Tutorials, 18(1):236–262, Firstquarter 2016.

[32] R. Mijumbi, J. Serrat, J. l. Gorricho, S. Latre, M. Charalambides, and D. Lopez.
Management and orchestration challenges in network functions virtualization.
IEEE Communications Magazine, 54(1):98–105, January 2016.

[33] R. Mijumbi, J. Serrat, J. l. Gorricho, S. Latre, M. Charalambides, and D. Lopez.
Management and orchestration challenges in network functions virtualization.
IEEE Communications Magazine, 54(1):98–105, January 2016.

[34] G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard, and A. Kamisinski.
Availability modelling of software-defined backbone networks. In 2016 46th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshop (DSN-W), pages 105–112, June 2016.

[35] M. R. Sama, L. M. Contreras, J. Kaippallimalil, I. Akiyoshi, H. Qian, and
H. Ni. Software-defined control of the virtualized mobile packet core. IEEE
Communications Magazine, 53(2):107–115, Feb 2015.

[36] William H. Sanders and John F. Meyer. Stochastic Activity Networks: Formal
Definitions and Concepts, pages 315–343. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[37] Todd Silvestri. Complex system reliability; a graph theory approach. The
Mathematica Journal, 16, July 2014.

[38] Ricard Vilalta, Raül Mu noz, Arturo Mayoral, Ramon Casellas, Ricardo Martínez,
Víctor López, and Diego López. Transport network function virtualization. J.
Lightwave Technol., 33(8):1557–1564, Apr 2015.

[39] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing cloud
computing hardware reliability. In Proceedings of the 1st ACM symposium on
Cloud computing, pages 193–204. ACM, 2010.

[40] Wikibooks. Communication networks/network basics — wikibooks, the free
textbook project. https://en.wikibooks.org/w/index.php?title=Communication_
Networks/Network_Basics&oldid=3230653, 2017.

[41] Wolframalpha. Mathematica. https://www.wolfram.com/mathematica/.

[42] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art
and research challenges. Journal of internet services and applications, 1(1):7–18,
2010.

https://en.wikibooks.org/w/index.php?title=Communication_Networks/Network_Basics&oldid=3230653
https://en.wikibooks.org/w/index.php?title=Communication_Networks/Network_Basics&oldid=3230653
https://www.wolfram.com/mathematica/

AppendixAStructural analysis script of
Reference scenario in Mathematica

55

Structure model

of Reference scenario

Define network

Primary = Graph[{TRD  OSL1, TRD  OSL2,
TRD  BRG, TRD  STV, OSL1  OSL2, OSL1  STV, STV  BRG}];

Secondary = Graph[{TRDb  OSL2b, TRDb  BRGb, TRDb  STVb,
OSL1b  OSL2b, OSL1b  STVb, STVb  BRGb}];

ConnectionPS = Graph[{TRD  TRDb, OSL1  OSL1b,
OSL2  OSL2b, BRG  BRGb, STV  STVb}];

network = GraphUnion[Primary, Secondary, ConnectionPS, VertexLabels → "Name"];

A datacenter node connects to TRD and TRDb nodes.

datacenter1 = Graph[{DC1  TRD, DC1  TRDb}, VertexLabels → "Name"];

vnf1 = Graph[{VNF1  DC1}, VertexLabels → "Name"];

vnf2 = Graph[{VNF2  DC1}, VertexLabels → "Name"];

vnf3 = Graph[{VNF3  DC1}, VertexLabels → "Name"];

A NFV - MANO node connects to TRD and TRDb nodes.

mano = Graph[{MANO1  BRG, MANO1  BRGb}, VertexLabels → "Name"];

Datacenter = GraphUnion[network, datacenter1, VertexShapeFunction → "Name"];

NFV = GraphUnion[network, datacenter1,
vnf1, vnf2, vnf3, mano, VertexShapeFunction → "Name"];

Connect to endpoints.

endpoint1 = Graph[{ O1 → TRD, O1 → TRDb}, VertexLabels → "Name"];

endpoint2 = Graph[{ STV → D1, STVb → D1}, VertexLabels → "Name"];

MANON =

GraphUnion[network, mano, endpoint1, endpoint2, VertexShapeFunction → "Name"];

Network with endpoints only.

endpointsnetwork = GraphUnion[Datacenter, endpoint1, endpoint2];

HighlightGraph[endpointsnetwork,
{network, endpoint1, endpoint2, datacenter1}, VertexLabels → "Name"];

Network with endpoints and NFV elements.

overallNetwork = GraphUnion[NFV, endpoint1, endpoint2];

HighlightGraph[overallNetwork,
{network, mano, vnf1, vnf2, vnf3, endpoint1, endpoint2}, VertexLabels → "Name"];

Find the path

Endpoints

Org[i_] := ToExpression["O" <> ToString[i]];

Dest[i_] := ToExpression["D" <> ToString[i]];

Datacenters

box[i_] := ToExpression["DC" <> ToString[i]];

VNFs

Vir[i_] := ToExpression["VNF" <> ToString[i]];

MANO

Ctrl[i_] := ToExpression["MANO" <> ToString[i]];

Paths between endpoints(service provider) to endpoints(user) include the service function chain.

Cpathsf[i_, j_] := FindPath[overallNetwork, Vir[1], Dest[j], Infinity, All];

Cpathss[i_, j_] := FindPath[overallNetwork, Vir[2], Vir[1], Infinity, All];

Cpathst[i_, j_] := FindPath[overallNetwork, Vir[3], Vir[2], Infinity, All];

Cpathse[i_, j_] := FindPath[overallNetwork, Org[i], Vir[3], Infinity, All];

Paths between endpoints and MANO

Spaths[i_, j_] := FindPath[MANON, Org[i], Ctrl[j], Infinity, All];

Upaths[i_, j_] := FindPath[MANON, Ctrl[i], Dest[j], Infinity, All];

Paths between VNFs and MANO

Vpaths[i_, j_] := FindPath[NFV, Vir[i], Ctrl[j], Infinity, All];

Define parameters

NoOfPoP = 1; NoOfVNF = 3; NoOfMANO = 1;

CpathsfM = Table[Cpathsf[i, j], {i, 1}, {j, 1, NoOfPoP}];

CpathssM = Table[Cpathss[i, j], {i, 1}, {j, 1}];

CpathstM = Table[Cpathst[i, j], {i, 1}, {j, 1}];

CpathseM = Table[Cpathse[i, j], {i, 1}, {j, 1}];

SpathsM = Table[Spaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

UpathsM = Table[Upaths[i, j], {i, 1, NoOfMANO}, {j, 1, NoOfPoP}];

VpathsM = Table[Vpaths[i, j], {i, 1, NoOfVNF}, {j, 1, NoOfMANO}];

Converting paths into network elements

If both nodes and links may fail, we have to include both in the list of elements, since we cannot
maintain the sequence in compond paths.NB : The traffic sources and the related links to/from them
must not be included in the network elements.

2 NFV_Structural_Analysis_1e.nb

Mapping Vertexes (in order to valuate unoriented links)

VMap = {TRD, TRDb, OSL1, OSL1b, OSL2,
OSL2b, STV, STVb, BRG, BRGb, DC1, MANO1, VNF1, VNF2, VNF3};

Service chain .

VNF1 and user endpoint.

fnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathsfM[[i, j, k]], 1], -1],

{k, Length[CpathsfM[[i, j]]]}]), {2}];

flinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathsfM[[i, j, k]], -1], Drop[
CpathsfM[[i, j, k]], 1]}], -1], {k, Length[CpathsfM[[i, j]]]}]), {2}];

fnodesinpathsM = Table[fnodesinpaths[i, j], {i, 1}, {j, 1}];

flinksinpathM = Table[flinksinpath[i, j], {i, 1}, {j, 1}];

Felements[i_, j_] := Join[fnodesinpathsM[[i, j]], flinksinpathM[[i, j]], 2];

FelementsM = Table[Felements[i, j], {i, 1}, {j, 1}];

VNF2 and VNF1

snodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathssM[[i, j, k]], 1], -1],

{k, Length[CpathssM[[i, j]]]}]), {2}];

slinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathssM[[i, j, k]], -1], Drop[CpathssM[[i, j, k]], 1]}],
{k, Length[CpathssM[[i, j]]]}]), {2}];

snodesinpathsM = Table[snodesinpaths[i, j], {i, 1}, {j, 1}];

slinksinpathM = Table[slinksinpath[i, j], {i, 1}, {j, 1}];

Selements[i_, j_] := Join[snodesinpathsM[[i, j]], slinksinpathM[[i, j]], 2];

SelementsM = Table[Selements[i, j], {i, 1}, {j, 1}];

VNF3 and VNF2

tnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathstM[[i, j, k]], 1], -1],

{k, Length[CpathstM[[i, j]]]}]), {2}];

tlinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathstM[[i, j, k]], -1], Drop[CpathstM[[i, j, k]], 1]}],
{k, Length[CpathstM[[i, j]]]}]), {2}];

tnodesinpathsM = Table[tnodesinpaths[i, j], {i, 1}, {j, 1}];

NFV_Structural_Analysis_1e.nb 3

tlinksinpathM = Table[tlinksinpath[i, j], {i, 1}, {j, 1}];

Telements[i_, j_] := Join[tnodesinpathsM[[i, j]], tlinksinpathM[[i, j]], 2];

TelementsM = Table[Telements[i, j], {i, 1}, {j, 1}];

Service provider endpoints and VNF3

enodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathseM[[i, j, k]], 1], -1],

{k, Length[CpathseM[[i, j]]]}]), {2}];

elinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathseM[[i, j, k]], -1], Drop[
CpathseM[[i, j, k]], 1]}], 1], {k, Length[CpathseM[[i, j]]]}]), {2}];

enodesinpathsM = Table[enodesinpaths[i, j], {i, 1}, {j, 1}];

elinksinpathM = Table[elinksinpath[i, j], {i, 1}, {j, 1}];

Eelements[i_, j_] := Join[enodesinpathsM[[i, j]], elinksinpathM[[i, j]], 2];

EelementsM = Table[Eelements[i, j], {i, 1}, {j, 1}];

Endpoints connect to MANO

Service provider endpoint and MANO

dmanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[SpathsM[[i, j, k]], 1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[SpathsM[[i, j, k]], -1],
Drop[SpathsM[[i, j, k]], 1]}], 1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanonodesinpathsM = Table[dmanonodesinpaths[i, j], {i, 1}, {j, 1}];

dmanolinksinpathM = Table[dmanolinksinpath[i, j], {i, 1}, {j, 1}];

Dmanoelements[i_, j_] :=

Join[dmanonodesinpathsM[[i, j]], dmanolinksinpathM [[i, j]], 2];

DmanoelementsM = Table[Dmanoelements[i, j], {i, 1}, {j, 1}];

User endpoint and MANO

omanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[UpathsM[[i, j, k]], -1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[UpathsM[[i, j, k]], -1],
Drop[UpathsM[[i, j, k]], 1]}], -1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanonodesinpathsM = Table[omanonodesinpaths[i, j], {i, 1}, {j, 1}];

omanolinksinpathM = Table[omanolinksinpath[i, j], {i, 1}, {j, 1}];

4 NFV_Structural_Analysis_1e.nb

Omanoelements[i_, j_] :=

Join[omanonodesinpathsM[[i, j]], omanolinksinpathM [[i, j]], 2];

OmanoelementsM = Table[Omanoelements[i, j], {i, 1}, {j, 1}];

VNFS connect to MANO

nodesin[i_, j_] := Map[n# &,

(Table[Drop[VpathsM[[i, j, k]], 1], {k, Length[VpathsM[[i, j]]]}]), {2}];

linksin[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Transpose[{Drop[VpathsM[[i, j, k]], -1], Drop[VpathsM[[i, j, k]], 1]}],
{k, Length[VpathsM[[i, j]]]}]), {2}];

nodesinM = Table[nodesin[i, j], {i, 1, NoOfVNF}, {j, 1, NoOfMANO}];

linksinM = Table[linksin[i, j], {i, 1, NoOfVNF}, {j, 1, NoOfMANO}];

Velements[i_, j_] := Join[nodesinM[[i, j]], linksinM[[i, j]], 2];

VelementsM =

Table[If[i != j, Velements[i, j]], {i, 1, NoOfVNF}, {j, 1, NoOfMANO}];

The structure function and its analysis
convers the sets of elements providing a working path and control to a Boolean expression for
reduction & analysis.

Service chain .

VNF1 and user endpoint.

Φf[i_, j_] := Table[{FelementsM[[i, j, k]] /. List → And},

{k, Length[FelementsM[[i, j]]]}] /. List → Or

ΦfM = Table[Φf[i, j], {i, 1}, {j, 1}];

ΦfT = Table[{ΦfM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF2 and VNF1

Φs[i_, j_] := Table[{SelementsM[[i, j, k]] /. List → And},

{k, Length[SelementsM[[i, j]]]}] /. List → Or

ΦsM = Table[Φs[i, j], {i, 1}, {j, 1}];

ΦsT = Table[{ΦsM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF3 and VNF2

Φt[i_, j_] := Table[{TelementsM[[i, j, k]] /. List → And},

{k, Length[TelementsM[[i, j]]]}] /. List → Or

ΦtM = Table[Φt[i, j], {i, 1}, {j, 1}];

NFV_Structural_Analysis_1e.nb 5

ΦtT = Table[{ΦtM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF3 and endpoint service provider

Φe[i_, j_] := Table[{EelementsM[[i, j, k]] /. List → And},

{k, Length[EelementsM[[i, j]]]}] /. List → Or

ΦeM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦeT = Table[{ΦeM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

Endpoints connect to MANO

MANO and endpoint service provider

Φd[i_, j_] := Table[{DmanoelementsM[[i, j, k]] /. List → And},

{k, Length[DmanoelementsM[[i, j]]]}] /. List → Or

ΦdM = Table[Φd[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

ΦdT = Table[{ΦdM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

MANO and endpoint service provider

Φo[i_, j_] := Table[{OmanoelementsM[[i, j, k]] /. List → And},

{k, Length[OmanoelementsM[[i, j]]]}] /. List → Or

ΦoM = Table[Φo[i, j], {i, 1, NoOfMANO}, {j, 1, NoOfPoP}];

ΦoT = Table[{ΦoM[[k]] /. List → Or}, {k, NoOfMANO}] /. List → And;

MANO-> VNFs

Φv[i_, j_] := Table[{VelementsM[[i, j, k]] /. List → And},

{k, Length[VelementsM[[i, j]]]}] /. List → Or

ΦvM = Table[Φv[i, j], {i, 1, NoOfVNF}, {j, 1, NoOfMANO}];

ΦvT = And @@ Flatten[Diagonal[ΦvM, #] & /@ Range[NoOfVNF - 1]];

Φnfv = ΦfT && ΦsT && ΦeT && ΦtT && ΦvT && ΦdT && ΦoT // Simplify;

Extracting the minimum paths and cut

The minimum path and cut sets are extracted from the above logical expressions by replacing the
heads of the expressions. The And and Or head are replaced by List heads. The not operation are
replaced by identity and removed. Be aware that the operation may twist the meaning unless the
logical expand produces results on standard form.

Functions

MinPaths[s_] := BooleanConvert[s] /. {And -> List, Or -> List}

MinCuts[s_] :=

BooleanConvert[s, "CNF"] /. {And -> List, Or -> List, Not -> Identity}

6 NFV_Structural_Analysis_1e.nb

NFV

NFVminpath = MinPaths[Φnfv];

NFVmincut = MinCuts[Φnfv];

Export["D://NTNU 2 year//Master thesis//structure
analysis//data//NFVmincut_norway_1e.mx", NFVmincut, "MX"]

D://NTNU 2 year//Master
thesis//structure analysis//data//NFVmincut_norway_1e.mx

Cardinality cut sets.

