
Sun Glare Detection and Visualization

Kjetil Aune

Master of Science in Computer Science

Supervisor: Jo Skjermo, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

Presence of sun glare while driving can be both annoying and potentially dangerous.
This paper presents a method for calculating the presence of sun glare on roads. A
plug-in for QGIS that can be used to visualize the results and perform analysis on the
data is also presented. By calculating the sun’s position relative to a point on the road
and checking whether or not the surrounding terrain is occluding the sun, the system
can calculate the visibility of the sun. Having established visibility of the sun, road data
is analyzed to determine if the sun will be a distraction to the driver at any given time.
The results of the glare detection are written to a shapefile and returned to the plug-in
for visualization and examination. Experiments on the validity of the glare detection
have been conducted, and these show that the system is able to correctly detect sun
glare. Obtained results can be used to assess the safety of present or future roads, and
the system can be a useful tool for evaluating potential safety measures.

Sammendrag

Tilstedeværelsen av solblending kan være b̊ade irriterende og potensielt farlig. Denne
oppgaven presenterer en metode for utregning av solblending p̊a vei. En plug-in til QGIS
som kan brukes til å visualisere resultatene fra solblendingsutregningene blir ogs̊a pre-
sentert. Plug-in’en har ogs̊a verktøy for å analysere resultatene. Ved å regne ut solens
posisjon relativt til et punkt p̊a veien, og sjekke om det omkringliggende terrenget skyg-
ger for solen, kan systemet regne ut om solen er synlig. Om solen er synlig, blir veidata
analysert for å se om solen vil være et distraksjonsmoment for bilføreren. Resultatene av
solblendingsdeteksjonen blir skrevet til en shapefile-fil og returnert til plug-in’en for visu-
alisering og undersøkelser. Eksperimenter p̊a systemets validitet har blitt gjennomført,
og de viser at systemet kan korrekt oppdage solblending. Resultater funnet ved analyse
av dataen kan bli brukt til å vurdere sikkerheten til n̊aværende og fremtidige veier, og
systemet kan være et nyttig verktøy for å evaluere potensielle sikkerhetstiltak.

CONTENTS

I Introduction 1

II Background 2

III Methodology 3

III-A System Workflow . 3

III-B The Sun Glare Detection System . 3

III-B1 Workflow . 3

III-B2 Calculating the Sun’s Position . 4

III-B3 Reference systems . 4

III-B4 Terrain Extraction . 5

III-B5 Occlusion test . 6

III-B6 Road direction check . 7

III-B7 Optimizations . 8

III-B8 Shapefile Generation . 8

III-C Plug-in . 9

III-C1 Plug-in Introduction . 9

III-C2 Rendering . 9

III-C3 Information Extraction Tools . 10

IV Evaluation and Results 10

IV-A Sun Position Algorithm . 11

IV-B Geographical Occlusion . 11

IV-C Road direction . 12

IV-D Visualization in QGIS . 12

IV-D1 Filtering . 12

IV-D2 CRS Conversions . 13

IV-E Complexity . 13

IV-E1 Generation Time . 13

IV-E2 Azimuth and Aperture overlap . 13

V Future Work 13

VI Conclusion 14

References 14

Appendix A: Installation and Build Guide 17

A-A Sun Glare Visualization Plug-in Installation . 17

A-B Sun Glare Detection System Build Instructions . 17

Appendix B: Configuration File 19

B-A MORNING RUSH START . 19

B-B MORNING RUSH END . 19

B-C EVENING RUSH START . 19

B-D EVENING RUSH END . 19

B-E TIME RESOLUTION . 19

B-F UTM ZONE . 19

B-G HORIZONTAL GLARE APERTURE . 19

B-H VERTICAL GLARE APERTURE . 19

B-I EYE HEIGHT . 20

B-J YEAR . 20

Appendix C: Images of the Plug-in Functionality 21

C-A Generating Glare Data . 21

C-B Open Existing Shapefile . 22

C-C Select Values from Time Range . 22

C-D Select Value Range for Attribute . 22

C-E Select Top X points . 22

Appendix D: Shapefile 25

Sun Glare Detection and Visualization

Kjetil Aune
Department of Computer and Information Science
Norwegian University of Science and Technology

Sem Sælands vei 9, 7491 Trondheim, Norway
kjetiaun@stud.ntnu.no

Abstract—Presence of sun glare while driving can be both
annoying and potentially dangerous. This paper presents a
method for calculating the presence of sun glare on roads. A
plug-in for QGIS that can be used to visualize the results and
perform analysis on the data is also presented. By calculating
the sun’s position relative to a point on the road and checking
whether or not the surrounding terrain is occluding the sun, the
system can calculate the visibility of the sun. Having established
visibility of the sun, road data is analyzed to determine if the sun
will be a distraction to the driver at any given time. The results
of the glare detection are written to a shapefile and returned
to the plug-in for visualization and examination. Experiments
on the validity of the glare detection have been conducted, and
these show that the system is able to correctly detect sun glare.
Obtained results can be used to assess the safety of present or
future roads, and the system can be a useful tool for evaluating
potential safety measures.

I. INTRODUCTION

Challenging weather conditions are one of the major safety
hazards while driving. Slippery roads and low visibility cause
numerous traffic accidents each year [14]. One of the main
reasons for low visibility is the presence of sun glare [5]. When
the sun is low in the sky, it can have a big impact on a driver’s
ability to make out details in front of the vehicle. It can be
hard to spot another car breaking, a speed-limit change or a
pedestrian. This can quickly lead to dangerous situations. Even
when the sun is not close to the horizon, it can have a great
impact on road safety. If a car is driving up a steep hill, the
angle between the vehicle and the sun could be small enough
for sun glare to be present. After heavy rainfall, the wet surface
of the road can also reflect the sunlight. This type of sun glare
is just as, if not more, dangerous, since the driver can not see
the road at all. However, glare caused by wet roads is not
accounted for in this paper. The amount of sun glare can also
vary from vehicle to vehicle. If a car has an old windshield with
lots of scratches, or the windshield is dirty, the sun glare can be
even more prominent [17]. Windshields with these properties
will scatter the sun light over a larger area (i.e. veiling glare),
thus reducing a driver’s visibility.

To counteract the effect of sun glare, precautions have been
made. Today, most cars have a sun visor attached above the
windshield on the driver and passenger side of the car. By using
this visor, the sun’s light can be blocked out. A downside to this
is that the driver’s field of view is significantly reduced. This
can in turn lead to other dangerous scenarios. Some vehicles
also have a tinting in the top part of the windshield. This acts
like a pair of sunglasses, making the sun glare more tolerable.
However, this tinting usually covers only a small part of the
top of the windshield. When the sunlight is coming in from a

lower angle, it does not protect the driver anymore.

Several other safety measures could be taken against sun
glare. In the planning phase of road building, one can calculate
the amount of sun glare on a particular road segment. If the
planned road segment is highly exposed to sun glare, a change
in the direction of the road can lead to less glare. For roads that
have already been built, however, it might be too expensive to
change their direction. If calculations show that these roads
are exposed, dynamic road signs can be put up. These signs
can have built-in sensors that detect sun light. If the amount
of luminance reaches a certain threshold, the signs can display
messages telling drivers to slow down. Another possibility is
to find out where the sun light is coming from and plant trees
or bushes that can occlude the sun in highly exposed places.
However, to get any of these plans to work, one needs to be
able to calculate the presence of sun glare on the road.

This paper will present a method for calculating the pres-
ence of glare on the roads and a plug-in for the GIS tool QGIS.
By using road- and terrain data, the method calculates if roads
have sun glare or not at any given time. Solar position and
a vehicle’s relative position to the sun takes part in deciding
whether or not there is glare at a given point. After doing these
calculations for a large geographical area, the plug-in can be
used to render the results from the calculations on top of a map
in QGIS. Drawing the results on a map gives a visual overview
of what roads or city districts are most exposed to sun glare.
Several tools are developed to aid the user in understanding
the data. Analysis of the glare detection results can be helpful
when deciding if any safety measures should be taken. Having
a good tool for this purpose can greatly help with increasing
both the efficiency and the correctness of the analysis. This
can in turn lead to a reduction in the amount of sun glare on
the roads and thus lowering the risk for accidents.

This paper is written in cooperation with the Norwegian
Public Roads Administration. They are fully aware of the
dangers of sun glare. However, they lack tools for analyzing
glare. Work done in this paper aims at developing methods
that employees at the Norwegian Public Roads Administration
can use to easily gain a better understanding of what areas
are especially exposed to glare. By providing a QGIS tool,
the goal is that both technical and non-technical personnel can
work with glare data and improve the safety of the roads.

Following this introduction, there will be more argumenta-
tion as to why sun glare is an important issue and clarification
of relevant topics. Then, we will discuss the approach taken
towards making the plug-in, with a thorough explanation of
the underlying algorithm for detecting glare and also the
visualization of the results. Finally, results will be presented,

1

before discussing future work and concluding.

