
Quantitative Convergent Beam
Electron Diffraction and Charge

Density Studies

by

Jesper Friis

Thesis submitted in partial fullfillment of the requirements
for the Norwegian academic degree of Doktor Ingeniør

Department of Physics
Norwegian University of Science and Technology

Trondheim, Norway

November 2003

URN:NBN:no-7231URN:NBN:no-7231URN:NBN:no-7231



Source: The CBED art works gallery at Tanaka’s group,
http://xes.tagen.tohoku.ac.jp/gallery/thestarrynight.html

ii

URN:NBN:no-7231



Summary

Very accurate low-order structure factors have been measured in copper,
magnesium and strontium titanate using quantitative convergent beam elec-
tron diffraction (QCBED). The charge density distribution in these materials
has been studied using the measured structure factors. The results have also
been compared to ab initio density functional theory (DFT) calculations.

In the case of copper, we combined our low-order structure factors with
higher order γ-ray structure factors, in order to obtain a larger experimental
data set for maximum entropy and multipole analysis. The results show
that bond formation induces a large change in the 3d orbital radial function.
As expected for metallic bonding, no asphericity of the orbitals has been
observed. These results are in perfect agreement with DFT calculations.

For magnesium it was shown that the anisotropic displacement param-
eters could be determined accurately from the low order QCBED data, if
structure factors from DFT calculations were used as a static lattice refer-
ence. This data set was combined with X-ray structure factor measurements
and used to test some commonly used DFT functionals and self interaction
correction (SIC) schemes. It was found that the local density approximation
combined with the SIC of Lundin and Eriksson (2001) gave the best agree-
ment with experiments. Using this functional no non-nuclear maximum was
found in beryllium, but not in magnesium.
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Preface

This thesis is the result of more than three and a half years studies at De-
partment of Physics at the Norwegian University Science and Technology
(NTNU). It can be seen as a continuation of the long tradition in Trond-
heim, established by Prof. Ragnvald Høier (Department of Physics, NTNU)
and continued by Prof. Knut Marthinsen (now Department of Materials
Technology, NTNU) and Prof. Randi Holmestad (Department of Physics,
NTNU), to use convergent beam electron diffraction for accurate structure
factor determination and charge density studies.

During this thesis I have visited Arizona State University (ASU) twice,
first six months in spring 2001 and later one month in April 2002. Together
with Dr. Bin Jiang’s (Department of Physics and Astronomy, ASU) visits
here in Trondheim (October 2001 and November 2002), these have been the
most productive periods of the thesis.

This work is divided into four parts:
The first part is an introduction to quantitative convergent beam electron

diffraction and methods for studying the charge density using experimentally
derived structure factors. These methods include direct Fourier synthesis,
multipolar modeling and maximum entropy. A brief description of density
functional theory is also included in chapter 3.

The second and main part contains the papers:

Paper 1: Quantitative Convergent Beam Electron Diffraction Measurements
of Low Order Structure Factors in Copper
J. Friis, B. Jiang, J. C. H. Spence and R. Holmestad.
Microscopy and Microanalysis. 9, 379-389. 2003.

Paper 2: On the Consistency of QCBED structure factor measurements for
TiO2 (Rutile)
B. Jiang, J. M. Zuo, J. Friis and J. C. H. Spence.
Microscopy and Microanalysis. 9, 457-467. 2003.

Paper 3: Retrieval of anisotropic displacement parameters in Mg from con-
vergent beam electron diffraction
J. Friis, K. Marthinsen and R. Holmestad.
EMAG Proceedings 2003. Inst. Phys. Conf. Ser. No. 165.
In press.

Paper 4: Magnesium: Comparison of Density Functional Theory Calcula-
tions with Electron and X-ray Diffraction Experiments
J. Friis, G. K. H. Madsen, F. K. Larsen, B. Jiang, K. Marthinsen and
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R. Holmestad.
In press, Journal of Chemical Physics. Expected in Vol 119, No. 21,
December 2003.

Paper 5: A Study of Charge Density in Copper
J. Friis, B. Jiang, K. Marthinsen and R. Holmestad.
Aimed for Acta Cryst. A.

Paper 6: Electron Density and Implication for Bonding in Cu and Ag
B. Jiang, J. Friis, R. Holmestad, J. M. Zuo, M. O’Keeffe and J. C. H.
Spence.
Submitted to Phys. Rev. B.

Paper 1, 5, and 6 are based on experiments on copper performed during my
visit at ASU the spring 2001. My contribution to paper 2 is limited to the
generation of figure 6. Paper 3 and 4 are based on experiments on magnesium
during my second visit to ASU, April 2002.

After the papers follows a short chapter on the unpublished and unfin-
ished results on strontium titanate.

Finally two appendices are included, one containing a derivation of the
Mott formula and another containing derivation of formulas for error analysis
of the experimental structure factors.
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Part I

Introduction and background
to quantitative convergent

beam electron diffraction and
charge density studies
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Chapter 1

Introduction

The aim of this work has been to investigate theoretically and experimen-
tally, different methods and aspects of the determination of charge density
and bonding by convergent beam electron diffraction (CBED). This work is
motivated by the fact that an increased knowledge of the microscopic prop-
erties, such as bonding and charge distribution, is required to design and use
new and advanced materials.

Traditionally electron microscopy has been a qualitative science both for
imaging and diffraction. A lot of information about crystal symmetry and
crystal structure can be derived from the position of the diffraction spots.
The first convergent beam electron diffraction pattern was produced already
in 1937 by Kossel & Möllenstedt (1939) in order to further investigate the
newly discovered Kossel and Kikuchi patterns seen in X-ray diffraction ex-
periments. With the development of the dynamical theory in the 1950s and
1960s, it became clear that dynamical effects have to be taken into account
in order to explain effects such as the occurrence of forbidden reflections
(Gjønnes & Moodie, 1965) and small shifts in the Kikuchi-line positions
(Uyeda, 1968; Høier, 1969; Gjønnes & Høier, 1971). Quantitative measure-
ments of structure factors started in the early 1980s (Voss et al., 1980), taking
not only the position of the features in the diffraction pattern into account,
but also the exact intensities. Shortly after, phase measurements of the struc-
ture factors for non-centrosymmetric crystals were also performed (Taftø &
Spence, 1982; Taftø, 1983; Marthinsen & Høier, 1986, 1988). The use of en-
ergy filters, CCD cameras/image plates and the increase of computer power
during the 1990s have greatly increased the accuracy and made convergent
beam electron diffraction an accurate tool for measuring the low order struc-
ture factors in small unit-cell crystals (e.g. Zuo, 1993; Saunders et al., 1993;
Holmestad et al., 1995; Høier et al., 1993; Tsuda & Tanaka, 1995; Deininger
et al., 1995; Saunders et al., 1996; Zuo et al., 1997; Birkeland et al., 1997;
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CHAPTER 1. INTRODUCTION

Nüchter et al., 1998; Saunders et al., 1999; Holmestad et al., 1999; Zuo, 1999;
Jiang et al., 2003).

The new challenge is to combine the low order structure factors from
quantitative CBED with higher order structure factors from X-ray diffrac-
tion, in order to obtain a better description of the charge density (Zuo et al.,
1999; Streltsov et al., 2001) and to test band theory (Zuo et al., 1997; Friis
et al., 2003).
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Chapter 2

Quantitative electron
diffraction

This chapter is intended to introduce the reader to the quantitative electron
diffraction (QED) theory needed for the papers following in Part II. A sim-
ple and general introduction to electron microscopy is given by Williams &
Carter (1996). For an overview of the electron diffraction theory, the excellent
review by Humphreys (1979) is recommended. A complete and very good
introduction to quantitative convergent beam electron diffraction (QCBED)
is given in Spence & Zuo (1992).

2.1 Electron diffraction

In transmission electron microscopy, a beam of (high-energy) electrons is sent
through the specimen, with which the electrons interact, and is recorded on
the other side. All modern transmission electron microscopes (TEMs) have
two main modes, an imaging (or microscopy) mode, and a diffraction mode.
In the image mode, the recorded pattern shows the projection of the spatial
distribution of the scattering, while in the diffraction mode, the recorded
pattern shows the angular distribution of the scattering. One of the great
advantages of TEM, e.g. compared to X-ray diffraction, is the possibility to
easily switch between these modes.

In “ordinary” parallel beam electron diffraction, the diffraction patterns
consist of bright spots (see Fig. 2.2a), corresponding to beam directions that
satisfy the well known Bragg’s law

2d ′ sin θB = nλ (2.1)

where d ′ is the spacing between lattice planes, θB is the Bragg angle, n is

7
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CHAPTER 2. QUANTITATIVE ELECTRON DIFFRACTION

an integer and λ is the electron wave length. However, it is convenient to
introduce d = d ′/n which simplifies Bragg’s law to

PSfrag replacements

K K′

g

|g|/2

θB

Figure 2.1: Relation
between Bragg’s law and
the Laue condition.

2d sin θB = λ (2.2)

and to regard this as first order reflections from
planes with spacing d = d ′/n. The quantity s =
sin θ/λ is often referred to as the scattering angle.
From Bragg’s law it follows that s = |g|/2 at the
Bragg angle, where g is a reciprocal lattice vector
corresponding to the planes d, with |g| = 1/d.

Another condition for diffraction maximum,
which is more suitable for quantitative work, is the
Laue condition

K′ − K = g, (2.3)

where K and K′ are the incident and diffracted
beams respectively. By assuming elastic scattering
|K′| = |K|, Bragg’s law (2.2) follows immediately,
with the Bragg angle θB defined in Fig. 2.1.

2.2 Convergent beam electron diffraction

The principles of CBED are the same as for ordinary selected area diffraction
(SAD), but instead of using a parallel beam, the electron probe is focused
onto the specimen. As seen in Fig. 2.2, this causes the spots to broaden
out into disks. Each incident beam direction (e.g. a in Fig. 2.3) gives rise
to a complete diffraction pattern, with one diffraction spot a′ contributing
to each CBED disk. Thus, if an incoherent electron source is used, such as
a LaB6 filament, the CBED pattern can be seen as a superposition of inde-
pendent diffraction patterns with different incident directions. For coherent
sources, such as a field electron gun (FEG), one has to account for inter-
ference phenomena in the regions where the disks overlap (Zuo & Spence,
1993).

Figure 2.4 shows a CBED pattern tilted away from the major zone axis,
to a position where the (1̄01̄) and (101) reflections satisfy the Bragg condi-
tion along the lines pointed out in the figure. This is called a systematic row
orientation. Three reflections, (03̄1̄), (13̄0) and (23̄1), in the first order Laue
zone (FOLZ), are also visible. At incident beam angles satisfying the Bragg
conditions for these three reflections, intensity is scattered away from the

8
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2.2. CONVERGENT BEAM ELECTRON DIFFRACTION

(a) (b)

Figure 2.2: Parallel (a) versus convergent beam (b) electron diffraction patterns
of the [101] zone in Mg. In the SAD pattern (a) the direct beam is blocked in
order to protect the CCD camera. April 5, 2002.

h g − h
000 a’

a’

a

a’

g

Specimen

Convergent
incident beam

t

Electron probe

Figure 2.3: Schematic drawing of CBED. The CBED pattern is a superposition
of diffraction patterns with slightly different incident beam directions. A CBED
pattern is hence an image of the intensity variation as a function (called rocking
curve) of incident beam direction.
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CHAPTER 2. QUANTITATIVE ELECTRON DIFFRACTION

130

031

130

231

101

Bragg condition

g
000

fringes
Thickness

101

(a) (b)

Figure 2.4: CBED pattern of Mg in a symmetric (101) systematic row orientation.
In (b) the low-count pixels of the pattern (a) are shown, making the Kikuchi line
visible. See the text for a discussion of the features. April 9, 2002.

center disk to corresponding reflections. The dark FOLZ-line, correspond-
ing to the (13̄0) reflection, is marked in figure 2.4a. From kinematic theory,
one would expect this to be a straight line, like all the other thin dark lines
visible in the center disk, but because of strong dynamical coupling between
the (13̄0) and (23̄1) reflections, the line seems to split up and bend where
it crosses the (23̄1) FOLZ-line. The position of the high order Laue zone
(HOLZ)-lines, which are not strongly coupled to other lines, is easily deter-
mined from the incident beams K satisfying the Laue condition for reflection
g. For elastically scattered electrons1, the absolute value of the scattered
beam |K′| = |K + g| equals the absolute value of the incident beam |K|, i.e.

K2 = |K′|2 = |K + g|2 (2.4)

from which it follows that

K · g = −g2/2. (2.5)

Since the amplitude |K| = 1/λ is fixed, this equation defines a circle of
incident beams K making an angle of 90◦ − θB with the lattice vector g, as
illustrated in Fig. 2.5. The position of the HOLZ-lines corresponds to the
projection of this ring onto the zero order Laue zone (ZOLZ)-plane (plane

1Thermal diffuse scattering (TDS) can also be regarded as nearly elastic, since the loss
in energy (up to 0.1 eV) is much smaller than the beam energy. This is the reason why
Kikuchi-lines just continue the HOLZ-lines outside the disk.

10
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2.2. CONVERGENT BEAM ELECTRON DIFFRACTION

g

K

ZOLZg

Incident beam

Zone axis

K’

z

HOLZ line Corresponding line
in outer HOLZ ring

θ
B

Figure 2.5: Geometry of HOLZ lines. The two
cones define all incident K and diffracted beams
K ′, which satisfies the Bragg condition for the
reflection g.

perpendicular to the zone axis). For high-energy electrons, the HOLZ-lines
appear straight since the radius of the cone is very large (λ is very small).

From Fig. 2.4b one sees that the HOLZ-lines continue out of the CBED
disks. These lines, called Kikuchi-lines, are due to elastic scattering of in-
elastic scattered electrons. They are very useful for an initial determination
of the crystal orientation.

The last important feature seen in Fig. 2.4a is the thickness fringes.
These too have a dynamical origin and the distance between them is closely
related to the crystal thickness (see Eq. 2.15). The thicker the crystal, the
closer are the fringes.

Together with the huge amount of information, the most important ad-
vantage of CBED is the small probe size, typically 10 nm in a conventional
TEM, and down to a few Ångström in a microscope with a FEG source. The
small probe, combined with the image mode, makes it easy to find a perfect
crystalline region of the specimen for the CBED experiment.

Because of the strong interaction between the incoming electrons and the
crystal, multiple scattering occurs, despite the small sample thickness (500–
2000 Å). Hence, dynamical theory is required when calculating the intensities
in the CBED pattern. Since the scattering comes from a single-crystalline
region, it is possible to use the Bloch-wave method (described in more de-
tail in Section 2.3) resulting in very accurate simulations. This is the same
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CHAPTER 2. QUANTITATIVE ELECTRON DIFFRACTION

technique as is used in the X-ray Pendellösung method. However, the X-
ray Pendellösung method is limited to very few materials, such as Si and
diamond, for which large single crystals can be produced.

Since normal X-ray diffraction (not Pendellösung) utilizes kinematic the-
ory, there will be problems with extinction (dynamical effects) for the strong
low order reflections. However, these are exactly the reflections that can be
measured with QCBED. Hence X-ray and QCBED can be seen as comple-
mentary techniques and their combination has proven very successful (Zuo
et al., 1999; Friis et al., 2003b).

2.3 Dynamical intensities

There are two common methods for simulation of electron diffraction inten-
sities, the Bloch-wave and the multi-slice method. For perfect crystals with
relatively small unit cells, the Bloch-wave method is preferable because of its
accuracy.

Since the exchange and correlation between the beam and crystal elec-
trons can be neglected for high energy electrons (Rez, 1978), the propaga-
tion of an incident electron is described by the time-independent Schrödinger
equation (

− h2

8π2m
∇2 − |e|V (r)

)
Ψ = |e|EΨ (2.6)

where V (r) is the crystal potential (in units of Volts) and −E is the acceler-
ation voltage. For a periodic potential

V (r) =
∑
g

Vg e2πig·r (2.7)

equation (2.6) has the Bloch-wave solution

Ψ(r) =
∑

j

c(j) e2πik(j)·r ∑
g

C(j)
g e2πig·r (2.8)

where k(j) is the wave-vector of the jth Bloch-wave and g is a reciprocal
lattice vector. Substitution of Eq. (2.7) and (2.8) back into Eq. (2.6) yields
the standard dispersion equation for high-energy electron diffraction[

K2 − (k(j) + g)2
]
C(j)

g +
∑
h�=g

Uh−gC
(j)
h = 0 (2.9)

where we have introduced the electron structure factor

Ug =
2m|e|

h2
Vg. (2.10)
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2.3. DYNAMICAL INTENSITIES

The amplitude of the incident beam wave-vector is related to the acceleration
voltage by K2 = 2m|e|(E+V0)/h

2 where V0 is the mean inner potential. Even
though V0 is a very small quantity (around 5-25 V depending on material)
compared to E (120 kV in the microscope used for the experiments in this
thesis) it is not negligible (Friis et al., 2003a).
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Figure 2.6: Two-beam dispersion surface construction, showing the quantities
γ(j), k(j), etc. . . The dispersion surface shows the allowed k vectors inside the
crystal for a given electron beam energy.

It follows from continuity of Ψ(r) at the entrance surface of the crystal,
that the tangential components of k(j) must equal the tangential components
of K, which can be expressed as k(j) = K + γ(j)n, where n is the normal
vector of the surface and the coefficient γ(j) is known as the Anpassung.
Some of these quantities are shown for the two beam case in Fig. 2.6. Since
backward scattering can be neglected for high energy electrons (Hirsch et al.,
1977), Eq. (2.9) can, after renormalization (Metherell, 1975) and assuming
that the beam is nearly antiparallel to the entrance surface, be simplified to

2KSgC
(j)
g +

∑
h

Ug−hC
(j)
h = 2Knγ

(j)C(j)
g , (2.11)

where Sg is the deviation from the Bragg condition and Kn = K ·n (Spence
& Zuo, 1992). This is an eigenvalue problem, with eigenvalues 2Knγ

(j) and
eigenvector matrix C. Because of continuity, no reflected beams can be
excited at the entrance surface, leading to a condition

∑
j c(j)C

(j)
0 = 1 for the

excitation coefficient c(j) of the jth Bloch-wave.
The diffraction intensities are given by the wave function at the exit

surface. The intensity in a point specified by the incident beam K in disk g

13
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CHAPTER 2. QUANTITATIVE ELECTRON DIFFRACTION

is given by

Ig(K) = |Ψ|2 =

∣∣∣∣∣∑
j

C
(j)
0 C(j)

g

∗
e2πiγ(j)t

∣∣∣∣∣
2

(2.12)

where t is the thickness of the crystal.
Absorption can be included in a phenomenological way, by introducing a

complex component to the crystal potential

V (r) → V (r) + iV ′(r) (2.13)

leading to a damping

k(j) → k(j) + iq(j) and c(j) → c(j) e−2πiq(j)t (2.14)

of the intensity. From the Fourier transform of V (r) and V ′(r) one obtains
the, in general complex, electron structure factor Ug, and absorption U ′

g,
respectively.

If there is only one strongly exited beam (g) beside the direct beam (0)
(the so called two beam condition), it is easy to solve Eq. (2.11) analytically,
resulting in the intensities

Ig(K) = 1 − I0(K) =
|Ug|2 sin2

(
πt/K

√
K2S2

g + |Ug|2
)

K2S2
g + |Ug|2

. (2.15)

This equation explains the oscillating “thickness fringes”, seen in Fig. 2.4,
when we move away from the Bragg condition. It also tells us that the
intensity will oscillate with thickness variations. These simple observations
are still valid, though more complicated, in the general n-beam condition.

2.4 Structure factor refinement

There exist several approaches for structure factor determination by QED
(see Holmestad 1994, page 22 for an overview). For QCBED there are two
main approaches, one using zone-axis patterns (Bird & Saunders, 1992a,b)
and one using the systematic row orientation (Zuo & Spence, 1991). Both
techniques can provide low order structure factors accurate enough for bond-
ing studies. The zone-axis approach has the advantage that the diffraction
patterns are easy to index and a lot of structure factors can be refined from
a single experimental pattern. However, the computation might be more
difficult since more parameters have to be refined and the patterns contain

14

URN:NBN:no-7231



2.4. STRUCTURE FACTOR REFINEMENT

a lot of HOLZ-lines, that are affected by the temperature factor2 and lattice
parameters. In the systematic row orientation, on the other hand, the speci-
men is tilted to a position with only a few strongly excited reflections. This
makes the intensity around the Bragg position very sensitive to the corre-
sponding structure factor. In addition it is possible to find regions with only
few HOLZ-lines, reducing the problems with the temperature factor. In this
work the systematic row approach has been used. The experimental setup
and the importance of energy filtering and deconvolution of the point spread
function are covered in Paper 1 and 4. More details are found in Zuo (1999).

2.4.1 The least square procedure

The EXTAL program by Zuo (1998) has been used for all structure fac-
tor refinements presented in this thesis. It follows the ideas of Goodman &
Lehmpfuhl (1967), Voss et al. (1980) and Gjønnes et al. (1988), but has devel-
oped into an advanced algorithm for refining high voltage, lattice parameter,
and structure factors. In short one chooses pixels along lines for which the
intensity is extra sensitive to the parameters one wants to determine (see Fig.
2.7 and Friis et al. 2003b). A set of refined parameters (structure factors,
absorption, thickness, beam direction, etc. . . ) are varied until a best fit is
obtained between the calculated and the experimental intensities. The SIM-
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Figure 2.7: (a) A CBED pattern of the (220) systematic row in copper. The line
scans, along which pixels are compared with theory are marked. (b) Plot of pixel
intensities for the best fit between calculation and experiment. By B. Jiang, Sep.
2001.

2This can, on the other hand, be used for measuring the temperature factor (Saunders
et al., 1999).
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CHAPTER 2. QUANTITATIVE ELECTRON DIFFRACTION

PLEX algorithm of Nelder & Mead (1965) is used for the minimization in
EXTAL. This seems to give a good balance between robustness and efficiency.