Scenario1 = Length /@ (If[Head[#] =!= List, {#}, #] & /@ NFVmincut);

BinCounts[%, {1, Max[%] + 1, 1}]

{5, 9, 8, 59, 232, 442, 446, 320, 195, 57, 12}

Position[Scenario1, _?(# < 2 &)]

{{600}, {601}, {1709}, {1710}, {1711}}

Position[Scenario1, _?(1 < # < 4 &)]

{{1}, {214}, {229}, {251}, {253}, {298}, {483}, {506}, {542},
{552}, {595}, {1307}, {1515}, {1562}, {1613}, {1708}, {1785}}

NFV_Structural_Analysis_1e.nb 7

AppendixBStructural analysis script of
Scenario 1 in Mathematica

63

Structure model of Scenario 1

Define network

Primary = Graph[{TRD  OSL1, TRD  OSL2,
TRD  BRG, TRD  STV, OSL1  OSL2, OSL1  STV, STV  BRG}];

Secondary = Graph[{TRDb  OSL2b, TRDb  BRGb, TRDb  STVb,
OSL1b  OSL2b, OSL1b  STVb, STVb  BRGb}];

ConnectionPS = Graph[{TRD  TRDb, OSL1  OSL1b,
OSL2  OSL2b, BRG  BRGb, STV  STVb}];

network = GraphUnion[Primary, Secondary, ConnectionPS, VertexLabels → "Name"];

A datacenter node connects to TRD and TRDb nodes.
A datacenter node connects to OSL2,OSL1,OSL1B,OSL2B nodes.

datacenter1 = Graph[{DC1  TRD, DC1  TRDb}, VertexLabels → "Name"];

datacenter2 = Graph[
{OSL2  DC2, OSL1  DC2, OSL1b  DC2, OSL2b  DC2}, VertexLabels → "Name"];

vnf1 = Graph[{VNF1  DC1}, VertexLabels → "Name"];

vnf2 = Graph[{VNF2  DC1}, VertexLabels → "Name"];

vnf3 = Graph[{VNF3  DC2}, VertexLabels → "Name"];

A NFV-MANO node connects to BRG,BRGb nodes.

mano = Graph[{MANO1  BRG, MANO1  BRGb}, VertexLabels → "Name"];

Datacenter =

GraphUnion[network, datacenter1, datacenter2, VertexShapeFunction → "Name"];

NFV = GraphUnion[network, datacenter1, datacenter2,
vnf1, vnf2, vnf3, mano, VertexShapeFunction → "Name"];

NFV1 = GraphUnion[network, datacenter1, vnf1, VertexShapeFunction → "Name"];

NFV11 =

GraphUnion[network, datacenter1, vnf2, vnf1, VertexShapeFunction → "Name"];

NFV2 = GraphUnion[network, datacenter1, vnf1,
vnf2, datacenter2, vnf3, VertexShapeFunction → "Name"];

NFV3 = GraphUnion[network, datacenter2, vnf3, VertexShapeFunction → "Name"];

MANON = GraphUnion[network, mano, VertexShapeFunction → "Name"];

MANON1 = GraphUnion[network, mano,
datacenter1, vnf1, vnf2, VertexShapeFunction → "Name"];

MANON2 = GraphUnion[network, mano, datacenter2, vnf3,
VertexShapeFunction → "Name"];

Connect to endpoints.

endpoint1 = Graph[{ O1 → TRD, O1 → TRDb}, VertexLabels → "Name"];

endpoint2 = Graph[{ STV → D1, STVb → D1}, VertexLabels → "Name"];

Network with endpoints only.

endpointsnetwork3 = GraphUnion[MANON, endpoint1, endpoint2];

endpointsnetwork1 = GraphUnion[NFV1, endpoint2];

endpointsnetwork2 = GraphUnion[NFV3, endpoint1];

endpointsnetwork = GraphUnion[Datacenter, endpoint1, endpoint2];

HighlightGraph[endpointsnetwork,
{network, endpoint1, endpoint2}, VertexLabels → "Name"];

Network with endpoints and NFV elements.

overallNetwork = GraphUnion[NFV, endpoint1, endpoint2];

HighlightGraph[overallNetwork,
{network, mano, vnf1, vnf2, vnf3, endpoint1, endpoint2}, VertexLabels → "Name"];

Find the path

Endpoints

Org[i_] := ToExpression["O" <> ToString[i]];

Dest[i_] := ToExpression["D" <> ToString[i]];

Datacenters

box[i_] := ToExpression["DC" <> ToString[i]];

VNFs

Vir[i_] := ToExpression["VNF" <> ToString[i]];

MANO

Ctrl[i_] := ToExpression["MANO" <> ToString[i]];

Paths between endpoints(service provider) to endpoints(user) include the service function chain.

Cpathsf[i_, j_] := FindPath[endpointsnetwork1, Vir[1], Dest[1], Infinity, All]

Cpathss[i_, j_] := FindPath[NFV11, Vir[2], Vir[1], Infinity, All]

Cpathst[i_, j_] := FindPath[NFV2, Vir[3], Vir[2], Infinity, All]

Cpathse[i_, j_] := FindPath[endpointsnetwork2, Org[1], Vir[3], Infinity, All]

Paths between endpoints and MANO

Spaths[i_, j_] := FindPath[endpointsnetwork3, Org[i], Ctrl[j], Infinity, All];

Upaths[i_, j_] := FindPath[endpointsnetwork3, Ctrl[i], Dest[j], Infinity, All];

2 NFV_Structural_Analysis_2e.nb

Paths between VNFs and MANO

Vpathsf[i_, j_] := FindPath[MANON1, Vir[1], Ctrl[j], Infinity, All];

Vpathss[i_, j_] := FindPath[MANON1, Vir[2], Ctrl[j], Infinity, All];

Vpathst[i_, j_] := FindPath[MANON2, Vir[3], Ctrl[j], Infinity, All];

Define parameters.

NoOfPoP = 1; NoOfVNF = 3; NoOfMANO = 1;

CpathsfM = Table[Cpathsf[i, j], {i, 1}, {j, 1}];

CpathssM = Table[Cpathss[i, j], {i, 1}, {j, 1}];

CpathstM = Table[Cpathst[i, j], {i, 1}, {j, 1}];

CpathseM = Table[Cpathse[i, j], {i, 1}, {j, 1}];

SpathsM = Table[Spaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

UpathsM = Table[Upaths[i, j], {i, 1, NoOfMANO}, {j, 1, NoOfPoP}];

VpathsfM = Table[Vpathsf[i, j], {i, 1}, {j, 1}];

VpathssM = Table[Vpathss[i, j], {i, 1}, {j, 1}];

VpathstM = Table[Vpathst[i, j], {i, 1}, {j, 1}];

Converting paths into network elements

If both nodes and links may fail, we have to include both in the list of elements, since we cannot
maintain the sequence in compond paths.NB : The traffic sources and the related links to/from them
must not be included in the network elements.

Mapping Vertexes (in order to valuate unoriented links)

VMap = {TRD, TRDb, OSL1, OSL1b, OSL2, OSL2b,
STV, STVb, BRG, BRGb, DC1, DC2, MANO1, VNF1, VNF2, VNF3};

Service chain .

VNF1 and user endpoint.

fnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathsfM[[i, j, k]], 1], -1],

{k, Length[CpathsfM[[i, j]]]}]), {2}];

flinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathsfM[[i, j, k]], -1], Drop[
CpathsfM[[i, j, k]], 1]}], -1], {k, Length[CpathsfM[[i, j]]]}]), {2}];

fnodesinpathsM = Table[fnodesinpaths[i, j], {i, 1}, {j, 1}];

flinksinpathM = Table[flinksinpath[i, j], {i, 1}, {j, 1}];

NFV_Structural_Analysis_2e.nb 3

Felements[i_, j_] := Join[fnodesinpathsM[[i, j]], flinksinpathM[[i, j]], 2];

FelementsM = Table[Felements[i, j], {i, 1}, {j, 1}];

VNF2 and VNF1

snodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathssM[[i, j, k]], 1], -1],

{k, Length[CpathssM[[i, j]]]}]), {2}];

slinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathssM[[i, j, k]], -1], Drop[CpathssM[[i, j, k]], 1]}],
{k, Length[CpathssM[[i, j]]]}]), {2}];

snodesinpathsM = Table[snodesinpaths[i, j], {i, 1}, {j, 1}];

slinksinpathM = Table[slinksinpath[i, j], {i, 1}, {j, 1}];

Selements[i_, j_] := Join[snodesinpathsM[[i, j]], slinksinpathM[[i, j]], 2];

SelementsM = Table[Selements[i, j], {i, 1}, {j, 1}];

VNF3 and VNF2

tnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathstM[[i, j, k]], 1], -1],

{k, Length[CpathstM[[i, j]]]}]), {2}];

tlinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathstM[[i, j, k]], -1], Drop[CpathstM[[i, j, k]], 1]}],
{k, Length[CpathstM[[i, j]]]}]), {2}];

tnodesinpathsM = Table[tnodesinpaths[i, j], {i, 1}, {j, 1}];

tlinksinpathM = Table[tlinksinpath[i, j], {i, 1}, {j, 1}];

Telements[i_, j_] := Join[tnodesinpathsM[[i, j]], tlinksinpathM[[i, j]], 2];

TelementsM = Table[Telements[i, j], {i, 1}, {j, 1}];

Service provider endpoints and VNF3

enodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathseM[[i, j, k]], 1], -1],

{k, Length[CpathseM[[i, j]]]}]), {2}];

elinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathseM[[i, j, k]], -1], Drop[
CpathseM[[i, j, k]], 1]}], 1], {k, Length[CpathseM[[i, j]]]}]), {2}];

enodesinpathsM = Table[enodesinpaths[i, j], {i, 1}, {j, 1}];

elinksinpathM = Table[elinksinpath[i, j], {i, 1}, {j, 1}];

Eelements[i_, j_] := Join[enodesinpathsM[[i, j]], elinksinpathM[[i, j]], 2];

EelementsM = Table[Eelements[i, j], {i, 1}, {j, 1}];

4 NFV_Structural_Analysis_2e.nb

Endpoints connect to MANO

Service provider endpoint and MANO

dmanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[SpathsM[[i, j, k]], 1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[SpathsM[[i, j, k]], -1],
Drop[SpathsM[[i, j, k]], 1]}], 1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanonodesinpathsM = Table[dmanonodesinpaths[i, j], {i, 1}, {j, 1}];

dmanolinksinpathM = Table[dmanolinksinpath[i, j], {i, 1}, {j, 1}];

Dmanoelements[i_, j_] :=

Join[dmanonodesinpathsM[[i, j]], dmanolinksinpathM [[i, j]], 2];

DmanoelementsM = Table[Dmanoelements[i, j], {i, 1}, {j, 1}];

User endpoint and MANO

omanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[UpathsM[[i, j, k]], -1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[UpathsM[[i, j, k]], -1],
Drop[UpathsM[[i, j, k]], 1]}], -1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanonodesinpathsM = Table[omanonodesinpaths[i, j], {i, 1}, {j, 1}];

omanolinksinpathM = Table[omanolinksinpath[i, j], {i, 1}, {j, 1}];

Omanoelements[i_, j_] :=

Join[omanonodesinpathsM[[i, j]], omanolinksinpathM [[i, j]], 2];

OmanoelementsM = Table[Omanoelements[i, j], {i, 1}, {j, 1}];

VNFS connect to MANO

VNF1 TO MANO

vnff[i_, j_] := Map[n# &,

(Table[Drop[VpathsfM[[i, j, k]], 1], {k, Length[VpathsfM[[i, j]]]}]), {2}];

linksinf[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathsfM[[i, j, k]], -1], Drop[VpathsfM[[i, j, k]], 1]}],
{k, Length[VpathsfM[[i, j]]]}]), {2}];

vnffM = Table[vnff[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinfM = Table[linksinf[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementsf[i_, j_] := Join[vnffM[[i, j]], linksinfM[[i, j]], 2];

NFV_Structural_Analysis_2e.nb 5

VelementsfM = Table[Velementsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF2 TO MANO

vnfs[i_, j_] := Map[n# &,

(Table[Drop[VpathssM[[i, j, k]], 1], {k, Length[VpathssM[[i, j]]]}]), {2}];

linksins[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathssM[[i, j, k]], -1], Drop[VpathssM[[i, j, k]], 1]}],
{k, Length[VpathssM[[i, j]]]}]), {2}];

vnfsM = Table[vnfs[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinsM = Table[linksins[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementss[i_, j_] := Join[vnfsM[[i, j]], linksinsM[[i, j]], 2];

VelementssM = Table[Velementss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF3 TO MANO

vnft[i_, j_] := Map[n# &,

(Table[Drop[VpathstM[[i, j, k]], 1], {k, Length[VpathstM[[i, j]]]}]), {2}];

linksint[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathstM[[i, j, k]], -1], Drop[VpathstM[[i, j, k]], 1]}],
{k, Length[VpathstM[[i, j]]]}]), {2}];

vnftM = Table[vnft[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksintM = Table[linksint[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementst[i_, j_] := Join[vnftM[[i, j]], linksintM[[i, j]], 2];

VelementstM = Table[Velementst[i, j], {i, 1}, {j, 1, NoOfMANO}];

The structure function and its analysis
convers the sets of elements providing a working path and control to a Boolean expression for
reduction & analysis.

Service chain .

VNF1 and user endpoint.

Φf[i_, j_] := Table[{FelementsM[[i, j, k]] /. List → And},

{k, Length[FelementsM[[i, j]]]}] /. List → Or

ΦfM = Table[Φf[i, j], {i, 1}, {j, 1}];

ΦfT = Table[{ΦfM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF2 and VNF1

6 NFV_Structural_Analysis_2e.nb

Φs[i_, j_] := Table[{SelementsM[[i, j, k]] /. List → And},

{k, Length[SelementsM[[i, j]]]}] /. List → Or

ΦsM = Table[Φs[i, j], {i, 1}, {j, 1}];

ΦsT = Table[{ΦsM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF3 and VNF2

Φt[i_, j_] := Table[{TelementsM[[i, j, k]] /. List → And},

{k, Length[TelementsM[[i, j]]]}] /. List → Or

ΦtM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦtT = Table[{ΦtM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF3 and endpoint service provider

Φe[i_, j_] := Table[{EelementsM[[i, j, k]] /. List → And},

{k, Length[EelementsM[[i, j]]]}] /. List → Or

ΦeM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦeT = Table[{ΦeM[[k]] /. List → Or}, {k, 1}] /. List → And;

Endpoints connect to MANO

MANO and endpoint service provider

Φd[i_, j_] := Table[{DmanoelementsM[[i, j, k]] /. List → And},

{k, Length[DmanoelementsM[[i, j]]]}] /. List → Or

ΦdM = Table[Φd[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦdT = Table[{ΦdM[[k]] /. List → Or}, {k, 1}] /. List → And;

MANO and endpoint service provider

Φo[i_, j_] := Table[{OmanoelementsM[[i, j, k]] /. List → And},

{k, Length[OmanoelementsM[[i, j]]]}] /. List → Or

ΦoM = Table[Φo[i, j], {i, 1, NoOfMANO}, {j, 1}];

ΦoT = Table[{ΦoM[[k]] /. List → Or}, {k, NoOfMANO}] /. List → And;

 VNFs-> MANO

VNF1 TO MANO

Φvf[i_, j_] := Table[{VelementsfM[[i, j, k]] /. List → And},

{k, Length[VelementsfM[[i, j]]]}] /. List → Or

ΦvfM = Table[Φvf[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvfT = Table[{ΦvfM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF2 TO MANO

Φvs[i_, j_] := Table[{VelementssM[[i, j, k]] /. List → And},

{k, Length[VelementssM[[i, j]]]}] /. List → Or

ΦvsM = Table[Φvs[i, j], {i, 1}, {j, 1, NoOfMANO}];

NFV_Structural_Analysis_2e.nb 7

ΦvsT = Table[{ΦvsM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF3 TO MANO

Φvt[i_, j_] := Table[{VelementstM[[i, j, k]] /. List → And},

{k, Length[VelementstM[[i, j]]]}] /. List → Or

ΦvtM = Table[Φvt[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvtT = Table[{ΦvtM[[k]] /. List → Or}, {k, 1}] /. List → And;

Φnfv = ΦfT && ΦsT && ΦeT && ΦtT && ΦvfT && ΦdT && ΦoT && ΦvsT && ΦvtT // Simplify;

Extracting the minimum paths and cut

The minimum path and cut sets are extracted from the above logical expressions by replacing the
heads of the expressions. The And and Or head are replaced by List heads. The not operation are
replaced by identity and removed. Be aware that the operation may twist the meaning unless the
logical expand produces results on standard form.

Functions

MinPaths[s_] := BooleanConvert[s] /. {And -> List, Or -> List}

MinCuts[s_] :=

BooleanConvert[s, "CNF"] /. {And -> List, Or -> List, Not -> Identity}

NFV

NFVminpath = MinPaths[Φnfv];

NFVmincut = MinCuts[Φnfv];

Export["D://NTNU 2 year//Master thesis//structure
analysis//data//NFVmincut_norway_2e.mx", NFVmincut, "MX"]

D://NTNU 2 year//Master
thesis//structure analysis//data//NFVmincut_norway_2e.mx

Cardinality cut sets.