II. BACKGROUND

There has been a lot of previous efforts in understanding
the effects sun glare has on drivers. Churchill, Tripodis and
Lovell [6] developed a geometric model for identifying sun
glare along an arbitrary highway segment. They used this
model to detect what times and days of the year sun glare
was present. Using this model, they wanted to see if there
was a connection between sun glare and freeway congestion.
Their results show that the presence of sun glare did affect
the mean speed of the vehicles on the road. They conclude
that changes in speed due to sun glare is a factor in highway
congestion. Their model is in many ways similar to the one
presented in this paper. However, their model does not take the
surrounding topography into account, and thus reports more
cases of sun glare than what there might actually be due to
terrain occlusion.

Jurado-Piña and Mayora [11] also present a study on when
sun glare can affect drivers. Unlike [6] they also consider
the characteristics of the surrounding environment. One of the
interesting calculations done in this paper finds the maximum
tolerable sun glare caused by the angle between the sun and
the driving direction. By using an equation for disability glare
found in [13], they estimated thresholds for what constitutes
sun glare. There are biological differences in the eyes of people
at different ages. Therefore the study states that there should be
different thresholds for people at different ages. According to
the study, glare occurs if the sun is within a specified angular
distance between the drivers line of sight and the sun. For a
40 year old driver, this angular distance is 19° and for a 60
year old driver it is 25°.

Hagita and Mori [10] studied the effect sun glare had
on collisions between turning vehicles and pedestrians and
bicyclists in Japan. Accident data and weather data was
gathered to study the relationship between accidents and sun
glare. Findings reveal that during daytime and in clear weather,
the number of accidents was higher than at night or when it
was cloudy. They also discovered that the amount of collisions
was drastically higher when the sun was below 45° above the
horizon and within 90° of the driving direction.

A study on a driver’s field of visual detection was con-
ducted by Zwahlen [19]. A geometric model is presented to
investigate how far from a driver’s line of sight a road sign
should be, for the driver to quickly detect the sign and its
contents. He concludes that the angular displacement of signs
should not exceed 10°.

For a system like the one presented in this paper, it is
crucial to be able to accurately compute the sun’s position
by using only geographical coordinates (longitude, latitude),
date and time as input. Blanco-Muriel et al. [4] present an
algorithm that takes the mentioned parameters as input and
returns the horizontal coordinates of the sun at the given
time and place. From the input, they convert the coordinates
from ecliptic- to celestial coordinates, before further converting
them to horizontal coordinates. The calculated position of the
sun is the actual position at the given time. The calculated
position does not give the apparent position that is caused by
atmospheric refraction. The correctness of the results in the

paper is based on the assumption that the difference between
Universal Time and Dynamic Terrestrial Time grows steadily
by one second per year on average. Results were validated
from 1999 to 2015, and the results show an average error
of -0.008 minutes of arc with a standard deviation of 0.107
minutes of arc. However, for the practical applications of the
system presented in this paper, an error of 60 or even 120
minutes of arc would still yield acceptable results and thus the
algorithm presented in [4] is used in this paper.

The Norwegian Mapping Authority provide an extensive
data set of the Norwegian road network [3]. All the roads
in Norway are well documented, and all the data is publicly
available. The data is issued in the SOSI-format, which is
developed by The Norwegian Mapping Authority themselves.
For roads, the files contain objects for different road segments.
An object contains information about the name and ID of the
road, what type of road it is, etc. The object also contains
a list of coordinates for points along the road segment. Each
coordinate point contains the northing and easting value for the
point along with the elevation of the point. These coordinates
are along the centerline of the road.

The Norwegian Mapping Authority also provide terrain
data for all of Norway [2]. The data comes in the form of
Digital Elevation Model-files and the resolution of the data
used is 10-by-10 meters. The terrain data is split into patches
of 50-by-50 kilometers (i.e. a grid with 5000-by-5000 cells).
Each of the cells contain the elevation above sea level.

When working with geospatial data, it is convenient to use
a Geographic Information System (GIS). GIS systems are used
to manipulate and analyze both spatial and geographic data.
The relevant data is imported into the system as layers, and
one can do analysis on one or several layers at a time. User-
defined queries can be performed to gain a better understanding
of the data. The data can also be explored and edited by using
the many tools that come with the GIS system. The result
of these actions are then displayed back to the user. QGIS
is a free and open-source Geographic Information System,
and is therefore the chosen GIS system for this paper. QGIS
runs on Linux, Unix, macOS, Windows and Android [15]. In
addition to its core functionality, QGIS has the possibility of
being extended with plug-ins. These plug-ins are written either
by QGIS developers or independent developers. Plug-ins can
easily be installed from QGIS’ plug-in repository.

Coordinate reference systems (CRS) are important when
working with geographical data. A CRS provides a map
projection for plotting an object on the surface of the earth,
as well as having transformations to other CRSs. Standard
geographic coordinates comprised of latitude and longitude use
the World Geodetic System (WGS84), whereas the data from
the Norwegian Mapping Authority uses Universal Transverse
Mercator (UTM). Exact transformations between these CRSs
are important. GIS tools, including QGIS, can do these trans-
formations between numerous coordinate reference systems.
By specifying what CRS the data is in and the desired
output CRS, the GIS system automatically transforms the data
between them.

When moving geospatial data between different systems,
shapefiles are often used. Shapefiles are supported by most
GIS systems. The shapefile specification is developed by

2

Fig. 1. The workflow of the full system.

Environmental Systems Research Institute (ESRI) and the
technical description is publicly available [9]. Shapefiles store
non-topological, geographical data as vector coordinates. They
support several shape types (i.e. points, lines, polygons, mul-
tipoints, etc.). All items in a shapefile must be of the same
shape. These items are called features, and each feature is
accompanied by its vector data and additional attributes. The
attributes describe the feature and are either a string or a
number. Each feature can have a maximum of 255 attributes.
The method presented in this paper generates glare data which
is written to a shapefile and the QGIS plug-in reads the
generated shapefile and visualizes the results from the glare
detection.

III. METHODOLOGY

This section will present the approach taken towards creat-
ing the glare detection module and the QGIS plug-in. First, the
system’s workflow will be introduced. Secondly, the method
for detecting sun glare will be presented. This will later
be referred to as the Sun Glare Detection System (SGDS).
Finally, the plug-ins visualization- and information extraction
techniques will be described.

A. System Workflow

The system consists of two major parts, namely the actual
sun glare detection and the visualization of results in QGIS. As
seen in Figure 1, the user can use the QGIS plug-in to request
a shapefile from the Sun Glare Detection System. Road- and
terrain data and a configuration file is sent manually by the
user together with this request. This will prompt the SGDS to
run its glare detection and generate a shapefile containing the
results. In turn, the file is returned to the QGIS plug-in, where
the results are displayed.

B. The Sun Glare Detection System

The SGDS is a stand-alone application written in C++. It
takes as input a SOSI-file with road data, a Digital Elevation
Model-file with terrain data, a configuration file and a name
and directory for the resulting shapefile. Appendix B shows
a description of this configuration file. It is worth noting that
to check a planned road for glare, one can simply generate a
SOSI-file with points along this road and input this file to the
system.

Calculations with the Sun Glare Detection System
are done for a whole year at a time for all the road
segments in the SOSI-file. The system is designed to
calculate the sun glare in the rush hours in the morning
and the afternoon. The start and end times for the rush

Fig. 2. The workflow of the SGDS.

hours, as well as the resolution, can be changed in the
configuration file simply by changing the lines starting
with MORNING RUSH START, MORNING RUSH END,
EVENING RUSH START, EVENING RUSH END and
TIME RESOLUTION and provide the new configuration file
to the system. The defaults times are from 7-9 a.m. and 3-5
p.m, with a resolution of 5 minutes. This means that for every
day of the year, each road segment is checked for glare every
five minutes between the start and end of both of the time
intervals.

Following is a thorough explanation of the glare detection
for a point along the road. After this, optimization consid-
erations will be discussed, before the shapefile generation is
described.

1) Workflow: To be able to detect sun glare, there are three
main parts that need to be taken into account:

• The sun’s position

• The surrounding terrain

• The driving direction

A simplification of the glare detection for a single point
on the road can be seen in Figure 2. First, the system starts
off by interpreting the road data and extracting information
regarding the road segment of interest. Then it calculates the
sun’s position relative to a point on the road segment. Next,
the terrain that is between the vehicle and the sun is located
and an occlusion test is performed to see whether or not the
sun is actually visible from the view point. From the road data
processing, the slope and direction of the road is determined.
This produces the driving direction vector. This vector and the
sun’s position is used to see if there is sun glare at the given
point on a given time and date.

3

Fig. 3. Visualization of the horizontal coordinate system, showing both
azimuth angle and elevation.

2) Calculating the Sun’s Position: The algorithm described
in [4] gives fairly accurate results in calculating the horizontal
coordinates of the sun. Horizontal coordinates is a way of
plotting a celestial object as seen from earth. To do this, two
angles are required: the azimuth angle and the elevation angle.
As seen in Figure 3, the azimuth angle is the number of degrees
going clock-wise around the horizon from north to the celestial
object. The elevation is the number of degrees from the horizon
to the celestial object. The elevation has positive direction
going upwards, with zero degrees being at the horizon and
90° being directly above the observer. With these two angles,
it is easy to calculate the observer-sun unit vector.