If one removes outlier pixels arising from X-rays striking the CCD-camera,
the errors can be assumed to be normal-distributed (see Zuo 1999 for a
discussion). Hence a χ2 test may be used as a goodness-of-fit criterion

χ2 =
1

n − p − 1

n∑
i=1

∣∣Iobs
i − cIcalc

i − Ibgr
∣∣2

σ2
i

. (2.16)

Here Icalc
i and Iobs

i are the calculated and observed intensities for pixel i while
Ibgr is a refined background intensity, which is assumed constant for each disk
(Saunders & Bird, 1995). n is the number of pixels, p the number of refined
parameters and c a refined factor, which scales the calculated intensity to
counts. Ideally χ2 should be very close to one, provided normal-distributed
errors and that correct values are used for the standard deviation of the
intensities σi.

In order to ensure convergence of the refinement procedure, good starting
values for the refined parameters must be chosen. First the thickness, which is
a trivial but important parameter, and the incident beam direction have to be
estimated. The beam direction is usually estimated by visually comparing the
experimental Kikuchi- and HOLZ-line pattern with kinematic calculations
(Zhu & Zuo, 1994). The absorption is estimated using the ATOM subroutine
of Bird & King (1990), even though better routines are available nowadays
(Weickenmeier & Kohl, 1991, 1998).

The initial structure factors can either be taken from density functional
theory (DFT) calculations, or be calculated from the electron scattering fac-
tor as

Ug =
2m|e|

h2

1

Ω

∑
j

f e
j (s)Tj(s) e−2πig·rj , (2.17)

where f e
j is related to the X-ray scattering factor (via Eq. A.7), for which

good extrapolations to Hartree-Fock calculations exist (Doyle & Turner,
1968; Su & Coppens, 1997). In either case, the atomic temperature fac-
tor Tj(s) at the experimental temperature also has to be estimated. It is
important to get a good estimation of the displacement parameters3 (DPs),
since all the non-refined structure factors depend on them.

3Tj(s) is in the harmonic approximation given by Tj(s) = exp(−2π〈uiuk〉j gigk), where
the elements of the atomic displacement tensor 〈uiuk〉j are the anisotropic DPs. Sum-
mation over repeated indices is assumed. In the isotropic case this equation reduces into
Tj(s) = exp(−Bjs

2), where Bj = 8π2〈u2〉j is known as the Debye-Waller factor in the
electron microscopy literature. However, this name is not recommended according to a
commission on nomenclature sat down by IUCr (Trueblood et al., 1996).
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Good isotropic estimates for the DPs can in many cases be obtained from
analytical fits to phonon density-of-state calculations (Sears & Shelley, 1991).
A problem with this approach, as well as using X-ray or neutron diffraction
results, is that the exact temperature of the specimen is unknown. A better
method is therefore to determine the DPs directly from the CBED data
(Holmestad et al., 1993; Nüchter et al., 1998; Saunders et al., 1999; Friis
et al., 2003c).

2.4.2 Beam selection and Bethe perturbation

Since Eq. (2.11) has to be solved for each pixel along the chosen line scans,
one has to limit the number of beams included in the diagonalization. This is
solved by only including the strongest beams in the diagonalization (∼ 50),
and treating the rest of the non-negligible beams by perturbation (∼ 300).
See Zuo & Weickenmeier (1995) and Birkeland et al. (1997) for a discussion
of beam selection criteria. Using the effective Bethe potential, the following
perturbations of the eigenvalue system (2.11) can be derived (Spence & Zuo,
1992)

U eff
g = Ug

(
1 −

∑
h

Ug−hUh

2KShUg

)

2KSeff
g = 2KSg −

∑
h

Ug−hUh−g

2KSh
(2.18)

that are caused by dynamical interaction between the strong beam g and the
weak beams h. Eq. 2.18 is used in EXTAL with the beam selection criterias
of Zuo & Weickenmeier (1995).
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Chapter 3

Charge density

3.1 The independent atom model

Since only a minor part of the electrons of an atom belongs to the valence
shell, the atomic electron density is well described by a spherically averaged
density (except for the lightest elements H, He. . . ). If one furthermore as-
sumes that the radial dependence is equal to that of the theoretical ground
state atom, one ends up with the independent atom model (IAM), in which
the atoms are assumed independent of each other. It describes a procrystal
where independent atoms are brought from infinity to the lattice positions of
the crystal. From calculations of the spherical atomic charge density ρatom(r)
the atomic IAM X-ray scattering factors are given by

fX(s) = F{ρ} = 4π

∫ ∞

0

r2ρatom(r)
sin(4πsr)

4πsr
dr, (3.1)

where F is the Fourier transform and s = sin θ/λ is the scattering angle.

In International Tables for Crystallography (1992, page 500) interpolated
coefficients for the scattering factors are listed for many common elements
and ions based on the relativistic Hartree-Fock calculations of Doyle & Turner
(1968). More recent similar tables have been published by Su & Coppens
(1997) based on multiconfiguration Dirac-Hartree-Fock calculations.

The IAM model gives very good values of fX for large scattering angles
and is a good approximation for small scattering angles too. However, by
construction, it contains no information about the fine charge redistribution
due to bonding. For this, one needs a model which takes the interaction
between atoms into account.
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CHAPTER 3. CHARGE DENSITY

3.2 Deformation density

The shape of the deformation of the electron charge distribution, when bond-
ing features are added to the IAM model, gives a good qualitative measure
of chemical bonding. This deformation is given by the deformation density,
defined as

∆ρ = ρ(r) − ρIAM(r) (3.2)

where ρ is the true charge density and ρIAM is the procrystal density.
The deformation density includes information about atomic orientation,

hybridization, charge transfer, and covalent bond formation. A peak between
atoms indicates covalent bonding. However, the opposite statement, that the
absence of a peak implies no covalent bonding, is not necessarily true, since
for elements with more than half-filled shells, the neutral spherical atoms
that are subtracted have more than one electron per orbital (Coppens, 1997).
Metallic bonding is typically recognized as a spherically charge depletion at
the atomic sites (Friis et al., 2003a).

The deformation density is normally obtained by Fourier synthesis of
experimentally measured structure factors F obs

g as

∆ρ = ρobs(r) − ρIAM(r) =
1

Ω

∑
g

(
F obs

g − F IAM
g

)
e−2πig·r. (3.3)

An example of a deformation density map of the (110) plane in Cu is shown
in Fig. 3.1a.

The deformation density calculated in this way contains uncertainties,
arising both from the errors in measured structure factors and from the fact
that the number of measured structure factors is limited, which may result in
non-negligible truncation errors. An approximate expression for the variance
of the deformation density was derived by Rees (1976) where it is assumed
that all beams up to gmax are measured. Rees puts all uncertainties of the
measured values into a factor σ2(ρobs

G ) corresponding to the variance at a
general position

σ2(∆ρG) ≈ 1

Ω

∑
g≤gmax

σ2(F obs
g ). (3.4)

The variance of ∆ρ at position r is then given by

σ2(∆ρ)(r) = σ2(∆ρG)

[
1 +

n∑
i=2

C(2π|r− Tir− Ri||gmax|)
]

(3.5)

where the sum runs over the n symmetry equivalent positions, Ti is the ith
symmetry operator and Ri is the crystal sub-lattice translation vector which
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Figure 3.1: (a) The deformation density of the (110) plane in Cu calculated from
the 6 lowest order structure factors (|gmax| = 1.58 Å−1). The zero level is marked
with a thick black contour line. Positive (black) and negative (white) contour
intervals are 0.05 eÅ−3 and 0.1 eÅ−3, respectively. (b) A corresponding map of
the standard deviations. Contour intervals are 0.05 eÅ−3. Source: Friis et al.
(2003a).

minimizes |r − Tir − Ri|. The identity operator T1 = I is moved out of the
summation in order to simplify the discussion below, about the limit when
|gmax| → ∞. The function C is given by
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Figure 3.2: The function C(u) in expression 3.6.

C(u) = 3(sin(u) − u cos(u))/u3 (3.6)

and is plotted in Fig. 3.2.
From Fig. 3.1b it is clear that the standard deviation of the deformation

density σ(∆ρ) shows large peaks close to high-symmetric positions. This is

23

URN:NBN:no-7231



CHAPTER 3. CHARGE DENSITY

because, when r is close to a high-symmetric position, u = |r−Tir−Ri||gmax|
will be small and hence C(u) will be large for all terms i in (3.5) for which
Tir ≈ r. From (Eq. 3.5) it follows that this is an effect caused by truncation
errors. If |gmax| → ∞ then C(u) → 0 and the variance σ2(∆ρ)(r) will be flat
and reduced to the variance of a general position σ2(∆ρG).

These truncation errors can be avoided in deformation densities derived
from a multipole model or a maximum entropy simulation. In the former
case, one fits a set of multipolar parameters to create a model reproducing
the observed structure factors F obs

g . From this model it is possible to directly
find ρobs, without any Fourier summation. In the latter case the Fourier
summation is also avoided, since one is already working in real space.

3.3 Density functional theory

Density functional theory (DFT) has shown to be an efficient and accurate
approach for solving the many-electron system of a crystal. It is based on the
statement that there exists a one-to-one correspondence between the ground
state density ρ(r) of a many-electron system and the external potential V
(Hohenberg & Kohn, 1964). From this statement it follows that the energy
can be written as a functional of the electron density. In the formalism of
Kohn & Sham (1965) the total energy is given by

E[ρ] = EKS
kin[ρ] + EeN[ρ] + Eee[ρ] + Exc[ρ] + ENN (3.7)

where the terms are, respectively, the kinetic energy1, the attractive Cou-
lomb electron-nucleus interaction, the repulsive Coulomb electron-electron
interaction, the exchange-correlation energy and finally the nucleus-nucleus
Coulomb repulsion, which does not depend on the electron density. The
exchange-correlation term does not have a simple classical interpretation. It
incorporates the effect of the Pauli principle, i.e. that the wave-function
is anti-symmetric under the exchange of two electrons, and the Coulomb
correlation between electrons, thus the name.

The energy of a system of electrons in an external field is given by min-
imizing the density functional2 in Eq. (3.7). This is equivalent to solving a

1EKS
kin is the energy of a fictitious non-interaction system. A correction (Ekin −EKS

kin) is
built into the exchange correlation Exc[ρ] (Friedrich, 1999).

2This follows from the variational principle, which states that given a normalized wave
function Φ, which satisfies appropriate boundary conditions, the expectation value of the
Hamiltonian is an upper limit to the exact ground state energy 〈Φ|H|Φ〉 ≥ E0.
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3.3. DENSITY FUNCTIONAL THEORY

set of Kohn-Sham equations, comprising a one-particle Schrödinger equation[
− �

2

2m
∇2 + V KS[r, ρ(r)]

]
φi(r) = εiφi(r) (3.8)

with

V KS[r, ρ(r)] = Vext(r) + Vee(r) +
∂

∂ρ(r)
Exc[ρ(r)], (3.9)

where the Kohn-Sham orbitals φi(r) are related to the electron density by

ρ(r) =
∑

i

fi|φi(r)|2 (3.10)

with orbital occupation numbers fi. The terms in the Kohn-Sham potential
(3.9) are, respectively, the external potential3, the Coulomb potential corre-
sponding to ρ(r) (also known as the Hartree potential) and the functional
derivative of the exchange-correlation with respect to the density, represent-
ing the many-body effects of the system. The Kohn-Sham equations (3.8)
and (3.9) may be solved iteratively. Beginning with an initial potential, Eq.
(3.8) is solved and the electron density is obtained from the orbitals via Eq.
(3.10). Then this density is used to form a new potential for Eq. (3.8).
This self-consistency cycle is continued until the potential and density sat-
isfy some convergence criteria, which often involve many iterations, since the
self-consistency procedure is inherently unstable. Sophisticated ‘feedback’ or
‘mixing’ techniques are necessary to prevent oscillations.

In order to solve the Kohn-Sham equations, one needs an approximation
for the exchange-correlation term, which in general depends on ρ(r) in every
point r. The traditional approximation, proposed by Kohn & Sham (1965),
is referred to as the local density approximation (LDA) and takes the form

Exc =

∫
εxc[ρ(r)]ρ(r) dr (3.11)

where εxc is the exchange correlation energy of a homogeneous electron gas
with the density ρ(r) = ρ. Although this form of the exchange correlation
energy appears to be valid only when the electron density is slowly varying, it
is a good approximation for a wide range of systems. A common extension of
the LDA approximation is to include a dependence of ∇ρ(r). This is the gen-
eralized gradient approximation (GGA), which in general performs slightly
better than LDA in estimating non-local properties, such as lattice parame-
ters and bulk modulus. A popular variant of GGA is the parametrization of
Perdew et al. (1996).

3The nucleus potential is normally called Vext, since the electrons “see” the nucleus
potential just like any other external potential.
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Interstitial

Figure 3.3: Partitioning of the
unit cell into atomic-centered
“Muffin-Tin” (MT) spheres and
an interstitial region in the
LAPW method.

When solving the Kohn-Sham equations,
another important issue is to choose an ap-
propriate basis set to represent the single
particle wave-functions φi(r). All calcula-
tions in this thesis have been carried out
with WIEN2k (Blaha et al., 2001), which
uses the linearized augmented plane wave
(LAPW) or augmented plane wave plus lo-
cal orbital (AWP+lo) basis sets, that are
among the most accurate methods for per-
forming electronic structure calculations for
crystals. Here the unit cell is divided into
non-overlapping atomic centered, so called
“Muffin-Tin” spheres and an interstitial region (Fig. 3.3). Inside the spheres,
the wave-function is represented by spherical harmonics and radial functions.
Outside it is represented by plane waves, with the requirement that the wave-
function and its first derivative have to be continuous on the sphere bound-
aries.

Although DFT is a very successful tool for studying properties of ma-
terials, and normally reproducing experimental results with errors less than
a few percent, notable problems still exist. One of them is the unphysical
self-interaction of an electron with itself, addressed in Friis et al. (2003b).
The Eee term of Eq. 3.7 contains the mean-field interaction energy of an
electron with itself. This contribution would exactly have been canceled if
the exchange-correlation functional is exact. However, for systems where
the electrons are localized, or close to localized, the approximations in the
exchange-correlation functional result in a non-negligible self interaction.
Several corrections for this have been proposed (Perdew & Zunger, 1981;
Lundin & Eriksson, 2001), but they are not yet a standard option in the
WIEN2k program. Some modifications of the code was therefore necessary
for Paper 4.
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Chapter 4

Multipole formalism

When studying chemical bonding, it is necessary to account for the pertur-
bation of the spherically IAM electron density caused by interaction with
other atoms. In the multipole formalism by Hansen & Coppens (1978) the
aspherical corrections to IAM density are described by a set of atom-centered
multipolar functions, obeying the symmetry of the atomic site. The multi-
polar functions are strongly related to the well known spherical harmonics
forming the solution of the hydrogen atom. It is possible to show, for an
isolated atom, that the multipole formalism is equivalent to a single-Slater
determinant atomic wave function description composed of orthogonal spin-
orbitals (Koritsanszky et al., 2003, sec. 1.8). In a multipole model, based
on a set of measured structure factors, the population and expansion param-
eters for each included multipolar function are fitted in order to reproduce
the observed structure factors.

In this chapter we will only give a brief resume of the multipole method
and focus on the multipole refinement of electron diffraction data. The details
and further development of the model are well described in Coppens (1997)
and Coppens (2001).

4.1 The multipole model

In the multipole formalism of Hansen & Coppens (1978), the atomic electron
density

ρatom(r) = Pcρcore(r) + Pvκ
3ρvalence(κr)

+

lmax∑
l=0

κ′3
l Rl(κ

′
lr)

l∑
m=0

∑
p=±

Plmp dlmp(θ, φ). (4.1)
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CHAPTER 4. MULTIPOLE FORMALISM

is described by three parts; a spherically core part populated with Pc elec-
trons, a spherical valence part which is allowed to expand (κ < 1) or contract
(κ > 1) with population Pv, and a series of multipolar functions accounting
for an aspherically redistribution of the electron density, each populated with
Plmp electrons.

The multipolar functions are characterized by a radial function Rl(κ
′r)

(which also may be expanded or contracted with the κ-parameter) and the
density functions dlm±, that are real spherical harmonics, normalized such
that ∫

|dlm±| sin θ dθ dφ =

{
1 for l = 0
2 for l > 0

. (4.2)

This normalization implies that a multipole population Plm± = 1 corresponds
to one electron for the spherically symmetric d00, and that both the positive
and negative lobes of dlm± for l > 0 integrate to one electron each. The
shape of the density functions for l ≤ 3 are illustrated in Fig. 4.1.

Monopole:

d00

y

z

x

Dipoles:

d10 d11±

Quadropoles:

d20 d21± d22±

Octupoles:

d30 d31± d32± d33±

Figure 4.1: Multipolar functions. The difference between the dlm+ and dlm−
functions is that they are rotated 90◦ around the z-axis compared to each other.
Source: http://odin.math.nau.edu∼jws/dpgraph/Yellm.html.

Since the multipolar functions form the solution of the hydrogen atom,
and approximate heavier atoms very well, the series in Eq. 4.1 converges very
quickly. For second and third row elements, it is usually sufficient to include
up to quadropoles (l=2), but for 3d transition metals hexadecapoles (l=4)
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4.1. THE MULTIPOLE MODEL

also have to be included (Stewart et al., 2000). Occasionally, higher order
multipoles might be necessary to include, which e.g. was the case in the old
study of beryllium (Stewart, 1977), and might, for the same reasons, also
be necessary in a future study of magnesium. The number of independent
multipole functions is strongly reduced by the site symmetry of the atom.
These symmetry-constrains are easily obtained by the index picking rules of
Kurki-Suonio (1977). For instance, for the cubic site symmetry of the Cu
atoms in pure fcc copper, all terms in the multipole expansion up to l = 4
vanish, except for the monopole and a linear combination of hexadecapoles
(known as cubic harmonics, von der Lage & Bethe, 1947). In other words, the
multipole model is a very flexible model for the electron distribution which
incorporates the required symmetry, but at the same time only requires a
limited set of parameters to be fitted to the experimental data.

The choice of the radial functions Rl(r) is the most difficult part in mul-
tipole modeling. Even for the spherical parts, it is not obvious which elec-
trons should be included in the core, valence, or monopole terms. Often the
core and valence densities are calculated from Roothaan-Hartree-Fock atomic
wave functions and expanded in terms of Slater-type basis functions

Ol(r) =

√
(2ζl)2nl+1

2nl!
rnl−1 e−ζlr, (4.3)

for which the expansion coefficients and the parameters nl and ζl are tabu-
lated by Clementi & Roetti (1974).

The radial dependence of the multipolar functions Rl(r) is given by pro-
ducts of atomic orbitals of the form Ol′Ol′′. Table 4.1 shows which multipoles
can be constructed from the different orbital products. In the case of e.g.
copper, which for l ≤ 4 only has a hexadecapole, we see that the radial
function must be constructed by the 3d × 3d orbital product. It is often
sufficient to describe the multipolar radial function by only one term Ol′Ol′′,
so called single zeta-functions.

Table 4.1: l values for the allowed multipoles formed by the orbital product
Ol′Ol′′ , where l′, l′′ = 0, 1, 2 for s p and d orbitals, respectively (Koritsanszky
et al., 2003).

l′\l′′ s p d
s 0 1 2
p 0 2 1 3
d 0 2 4

31

URN:NBN:no-7231



CHAPTER 4. MULTIPOLE FORMALISM

4.2 Aspherical contribution to atomic scat-

tering

From the Fourier transform of Eq. (4.1) aspherically atomic scattering factors
are obtained as

f(s) = Pcfcore(s) + Pvfvalence(s/κ) +

lmax∑
l=0

l∑
m=0

∑
p

Plmpflmp(s/κ
′), (4.4)

where the deformation scattering factors flmp(s) are given by

flmp(s) = 4πil〈jl〉 dlmp(β, γ). (4.5)

The relation between the reciprocal angular coordinates β and γ and the
real space angular coordinates θ and φ is shown in Fig. 4.2. 〈jl〉 is the
Fourier-Bessel transform of the radial function Rl(r), defined as

〈jl〉 =

∫
jl(2πsr)Rl(r)r

2 dr (4.6)

with jl being the lth order Bessel function.

PSfrag replacements

a

b

c

θ

φ

r

PSfrag replacements

a
b
c
θ
φ

r

a∗

b∗

c∗

γ

β

s

Figure 4.2: The angles θ, φ, β and γ.

4.3 Multipole refinement of electron diffrac-

tion data

In multipole refinement, the population and κ-parameters are determined
from least square fitting between structure factors calculated from the mul-
tipole model F calc

g and the observed structure factors F obs
g . The model struc-

ture factors are obtained from Eq. (4.4) as

F calc
g =

∑
j

fj(s)Tj(s) e−2πg·rj . (4.7)
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where Tj(s) is the temperature factor of atom j. For electron diffraction, one
normally converts the observed structure factors to their corresponding static
lattice values, at which the temperature factors Tj(s) are set to one. The rea-
son is that the temperature factors have to be determined anyway, in order
to convert the measured electron structure factors U obs

g into X-ray structure
factors F obs

g (see appendix A), since all well-tested multipole refinement pro-
grams (such as XD, VALRAY, MOLLY, etc. . . ) are made for X-ray data
and do not accept Uobs

g as input. Another reason is that one wants to refine
as few parameters as possible. In the X-ray community a rule of thumb is a
redundancy of about ten observed structure factors for each refined param-
eter. Such an overdetermination is not necessary with electron diffraction
data, since the low order structure factors, containing almost all bonding
information, are measured very accurately. In addition, the low order data
is not very sensitive to the isotropic or anisotropic temperature parameters.
However, in order to obtain reliable results, the electron diffraction data set
is usually not large enough. As mentioned, the solution is to combine with
X-ray (or γ-ray) measurements. In these cases one may as well convert the
electron diffraction data to the temperature of the X-ray measurements.

The multipole refinement programs mentioned above offer a lot of correc-
tions specific to X-ray or neutron diffraction data (such as scaling, extinction
and absorption correction, etc. . . ) that safely can be turned off, but that
may be useful in the case electron diffraction data are combined with some
high order X-ray structure factors. VALRAY was used for the multipole
refinements in Paper 6.
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Chapter 5

Maximum entropy

You should call it ‘entropy’ and for two reasons: first, the function is
already in use in thermodynamics under that name; second, and more
importantly, most people don’t know what entropy is, and if you use
the word ‘entropy’ you will win every time!

von Neumann

5.1 A short introduction to the maximum en-

tropy method

The maximum entropy method (MEM) is based on information theory and
was first developed for radioastronomy to enhance the information from in-
complete and noisy data (Frieden, 1972; Gull & Daniell, 1978). MEM was
first introduced into crystallography by Collins (1982) and has been very
successful in order to optimize the information that can be extracted from
an incomplete and noisy experimental data set and to produce the least pos-
sible biased density. An excellent review of modern applications of MEM in
crystallography is given by Gilmore (1996).