Scenario2 = Length /@ (If[Head[#] =!= List, {#}, #] & /@ NFVmincut);

BinCounts[Scenario2, {1, Max[%] + 1, 1}]

{6, 9, 8, 120, 360, 639, 687, 500, 281, 112, 49, 6, 6}

Position[Scenario2, _?(2 < # < 4 &)]

{{303}, {318}, {346}, {426}, {685}, {708}, {749}, {839}}

8 NFV_Structural_Analysis_2e.nb

AppendixCStructural analysis script of
Scenario 3 in Mathematica

73

Structuremodel of Scenario 2

Define network

Primary = Graph[{TRD  OSL1, TRD  OSL2,
TRD  BRG, TRD  STV, OSL1  OSL2, OSL1  STV, STV  BRG}];

Secondary = Graph[{TRDb  OSL2b, TRDb  BRGb, TRDb  STVb,
OSL1b  OSL2b, OSL1b  STVb, STVb  BRGb}];

ConnectionPS = Graph[{TRD  TRDb, OSL1  OSL1b,
OSL2  OSL2b, BRG  BRGb, STV  STVb}];

network = GraphUnion[Primary, Secondary, ConnectionPS, VertexLabels → "Name"];

datacenter1 = Graph[{DC1  TRD, DC1  TRDb}, VertexLabels → "Name"];
mano = Graph[{MANO1  BRG, MANO1  BRGb}, VertexLabels → "Name"];
datacenter2 = Graph[

{OSL2  DC2, OSL1  DC2, OSL1b  DC2, OSL2b  DC2}, VertexLabels → "Name"];

vnf1 = Graph[{VNF1  DC1}, VertexLabels → "Name"];

vnf2 = Graph[{VNF2  DC1, VNF2  DC2}, VertexLabels → "Name"];

vnf3 = Graph[{VNF3  DC2}, VertexLabels → "Name"];

Datacenter =

GraphUnion[network, datacenter1, datacenter2, VertexShapeFunction → "Name"];

NFV = GraphUnion[network, datacenter1, datacenter2,
vnf1, vnf2, vnf3, mano, VertexShapeFunction → "Name"];

Connect to endpoints.

endpoint1 = Graph[{ O1 → TRD, O1 → TRDb}, VertexLabels → "Name"];

endpoint2 = Graph[{ STV → D1, STVb → D1}, VertexLabels → "Name"];

Network with endpoints only.

endpointsnetwork1 =

GraphUnion[vnf1, datacenter1, network, endpoint2, VertexLabels → "Name"];

endpointsnetwork2 = GraphUnion[datacenter2,
vnf2, vnf1, datacenter1, network, VertexLabels → "Name"];

endpointsnetwork3 = GraphUnion[datacenter2,
vnf2, vnf3, datacenter1, network, VertexLabels → "Name"];

endpointsnetwork4 =

GraphUnion[datacenter2, vnf3, endpoint1, network, VertexLabels → "Name"];

endpointsnetwork5 = GraphUnion[mano, endpoint1, network, VertexLabels → "Name"];

endpointsnetwork6 = GraphUnion[mano, endpoint2, network, VertexLabels → "Name"];

NFV1 = GraphUnion[network, datacenter1, vnf1, mano, VertexShapeFunction → "Name"];

NFV2 = GraphUnion[network, datacenter1,
datacenter2, vnf2, mano, VertexShapeFunction → "Name"];

NFV3 = GraphUnion[network, datacenter2, vnf3, mano, VertexShapeFunction → "Name"];

HighlightGraph[endpointsnetwork1,
{network, endpoint1, endpoint2}, VertexLabels → "Name"];

Network with endpoints and NFV elements.

overallNetwork = GraphUnion[NFV, endpoint1, endpoint2];

HighlightGraph[overallNetwork,
{network, mano, vnf1, vnf2, vnf3, endpoint1, endpoint2}, VertexLabels → "Name"];

Find the path

Endpoints

Org[i_] := ToExpression["O" <> ToString[i]];

Dest[i_] := ToExpression["D" <> ToString[i]];

Datacenters

box[i_] := ToExpression["DC" <> ToString[i]];

VNFs

Vir[i_] := ToExpression["VNF" <> ToString[i]];

MANO

Ctrl[i_] := ToExpression["MANO" <> ToString[i]];

Paths between endpoints(service provider) to endpoints(user) include the service function chain.

Cpathsf[i_, j_] := FindPath[endpointsnetwork1, Vir[1], Dest[j], Infinity, All]

Cpathss[i_, j_] := FindPath[endpointsnetwork2, Vir[2], Vir[1], Infinity, All]

Cpathst[i_, j_] := FindPath[endpointsnetwork3, Vir[3], Vir[2], Infinity, All]

Cpathse[i_, j_] := FindPath[endpointsnetwork4, Org[i], Vir[3], Infinity, All]

Paths between endpoints and MANO

Spaths[i_, j_] := FindPath[endpointsnetwork5, Org[i], Ctrl[j], Infinity, All];

Upaths[i_, j_] := FindPath[endpointsnetwork6, Ctrl[i], Dest[j], Infinity, All];

Paths between VNFs and MANO

Vpathsf[i_, j_] := FindPath[NFV1, Vir[1], Ctrl[j], Infinity, All];

Vpathss[i_, j_] := FindPath[NFV2, Vir[2], Ctrl[j], Infinity, All];

Vpathst[i_, j_] := FindPath[NFV3, Vir[3], Ctrl[j], Infinity, All];

Define parameters.

NoOfPoP = 1; NoOfVNF = 3; NoOfMANO = 1;

CpathsfM = Table[Cpathsf[i, j], {i, 1}, {j, 1}];

CpathssM = Table[Cpathss[i, j], {i, 1}, {j, 1}];

2 NFV_Structural_Analysis_3e.nb

CpathstM = Table[Cpathst[i, j], {i, 1}, {j, 1}];

CpathseM = Table[Cpathse[i, j], {i, 1}, {j, 1}];

SpathsM = Table[Spaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

UpathsM = Table[Upaths[i, j], {i, 1, NoOfMANO}, {j, 1, NoOfPoP}];

VpathsfM = Table[Vpathsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VpathssM = Table[Vpathss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VpathstM = Table[Vpathst[i, j], {i, 1}, {j, 1, NoOfMANO}];

Converting paths into network elements

If both nodes and links may fail, we have to include both in the list of elements, since we cannot
maintain the sequence in compond paths.NB : The traffic sources and the related links to/from them
must not be included in the network elements

Mapping Vertexes (in order to valuate unoriented links)

VMap = {TRD, TRDb, OSL1, OSL1b, OSL2, OSL2b,
STV, STVb, BRG, BRGb, DC1, DC2, DC3, MANO1, VNF1, VNF2, VNF3};

Service chain .

VNF1 and user endpoint.

fnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathsfM[[i, j, k]], 1], -1],

{k, Length[CpathsfM[[i, j]]]}]), {2}];

flinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathsfM[[i, j, k]], -1], Drop[
CpathsfM[[i, j, k]], 1]}], -1], {k, Length[CpathsfM[[i, j]]]}]), {2}];

fnodesinpathsM = Table[fnodesinpaths[i, j], {i, 1}, {j, 1}];

flinksinpathM = Table[flinksinpath[i, j], {i, 1}, {j, 1}];

Felements[i_, j_] := Join[fnodesinpathsM[[i, j]], flinksinpathM[[i, j]], 2];

FelementsM = Table[Felements[i, j], {i, 1}, {j, 1}];

VNF2 and VNF1

NFV_Structural_Analysis_3e.nb 3

snodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathssM[[i, j, k]], 1], -1],

{k, Length[CpathssM[[i, j]]]}]), {2}];
slinksinpath[i_, j_] := Map[If[Position[VMap, First[#]][[1, 1]] <

Position[VMap, Last[#]][[1, 1]], Subscript[l, First[#], Last[#]],
Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathssM[[i, j, k]], -1], Drop[CpathssM[[i, j, k]], 1]}],
{k, Length[CpathssM[[i, j]]]}]), {2}];

snodesinpathsM = Table[snodesinpaths[i, j], {i, 1}, {j, 1}];

slinksinpathM = Table[slinksinpath[i, j], {i, 1}, {j, 1}];

Selements[i_, j_] := Join[snodesinpathsM[[i, j]], slinksinpathM[[i, j]], 2];

SelementsM = Table[Selements[i, j], {i, 1}, {j, 1}];

VNF3 and VNF2

tnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathstM[[i, j, k]], 1], -1],

{k, Length[CpathstM[[i, j]]]}]), {2}];

tlinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathstM[[i, j, k]], -1], Drop[CpathstM[[i, j, k]], 1]}],
{k, Length[CpathstM[[i, j]]]}]), {2}];

tnodesinpathsM = Table[tnodesinpaths[i, j], {i, 1}, {j, 1}];

tlinksinpathM = Table[tlinksinpath[i, j], {i, 1}, {j, 1}];

Telements[i_, j_] := Join[tnodesinpathsM[[i, j]], tlinksinpathM[[i, j]], 2];

TelementsM = Table[Telements[i, j], {i, 1}, {j, 1}];

Service provider endpoints and VNF3

enodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathseM[[i, j, k]], 1], -1],

{k, Length[CpathseM[[i, j]]]}]), {2}];

elinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathseM[[i, j, k]], -1], Drop[
CpathseM[[i, j, k]], 1]}], 1], {k, Length[CpathseM[[i, j]]]}]), {2}];

enodesinpathsM = Table[enodesinpaths[i, j], {i, 1}, {j, 1}];

elinksinpathM = Table[elinksinpath[i, j], {i, 1}, {j, 1}];

Eelements[i_, j_] := Join[enodesinpathsM[[i, j]], elinksinpathM[[i, j]], 2];

EelementsM = Table[Eelements[i, j], {i, 1}, {j, 1}];

Endpoints connect to MANO

Service provider endpoint and MANO

dmanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[SpathsM[[i, j, k]], 1], {k, Length[SpathsM[[i, j]]]}]), {2}];

4 NFV_Structural_Analysis_3e.nb

dmanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[SpathsM[[i, j, k]], -1],
Drop[SpathsM[[i, j, k]], 1]}], 1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanonodesinpathsM = Table[dmanonodesinpaths[i, j], {i, 1}, {j, 1}];

dmanolinksinpathM = Table[dmanolinksinpath[i, j], {i, 1}, {j, 1}];

Dmanoelements[i_, j_] :=

Join[dmanonodesinpathsM[[i, j]], dmanolinksinpathM [[i, j]], 2];

DmanoelementsM = Table[Dmanoelements[i, j], {i, 1}, {j, 1}];

User endpoint and MANO

omanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[UpathsM[[i, j, k]], -1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[UpathsM[[i, j, k]], -1],
Drop[UpathsM[[i, j, k]], 1]}], -1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanonodesinpathsM = Table[omanonodesinpaths[i, j], {i, 1}, {j, 1}];

omanolinksinpathM = Table[omanolinksinpath[i, j], {i, 1}, {j, 1}];

Omanoelements[i_, j_] :=

Join[omanonodesinpathsM[[i, j]], omanolinksinpathM [[i, j]], 2];

OmanoelementsM = Table[Omanoelements[i, j], {i, 1}, {j, 1}];

VNFS connect to MANO

VNF1 TO MANO

vnff[i_, j_] := Map[n# &,

(Table[Drop[VpathsfM[[i, j, k]], 1], {k, Length[VpathsfM[[i, j]]]}]), {2}];

linksinf[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathsfM[[i, j, k]], -1], Drop[VpathsfM[[i, j, k]], 1]}],
{k, Length[VpathsfM[[i, j]]]}]), {2}];

vnffM = Table[vnff[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinfM = Table[linksinf[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementsf[i_, j_] := Join[vnffM[[i, j]], linksinfM[[i, j]], 2];

VelementsfM = Table[Velementsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF2 TO MANO

vnfs[i_, j_] := Map[n# &,

(Table[Drop[VpathssM[[i, j, k]], 1], {k, Length[VpathssM[[i, j]]]}]), {2}];

NFV_Structural_Analysis_3e.nb 5

linksins[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathssM[[i, j, k]], -1], Drop[VpathssM[[i, j, k]], 1]}],
{k, Length[VpathssM[[i, j]]]}]), {2}];

vnfsM = Table[vnfs[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinsM = Table[linksins[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementss[i_, j_] := Join[vnfsM[[i, j]], linksinsM[[i, j]], 2];

VelementssM = Table[Velementss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF3 TO MANO

vnft[i_, j_] := Map[n# &,

(Table[Drop[VpathstM[[i, j, k]], 1], {k, Length[VpathstM[[i, j]]]}]), {2}];

linksint[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathstM[[i, j, k]], -1], Drop[VpathstM[[i, j, k]], 1]}],
{k, Length[VpathstM[[i, j]]]}]), {2}];

vnftM = Table[vnft[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksintM = Table[linksint[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementst[i_, j_] := Join[vnftM[[i, j]], linksintM[[i, j]], 2];

VelementstM = Table[Velementst[i, j], {i, 1}, {j, 1, NoOfMANO}];

The structure function and its analysis
convers the sets of elements providing a working path and control to a Boolean expression for
reduction & analysis.

Service chain .

VNF1 and user endpoint.

Φf[i_, j_] := Table[{FelementsM[[i, j, k]] /. List → And},

{k, Length[FelementsM[[i, j]]]}] /. List → Or

ΦfM = Table[Φf[i, j], {i, 1}, {j, 1}];

ΦfT = Table[{ΦfM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF2 and VNF1

Φs[i_, j_] := Table[{SelementsM[[i, j, k]] /. List → And},

{k, Length[SelementsM[[i, j]]]}] /. List → Or

ΦsM = Table[Φs[i, j], {i, 1}, {j, 1}];

ΦsT = Table[{ΦsM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF3 and VNF2

6 NFV_Structural_Analysis_3e.nb

Φt[i_, j_] := Table[{TelementsM[[i, j, k]] /. List → And},

{k, Length[TelementsM[[i, j]]]}] /. List → Or

ΦtM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦtT = Table[{ΦtM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF3 and endpoint service provider

Φe[i_, j_] := Table[{EelementsM[[i, j, k]] /. List → And},

{k, Length[EelementsM[[i, j]]]}] /. List → Or

ΦeM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦeT = Table[{ΦeM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

Endpoints connect to MANO

MANO and endpoint service provider

Φd[i_, j_] := Table[{DmanoelementsM[[i, j, k]] /. List → And},

{k, Length[DmanoelementsM[[i, j]]]}] /. List → Or

ΦdM = Table[Φd[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

ΦdT = Table[{ΦdM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

MANO and endpoint service provider

Φo[i_, j_] := Table[{OmanoelementsM[[i, j, k]] /. List → And},

{k, Length[OmanoelementsM[[i, j]]]}] /. List → Or

ΦoM = Table[Φo[i, j], {i, 1, NoOfMANO}, {j, 1, NoOfPoP}];

ΦoT = Table[{ΦoM[[k]] /. List → Or}, {k, NoOfMANO}] /. List → And;

MANO-> VNFs

 VNFs-> MANO

VNF1 TO MANO

Φvf[i_, j_] := Table[{VelementsfM[[i, j, k]] /. List → And},

{k, Length[VelementsfM[[i, j]]]}] /. List → Or

ΦvfM = Table[Φvf[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvfT = Table[{ΦvfM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF2 TO MANO

Φvs[i_, j_] := Table[{VelementssM[[i, j, k]] /. List → And},

{k, Length[VelementssM[[i, j]]]}] /. List → Or

ΦvsM = Table[Φvs[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvsT = Table[{ΦvsM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF3 TO MANO

Φvt[i_, j_] := Table[{VelementstM[[i, j, k]] /. List → And},

{k, Length[VelementstM[[i, j]]]}] /. List → Or

NFV_Structural_Analysis_3e.nb 7

ΦvtM = Table[Φvt[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvtT = Table[{ΦvtM[[k]] /. List → Or}, {k, 1}] /. List → And;

Φnfv = ΦfT && ΦsT && ΦeT && ΦtT && ΦvfT && ΦdT && ΦoT && ΦvsT && ΦvtT // Simplify;

Extracting the minimum paths and cut

The minimum path and cut sets are extracted from the above logical expressions by replacing the
heads of the expressions. The And and Or head are replaced by List heads. The not operation are
replaced by identity and removed. Be aware that the operation may twist the meaning unless the
logical expand produces results on standard form.

Functions

MinPaths[s_] := BooleanConvert[s] /. {And -> List, Or -> List}

MinCuts[s_] :=

BooleanConvert[s, "CNF"] /. {And -> List, Or -> List, Not -> Identity}

NFV

NFVminpath = MinPaths[Φnfv];

NFVmincut = MinCuts[Φnfv];

Export["D://NTNU 2 year//Master thesis//structure
analysis//data//NFVmincut_norway_3e.mx", NFVmincut, "MX"]

D://NTNU 2 year//Master
thesis//structure analysis//data//NFVmincut_norway_3e.mx

Cardinality cut sets.