To be able to calculate the position of the sun as seen
from a point on earth, the algorithm requires some input. The
algorithm needs to know the observer’s position as well as the
time and date for the calculation. Coordinates must be provided
in the latitude-longitude format. Information regarding time
zone and daylight savings time is also required. The algorithm
uses GMT+0 as its reference point, and therefore time zone
information has to be provided in the GMT format. Correction
of the provided time is done as follows: if the point lies in
GMT+1, one hour is then subtracted from the time. If daylight
savings time is currently being used in that location, one more
hour is subtracted. Since the SGDS performs calculations for
a whole year, it is important that it adjusts for daylight savings
time automatically. The regulation found in [16] defines when
there is daylight savings time in Norway, and these are the
boundaries used to provide the correct time to the sun position
algorithm.

Figure 4 shows a plot of the azimuth angle for June 1st
and December 1st in 2016. Since the sun rises in the east
and sets in the west, the azimuth angles in both summer and
winter should be pretty similar, which is confirmed by the
graph. Figure 5, however, shows that there is larger differences
in elevation between summer and winter. In June, the sun’s
maximum elevation is close to 50°, whereas in December it is
approximately 5° at its peak. This causes shorter days during
winter and longer days during summer. As a result, it is clear
that sun glare will happen at different times of the day in
different seasons.

Fig. 4. A plot of the azimuth angle on June 1st and December 1st 2016 in
Trondheim, Norway.

Fig. 5. A plot of the elevation angle on June 1st and December 1st 2016 in
Trondheim, Norway.

3) Reference systems: Since this system collects data from
several different sources, it is important to decide on a common
reference system. The coordinates for road- and terrain data are
provided as northing and easting coordinates. For calculating
the sun’s position, latitude and longitude is required. The
coordinates of the sun’s position is retrieved as horizontal
coordinates. The azimuth angle can be represented as polar
coordinates, and the terrain data is best described in the
Cartesian coordinate system. In this section, we will look at the
reference system used for this system, and how the conversions
are done.

a) Coordinate conversion: Terrain data and road data
provided by The Norwegian Mapping Authority use Universal
Transverse Mercator (UTM) projection for its coordinates.
Using the World Geodetic System, a position on earth is rep-
resented by degrees north and degrees east. These two values
are enough to plot an object anywhere on earth. However,
when using UTM, some more information is required. A point
on earth is represented in UTM using the UTM zone number

4

along with values for northing and easting. The earth is divided
into zones that run vertically from pole to pole and each zone
is 6 degrees wide. The northing value is the number of meters
from equator to the specified point. The easting value is the
number of meters from the central meridian of the specified
UTM zone. UTM has the positive easting direction going east.
This means that points that lie to the west of the central
meridian would get negative values. To avoid having to deal
with negative numbers all together, 500.000 meters is added
to the easting value. This is called a false easting. With the
UTM zone number, the northing value and the easting value,
a point on earth can be specified unambiguously.

As mentioned, the system presented in this paper uses both
geographic coordinates and UTM coordinates. For the conver-
sion between latitude and longitude and UTM coordinates, the
C++ library GeographicLib [12] is used. The conversion needs
to know the central meridian of the UTM zone the coordinates
belong to. Section IV presents results from tests performed in
southern Norway. UTM zone 32 is used in this part of Norway.
Zone 32 covers the longitudes between 6° and 12° East and
the central meridian is 9° East. GeographicLib’s projection
function takes as input the central meridian in degrees, the
northing value and the easting value. Care must be taken to
ensure that the easting value provided is in the correct form.
The false easting of 500.000 must be subtracted from the
easting before the projection. With the northing, easting and
zone number, the function will return the coordinates in the
form of latitude and longitude.

b) Terrain data convention: The terrain data from The
Norwegian Mapping Authority is a grid of elevation data. Each
cell in the grid contains the elevation for that point in the
terrain. The cells are square and cover an area of 10-by-10
meters. A cell to the right of another cell lies directly to the
east of it. A cell above another lies directly north of it. This
type of layout is best described in the Cartesian coordinate
system. This means that the easting values are increasing with
x and that the northing values are increasing with y.

c) Azimuth angle to polar coordinates: When using the
azimuth angle with the grid of terrain data, it is convenient
to have all the values in the Cartesian coordinate system.
However, an angle is best described as polar coordinates.
Conversion between polar- and Cartesian coordinates is easy,
but the convention for the azimuth angle and polar coordinates
are slightly different. Therefore, the azimuth should follow
the conventions of polar coordinates before converting it
to the Cartesian coordinate system. The convention for the
azimuth angle is that it increases clockwise from the north-
axis. However, the convention for polar coordinates is that the
angle goes counterclockwise from the x-axis (i.e. east). This
is illustrated in Figure 6. Here, ! represents the convention
used for azimuth angles and � represents the convention used
for polar coordinates. To transform the azimuth angle to go
counterclockwise from east, the conversion in Equation 1 is
performed. This function returns the smallest, positive modulus
in the correct reference system. This will yield results in the
range of [0, 360i.

� = mod(mod((90� !), 360) + 360, 360) (1)

Fig. 6. Result of the conversion of the azimuth angle. ! is the convention
used for the azimuth angle. � is the convention for polar coordinates.

where:

� : is the corrected azimuth angle
mod : is the floating point modulus

! : is the old azimuth angle

d) Polar- to Cartesian coordinates: Now that the az-
imuth angle follows the conventions for polar coordinates,
the conversion to the Cartesian coordinate system can be
performed. To represent the azimuth angle in polar coordinates,
an angle, �, and a radius, r are used. The conversion from
polar- to Cartesian coordinates can be seen in Equations 2 and
3. It is preferred to represent the azimuth angle as a unit vector
in the Cartesian coordinate system. This unit vector is produced
by inputting 1 for the radius, r, and the corrected azimuth for �
for both the x- and y component. Equation 4 shows this vector,
and will later be referred to as the observer-sun 2D vector. It
represents a vector going from the origin towards the sun in
the horizontal plane (i.e. the two-dimensional plane made up
by the east-west and north-south directions).

x = r ⇤ cos(�) (2)

y = r ⇤ sin(�) (3)

v = [cos(�), sin(�)] (4)

4) Terrain Extraction: To be able to detect if the sun is
visible, it is crucial to know what part of the terrain is between
the observation point and the sun. There are many ways
of doing this sort of calculation. One could use ray tracing
techniques, Beziér curve interpolation, line interpolation, line-
plane intersection, parallax mapping, etc. most of which are
heavily used in computer graphics. The approach taken in this

5

Fig. 7. A visualization of what pixels are drawn with Bresenham’s line
algorithm.

paper also draws from the domain of computer graphics, by
using Bresenham’s line algorithm.

Bresenham’s line algorithm is a well-known rendering
algorithm that approximates a line between two points in a
grid of pixels. It is a fast algorithm, since it only employs
integer additions, subtractions and bit shifts. It also requires
little memory. It was initially developed to draw lines on a
screen. Since computer screens have a finite set of pixels,
there was a need to find a way to draw pixels in a way that
looked like a continuous line. Bresenham’s line algorithm does
this by keeping track of the error between where a pixel is
drawn on the grid, and where the pixel would be if it was on
the continuous line. Figure 7 illustrates this concept. Imagine
drawing the pixels corresponding to the line, from left to right.
The first gray square is drawn as the starting pixel. In the
second column, the line goes through both squares marked
with a dot. To decide on what square to color, the algorithm
will choose the one that has its center closest to the point
on the line marked with a cross. By continuing to draw the
squares that are closest to the line, Bresenham’s line algorithm
yields a good approximation to a continuous line.

As mentioned, the terrain data comes in a grid with cells
of elevation points. By combining this grid with the observer-
sun 2D vector, one can calculate what cells of the grid that
lie between the observer and the sun. If the top-left cell of
Figure 7 is the observer’s position and the line represents the
observer-sun vector in the horizontal plane, it is clear that
Bresenham’s line algorithm returns only a subset of the cells
that lie between the observer and the sun. Two of the white
cells marked with a dot is also on the path of the line. By using
Eugen Dedu’s Bresenham-based supercover line algorithm [7],
it is possible to find all the squares the line passes through.
Figure 8 illustrates the different output of the two algorithms,
where four more squares are marked with the latter algorithm.

The Bresenham-based supercover algorithm requires a
starting point and an end point to do its calculations. The
starting point is the cell that the observer is in. The end point is
somewhere along the vector towards the sun. To avoid having
to deal with the curvature of the earth, 20 km is chosen as the

Fig. 8. The different outputs of Bresenham’s line algorithm (top) and the
Bresenham-based supercover algorithm (bottom).

length of the vector. Even though the curvature of the earth
has some impact on the results at 20 km, it is disregarded.
In Section III-B3d the observer-sun 2D unit vector, v, was
obtained. By multiplying v with the length of the search (i.e. 20
km), the end point is obtained. These two points are then sent
as arguments to the Bresenham-based supercover algorithm.
The returned result from this algorithm is a list of all the cells
the vector passes through.