The formalism is very similar to that of statistical thermodynamics. Both
the statistical entropy and the information entropy deal with the most prob-
able distribution. In thermodynamics, this is the distribution of particles,
while in information theory it is the distribution of numerical quantities over
the ensemble of pixels. Statistical arguments, taken from thermodynamics,
can therefore be used to derive an expression for the entropy function to be
maximized.

The probability for a distribution of N particles over m boxes, each with
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CHAPTER 5. MAXIMUM ENTROPY

the prior probability qi to contain ni particles, is given by

P =
N !

n1! n2! . . . nm!
qn1
1 qn2

2 . . . qnm
m . (5.1)

The entropy S is defined as ln P . So, by using Stirling’s formula (lnn ≈
n lnn−n) the entropy, apart from a constant (only depending on N =

∑
i ni),

becomes

S = −
m∑

i=1

ni ln
ni

qi
. (5.2)

If we digitize the unit cell (or an appropriate subunit) of volume V into M
pixels, each with volume V/M and density ρ(rj), the entropy of the electron
distribution can, in accordance with Eq. (5.2), be written as

S[ρ(r)] = −
M∑

j=1

pj ln
pj

mj
, (5.3)

where S now becomes a functional of the sought charge density ρ(r). The
quantities pj = p(rj), the probability of the density associated with pixel j,
and mj = m(rj), the corresponding probability for the prior (model) density
ρ0(r) at pixel j, are defined as

pj = p(rj) = ρ(rj)

/
M∑
i=1

ρ(ri) (5.4)

mj = m(rj) = ρ0(rj)

/
M∑
i=1

ρ0(ri) . (5.5)

We want to maximize the entropy functional S[ρ(r)], given our knowledge
of the prior density, the values F obs

h and the standard deviation σh of the N
measured structure factors. The observed structure factors are taken into
account by introducing the constraint

C[ρ(r)] = χ2 =
1

N

∑
h

∣∣F obs
h − F calc

h

∣∣2 /
σ2

h � 1, (5.6)

where

F calc
h =

V

M

M∑
j=1

ρ(rj) e−2πih·rj (5.7)

are structure factors calculated from the sought charge density. Note that Eq.
(5.7) remains valid even when only a subunit of the unit cell is digitized into
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METHOD

M pixels, provided that this subunit remains a multiple of the asymmetric
unit.

If the constraint (5.6) were not introduced, maximizing the entropy would
result in a uniform distribution. To enforce the constraint, the maximization
of S = S[ρ(r)] is performed by introducing the Lagrangian function L =
S − λχ2, where λ is the Lagrange multiplier (Skilling & Bryan, 1984). At
convergence ∇ρL = 0 or, equivalently, ∇ρS = λ∇ρχ

2. For each pixel j, this
corresponds to

∂S

∂ρj

= λ
∂χ2

∂ρj

, (5.8)

where ρj = ρ(rj). Note that we here use the same Lagrangian multiplier λ for
all observed structure factors, as is common in crystallographic applications
(Collins, 1982; Gull & Skilling, 1991; Kumazawa, 1993; Burger, 1998; Tanaka
et al., 2002).

Equation (5.8) is non-linear, and has to be solved iteratively for both
λ(n + 1) and ρj(n + 1) coming from λ(n) and ρj(n). The starting values
are λ(0) � 0 and the prior density ρj(0) = ρ0(rj). To achieve convergence,
the χ2 � 1 constraint must first be satisfied, and thereafter the entropy S is
maximized while keeping χ2 � 1.

Using Eq. (5.3), the left-hand side of Eq. (5.8) can be written as

∂S

∂ρj
= −

M∑
j=1

∂pj

∂ρj

(
ln

pj

mj
+ 1

)

= −
M∑

j=1

δjk − ρj

ρ

(
ln

pj

mj
+ 1

)

= −1

ρ

(
ln

pk

mk

−
M∑

j=1

pj ln
pj

mj

)

= −1

ρ
ln

ρk/ρ0k

B
, (5.9)

where ρ =
∑

j ρj is the total number of electrons in the unit cell and B =
exp(

∑
j pj ln ρj/ρ0j). Note that B is very close to unity when the prior density

is very close to the true density. In the case of an uniform prior density,
ρ0(rj) = ρ0j = ρ/M , B is reduced to B = AM/ρ, where A = exp(

∑
j pj ln ρj)

is the weighted logarithmic average of the converged entropic density ρ(r)
over the unit cell. A corresponds to the expected density far away from any
atom. Reconstructed density values smaller than A are considered unreliable.
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Substitution of Eq. (5.9) into (5.8) leads to

ρj/ρ0j = B e−λρ(∂χ2/∂ρj). (5.10)

From this we can set up the iteration formulas

λ(n + 1) =

(
ln ρk(n)/ρ0k −

M∑
j=1

ρj(n)/ρ0j

)

×
(

F0

∑
h

2
|F obs

h − F calc
h (n)|

σ2
h

e−2πih·rj

)−1

(5.11)

and

ρj(n + 1) = ρ0j exp

(
M∑

j=1

pj(n) ln ρk(n)/ρk0

+ λ(n + 1)F0

∑
h

2
|F obs

h − F calc
h (n)|

σ2
h

e−2πih·rj

)
, (5.12)

where F calc
h (n) = V/M

∑
h ρj(n) exp(−2πih · rj) and F0 = V/M ρ.

5.2 Weaknesses of MEM

For the old, but accurate, Pendellösung data of silicon by Saka & Kato (1968),
it was found that the distribution of the discrepancies between F obs

h and F calc
h

after the MEM analysis (Sakata & Sato, 1990) deviates from the ideal Gaus-
sian distribution (Jauch & Palmer, 1993; Jauch, 1994). This points to a
weakness in the constraint (5.6): It constrains the variance of the distribu-
tion, but not its shape. An improvement has been reported (De Vries et al.,
1994) by assigning a weighting factor proportional to |h|−4 to the summation
of Eq. (5.7).

Another related weakness is that MEM tends to sharpen strong features
but flatten weak features, when the dynamic range is large. This may be
a problem when the aim is to recover the fine details of the density (which
is often the case in bonding studies) (Papoular et al., 1996; Iversen et al.,
1997). In the next section we will describe how the dynamic range can be
greatly reduced by applying MEM to the deformation density instead of the
full density.
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5.3. TWO-CHANNEL MEM

5.3 Two-channel MEM

Since the probabilities p(r) and m(r) have to be positive, a positive charge
density ρ(r) is required over the whole unit cell. This is not the case for the
deformation density ∆ρ(r) = ρobs(r)−ρIAM(r), which takes both positive and
negative values. The average of ∆ρ(r) over the unit cell must be zero, since
bonding effects only redistribute the electron density. In the two-channel
method, the deformation density is written as ∆ρ(r) = ρ+(r)− ρ−(r), where
the two functions ρ+(r) and ρ−(r) are positive and represent the densities of
excess and lack of electrons, respectively. This method was first developed for
magnetization densities (Papoular & Gillon, 1990) and for neutron scattering
(Sakata et al., 1993) for which both positive and negative scattering densities
occur.

In each pixel j, the functions ρ+
j = ρ+(rj) and ρ−

j = ρ−(rj) are mutually
exclusive, and have the corresponding probabilities p+

j = ρ+
j /Q and p−j =

ρ−
j /Q, where Q =

∑
j(ρ

+
j + ρ−

j ). The prior deformation density ∆ρ0j , at

pixel j, is in a similar way divided into two positive functions ρ+
0j and ρ−

0j

with the corresponding probabilities m+
j and m−

j . In analogy to Eq. (5.3),
the two-channel entropy is defined as

S[∆ρ] = −
M∑

j=1

(
p+

j

p+
j

m+
j

+ p−j
p−j
m−

j

)
. (5.13)

Since ∂χ2/∂ρ+
j = −∂χ2/∂ρ−

j , the positive and negative scattering densi-
ties are related by

ρ+
j ρ−

j = B2ρ+
j ρ−

j . (5.14)

Inserting the entropy (5.13) into Eq. (5.8) leads, with the help of Eq. (5.14),
to the following iteration formulas

λ(n + 1) = − 1

Q

ln ρ+
0j + ln ρ−

0j

C ′+
j (n) + C ′−

j (n)
(5.15)

ρ±
j (n + 1) = ρ±

0jB(n) e−λ(n+1) Q C′±(n), (5.16)

where

B(n) = exp

[
M∑

j=1

(
p+

j (n) ln
ρ+

j (n)

ρ+
0j

+ p−j (n) ln
ρ−

j (n)

ρ−
0j

)]
(5.17)

and

C ′±
j (n) =

∂χ2

∂ρ±
j

(n) = ∓ V

M

∑
h

2
|∆F obs

h − ∆F calc
h (n)|

σ2
h

e−2πih·rj . (5.18)
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CHAPTER 5. MAXIMUM ENTROPY

A problem with applying the two-channel MEM to the deformation den-
sity ∆ρ(r), is that the quantity Q, the sum of positive and negative densities
over the unit cell, is unknown (Nishibori, 2003). However, by introducing a
rescaled Lagrangian multiplier µ = λQ, Eqs. (5.15) and (5.16) become

µ(n + 1) = −
ln ρ+

0j + ln ρ−
0j

C ′+
j (n) + C ′−

j (n)
(5.19)

ρ±
j (n + 1) = ρ±

0jB(n) e−µ(n+1) C′±(n), (5.20)

which are independent of Q. One can therefore use an ordinary two-channel
MEM algorithm designed for neutron diffraction (e.q. the MEND algorithm
by Burger (1998)) on deformation densities (Friis et al., 2003).

5.4 Applications of MEM to QCBED

MEM is the method of choice when one wants to extract useful information
from poor or limited experimental data. Since the data from QCBED is of
outstanding quality, one would normally prefer to use other methods, e.g.
multipole analysis, for charge studies. However, the QCBED data set often
needs to be extended with structure factors of less quality. This may result
in an inconsistent data set, especially if rescaling or other corrections are
applied to the foreign data set (Friis et al., 2003).

In these cases, MEM may be an alternative method to obtain a least
biased charge density from all the observed data. As pointed out in section
5.2 it seems however to be important to use the two-channel method in order
to reduce the dynamical range and avoid sharpening of strong and flattening
of weak features.
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Paper 1

Quantitative Convergent Beam
Electron Diffraction
Measurements of Low Order
Structure Factors in Copper

TEM image of the thin area of the Cu sample used for experiments.
Magnification: 4000 times.
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Quantitative Convergent Beam Electron Diffraction
Measurements of Low-Order Structure Factors in Copper
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Abstract: Accurate low-order structure factors for copper metal have been measured by quantitative convergent

beam electron diffraction ~QCBED!. The standard deviation of the measured structure factors is equal to or

smaller than the most accurate measurement by any other method, including X-ray single crystal Pendellösung,

Bragg g-ray diffraction, and high-energy electron diffraction. The electron structure factor for the ~440!

reflection was used to determine the Debye-Waller ~DW! factor. The local heating of the specimen by the

electron beam is determined to be 5 K under the current illumination conditions. The low-order structure

factors for copper measured by different methods are compared and discussed. The new data set is used to test

band theory and to obtain a charge density map. The charge deformation map shows a charge surplus between

the atoms and agrees fairly well with the simple model of copper 2� ions at the atomic sites in a sea of free

uniformly distributed electrons.

Key words: quantitative convergent beam electron diffraction, QCBED, structure factor, copper, bonding, free

electron model

INTRODUCTION

The aim of the present work is to get a better understanding

of the role of the free electrons in the bonding of copper.

The structure factors for copper have been studied by many

researchers using different methods over the last 30 years. A

new data set is added here using the quantitative convergent

beam electron diffraction ~QCBED!method ~see Zuo, 1998;

Holmestad et al., 1999, and references therein!. The electron

diffraction method measures Fourier coefficients of the

ground state electrostatic Coulomb potential, including the

nuclear contribution ~electron structure factors!. These may

then be converted to X-ray structure factors ~Fourier coeffi-

cients of the electron charge density! using the reciprocal

space form of Poisson’s equation if the temperature factors

and nuclear coordinates are known. The operation of this

equation provides the enhanced sensitivity of electron dif-

fraction to bonding effects by comparison with X-ray

diffraction, as does the elimination of extinction errors

discussed further below. There has recently been consider-

able discussion of low-order structure factor measurement

methods ~Zuo et al., 2000; Jiang et al., 2002, 2003a, 2003b!.

The study of copper provides a good opportunity to com-

pare the accuracy and credibility of different methods.

Low-order structure factors are crucial when studying

bonding in crystals. The accuracy of the measurements

should normally be below 1% in order to see the deforma-

tion of the charge density due to bonding effects.
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Various methods have been used for low-order struc-

ture factor measurements. They are: ~1! Bragg X-ray or

g-ray diffraction, ~2! critical voltage ~CV!, ~3! X-ray single

crystal Pendellösung, and ~4! quantitative convergent beam

electron diffraction. These methods all have their advan-

tages and disadvantages, which will be discussed briefly

here.

Bragg X-ray or g-ray diffraction normally suffers from

large extinction errors in the strong low-order reflections of

inorganic crystals. The advantage is that these methods can

very accurately measure high-order reflections, which are

sensitive to atomic coordinates and Debye-Waller ~DW!

factors, and can be used for crystal structure determination.

The CV method is capable of measuring the ratio of

two low-order structure factors. Errors may be as small as

0.1% ~Spence & Zuo, 1992!. The disadvantage of this method

is that one structure factor must be accurately known to

calculate the other.

The X-ray single crystal Pendellösung and the QCBED

methods are similar techniques in terms of the underlying

theory. Both use perfect crystals and are based on dynamical

theory. Both give highly accurate low-order structure factor

data. A disadvantage of the X-ray Pendellösung method is

that it requires large perfect crystals, which limits its appli-

cation to a few semiconductor crystals such as silicon,

diamond, and so forth. The QCBED method, on the other

hand, takes advantage of the small probe of a transmission

electron microscope ~TEM!, which allows one to use a

perfectly crystalline region of near nanometer size. This is

smaller than the size of one mosaic block. The disadvantage

of QCBED is that it cannot be used to measure high-order

reflections accurately. Because of their high accuracy and

credibility, structure factors measured by these two meth-

ods are often used to test band theory. In this way, ran-

dom errors can be made very small—systematic errors can

only be minimized by comparing the results of different

techniques.

EXPERIMENT

Sample Preparation and Experimental Setup

The specimen was prepared by electrolytic polishing. The

electrolyte was 33% phosphoric acid and 67% water ~Hirsch

et al., 1977!. A pure copper foil ~99.999%! of a 25-mm

thickness was polished at 10 V and 4 A/cm2 at room

temperature.

We found that copper was easily oxidized when ex-

posed to air, which may cause extra diffraction spots and

introduce a large standard deviation in the refined data.

Therefore, newly prepared samples were mounted on a

Gatan liquid nitrogen holder and put into the microscope

vacuum immediately after thinning.

A LEO 912B transmission electron microscope, operat-

ing at 120 keV, with in-column V-filter and a Gatan MSC

CCD ~14-bit dynamical range! camera, was used. The CCD

camera was properly characterized to compensate for the

point spread function ~Jiang et al., 2003a, 2003b!. The

energy window used in the experiments was 10 eV. The

experiments were done at liquid nitrogen temperature, using

a Gatan double tilt cooling holder. This avoids contamina-

tion and reduces the phonon scattering background, which

is otherwise difficult to fit. The temperature readout from

the holder varied between the experiments from 107 K to

112 K. The CBED patterns were acquired using a probe size

of less than 100 Å, using a systematic row orientation far

away from major zone axes. This small probe eliminates any

effects due to local bending of the ductile copper foil.

High-Voltage Calibration

The high voltage must be calibrated for accurate electron

structure factor measurements ~Spence & Zuo, 1992!. An

accurate value is also needed when converting the electron

structure factors to X-ray structure factors. This was done

using high-order Laue zone ~HOLZ! lines. It is well known

that the position of HOLZ lines is very sensitive to both

electron beam energy and lattice parameters ~Spence &

Zuo, 1992!. Because high voltage and lattice parameters

have similar effects on the position of HOLZ lines, it is not

possible to measure both these quantities simultaneously.

The lattice parameter of silicon, however, is well known and

so may be used to calibrate the high voltage. Figure 1 shows

the central disk of a silicon @133# zone axis CBED pattern.

The two triangles formed by HOLZ lines, shown enlarged

in Figure 1b,c, were used for the calibration. The size of

these triangles is very sensitive to the high voltage, because

the HOLZ lines originate far out on the Ewald sphere.

Furthermore, the HOLZ lines are arranged so that they all

will move toward each other in Figure 1b and away from

each other in Figure 1c, as the high voltage increases. The

high voltage is therefore obtained by comparing the ratio

between the areas of triangle ~b! and ~c! with dynamical

Bloch wave simulations ~Zuo, 1998! done at different volt-

ages ~Fig. 2!. This gives a high voltage of 119.60 kV.
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The filament of the microscope was changed in March

2001. In Figure 1d,e, we compare the same pattern taken

with the same microscope before the filament change ~May,

1997!. The high voltage was then found to be 119.52 V,

which also was confirmed in May 2000 ~Jiang et al., 2003a,

2003b!. It can be seen that a change of 80 V in the electron

beam energy is easily detected, corresponding to a change in

wavelength from 0.0033553 nm to 0.0033563 nm.

Lattice Parameter

Highly accurate lattice parameters are needed for structure

factor refinement. In particular, the lattice parameters are

important to determine the HOLZ line positions, which

define the beam direction ~kt ! in the patterns used for

refinement.

The crystal structure of copper and its thermal expan-

sion have been studied for many years. Accurate crystal data

and the thermal expansion coefficient are available. The

measured lattice parameter at room temperature is a �

3.61496~2! Å ~Schneider et al., 1981!. From this, lattice

parameters at other temperatures can be calculated by using

the expansion coefficient of Hahn ~1970!. At 115 K we

obtain a � 3.60540~3! Å.

Experimental DW Factor and Temperature
Determination

A knowledge of DW or temperature factors is essential for

accurate QCBED refinement. Saunders et al. ~1999! have

shown that good x2 values ~see equation ~1! below! can

only be obtained if the correct value of the DW factor is

used. Even though the refined electron structure factors are

not sensitive to the DW factor, the converted X-ray struc-

ture factors will depend on the DW factor. If an incorrect

DW factor is used, it will introduce systematic errors in the

converted X-ray structure factors, particularly at higher

scattering angles. For example, a 5-K change in temperature

~around 110 K! will introduce a 3% change in the DW

factor and change the converted X-ray structure factor by

60.02 electrons/cell ~0.025%! for the ~200! reflection and

by 60.4 electrons/cell ~1.1%! for the ~440! reflection. In

addition, accurate temperature factors are needed for all the

~b! ~c!

~a! ~d! ~e!

Figure 1. a: The ~000! disk of Si @133# zone axis taken with the LEO 912B microscope at Arizona State University, June

2001. The high voltage was measured on this image to be 119.60 kV. b,c: Magnifications of the regions around the

sensitive triangles made by HOLZ lines. d,e: Images are from the same sensitive regions, but taken May 1997 with the

same microscope. At that time the high voltage was measured to be 119.52 kV.
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other reflections in the simulation not being refined that

affect the refined value through multiple scattering.

The effective isotropic DW factor B for copper has been

measured accurately by Schneider et al. ~1981! to 0.167~8! Å2

at 50 K and 0.544~7! Å2 at room temperature. These values

fit well with the expansion of B, given by Sears and Shelley

~1991! using the phonon model. This gives us an opportu-

nity to measure the sample temperature, by measuring the

DW factor.

A well-known problem in electron diffraction experi-

ments is that the local heating of the specimen by the

illuminating electrons is unknown. The local heating de-

pends on the thermal conductivity of the specimen and the

illumination conditions. The sensitivity to the DW factor of

the converted X-ray structure factor for the ~440! reflection

suggests that we can measure the DW factor and specimen

temperature accurately.

Therefore, the systematic row of ~220! and ~440! was

carefully measured to calibrate the temperature. A region

with few HOLZ lines ~which makes the refinement easier

and more accurate! could be found by tilting about 16.68

from the ~001!-zone axis. These data were collected with a

temperature readout of 107 K. The U440 refined from differ-

ent diffraction patterns and different rocking curves of the

same diffraction pattern was then converted into X-ray

structure factors using the Mott formula ~Spence & Zuo,

1992!. Because the ~440! structure factor is not affected

much by bonding, the value should be very close to the

neutral atom value. Choosing the DW factor to be B �

0.2478 6 0.0013 Å2 gave good agreement with the neutral

atom X-ray structure factor ~Doyle & Turner, 1968!, con-

sidering the standard deviation in the measurement of U440.

This DW factor corresponds to 112.3 6 0.7 K ~Sears &

Shelley, 1991!. Thus, we conclude that the local specimen

heating is about 5.3 K under the current TEM settings.

Because the TEM settings were kept constant, we as-

sume the same local heating for all our experiments, even

though the readout temperature of the GATAN holder

varied between 107 K and 112 K, due to small leaks in the

vacuum surrounding the nitrogen reservoir in the holder.

Figure 2. High voltage calibration curve. The y-axis shows the ratio between the area of the two sensitive triangles

shown in Figure 1b,c. The circles show the ratio obtained from simulations at different voltages, and the horizontal line

is the ratio measured on the experimental image. The high voltage is determined from the crossover to be 119.60 kV.
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REFINEMENT

Low-Order Structure Factor Refinement

The idea behind the QCBED method is to refine the input

parameters in a Bloch wave simulation until a best fit with

experiment is obtained. Only pixel intensities along some

carefully chosen rocking curves are calculated. In Figure 3, a

CBED pattern from the ~220! systematic row is shown, with

some rocking curves drawn onto it together with the fit

along these curves.