Scenario3 = Length /@ (If[Head[#] =!= List, {#}, #] & /@ NFVmincut);

BinCounts[%, {1, Max[%] + 1, 1}]

{5, 10, 8, 120, 354, 643, 709, 525, 394, 183, 119, 32, 11, 4}

Position[Scenario3, _?(# < 2 &)]

{{844}, {845}, {846}, {2947}, {2949}}

Position[Scenario3, _?(1 < # < 3 &)]

{{1}, {348}, {765}, {2271}, {2547}, {2626}, {2705}, {2946}, {2948}, {3117}}

8 NFV_Structural_Analysis_3e.nb

AppendixDStructural analysis script of
Scenario 3 in Mathematica

83

Structuremodel for Scenario 3

Define network

Primary = Graph[{TRD  OSL1, TRD  OSL2,
TRD  BRG, TRD  STV, OSL1  OSL2, OSL1  STV, STV  BRG}];

Secondary = Graph[{TRDb  OSL2b, TRDb  BRGb, TRDb  STVb,
OSL1b  OSL2b, OSL1b  STVb, STVb  BRGb}];

ConnectionPS = Graph[{TRD  TRDb, OSL1  OSL1b,
OSL2  OSL2b, BRG  BRGb, STV  STVb}];

network = GraphUnion[Primary, Secondary, ConnectionPS, VertexLabels → "Name"];

A infrastructure node(a datacenter) with NFV MANO connects to BRG and BRGb nodes.

datacenter1 = Graph[{DC1  TRD, DC1  TRDb}, VertexLabels → "Name"];
datacenter2 = Graph[

{OSL2  DC2, OSL1  DC2, OSL1b  DC2, OSL2b  DC2}, VertexLabels → "Name"];

datacenter3 =

Graph[{DC3  BRG, DC3  BRGb, DC3  STV, DC3  STVb}, VertexLabels → "Name"];

vnf1 = Graph[{VNF1  DC1}, VertexLabels → "Name"];

vnf2 = Graph[{VNF2  DC1, VNF2  DC2}, VertexLabels → "Name"];

vnf3 = Graph[{VNF3  DC3, VNF3  DC2}, VertexLabels → "Name"];

mano1 = Graph[{BRG → MANO1, BRGb → MANO1}, VertexLabels → "Name"];

Datacenter =

GraphUnion[network, datacenter1, datacenter3, VertexShapeFunction → "Name"];

NFV = GraphUnion[network, datacenter1, datacenter3,
vnf1, vnf2, vnf3, mano1, VertexShapeFunction → "Name"];

NFV1 =

GraphUnion[network, datacenter1, vnf1, mano1, VertexShapeFunction → "Name"];

NFV2 = GraphUnion[network, datacenter1,
datacenter2, vnf2, mano1, VertexShapeFunction → "Name"];

NFV3 = GraphUnion[network, datacenter2,
datacenter3, vnf3, mano1, VertexShapeFunction → "Name"];

Connect to endpoints.

endpoint1 = Graph[{ O1 → TRD, O1 → TRDb}, VertexLabels → "Name"];

endpoint2 = Graph[{ D1 → STV, D1 → STVb}, VertexLabels → "Name"];

box1 = GraphUnion[network, endpoint2, datacenter1, vnf1, VertexLabels → "Name"];

box3 = GraphUnion[network, datacenter1,
datacenter2, vnf2, vnf1, VertexLabels → "Name"];

box2 = GraphUnion[network, datacenter1,
datacenter2, datacenter3, vnf2, vnf3, VertexLabels → "Name"];

box4 = GraphUnion[network, datacenter3,
datacenter2, vnf3, endpoint1, VertexLabels → "Name"];

box5 = GraphUnion[network, endpoint1, mano1, endpoint2, VertexLabels → "Name"];

Network with endpoints only.

endpointsnetwork = GraphUnion[Datacenter, endpoint1, endpoint2];

HighlightGraph[endpointsnetwork,
{network, endpoint1, endpoint2}, VertexLabels → "Name"];

Network with endpoints and NFV elements.

overallNetwork = GraphUnion[NFV, endpoint1, endpoint2];

HighlightGraph[overallNetwork, {network, mano1, vnf1,
vnf2, vnf3, endpoint1, endpoint2}, VertexLabels → "Name"];

Find the path

Endpoints

Org[i_] := ToExpression["O" <> ToString[i]];

Dest[i_] := ToExpression["D" <> ToString[i]];

Datacenters

box[i_] := ToExpression["DC" <> ToString[i]];

VNFs

Vir[i_] := ToExpression["VNF" <> ToString[i]];

MANO

Ctrl[i_] := ToExpression["MANO" <> ToString[i]];

Paths between endpoints(service provider) to endpoints(user) include the service function chain.

Cpathsf[i_, j_] := FindPath[box1, Dest[j], Vir[1], Infinity, All];

Cpathss[i_, j_] := FindPath[box3, Vir[2], Vir[1], Infinity, All];

Cpathst[i_, j_] := FindPath[box2, Vir[3], Vir[2], Infinity, All];

Cpathse[i_, j_] := FindPath[box4, Org[i], Vir[3], Infinity, All];

Paths between endpoints and MANO

Spaths[i_, j_] := FindPath[box5, Org[i], Ctrl[j], Infinity, All];

Upaths[i_, j_] := FindPath[box5, Dest[i], Ctrl[j], Infinity, All];

Paths between VNFs and MANO

Vpathsf[i_, j_] := FindPath[NFV1, Vir[1], Ctrl[j], Infinity, All];

Vpathss[i_, j_] := FindPath[NFV2, Vir[2], Ctrl[j], Infinity, All];

Vpathst[i_, j_] := FindPath[NFV3, Vir[3], Ctrl[j], Infinity, All];

2 NFV_Structural_Analysis_4e.nb

Define parameters.

NoOfPoP = 1; NoOfVNF = 3; NoOfMANO = 1;

CpathsfM = Table[Cpathsf[i, j], {i, 1}, {j, 1, NoOfPoP}];

CpathssM = Table[Cpathss[i, j], {i, 1}, {j, 1}];

CpathstM = Table[Cpathst[i, j], {i, 1}, {j, 1}];

CpathseM = Table[Cpathse[i, j], {i, 1}, {j, 1}];

SpathsM = Table[Spaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

UpathsM = Table[Upaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

VpathsfM = Table[Vpathsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VpathssM = Table[Vpathss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VpathstM = Table[Vpathst[i, j], {i, 1}, {j, 1, NoOfMANO}];

Converting paths into network elements

VMap = {TRD, TRDb, OSL1, OSL1b, OSL2, OSL2b,
STV, STVb, BRG, BRGb, DC1, DC3, DC2, MANO1, VNF1, VNF2, VNF3};

Service chain .

User endpoint and VNF1.

fnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathsfM[[i, j, k]], 1], -1],

{k, Length[CpathsfM[[i, j]]]}]), {2}];

flinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathsfM[[i, j, k]], -1], Drop[
CpathsfM[[i, j, k]], 1]}], 1], {k, Length[CpathsfM[[i, j]]]}]), {2}];

fnodesinpathsM = Table[fnodesinpaths[i, j], {i, 1}, {j, 1}];

flinksinpathM = Table[flinksinpath[i, j], {i, 1}, {j, 1}];

Felements[i_, j_] := Join[fnodesinpathsM[[i, j]], flinksinpathM[[i, j]], 2];

FelementsM = Table[Felements[i, j], {i, 1}, {j, 1}];

VNF2 and VNF1

snodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathssM[[i, j, k]], 1], -1],

{k, Length[CpathssM[[i, j]]]}]), {2}];
slinksinpath[i_, j_] := Map[If[Position[VMap, First[#]][[1, 1]] <

Position[VMap, Last[#]][[1, 1]], Subscript[l, First[#], Last[#]],
Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathssM[[i, j, k]], -1], Drop[CpathssM[[i, j, k]], 1]}],
{k, Length[CpathssM[[i, j]]]}]), {2}];

snodesinpathsM = Table[snodesinpaths[i, j], {i, 1}, {j, 1}];

NFV_Structural_Analysis_4e.nb 3

slinksinpathM = Table[slinksinpath[i, j], {i, 1}, {j, 1}];

Selements[i_, j_] := Join[snodesinpathsM[[i, j]], slinksinpathM[[i, j]], 2];

SelementsM = Table[Selements[i, j], {i, 1}, {j, 1}];

VNF3 and VNF2

tnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathstM[[i, j, k]], 1], -1],

{k, Length[CpathstM[[i, j]]]}]), {2}];

tlinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathstM[[i, j, k]], -1], Drop[CpathstM[[i, j, k]], 1]}],
{k, Length[CpathstM[[i, j]]]}]), {2}];

tnodesinpathsM = Table[tnodesinpaths[i, j], {i, 1}, {j, 1}];

tlinksinpathM = Table[tlinksinpath[i, j], {i, 1}, {j, 1}];

Telements[i_, j_] := Join[tnodesinpathsM[[i, j]], tlinksinpathM[[i, j]], 2];

TelementsM = Table[Telements[i, j], {i, 1}, {j, 1}];

Service provider endpoints and VNF3

enodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathseM[[i, j, k]], 1], -1],

{k, Length[CpathseM[[i, j]]]}]), {2}];

elinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathseM[[i, j, k]], -1], Drop[
CpathseM[[i, j, k]], 1]}], 1], {k, Length[CpathseM[[i, j]]]}]), {2}];

enodesinpathsM = Table[enodesinpaths[i, j], {i, 1}, {j, 1}];

elinksinpathM = Table[elinksinpath[i, j], {i, 1}, {j, 1}];

Eelements[i_, j_] := Join[enodesinpathsM[[i, j]], elinksinpathM[[i, j]], 2];

EelementsM = Table[Eelements[i, j], {i, 1}, {j, 1}];

Endpoints connect to MANO

Service provider endpoint and MANO

dmanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[SpathsM[[i, j, k]], 1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
lFirst[#],Last[#], lLast[#],First[#]] &, (Table[
Drop[Transpose[{Drop[SpathsM[[i, j, k]], -1], Drop[SpathsM[[i, j, k]], 1]}],
1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanonodesinpathsM =

Table[dmanonodesinpaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

dmanolinksinpathM =

Table[dmanolinksinpath[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

4 NFV_Structural_Analysis_4e.nb

Dmanoelements[i_, j_] :=

Join[dmanonodesinpathsM[[i, j]], dmanolinksinpathM [[i, j]], 2];

DmanoelementsM = Table[Dmanoelements[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

User endpoint and MANO

omanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[UpathsM[[i, j, k]], 1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[UpathsM[[i, j, k]], -1],
Drop[UpathsM[[i, j, k]], 1]}], 1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanonodesinpathsM = Table[omanonodesinpaths[i, j], {i, 1}, {j, 1, NoOfMANO}];

omanolinksinpathM = Table[omanolinksinpath[i, j], {i, 1}, {j, 1, NoOfMANO}];

Omanoelements[i_, j_] :=

Join[omanonodesinpathsM[[i, j]], omanolinksinpathM [[i, j]], 2];

OmanoelementsM = Table[Omanoelements[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNFS connect to MANO

VNF1 TO MANO

vnff[i_, j_] := Map[n# &,

(Table[Drop[VpathsfM[[i, j, k]], 1], {k, Length[VpathsfM[[i, j]]]}]), {2}];

linksinf[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathsfM[[i, j, k]], -1], Drop[VpathsfM[[i, j, k]], 1]}],
{k, Length[VpathsfM[[i, j]]]}]), {2}];

vnffM = Table[vnff[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinfM = Table[linksinf[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementsf[i_, j_] := Join[vnffM[[i, j]], linksinfM[[i, j]], 2];

VelementsfM = Table[Velementsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF2 TO MANO

vnfs[i_, j_] := Map[n# &,

(Table[Drop[VpathssM[[i, j, k]], 1], {k, Length[VpathssM[[i, j]]]}]), {2}];

linksins[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathssM[[i, j, k]], -1], Drop[VpathssM[[i, j, k]], 1]}],
{k, Length[VpathssM[[i, j]]]}]), {2}];

vnfsM = Table[vnfs[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinsM = Table[linksins[i, j], {i, 1}, {j, 1, NoOfMANO}];

NFV_Structural_Analysis_4e.nb 5

Velementss[i_, j_] := Join[vnfsM[[i, j]], linksinsM[[i, j]], 2];

VelementssM = Table[Velementss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF3 TO MANO

vnft[i_, j_] := Map[n# &,

(Table[Drop[VpathstM[[i, j, k]], 1], {k, Length[VpathstM[[i, j]]]}]), {2}];

linksint[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathstM[[i, j, k]], -1], Drop[VpathstM[[i, j, k]], 1]}],
{k, Length[VpathstM[[i, j]]]}]), {2}];

vnftM = Table[vnft[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksintM = Table[linksint[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementst[i_, j_] := Join[vnftM[[i, j]], linksintM[[i, j]], 2];

VelementstM = Table[Velementst[i, j], {i, 1}, {j, 1, NoOfMANO}];

The structure function and its analysis
convers the sets of elements providing a working path and control to a Boolean expression for
reduction & analysis.

Service chain .

VNF1 and user endpoint.

Φf[i_, j_] := Table[{FelementsM[[i, j, k]] /. List → And},

{k, Length[FelementsM[[i, j]]]}] /. List → Or

ΦfM = Table[Φf[i, j], {i, 1}, {j, 1}];

ΦfT = Table[{ΦfM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF2 and VNF1

Φs[i_, j_] := Table[{SelementsM[[i, j, k]] /. List → And},

{k, Length[SelementsM[[i, j]]]}] /. List → Or

ΦsM = Table[Φs[i, j], {i, 1}, {j, 1}];

ΦsT = Table[{ΦsM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF3 and VNF2

Φt[i_, j_] := Table[{TelementsM[[i, j, k]] /. List → And},

{k, Length[TelementsM[[i, j]]]}] /. List → Or

ΦtM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦtT = Table[{ΦtM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF3 and endpoint service provider

6 NFV_Structural_Analysis_4e.nb

Φe[i_, j_] := Table[{EelementsM[[i, j, k]] /. List → And},

{k, Length[EelementsM[[i, j]]]}] /. List → Or

ΦeM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦeT = Table[{ΦeM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

Endpoints connect to MANO

MANO and endpoint service provider

Φd[i_, j_] := Table[{DmanoelementsM[[i, j, k]] /. List → And},

{k, Length[DmanoelementsM[[i, j]]]}] /. List → Or

ΦdM = Table[Φd[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

ΦdT = Table[{ΦdM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

MANO and endpoint service provider

Φo[i_, j_] := Table[{OmanoelementsM[[i, j, k]] /. List → And},

{k, Length[OmanoelementsM[[i, j]]]}] /. List → Or

ΦoM = Table[Φo[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

ΦoT = Table[{ΦoM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

 VNFs-> MANO

VNF1 TO MANO

Φvf[i_, j_] := Table[{VelementsfM[[i, j, k]] /. List → And},

{k, Length[VelementsfM[[i, j]]]}] /. List → Or

ΦvfM = Table[Φvf[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvfT = Table[{ΦvfM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF2 TO MANO

Φvs[i_, j_] := Table[{VelementssM[[i, j, k]] /. List → And},

{k, Length[VelementssM[[i, j]]]}] /. List → Or

ΦvsM = Table[Φvs[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvsT = Table[{ΦvsM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF3 TO MANO

Φvt[i_, j_] := Table[{VelementstM[[i, j, k]] /. List → And},

{k, Length[VelementstM[[i, j]]]}] /. List → Or

ΦvtM = Table[Φvt[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvtT = Table[{ΦvtM[[k]] /. List → Or}, {k, 1}] /. List → And;

Φnfv = ΦfT && ΦsT && ΦeT && ΦtT && ΦvfT && ΦdT && ΦoT && ΦvsT && ΦvtT // Simplify;

NFV_Structural_Analysis_4e.nb 7

Extracting the minimum paths and cut

The minimum path and cut sets are extracted from the above logical expressions by replacing the
heads of the expressions. The And and Or head are replaced by List heads. The not operation are
replaced by identity and removed. Be aware that the operation may twist the meaning unless the
logical expand produces results on standard form.

Functions

MinPaths[s_] := BooleanConvert[s] /. {And -> List, Or -> List}

MinCuts[s_] :=

BooleanConvert[s, "CNF"] /. {And -> List, Or -> List, Not -> Identity}

NFV

NFVminpath = MinPaths[Φnfv];

NFVmincut = MinCuts[Φnfv];

Export["D://NTNU 2 year//Master thesis//structure
analysis//data//NFVmincut_norway_4e.mx", NFVmincut, "MX"]

D://NTNU 2 year//Master
thesis//structure analysis//data//NFVmincut_norway_4e.mx

Cardinality cut sets.

Scenario4 = Length /@ (If[Head[#] =!= List, {#}, #] & /@ NFVmincut);

BinCounts[%, {1, Max[%] + 1, 1}]

{3, 15, 8, 65, 431, 766, 1038, 1389, 1431,
1619, 1559, 1198, 875, 532, 268, 142, 60, 13, 3}

Position[Scenario4, _?(# < 2 &)]

{{2774}, {4289}, {11 164}}

Position[Scenario4, _?(1 < # < 3 &)]

{{1}, {1303}, {2669}, {2775}, {3321}, {3322}, {4213}, {9132},
{9867}, {10095}, {10 318}, {11 163}, {11165}, {11 241}, {11 415}}

8 NFV_Structural_Analysis_4e.nb

AppendixEStructural analysis script of
Scenario 4 in Mathematica

93

Structuremodel of Scenario 4

Define network

Primary = Graph[{TRD  OSL1, TRD  OSL2,
TRD  BRG, TRD  STV, OSL1  OSL2, OSL1  STV, STV  BRG}];

Secondary = Graph[{TRDb  OSL2b, TRDb  BRGb, TRDb  STVb,
OSL1b  OSL2b, OSL1b  STVb, STVb  BRGb}];

ConnectionPS = Graph[{TRD  TRDb, OSL1  OSL1b,
OSL2  OSL2b, BRG  BRGb, STV  STVb}];

network = GraphUnion[Primary, Secondary, ConnectionPS, VertexLabels → "Name"];

datacenter1 = Graph[{DC1  TRD, DC1  TRDb}, VertexLabels → "Name"];

mano1 = Graph[{BRG → MANO1, BRGb → MANO1}, VertexLabels → "Name"];
mano2 = Graph[{TRD → MANO2, TRDb → MANO2}, VertexLabels → "Name"];

datacenter2 = Graph[
{DC2  OSL1, DC2  OSL1b, DC2  OSL2b, DC2  OSL2}, VertexLabels → "Name"];

vnf1 = Graph[{VNF1  DC1}, VertexLabels → "Name"];

vnf2 = Graph[{VNF2  DC1}, VertexLabels → "Name"];

vnf3 = Graph[{VNF3  DC2}, VertexLabels → "Name"];

Datacenter =

GraphUnion[network, datacenter1, datacenter2, VertexShapeFunction → "Name"];

NFV = GraphUnion[network, datacenter1, datacenter2,
vnf1, vnf2, vnf3, mano1, mano2, VertexShapeFunction → "Name"];

NFV2 = GraphUnion[network, datacenter1,
mano1, vnf1, vnf2, mano2, VertexShapeFunction → "Name"];

NFV3 = GraphUnion[network, mano1, vnf3,
datacenter2, mano2, VertexShapeFunction → "Name"];

Connect to endpoints.

endpoint1 = Graph[{ O1 → TRD, O1 → TRDb}, VertexLabels → "Name"];

endpoint2 = Graph[{ D1 → STV, D1 → STVb}, VertexLabels → "Name"];

Network with endpoints only.