By using the Bresenham supercover algorithm, all the cells
the line passes through are obtained. However, this is under
the assumption that the observer is in the center of the 10-
by-10 meter cell. In Figure 8, if the starting point was in the
lower, left corner, the line would pass through different cells.
The cell below the starting point would be marked, and not
the one to the right. Even though the starting point is in the
same cell, the placement within the cell matters. This could
result in wrong sun glare predictions. This has a greater effect
the closer the cell is to the observer due to the parallax effect
between the two viewpoints. Since the displacement within a
cell is so small compared to the distance of the vector (i.e.
up to four orders of magnitude smaller), it is assumed that the
displacement within a cell will not yield very different results.

5) Occlusion test: When all the terrain points between the
observer and the sun is acquired, it is time to see if the sun is
visible to the observer. In short terms, this is done by drawing
an imaginary line from the observer towards the sun, and then
check if the terrain is higher than this line somewhere along
it. The steps for doing this check for one elevation data point
is described below.

Step 1: The first step is to find the linear distance in the
horizontal plane from the observation point to the point in the
terrain. The line marked L in Figure 9 (a) is this distance.
It is obtained by solving the Pythagorean equation for the
hypotenuse as seen in Equation 5, where �x and �y are the
distances between the two points in meters. They are obtained
by simply subtracting the easting and northing of the two
points.

L =
p

�x

2 +�y

2 (5)

6

Fig. 9. Shows the principles behind the occlusion test. (a) shows the distance, L, between the observation point and the terrain point, (b) shows the height, h,
to be calculated for a given terrain point, using the elevation angle, ✓, and the distance, L, (c) shows a case where the sun is visible at point L and (d) shows a
case where the terrain occludes the sun at point L.

Step 2: When the distance, L, is known, the next step is
to calculate the height of the observer-sun vector, L meters
from the observation point. A visualization of this is found in
Figure 9 (b), where the sun’s elevation angle is denoted as ✓,
and h is the height of the vector. The height is found by using
Equation 6. This calculation returns the height of the vector,
relative to the observer. This means that if the observer is not
at sea level, its elevation must be accounted for. The true, real
world, height of the vector, L meters from the observer, is
the sum of the result of Equation 6 and the observer’s own
elevation. The observer’s elevation is the height retrieved from
the road data for the position the driver is at plus the height
from the road to the driver’s eyes. For the calculations done in
this paper, it is assumed that the driver’s eyes are 1.5 meters
above the road when driving a passenger car. Modifications of
this value can be done in the configuration file if the system
is to be used with other types of vehicles.

h = L ⇤ tan(✓) (6)

Step 3: When the height of the vector is known, it is
trivial to check if the sun is occluded by the terrain. Figure
9 (c) shows a case where the sun is not occluded by the sun
at point L. The curvy line represents the terrain between the
observer and the sun, as seen from the side. The spot on the
curve marked with an ”X” is the point from which the terrain’s
height is retrieved. Because the observer’s elevation plus the
height of the vector is larger than the terrain at point L, the
terrain does not occlude the sun. Figure 9 (d), however, shows
a case where the sun is occluded by the terrain. Because the
observer’s height plus the vector’s height is smaller than the
terrain height, the sun is not visible to the observer.

To find out if the sun is visible to the observer, this test
is done for all the terrain points returned by the Bresenham
supercover algorithm. If the test shows that the true height of
the vector is larger than the terrain points for all points, the
sun is visible. However, if there is one case where the terrain
is higher, the sun is occluded and thus not visible.

6) Road direction check: It is, however, not enough that
the sun is visible to a driver, for there to be sun glare. If,
for instance, the sun is directly above the driver, it is not
a nuisance. The angles of which the sun is bothersome has
been addressed in several papers, [6], [10] and [11]. As stated

Fig. 10. Illustrates the aperture of the glare angular limit. (a) is a top-down
view of a car on the road and (b) is the same vehicle as seen from the side.

in [11], a maximum angle of 25° from the driver’s line of
sight is suggested for a 60 year old driver. An aperture of 50°
is therefore chosen as the glare limit. Figure 10 shows this
aperture. Figure 10 (a) shows a vehicle as seen from above,
with the driving direction going straight to the right from the
front of the car. The angle ↵ is the horizontal sun glare angular
limit. In Figure 10 (b), the same vehicle is seen from the side,
where � is the vertical sun glare angular limit. In this case, ↵
and � are both chosen to be 50°, but could also be different
values.

As previously mentioned, the road data includes a list of
points along a road segment. These points are used to find the
driving direction for a given point. Figure 11 shows three of
these points along a road, named p1, p2 and p3. The vectors
v1,2, v2,3 and v1,3 are the normalized three dimensional
vectors between the points. To find the driving direction at
point p2, the vector v1,3 is used, which is the average of v1,2

and v2,3.

For sun glare to be present, the sun needs to be within both
the ↵ and the � angles shown in Figure 10. The ↵ angle is in
the horizontal plane. To see if the sun is within this limit, the
difference between the azimuth angle and driving direction is
obtained. In Section III-B3b, the azimuth angle was converted

7

Fig. 11. Three points along the road segment marked p1-p3, with the vectors
between the points, as seen from above.

to the correct reference system, so the driving direction angle
must be calculated in the same reference system. This is done
by finding the angular distance between the average vector,
v1,3, and the x-axis. To do this, the arctangent function with
two arguments is used. It can be seen in Formula 7, where y

A

and x

A

are the y- and x components of vector v1,3, respec-
tively. �

drivingDirection

is the angular difference between the
x-axis and v1,3. It is worth noting that the arctangent function
returns degree values in the range of [�180, 180], so a value
of 360 is added to �

drivingDirection

if the returned angle is
negative. When �

drivingDirection

is obtained, it can be used to
check for sun glare in the horizontal plane. If the absolute value
of the difference between �

drivingDirection

and the corrected
azimuth angle � is less than 25°, the sun is within the limits
of horizontal glare.

�

drivingDirection

= atan2(y
A

, x

A

) (7)

After finding the position of the sun relative to the vehicle
in the horizontal plane, the relative position is calculated in
the vertical plane. Figure 12 shows the elevation profile of
the average vector, v1,3. � is the road’s elevation angle to be
obtained. x

A

, y
A

and z

A

are the values of the vector, v1,3, as
shown in three dimensions. By using Equation 8, the slope of
the road relative to the horizon, �, is calculated.

� = tan

�1

z

Ap
x

2
A

+ y

2
A

!
(8)

The absolute value of the difference of � and the sun’s
elevation, ✓, is then calculated. As in the horizontal plane,
if this value is smaller than 25, then the sun is within the
vertical sun glare limit. However, if either of these differences
are above 25°, there is no sun glare.

7) Optimizations: The default values for the rush hour
intervals are set to 7-9 a.m. and 3-5 p.m. With a resolution of 5
minutes, the Sun Glare Detection System does the previously
mentioned calculations for each point of each road 18250 times
a year. When there are several points per road segment and

Fig. 12. The elevation profile of v1,3 shown in three dimensions. � is the
elevation angle and xA, yA and zA are the individual components of the
vector.

thousands of roads, the amount of computation grows. This
section will look at some of the optimizations done for the
SGDS.

A naive approach of checking every point for glare would
be to start at January 1st at 7:00 a.m. and check every point in
the SOSI-file, before moving on to 7:05 a.m., checking every
point, and so on. Since the SOSI-file is organized by segments,
one would then need to read all points in all segments for every
time interval. To minimize the number of reads to the SOSI-
file, each segment is fully processed before reading the next
one. A segment is first read to memory. Then, each point in
the segment gets checked for glare for the entire year. Doing
the calculations in this order makes it a lot easier to generate
a shapefile with the layout that will be described in Section
III-B8. Also, by finishing the calculations for a particular point
for the whole year at once, all data from that point can be
written to the shapefile.

Finishing one point at a time allows for another optimiza-
tion. Figure 13 shows a vehicle as seen from above. The cone
marked with ↵ shows the aperture of the glare limit of the
vehicle. The other cone represents where there is sun between
7:00 a.m. and 9:00 a.m. The left leg of the light gray cone is
the azimuth angle at 7:00 a.m. and the right leg is at 9:00 a.m.
Before checking a point for glare every five minutes between
7:00 and 9:00, a test is performed. If there is no overlap
between the two cones, there can not be sun glare between
those two times. An example of no overlap can be seen in
Figure 13 (a). If, however, the two cones are overlapping,
as seen in Figure 13 (b), further computation needs to be
performed. If there is no overlap, the system will not check
for glare for that point between 7:00 and 9:00. The same
principle is used between 3:00 p.m. and 5:00 p.m. If there
is no overlap for either the morning or evening rush hours,
the point is certain to not have glare that day, and the system
moves on to the next day.