As a goodness-of-fit measure, we use x2, defined as

x2 �
1

N � f � 1 (i�1

N ~Ii
~exp!� cIi

~theo!� I ~bgr! !2

si
2 , ~1!

where N is the number of data points, f is the number of

refined parameters, c a scaling factor, s the standard devia-

tion of the experimental intensities, and Ii
~exp! , Ii

~theo! , and

I ~bgr! are the experimental, theoretical, and background

intensities, respectively. The sum goes over all pixels in the

line scans shown in Figure 3. The refinement parameters are

Figure 3. The top image shows the systematic row for ~220! and ~440! together with the rocking curves chosen for

refinement. The graph below shows the pixel values along the above chosen linescans ~circles! compared with calculated

values ~solid line!. The x2 for this fit is 1.46.
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certain low-order complex structure factors ~including ab-

sorption!, beam direction kt , scaling factor c, background

intensity I ~bgr! ~which is assumed constant for each disk!,

and sample thickness.

The Bethe potential approximation is used in the

multiple-scattering calculations. Here, strong beams are

treated exactly, whereas weak ones are calculated using

perturbation theory. The beams were selected for diagonal-

ization or perturbation according to three criteria ~Zuo &

Weickenmeier, 1995; Birkeland et al., 1996!: ~1! 2KSg ~prox-

imity to the Ewald sphere!, ~2! length of gmax , ~3! 6Ug/
2KSh6min ~perturbation strength!. 2KSg is used to select the

beams included in the diagonal matrix, 6Ug/2KSh6min to

select the weak beams for perturbation, and gmax as a cut-off

parameter for high-order reflections. Normally, good con-

vergence can be obtained by choosing values of 3.5 Å2,

4.0 Å, and 35, respectively, for the three criteria. For more

details on QCBED refinement we refer to Zuo ~1998!.

Consistency Test

To ensure that our results are consistent, refinements have

been done on different crystals, at different orientations and

with different rocking curves. We then take the average of

the results. The relative standard deviation is less than 1%

in all cases. In Table 1, all refinements of the ~200! reflection

are listed with their x2 and the corresponding X-ray struc-

ture factor. The data set is consistent for measurements

from different crystals and different tilts.

Mean Inner Potential and Its Effects
on the Refinements

The mean inner potential, V0, is also considered in the

current refinements. We use V0 � 23.5 V for copper ~Wil-

liams & Carter, 1996!. Although this term produces only an

unobservable phase factor on zero order Laue zone ~ZOLZ!

diffraction patterns, it may affect the intensity in three-

dimensional multiple scattering. Our refinements show that

including the mean inner potential has a small effect on the

refined electron structure factors, but it improves the x2

values significantly. The reason may be that changes in the

mean inner potential introduce significant HOLZ line shifts,

which are critical in the determination of kt for the experi-

mental patterns. To avoid systematic errors, the mean inner

potential was also considered in the high voltage calibration

and in the conversion of electron structure factors to X-ray

structure factors.

Table 1. Experimental Results for the ~200! Structure Factor of Coppera

Crystal Orientation

Rocking

curve x2

U200

~Å�2!

U200
~abs!

~Å�2!

F200

~e/atom!

Cryst 1 5.688, 0.608 1 1.26 0.08626 0.00346 20.090

Cryst 1 5.688, 0.608 2 1.12 0.08664 0.00343 20.068

Cryst 1 5.188, 0.588 1 1.40 0.08585 0.00382 20.114

Cryst 1 5.188, 0.588 2 1.25 0.08671 0.00383 20.064

Cryst 2 �35.38, 0.738 1 1.79 0.08673 0.00370 20.063

Cryst 2 �35.38, 0.738 2 2.00 0.08603 0.00390 20.103

Cryst 2 �11.18, �0.768 1 3.13 0.08760 0.00370 20.013

Cryst 2 �11.18, �0.768 2 3.14 0.08755 0.00385 20.016

Cryst 2 �11.18, �0.768 3 2.90 0.08760 0.00375 20.013

Cryst 2 5.258, �0.658 1 2.96 0.08784 0.00382 19.998

Average ~m! 0.08698 0.00373 20.054

Standard deviation ~s! 0.00072 0.00016 0.041

Relative standard deviation, ~s/m, in %! 0.83 4.3 0.21

Standard error ~s/!n! 0.0002 0.00005 0.013

aOrientation is given as a tilt from the ~001! zone around the x- and y-axes, respectively, where the x-axis is chosen to be in the ~100! direction. The

temperature was, in all cases, 114 K, except for the last case, where it was 115 K, corresponding to a DW factor of 0.251 Å2 and 0.252 Å2, respectively. A lattice

constant of a � 3.60542 Å was used to calculate the X-ray structure factors in the last column. To show the consistency of the QCBED method and to

improve the statistics, all together 10 refinements were done on two different crystals with different orientations and different rocking curves drawn on each

pattern.
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RESULTS

Refinement Result

Because the temperature varies with each experiment, the

refined structure factors were converted into static X-ray

structure factors ~for which B � 0.0 Å2! by dividing with the

temperature factor exp~�B sin2 u/l2! before averaging. Ap-

proximately 10 refinements were completed for each reflec-

tion. The results are listed in Table 2 and compared with

other measured X-ray structure factors for copper. In Fig-

ure 4, the difference between our experimentally measured

X-ray structure factors and neutral atom calculations is

shown as a function of scattering angle, sin u/l. A signifi-

cant difference between the measurements and the neutral

atom values is observed for the three lowest order structure

factors.

Deformation Density

The deformation charge density, defined as

Dr~r! �
1

V (g
@Fg

X ~crystal!� Fg
X ~free atom!# e2pig{r, ~2!

where V is the unit cell volume, measures the redistribution

of charge due to bonding. As reference density Fg
X ~free

atom!, the interpolated relativistic Hartree-Fock structure

factors of Doyle and Turner ~1968! have been chosen.

Because the difference between Fg
X ~crystal! and Fg

X ~free

atom! is so small ~around 1%!, this requires careful consid-

eration of the experimental errors. An electron deformation

density map consisting of a section of the ~110! plane

passing through the nuclei is shown in Figure 5a. Only

the six lowest structure factors, up to the ~400! reflection

~sin u/l � 0.56 Å�1!, were included. All others were as-

sumed equal to their neutral atom values and will therefore

not to contribute to the deformation density map. One has

to be very careful when interpreting such a map because

Table 2. List of Measured Static Lattice X-ray Structure Factors for Cua

Neutral atom Bragg g-ray diffraction White X-ray Pendellösung Electron diffraction

hkl

Doyle and

Turner

~1968!

Schneider

et al.

~1981!

Mackenzie and

Mathieson

~1984!

Petrillo

et al.

~1998!

Takama

and Sato

~1982!

Smart and

Humphreys

~1980!

Fox and

Fisher

~1988!b

Saunders

et al.

~1999a!

This

experiment

~2001!

111 22.05 21.51~5! 21.68~14! 21.80~6! 21.786 21.72~4! 21.78~2! 21.69~4!

200 20.69 20.22~4! 20.38~13! 20.28~11! 20.454 20.45~4! 20.42~2! 20.44~4!

220 16.74 16.45~5! 16.76 16.60~12! 16.75~8! 16.696 16.68~8! 16.71~14! 16.68~3!

311 14.74 14.54~4! 14.68~11! 14.74~4! 14.76~7! 14.74~2!

222 14.19 14.07~5! 14.22~11! 14.36~6! 14.24~8!

400 12.42 12.29~6! 12.42~10! 12.46~6! 12.45~10!

440 8.82 8.92~11! 8.82~4!

aCalculated values for a neutral atom model are shown for comparison. Units are in electrons per atom.
bThe results of Fox and Fisher ~1988! were published in Tabbernor et al. ~1990!.

Figure 4. The difference between our measured structure factors

~converted to static lattice X-ray structure factors! and calculated

neutral atom values ~Doyle & Turner, 1968! versus scattering

angle.
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of truncation errors and because the errors in the measured

structure factors tend to accumulate at the high symmetry

points. Anyway, the map shows a spherical charge depletion

at the atomic sites and an evenly distributed charge surplus

of about 0.1 e/Å3 between the atoms.

In Figure 5b,c, we have made similar maps based on

two very simple models, assuming ~b! Cu�1 ions and ~c!

Cu�2 ions at the atomic sites in a sea of one and two fully

delocalized electrons, respectively. The maps are created by

setting Fg
X ~crystal! to the structure factors calculated from

Doyle and Turner’s interpolated Cu�1 and Cu�2 scattering

factors, respectively. The g � 0 term of equation ~2! is, in

this case, omitted in order to keep the total charge differ-

ence zero. The models with one free electron do not agree at

all with our experimental map, whereas good agreement is

achieved in the interstitial region with the model using two

free electrons per atom.

DISCUSSION

Various sets of experimental and theoretical structure fac-

tors have been published for copper ~see, e.g., Mackenzie

and Mathieson ~1992! and Tabbernor et al. ~1990!!. We list

here some of them for comparison with the current QCBED

results. To compare the different sets, they have all been

converted to static lattice values.

Figure 5. Charge density difference maps of the ~110! plane of copper passing through the nuclei. Units are in electrons

per cubic Ångström. The plots are calculated from the six lowest order structure factors obtained from ~a! our QCBED

measurements, ~b! the Cu�1, and ~c! the Cu�2 free atom calculations of Doyle and Turner ~1968!.

386 Jesper Friis et al.

URN:NBN:no-7231



Comparison with Other Experimental Data

In Table 2, we list some of the earlier diffraction results on

copper derived from electron diffraction ~CV!, Bragg g-ray

diffraction, and white X-ray single crystal Pendellösung.

The values obtained by electron diffraction measurement

are in good agreement, with no significant differences from

the current QCBED measurement. This demonstrates the

consistency of the electron diffraction method. The reason

is that all these electron diffraction results use perfect crys-

tals as diffraction objects and the full dynamical theory in

the calculations.

The difference is quite obvious for the Bragg g-ray

diffraction measurements of Schneider et al. ~1981!, which

are systematically lower than all the other experimental

values. This has been pointed out in several previous papers

~Mackenzie & Mathieson, 1979, 1984, 1992; MacDonald

et al., 1982!. The g-ray diffraction measurements may have

scaling problems ~Tabbernor et al., 1990!. Mackenzie and

Mathieson ~1984! have also pointed out that the extinction

correction used by g-ray diffraction is not sufficient. They

proposed a new correction method and obtained F220
X �

16.76 e/Å3 for the ~220! reflection, which is close to the

electron diffraction result F220
X � 16.68~3! e/Å3, but still

outside the standard deviation. Petrillo et al. ~1998! reana-

lyzed the values of Schneider et al. ~1981!. They subtracted

the kinematic correction D and scaled the original data to fit

the neutral atom values for scattering angles greater than

0.5 Å�1. These new values are close to the electron diffrac-

tion values but have large error bars.

As mentioned in the Introduction, the X-ray Pendellö-

sung method can measure low-order structure factors very

accurately because of its fully dynamical nature, but re-

quires a large perfect wedge-shaped single crystal for accu-

rate measurements. Takama and Sato ~1982! have modified

this method by doing experiments on relatively small single

crystals using white X-ray radiation. This method has the

advantage of easy specimen preparation and only requires a

tiny single crystal. The accuracy, however, is lower than the

conventional X-ray Pendellösung method and electron dif-

fraction. Their original published data set ~Takama & Sato,

1982! is, in general, close to the electron diffraction values,

but it has large standard deviations for the low-order

reflections.

Comparison with Solid-State Calculations

Because of the accuracy of QCBED, it can be used to test

band theory, as has been done for silicon by Zuo et al.

~1997!. Over the past 40 years, many theoretical calculations

have been completed for the X-ray structure factors of

copper. In Table 3 we list the calculated structure factors of

Wakoh and Yamashita ~1971!, Bagayoko et al. ~1980!, Mac-

Donald et al. ~1982!, and Eckardt et al. ~1984!, together with

our experimental values and the free atom values of Doyle

and Turner ~1968! for Cu, Cu�1, and Cu�2. As a measure of

Table 3. List of Theoretical Calculated Static Lattice X-ray Structure Factors for Cua

Doyle and Turner ~1968!

hkl Cu Cu�1 Cu�2

Wakoh and

Yamashita

~1971!

Bagayoko

et al.

~1980!

MacDonald

et al.

~1982!

Ekardt

et al.

~1984!

This

experiment

~2001!

111 22.05 22.12 21.89 21.72 21.76 21.73 21.95 21.69~4!

200 20.69 20.76 20.61 20.46 20.42 20.39 20.68 20.44~4!

220 16.74 16.78 16.77 16.63 16.67 16.90 16.68~3!

311 14.74 14.76 14.76 14.64 14.76 14.94 14.74~2!

222 14.19 14.21 14.21 14.10 14.23 14.25 14.38 14.24~8!

400 12.42 12.42 12.42 12.34 12.48 12.62 12.45~10!

440 8.82 8.82 8.78 8.94 8.82~4!

R~%! 0.55 0.68 0.48 0.51 0.15 0.17 1.25

a ~Å! 3.6032 3.6032 3.6032 3.6032 3.6145 3.615 3.6054

aAs a measure of agreement between calculation and our experiment, we use the residual, R, listed at the bottom of the table. Because different lattice

parameters, a, were used in the calculations, they are also listed at the bottom of the table. Units are in electrons per atom.
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how well these calculations fit our experiments, we give the

residual R, defined as R � 1/n(i 6Fi
X ~theory! � Fi

X ~exp!6/
Fi

X ~exp!, at the bottom of the table. Because the calcula-

tions were done using different lattice parameters, they are

also listed in Table 3. All calculations are self-consistent.

The band-structure calculation of Bagayoko et al. ~1980!,

using Gaussian orbitals and a local exchange-correlation

potential, gives a good fit to photo-emission spectra as well

to the current QCBED experiment. Also, the relativistic

field calculations by MacDonald et al. ~1982! agree very well

with the current experiment. Eckardt et al. ~1984! show

higher values than the previous studies and this experiment,

even though they agree very well with experimental photo-

emission spectra.

Charge Distribution

The agreement between the charge difference density maps

~Fig. 5! of the Cu�2 ions plus free electrons model and our

measurements indicate that Cu has two delocalized elec-

trons per atom. This could be explained if one ~or more! of

the 10 3d electrons in the ground state ~3d 104s! promotes

to the delocalized 4s or 4p bands ~see Brewer, 1981!.

CONCLUSION

Accurate low-order structure factors for copper have been

measured by electron diffraction. The local heating of the

electron beam has been measured to be 5 K under our

experimental conditions. Charge density deformation maps,

generated from the six inequivalent lowest order reflections,

indicate that copper has two delocalized electrons per atom.

This result may help to understand how cohesive energy

relates to the number of bonding electrons ~Brewer, 1981!.
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On the Consistency of QCBED Structure Factor
Measurements for TiO2 ~Rutile!
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Abstract: The same Bragg reflection in TiO2 from 12 different ~CBED! patterns ~from different crystals,

orientations, and thicknesses! are analyzed quantitatively to evaluate the consistency of the quantitative CBED

method for bond-charge mapping. The standard deviation in the resulting distribution of derived X-ray

structure factors is found to be an order of magnitude smaller than that in conventional X-ray work, and the

standard error ~0.026% for FX ~110!! is slightly better than obtained by the X-ray Pendellösung method applied

to silicon. This is sufficiently accurate to distinguish between atomic, covalent, and ionic models of bonding. We

describe the importance of extracting experimental parameters from CCD camera characterization, and of

surface oxidation and crystal shape. The current experiments show that the QCBED method is now a robust

and powerful tool for low-order structure factor measurement, which does not suffer from the large extinction

~multiple scattering! errors that occur in inorganic X-ray crystallography, and may be applied to nanocrystals.

Our results will be used to understand the role of d-electrons in the chemical bonding of TiO2.

Key words: electron diffraction, CBED, structure factor, rutile

INTRODUCTION

The ultimate aim of this work is to understand the role of d

electrons in the chemical bonding of TiO2 ~rutile! and the

charge state of Ti~IV! ions common to many important

electronic ceramics. Here we analyze the consistency of the

convergent-beam electron diffraction ~CBED! method used

to measure the bond-charge density, by comparing measure-

ments of the same structure factors in different crystals and

orientations. The excellent agreement increases confidence

that possible systematic errors, ranging from sample inho-

mogeneity to convergence of calculations, have been mini-

mized. Some final structure factor measurements, and details

of the experimental methods, are provided. By comparison

with our earlier work on silicon, GaAs, Cuprite, and MgO

~Zuo et al., 1998!, a number of new problems arose, indicat-

ing the sensitivity of the method to TEM sample quality

and shape ~boundary conditions! resulting from the sensi-

tivity of TiO2 to ion beam thinning and the use of crushed

samples. A new detector system, with improved dynamic

range over our previous camera, had to be characterized, for

which we give details. We compare a total of 12 different

data sets ~CBED patterns!. For an earlier comparison of the

same reflection refined at different thicknesses ~and structure-

factor phase measurement with an accuracy of about 0.18!,

see Zuo and Spence ~1993!. Random errors as small as

0.026% are obtained here for rutile crystal, quite sufficient
Received October 23, 2001; accepted September 20, 2002.
*Corresponding author. E-mail: jiangb@asu.edu

Microsc. Microanal. 9, 457–467, 2003
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to see bonding effects and test theoretical approximations,

and the smallest random error yet obtained. In a sub-

sequent paper, we will report details of the multipole analy-

sis of the final charge density, and discuss its implications

for the molecular orbitals that take part in bonding.

Several methods have been used to measure low-order

structure factors: ~1! the X-ray single crystal Pendellösung

method, ~2! Bragg diffraction by X rays and g rays, ~3! the

critical voltage ~CV! of electron diffraction, and ~4! quanti-

tative convergent beam electron diffraction ~QCBED!.

The X-ray Pendellösung method can measure structure

factors very accurately ~standard error 0.07% at best for

silicon; Aldred & Hart, 1973!. We use the term standard

error to refer to the standard deviation of the mean value,

and distinguish this from the standard deviation, which we

also evaluate. ~The X-ray community uses mostly standard

error, especially for Pendellösung work.! The Pendellösung

accuracy is about the same as the best accuracy obtained by

CV and QCBED. The sensitivity to structure factors is about

the same for CV and QCBED; however, accurate measure-

ment of structure factors by CV requires known high-order

structure factors ~see below!. The disadvantage of the Pen-

dellösung method is that it requires large defect-free crys-

tals, which severely limits its application to crystals such as

silicon, diamond, GaAs, and germanium single crystals that

have low defect density.

Conventional Bragg X-ray diffraction from inorganic

materials normally suffers from large extinction errors ~due

to multiple scattering! for the strong low-order reflections

that are crucial for charge density maps of bonding. Bragg

g-ray diffraction using high-energy radiation may reduce

absorption and extinction effects, but does not eliminate

them, and the flatter Ewald sphere may increase multiple

scattering ~Lippmann & Schneider, 2000!.

The CV method of electron diffraction is capable of

highly accurate measurements of the ratio of the two lowest

order structure factors ~Spence & Zuo, 1992!. Errors may be

as small as 0.1%. The disadvantage is that this method can

only give the ratio of the two structure factors. One must be

known accurately to calculate the other one.

Recent progress in energy-filtered QCBED has made

extinction-free measurements of low-order structure factors

possible on an absolute scale ~Zuo et al., 1999!. This method

takes advantage of the small electron probe ~of nanometer

dimension, smaller than one “mosaic block”! and of the

sensitivity of QCBED to low-order bonding reflections that

results from the Q�4 dependence of electron scattered inten-

sity on scattering angle Q for low angles ~Spence & Zuo,

1992!. When combined with TEM, the crystal can be imaged

at the atomic level, and it is easy to find a defect-

free crystal region for electron diffraction, to which the dy-

namic diffraction theory can be applied. Using this method,

combined with X-ray diffraction to measure the high-order

structure factors, Zuo et al. ~1999! recently directly observed

the d orbital holes and Cu-Cu bonding in Cu2O crystal ~for

discussion of this work, see Zuo et al., 2000!. Readers are

referred to our earlier paper ~Jiang et al., 2002! and book

~Spence & Zuo, 1992! for more details and background.

EXPERIMENT

TEM and V-Filter

CBED patterns were obtained on a Leo-921B V electron

microscope operating at 120 keV, with in-column imaging

V-filter and a Gatan MSC CCD camera. Two types of

commercial energy filters are available—the in-column V

energy filter and the postcolumn Gatan Imaging Filter ~GIF!.

For electron diffraction, the geometric distortion, isochro-

maticity, and angular acceptance are the most important

characteristics of the energy filters ~Rose & Krahl, 1995!.

Theoretically the in-column V-filter has smaller distortion

due to its midplane symmetry, and is particularly simple to

use, with a large acceptance angle, acceptable variation of

energy-window center energy with angle, and little or no

alignment needed. The energy window used for diffraction

recording is normally 10 eV.

CCD Characterization

A new 1,024 � 1,024 � 14 bit GATAN MSC CCD camera

was installed in the Leo-912B microscope in March 2000.

Detector characterization is a crucial aspect of QCBED

work, and, for CCD cameras especially, the goodness-of-fit

~GOF! indexes obtained depend sensitively on how the

detector response is measured and deconvoluted. For a

detailed comparison of CCD, image-plate, and film systems

~with comparisons of measured modulation transfer func-

tion ~MTF!, detective quantum efficiency ~DQE!, and gain

for each! see Zuo ~2000!. The CCD characteristics were

measured by the noise method ~Zuo, 1996!, in which the

shot noise from the electron beam is used to provide an

equally weighted spectrum of spatial frequencies. The im-

portant characteristics of the CCD to be used in deconvolu-

tion of CBED data are MTF function, gain, and DQE.
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Gain is defined as the ratio of the average number of

CCD output counts NI to the electron dose per pixel Ne:

g �
NI
PNe

. ~1!

The gain was obtained by making absolute intensity

measurements of the electron beam ~using the calibrated

Fuji image plate system! and comparing these with the

numbers per pixel output by the Digital Micrograph

program.

The resolution of the slow-scan ~SSC! CCD camera is

described by its point spread function. The best achievable

resolution in the SSC camera is one pixel. For our CCD,

additional spreading occurs, mainly in the scintillator and

fiber-optics coupling ~crosstalk!. In both cases, the spread-

ing has approximate rotational symmetry. The MTF func-

tion is defined as the modulus of the Fourier transform of

the point spread function ~PSF!. If the PSF function is

d-function, the MTF will be unity for all spatial frequencies.

The MTF function can be modeled for Gatan CCD cameras

by the simple function ~Zuo, 1996!:

M~v! �
a

1 � av2 �
b

1 � bv2 � c. ~2!