NFV1 = GraphUnion[network, mano2, mano1,
endpoint1, endpoint2, VertexShapeFunction → "Name"];

endpointsnetwork1 = GraphUnion[datacenter1, endpoint2, vnf1, network];

endpointsnetwork2 = GraphUnion[datacenter1, datacenter2, vnf1, vnf2, network];

endpointsnetwork3 = GraphUnion[datacenter2, endpoint1, vnf3, network];

endpointsnetwork = GraphUnion[network, endpoint1, endpoint2];

HighlightGraph[endpointsnetwork,
{network, endpoint1, endpoint2}, VertexLabels → "Name"];

Network with endpoints and NFV elements.

overallNetwork = GraphUnion[NFV, endpoint1, endpoint2];

HighlightGraph[overallNetwork, {network, mano1, mano2,
vnf1, vnf2, vnf3, endpoint1, endpoint2}, VertexLabels → "Name"];

Find the path

Endpoints

Org[i_] := ToExpression["O" <> ToString[i]];

Dest[i_] := ToExpression["D" <> ToString[i]];

Datacenters

box[i_] := ToExpression["DC" <> ToString[i]];

VNFs

Vir[i_] := ToExpression["VNF" <> ToString[i]];

MANO

Ctrl[i_] := ToExpression["MANO" <> ToString[i]];

Paths between endpoints(service provider) to endpoints(user) include the service function chain.

Cpathsf[i_, j_] := FindPath[endpointsnetwork1, Dest[1], Vir[1], Infinity, All]

Cpathss[i_, j_] := FindPath[endpointsnetwork2, Vir[2], Vir[1], Infinity, All]

Cpathst[i_, j_] := FindPath[overallNetwork, Vir[3], Vir[2], Infinity, All]

Cpathse[i_, j_] := FindPath[endpointsnetwork3, Org[i], Vir[3], Infinity, All]

Paths between endpoints and MANO

Spaths[i_, j_] := FindPath[NFV1, Org[i], Ctrl[j], Infinity, All];

Upaths[i_, j_] := FindPath[NFV1, Dest[i], Ctrl[j], Infinity, All];

Paths between VNFs and MANO

Vpathsf[i_, j_] := FindPath[NFV2, Vir[1], Ctrl[j], Infinity, All];

Vpathss[i_, j_] := FindPath[NFV2, Vir[2], Ctrl[j], Infinity, All];

Vpathst[i_, j_] := FindPath[NFV3, Vir[3], Ctrl[j], Infinity, All];

Define parameters.

NoOfPoP = 1; NoOfVNF = 3; NoOfMANO = 2;

2 NFV_Structural_Analysis_5e.nb

CpathsfM = Table[Cpathsf[i, j], {i, 1}, {j, 1}];

CpathssM = Table[Cpathss[i, j], {i, 1}, {j, 1}];

CpathstM = Table[Cpathst[i, j], {i, 1}, {j, 1}];

CpathseM = Table[Cpathse[i, j], {i, 1}, {j, 1}];

SpathsM = Table[Spaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

UpathsM = Table[Upaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

VpathsfM = Table[Vpathsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VpathssM = Table[Vpathss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VpathstM = Table[Vpathst[i, j], {i, 1}, {j, 1, NoOfMANO}];

Converting paths into network elements

VMap = {TRD, TRDb, OSL1, OSL1b, OSL2, OSL2b, STV,
STVb, BRG, BRGb, DC1, DC2, MANO1, MANO2, VNF1, VNF2, VNF3};

Service chain .

User endpoint and VNF1.

fnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathsfM[[i, j, k]], 1], -1],

{k, Length[CpathsfM[[i, j]]]}]), {2}];

flinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathsfM[[i, j, k]], -1], Drop[
CpathsfM[[i, j, k]], 1]}], 1], {k, Length[CpathsfM[[i, j]]]}]), {2}];

fnodesinpathsM = Table[fnodesinpaths[i, j], {i, 1}, {j, 1}];

flinksinpathM = Table[flinksinpath[i, j], {i, 1}, {j, 1}];

Felements[i_, j_] := Join[fnodesinpathsM[[i, j]], flinksinpathM[[i, j]], 2];

FelementsM = Table[Felements[i, j], {i, 1}, {j, 1}];

VNF2 and VNF1

snodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathssM[[i, j, k]], 1], -1],

{k, Length[CpathssM[[i, j]]]}]), {2}];
slinksinpath[i_, j_] := Map[If[Position[VMap, First[#]][[1, 1]] <

Position[VMap, Last[#]][[1, 1]], Subscript[l, First[#], Last[#]],
Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathssM[[i, j, k]], -1], Drop[CpathssM[[i, j, k]], 1]}],
{k, Length[CpathssM[[i, j]]]}]), {2}];

snodesinpathsM = Table[snodesinpaths[i, j], {i, 1}, {j, 1}];

slinksinpathM = Table[slinksinpath[i, j], {i, 1}, {j, 1}];

NFV_Structural_Analysis_5e.nb 3

Selements[i_, j_] := Join[snodesinpathsM[[i, j]], slinksinpathM[[i, j]], 2];

SelementsM = Table[Selements[i, j], {i, 1}, {j, 1}];

VNF3 and VNF2

tnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathstM[[i, j, k]], 1], -1],

{k, Length[CpathstM[[i, j]]]}]), {2}];

tlinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathstM[[i, j, k]], -1], Drop[CpathstM[[i, j, k]], 1]}],
{k, Length[CpathstM[[i, j]]]}]), {2}];

tnodesinpathsM = Table[tnodesinpaths[i, j], {i, 1}, {j, 1}];

tlinksinpathM = Table[tlinksinpath[i, j], {i, 1}, {j, 1}];

Telements[i_, j_] := Join[tnodesinpathsM[[i, j]], tlinksinpathM[[i, j]], 2];

TelementsM = Table[Telements[i, j], {i, 1}, {j, 1}];

Service provider endpoints and VNF3

enodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathseM[[i, j, k]], 1], -1],

{k, Length[CpathseM[[i, j]]]}]), {2}];

elinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathseM[[i, j, k]], -1], Drop[
CpathseM[[i, j, k]], 1]}], 1], {k, Length[CpathseM[[i, j]]]}]), {2}];

enodesinpathsM = Table[enodesinpaths[i, j], {i, 1}, {j, 1}];

elinksinpathM = Table[elinksinpath[i, j], {i, 1}, {j, 1}];

Eelements[i_, j_] := Join[enodesinpathsM[[i, j]], elinksinpathM[[i, j]], 2];

EelementsM = Table[Eelements[i, j], {i, 1}, {j, 1}];

Endpoints connect to MANO

Service provider endpoint and MANO

dmanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[SpathsM[[i, j, k]], 1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
lFirst[#],Last[#], lLast[#],First[#]] &, (Table[
Drop[Transpose[{Drop[SpathsM[[i, j, k]], -1], Drop[SpathsM[[i, j, k]], 1]}],
1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanonodesinpathsM =

Table[dmanonodesinpaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

dmanolinksinpathM =

Table[dmanolinksinpath[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

4 NFV_Structural_Analysis_5e.nb

Dmanoelements[i_, j_] :=

Join[dmanonodesinpathsM[[i, j]], dmanolinksinpathM [[i, j]], 2];

DmanoelementsM = Table[Dmanoelements[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

User endpoint and MANO

omanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[UpathsM[[i, j, k]], 1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[UpathsM[[i, j, k]], -1],
Drop[UpathsM[[i, j, k]], 1]}], 1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanonodesinpathsM = Table[omanonodesinpaths[i, j], {i, 1}, {j, 1, NoOfMANO}];

omanolinksinpathM = Table[omanolinksinpath[i, j], {i, 1}, {j, 1, NoOfMANO}];

Omanoelements[i_, j_] :=

Join[omanonodesinpathsM[[i, j]], omanolinksinpathM [[i, j]], 2];

OmanoelementsM = Table[Omanoelements[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNFS connect to MANO

VNF1 TO MANO

vnff[i_, j_] := Map[n# &,

(Table[Drop[VpathsfM[[i, j, k]], 1], {k, Length[VpathsfM[[i, j]]]}]), {2}];

linksinf[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathsfM[[i, j, k]], -1], Drop[VpathsfM[[i, j, k]], 1]}],
{k, Length[VpathsfM[[i, j]]]}]), {2}];

vnffM = Table[vnff[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinfM = Table[linksinf[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementsf[i_, j_] := Join[vnffM[[i, j]], linksinfM[[i, j]], 2];

VelementsfM = Table[Velementsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF2 TO MANO

vnfs[i_, j_] := Map[n# &,

(Table[Drop[VpathssM[[i, j, k]], 1], {k, Length[VpathssM[[i, j]]]}]), {2}];

linksins[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathssM[[i, j, k]], -1], Drop[VpathssM[[i, j, k]], 1]}],
{k, Length[VpathssM[[i, j]]]}]), {2}];

vnfsM = Table[vnfs[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinsM = Table[linksins[i, j], {i, 1}, {j, 1, NoOfMANO}];

NFV_Structural_Analysis_5e.nb 5

Velementss[i_, j_] := Join[vnfsM[[i, j]], linksinsM[[i, j]], 2];

VelementssM = Table[Velementss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF3 TO MANO

vnft[i_, j_] := Map[n# &,

(Table[Drop[VpathstM[[i, j, k]], 1], {k, Length[VpathstM[[i, j]]]}]), {2}];

linksint[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathstM[[i, j, k]], -1], Drop[VpathstM[[i, j, k]], 1]}],
{k, Length[VpathstM[[i, j]]]}]), {2}];

vnftM = Table[vnft[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksintM = Table[linksint[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementst[i_, j_] := Join[vnftM[[i, j]], linksintM[[i, j]], 2];

VelementstM = Table[Velementst[i, j], {i, 1}, {j, 1, NoOfMANO}];

The structure function and its analysis
convers the sets of elements providing a working path and control to a Boolean expression for
reduction & analysis.

Service chain .

VNF1 and user endpoint.

Φf[i_, j_] := Table[{FelementsM[[i, j, k]] /. List → And},

{k, Length[FelementsM[[i, j]]]}] /. List → Or

ΦfM = Table[Φf[i, j], {i, 1}, {j, 1}];

ΦfT = Table[{ΦfM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF2 and VNF1

Φs[i_, j_] := Table[{SelementsM[[i, j, k]] /. List → And},

{k, Length[SelementsM[[i, j]]]}] /. List → Or

ΦsM = Table[Φs[i, j], {i, 1}, {j, 1}];

ΦsT = Table[{ΦsM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF3 and VNF2

Φt[i_, j_] := Table[{TelementsM[[i, j, k]] /. List → And},

{k, Length[TelementsM[[i, j]]]}] /. List → Or

ΦtM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦtT = Table[{ΦtM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF3 and endpoint service provider

6 NFV_Structural_Analysis_5e.nb

Φe[i_, j_] := Table[{EelementsM[[i, j, k]] /. List → And},

{k, Length[EelementsM[[i, j]]]}] /. List → Or

ΦeM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦeT = Table[{ΦeM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

Endpoints connect to MANO

MANO and endpoint service provider

Φd[i_, j_] := Table[{DmanoelementsM[[i, j, k]] /. List → And},

{k, Length[DmanoelementsM[[i, j]]]}] /. List → Or

ΦdM = Table[Φd[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

ΦdT = Table[{ΦdM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

MANO and endpoint service provider

Φo[i_, j_] := Table[{OmanoelementsM[[i, j, k]] /. List → And},

{k, Length[OmanoelementsM[[i, j]]]}] /. List → Or

ΦoM = Table[Φo[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

ΦoT = Table[{ΦoM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

 VNFs-> MANO

VNF1 TO MANO

Φvf[i_, j_] := Table[{VelementsfM[[i, j, k]] /. List → And},

{k, Length[VelementsfM[[i, j]]]}] /. List → Or

ΦvfM = Table[Φvf[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvfT = Table[{ΦvfM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF2 TO MANO

Φvs[i_, j_] := Table[{VelementssM[[i, j, k]] /. List → And},

{k, Length[VelementssM[[i, j]]]}] /. List → Or

ΦvsM = Table[Φvs[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvsT = Table[{ΦvsM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF3 TO MANO

Φvt[i_, j_] := Table[{VelementstM[[i, j, k]] /. List → And},

{k, Length[VelementstM[[i, j]]]}] /. List → Or

ΦvtM = Table[Φvt[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvtT = Table[{ΦvtM[[k]] /. List → Or}, {k, 1}] /. List → And;

Φnfv = ΦfT && ΦsT && ΦeT && ΦtT && ΦvfT && ΦdT && ΦoT && ΦvsT && ΦvtT // Simplify;

NFV_Structural_Analysis_5e.nb 7

Extracting the minimum paths and cut

The minimum path and cut sets are extracted from the above logical expressions by replacing the
heads of the expressions. The And and Or head are replaced by List heads. The not operation are
replaced by identity and removed. Be aware that the operation may twist the meaning unless the
logical expand produces results on standard form.

Functions

MinPaths[s_] := BooleanConvert[s] /. {And -> List, Or -> List}

MinCuts[s_] :=

BooleanConvert[s, "CNF"] /. {And -> List, Or -> List, Not -> Identity}

NFV

NFVminpath = MinPaths[Φnfv];

NFVmincut = MinCuts[Φnfv];

Export["D://NTNU 2 year//Master thesis//structure
analysis//data//NFVmincut_norway_5e.mx", NFVmincut, "MX"]

D://NTNU 2 year//Master
thesis//structure analysis//data//NFVmincut_norway_5e.mx

Cardinality cut sets.

Scenario5 = Length /@ (If[Head[#] =!= List, {#}, #] & /@ NFVmincut);

BinCounts[%, {1, Max[%] + 1, 1}]

{5, 6, 7, 121, 335, 668, 1251, 1339, 1157, 752, 451, 236, 80, 51, 10, 5}

Position[Scenario5, _?(# < 2 &)]

{{2368}, {2369}, {6190}, {6191}, {6192}}

Position[Scenario5, _?(1 < # < 3 &)]

{{2370}, {5386}, {5760}, {5836}, {5912}, {6474}}

8 NFV_Structural_Analysis_5e.nb

AppendixFStructural analysis script of
Scenario 5 in Mathematica

103

Structuremodel of Scenario 5

Define network

Primary = Graph[{TRD  OSL1, TRD  OSL2,
TRD  BRG, TRD  STV, OSL1  OSL2, OSL1  STV, STV  BRG}];

Secondary = Graph[{TRDb  OSL2b, TRDb  BRGb, TRDb  STVb,
OSL1b  OSL2b, OSL1b  STVb, STVb  BRGb}];

ConnectionPS = Graph[{TRD  TRDb, OSL1  OSL1b,
OSL2  OSL2b, BRG  BRGb, STV  STVb}];

network = GraphUnion[Primary, Secondary, ConnectionPS, VertexLabels → "Name"];

datacenter1 = Graph[{DC1  TRD, DC1  TRDb}, VertexLabels → "Name"];
datacenter2 = Graph[

{OSL2  DC2, OSL1  DC2, OSL1b  DC2, OSL2b  DC2}, VertexLabels → "Name"];

vnf1 = Graph[{VNF1  DC1}, VertexLabels → "Name"];

vnf2 = Graph[{VNF2  DC1, VNF2  DC2}, VertexLabels → "Name"];

vnf3 = Graph[{VNF3  DC2}, VertexLabels → "Name"];

mano2 = Graph[{TRD → MANO2, TRDb → MANO2}, VertexLabels → "Name"];

mano1 = Graph[{BRG → MANO1, BRGb → MANO1}, VertexLabels → "Name"];

Datacenter =

GraphUnion[network, datacenter1, datacenter2, VertexShapeFunction → "Name"];

NFV = GraphUnion[network, datacenter1, datacenter2,
vnf1, vnf2, vnf3, mano1, mano2, VertexShapeFunction → "Name"];

NFV1 = GraphUnion[network, datacenter1,
vnf1, mano1, mano2, VertexShapeFunction → "Name"];

NFV2 = GraphUnion[network, datacenter1,
datacenter2, vnf2, mano1, mano2, VertexShapeFunction → "Name"];

NFV3 = GraphUnion[network, datacenter1,
datacenter2, vnf3, mano1, mano2, VertexShapeFunction → "Name"];

Connect to endpoints.

endpoint1 = Graph[{ O1 → TRD, O1 → TRDb}, VertexLabels → "Name"];

endpoint2 = Graph[{ D1 → STV, D1 → STVb}, VertexLabels → "Name"];

box1 = GraphUnion[network, datacenter1, endpoint2, vnf1, VertexLabels → "Name"];

box3 = GraphUnion[network, datacenter1, datacenter2,
endpoint2, vnf3, vnf2, vnf1, VertexLabels → "Name"];

box4 = GraphUnion[network, datacenter2, endpoint1, vnf3, VertexLabels → "Name"];

box5 = GraphUnion[network, endpoint1, mano1,
endpoint2, mano2, endpoint2, VertexLabels → "Name"];

Network with endpoints only.

endpointsnetwork = GraphUnion[Datacenter, endpoint1, endpoint2];

HighlightGraph[endpointsnetwork,
{network, endpoint1, endpoint2}, VertexLabels → "Name"];

Network with endpoints and NFV elements.

overallNetwork = GraphUnion[NFV, endpoint1, endpoint2];

HighlightGraph[overallNetwork, {network, mano1, mano2,
vnf1, vnf2, vnf3, endpoint1, endpoint2}, VertexLabels → "Name"];

Find the path

Endpoints

Org[i_] := ToExpression["O" <> ToString[i]];

Dest[i_] := ToExpression["D" <> ToString[i]];

Datacenters

box[i_] := ToExpression["DC" <> ToString[i]];

VNFs

Vir[i_] := ToExpression["VNF" <> ToString[i]];

MANO

Ctrl[i_] := ToExpression["MANO" <> ToString[i]];

Paths between endpoints(service provider) to endpoints(user) include the service function chain.