8) Shapefile Generation: As previously mentioned, the
results are sent back to the QGIS plug-in as a shapefile. The
shapefile consists of several features with several attributes.
Appendix D shows six features and all their attributes. For

8

Fig. 13. Illustrates the main idea behind the overlap check. (a) shows a case
where there is no overlap between the vehicle’s glare aperture (↵) and the
sun’s position between 7:00 a.m and 9:00 a.m. (b) shows a case where there
is overlap.

every point on the road that has glare during the year, a new
feature is created. Each feature has 67 attributes. There is one
attribute for each week of the year (53), one for each month
(12), one for the whole year and one label that says if the point
had glare in the morning- or evening time interval. Each of the
week-, month- and year attributes act as counters. The attribute
for week 1, for instance, starts of as zero and is increased
by one each time the system reports glare in the first week
of the year. This means that if a point on the road only has
glare at 7:00 a.m. and 7:05 a.m. the first of January and no
glare the rest of the week, the attribute for week 1 will have
a value of 2. The month- and year attributes also aggregate
the data in the same way. By doing it this way, the count
for each attribute acts as time resolution ⇤ count minutes
of glare over the specified attribute time period. So, for the
previously mentioned example, the value 2 roughly represents
5min ⇤ 2 = 10 minutes of glare in the first week of the year.

C. Plug-in

To visualize the results from the Sun Glare Detection
System, a QGIS plug-in is developed. It contains three widgets
that simplifies the user’s interaction with the glare data, as well
as ways of generating and loading the data. Screenshots of the
plug-in and the different widgets can be seen in Appendix
C. The plug-in is written in Python and communicates with
the SGDS using the Python library ctypes. This section will
describe the plug-in. First, a brief introduction to the plug-
in’s functionality will be presented. Secondly, the rendering
techniques is described. Finally, the information extraction
tools are presented.

1) Plug-in Introduction: When installed from the QGIS
plug-in repository, the plug-in is located under the ”Plugins”-
tab. To use its functionality, one must first generate some sun
glare data. Generating data can be done in two ways. The first
is an action in the plug-in’s menu called ”Generate sun glare
data”. This will prompt the user with a window instructing the
user to provide a SOSI-file for the roads, a Digital Elevation
Model-file for the terrain, a configuration file, an output path
and a file name. When clicking OK, the user must then wait
until the Sun Glare Detection System is done processing all
the roads. This also causes QGIS to freeze during computation.
The second way is to run a python script that is located in the
plug-in’s main folder. It will require the same arguments as

with the first option. However, this will not freeze QGIS, and
one can run multiple instances of the script simultaneously, to
lower the total time needed for generating the data.

When the user has some data ready, the next step is to load
it into QGIS. There is an action in the plug-in menu called
”Open Existing Shapefile” that will automatically load Google
Maps and render the data in the shapefile on top of the map.
A third-party plug-in, OpenLayers Plugin [18], is used to load
Google Maps into QGIS. OpenLayers Plugin has a variety
of different maps to use. For this plugin, the choice fell on
using Google Streets, since it shows street names, which is
helpful when finding high-glare roads. Other than that, it has
a fairly neat and tidy layout, with few distractions. With the
data loaded, the plug-in’s widgets are ready to be used.

2) Rendering: Loading the data into QGIS causes the
contents of the shapefile to be displayed on top of a map.
A vector layer is created and populated with the features in
the shapefile. Each point in the vector layer is rendered on the
map as a small circle. This causes the map to be filled with
small circles at every point that had glare at least once in an
entire year. To be able to extract some meaningful information
from the view, a Graduated Symbol Renderer is added to the
layer. A Graduated Symbol Renderer in QGIS has the ability
to render the contents of the vector layer differently. Size, color
and symbol (i.e. circle, square, etc.) are some of the parameters
that can be changed programmatically. First, the renderer is
told which attribute(s) it should focus on. If, for instance, users
are interested in yearly glare, the year attribute is set as the
target attribute. Then, the renderer can be configured to render
points differently based on the value of the year attribute. It
is common to use a range from zero to the maximum value of
the target attribute is used. This range is divided into several
buckets of equal intervals. For each of these buckets, a different
size, color and symbol can be set. By setting a darker color
and larger size for the higher values, points with a lot of glare
will appear as bigger and darker circles than points with little
glare.

Instead of rendering based on one attribute, an expression
can be created. This expression can contain several attributes
and can be a mix of additions, multiplications, subtractions,
etc, of these attributes. To render based on the total glare from
January to March, the expression would be ”m1” + ”m2” +
”m3”. This will cause the renderer to add the values of the
three attributes together and use this value to categorize each
point in one of the buckets. It is worth noting that when using
expressions, the range for the renderer should be changed to
reflect the new maximum value.

Filtering is another technique in QGIS. Queries can be
written to exclude some of the data from rendering. For
instance, the filter expression ”value” > 0 would remove all
features that have the attribute ”value” set to 0 or a negative
number. For string-attributes, it is possible to filter on equality
and inequality. ”answer” ILIKE ’%yes%’ will exclude all
features that have the attribute called ”answer” set to anything
other than ”yes”.

When looking at the data at a large scale, the points from all
the roads would just be merged into each other. Therefore, an
aggregated layer is generated. An example of this can be seen
in figure 14. Instead of rendering all the points at large scales,

9

Fig. 14. An image of the aggregated layer, where bigger, darker circles
represent areas with more glare.

it merges the values of all points within a geographic area, and
creates a circle representing the total glare for that area. This
layer is created by dividing the contents of the shapefile into
a grid. Each cell in the grid represents the amount of glare of
all the roads within the cell’s boundaries. By retrieving all the
points that are within one cell, one can find the total amount
of glare for that geographical area. The yearly value for glare
for each point is taken to the power of four. Each point in the
aggregated layer gets its value using Equation 9.

nX

i=1

year

4
i

(9)

This equation is used to favour roads with more glare, but
still include the roads with some glare. If one were to take the
average of all points in a cell, areas with a few roads with a lot
of glare would be favoured over areas with the same amount
of high-glare roads, but with many low- and medium-glare
roads as well. Simply taking the sum of all glare would greatly
favor areas with many roads. Therefore, taking the yearly value
to the power of four will favor the roads with lots of glare,
but still include the roads with some glare as well. This layer
then gets its own Graduated Symbol Renderer, and will display
larger, darker circles for the areas with the most exposed roads.
This lets the user get a quick overview of what areas are the
most interesting. By using a QGIS feature called ”Scale Based
Visibility”, on can toggle a layer’s visibility when zooming in
and out. Both the aggregated layer and the glare data layer
have their visibility scale set. The aggregated layer is only
visible at scales larger than 1:200 000 and the glare data layer
is visible at scales smaller than 1:200 000.

3) Information Extraction Tools: Once the data is loaded
into QGIS, there are three menu actions (widgets) that are
developed for information extraction and information under-
standing. Screenshots of the widgets’ UI can be seen in
Appendix C. This section will explain their usage.

The first widget is designed to study the data on a temporal
basis. Here, the user can choose to filter the data on a weekly
or monthly basis. The user can also choose to show the data

from either the morning- or evening intervals, or from both.
For instance, if the user chooses a monthly basis, selects the
months 1-6, and checks the ”Morning” radio button, the plug-
in will only render cases of morning glare in the months
January to June.

This is achieved by using both the attribute based rendering
and filtering of the Graduated Symbol Renderer. If the user
chooses to view the data on a weekly basis, the plug-in will
use ’w’ as a prefix. If the user chooses a monthly basis, ’m’
is used as a prefix. Then, the plug-in builds an expression
for each of the numbers in the range. If the user chooses
weekly basis from week 45 to 46, the expression would be
”w45”+”w46”. If the user checks the ”Morning” radio button,
the filtering expression, ”rushType” ILIKE ’%morning%’, is
executed. This will remove all features that have their rush
type set to ”evening”. If the user wants to see both morning-
and evening glare, there is simply no filtering.

The second widget lets the user select a range of glare
values to be displayed for a specified attribute. First, the
user selects the desired attribute. Then, the user can use two
sliders to specify the minimum and maximum value for the
selected attribute. By using this widget, the user can easily
exclude points based on their value. Also, since the values
represent total time of glare, this widget is a good tool to
find roads that have more glare than a certain threshold.
For instance, when using a resolution of 5 minutes, setting
the attribute to ”year” and the minimum slider to 288 will
exclude all points that had less than 24 hours of glare that
year. This is all achieved by filtering. An expression on
the form ”attribute” > ”minV alue”AND”attribute” <

”maxV alue” is created and set in the renderer.

The last widget is used to display the points with the
most glare. First, an attribute is selected. The user can then
choose to either get the ”X” points with the highest values
for the attribute or get the points in the top ”X”-th percentile.
Choosing 50 as a value for ”X” would then either render the 50
points with the highest value or the top half of the points. This
is done using filtering. If the user wants to see the ”X” points
with the highest value, the plug-in finds the glare value of
the ”X”-th highest feature. If the user wants to see the ”X”-th
percentile, the plug-in finds the lowest value in the top ”X”-th
percentile, and uses this as the threshold value. Then, a simple
expression on the form, ”attribute” > ”thresholdV alue”, is
created.