Here v is spatial frequency in units of 1/pixel. The MTF is

given, in all essentials, by the noise spectrum in the Fourier

transform of an image of a uniformly illuminated field,

averaged over many exposures.

The DQE is defined as the square of the ratio of output

signal-to-noise ratio to input signal-to-noise ratio. A figure

of unity is only possible if every beam electron is detected,

with no noise added and the ideal PSF. DQE can be shown

~Zuo, 1996! to be given by

DQE~I ! �
mg NI

var~I !
, ~3!

where m is a mixing factor measuring crosstalk between

pixels ~obtainable from the area under the MTF!, g is the

gain, NI is the average number of CCD counts per pixel, and

var~I ! is the variance in that number. These quantities are

obtained by recording a uniformly illuminated field at dif-

ferent average intensity. The dependence of DQE on inten-

sity has been modeled by an expression involving the

parameters of the CCD ~Zuo, 1996!:

DQE �
SNRout

2

SNRin
2 � �1 � F �

1

mG
�
D PNe

m
�

var~B!

mg 2 PNe
��1

~4!

where F, G, D, var~B! are constants. Readers are referred to

Zuo ~1996! for practical details of DQE measurement.

The measured gain, MTF, and DQE characteristics are

shown in Table 1, and in Figures 1 and 2. Compared with

our earlier 12-bit Gatan SSC CCD ~Zuo, 1996!, this new

CCD has larger gain, and better MTF and DQE, which all

contribute to the better quality and accuracy of the CBED

data, resulting in smaller x2 values.

TEM Alignment

TEM alignment is very important for accurate QCBED

measurement, particularly diffraction astigmatism correc-

tion. The TEM was aligned to its best condition to ensure

the quality of the measured data. The diffraction astigma-

tism was corrected using a standard aluminum specimen,

resulting in no observable astigmatism in the diffraction

pattern. Figure 3 shows one of the ring patterns of an

aluminum fine powder. Direct measurement of the circle

shows that the deformation from circularity is negligible.

Beam Energy Calibration

It is well known that HOLZ lines shifts due to accelerating

voltage and lattice constant changes are not independent;

thus it is not possible to measure both high voltage and

crystal constants from a single diffraction pattern. A crystal

with known lattice constant was therefore used to calibrate

the high voltage. The silicon ~133! zone pattern shown in

Figure 4 was used for this purpose. The “Extal” software

Table 1. Parameters for Measured MTF ~Curves in Figure 1!,

DQE ~in Figure 2!, Mixing Factor and Gain of CCD Characteristicsa

HV

~kV! a a b b c

119.52 0.113 3,396.7 0.858 6.67 0.0228

HV

~kV! m g var~B! D 1 � F � 1/mG

119.52 0.25767 1.55 2.40 4.57e-6 1.424

aPlease refer to equations ~1!, ~2!, and ~3! in the text for the definition of

these parameters.
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~Zuo, 1998! was used to refine the high voltage, by matching

of calculated patterns ~including multiple scattering! to

experimental CBED patterns. The high voltage was thus

measured to be 119.52 keV.

Specimen Preparation for Rutile

Because rutile is rather sensitive to ion beam radiation,

samples prepared by the standard ion milling specimen

preparation method left a thin oxygen-deficient layer, giving

extra diffraction spots. This introduces large random and

systematic error in the refined data. This subtle effect on the

refinement took some time to identify and resulted for a

long time in reasonably good x2 figures, but obviously

incorrect structure factors. We attribute the good x2 figures

Figure 1. Experimental measured MTF

of Gatan MSC 14-bit CCD camera.

Figure 2. Experimental measured DQE curve of the Gatan MSC

14-bit CCD camera.

Figure 3. TEM diffraction astigmatism was corrected by a stan-

dard aluminum powder. The ring pattern is quite circular with no

observable astigmatism.
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to the parallel-sided nature of the ion-beam samples ~the

EXTAL program does take into account a tilted, but parallel-

sided sample!. High accuracy in structure-factor measure-

ment requires the thickness estimate to be accurate to

within a few Ångstroms ~Zuo et al., 1997!. Crushed samples

were finally used to ensure cleanness of the sample surfaces,

and these produced both excellent x2 values at a deep

minimum ~see Fig. 6! and correct structure factors. Fortu-

nately, large thin areas can be found on the edge of the

crushed crystals for CBED experiments. The samples were

crushed in a mortar and pestle under alcohol, and collected

on holey carbon grids. This produced wedge-shaped cleav-

age surfaces, which introduced other problems due to the

inclined boundaries. It was found that the best GOF factors

were obtained from systematic rows running parallel to the

wedge edge, which greatly limited the number of useful

crystals. This problem is similar to the much earlier finding

~Goodman, 1974! that CBED patterns from wedge-shaped

crystals do not display the correct point group for a crystal,

because the patterns show the symmetry of the sample

~including its boundaries, which may destroy symmetry

elements! rather than that of an infinite lattice. We use an

LaB6 source with a probe size of 10 nm ~measured!, smaller

than in earlier work. The even smaller probe possible with a

field-emission gun would reduce these artifacts.

REFINEMENT

Specimen Thickness

The experimental conditions have to be chosen carefully.

The thickness should be between 600 and 1,500 Å, depend-

ing on individual reflections for a 120-kV electron beam,

and is returned by EXTAL at an early stage of the refine-

ment. A reasonable thickness was chosen to ensure that the

CBED fringes within the CBED disk could give accurate

thickness information; normally three or more thickness

fringes were required and the inclusion of 2g and �g

reflections in the refinement improves the reliability of the

technique. Higher accelerating voltage would produce more

fringes.

Experimental Intensity Measurement

Due to the point-spread function H of the CCD camera, the

raw data collected is the convolution between the PSF and

the incident beam intensity, plus the noise introduced in the

detection process. The raw image recorded can be written as

x � H � I � n. ~5!

Here x represents the image recorded by the CCD and I is

the incident CBED pattern and � denotes convolution.

The PSF has been experimentally measured, and its Fourier

transformation is the modulation transfer function.

The effects of the PSF can be removed partially by

deconvolution. But direct deconvolution in reciprocal space,

using the measured MTF function, produces excessive am-

plification of noise, due to the amplification of high spatial

frequencies, which reflects mostly pixel-to-pixel variations

from noise. Therefore we use the Richardson–Lucy image

restoration algorithm, which is optimized for images with

Poisson noise ~Snyder et al., 1993; Zuo, 2000!. The image

restoration works by repeat iteration using

Q~u,v! �
H *~u,v!

H *~u,v!H~u,v!� aP~u,v!
. ~6!

The iteration is stopped when

7x� H � ZI7 � 7n7. ~7!

Here the x and ZI are the recorded and deconvoluted CBED

patterns, n is the estimated additional noise introduced

during the recording process, and a ~typically smaller than

one! is a parameter.

Figure 4. Silicon ~331! zone axis pattern used for TEM high-

voltage calibration. The high voltage was calibrated as 119.52 keV.
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Figure 5 shows an example of a deconvoluted image. It

is clear that the edge of the pattern is much sharper than the

recorded one.

Refinement Convergence Tests

Our dynamical calculations typically include about 500

beams, both in the zero and higher order Laue zones. Beams

selected for inclusion in the multiple scattering calculations

were selected according to three criteria ~Zuo & Weicken-

meier, 1995!: ~1! proximity to the Ewald sphere; this is

measured by 2KSg; ~2! length of gmax vector; and ~3! pertur-

bation strength vmax
�1 � 6Ug/2KSh6min.

The criteria 2KSg is used as the weak-beam criterion. It

selects the beams included in the diagonal matrix, whereas

others are treated by Bethe’s perturbation method. Here

gmax is used as a cutoff parameter for high-order reflections.

Because the width of the HOLZ lines falls off as g�3, the

intensity decreases by a factor of g�4. As a result, the

high-order reflections with g . gmax become localized, and

their effects can be ignored. The third criteria 6Ug/2KSh6min

is called perturbation strength, and selects weak beams for

Figure 5. Image deconvolution

example. Compare line scan profiles

~b! and ~c!; it is clear that the

deconvoluted image has a sharper

edge. a: As recorded image. b: Line

scan profile from image a ~line scan

position indicated in a!. c: Line scan

profile from deconvoluted image a

~line scan indicated in a!.
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perturbation treatment. The beams within the gmax, but

with larger excitation error, will contribute to the beams

and excitation error by perturbation. These criteria will be

used to discard those beams with large excitation error. The

beams selected in the refinement were tested for conver-

gence by changing the above three criteria until the refined

value converges. Normally the use of 3.0 ~for 2KSg!, 3.5 ~for

gmax!, and 35 ~for vmax! were found to give a good refine-

ment convergence for rutile crystals.

x2 Map

A preliminary refinement is used to obtain approximate

values of thickness and orientation ~assignment of Kt values

to each pixel in the CBED pattern!. The program then

adjusts the following parameters for lowest x2: thickness,

orientation, thermal background, the two structure-factor

values being refined, and the two corresponding absorption

coefficients. Absorption coefficients are taken from Bird and

King ~1990!. The following parameters are not adjusted,

and treated as known: all structure factors other than those

under refinement, anisotropic, harmonic Debye–Waller fac-

tors ~taken from Restori et al., 1987, who worked at the

temperature of 100 K, were interpolated to our experimen-

tal temperature at 113 K!, absorption coefficients other than

the two being refined, accelerating voltage, cell parameters,

and atom positions ~obtained from Restori et al., 1987!. The

background beneath each disk ~mainly phonon inelastic

scattering, as plasmon-scattered electrons are removed by

our energy filter! is assumed to be constant, and this con-

stant, different for each CBED disk, is treated as a refine-

ment parameter. Absorption parameters were found to need

little adjustment, and to have a small effect. Experience

shows that the simplex method is a very robust method to

find the global minima ~Zuo et al., 1998!. To show that a

global minima had been found in our refinement proce-

dure, we did a x2 map versus the structure factors of the

~110! and ~220! reflections, for the case of ~110! systematic

refinement. This is shown in Figure 6. It clearly shows that

near the global minima there is no other local minimum.

This property ensures that the refinement program can find

the real global minima. It is interesting to note that, for the

~110! reflection, the minimum point is almost independent

of the ~220! reflection. This ensures the reliability of the

Figure 6. x2 versus structure factor ~110! and ~220! reflections of rutile crystal. It shows a deep global minimum. No

other local minimum is found nearby.
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measured ~110! reflection, and is one of factors that allows

such high accuracy to be obtained by QCBED.

Error Analysis

The errors quoted in the tables were obtained using the

following statistical formulas:

Standard deviation: s� �(j�1

N

~xj � Sx!2

N � 1
~8!

Standard error: «�
s

!N
~9!

where N is the number of measurements. We note that s is

independent of the number of measurements; however, the

error in the mean ~the standard error! decreases with increas-

ing number of measurements, as required.

QCBED RESULTS FOR TIO2
~110! SYSTEMATICS

Table 2 shows the 12 data sets used for the consistency tests.

These consist of CBED patterns from two different crystals,

from which the same reflection was found in various differ-

ent orientations and thicknesses. Each row in the table refers

to a different thickness. The orientations were: ~i! from ~111!

zone axis, tilted about 88 along the ~110! systematics;

~ii! from the ~001! zone for ~110! systematics ~tilted 78!, and

~iii! ~1�10! systematics ~tilted 88!. The results listed in Table 2

give the measured U~110!, Ua~110!, U~220!, and Ua~220!

Table 2. QCBED Measurement on ~110! and ~220! Structure Factors of Rutile Crystala

x2 U~110! Ua~110! U~220! Ua~220!

Crystal 1 ~110! systematics 2.11 0.06349 0.00185 0.04322 0.00161

~111!-Zone-Axis ~tilt 88! 1.28 0.06347 0.00169 0.04338 0.00130

1.55 0.06348 0.00142 0.04350 0.00132

1.56 0.06349 0.00151 0.04338 0.00183

Average 0.06348 0.00162 0.04338 0.00152

Crystal 2 ~110! systematics 1.17 0.06354 0.00128 0.04285 0.00127

~001!-Zone-Axis ~tilt 78! 1.05 0.06360 0.00125 0.04300 0.00123

1.87 0.06321 0.00140 0.04334 0.00142

1.76 0.06331 0.00155 0.04291 0.00131

Average 0.06341 0.00137 0.04303 0.00131

~1�10! systematics 4.29 0.06388 0.00151 0.04304 0.00124

~tilt 88! 2.53 0.06341 0.00137 0.04298 0.00114

2.47 0.06334 0.00136 0.04282 0.00123

3.92 0.06380 0.00132 0.04324 0.00101

Average 0.06361 0.00131 0.04308 0.00115

Average ~12 data points! 0.0635 0.00146 0.0431 0.00133

Standard deviation 0.0002 0.00017 0.00024 0.00021

~12 data points! ~60.3%! ~60.56%!

Standard error 0.00006 0.00005 0.00007 0.00006

~12 data points! ~60.09%! ~60.16%!

aU~110! and U~220! are the elastic electron structure factor and Ua~110! and Ua~220! are the absorption part. Three data sets measured from ~111! zone

~110! systematics and ~001! zone ~110! systematics and ~1�10! systematics. The experimental temperature is 113 K.
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structure factors ~in units of Å�2!, where Ua indicates an

absorption parameter. Each measurement was done on a

different diffraction pattern. The measurement was done by

comparing the intensity of theoretical calculations and ex-

perimental intensities across the CBED disks ~rocking curve!,

using the goodness of fit ~x2! as the fitting criterion.

Figure 7a,b gives an example of this fitting for the ~110! and

~220! reflections. About 500 beams are included in the

calculations, not confined to the systematics row.

The different data sets are entirely consistent with each

other. The overall standard deviation of the 12 values is

0.0002 and standard error ~standard deviation of the mean!

is 0.00006 � ~0.0002/!12!. This is an error of about 0.09%

in the measured U~110! and 0.16% in the measured U~220!

electron structure factors.

Transforming these values into X-ray structure factors

using the Mott formula ~Spence & Zuo, 1992!, using temper-

ature factors for 110 K ~Restori et al., 1987!, the resulting

Figure 7. Example of the electron structure factor refinement for rutile crystal ~110! and ~220!. a: Experimental

recorded and deconvoluted CBED pattern. b: Best fit along the line indicated in a. The x-axis is pixel displayed

sequentially and the y-axis in counts.
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X-ray structure becomes Fx~110!� 37.306 0.01 ~in units of

electrons per unit cell!, and Fx~220! � 25.50 6 0.04. The

standard error ~std. dev. of the mean! is 0.026% for Fx~110!

and 0.14% for Fx~220!. The accuracy is improved after

transforming into X-ray structure factors owing to the Mott

formula, as electron diffraction is more sensitive at smaller

scattering angles.

DISCUSSION

We have shown that the QCBED measurement method can

give highly accurate and consistent data by comparing dif-

ferent measurements of equivalent reflections from differ-

ent crystals in different orientations. This experiment on

TiO2 shows that the QCBED method is now a robust

technique for low-order structure factor measurement if

sufficiently sophisticated software is used and the detector is

well characterized.

The accuracy obtained here on TiO2 by QCBED is

slightly better than the previously most accurate structure

factor measurements, which were based on the X-ray single-

crystal Pendellösung method, applied to silicon ~Aldred &

Hart, 1973!. These two methods use a similar perfect-crystal

Bloch-wave theory, and both require perfect crystals. That is

the reason why they can give such accurate results. Com-

pared with QCBED, however, the X-ray single crystal Pen-

dellösung method requires large perfect crystals, and this

has limited its application to the few semiconductor crystals

that are available free of defects. The QCBED method, when

combined with TEM imaging and the nanometer probe,

can be applied to almost any kind of crystal. However, the

QCBED method becomes less accurate than the X-ray

method for large scattering angles, which are more sensitive

to atomic positions and thermal effects than the bond-

charge distribution.

A comparison with Bragg X-ray results is given in

Table 3. The X-ray data sets are inconsistent with the same

reflection from a different crystal, or equivalent reflections

on the same crystal; thus the measurement depends on the

crystal used. The difference between their measurements is

much larger than their standard deviations, which indicates

large systematic errors. These large systematic errors stem

from the statistical description of the crystal used in the

extinction correction. This may also be the main reason for

the large difference between different groups. An accurate

nonstatistical model is needed for improved extinction ~mul-

tiple X-ray scattering! correction.

When combined with X-ray results for the higher order

reflections, it should be possible to map out the charge

density of TiO2 accurately. According to band theory calcu-

lations, the oxygen 2s2p orbital hybridizes with titanium

4s4p3d orbitals to form bonding orbitals ~Sorantin &

Schwartz, 1991!. The current measurements will make it

Table 3. Comparison of the X-Ray Structure Factors of ~110! and ~220! Reflections Measured by QCBED and Bragg X-Ray Diffractiona

Fx~110! Fx~1�10! yext~110! Fx~220! Fx~2-20! yext~220!

QCBED Crystal 1

~111! zone

37.295 NA NA 34.077 NA NA

Crystal 2

~001! zone

37.306 37.275 NA 34.240 34.266 NA

Average 37.29

Standard deviation:

~60.032 or 60.086%!

Standard error:

~60.01 or 60.026%!

NA 34.17

Standard deviation:

~60.15 or 60.44%!

Standard error:

~60.05 or 60.14%!

NA

Gonschorek et al., 1982 38.89 36.69 NA 34.53 34.36 NA

~60.17! ~60.17! ~60.2! ~60.2!

Restori et al., 1987 37.78 NA 0.864 34.48 NA 0.945

~60.18! ~60.26!

aAll the data here are assumed to be at the temperature of 100 K or converted to their 100 K values. ~The X-ray structure factors are in units of electrons per cell.!
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possible to test these band theory predictions, and to give

accurate and reliable information on the role of d electrons

in bonding in rutile.

Our experiments on rutile showed that QCBED is

extremely sensitive to the quality of the TEM specimen.

Rutile offers a good example of specimen problems with

QCBED. We recommend that experimentalists carefully study

the specimen before undertaking a QCBED analysis. First,

crystals should be checked for point defects, strain, surface/
interface relaxation, twin boundaries, and chemical inhomo-

geneity. All these inhomogeneous defects reduce the accuracy

of the measured structure factors and increase the x2 factor.

Second, check the crystal for nonstoichiometry. A deviation

of chemical composition from the exact chemical formula

would introduce large systematic errors in the structure

factors that are fixed in the refinement procedures. Non-

stoichiometry will produce diffuse scattering in point dif-

fraction patterns, and may also be checked by X-ray

microanalysis and by very accurate X-ray measurement of

lattice constants. Nonstoichiometry will change the lattice

constants. Thus it is possible that crystal constants could

also be refined in order to calculate the exact chemical

formula, and QCBED refinement could then be based on

measured chemical ratios and crystals constants. Finally,

crystals should be checked for any bulk or surface damage

caused by the TEM specimen preparation procedures. The

damage can be observed by high-resolution TEM imaging

or from conventional electron diffraction patterns. We

strongly recommend that experimentalists search for the

best method for TEM specimen preparation for each mate-

rial before undertaking a QCBED analysis. As this case

showed, methods that produce a rough surface lead to a

much poorer fit and less accurate values of the structure

factors, as revealed by the error analysis.
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Retrieval of anisotropic displacement parameters in Mg
from convergent beam electron diffraction experiments
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(NTNU), 7491 Trondheim, Norway
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Abstract. We present an accurate Wilson plot-like method, based
on convergent beam electron diffraction, for measuring the anisotropic
displacement parameters in magnesium, and compare it with the method
proposed by Saunderset al. A generalization of this method to isotropic
crystals with more than one type of atoms is also discussed.

1. Introduction

With quantitative convergent beam electron diffraction (QCBED) [1, 2] it is possible to
very accurately measure the low order structure factors in small-unit cell crystals. This
technique is based on a pixel to pixel comparison between an experimental CBED pattern
and a Bloch-wave simulation. The input parameters (such as structure factors, beam
direction, etc.) in the Bloch-wave simulation are refined until the best fit is obtained.

In structure factors measured by QCBED, the largest source of errors comes from
uncertainty in the thermal displacement parameters (DPs). Even though the DPs might
be known as a function of temperature, either from phonon calculations, or from X-ray or
neutron measurements, the exact sample temperature is unknown. Several methods have
therefore been proposed for measuring the DPs directly by electron diffraction [3-7]. Most
of these methods, except [7], require separate experiments for the determination of DPs
and structure factors. The same experimental conditions, e.g. sample temperature, can
therefore not be guaranteed. We will here investigate a Wilson plot-like method based
on the values of the refined electron structure factors, and compare it with the method
proposed by [7].

2. CBED experiment and refinement

The experiments were performed using a 120 kV LEO 912B TEM with an in-columnΩ-
filter and a Gatan CCD camera. The systematic row orientation was used and the sample
was cooled to liquid nitrogen temperature. Eleven low order structure factors, listed in
Table 1, were measured and refined with the EXTAL program [2]. For Mg the DPs have
been measured at different temperatures by neutron diffraction [8]. Hence, good initial
estimates of the anisotropic DPs of

�
u2

1 � � 0 � 0076Å2 (a-direction, parallel to 2-fold axis)
and

�
u2

3 � � 0 � 0085Å2 (c-direction, parallel tō6-fold axis) at the experimental temperature
(around 110 K) have been used in the refinements.

1
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Table 1. Refinement results. The scattering angless are in units ofÅ � 1 and the electron
structure factorsUg are in units of 10� 4 Å � 2.

hkl 1 0 0 0 0 2 1 0 1 1 0 2 1 1 0 1 0 3 2 0 0 2 1 0 0 0 4 2 0 4 2 2 0
s 0.181 0.193 0.205 0.264 0.313 0.341 0.361 0.385 0.478 0.528 0.626
Ug 184.5 346.9 279.6 115.3 185.8 143.8 77.21 141.0 52.42 44.71 67.0�

0.7
�
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�
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�

0.5
�
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�

0.3
�
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�
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�

0.15
�
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�

0.5

The measured electron structure factorsUg (Fourier coefficients of the crystal
potential) are converted to X-ray structure factorsFg (Fourier coefficients of the electron
density) with the Mott-Bethe formula [1]

Fg � ∑
i

ZiTi � g e� 2π ig � ri � 8π2ε0h2Ωs2

γmee2 Ug � (1)

The sum goes over all atoms, whereZi andTi � g are the atomic number and temperature
factor of atomi, respectively.Ω is the unit cell volume,s � sinθ

�
λ the scattering angle

andγ � 1 � E0

� 

mec2 � a relativistic correction, withE0 being the acceleration voltage of

the microscope.