Cpathsf[i_, j_] := FindPath[box1, Dest[j], Vir[1], Infinity, All]

Cpathss[i_, j_] := FindPath[box3, Vir[2], Vir[1], Infinity, All]

Cpathst[i_, j_] := FindPath[box3, Vir[3], Vir[2], Infinity, All]

Cpathse[i_, j_] := FindPath[box4, Org[i], Vir[3], Infinity, All]

Paths between endpoints and MANO

Spaths[i_, j_] := FindPath[box5, Org[i], Ctrl[j], Infinity, All];

Upaths[i_, j_] := FindPath[box5, Dest[i], Ctrl[j], Infinity, All];

Paths between VNFs and MANO

Vpathsf[i_, j_] := FindPath[NFV1, Vir[1], Ctrl[j], Infinity, All];

Vpathss[i_, j_] := FindPath[NFV2, Vir[2], Ctrl[j], Infinity, All];

Vpathst[i_, j_] := FindPath[NFV3, Vir[3], Ctrl[j], Infinity, All];

Define parameters.

NoOfPoP = 1; NoOfVNF = 3; NoOfMANO = 2;

CpathsfM = Table[Cpathsf[i, j], {i, 1}, {j, 1, NoOfPoP}];

CpathssM = Table[Cpathss[i, j], {i, 1}, {j, 1}];

2 NFV_Structural_Analysis_6e.nb

CpathstM = Table[Cpathst[i, j], {i, 1}, {j, 1}];

CpathseM = Table[Cpathse[i, j], {i, 1}, {j, 1}];

SpathsM = Table[Spaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

UpathsM = Table[Upaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

VpathsfM = Table[Vpathsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VpathssM = Table[Vpathss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VpathstM = Table[Vpathst[i, j], {i, 1}, {j, 1, NoOfMANO}];

Converting paths into network elements

VMap = {TRD, TRDb, OSL1, OSL1b, OSL2, OSL2b, STV,
STVb, BRG, BRGb, DC1, DC2, MANO1, MANO2, VNF1, VNF2, VNF3};

Service chain .

User endpoint and VNF1.

fnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathsfM[[i, j, k]], 1], -1],

{k, Length[CpathsfM[[i, j]]]}]), {2}];

flinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathsfM[[i, j, k]], -1], Drop[
CpathsfM[[i, j, k]], 1]}], 1], {k, Length[CpathsfM[[i, j]]]}]), {2}];

fnodesinpathsM = Table[fnodesinpaths[i, j], {i, 1}, {j, 1}];

flinksinpathM = Table[flinksinpath[i, j], {i, 1}, {j, 1}];

Felements[i_, j_] := Join[fnodesinpathsM[[i, j]], flinksinpathM[[i, j]], 2];

FelementsM = Table[Felements[i, j], {i, 1}, {j, 1}];

VNF2 and VNF1

snodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathssM[[i, j, k]], 1], -1],

{k, Length[CpathssM[[i, j]]]}]), {2}];
slinksinpath[i_, j_] := Map[If[Position[VMap, First[#]][[1, 1]] <

Position[VMap, Last[#]][[1, 1]], Subscript[l, First[#], Last[#]],
Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathssM[[i, j, k]], -1], Drop[CpathssM[[i, j, k]], 1]}],
{k, Length[CpathssM[[i, j]]]}]), {2}];

snodesinpathsM = Table[snodesinpaths[i, j], {i, 1}, {j, 1}];

slinksinpathM = Table[slinksinpath[i, j], {i, 1}, {j, 1}];

Selements[i_, j_] := Join[snodesinpathsM[[i, j]], slinksinpathM[[i, j]], 2];

SelementsM = Table[Selements[i, j], {i, 1}, {j, 1}];

VNF3 and VNF2

NFV_Structural_Analysis_6e.nb 3

tnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathstM[[i, j, k]], 1], -1],

{k, Length[CpathstM[[i, j]]]}]), {2}];

tlinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathstM[[i, j, k]], -1], Drop[CpathstM[[i, j, k]], 1]}],
{k, Length[CpathstM[[i, j]]]}]), {2}];

tnodesinpathsM = Table[tnodesinpaths[i, j], {i, 1}, {j, 1}];

tlinksinpathM = Table[tlinksinpath[i, j], {i, 1}, {j, 1}];

Telements[i_, j_] := Join[tnodesinpathsM[[i, j]], tlinksinpathM[[i, j]], 2];

TelementsM = Table[Telements[i, j], {i, 1}, {j, 1}];

Service provider endpoints and VNF3

enodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathseM[[i, j, k]], 1], -1],

{k, Length[CpathseM[[i, j]]]}]), {2}];

elinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathseM[[i, j, k]], -1], Drop[
CpathseM[[i, j, k]], 1]}], 1], {k, Length[CpathseM[[i, j]]]}]), {2}];

enodesinpathsM = Table[enodesinpaths[i, j], {i, 1}, {j, 1}];

elinksinpathM = Table[elinksinpath[i, j], {i, 1}, {j, 1}];

Eelements[i_, j_] := Join[enodesinpathsM[[i, j]], elinksinpathM[[i, j]], 2];

EelementsM = Table[Eelements[i, j], {i, 1}, {j, 1}];

Endpoints connect to MANO

Service provider endpoint and MANO

dmanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[SpathsM[[i, j, k]], 1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
lFirst[#],Last[#], lLast[#],First[#]] &, (Table[
Drop[Transpose[{Drop[SpathsM[[i, j, k]], -1], Drop[SpathsM[[i, j, k]], 1]}],
1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanonodesinpathsM =

Table[dmanonodesinpaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

dmanolinksinpathM =

Table[dmanolinksinpath[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

Dmanoelements[i_, j_] :=

Join[dmanonodesinpathsM[[i, j]], dmanolinksinpathM [[i, j]], 2];

DmanoelementsM = Table[Dmanoelements[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

User endpoint and MANO

4 NFV_Structural_Analysis_6e.nb

omanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[UpathsM[[i, j, k]], 1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[UpathsM[[i, j, k]], -1],
Drop[UpathsM[[i, j, k]], 1]}], 1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanonodesinpathsM = Table[omanonodesinpaths[i, j], {i, 1}, {j, 1, NoOfMANO}];

omanolinksinpathM = Table[omanolinksinpath[i, j], {i, 1}, {j, 1, NoOfMANO}];

Omanoelements[i_, j_] :=

Join[omanonodesinpathsM[[i, j]], omanolinksinpathM [[i, j]], 2];

OmanoelementsM = Table[Omanoelements[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNFS connect to MANO

VNF1 TO MANO

vnff[i_, j_] := Map[n# &,

(Table[Drop[VpathsfM[[i, j, k]], 1], {k, Length[VpathsfM[[i, j]]]}]), {2}];

linksinf[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathsfM[[i, j, k]], -1], Drop[VpathsfM[[i, j, k]], 1]}],
{k, Length[VpathsfM[[i, j]]]}]), {2}];

vnffM = Table[vnff[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinfM = Table[linksinf[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementsf[i_, j_] := Join[vnffM[[i, j]], linksinfM[[i, j]], 2];

VelementsfM = Table[Velementsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF2 TO MANO

vnfs[i_, j_] := Map[n# &,

(Table[Drop[VpathssM[[i, j, k]], 1], {k, Length[VpathssM[[i, j]]]}]), {2}];

linksins[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathssM[[i, j, k]], -1], Drop[VpathssM[[i, j, k]], 1]}],
{k, Length[VpathssM[[i, j]]]}]), {2}];

vnfsM = Table[vnfs[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinsM = Table[linksins[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementss[i_, j_] := Join[vnfsM[[i, j]], linksinsM[[i, j]], 2];

VelementssM = Table[Velementss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF3 TO MANO

NFV_Structural_Analysis_6e.nb 5

vnft[i_, j_] := Map[n# &,

(Table[Drop[VpathstM[[i, j, k]], 1], {k, Length[VpathstM[[i, j]]]}]), {2}];

linksint[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathstM[[i, j, k]], -1], Drop[VpathstM[[i, j, k]], 1]}],
{k, Length[VpathstM[[i, j]]]}]), {2}];

vnftM = Table[vnft[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksintM = Table[linksint[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementst[i_, j_] := Join[vnftM[[i, j]], linksintM[[i, j]], 2];

VelementstM = Table[Velementst[i, j], {i, 1}, {j, 1, NoOfMANO}];

The structure function and its analysis
convers the sets of elements providing a working path and control to a Boolean expression for
reduction & analysis.

Service chain .

VNF1 and user endpoint.

Φf[i_, j_] := Table[{FelementsM[[i, j, k]] /. List → And},

{k, Length[FelementsM[[i, j]]]}] /. List → Or

ΦfM = Table[Φf[i, j], {i, 1}, {j, 1}];

ΦfT = Table[{ΦfM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF2 and VNF1

Φs[i_, j_] := Table[{SelementsM[[i, j, k]] /. List → And},

{k, Length[SelementsM[[i, j]]]}] /. List → Or

ΦsM = Table[Φs[i, j], {i, 1}, {j, 1}];

ΦsT = Table[{ΦsM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF3 and VNF2

Φt[i_, j_] := Table[{TelementsM[[i, j, k]] /. List → And},

{k, Length[TelementsM[[i, j]]]}] /. List → Or

ΦtM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦtT = Table[{ΦtM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF3 and endpoint service provider

Φe[i_, j_] := Table[{EelementsM[[i, j, k]] /. List → And},

{k, Length[EelementsM[[i, j]]]}] /. List → Or

ΦeM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦeT = Table[{ΦeM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

6 NFV_Structural_Analysis_6e.nb

Endpoints connect to MANO

MANO and endpoint service provider

Φd[i_, j_] := Table[{DmanoelementsM[[i, j, k]] /. List → And},

{k, Length[DmanoelementsM[[i, j]]]}] /. List → Or

ΦdM = Table[Φd[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

ΦdT = Table[{ΦdM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

MANO and endpoint service provider

Φo[i_, j_] := Table[{OmanoelementsM[[i, j, k]] /. List → And},

{k, Length[OmanoelementsM[[i, j]]]}] /. List → Or

ΦoM = Table[Φo[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

ΦoT = Table[{ΦoM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

 VNFs-> MANO

VNF1 TO MANO

Φvf[i_, j_] := Table[{VelementsfM[[i, j, k]] /. List → And},

{k, Length[VelementsfM[[i, j]]]}] /. List → Or

ΦvfM = Table[Φvf[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvfT = Table[{ΦvfM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF2 TO MANO

Φvs[i_, j_] := Table[{VelementssM[[i, j, k]] /. List → And},

{k, Length[VelementssM[[i, j]]]}] /. List → Or

ΦvsM = Table[Φvs[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvsT = Table[{ΦvsM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF3 TO MANO

Φvt[i_, j_] := Table[{VelementstM[[i, j, k]] /. List → And},

{k, Length[VelementstM[[i, j]]]}] /. List → Or

ΦvtM = Table[Φvt[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvtT = Table[{ΦvtM[[k]] /. List → Or}, {k, 1}] /. List → And;

Φnfv = ΦfT && ΦsT && ΦeT && ΦtT && ΦvfT && ΦdT && ΦoT && ΦvsT && ΦvtT // Simplify;

Extracting the minimum paths and cut

The minimum path and cut sets are extracted from the above logical expressions by replacing the
heads of the expressions. The And and Or head are replaced by List heads. The not operation are
replaced by identity and removed. Be aware that the operation may twist the meaning unless the
logical expand produces results on standard form.

NFV_Structural_Analysis_6e.nb 7

Functions

MinPaths[s_] := BooleanConvert[s] /. {And -> List, Or -> List}

MinCuts[s_] :=

BooleanConvert[s, "CNF"] /. {And -> List, Or -> List, Not -> Identity}

NFV

NFVminpath = MinPaths[Φnfv];

NFVmincut = MinCuts[Φnfv];

Export["D://NTNU 2 year//Master thesis//structure
analysis//data//NFVmincut_norway_6e.mx", NFVmincut, "MX"]

D://NTNU 2 year//Master
thesis//structure analysis//data//NFVmincut_norway_6e.mx

Cardinality cut sets.

Scenario6 = Length /@ (If[Head[#] =!= List, {#}, #] & /@ NFVmincut);

BinCounts[%, {1, Max[%] + 1, 1}]

{4, 7, 7, 121, 323, 628, 1159, 1492, 1537, 1225, 898, 476, 262, 83, 48, 9, 5}

Position[Scenario6, _?(# < 2 &)]

{{2994}, {2995}, {7894}, {8092}}

Position[Scenario6, _?(2 < # < 4 &)]

{{1}, {404}, {1857}, {3564}, {3578}, {3763}, {4456}}

8 NFV_Structural_Analysis_6e.nb

AppendixGStructural analysis script of
Scenario 6 in Mathematica

113

Structuremodel of Scenario 6

Define network

Primary = Graph[{TRD  OSL1, TRD  OSL2,
TRD  BRG, TRD  STV, OSL1  OSL2, OSL1  STV, STV  BRG}];

Secondary = Graph[{TRDb  OSL2b, TRDb  BRGb, TRDb  STVb,
OSL1b  OSL2b, OSL1b  STVb, STVb  BRGb}];

ConnectionPS = Graph[{TRD  TRDb, OSL1  OSL1b,
OSL2  OSL2b, BRG  BRGb, STV  STVb}];

network = GraphUnion[Primary, Secondary, ConnectionPS, VertexLabels → "Name"];

datacenter1 = Graph[{DC1  TRD, DC1  TRDb}, VertexLabels → "Name"];
datacenter2 = Graph[

{OSL2  DC2, OSL1  DC2, OSL1b  DC2, OSL2b  DC2}, VertexLabels → "Name"];

datacenter3 =

Graph[{DC3  BRG, DC3  BRGb, DC3  STV, DC3  STVb}, VertexLabels → "Name"];

vnf1 = Graph[{VNF1  DC1}, VertexLabels → "Name"];

vnf2 = Graph[{VNF2  DC1, VNF2  DC2}, VertexLabels → "Name"];

vnf3 = Graph[{VNF3  DC3, VNF3  DC2}, VertexLabels → "Name"];

mano2 = Graph[{TRD → MANO2, TRDb → MANO2}, VertexLabels → "Name"];

mano1 = Graph[{BRG → MANO1, BRGb → MANO1}, VertexLabels → "Name"];

Datacenter =

GraphUnion[network, datacenter1, datacenter3, VertexShapeFunction → "Name"];

NFV = GraphUnion[network, datacenter1, datacenter3,
vnf1, vnf2, vnf3, mano1, mano2, VertexShapeFunction → "Name"];

NFV1 = GraphUnion[network, datacenter1,
vnf1, mano1, mano2, VertexShapeFunction → "Name"];

NFV2 = GraphUnion[network, datacenter1,
datacenter2, vnf2, mano1, mano2, VertexShapeFunction → "Name"];

NFV3 = GraphUnion[network, datacenter2,
datacenter3, vnf3, mano1, mano2, VertexShapeFunction → "Name"];

Connect to endpoints.

endpoint1 = Graph[{ O1 → TRD, O1 → TRDb}, VertexLabels → "Name"];

endpoint2 = Graph[{ D1 → STV, D1 → STVb}, VertexLabels → "Name"];

box1 = GraphUnion[network, endpoint2, datacenter1, vnf1, VertexLabels → "Name"];

box3 = GraphUnion[network, datacenter1,
datacenter2, vnf2, vnf1, VertexLabels → "Name"];

box2 = GraphUnion[network, datacenter1,
datacenter2, datacenter3, vnf2, vnf3, VertexLabels → "Name"];

box4 = GraphUnion[network, datacenter2,
datacenter3, vnf3, endpoint1, VertexLabels → "Name"];

box5 =

GraphUnion[network, endpoint1, mano1, endpoint2, mano2, VertexLabels → "Name"];

Network with endpoints only.

endpointsnetwork = GraphUnion[Datacenter, endpoint1, endpoint2];

HighlightGraph[endpointsnetwork,
{network, endpoint1, endpoint2}, VertexLabels → "Name"];

Network with endpoints and NFV elements.

overallNetwork = GraphUnion[NFV, endpoint1, endpoint2];

HighlightGraph[overallNetwork, {network, mano1, mano2,
vnf1, vnf2, vnf3, endpoint1, endpoint2}, VertexLabels → "Name"];

Find the path

Endpoints

Org[i_] := ToExpression["O" <> ToString[i]];

Dest[i_] := ToExpression["D" <> ToString[i]];

Datacenters

box[i_] := ToExpression["DC" <> ToString[i]];

VNFs

Vir[i_] := ToExpression["VNF" <> ToString[i]];

MANO

Ctrl[i_] := ToExpression["MANO" <> ToString[i]];

Paths between endpoints(service provider) to endpoints(user) include the service function chain.