IV. EVALUATION AND RESULTS

For a system like the one presented in Section III, there are
several different data sources that are mapped into a common
reference system. Data can be flawed and the conversions can
be imprecise. To check the validity of such a system, thorough
testing and validation must be performed. This section will
explain the approach taken towards testing the validity of the
system and provide the results of the evaluation. Tests have
been conducted as both comparisons between algorithms, field
tests in the real world and validation of the rendering in QGIS.
The system has been tested in both Asker, Norway and in
Trondheim, Norway, with good results both places.

10

TABLE I. THE DIFFERENCES IN AZIMUTH- AND ELEVATION ANGLE
FOR THE IMPLEMENTED ALGORITHM AND THE ONLINE CALCULATOR.
SHOWS RESULTS FOR JUNE 21ST 2016 AND DECEMBER 21ST 2016.

June 21 �Azimuth �Elevation Dec 21 �Azimuth �Elevation
08:00 0.00 0.03 12:00 0.01 0.23
12:00 0.00 0.02 13:00 0.01 0.24
16:00 0.01 0.01 14:00 0.00 0.39
20:00 0.01 0.06 15:00 0.01 0.13

A. Sun Position Algorithm

The glare detection system presented in this paper relies
heavily on the calculations of the sun’s position. Small, accu-
mulating errors or large deviations from the true position can
not be tolerated. Testing of the implementation of the algorithm
found in [4] needs to be performed.

After implementation of the algorithm, a compass and a
mobile app for angular inclination was used to check the
validity of the acquired results. To further validate the results,
an online calculator provided by the National Oceanic and
Atmospheric Administration [8] was used. Just as with the
algorithm implemented in this paper, it requires a date, time
and coordinates for the test. It also needs to know about
time zone and daylight savings time. Calculations for both the
online calculator and the implemented algorithm were done
for two dates, June 21st 2016 and December 21st 2016. These
are around the days of the solstice. At these days, the elevation
angle is at its most extreme. For June, calculations were done
for four times of the day, namely 08:00, 12:00, 16:00 and
20:00. For December, the times were 12:00, 13:00, 14:00,
15:00. The results are displayed in Table I. The differences
between the angles calculated by the implemented algorithm
and the online calculator are shown for June and December.
The maximum difference is 0.39°. Similar experiments have
been conducted for other years, showing similar results.

B. Geographical Occlusion

After establishing the correctness of the calculation of the
sun’s position, the occlusion test was evaluated. At sunrise and
sunset, the sun alternates between being occluded by the terrain
and being visible. Validation of the occlusion test is therefore
done at these times. Results of one test at sunrise and one test
at sunset will now be presented.

The occlusion module described in Section III-B5 takes as
input a position, a date and a time. It uses the sun position
algorithm to find the azimuth- and elevation angles. The
module returns whether or not the sun is visible to the observer
at the given time. To predict when sunrise will occur, the only
information known is the place the observer is at. To find the
exact time when the sun will rise at the given point, an iterative
approach is taken. First, a time when it is dark is provided to
the module, and thus the module returns that the sun is not
visible. Then, the time is incremented by one minute until
the module returns that the sun is visible. The last provided
time is the time of the sunrise. This was done for November 8,
2016 in Trondheim. The module returned that the first time the
sun was visible at that given point this day was at 09:13 a.m.
Figure 15 shows an image of the sun at 09:14 a.m. this day.
It shows the sun just above the distant mountains. Validation
that the system reports occlusion at the correct place is then

Fig. 15. Image of the sunrise taken in Trondheim November 8, 2016 at 09:14
a.m.

Fig. 16. A plot of the terrain between the camera and the sun. The straight
line is the vector towards the sun. The x-axis is meters from the observer and
the y-axis is the elevation in meters. The line intersects the terrain at 5536 m.

conducted. Investigation of the data confirms that the place
occlusion is reported at is indeed at the far mountain. The
graph in Figure 16 shows the terrain data and observer-sun
vector. Distance from the observer is shown on the x-axis and
elevation above sea level is shown on the y-axis. The straight
line is the observer-sun vector. As seen, the vector intersects
the elevation data 5536 meters from the observer. By using a
distance tool in Google Maps, it is confirmed that 5536 meters
from the observer is indeed at the top of the mountain seen in
Figure 15.

Another test was conducted during sunset on March 28th,
2017 in Trondheim, Norway. This test shows positive results
for the occlusion module’s ability to detect the sun’s visibility
over a larger geographical area. The time of sunset was found
using the same iterative approach as for the sunrise. This time,
however, the system was evaluated for several road segments.
A subset of these segments can be seen in Figure 17 (b). In
this figure, the red lines represent roads where the sun was
visible at 7 p.m. The green lines are places where the sun was
visible at 6:55 p.m., but not at 7 p.m. The points A and B
therefore represent points on the road where the sun was and
was not visible at 7 p.m., respectively. Figure 17 (b) shows a
top-down view of the city, with north going upwards. Figure 17
(a) shows a side view of the mountain that occluded the green

11

Fig. 17. Representation of a test of the sunset in Trondheim, Norway on
March 28th, 2017. Top: An image of the sun as seen from point A and point B
at 7 p.m. Bottom: Result from the glare detector, where green lines represent
shadow at 7 p.m. and red lines represent sun visibility at 7 p.m. The sun is
visible at point A and occluded at point B.

roads. In this figure, north is going to the right, so the image
is taken towards west. This means that the mountain ridge is
going in the north-south direction and is located directly west
of point A and B. From both point A and B, the sun went
down behind the left slope of the hump in the mountain, and
the apparent position of the sun at 7 p.m. is shown as A

s

and B

s

. Since point A is located further south than point B,
the sun is visible longer before going down behind the hump.
Point A is also closer to the mountain, yet the sun is still
visible. When going further north, one would also need to go
further east for the sun to not be occluded by the hump, as the
figure illustrates. These results further support the validity of
the terrain occlusion module. They also show that the module
can be used to locate shade in larger geographical areas.

C. Road direction

It is now confirmed that the system can both locate the sun
and determine if it is visible. A final evaluation of the SGDS
is seeing whether or not the system can correctly determine
sun glare on the road. Figure 18 shows a map of the place
where the system was evaluated. The figure shows the azimuth
angle, !, of 211.23°. The time of the experiment is 14:26
on December 6. Segment 1 and Segment 2 are the two road
segments that are evaluated. Vertical differences between the

Fig. 18. Map of the place where the system was evaluated. Shows the azimuth
angle, !, of 211.23° and the two segments the system was tested with.

road segments’ elevation angles and the elevation of the sun
are small in both cases. The angular distance between Segment
1 and the azimuth angle is very small, so it is expected that
glare should occur. On the other hand, the difference between
Segment 2 and the azimuth angle is approximately 50°, so
there should be no glare. By inputting Segment 1 to the system,
it returns that there is glare. By inputting Segment 2, it returns
that there is no glare. This is in line with what is both expected
and observed on site.

Testing of the system in the vertical plane is also conducted,
since the vertical difference in the validation of Segment 1 is
negligible. To test the vertical aspect, the parameters from the
test of Segment 1 are used. Since the test above has already
proven to report sun glare, the inclination of the road and
the elevation of the sun can be altered to see if the system
still reports glare. First, the sun’s elevation is increased, so
that the difference between the road’s inclination and the sun’s
elevation is larger than 25°. Then, the sun’s original elevation
is used, but with a large inclination in the road, such that the
difference is larger than 25°. Both these cases reports no glare.
A similar test is conducted with a large declination, and no
glare is reported. Other variations of the sun’s elevation and
the road’s inclination, where the differences are below 25°, are
also tested. All the results are in line with what is expected,
and the testing of the vertical aspect is redeemed a success.

D. Visualization in QGIS

When the data is generated, it can be loaded into the
QGIS plug-in. This section will look at how the data is
represented visually and show the validity of the plug-in’s
rendering methods.

1) Filtering: As described in Section III-C2, the user can
filter the data on different attributes. The plug-in described in

12

this paper lets the user filter on morning and evening rush
hour. Figure 19 shows the results from filtering on the rush
hour types. Figure 19 (a) displays the standard rendering,
where both morning and evening rush hour glare is shown.
A rendering of only morning glare can be seen in Figure 19
(b), and evening glare is presented in Figure 19 (c).

It is interesting to see that when morning glare is selected,
only roads segments that go towards east are shown. The same
holds for evening glare, where only segments going westward
are shown. It is worth noting that the rendered points do not
have a directional dimension to them. Therefore, the user must
be aware of the fact that the sun rises in the east and sets in the
west. This means that the direction of the road segment shown
in Figure 19 (c) has to be towards the south-west, since the
sun is never visible towards north-east in the evening. Road
segments that go east-west might have glare going both ways
throughout the year. In the upper left corner of Figure 19 (a),
such a segment is shown. There are two circles per point, since
it has registered glare both for the morning and evening rush
hour.