3. Determination of DPs using the method proposed by Saunders et al.

A strategy for determination of DPs by comparing the refined structure factors with
calculations was proposed by [7]. In short, each refinement is performed for a range
of fixed DP values, where the same DPs are used for conversion to X-ray structure
factors. If the order of the structure factor is sufficiently high, so that bonding effects
can be neglected, the X-ray structure factor obtained with the correct DPs should equal
the calculated value from an independent atom model (IAM) [9].

In Fig. 1a this method is applied to the (204) structure factor (sinθ
�
λ � 0 � 528Å � 1)

of Mg. The neutron diffraction measurement [8] is used to relate the two anisotropic
DPs for Mg to each other and to assign them to a temperature. The refined structure
factors, converted to X-ray values intersect the IAM values at 102 K, corresponding to�
u2

1 � � 0 � 0074Å2 and
�
u2

3 � � 0 � 0082Å2.

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

85 90 95 100 105 110 115 120 125 130

F
20

4 
[e

]

T [K]

(a) F
IAM

−4

−3

−2

−1

0

1

2

3

85 90 95 100 105 110 115 120 125 130

∆U
hk

l  
[1

0−
4  Å

−
2 ]

T [K]

(b)

U100
U200
U102
U204

Figure 1. (a) The refined and converted (204) structure factor as a function of the
temperature used in the refinement. The dashed line represent the IAM value. (b) The
difference between electron structure factors and their mean value as a function of the
temperature used in the refinement.
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4. Wilson-like method for determination of DPs

The refinement procedure for low order structure factors itself is not very sensitive to the
DPs, since they mainly affect the non-refined high order structure factors responsible for
HOLZ-lines. This is demonstrated in Fig. 1b,where four structure factors are refined
for a range of (fixed) temperatures. No dependence betweenUg and the temperature is
observed. However, one should keep in mind that this result is obtained in a systematic
row orientation when strong HOLZ-lines are avoided. The case might be different in the
zone-axis orientation used in [7]. The conversion to X-ray structure factors is, on the other
hand, sensitive to the DPs because of the atomic temperature factorsTi � g in Eq. (1). The
method for determination of DPs presented here is purely based on this fact.

In the harmonic approximation the atomic temperature factor for Mg is

Tg � exp� � �
h2 � hk � k2 � P � l2Q� (2)

where

P � 2π2 4
3a2

�
u2

1 � and Q � 2π2 1
c2

�
u2

3 � � (3)

Since Mg only has one atom species, the X-ray structure factors can be written as
Fg � fgTgCg, wherefg are static lattice scattering factors andCg � ∑i exp

�
2π ig � ri

� . This,
together with Eq. (1) and (2), gives

� lnTg � � ln

�
8π2ε0h2Ωs2Ug

γmee2Cg
�
Z � fg � � � � h2 � hk � k2 	 P � l2Q � (4)

Given fg, the left hand side of Eq. (4) can be calculated. HenceP andQ can easily be
obtained by least square fitting. In Fig. 2 we have plotted the left hand side of Eq. (4)
against the right hand side for the fitted values ofP andQ. We do therefore expect the
points to follow a straight line with a slope of 1. We have usedfg from both Dirac-Fock
[10] and density functional theory (DFT) [11] calculations. The latter includes bonding
effects and brings even the low order points nicely onto the line (Fig. 2b). Using the DFT
values this gives

�
u2

1 � � 0 � 00777
�
4� Å2 and

�
u2

3 � � 0 � 0082
�
1� Å2. These values are so

close to the initial values used that new refinements were not performed. However, if the
initial DPs were less accurate, one would have to redo the structure factor refinement with
the new DPs until convergence is achieved.

This method benefits from the large number (eleven) of measured structure factors.
Usually one does not measure that many structure factors with the CBED technique. In
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Figure 2. Wilson-like plot for low order data. The static lattice reference scattering
factors are taken from both DFT (
 ) and Dirac-Fock (� ) calculations. The slope of the
line is 1. (b) shows an enlargement around the three first structure factors in (a), where
the disagreement between the two models is pronounced. In (c) the same fit is performed
using only the five lowest order structure factors.
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Fig. 2c we have therefore redone the fit by only considering the five lowest order structure
factors. The fitted DPs now become

�
u2

1 � � 0 � 0079
�
3� Å2 and

�
u2

3 � � 0 � 0082
�
7� Å2. In

this case it is really essential to consider bonding effects in the static lattice reference
scattering factorsfg. If even fewer structure factors are measured, it is probably sensible
to constrain

�
u2

3 � to
�
u2

1 � or use an isotropic model.
This method can be generalized to crystals with more than one type of atoms, in the

case where only one independent DP needs to be determined per atom type. This is the
case for isotropic DPs, which we will consider here. We can then writeTi � exp

� � Bis
2 � ,

where theBi are known as Debye-Waller factors. Eq. (1) can now be rewritten as

Ug � γmee2

8π2ε0h2Ωs2 ∑
i � Zi

� fg � i � e� 2π ig � ri e� Bis
2

(5)

resulting in a set of equations (one for eachg) each containing a sum of exponentials
in � Bis

2. These exponents can be determined with non-linear fitting, giving the Debye-
Waller factors.

5. Discussion and conclusion

The very good fit in Fig. 2 shows that there is enough information in the CBED data to
accurately determine DPs.

We have here compared two different methods for determining the DPs in Mg. The
method proposed here differs from the one in [7] in that all structure factor refinements
are initially carried out only once with assumed DPs. As seen from Fig. 1b, errors in
the DPs will not affect the refined structure factors very much when a HOLZ-line free
region is used in the refinement. The determination of DPs in the method proposed here
is purely based on the Mott-Bethe formula, and involves all measured structure factors
via least square fitting. Another improvement, is that DFT, instead an IAM, is used in
the calculations of static lattice reference scattering factors. A minor drawback of this
is that a systematic error in the DFT model willbias the experimental structure factors
towards the DFT-values, making them less appropriate for testing the DFT model [12].
Nevertheless, we believe that the DPs obtained by this method are the most accurate as
long as the number of refined structure factors exceeds the number of fitted DPs with a
factor of at least two or three.

Acknowledgments

Helpful discussions with B Jiang and J C H Spence and fundings from the Research
Council of Norway (project 135270/410) are gratefully acknowledged.

References

[1] Spence J C H and Zuo J M 1992Electron Microdiffraction (Plenum Press, New York)
[2] Zuo J M 1999Microscopy Research and Technique46 220–233
[3] Holmestad R, Weickenmeier A L, Zuo J M, Spence J C H, and Horita Z 1993Inst. Phys. Conf. Ser.

138 141–144
[4] Menon E S K and Fox A G 1998Philos. Mag. A77 577–592
[5] Midgley P A, Sleight M E, Saunders M and Vincent R 1998Ultramicroscopy75 61–67
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Accurate experimental structure factors for Mg have been measured and compared with density
functional theory�DFT� to test some commonly used functionals and self-interaction correction
�SIC� schemes. Low order structure factors, free of extinction and on absolute scale, were measured
accurately by quantitative convergent beam electron diffraction. In addition, a complete set of
structure factors up to sin�/��1.6 Å�1 was measured by x-ray diffraction at 10 K. The DFT
calculations were performed using the full potential linearized augmented plane wave method. It
was found that the agreement with experiment increases when going from the local density
approximation�LDA � to the generalized gradient approximation�GGA� of Perdew, Burke, and
Ernzerhofer and further to the GGA of Engel and Vosko. Applying the SIC of Perdew and Zunger
to the core states for LDA does not improve the agreement with theory, while applying the SIC of
Lundin and Eriksson results in a significantly improved agreement. This implies that the main
source of error in the LDA functional comes from the description of the core densities. Using the
functional which agrees best with experiment, a non-nuclear maximum is established in the
calculated electron density of beryllium but not of magnesium. ©2003 American Institute of
Physics. 	DOI: 10.1063/1.1622656


I. INTRODUCTION

In density functional theory�DFT� new functionals are
mainly tested against energies1 or energy-derived properties
such as structure or bulk moduli.2,3 Although the electron
density is the key quantity in DFT, direct testing against
experimentally measured structure factors is relatively rare.
One of the reasons for this is that a very high precision and
accuracy of the experimental structure factors are needed to
discriminate between the small discrepancies in the results of
modern computational methods. Figure 1�b� shows further-
more that for a small unit cell system such as magnesium,
the scattering of the valence electron density has dropped to
a very low value already at the lowest symmetry allowed
reflection (sin�/��0.181 Å�1) of magnesium. Exactly these
reflections are difficult to measure with x-ray diffraction due
to extinction. The extinction effects can be taken into ac-
count by using the Pendello¨sung method and interpretation
by dynamical theory, but this requires a perfect crystalline
sample which has limited the method to a few crystals, such
as Si�Ref. 4� and diamond.5 Another problem is if the com-
putational method is compromised by the use of limited basis

sets or the pseudopotential approximation. In the present
work, we overcome these two problems by the use of con-
vergent beam electron diffraction�CBED� to measure the
low order reflections and the full potential linearized aug-
mented plane wave�LAPW� method6–8 in the DFT calcula-
tions.

In a transmission electron microscope�TEM� it is pos-
sible for many crystals to focus the incident electron beam
onto a region much smaller than one mosaic block. This
technique produces a set of rocking curves for every dif-
fracted beam simultaneously. The small probe and large
amount of information, combined with the strong interaction
between the fast incident electrons and the crystal potential,
make electron diffraction sensitive to the strong, low order
structure factors. It is therefore well suited for quantitative
work.9 The LAPW method has the clear advantage that the
basis set quality is essentially controlled by only one param-
eter, namely the plane wave cutoff.6–8 When basis set con-
vergence is achieved, any deviation from experiment must be
purely due to inadequacies of the applied exchange-
correlation potential within the DFT.

Some tests of density functionals with systematic com-
parisons between accurate calculations and measured struc-a�Electronic mail: jesper.friis@phys.ntnu.no
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ture factors have been carried out for silicon,10 germanium,11

and beryllium.12 Other tests against electron density derived
properties, such as hyper fine fields13 or electric field
gradients,14 have also appeared. Both these studies13,14 high-
light a well-known inadequacy of most density functionals,
namely that the ground-state energy is not self-interaction-
free. This is expected to be mainly a problem for core elec-
trons or for highly contractedd- or f shells. The self-
interaction correction�SIC� of Perdew and Zunger�PZ�15 has
been very successful in overcoming some of the shortcom-
ings of DFT in the treatment of strongly correlated
materials,16 but the tests of the PZ-SIC have mainly been
based on total energy derived properties.16 Lundin and Eriks-
son �LE�17 pointed out that the PZ-SIC is not fully self-
interaction-free and constructed the LE-SIC so that it is fully
self-interaction-free by construction.17 The results of Nova´k
et al.13 showed that the LE-SIC is superior to pure local den-
sity approximation�LDA � and the PZ-SIC in predicting the
hyperfine fields for the 3d ferromagnets. This could indicate
that the LE-SIC provides a better electron density than the
more common functionals. In this work we have therefore
tested the effect of applying a SIC to the core electrons of
Mg.

Simple hcp metals show a wide range of thec/a ratios.
For Be this value is abnormally low,c/a�1.5684, in contrast
to the almost ideal value ofc/a�1.6224 for Mg. This lead to
an interest in determining the charge density distribution of
these metallic structures18,19 and subsequently a controversy
over the possible existence of a non-nuclear maximum
�NNM� in the total charge density, in particular for
beryllium.12,20–24 Recently, the electron density in Be, Mg,
Na, and Li was studied with the LAPW method,12 and it was
found that at ambient pressure the electron density in hcp Be
and bcc Li exhibits NNM. While F centers have been found
to manifest themselves as quite large and well defined
NNM,25–27 the NNM in simple metals are extremely small
and we will further investigate their existence by establishing
the functional that gives the best agreement with the experi-
mental structure factors.

II. EXPERIMENTAL STRUCTURE FACTORS

A. Sample preparation

Both a single crystal magnesium block grown by zone
refinement at the University of Aarhus and a 0.15 mm thick
99.8% assay Mg ribbon from Alfa Alsar were used for the
TEM sample preparation. The former was cut to 3 mm disks
with normal in the	110
 direction and the latter to disks with
normal in the	001
 direction. As a first try, the samples were
prepared with a precision ion polishing system, which how-
ever left a too uneven surface, even for incident ion beam
angles as low as 4°. The rest of the samples were therefore
prepared by dimpling to around 100�m thickness and then
electropolishing in a solution of 5% HNO3, and 93.5%
methanol at 10 V and 0.5 A at room temperature. As soon as
a hole was created, the samples were cleaned with methanol
and directly brought into the vacuum in the TEM to avoid
oxidation.

In the zone-refinement preparation of a magnesium
single crystal, a bar of the metal�more than 99.5 wt % Mg�
of 15 mm diameter and 60 mm length filled the borehole in
a BN crucible and was induction heated by a single loop coil
in a high-temperature furnace. In order to prevent magne-
sium from reacting with oxygen or nitrogen, the furnace
chamber was carefully fluxed with helium before heating the
magnesium bar, and during the crystal synthesis, the helium
pressure was maintained at 0.3 MPa in the oven. The pass
velocity through the coil was 5 mm h�1. The five-pass zone-
refined bar developed into a few single crystals. The above-
mentioned magnesium block used for the TEM sample
preparation was cut from a single-crystal grain. During the
zone refinement a little magnesium sublimed and condensed
at the top of the BN container in the form of almost spherical
single crystals.

One crystal with diameter of 0.25 mm and with well-
developed�001
 and �111
 facets was selected for x-ray dif-
fraction data collection.

FIG. 1. �a� Radial density probability functionP(r )�4��(r )r 2 of different shells of atomic magnesium, normalized so that each shell contains one electron.
Full line: 1s-density. Broken line: 2sp-density. Dotted line: 3s-density.�b� Fourier transform ofP(r ).
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B. Electron diffraction

1. The CBED experiment

The CBED experiment was performed in a LEO 912B
transmission electron microscope, at Arizona State Univer-
sity. This microscope operates at 120 kV and is equipped
with an in-column�-filter and a Gatan MSC CCD�14 bit
dynamic range� camera. To reduce thermal diffuse scattering
and to avoid contamination during the experiment, the
sample was kept at liquid nitrogen temperature using a Gatan
cooling double-tilt holder. The energy window of the�-filter
was 5–10 eV, allowing only elastically and thermal diffuse
scattered electrons to contribute.

The CBED patterns were recorded in a systematic row
diffraction orientation in which the intensities are very sen-
sitive to normally one or two low order structure factors, for
which the Bragg condition is satisfied. Moreover, when se-
lecting orientation, we also tried to reduce the number of
high order Laue zone lines, since they depend on high order
structure factors that are sensitive to the unknown sample
temperature. An example of this geometry is shown in Fig. 2
for the �002� systematic row. The intensities along the rock-
ing curves 3 to 7 are very sensitive to the�002� and �004�
structure factors. The other rocking curves are included for
increased sensitivity to sample thickness�curves 1,3,8�, ori-
entation�curves 2,5�, and absorption�curve 1�.

The CCD camera was well characterized,28 allowing to
compensate for nonlinearity and point spreading by postpro-
cessing the recorded CBED patterns.

2. Structure factor refinement

The pixel intensities along the rocking curves are calcu-
lated with the Bloch wave method.9,29 In short, the Schro¨-
dinger equation is solved in reciprocal space for the high
energy beam electrons passing through the sample, for which
exchange and correlation effects can be neglected.30 The
crystal potential is conveniently expanded into electron
structure factorsUg�(2me/h2)Vg , whereVg are the Fourier
coefficients of the potential andm and e are the electron
mass and charge, respectively. The electron structure factors
are determined by a refinement procedure, minimizing

�2�
1

n�p�1 �
i

1

� i
2 � I i

exp�cIi
theo�I i

bgr�2, �1�

where the sum runs over the number of pixelsn, and p
denotes the number of refined parameters.I i

exp, I i
theo, andI i

bgr

are the experimental, theoretical, and background intensities
of pixel i , respectively.� i is the standard deviation ofI i

exp

andc is a scaling of the calculated intensities. Only structure
factors corresponding to the normally one or two strongly
excited Bragg reflections are refined. The structure factors
have a refined complex componentUg� accounting for ab-
sorption, which mainly comes from the thermal diffuse scat-
tered electrons that cannot be removed by the energy filter. In
addition to the structure factors, the sample thickness, the
electron beam orientation, the scalingc, and the background
I i

bgr �assumed constant for each diffraction disk� are also re-
fined.

Lattice and anisotropic displacement parameters�ADPs�
were not refined, but obtained by interpolation from earlier
neutron diffraction experiments.31 This was done by assum-
ing that the actual temperature of the sample under the beam
was 5 K higher than the readout temperature from the sample
holder,32 which variated between 107 and 112 K. Figure 3
shows the best fit after refinement of the rocking curves in
Fig. 2.

In total, 36 refinements of 7 systematic rows were per-
formed. The resulting structure factors are averaged and
listed in Table I. The average and variance of the structure
factors are calculated by

Ug��
i

wiUgi , �2�

�2�Ug���
i

wgi
2 sgi

2 ��
i

wgi�Ugi�Ug�
2, �3�

wheresgi is the standard deviation of refinementi and the
weightswgi are (1/sgi)/(� i1/sgi).

The x-ray structure factorsFg are related to the electron
structure factors through the reciprocal version of Poisson’s
equation, known as the Mott–Bethe formula.9 For Mg,

FIG. 2. CBED pattern of the�002� systematic row in magnesium. Eight
rocking curves sensitive to the refined parameters are marked on the pattern.

FIG. 3. Best fit between experimental�points� and theoretically calculated
�lines� intensities after structure factor refinement of the�002� systematic
row CBED pattern shown in Fig. 2. Seven hundred and twelve pixels along
the rocking curves drawn on Fig. 2 were included in the refinement. Pixels
belonging to different rocking curves are separated by vertical lines. The�2

for this particular refinement is 1.47.
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which has a hexagonal structure�space groupP63 /mmc,
no. 194� and two atoms per unit cell at special positionsc

with 6̄m2 site symmetry, we have

Fg�ZCgTg�
8�2�0h2�s2

�me2 Ug . �4�

Here Z, Tg , �0 , �, ands are the atomic number, the tem-
perature factor, the vacuum permittivity, the unit cell volume,
and the scattering angle, respectively. The trigonometric fac-
tor Cg is defined as the sum� j exp(2�ig•rj ), whererj is the
position of atomj , and equals 2 cos�2�	(h�2k)/3� l /4

 for
Mg. The three symmetry-allowed sets of reflections have
Cg�2,) or 1, corresponding toh�k,l �2n; h�k,l �2n
�1, and h�k,l �2n, respectively. Finally, ��1
�E0 /(mc2) is a relativistic correction, whereE0 is the ac-
celerating voltage of the microscope.

The intensity distribution in the diffraction patterns de-
pends on the temperature through the nonrefined structure
factors, but the sensitivity is not strong enough to refine
ADPs. However, the conversion from the electron structure
factors to x-ray structure factors�Fourier coefficients of the
electron density� is sensitive to the temperature. The choice
of ADPs was therefore tested with Wilson-type fitting. The
temperature factor can be written as

Tg�exp	��h2�hk�k2�P� l 2Q
, �5�

where

P�2�2
4

3a2 �u1
2�, Q�2�2

1

c2 �u3
2�, �6�

and where�u1
2� and�u3

2� are the ADPs in thea andc lattice
directions, respectively.

Given the temperature factors, x-ray structure factors can
finally be calculated from Eq.�4�. The so-obtained x-ray
structure factors, converted into static lattice valuesFg

0

�Fg /Tg are shown in Table I. Taking the uncertainty in the
temperature factors into account, the variance ofFg

0 has been
calculated as

�2�Fg
0��� f g

2�Z2��2�Tg��
i

exp��4� i g•ri �

�� K�s2

� � 2

�2�Ug�. �7�

By rewriting Eq.�4�, using Eq.�5� and the fact that the
x-ray structure factors for Mg are given byFg� f gTgCg , we
obtain

� ln Tg�� ln� 8�2�0h2�s2Ug

�me2Cg�Z� f g�
�

��h2�hk�k2�P� l 2Q. �8�

Given f g , the left-hand side of Eq.�8� can be calculated.
Hence,P and Q can easily be obtained by least-square fit-
ting. In the present study we have usedf g obtained from both
Dirac–Fock33 and DFT34 calculations. The latter includes
bonding effects, which, as illustrated in Fig. 4, brings the
�002� and �101� structure factors up to a straight line and
reduces the standard deviations in the ADPs. Using the DFT

TABLE I. Refinement results. The series is continuous up to�210� except for the missing�112� structure factor (sin�/��0.368 Å�1), for which the CBED
patterns suffered from contamination.U are the experimental measured electron structure factors with absorption partU�, while F0 are the converted static
lattice x-ray structure factors. %�(U) and %�(F0) are the standard deviations�in percentage�. Note the reduced standard deviations in the conversion of
electron structure factors to x-ray structure factors for the low-order reflections (sin�/��0.35 Å�1). n is the number of refinements performed for each
structure factor. Sample I is the single crystal from the University of Aarhus and II is the Mg ribbon.

h k l sin�/� U U� F0 % �(U) % �(F0) n Sample

1 0 0 0.181 0.018 45�7� 0.000 35 9.01�1� 0.41 0.14 7 II
0 0 2 0.193 0.034 69�4� 0.000 57 17.56�6� 0.12 0.04 6 I
1 0 1 0.205 0.027 96�9� 0.000 23 14.92�2� 0.33 0.13 8 II
1 0 2 0.264 0.011 53�5� 0.000 32 7.90�2� 0.45 0.24 5 I
1 1 0 0.313 0.018 58�2� 0.000 87 14.59�2� 0.16 0.12 5 II
1 0 3 0.341 0.014 38�3� 0.000 44 12.01�2� 0.27 0.20 3 I
2 0 0 0.361 0.007 721�2� 0.000 31 6.68�1� 0.20 0.21 7 II
0 0 4 0.385 0.014 10�3� 0.000 60 12.74�3� 0.25 0.24 6 I
2 1 0 0.478 0.005 242�2� 0.000 23 5.29�2� 0.30 0.49 3 I
2 0 4 0.528 0.004 471�2� 0.000 23 4.74�2� 0.36 0.60 3 I
2 2 0 0.626 0.006 70�5� 0.000 32 7.76�1� 0.80 1.74 2 II

FIG. 4. Wilson-type plot of low-order electron diffraction data for determi-
nation of the ADPs in Eq.�8�. Static lattice referencef g is taken both from
DFT and Dirac–Fock calculations. The first three points are shown enlarged
in the small plot. The slope of the dotted line is 1.
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values, we obtain �u1
2��7.77(4)�10�3 Å 2 and �u3

2�
�8.20(10)�10�3 Å 2. Considering that the refinements
only depend weakly on the ADPs, these values were so close
to the initial values used in the CBED refinements that new
refinements were not performed.