Cpathsf[i_, j_] := FindPath[box1, Dest[j], Vir[1], Infinity, All]

Cpathss[i_, j_] := FindPath[box3, Vir[2], Vir[1], Infinity, All]

Cpathst[i_, j_] := FindPath[box2, Vir[3], Vir[2], Infinity, All]

Cpathse[i_, j_] := FindPath[box4, Org[i], Vir[3], Infinity, All]

Paths between endpoints and MANO

Spaths[i_, j_] := FindPath[box5, Org[i], Ctrl[j], Infinity, All];

Upaths[i_, j_] := FindPath[box5, Dest[i], Ctrl[j], Infinity, All];

Paths between VNFs and MANO

Vpathsf[i_, j_] := FindPath[NFV1, Vir[1], Ctrl[j], Infinity, All];

Vpathss[i_, j_] := FindPath[NFV2, Vir[2], Ctrl[j], Infinity, All];

2 NFV_Structural_Analysis_7e.nb

Vpathst[i_, j_] := FindPath[NFV3, Vir[3], Ctrl[j], Infinity, All];

Define parameters.

NoOfPoP = 1; NoOfVNF = 3; NoOfMANO = 2;

CpathsfM = Table[Cpathsf[i, j], {i, 1}, {j, 1, NoOfPoP}];

CpathssM = Table[Cpathss[i, j], {i, 1}, {j, 1}];

CpathstM = Table[Cpathst[i, j], {i, 1}, {j, 1}];

CpathseM = Table[Cpathse[i, j], {i, 1}, {j, 1}];

SpathsM = Table[Spaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

UpathsM = Table[Upaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

VpathsfM = Table[Vpathsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VpathssM = Table[Vpathss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VpathstM = Table[Vpathst[i, j], {i, 1}, {j, 1, NoOfMANO}];

Converting paths into network elements

VMap = {TRD, TRDb, OSL1, OSL1b, OSL2, OSL2b, STV,
STVb, BRG, BRGb, DC1, DC3, DC2, MANO1, MANO2, VNF1, VNF2, VNF3};

Service chain .

User endpoint and VNF1.

fnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathsfM[[i, j, k]], 1], -1],

{k, Length[CpathsfM[[i, j]]]}]), {2}];

flinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathsfM[[i, j, k]], -1], Drop[
CpathsfM[[i, j, k]], 1]}], 1], {k, Length[CpathsfM[[i, j]]]}]), {2}];

fnodesinpathsM = Table[fnodesinpaths[i, j], {i, 1}, {j, 1}];

flinksinpathM = Table[flinksinpath[i, j], {i, 1}, {j, 1}];

Felements[i_, j_] := Join[fnodesinpathsM[[i, j]], flinksinpathM[[i, j]], 2];

FelementsM = Table[Felements[i, j], {i, 1}, {j, 1}];

VNF2 and VNF1

NFV_Structural_Analysis_7e.nb 3

snodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathssM[[i, j, k]], 1], -1],

{k, Length[CpathssM[[i, j]]]}]), {2}];
slinksinpath[i_, j_] := Map[If[Position[VMap, First[#]][[1, 1]] <

Position[VMap, Last[#]][[1, 1]], Subscript[l, First[#], Last[#]],
Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathssM[[i, j, k]], -1], Drop[CpathssM[[i, j, k]], 1]}],
{k, Length[CpathssM[[i, j]]]}]), {2}];

snodesinpathsM = Table[snodesinpaths[i, j], {i, 1}, {j, 1}];

slinksinpathM = Table[slinksinpath[i, j], {i, 1}, {j, 1}];

Selements[i_, j_] := Join[snodesinpathsM[[i, j]], slinksinpathM[[i, j]], 2];

SelementsM = Table[Selements[i, j], {i, 1}, {j, 1}];

VNF3 and VNF2

tnodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathstM[[i, j, k]], 1], -1],

{k, Length[CpathstM[[i, j]]]}]), {2}];

tlinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[CpathstM[[i, j, k]], -1], Drop[CpathstM[[i, j, k]], 1]}],
{k, Length[CpathstM[[i, j]]]}]), {2}];

tnodesinpathsM = Table[tnodesinpaths[i, j], {i, 1}, {j, 1}];

tlinksinpathM = Table[tlinksinpath[i, j], {i, 1}, {j, 1}];

Telements[i_, j_] := Join[tnodesinpathsM[[i, j]], tlinksinpathM[[i, j]], 2];

TelementsM = Table[Telements[i, j], {i, 1}, {j, 1}];

Service provider endpoints and VNF3

enodesinpaths[i_, j_] := Map[n# &, (Table[Drop[Drop[CpathseM[[i, j, k]], 1], -1],

{k, Length[CpathseM[[i, j]]]}]), {2}];

elinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[CpathseM[[i, j, k]], -1], Drop[
CpathseM[[i, j, k]], 1]}], 1], {k, Length[CpathseM[[i, j]]]}]), {2}];

enodesinpathsM = Table[enodesinpaths[i, j], {i, 1}, {j, 1}];

elinksinpathM = Table[elinksinpath[i, j], {i, 1}, {j, 1}];

Eelements[i_, j_] := Join[enodesinpathsM[[i, j]], elinksinpathM[[i, j]], 2];

EelementsM = Table[Eelements[i, j], {i, 1}, {j, 1}];

Endpoints connect to MANO

Service provider endpoint and MANO

dmanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[SpathsM[[i, j, k]], 1], {k, Length[SpathsM[[i, j]]]}]), {2}];

4 NFV_Structural_Analysis_7e.nb

dmanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
lFirst[#],Last[#], lLast[#],First[#]] &, (Table[
Drop[Transpose[{Drop[SpathsM[[i, j, k]], -1], Drop[SpathsM[[i, j, k]], 1]}],
1], {k, Length[SpathsM[[i, j]]]}]), {2}];

dmanonodesinpathsM =

Table[dmanonodesinpaths[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

dmanolinksinpathM =

Table[dmanolinksinpath[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

Dmanoelements[i_, j_] :=

Join[dmanonodesinpathsM[[i, j]], dmanolinksinpathM [[i, j]], 2];

DmanoelementsM = Table[Dmanoelements[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

User endpoint and MANO

omanonodesinpaths[i_, j_] := Map[n# &,

(Table[Drop[UpathsM[[i, j, k]], 1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanolinksinpath[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &,

(Table[Drop[Transpose[{Drop[UpathsM[[i, j, k]], -1],
Drop[UpathsM[[i, j, k]], 1]}], 1], {k, Length[UpathsM[[i, j]]]}]), {2}];

omanonodesinpathsM = Table[omanonodesinpaths[i, j], {i, 1}, {j, 1, NoOfMANO}];

omanolinksinpathM = Table[omanolinksinpath[i, j], {i, 1}, {j, 1, NoOfMANO}];

Omanoelements[i_, j_] :=

Join[omanonodesinpathsM[[i, j]], omanolinksinpathM [[i, j]], 2];

OmanoelementsM = Table[Omanoelements[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNFS connect to MANO

VNF1 TO MANO

vnff[i_, j_] := Map[n# &,

(Table[Drop[VpathsfM[[i, j, k]], 1], {k, Length[VpathsfM[[i, j]]]}]), {2}];

linksinf[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathsfM[[i, j, k]], -1], Drop[VpathsfM[[i, j, k]], 1]}],
{k, Length[VpathsfM[[i, j]]]}]), {2}];

vnffM = Table[vnff[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinfM = Table[linksinf[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementsf[i_, j_] := Join[vnffM[[i, j]], linksinfM[[i, j]], 2];

VelementsfM = Table[Velementsf[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF2 TO MANO

NFV_Structural_Analysis_7e.nb 5

vnfs[i_, j_] := Map[n# &,

(Table[Drop[VpathssM[[i, j, k]], 1], {k, Length[VpathssM[[i, j]]]}]), {2}];

linksins[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathssM[[i, j, k]], -1], Drop[VpathssM[[i, j, k]], 1]}],
{k, Length[VpathssM[[i, j]]]}]), {2}];

vnfsM = Table[vnfs[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksinsM = Table[linksins[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementss[i_, j_] := Join[vnfsM[[i, j]], linksinsM[[i, j]], 2];

VelementssM = Table[Velementss[i, j], {i, 1}, {j, 1, NoOfMANO}];

VNF3 TO MANO

vnft[i_, j_] := Map[n# &,

(Table[Drop[VpathstM[[i, j, k]], 1], {k, Length[VpathstM[[i, j]]]}]), {2}];

linksint[i_, j_] :=

Map[If[Position[VMap, First[#]][[1, 1]] < Position[VMap, Last[#]][[1, 1]],
Subscript[l, First[#], Last[#]], Subscript[l, Last[#], First[#]]] &, (Table[
Transpose[{Drop[VpathstM[[i, j, k]], -1], Drop[VpathstM[[i, j, k]], 1]}],
{k, Length[VpathstM[[i, j]]]}]), {2}];

vnftM = Table[vnft[i, j], {i, 1, 1}, {j, 1, NoOfMANO}];

linksintM = Table[linksint[i, j], {i, 1}, {j, 1, NoOfMANO}];

Velementst[i_, j_] := Join[vnftM[[i, j]], linksintM[[i, j]], 2];

VelementstM = Table[Velementst[i, j], {i, 1}, {j, 1, NoOfMANO}];

The structure function and its analysis
convers the sets of elements providing a working path and control to a Boolean expression for
reduction & analysis.

Service chain .

VNF1 and user endpoint.

Φf[i_, j_] := Table[{FelementsM[[i, j, k]] /. List → And},

{k, Length[FelementsM[[i, j]]]}] /. List → Or

ΦfM = Table[Φf[i, j], {i, 1}, {j, 1}];

ΦfT = Table[{ΦfM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF2 and VNF1

Φs[i_, j_] := Table[{SelementsM[[i, j, k]] /. List → And},

{k, Length[SelementsM[[i, j]]]}] /. List → Or

ΦsM = Table[Φs[i, j], {i, 1}, {j, 1}];

6 NFV_Structural_Analysis_7e.nb

ΦsT = Table[{ΦsM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF3 and VNF2

Φt[i_, j_] := Table[{TelementsM[[i, j, k]] /. List → And},

{k, Length[TelementsM[[i, j]]]}] /. List → Or

ΦtM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦtT = Table[{ΦtM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

VNF3 and endpoint service provider

Φe[i_, j_] := Table[{EelementsM[[i, j, k]] /. List → And},

{k, Length[EelementsM[[i, j]]]}] /. List → Or

ΦeM = Table[Φt[i, j], {i, 1}, {j, 1}];

ΦeT = Table[{ΦeM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

Endpoints connect to MANO

MANO and endpoint service provider

Φd[i_, j_] := Table[{DmanoelementsM[[i, j, k]] /. List → And},

{k, Length[DmanoelementsM[[i, j]]]}] /. List → Or

ΦdM = Table[Φd[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

ΦdT = Table[{ΦdM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

MANO and endpoint service provider

Φo[i_, j_] := Table[{OmanoelementsM[[i, j, k]] /. List → And},

{k, Length[OmanoelementsM[[i, j]]]}] /. List → Or

ΦoM = Table[Φo[i, j], {i, 1, NoOfPoP}, {j, 1, NoOfMANO}];

ΦoT = Table[{ΦoM[[k]] /. List → Or}, {k, NoOfPoP}] /. List → And;

 VNFs-> MANO

VNF1 TO MANO

Φvf[i_, j_] := Table[{VelementsfM[[i, j, k]] /. List → And},

{k, Length[VelementsfM[[i, j]]]}] /. List → Or

ΦvfM = Table[Φvf[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvfT = Table[{ΦvfM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF2 TO MANO

Φvs[i_, j_] := Table[{VelementssM[[i, j, k]] /. List → And},

{k, Length[VelementssM[[i, j]]]}] /. List → Or

ΦvsM = Table[Φvs[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvsT = Table[{ΦvsM[[k]] /. List → Or}, {k, 1}] /. List → And;

VNF3 TO MANO

Φvt[i_, j_] := Table[{VelementstM[[i, j, k]] /. List → And},

{k, Length[VelementstM[[i, j]]]}] /. List → Or

NFV_Structural_Analysis_7e.nb 7

ΦvtM = Table[Φvt[i, j], {i, 1}, {j, 1, NoOfMANO}];

ΦvtT = Table[{ΦvtM[[k]] /. List → Or}, {k, 1}] /. List → And;

Φnfv = ΦfT && ΦsT && ΦeT && ΦtT && ΦvfT && ΦdT && ΦoT && ΦvsT && ΦvtT // Simplify;

Extracting the minimum paths and cut

The minimum path and cut sets are extracted from the above logical expressions by replacing the
heads of the expressions. The And and Or head are replaced by List heads. The not operation are
replaced by identity and removed. Be aware that the operation may twist the meaning unless the
logical expand produces results on standard form.

Functions

MinPaths[s_] := BooleanConvert[s] /. {And -> List, Or -> List}

MinCuts[s_] :=

BooleanConvert[s, "CNF"] /. {And -> List, Or -> List, Not -> Identity}

NFV

NFVminpath = MinPaths[Φnfv];

NFVmincut = MinCuts[Φnfv];

Export["D://NTNU 2 year//Master thesis//structure
analysis//data//NFVmincut_norway_7e.mx", NFVmincut, "MX"]

D://NTNU 2 year//Master
thesis//structure analysis//data//NFVmincut_norway_7e.mx

Cardinality cut sets.

Scenario7 = Length /@ (If[Head[#] =!= List, {#}, #] & /@ NFVmincut);

BinCounts[%, {1, Max[%] + 1, 1}]

{2, 12, 7, 66, 432, 793, 1477, 2605, 3708,
5136, 5714, 4857, 3576, 2367, 1388, 730, 344, 117, 35, 6}

Position[Scenario7, _?(# < 2 &)]

{{13 305}, {32 836}}

Position[Scenario7, _?(1 < # < 3 &)]

{{13 306}, {14 739}, {14740}, {17 121}, {17 197}, {29 716},
{30864}, {31 195}, {31 525}, {32 837}, {33 115}, {33 372}}

8 NFV_Structural_Analysis_7e.nb

AppendixHImplementation and simulation
parameters of Link SAN model in

Möbius

Place Attributes:

Place Names Initial Markings
Link_Working 1
Link_failed 0

Simulation (reward and study) parameters:

Performance Variable

Reward
Function

If (Link->Failed->Mark()==1){
Return 1;}}

Simulator Statistics

Type Time Averaged Interval of Time

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 10000000

Confidence Confidence Level 0.95
Confidence Interval 0.1

123

AppendixIImplementation and simulation
parameters of Router SAN model

in Möbius

Place Attributes:

Place Names Initial Markings
Working 1

failed_MAN 0
failed 0

spare_CHW 0
failed_CHW 0
failed_SW 0
failed_FHW 0
failed_FHWt 0

Simulation (reward and study) parameters:

Performance Variable

Reward
Function

If (Link->Failed->Mark()==1){
Return 1;}}

Simulator Statistics

Type Time Averaged Interval of Time

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 10000000

Confidence Confidence Level 0.95
Confidence Interval 0.1

125

AppendixJImplementation and simulation
parameters of Datacenter SAN

model in Möbius

Place Attributes:

Place Names Initial Markings
Working 1

DC_hardware_failure 0
DC_hypervisor_failure 0

Simulation (reward and study) parameters:

Performance Variable

Reward
Function

If (Datacenter->Working->Mark()==1){
Return 0;}}

Simulator Statistics

Type Time Averaged Interval of Time

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 10000000

Confidence Confidence Level 0.95
Confidence Interval 0.1

127

AppendixKImplementation and simulation
parameters of VNF SAN model in

Möbius

Place Attributes:

Place Names Initial Markings
Working 1

vHardware_failure 0
vHypervisor_failure 0

Simulation (reward and study) parameters:

Performance Variable

Reward
Function

If (VNF->Working->Mark()==1){
Return 0;}}

Simulator Statistics

Type Time Averaged Interval of Time

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 10000000

Confidence Confidence Level 0.95
Confidence Interval 0.1

129

AppendixLImplementation and simulation
parameters of MANO SAN model

in Möbius

Place Attributes:

Place Names Initial Markings
Working 1

Mhardware_failure 0
Msoftware_failure 0

Simulation (reward and study) parameters:

Performance Variable

Reward
Function

If (MANO->Working->Mark()==1){
Return 0;}}

Simulator Statistics

Type Time Averaged Interval of Time

Options

Estimate Mean
Include Lower Bound on Interval Estimate
Include Upper Bound on Interval Estimate
Estimate out of Range Probabilities
Confidence Level is Relative

Parameters Start Time 0.0
Stop Time 10000000

Confidence Confidence Level 0.95
Confidence Interval 0.1

131

AppendixMMerging two models script of
Reference scenario in Mathematica

133

◼ Symbolic/Numerical Evaluation

Quantitative assement
The code inclusion exclusion is based on http://www.mathematica-journal.com/2014/07/complex-
system-reliability/

SetG[y_List] := Apply[Times, Union @@ y]

Unvailability based on cut - sets

A second optional parameter is introduced to take into accout set of maximum cardinality nn. The
sinc set with higher cardinality is unlikely to contribute to the numerical results, since unavailabili-
tyes are close to zero. <<this functionality is not fully tested>>

UnAvail[mincut_List, nn___Integer] := Module[{n, sub, mincut2},

mincut2 = If[Head[#] =!= List, {#}, #] & /@ mincut;
n = If[nn > 0 && nn < Length[mincut] + 1, nn, Length[mincut]];
sub = Range[Length[mincut]];
Sum[(-1)^(k - 1) Total[Map[SetG[mincut2[[#]]] &, Subsets[sub, {k}]]], {k, n}]]

Availability comparison
NB: for computing of the unaviliability we consider the elements of the min cut set with cardinality
lower than 5 and and 3 inclusion-exclusion iterations

Importing the minimum cut sets;

NFVmincut1 = Import["D:/NTNU 2 year/Master
thesis/structure analysis/data/NFVmincut_norway_1e.mx"];

Define parameters.