2) CRS Conversions: The points that are written to the
shapefiles use the standard geographic coordinates, which
is the standard latitude, longitude format. This coordinate
reference system is called WGS84, with ID EPSG:4326. The
OpenLayers plugin, that provide the rendering of the maps,
uses a different CRS, namely WGS84 / Pseudo Mercator,
with ID EPSG:3857. When importing the data, the CRS of
the shapefile is set to EPSG:4326, and when rendering the
points, QGIS does the conversions automatically. A close up
of some points can be seen in Figure 20. Here, we can see that
even after being converted from Universal Transverse Mercator
to WSG84 to WGS84 / Pseudo Mercator, the points are still
rendered in the middle of the road.

E. Complexity

Calculating glare for large sets of roads is time consuming.
This section will look at the data generation times and the
benefits of the optimizations described in Section III-B7. All
tests were run on a MacBook Pro (late 2013), with 16GB RAM
and a 2,3 GHz Intel Core i7-4850HQ processor.

1) Generation Time: Checking for glare every five minutes
in both the morning- and evening rush hour results in 50
calls to the glare detector for each point on the road for
one date. This means that the system will check for glare
50 ⇤ 365 = 18250 times for each point. When generating
data, the run times were measured. As mentioned, the data
is divided into road segments, and each segment contains, on
average, 12 points. Data has been generated for 10, 100 and
1000 segments, and results show that the system scales linearly
(i.e. the average time used per point remains the same). On
average, the system uses 1.39 seconds to generate a feature
for the shapefile. This includes both reading the coordinates
of the point, checking for glare for the entire year and writing
the result to the shapefile.

The system has also been tested to run in parallel. As
mentioned, the plug-in comes with a Python script that can be
used to generate the data. The MacBook used for testing has
four CPU cores. By running four instances of the Sun Glare
Detection System, the system’s parallelism can be tested. By

measuring the run times of all instances, the system’s ability
for parallel computing was tested. Results show that there is
no significant increase in time used per feature for generating
data on several cores simultaneously.

2) Azimuth and Aperture overlap: Experiments have also
been conducted to check the potential speed up from the
overlap test described in Section III-B7. First, the SGDS was
modified so that it did not include the overlap test. Then, the
system was set to generate glare data for 1000 road segments
and the run time was measured. The resulting shapefile was
stored. Then, the SGDS was run again, but this time including
the overlap test. The same 1000 road segments were used for
this run. The run time was again measured and the shapefile
stored. The generated shapefiles were inspected. Both files
were identical, containing exactly the same features with the
same values. It took the system 5.95 hours to generate the
shapefile without the overlap test. When checking for overlap,
it only took 4.61 hours. This corresponds to a significant speed
up of 22.5%.

V. FUTURE WORK

The system presented in this paper takes the sun’s position
and the surrounding topology of the terrain into account to see
if there is sun glare at a given road segment. However, there
are more than just the surrounding terrain that can obstruct
the view of the sun. Buildings often block the view of the
sun, especially in cities. Forests and other vegetation can also
obstruct the view. Extending the model to include building-
and vegetation data could yield more accurate results. This
could be implemented in various ways. One way would be to
merge the terrain data with building data. If there is a building
at one of the cells in the digital elevation model-file, then
the value of that cell would be incremented with the height
of the building. The terrain data used for this plug-in has a
resolution of 10 meters. When merging with building data,
the resolution should be more fine-grained, and 1 meter might
be more reasonable. This will increase the accuracy of the
results, at the expense of longer run times. Parts of the system,
for instance terrain extraction, could also be implemented on
the GPU. Precomputed mipmaps of the terrain- and building
data might lower the run times. However, this would be at the
expense of precision. Another possibility would be to create
a box terrain. Each 10-by-10 meter cell is one box, having
the height of the terrain at that cell. Buildings would then be
added on top of the terrain boxes as their own boxes. Ray-box
intersection could then be implemented for the occlusion test.
This approach would keep the resolution of the terrain data
at 10 meters, while the buildings are not constrained by the
10-by-10 meter resolution and could be more fine-grained.

With the rapid development of cameras and computer vi-
sion, it is possible to gather the vegetation data using computer
vision techniques or laser scanning. This could in turn be used
to improve the precision of the sun glare predictions.

As mentioned, the system is designed to be able to run in
parallel. Data generation times could be drastically lowered
by running the SGDS in parallel or in batches. Using a
supercomputer or by utilizing the vast parallelism of cloud
based services, one could generate glare data for large sets of
roads in short amounts of time.

13

Fig. 19. Shows the results of applying different filtering to the data. (a) shows glare for both morning and evening rush hour. (b) shows only data for morning
glare, whereas (c) shows evening glare.

Fig. 20. Shows several glare points and the accuracy of their CRS
conversions.

Interpretation of the road data is also an area with potential
improvement. The system could provide different models for
straight roads, intersections and roundabouts. In addition, the
system also only predicts glare at the centerline of the road.
The Norwegian Road Data Base [1] contains much more
information about the roads, as the number of lanes. This data
could be helpful to calculate the glare at the points where the
cars actually are, rather than at the centerline of the road.

The results from the system could also be added to the
Norwegian Road Data Base as parameters. These parameters
could then be retrieved through a REST API. Enriching the
data in the data base, could provide additional information to
other projects at the Norwegian Public Roads Administration.
Adding data to the data base might give new insights, since
the road data has increased in dimensionality.

VI. CONCLUSION

This paper has presented a method for detecting sun glare
on the roads, as well as a plug-in for QGIS that has methods for
visualizing the sun glare data. The plug-in provides tools for

examining the data to ease the information extraction process.
Parameters for the glare detection can be altered by the user.
By calculating the sun’s position and taking the surrounding
terrain into account, the results show that the system can
accurately mark a point on the road as having sun glare or
not at any given time. The results also show the accuracy of
the system’s ability to calculate terrain occlusion, including
prediction of sunrise- and sunset times. Results also show the
validity of the visualization. The conducted run time tests show
that the system scales linearly, both sequentially and in parallel.
This plug-in and its models can be used to do glare evaluations
for existing or planned roads. The results might show that there
is a need for safety measures to be taken. Future work on the
system include a more extensive data set of what could occlude
the sun, which could lead to more accurate results.

REFERENCES

[1] Norwegian Public Roads Administration. The norwegian road database.
http://www.vegvesen.no/fag/Teknologi/Nasjonal+vegdatabank. Ac-
cessed: 2016-12-08.

[2] The Norwegian Mapping Authority. Digital elevation
model files. http://data.kartverket.no/download/content/
digital-terrengmodell-10-m-utm-32. Accessed: 2016-09-22.

[3] The Norwegian Mapping Authority. Norwegian road network. http:
//data.kartverket.no/download/content/vbase-utm-32. Accessed: 2016-
09-22.

[4] Manuel Blanco-Muriel, Diego C. Alarcn-Padilla, Teodoro Lpez-
Moratalla, and Martn Lara-Coira. Computing the solar vector. Solar
Energy, 70(5):431 – 441, 2001.

[5] Eun-Ha Choi and Santokh Singh. Statistical assessment of the glare
issue-human and natural elements. In Proc. of the Federal Committee
on Statistical Methodology Workshop, 2005.

[6] Andrew M. Churchill, Yorghos Tripodis, and David J. Lovell. Sun
glare impacts on freeway congestion: Geometric model and empirical
analysis. Journal of Transportation Engineering, 138(10):1196–1204,
2012.

[7] Eugen Dedu. Bresenham-based supercover line algorithm. http://lifc.
univ-fcomte.fr/home/⇠ededu/projects/bresenham/. Accessed: 2016-10-
15.

[8] National Oceanic Earth System Research Laboratory and Atmospheric
Administration. Noaa solar calculator. http://www.esrl.noaa.gov/gmd/
grad/solcalc/. Accessed: 2016-09-22.

[9] Esri. ESRI Shapefile Technical Description. Environmental Systems
Research Institute, Inc., July 1998.

14

[10] Kenji Hagita and Kenji Mori. Analysis of the influence of sun glare on
bicycle or pedestrian accidents with turning vehicle. World Conference
on Transport Research Society, 2013.

[11] Rafael Jurado-Piña and Jos Pardillo Mayora. Methodology to predict
driver vision impairment situations caused by sun glare. Transporta-
tion Research Record: Journal of the Transportation Research Board,
2120:12–17, 2009.

[12] Charles Karney. Geographiclib. http://geographiclib.sourceforge.net/.
Accessed: 2016-09-26.

[13] International Commision on Illumination. Cie 146:2002. cie equations
for disability glare. CIE Collection on Glare 2000, 2000.

[14] Paul A Pisano, Lynette C Goodwin, and Michael A Rossetti. Us
highway crashes in adverse road weather conditions. In 24th Conference
on International Interactive Information and Processing Systems for
Meteorology, Oceanography and Hydrology, New Orleans, LA, 2008.

[15] QGIS. Qgis. http://www.qgis.org/en/site/about/index.html. Accessed:
2017-1-05.

[16] Nærings-og fiskeridepartementet. Forskrift om sommertid. https:
//lovdata.no/dokument/SF/forskrift/2007-12-14-1420. Accessed: 2017-
21-03.