C. X-ray diffraction

1. X-ray experiment

X-ray diffraction data were collected with the crystal
cooled to 10.2�5� K on a type 512 HUBER four-circle dif-
fractometer equipped with a type CS202 DISPLEX closed-
cycle He cryostat at the Department of Chemistry, University
of Aarhus.35

Graphite monochromated Ag K� (��0.5608 Å) was
used to collect a complete set of data from the single crystal
bar up to sin�/��1.50 Å�1. A total of 4282 reflections was
measured, giving 294 unique data of 12.3 overall average
measurement multiplicity. The internal agreement was
RI(F

2)�0.025. The unit cell parameters were obtained by
least-square fit to the setting angles of 60 reflections with
41.0°�2��43.8°, yielding a�b�3.1925(4) Å�1, c
�5.1795(9) Å�1, dx�1.768 g cm�3, and �
�3.694 g cm�3.

Data were reduced using the localKRYSTAL program
package.36 Integration was performed with the�(I )/I
method37 and equivalent reflections were averaged using the
programSORTAV.38

2. X-ray refinement

The structure factor in monoatomic crystals takes the
form

Fg� f gCgTg . �9�

Comparing with Eq.�5�, it is seen that lnTg , as a function of
(sin�/�)2�(h2�hk�k2)/(3a2)�l2/(4c2), should give a
straight line for the each of the three symmetry-allowed sets
of reflections. Figure 5 illustrates this and shows that the
ADPs are reasonably isotropic, as expected for low tempera-
ture. Figure 5 also shows how the lowest order x-ray data

deviate strongly from a straight line, showing that they are
strongly affected by extinction. The high-order data nicely
follow a straight line and thereby fix the scaling and ADPs.
Figure 1�b� shows how the 2sp semicore shell gives a con-
tribution out to sin�/��1.2 Å�1. A possible core relaxation
would influence the refined ADPs and we have therefore re-
fined them only against data with a higher sin�/� using the
relativistic Dirac–Fock scattering factors of Su and
Coppens,39 yielding �u1

2��4.86(7)�10�3 Å 2 and �u3
2�

�5.10(7)�10�3 Å 2. Keeping these parameters fixed, we
also tried to refine an isotropic extinction model.40 The re-
sulting x-ray structure factors corrected for extinction are
shown in the small graph of Fig. 5. It is seen that the extinc-
tion correction brings the x-ray data onto a reasonably
straight line. However, the deviations are still significant,
considering that the scale is exponential and the expected
deviations from a spherical atom model should be very
small. No sign of anisotropic extinction was found in the
data, and a model was therefore not attempted.

The small graph of Fig. 5 also shows the CBED data that
have been multiplied with aTg , corresponding to the ADPs
found from the high-order x-ray data. It is seen that the de-
viation is very small, as expected.

III. THEORETICAL MODELING

In the present study, we have employed the LAPW
method as implemented in theWIEN2K package.34 The 1s
and 2s electrons were treated fully relativistically as core

FIG. 6. Structure factor difference between theory and experiment com-
pared with the estimated standard deviation of the experimental value. The
differences have been carried out in the local density approximation�LDA �,
the generalized gradient approximation of Perdew, Burke, and Ernzerhofer
�PBE�, and that of Engel and Vosko�EV�. The shape of the point indicates
the self-interaction correction�SIC� applied to the core states� No SIC,
* PZ-SIC, and� LE-SIC.

FIG. 5. Wilson plots. X-ray data:� Cg�2. �Cg�). � Cg�1. The small
insert shows the the extinction corrected x-ray data, together with the elec-
tron diffraction data�marked with��.
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electrons, while the valence electrons were treated in the
scalar relativistic approximation.41 A local orbital was added
to describe the 2p state and the electron density was ex-
panded up toL�10. Similarly to the study of Si,10 we have
compared the LDA by Perdew and Wang,42 the generalized
gradient approximations�GGA� by Perdew, Burke, and Ern-
zerhofer�PBE�,1 and Engel and Vosko�EV�43 functionals for
Mg and will comment on the earlier findings. Due to the very
recent work by Nova´k et al.13 we have also tested the
PZ-SIC15 and LE-SIC17 schemes.

A. Valence densities

Figure 6 shows the differences between the calculated
structure factors and the ones measured by ED. The esti-
mated standard deviations of the experimental values are
also shown in the plot. Table II gives the overall agreement
factors, which shows that there is a small improvement when
going from LDA to PBE to EV, in agreement with the find-
ings of Zuo.10

The results of applying a SIC to the core states are also
shown in Fig. 6 and Table II. When applying the PZ-SIC15

only a small improvement is achieved over the LDA results.
On the other side a large improvement is gained by applying
the LE-SIC, which indicates that it provides a better density.
This conclusion agrees perfectly with that of Nova´k et al.,13

with the added advantage that structure factors sample the
whole electron density, not just the spin density in the small
Thompson sphere around the nucleus as the hyperfine fields.
Considering the conceptual attractiveness of the LE-SIC
scheme17 the agreement is quite satisfying. It is somewhat
surprising that the application of SIC to the core states gives
a smaller improvement when using GGA. This is probably
because the GGA functionals are parametrized to confirm to
certain exact relationships1 or by optimizing the virial
relationship.43 When an SIC is applied to the core orbitals,
these parameters can no longer be expected to hold.

Calculations where the SIC was only applied to the 1s
core state were also performed. Only small differences were

found for the low-order structure factors. This could be ex-
pected because the 1s contribution to the Mg scattering fac-
tor is very flat in this region, Fig. 1.

B. Core densities

The improvement of theR factor by applying the SIC to
the core states suggests that the main discrepancies between
the densities calculated with the standard DFT functionals
and experiment are due to poor descriptions of the core den-
sities. This is not surprising, since an inadequate treatment of
self-interaction is mainly expected to be important for the
core orbitals. It is noted that the LDA is exact for a free-
electron gas which should be a good approximation of the
valence electrons in Mg.

The low-order reflections analyzed in the previous sec-
tion contain information about both the core, the semicore,
and the valence density. The x-ray structure factors form a
complete set out to 1.6 Å�1, and as the high-order reflec-
tions are not influenced by extinction they give an excellent
possibility for comparisons based only on contributions from
the core density. By comparing the calculated electron den-
sity from the 2sp shell of a free-atom calculation with the
calculated density in the crystal, we find a small relaxation of
this semicore state which extends out to approximately
1.2 Å�1 in reciprocal space. As we also wish to compare
with the Dirac–Fock atomic calculations of Su and
Coppens39 where this could be masked as thermal motion,
we will only use reflections with sin�/��1.2 Å�1.

Table III shows that when the ADPs are refined, theR
factor is the same for all core densities, while the ADPs vary.
The EV and LDA LE-SIC functionals give thermal param-
eters that agree best with the ones obtained from the Dirac–
Fock scattering factors.39 Based on the fact that a Fock so-
lution is explicitly self-interaction-free, we can assume that
the Dirac–Fock method gives a good core density. Therefore,
these results show that the LE-SIC and EV potentials give
the best core densities. The poor agreement between EV and

FIG. 7. Deformation map in the basal
plane through the atoms parallel to
�001� of the hexagonal unit cell of�a�
Be and�b� Mg. Contours are plotted at
0.001 e/a.u.3 with negative contours as
broken lines. The dotted line is the
zero contour.

TABLE II. Agreement factorsR(F)� 	��Fcalc�Fobs�
/�Fobs and Rw(F)
� 	�w�Fcalc�Fobs�
/�wFobs for various density functionals with the ED
data. The symbols refer to Fig. 6.

��� PZ-SIC �* � LE-SIC �

R(F)/Rw(F) R(F)/Rw(F) R(F)/Rw(F)

LDA 0.48/0.39 0.46/0.37 0.16/0.14
PBE 0.36/0.32 0.28/0.52 0.25/0.23
EV 0.27/0.26 0.38/0.34 0.37/0.33

TABLE III. Agreement factors for various density functionals with the high-
order, sin�/��1.2 Å�1, x-ray data.

Method Rw(F) �%� �u1
2� (10�3 Å �2) �u3

2� (10�3 Å �2)

Dirac–Fock�Ref. 39� 0.89 4.86�7� 5.10�7�
LDA 0.89 4.78�7� 5.03�7�
PBE 0.89 4.81�6� 5.06�6�
EV 0.89 4.85�6� 5.09�6�
LDA LE-SIC 0.89 4.84�6� 5.08�7�
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experiment for the low-order structure factors must then be
due to a poor description of the valence electrons. The earlier
study of Si�Ref. 10� showed that theR factor for EV poten-
tial was lower for the high-order reflections. This study kept
the ADPs fixed to the ones obtained by a fit with atomic
scattering factors. Thereby the lowestR-factor will be ob-
tained by the functional, giving the core density in the best
agreement with the method used to calculate the atomic scat-
tering factors. Our conclusion is therefore based on the same
assumption as Zuoet al.10

IV. THE ELECTRON DENSITY IN HCP METALS

Figure 7 shows the deformation density calculated with
the LE-LDA functional in the�001� plane of Be and Mg. The
Be plot shows a good agreement both in features and mag-
nitude with the experimental deformation maps derived from
high accuracy x-ray structure factors.18 A main difference
between the Be and the Mg maps is that Mg shows no deple-
tion of charge in the octahedral holes. The Mg map is con-
spicuously more flat, in agreement with the expectation that
Mg is closer to a free-electron metal.

The present results have shown that the measured CBED
structure factors can be used to quantitatively discriminate
between different DFT functionals which can be used for the
discussion of the presence of NNM in these simple metals.
Using the same kind of argumentation, it was earlier12 found
that the application of the PBE favored the existence of
NNM and, compared to the LDA, improved the agreement
between calculated and experimental structure factors for Be.
It was therefore argued that it was very likely that an NNM
would also be found if the unknown exact functional could
be applied. In the present study�Table II� we have shown
that the calculated charge density can be further improved by
applying the LDA LE-SIC functional. If we apply the LDA
LE-SIC functional to Be and Mg, an NNM ((3,�3) critical
point� is found for Be�Table IV� but not for Mg�Table V�, in
agreement with the earlier findings.12 The NNM for Be is

extremely small�Table IV� and of the same magnitude as the
uncertainty of the electron density derived from experimental
structure factors.18,23 The procedure applied in the present
study can be viewed as applying a model that is very flex-
ible, but at the same time constrained to the physical con-
straint of self-consistency within a systematically con-
structed functional. We therefore argue that the present study
is the closest yet to experimental evidence for the existence
of NNM in Be.

Figure 8 illustrates the variation of the total density be-
tween atomic positions in the Be and Mg hcp structures. It
shows how the core density of Mg is more extended than the
very contracted�unscreened� core density of Be, which
means the existence of NNM is most probable for the ele-
ments belonging to the second period.12

V. CONCLUSION

It has been shown that sufficient accurate low-order
structure factors can be measured by CBED to experimen-
tally test DFT functionals. The core densities can be tested
against high-order x-ray data that are not affected by extinc-
tion. It was found that the agreement with experiment in-
creases when going from the LDA to the PBE to the EV. The
improvement of the EV comes mainly from a better descrip-
tion of the core states. Applying the PZ-SIC to the core states
for LDA did not improve the agreement with theory, while
applying the LE-SIC of Lundin and Eriksson resulted in a
significantly improved agreement. The LDA LE-SIC func-
tional also agreed well with the x-ray data at scattering
angles larger than 1.2 Å�1. Using this functional an NNM in
the electron density was found for Be but not for Mg.
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Quantitative convergent beam electron diffraction(QCBED) experiments allow
absolute scale measurements of low order structure factors with very high ac-
curacy. In this paper, eight low order structure factors for copper measured by
QCBED have been combined with the higher orderγ-ray structure factors in or-
der to obtain a larger high-accurate experimental data set. Theγ-ray values were
relativistically corrected and rescaled. The new data set was then used for studying
the charge distribution in copper. Charge deformation maps have been produced
and both amaximum entropyand amultipole analysishave been applied to the
data. The result is compared todensity functional theorycalculations. We find an
almost spherical charge depletion around the atomic sites showing typical metal
bonding in copper.

1. Introduction

Recently, very accurate measurements of low order structure
factors in copper have been performed (Friiset al., 2003). In
this work we have enhanced the accuracy of the measurements
somewhat further. The new data set is then combined with the
corrected (Petrilloet al., 1998)γ-ray measurements of Schnei-
der et al. (1981), and used for a more detailed study of the
charge distribution in copper.

The deformation density, defined as the difference between
the observed density and theprocrystaldensity, where indepen-
dent atoms are placed at the atomic sites, describes the redistri-
bution of electronic charge due to bonding. Since this charge
redistribution mainly occurs inthe valence region where the
charge density varies slowly, the bonding effect is mainly seen
in the differences between the lowest order observed andinde-
pendent atom model(IAM) structure factors. Since these dif-
ferences are very small (around or less than 1%), very accurate
measurements are required. Such an accuracy is difficult to ob-
tain for the strong low order reflections using ordinary X-ray
diffraction, due to extinction and the contribution of anomalous
scattering. A way to overcome this problem is to combine dif-
ferent techniques.

Copper has for a long time been used as a test case for theo-
retical models of elements containing the complicatedd elec-
tron bands. It is non-magnetic, and is relatively uncomplicated
by relativistic effects because ofits small mass. It is therefore
not surprising that there has been many experimental measure-
ments of the structure factors.

By usingγ-ray diffractometry, Schneideret al. (1981) could
reduce the anomalous scattering and extinction effects in cop-
per, compared to earlier powder and single crystal X-ray exper-
iments (Battermanet al., 1961; Jenningset al., 1964; Hosoya &
Yamagishi, 1966; Temkinet al., 1972; Freud, 1973). However,
the available scattering angles were at the same time reduced.

Since it is difficult to obtain large perfect crystals of copper, re-
quired for traditional X-ray Pendell¨osung experiments, Takama
& Sato (1982) measured a few low order structure factors us-
ing awhite beam X-ray Pendellösung method. Although not as
accurate as the ordinary Pendell¨osung method, this technique
does not require so large single crystals. More recently, accu-
rate structure factors have been measured by electron diffraction
techniques. A big advantage of these methods is that they are
performed in atransmission electron microscope(TEM), mak-
ing it possible to select a perfect single crystalline region for
the experiment. However, theaccuracy of these techniques is
reduced for higher order structure factors. Smart & Humphreys
(1980) and Fox & Fisher (1988, in Tabbernoret al., 1990) used
thecritical-voltage method, which is capable of measuring the
ratio between structure factors as accurate as 0.1%. A limita-
tion is that this method relies upon the accuracy of the refer-
ence used. Theintersecting Kikuchi-line method, proposed by
Gjønnes & Høier (1971), uses the sensitivity of the separa-
tion between high order Kikuchi-lines to certain structure fac-
tors. This method was combined withconvergent beam elec-
tron diffraction (CBED) by Matsuhataet al. (1984) for mea-
suring the (̄111) and (020) reflections of copper. However, the
most accurate experiments on copper so far are probably the
quantitative CBED(QCBED) measurements by Saunderset al.
(1999) and Friiset al. (2003). The strong multiple scattering of
the electrons is here fully taken into account by using dynamical
theory, which at the same time eliminates extinction and scaling
problems. More detailed overviews of the above experiments on
copper can be found in Tabbernoret al. (1990), Mackenzie &
Mathieson (1992) and Friiset al. (2003).

The γ-ray experiment by Schneideret al. (1981) is prob-
ably the most referred structure factor measurement for cop-
per. The reasons for this is probably the good internal consis-
tency of the data and that the data set is comparably large; 19
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structure factors were measured up to sinθ/λ = 1.6 Å−1 at
50 K and room temperature (Schneider, 1976). However, com-
pared to other experiments these structure factors are some-
what low. The absolute scale andeven the extinction correc-
tion of theγ-ray data has therefore been questioned and several
different corrections have been proposed. By applying an im-
proved extinction correction scheme to the (220) structure fac-
tor, Mackenzie & Mathieson (1984) obtained a value closer to
that of other experiments. On the other hand Tabbernoret al.
(1990) pointed out that good agreement also can be achieved
by rescaling the data set to fit the (111) reflection of Fox &
Fisher (1988). The idea that the discrepancy is due to prob-
lems with absolute scale, and not to the extinction correction, is
also approved by Schneider (Tabbernoret al., 1990). In a new
analysis of Schneideret al.’s (1981) data, Petrilloet al. (1998)
chose a slightly smaller Debye-Waller factor for Cu at 50 K.
More important, Petrilloet al. (1998) applied a kinematic cor-
rection (in the order of the experimental errors), which impor-
tance first was realized by Deweyet al. (1994). This correction
is due to the relativistic energies of theγ-rays and can be in-
terpreted as a relativistic change of the electron mass. Finally a
scaling factor of 1.0042(62) was introduced in order to fit the
relativistic Hartree-Fock free-atom structure factors (Doyle &
Turner, 1968) for scattering angles sinθ/λ > 0.5 Å−1.

In section 2., we give a brief overview of the QCBED ex-
periment and in 3. we combine the QCBED data withγ-ray
measurements. In the following sections we use this data set
for studying the charge redistribution due to bonding in copper.
In section 4. we discuss the deformation density obtained by a
simple Fourier synthesis. In section 5. the results from themax-
imum entropy method(MEM) are discussed. Finally, in section
6., we will discuss the results of amultipole analysis.

2. QCBED measurements of structure factors
In the CBED technique, the electron probe in the TEM is fo-
cused down to the size of a few nanometers. This makes it
easy to study perfectly crystalline regions of the sample. Since
the CBED patterns show the rocking curve of every diffracted
beam simultaneously, they are well suited for quantitative work
(Spence & Zuo, 1992; Zuo, 1998). Because electrons interact
strongly with the crystal potential and are multiple scattered
when they pass through the sample, a full dynamic theory is
required when analyzing the CBED patterns. Extinction, which
is a problem in X-ray diffraction of the strong low order reflec-
tions in small unit-cell crystals, is therefore fully accounted for
in QCBED. The QCBED method is based on a pixel to pixel
comparison between the experiment and a Bloch wave simula-
tion, where the Fourier coefficients of the crystal potentialVg are
treated as refinable parameters (Zuo, 1998). A typical CBED
pattern is shown in Fig. 1a for the (220) systematic row with
some line scans, sensitive to the refined parameters, marked on
it. Fig. 1b shows the best fit along the chosen line scans obtained
with the Bloch-wave simulation.

For bonding studies, the interesting quantity is the electron
density, of which Fourier components are the X-ray structure
factorsFg. These are directly related toVg through the recip-
rocal space version of Poisson’s equation (also known as the

Mott-Bethe formula). The operation of this equation provides
increased sensitivity to the low order structure factors (Spence
& Zuo, 1992).

The structure factors reported in Table 1 under “this experi-
ment” are the structure factors from Friiset al.(2003) with some
new refinements. These additions have not led to any significant
changes in the structure factorvalues, but the errors are some-
what decreased due to better statistics. Most notable is that the
value of the (420) structure factor has been added to the data
set. We believe that this experiment, together with the one of
Saunderset al.(1999), is the most accurate measurement of the
low order structure factors of copper done so far.

3. Combination with γ-ray data
In order to reduce truncation errors due to the limited set of
measured structure factors in the study of charge density, the
QCBED data have been combined with theγ-ray measurements
of Schneideret al.(1981). However, three corrections have been
applied to theγ-ray data (in the given order) before combining
them with the QCBED data:

(i) Subtraction of the relativistic correction∆, calculated by
Petrillo et al. (1998), from theγ-ray values.

(ii) As suggested by Petrilloet al. (1998), we use the value
B = 0.153Å2 from Svenssonet al. (1969) as the 50 K Debye-
Waller factor for copper, which is almost identical to the value
obtained from a Wilson plot of the relativistically corrected data
(B = 0.152Å2, Fig. 2). This should be compared to the Debye-
Waller factor ofB = 0.167Å2 obtained from a Wilson-plot of
the original data (Schneideret al., 1981).

(iii) Rescaling of the data with a scaling factork = 1.0084,
defined from

k |Fobs| = exp(−Bs2)|F0| (1)

ln

∣∣∣∣ F0

Fobs

∣∣∣∣ = ln k + Bs2,

in order to obtain a best fit to the QCBED data. Heres = sinθ/λ
is the scattering angle andF0 are static lattice structure factors
obtained from DFT calculations (using the WIEN2k program,
Blahaet al., 2001).

These corrections are all of the order of the standard devia-
tions and are largest for the low order reflections. We have ap-
plied the same small increase of the standard deviations, due
to the uncertainties introduced by the corrections, as used by
Petrillo et al. (1998). The corrected and combined data sets are
shown in Table 1, respectively labeled as “corrected” and “com-
bined”.

The new data set is plotted with error bars in Fig. 3 rela-
tive to values obtained from the IAM. Except for a few outliers,
(600), (800) and (10,0,0), we see no significant difference be-
tween the combined and the IAM data sets for scattering angles
sinθ/λ > 0.5 Å−1.