Ulink=1.0066484090*10^-4
Urouter=6.0092114391*10^-3
Udatacenter=7.7880717891*10^-4
Umano= 7.7880717891*10^-4
lDC1,VNF1=6.5884176910*10^-4

lDC1,VNF2=6.5884176910*10^-4

lDC1,VNF3=6.5884176910*10^-4

lVNF1,DC1=6.5884176910*10^-4

lVNF2,DC1=6.5884176910*10^-4

lVNF3,DC1=6.5884176910*10^-4

 network

NFVUnAv1 = UnAvail[Select[NFVmincut1, Length[#] < 5 &], 3] /.

nDC1 → Udatacenter, nMANO1 → Umano, n_ → Urouter, lDC1,VNF1 → lDC1,VNF1,

lDC1,VNF2 → lDC1,VNF12, lDC1,VNF3 → lDC1,VNF3, lVNF1,DC1 → lVNF1,DC1,

lVNF2,DC1 → lVNF2,DC1, lVNF3,DC1 → lVNF3,DC1, l_,_ → Ulink // Simplify

0.00232688

1 - NFVUnAv1

0.997673

2 MergingModels1_E.nb

AppendixNMerging two models script of
Scenario 1 in Mathematica

137

◼ Symbolic/Numerical Evaluation

Quantitative assement
The code inclusion exclusion is based on http://www.mathematica-journal.com/2014/07/complex-
system-reliability/

SetG[y_List] := Apply[Times, Union @@ y]

Unvailability based on cut - sets

A second optional parameter is introduced to take into accout set of maximum cardinality nn. The
sinc set with higher cardinality is unlikely to contribute to the numerical results, since unavailabili-
tyes are close to zero. <<this functionality is not fully tested>>

UnAvail[mincut_List, nn___Integer] := Module[{n, sub, mincut2},

mincut2 = If[Head[#] =!= List, {#}, #] & /@ mincut;
n = If[nn > 0 && nn < Length[mincut] + 1, nn, Length[mincut]];
sub = Range[Length[mincut]];
Sum[(-1)^(k - 1) Total[Map[SetG[mincut2[[#]]] &, Subsets[sub, {k}]]], {k, n}]]

Availability comparison
NB: for computing of the unaviliability we consider the elements of the min cut set with cardinality
lower than 5 and and 3 inclusion-exclusion iterations

Importing the minimum cut sets;

NFVmincut2 = Import["D:/NTNU 2 year/Master
thesis/structure analysis/data/NFVmincut_norway_2e.mx"];

Define parameters.

Ulink=1.0066484090*10^-4
Urouter=6.0092114391*10^-3
Udatacenter=7.7880717891*10^-4
Umano= 7.7880717891*10^-4
Uvnf=6.5884176910*10^-4

 network

NFVUnAv2 = UnAvail[Select[NFVmincut2, Length[#] < 5 &], 3] /. nDC1 → Udatacenter,

nDC2 → Udatacenter, lDC1,VNF1 → Uvnf, lDC1,VNF2 → Uvnf, lDC2,VNF3 → Uvnf, lVNF1,DC1 → Uvnf,

lVNF2,DC1 → Uvnf, lVNF3,DC2 → Uvnf, nMANO1 → Umano, n_ → Urouter, l_,_ → Ulink // Simplify

0.00441595

1 - NFVUnAv2

0.995584

2 MergingModels2_E.nb

AppendixOMerging two models script of
Scenario 2 in Mathematica

141

◼ Symbolic/Numerical Evaluation

Quantitative assement
The code inclusion exclusion is based on http://www.mathematica-journal.com/2014/07/complex-
system-reliability/

SetG[y_List] := Apply[Times, Union @@ y]

Unvailability based on cut - sets

A second optional parameter is introduced to take into accout set of maximum cardinality nn. The
sinc set with higher cardinality is unlikely to contribute to the numerical results, since unavailabili-
tyes are close to zero. <<this functionality is not fully tested>>

UnAvail[mincut_List, nn___Integer] := Module[{n, sub, mincut2},

mincut2 = If[Head[#] =!= List, {#}, #] & /@ mincut;
n = If[nn > 0 && nn < Length[mincut] + 1, nn, Length[mincut]];
sub = Range[Length[mincut]];
Sum[(-1)^(k - 1) Total[Map[SetG[mincut2[[#]]] &, Subsets[sub, {k}]]], {k, n}]]

Availability comparison
NB: for computing of the unaviliability we consider the elements of the min cut set with cardinality
lower than 5 and and 3 inclusion-exclusion iterations

Importing the minimum cut sets;

NFVmincut3 = Import["D:/NTNU 2 year/Master
thesis/structure analysis/data/NFVmincut_norway_3e.mx"];

Define parameters.

Ulink=1.0066484090*10^-4
Urouter=6.0092114391*10^-3
Udatacenter=7.7880717891*10^-4
Umano= 7.7880717891*10^-4
Uvnf=6.5884176910*10^-4

0.000100665

0.00600921

0.000778807

0.000778807

0.000658842

 network

NFVUnAv3 = UnAvail[Select[NFVmincut3, Length[#] < 5 &], 3] /.

nDC1 → Udatacenter, nDC2 → Udatacenter, nMANO1 → Umano, lDC1,VNF1 → Uvnf,

lDC1,VNF2 → Uvnf, lDC2,VNF2 → Uvnf, lDC2,VNF3 → Uvnf, lVNF1,DC1 → Uvnf, lVNF2,DC1 → Uvnf,

lVNF2,DC2 → Uvnf, lVNF3,DC2 → Uvnf, n_ → Urouter, l_,_ → Ulink // Simplify

0.00376001

1 - NFVUnAv3

0.99624

2 MergingModels3_E.nb

AppendixPMerging two models script of
Scenario 3 in Mathematica

145

◼ Symbolic/Numerical Evaluation

Quantitative assement
The code inclusion exclusion is based on http://www.mathematica-journal.com/2014/07/complex-
system-reliability/

SetG[y_List] := Apply[Times, Union @@ y]

Unvailability based on cut - sets

A second optional parameter is introduced to take into accout set of maximum cardinality nn. The
sinc set with higher cardinality is unlikely to contribute to the numerical results, since unavailabili-
tyes are close to zero. <<this functionality is not fully tested>>

UnAvail[mincut_List, nn___Integer] := Module[{n, sub, mincut2},

mincut2 = If[Head[#] =!= List, {#}, #] & /@ mincut;
n = If[nn > 0 && nn < Length[mincut] + 1, nn, Length[mincut]];
sub = Range[Length[mincut]];
Sum[(-1)^(k - 1) Total[Map[SetG[mincut2[[#]]] &, Subsets[sub, {k}]]], {k, n}]]

Availability comparison
NB: for computing of the unaviliability we consider the elements of the min cut set with cardinality
lower than 5 and and 3 inclusion-exclusion iterations

Importing the minimum cut sets;

NFVmincut4 = Import["D:/NTNU 2 year/Master
thesis/structure analysis/data/NFVmincut_norway_4e.mx"];

Define parameters.

Ulink=1.0066484090*10^-4
Urouter=6.0092114391*10^-3
Udatacenter=7.7880717891*10^-4
Umano= 7.7880717891*10^-4
Uvnf=6.5884176910*10^-4

 network

NFVUnAv4 = UnAvail[Select[NFVmincut4, Length[#] < 5 &], 3] /.

nDC1 → Udatacenter, nDC2 → Udatacenter, nDC3 → Udatacenter, nVNF1 → Uvnf,

nMANO1 → Umano, lDC1,VNF1 → Uvnf, lDC1,VNF2 → Uvnf, lDC2,VNF2 → Uvnf, lDC2,VNF3 → Uvnf,
lDC3,VNF3 → Uvnf, lVNF1,DC1 → Uvnf, lVNF2,DC1 → Uvnf, lVNF2,DC2 → Uvnf,

lVNF3,DC2 → Uvnf, lVNF3,DC3 → Uvnf, n_ → Urouter, l_,_ → Ulink // Simplify

0.00232878

1 - NFVUnAv4

0.997671

2 MergingModels4_E.nb

AppendixQMerging two models script of
Scenario 4 in Mathematica

149

◼ Symbolic/Numerical Evaluation

Quantitative assement
The code inclusion exclusion is based on http://www.mathematica-journal.com/2014/07/complex-
system-reliability/

SetG[y_List] := Apply[Times, Union @@ y]

Unvailability based on cut - sets

A second optional parameter is introduced to take into accout set of maximum cardinality nn. The
sinc set with higher cardinality is unlikely to contribute to the numerical results, since unavailabili-
tyes are close to zero. <<this functionality is not fully tested>>

UnAvail[mincut_List, nn___Integer] := Module[{n, sub, mincut2},

mincut2 = If[Head[#] =!= List, {#}, #] & /@ mincut;
n = If[nn > 0 && nn < Length[mincut] + 1, nn, Length[mincut]];
sub = Range[Length[mincut]];
Sum[(-1)^(k - 1) Total[Map[SetG[mincut2[[#]]] &, Subsets[sub, {k}]]], {k, n}]]

Availability comparison
NB: for computing of the unaviliability we consider the elements of the min cut set with cardinality
lower than 5 and and 3 inclusion-exclusion iterations

Importing the minimum cut sets;

NFVmincut5 = Import["D:/NTNU 2 year/Master
thesis/structure analysis/data/NFVmincut_norway_5e.mx"];

Define parameters.

Ulink=1.0066484090*10^-4
Urouter=6.0092114391*10^-3
Udatacenter=7.7880717891*10^-4
Umano= 7.7880717891*10^-4
Uvnf=6.5884176910*10^-4

 network

NFVUnAv5 = UnAvail[Select[NFVmincut5, Length[#] < 5 &], 3] /.

nDC1 → Udatacenter, nDC2 → Udatacenter, nMANO1 → Umano, nMANO2 → Umano,

lDC1,VNF1 → Uvnf, lDC2,VNF2 → Uvnf, lDC2,VNF3 → Uvnf, lVNF1,DC1 → Uvnf,

lVNF2,DC2 → Uvnf, lVNF3,DC2 → Uvnf, n_ → Urouter, l_,_ → Ulink // Simplify

0.00304645

1 - NFVUnAv5

0.996954

2 MergingModels5_E.nb

AppendixRMerging two models script of
Scenario 5 in Mathematica

153

◼ Symbolic/Numerical Evaluation

Quantitative assement
The code inclusion exclusion is based on http://www.mathematica-journal.com/2014/07/complex-
system-reliability/

SetG[y_List] := Apply[Times, Union @@ y]

Unvailability based on cut - sets

A second optional parameter is introduced to take into accout set of maximum cardinality nn. The
sinc set with higher cardinality is unlikely to contribute to the numerical results, since unavailabili-
tyes are close to zero. <<this functionality is not fully tested>>

UnAvail[mincut_List, nn___Integer] := Module[{n, sub, mincut2},

mincut2 = If[Head[#] =!= List, {#}, #] & /@ mincut;
n = If[nn > 0 && nn < Length[mincut] + 1, nn, Length[mincut]];
sub = Range[Length[mincut]];
Sum[(-1)^(k - 1) Total[Map[SetG[mincut2[[#]]] &, Subsets[sub, {k}]]], {k, n}]]

Availability comparison
NB: for computing of the unaviliability we consider the elements of the min cut set with cardinality
lower than 5 and and 3 inclusion-exclusion iterations

Importing the minimum cut sets;

NFVmincut6 = Import["D:/NTNU 2 year/Master
thesis/structure analysis/data/NFVmincut_norway_6e.mx"];

Define parameters.

Ulink=1.0066484090*10^-4
Urouter=6.0092114391*10^-3
Udatacenter=7.7880717891*10^-4
Umano= 7.7880717891*10^-4
Uvnf=6.5884176910*10^-4

 network

NFVUnAv6 = UnAvail[Select[NFVmincut6, Length[#] < 5 &], 3] /.

nDC1 → Udatacenter, nDC2 → Udatacenter, nMANO1 → Umano, nMANO2 → Umano, lDC1,VNF1 → Uvnf,

lDC1,VNF2 → Uvnf, lDC2,VNF2 → Uvnf, lDC,VNF3 → Uvnf, lVNF1,DC1 → Uvnf, lVNF2,DC1 → Uvnf,

lVNF2,DC2 → Uvnf, lVNF3,DC2 → Uvnf, n_ → Urouter, l_,_ → Ulink // Simplify

0.00238961

1 - NFVUnAv6

0.99761

2 MergingModels6_E.nb

AppendixSMerging two models script of
Scenario 6 in Mathematica

157

◼ Symbolic/Numerical Evaluation

Quantitative assement
The code inclusion exclusion is based on http://www.mathematica-journal.com/2014/07/complex-
system-reliability/

SetG[y_List] := Apply[Times, Union @@ y]

Unvailability based on cut - sets

A second optional parameter is introduced to take into accout set of maximum cardinality nn. The
sinc set with higher cardinality is unlikely to contribute to the numerical results, since unavailabili-
tyes are close to zero. <<this functionality is not fully tested>>

UnAvail[mincut_List, nn___Integer] := Module[{n, sub, mincut2},

mincut2 = If[Head[#] =!= List, {#}, #] & /@ mincut;
n = If[nn > 0 && nn < Length[mincut] + 1, nn, Length[mincut]];
sub = Range[Length[mincut]];
Sum[(-1)^(k - 1) Total[Map[SetG[mincut2[[#]]] &, Subsets[sub, {k}]]], {k, n}]]

Availability comparison
NB: for computing of the unaviliability we consider the elements of the min cut set with cardinality
lower than 5 and and 3 inclusion-exclusion iterations

Importing the minimum cut sets;

NFVmincut7 = Import["D:/NTNU 2 year/Master
thesis/structure analysis/data/NFVmincut_norway_7e.mx"];

Define parameters.

Ulink=1.0066484090*10^-4
Urouter=6.0092114391*10^-3
Udatacenter=7.7880717891*10^-4
Umano= 7.7880717891*10^-4
Uvnf=6.5884176910*10^-4

 network

NFVUnAv7 = UnAvail[Select[NFVmincut7, Length[#] < 5 &], 3] /.

nDC1 → Udatacenter, nDC2 → Udatacenter, nDC3 → Udatacenter, nMANO1 → Umano,

nMANO2 → Umano, lDC1,VNF1 → Uvnf, lDC1,VNF2 → Uvnf, lDC2,VNF2 → Uvnf, lDC2,VNF3 → Uvnf,
lDC3,VNF3 → Uvnf, lVNF1,DC1 → Uvnf, lVNF2,DC1 → Uvnf, lVNF2,DC2 → Uvnf,

lVNF3,DC2 → Uvnf, lVNF3,DC3 → Uvnf, n_ → Urouter, l_,_ → Ulink // Simplify

0.00151411

1 - NFVUnAv7

0.998486

2 MergingModels7_E.nb

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Methodology
	Literature study
	Quantitative evaluation
	Analysis

	Outline of the remaining thesis

	Background
	NFV
	NFV architecture
	Related concept
	NFV Deployment

	Dependability
	Related work

	Two-level availability model of NFV-based services
	Two-level availability model introduction
	Structural model
	Dynamic model
	Merge the two-level models

	Evaluation and analysis
	Six case studies
	Evaluation and analysis of the seven case studies
	Comparison of the minimal-cut sets in the seven scenarios
	Comparison of the availability of the NFV-based services

	Conclusion and future work
	Conclusion
	Future work

	References
	Structural analysis script of Reference scenario in Mathematica
	Structural analysis script of Scenario 1 in Mathematica
	Structural analysis script of Scenario 3 in Mathematica
	Structural analysis script of Scenario 3 in Mathematica
	Structural analysis script of Scenario 4 in Mathematica
	Structural analysis script of Scenario 5 in Mathematica
	Structural analysis script of Scenario 6 in Mathematica
	Implementation and simulation parameters of Link SAN model in Möbius
	Implementation and simulation parameters of Router SAN model in Möbius
	Implementation and simulation parameters of Datacenter SAN model in Möbius
	Implementation and simulation parameters of VNF SAN model in Möbius
	Implementation and simulation parameters of MANO SAN model in Möbius
	Merging two models script of Reference scenario in Mathematica
	Merging two models script of Scenario 1 in Mathematica
	Merging two models script of Scenario 2 in Mathematica
	Merging two models script of Scenario 3 in Mathematica
	Merging two models script of Scenario 4 in Mathematica
	Merging two models script of Scenario 5 in Mathematica
	Merging two models script of Scenario 6 in Mathematica