[17] Josef Schumann, Michael J Flannagan, Michael Sivak, and Eric C
Traube. Daytime veiling glare and driver visual performance: Influence
of windshield rake angle and dashboard reflectance. Journal of Safety
Research, 28(3):133–146, 1997.

[18] Sourcepole. Openlayers plugin for qgis. https://plugins.qgis.org/plugins/
openlayers plugin/. Accessed: 2017-03-05.

[19] Helmut T Zwahlen. Conspicuity of suprathreshold reflective targets
in a driver’s peripheral visual field at night. Transportation Research
Record, 1989.

15

16

APPENDIX A
INSTALLATION AND BUILD GUIDE

This installation is for MacOS only. However, the workflow should be pretty similar on other operating systems as well.
The installation of the plug-in comes in two parts. First, installation of QGIS and the plug-in will be described. Then, build
instructions for the Sun Glare Detection System will be explained. To be able to use the plug-in as is, follow the instructions in
Appendix A-A. To be able to edit the SGDS, follow both Appendix A-A and Appendix A-B.

A. Sun Glare Visualization Plug-in Installation

This section will describe the steps taken towards installing QGIS and the Sun Glare Visualization Plug-in.

1) Download and install QGIS from http://www.kyngchaos.com/software/qgis. The version of QGIS used is for development
is 2.14.10-Essen. When installing QGIS, some other packages must be installed as well. These are GDAL, numpy and
matplotlib. Install them in the order the install package says.

2) The QGIS plug-in folder must be created. There are two ways of doing this. The first option is to use the Plugin
Manager (Plugins ! Manage and install plugins...) and install one arbitrary plug-in. The other option is to navigate to
the folder ”.qgis2/python/” and create a folder named ”plugins”.

3) Install the plug-in called ”OpenLayers Plugin”. This is a dependency for the Sun Glare Visualization Plug-in.
4) Download the zipped plug-in from https://drive.google.com/open?id=0ByBkxB6DytDKUVFseHhMb2I2NzQ. Unzip the

plugin in the ”.qgis2/python/plugins/”-folder.
5) Restart QGIS and install the plug-in from the Plugin Manager.

B. Sun Glare Detection System Build Instructions

If changes to the plug-in or underlying algorithms are to be done, follow this installation as well. This will let the user make
changes to the Sun Glare Detection System and build the system.

1) Make sure to have homebrew on your machine. Can be found at https://brew.sh/.
Version used: 1.1.11

2) Install cmake using brew.
brew install cmake
Version used: 3.4.0-rc1

3) Install GeographicLib. Download source from https://sourceforge.net/projects/geographiclib/files/distrib/. Unzip the
folder. Navigate in to the folder using terminal and issue the following command:
mkdir build && cd build && cmake .. && make && make install.
Can also use brew:
brew install geographiclib
Version used: 1.46

4) Install Boost using brew.
brew install boost
Version used: 1.63.0

5) Install automake using brew.
brew install automake
Version used: 1.15

6) Install libtool using brew.
brew install libtool
Version used: 2.4.6

7) Install autoconf using brew.
brew install autoconf
Version used: 2.69

8) Clone FYBA from github. Can be found at https://github.com/kartverket/fyba.
Open the file fyut.h and input the following at the top of the file.

i f d e f APPLE
i n c l u d e < s t d i n t . h>
d e f i n e UT INT64 i n t 6 4 t

e n d i f

Then issue the following command:
autoreconf –force –install && ./configure && make && make install.

9) Navigate to the build-folder of the SunGlareVisualizer. ”/.qgis2/python/plugins/SunGlareVisualizer/
ccode/SunGlareDetector/SunGlareDetector/build/”.

17

Issue the following command:
cmake .. && make

10) If this results in error, try to install GDAL from source.
Can be found at http://trac.osgeo.org/gdal/wiki/DownloadSource. Unzip the folder and issue the following command:
./configure && make && make install.
Then try the previous step again.

18

APPENDIX B
CONFIGURATION FILE

This appendix will look at the configuration file used for the plug-in. Figure 21 shows the default configuration file used for
the system. These values are the ones the user can tweak. Every line represents one variable in the system. The exact name of
a variable must be written in upper-case, just like in Figure 21, followed by a space and the variable’s value. The rest of this
appendix will explain the use of each of the variables.

Fig. 21.

A. MORNING RUSH START

Specifies the start time of the morning rush. With a value of 7, the system will start checking for glare at 7:00 a.m., and run
until the value of MORNING RUSH END. Care must be taken to ensure that the value of MORNING RUSH START is smaller
than that of MORNING RUSH END.

B. MORNING RUSH END

Specifies the end time of the morning rush. With a value of 9, the system will start checking for glare at the value of
MORNING RUSH START, and run until 9:00 a.m. Care must be taken to ensure that the value of MORNING RUSH END is
larger than that of MORNING RUSH START.

C. EVENING RUSH START

Specifies the start time of the evening rush. With a value of 15, the system will start checking for glare at 3:00 p.m., and run
until the value of EVENING RUSH END. Care must be taken to ensure that the value of EVENING RUSH START is smaller
than that of EVENING RUSH END.

D. EVENING RUSH END

Specifies the end time of the evening rush. With a value of 17, the system will start checking for glare at the value of
EVENING RUSH START, and run until 5:00 p.m. Care must be taken to ensure that the value of EVENING RUSH END is
larger than that of EVENING RUSH START.

E. TIME RESOLUTION

Specifies how often the system checks for glare. The value is in minutes. With a value of 5, the system will check for
glare every five minutes from MORNING RUSH START to MORNING RUSH END and from EVENING RUSH START to
EVENING RUSH START. With a value of 60, the system will only check for glare once every hour.

F. UTM ZONE

Specifies the UTM zone number for the road data and terrain data. The default value of 32 is the correct number for southern
Norway.

G. HORIZONTAL GLARE APERTURE

Specifies the horizontal limit for glare. For the value 25, the sun has to be within 25 degrees of the driving direction for it
to be glare.

H. VERTICAL GLARE APERTURE

Specifies the vertical limit for glare. For the value 25, the sun has to be within 25 degrees of the driving direction for it to
be glare.

19

I. EYE HEIGHT

Specifies the height of the eyes of the driver. The system adds this amount to the height of the road before checking for
glare. The value is in meters.

J. YEAR

Specifies the year the system should do calculations for.

20

APPENDIX C
IMAGES OF THE PLUG-IN FUNCTIONALITY

This appendix will show the functionality of the plug-in. All of the functionality of the plug-in can be accessed from the top
menu of QGIS, as shown in Figure 22, or from the actions in the action bar in QGIS, as seen in figure 23.

Fig. 22. Shows the available actions from the top menu in QGIS.

Fig. 23. Shows the available actions from the actions menu in QGIS.

A. Generating Glare Data

The action seen in Figure 24 is used when the user wants to generate data from within QGIS. Here, the user specifies a path
to the SOSI-file, terrain data file, configuration file, output folder and a name for the output shapefile.

Fig. 24. Screenshot of the UI for the ”Generate sun glare data”-action.

21

B. Open Existing Shapefile

When the data is generated, it can be imported into the plug-in by using the action seen in Figure 25. The path to the shapefile
has to be selected, and an optional layer name can be specified. If no name is specified, ”no-name” is set as the layer name.

Fig. 25. Screenshot of the UI fir the ”Open Existing Shapefile”-action.

C. Select Values from Time Range

The action seen in Figure 26 can be used to filter out values based on time. The user can chose to filter on a weekly- or
monthly basis. Then, the user can select what range of weeks or months it wants to see. There is also an option to only show
results from either the morning- or evening rush hour, or both.

Fig. 26. Screenshot of the UI for the ”Select Values from Time Range”-action.

D. Select Value Range for Attribute

The action seen in Figure 27 can be used to only show points within a specified range. The layer and attribute is set in the
combo-boxes. Then, the two sliders are used to set the minimum and maximum value for that attribute.

E. Select Top X points

The action seen in Figure 28 can be used to only render the points with the most glare. The layer and attribute is selected
in the combo-box. Then, the filtering type is selected and a value for X is inputted.

22

Fig. 27. Screenshot of the UI for the ”Select Value Range for Attribute”-action.

Fig. 28. Screenshot of the UI for the ”Select Top X points”-action.

23

24

APPENDIX D
SHAPEFILE

This appendix will look at the shapefile generated by the Sun Glare Detection System. A screenshot of six of the features
can be seen in Figures 29, 30 and 31. The first 53 attributes are for the glare count for each week. ”w1” represents the first
week of the year, and is the first seven days (i.e. January 1st to January 7th). The next 12 attributes are glare count for each
month, where ”m1” represents January. The next attribute is the total yearly glare count for the point. The last attribute says if
the point had glare during the morning- or evening rush hour.

Fig. 29. Shows the first 22 attributes of the generated shapefile.

Fig. 30. Shows attribute 23-44 of the generated shapefile.

25

Fig. 31. Shows attribute 45-67 of the generated shapefile.

26