4. Charge deformation density of copper
The kinematic non-forbidden structure factors for Cu take the
form

F(s) = 4 f (s) exp(−Bs2) (2)
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where f is the atomic scattering factor (or form factor). For
the IAM, several good parameterizations of the scattering fac-
tors exist (Macchi & Coppens, 2001; Peng, 1998; Su & Cop-
pens, 1997). The most famous and widely used is probably the
relativistic Hartree-Fock scattering factors of Doyle & Turner
(1968), which are used for the IAM in this paper. A commonly
used quantity for recognition of bonding features is thedefor-
mation density

∆ρ(r) =
1
V

∑
h

(
Fobs

h − F IAM
h

)
exp(−2πir · h) (3)

defined as the difference between the crystal and the IAM den-
sities.V is the unit cell volume. The deformation density shows
charge accumulation in bonding regions, but quantitative appli-
cations cannot be drawn too long, since the deformation den-
sity depends on the definition of the reference density and is
thermally averaged. Another practical limitation of deforma-
tion densities calculated from a set of measured structure fac-
tors is the errors due to series truncation. As shown in Fig.
5, these errors are mainly concentrated to high-symmetric re-
gions. For copper it is common to plot the charge density in the
(110)-plane since this plane contains both nearest, second near-
est and third nearest neighbors. Fig. 4 shows the deformation
density calculated from the 12 lowest order structure factors
(sinθ/λ ≤ 0.79 Å−1) in the combined data set. The standard
deviations of the deformation density, shown in Fig. 5, were cal-
culated according to the formalism of Rees (1976) and Rees &
Mitschler (1976). The strong dependency of the number of sur-
rounding symmetry equivalent points, with maximum at high-
symmetric regions, is an effect of truncation errors.

The deformation density in Fig. 4 shows, as expected from
metallic bonded crystals, charge depletion at the atomic sites
and a build up of charge in the interstitial regions. A maximum
of 0.19 e̊A−3 is seen at the interstitial octahedral sites. How-
ever, this maximum is not significant due to the large standard
deviations,σ(∆ρ) = 0.26 eÅ−3 at the octahedral sites.

In the following two sections more sophisticated methods are
used in order to deal with the truncation and other errors due to
the incompleteness of the data.

5. Maximum entropy fitting of direct-space charge
density
The maximum-entropy method(MEM) is a method based on
information theory to enhance information from limited or
poor data. Applications in crystallography have been reviewed
by Gilmore (1996). It has often been used to calculate the
charge density distribution from a limited set of structure fac-
tors (Collins, 1982; Sakata & Sato, 1990; Papoularet al., 1996).
The basic idea is to find the charge distribution which maximize
the entropy, under the constraint that structure factors calculated
from this distribution must match the measured structure fac-
tors.

But, as pointed out by Jauch & Palmer (1993) and Jauch
(1994), the traditional maximum entropy algorithm is limited
when fine details, such as bonding deformation, are to be stud-
ied, and the charge density to be reconstructed has a large

dynamic range. However, if one uses the deformation density
∆ρ(r) as the key quantity when maximizing the entropy, the
dynamic range is substantially reduced and the small bond-
ing features become more pronounced. Since MEM relates the
charge density directly to probabilities, the use of the deforma-
tion density, which takes both positive and negative values, re-
quires atwo channel method. This method has successfully been
used for magnetization densities (Papoular & Gillon, 1990),
in neutron diffraction involving scattering lengths of opposite
signs (Sakataet al., 1993) and deformation densities (Papoular
et al., 1996).

In the two channel method the deformation density is split
into two quantities, a positiveρ+(r) and a negativeρ−(r) part,
such that∆ρ(r) = ρ(r) − ρIAM (r) = ρ+(r) − ρ−(r). The unit
cell is divided intoM pixels, each of sizeV/M centered atr j

and with densitiesρ+
j = ρ+(r j) andρ−

j = ρ−(r j). The entropy
functional, to be maximized, is given by

S[∆ρ] = −
M∑
j=1

[
p+

j ln p+
j + p−j ln p−j

]
, (4)

wherep±
j = ρ±j

/
Q± , with Q± =

∑
j ρ

±
j , are the corresponding

probabilities for the positive and negative parts of the deforma-
tion density associated with pixelj. The maximization ofS[∆ρ]
is performed under the constraint that the difference between
the structure factors calculated from the MEM charge density
and the IAM structure factors

∆Fcalc
h =

V
M

M∑
j=1

(
Q+p+

j − Q−p−j
)

exp(2πih · r). (5)

agrees with the difference between the observed structure fac-
tors and IAM structure factors∆Fobs

h within the standard devia-
tion σh. This condition is expressed as

χ2 =
1
N

∑
h

∣∣∆Fobs
h − ∆Fcalc

h

∣∣2 /
σ2

h � 1 . (6)

The problem is solved by maximizing the Lagrange functional
L[ρ] = S[∆ρ] − λχ2, whereλ is the a Lagrange multiplier. At
convergence∇ρL = 0, resulting in the normalized densities

p±j = m±
j exp

(
∓λ

∂χ2

∂p±

)
, (7)

wherem±
j are prior density distributions. The deformation den-

sity is obtained by solving Eq. (5), (6) and (7) iteratively for
both p± and λ, starting from a flat deformation density and
λ � 0.

It has been argued that a problem with two-channel MEM
applied to the deformation density, is thatQ+ andQ− are un-
known. However, since the total amount of charge is conserved
in the formation of the deformation density, we must have
Q+ = Q− = Q. It is then easy to show that, by introducing
a scaled Lagrange multiplierΛ = λQ, one can move all de-
pendence ofQ into this Lagrange multiplier. Hence, the value
one choose forQ doesn’t matter, since the Lagrange multiplier
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is already an unknown parameter that has to be given a suitable
value in order to achieve convergence.

The MEND program (Sakata & Takata, 1994) modified by
Burger (1998), was used to solve the problem. The unit cell
was divided into 128× 128× 128 pixels. In order to check that
the algorithm only depends on the product ofλ andQ, several
different starting points with uniform prior deformation densi-
ties, ∆ρ+

0, j = ∆ρ−0, j = 0.05, 0.1, 1.0, 2.5 eÅ−3, were tried. In
all cases the same convergence was achieved withλ0 around

(5·10−4 eÅ
−3

)
/

∆ρ0, j . The same results were also obtained with
smaller grids of 32× 32× 32 and 64× 64× 64 pixels.

The deformation density for∆ρ+
0, j = ∆ρ−0, j = 0.05 eÅ−3 and

λ0 = 0.01 is shown in Fig. 6. This map is quite similar to the
one obtained from direct Fourier synthesis. It shows an average
interstitial charge surplus of 0.05 eÅ−3 and a less pronounced
peak at the interstitial octahedral sites. Instead, small maxima
are seen between the nearest neighbors, at the tetrahedral sites
and at the(1/4, 1/4, 1/2) positions (the positions furthest away
from the atomic sites).

6. Multipole analysis

In multipole analysis the atomic charge density is expanded in
terms of a series of multipolar functions centered at the nucleus.
The multipole populations and radial expansion parameters, are
determined from least square fitting to the measured structure
factors. This method has the advantage that it provides an ana-
lytical expression for the charge density, allowing for easy cal-
culation of physical properties based on the charge distribution.
Another interesting feature is that the multipole populations can
be related to orbital occupancies.

In the valence-density formalismof Hansen & Coppens
(1978) the atomic electron density

ρatom(r) = Pcρcore(r) + Pvκ
3ρvalence(κr)

+
lmax∑
l=0

κ′3
l Rl (κ′

l r)
l∑

m=0

Plm± dlm±(θ, φ). (8)

is described by three parts; a spherically core part populated
with Pc electrons, a spherically valence part which is allowed
to expand (κ < 1) or contract (κ > 1) with population
Pv and a series of multipolar functions accounting for an as-
pherically redistribution of theelectron density, each populated
with Plmp electrons. The multipolar functions are character-
ized by the radial functionsRl (κ′

l r) and the density functions
dlm±(θ, φ), that are density-normalized real spherical harmon-
ics (Coppens, 1997, Chap. 3). Because of the strong symme-
try imposed by the cubic atom site symmetry of copper, all
terms in the multipole expansion up tolmax = 3, except for
the monopole will vanish (Kurki-Suonio, 1977). For the hex-
adecapoles(l = 4) only one independent cubic population pa-
rameterPhex will remain.

In Jianget al. (2003) a multipole analysis for the combined
data set was performed. Assuming that the 3d radial wave func-
tion has a tail that does not contribute significantly to the mea-
sured reflections; a model that reproduces very well the ob-
served structure factors could be obtained. This deformation

of the 3d orbital was simulated by writing the 3d orbital as
3ddeformed = 3d10−n4sn with n = 1.27, where 3d and 4s here
refers to Clementi & Roetti’s (1974) Slater-type radial func-
tions.

This model results in a negligible aspherical contribution to
the charge density in copper (Phex = −0.0001), which is also
seen from the spherical charge depletion around the atomic
sites in the deformation density (Fig. 7). The fact that spheri-
cal model seems to give a very good description of copper, also
validates our special construction of the 3ddeformedradial func-
tion. More details are given in Jianget al. (2003).

7. Discussion and conclusions

For comparison, several sets of low order scattering factors for
copper are listed in Table 1. The theoretically calculated val-
ues are the IAM scattering factors by Doyle & Turner (1968),
the self-consistent band structure calculation by Bagayokoet al.
(1980) and a full-potential DFT calculation using the gen-
eralized gradient approximation (GGA) performed with the
WIEN2k program package (Blahaet al., 2001). Experimental
values are theγ-ray diffractometry measurements by Schnei-
der et al. (1981), the QCBED experiment by Saunderset al.
(1999) and the QCBED experiment presented here. The two
last rows show the scattering factors obtained by applying MEM
and multipolar analysis to the combined data set. The difference
between the scattering factors and the IAM values are plotted in
Fig. 3. The difference between the DFT, MEM, observed and
multipole scattering factors and the IAM values are also plotted
in Fig. 3.

First of all, the R-factors show that the agreement between
γ-ray measurements and our experiments increases a lot by the
corrections. Compared to the old calculation by Bagayokoet al.
(1980) the DFT calculation shows a significant improvement in
the R-factor for our experiment. However, the agreement for
the DFT calculation is worse, when the higher order corrected
γ-ray data is also taken into account. Since the GGA method is
usually more accurate for higher orders, this might imply that
there are still some problems with theγ-ray data, despite the
corrections.

In Jianget al. (2003) it is seen from the DFT calculations
that the scattering from the valence 3d and 4s orbitals is very
small at sinθ/λ = 0.8 Å−1 and almost vanish for scatter-
ing angles larger than 1̊A−1. One would therefore expect the
true scattering factors to be very close to the IAM values for
sinθ/λ > 1.0 Å−1. This is the case for the DFT calculations and
the multipole model, but not for the (600), (800) and (10,0,0)
correctedγ-ray scattering factors.

It is clear from Fig. 3 that our multipole model fits the ob-
served scattering factors very well. The only exceptions are the
(600), (800) and (10,0,0) reflections, for which it gives the scat-
tering factors expected from DFT. In fact, the agreement be-
tween DFT and the multipole model is excellent, and justifies
our construction of the 3d multipolar orbital. The charge de-
formation density from the DFT calculation is shown in Fig. 8.
It is very close to the multipolar deformation density in Fig. 7.
Both these maps show a spherical charge depletion at the atomic
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sites, typical for metallic bonding, but also a small charge sur-
plus between the nearest neighbors.

The maximum entropy method tends to move the structure
factors toward the IAM-values (Fig. 3), that are the structure
factors maximizing the entropy for the two-channel method
used in this work. This does not seems to provide much physi-
cal insight. However, MEM can be seen as a statistical method
to reduce the problems with incomplete data sets and truncation
errors in deformation density maps obtained by Fourier synthe-
sis. And indeed, the MEM deformation density map (Fig. 6)
shows similar features to those from DFT (Fig. 8), but the ra-
dius of the spherical charge depletion around the nucleus is too
small.

In summary DFT and the multipole model seem to provide a
very good description of copper, which shows typical metallic
bonding.

We thank prof. J.C.H. Spence (Arizona State University) and
prof. J.M. Zuo (University of Illinois) for helpful discussions.
Funding from the Research Council of Norway (NFR), project
135270/410 is gratefully acknowledged. B. Jiang is funded by
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Table 1
Theoretical and experimental static lattice scattering factors for Cu. The row labeled “combined” is the same as this experiment, but with the missing values
replaced by the correctedγ-ray data. The agreement factorsRthis exp.andRcombinedare given byR=

� � |F − F ref| � � �
F ref and shows the agreement with the this

experiment and the combined data, respectively.

Bagayoko Schneideret al. (1981) Saunders This
et al. Original Corrected et al. experiment Multipole

h k l sinθ/λ IAM a (1980) DFTb values ∆c valuesd (1999) (2003) Combined MEM analysis
1 1 1 0.24 22.05 21.68 21.70 21.51(4) -0.06 21.73(5) 21.78(2) 21.69(3) 21.69(3) 21.84 21.70
2 0 0 0.28 20.69 20.35 20.38 20.22(3) -0.07 20.44(4) 20.44(2) 20.44(2) 20.44(2) 20.47 20.42
2 2 0 0.39 16.74 16.62 16.67 16.45(4) -0.08 16.63(5) 16.72(11) 16.68(2) 16.68(2) 16.70 16.69
3 1 1 0.46 14.74 14.70 14.75 14.54(3) -0.08 14.70(4) 14.78(13) 14.73(1) 14.73(1) 14.72 14.75
2 2 2 0.48 14.19 14.17 14.21 14.07(4) -0.08 14.22(5) 14.24(7) 14.24(7) 14.20 14.21
4 0 0 0.56 12.42 12.42 12.48 12.29(5) -0.08 12.42(6) 12.45(9) 12.45(9) 12.43 12.46
3 3 1 0.60 11.42 11.41 11.47 11.30e -0.09 11.43(9) 11.43(9) 11.42 11.46
4 2 0 0.62 11.13 11.13 11.19 11.02(5) -0.09 11.14(10) 11.18(9) 11.18(9) 11.14 11.16
4 2 2 0.68 10.16 10.16 10.21 10.08(5) -0.09 10.19(10) 10.19(10) 10.16 10.19
3 3 3 0.72 9.58 9.58 9.63 9.49(5) -0.09 9.59(9) 9.59(9) 9.58 9.61
5 1 1 0.72 9.58 9.58 9.64 9.53(5) -0.09 9.63(9) 9.63(9) 9.58 9.61
4 4 0 0.78 8.82 8.86 8.84(7) -0.09 8.93(11) 8.85(2) 8.85(2) 8.84 8.85
6 0 0 0.83 8.35 8.40 8.37(8) -0.09 8.45(11) 8.45(11) 8.36 8.37
4 4 4 0.96 7.38 7.40 7.33(8) -0.09 7.39(12) 7.39(12) 7.38 7.40
8 0 0 1.11 6.64 6.66 6.75(13) -0.09 6.78(16) 6.78(16) 6.65 6.64
6 6 0 1.18 6.37 6.37 6.41(11) -0.09 6.43(15) 6.43(15) 6.38 6.37
5 5 5 1.20 6.28 6.27 6.29(12) -0.09 6.31(15) 6.31(15) 6.29 6.29

10 0 0 1.39 5.66 5.65 5.59(14) -0.09 5.58(17) 5.58(17) 5.65 5.64
6 6 6 1.44 5.49 5.49 5.51(15) -0.09 5.49(19) 5.49(19) 5.49 5.49
8 8 0 1.57 5.09 5.09 5.12(16) -0.09 5.08(20) 5.08(20) 5.09 5.10

Rthis exp.(%) 0.69 0.31 0.15 1.09 0.24 0.24 — 0.27 0.10
Rcombined(%) 0.64 0.30 0.30 0.96 0.14 0.24 — 0.38 0.27

a Calculated from Doyle & Turner (1968).
b Calculated with the WIEN2k program of Blahaet al.(2001).
c Kinematic correction of theγ-ray structure factors from Petrilloet al. (1998).
d Estimated standard deviations are from Petrilloet al. (1998).
e Estimated by interpolation.
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Figure 1
(a) CBED pattern of the (220) systematic row in copper. The selected rocking curves are shown with white lines. (b) Best fit from Bloch-wave refinement of
the selected rocking curves. The points are measured intensities while the solid line is calculated intensities. The discrepancy for each pixel between theory and
experiment is also shown with dots.
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0.154Å2 for the best fit.
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Figure 3
The difference between static lattice scattering factors and Doyle & Turner
(1968) independent atom values versus scattering angle. Units in e/atom. The
solid line is for the multipole analysis.
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1 1 0

0 
0 

1

0.05

0.10

0.15

0.20

0.25

1 1 0

0 
0 

1

1 1 0

0 
0 

1

Figure 5
Standard deviation in the deformation density calculated from the combined
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ABSTRACT

We report highly accurate measurements for the low-order Fourier components of the 

electron density in copper. These were obtained by transmission electron diffraction 

using a small probe and multiple scattering analysis. They were used to refine the Cu 3d

radial wave function. An accurate charge-deformation  map and a 3d orbital radial wave

function were obtained by using a multipole refinement of the structure factors obtained

from combined quantitative electron diffraction and g-ray diffraction measurements. The 

results show a large change in the 3d orbital radial function from d-band formation and d-

s band crossing (d-s hybridization). Band theory calculations are in excellent agreement 

with the measurements and show that the charge deformation in Ag is very similar to that 

in Cu Our findings are in general agreement with the monovalent description of these 

metals.
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I Introduction

The measurement of valence electron radial wave functions and charge densities 

has long been recognized as a challenging problem. It requires highly accurate Fourier

components of charge density and a sound multipole refinement model. The Fourier 

components of charge density are equal to the X-ray structure factors, whose amplitude,

in principle, can be obtained experimentally by measuring the diffraction intensities. In 

simple inorganic materials like copper, it is difficult to obtain the crucial low-order

structure factors by kinematic photon (X-ray or g-ray) diffraction with sufficient accuracy 

for charge density analysis due to uncertainties in extinction corrections and other factors

1. Electron diffraction, on the other hand, is inherently more sensitive for small scattering 

vectors and is free from extinction effects, so that low order structure factors can be 

obtained with much higher accuracy 1 . Using a combination of electron (for low order) 

and X-ray (for higher order) diffraction data, detailed information about the valence 

electron distributions has recently been obtained in simple inorganic crystals such as Cu 

2, Mg 3, MgO 4, TiO2
5, Cu2O

6.

First-principles electronic structure calculations provide an excellent account of

properties such as cohesive energy, interatomic distances and elastic properties for metals

like copper 7  but there is no unambiguous (and hence meaningful) direct way to project 

out orbital occupancies and wave function from plane-wave calculations. In contrast the 

analysis of experimental electron densities in crystals is very often made using a

pseudoatom (multipole) fitting which approximates crystal charge density based on 

single-electron orbital radial wave functions and occupancies 8. This simple model has 

2
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been found experimentally sufficient flexible to describe charge density in a variety of 

crystals.

Here we present our recent results on Cu and Ag, using experimental electron 

diffraction, band theory calculations, and multipole analysis. We find that a large change 

in the d-orbital radial wave function is required in the multipole model to account for the 

differences in X-ray structure factors of crystals and that obtained by superimposing

spherical atoms. Brewer’s hypothesis 9, that the binding energy per electron is 

approximately constant for metals, is also discussed.

II Method 

In the multipole model, the atomic charge density in a crystal is expanded into

three parts; the spherical inner-shell electrons (core electrons), spherical valence shells

(monopoles), and a series of nucleus-centered local symmetry-adapted spherical 

harmonic functions which reflect the small but important non-spherical valence charge

distribution (higher order multipoles) . The X-ray structure factors are fitted by adjusting

the refinement parameters (monopoles and multipoles). Following Hansen and Coppens 

10, the charge of a pseudoatom is described as:

ä ä
= =

°++=
max

3

1 0

3 ),()()(**)(*)(
l

l

l

m

lmlmlllvalencevcorecpseudoatom dPrRrPrPr fqaakrkrr C
     (1) 

The first and second terms represent the spherical atomic core, which is well-described 

by atomic modelling and is fixed in our multipole refinement, and the spherical

(monopole) valence charge density, respectively. The third term is a summation over the

3
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multipoles. It should be noted that first two terms are real charge densities, while the third 

term only redistributes valence density non-spherically in real space. The volume

integration of this term is zero. Slater type orbitals (STO) calculated by Su et al
11 were 

used for the density functions of the core, rcore(r), and valence electron monopole,

rvalence(kr). The valence shell can be further divided into two monopoles to simulate the 

charge transfer between different orbitals on the same atom site (orbital hybridization 

effect) or orbital deformation effect. The multipole radial functions, Rl(ar), are calculated

using single exponential functions, or an atomic orbital product. The refined parameters

are the valence electron population, Pv, and its radial function scaling factor, k , and the 

multipole populations, Plm° , and their radial function scaling factors, al. In the copper 

refinement, the radial function of the hexadecapole is constructed from a 3d*3d orbital

wave function. In this case, the radial scaling factor k  will be refined. This simple model

can produce meaningful information on bonding, as demonstrated in several cases, such 

as TiO2, MgO, Cu2O and Si 4-6, 12.

Accurate measurements of the low-order structure factors were made using the 

quantitative convergent-beam electron diffraction technique (QCBED) that we have 

developed recently13. The experiment was performed using a LEO-912 in-column W-

energy-filtering transmission electron microscope (TEM) with a Gatan liquid nitrogen

cooled sample holder. The TEM specimen used is a Cu foil sample prepared by 

electrolytic polishing and cooled down to 105 K to reduce phonon scattering. The 

electron illumination heating effect is considered and refined to be about 5 K 2. A 10 eV 

energy-filtering slit was placed around the zero-loss peak to remove the contribution from 

inelastically scattered electrons, which form a background due to plasmon and other loss 

4
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processes. Off-zone-axis systematic diffraction patterns were collected for seven low

order reflections and recorded on a Gatan CCD camera. The “Extal” software package 13

was used for CBED refinement – this takes full account of multiple scattering and 

“absorption” in Bloch-wave formalism. The small electron probe size (about 10nm 

diameter) ensures that the data are collected within a single mosaic block.

Band theory calculations were performed using the augmented plane wave plus 

local orbital method (APW+lo) 14, as implemented in the program Wien2K 15. Exchange 

and correlation effects are treated within density functional theory, using the generalized 

gradient approximation (GGA) 16. A muffin tin radius of 2.3 au is used for Cu and Ag.

III Results and Discussion.

We have measured seven low order structure factors for copper using QCBED. 

These are reported in table 1. Also reported in the table are the results of band theory

calculation and multipole models. It is seen that theory and experiment are in excellent

agreement. This is an important observation as the experimental results come with (small)

error bars and they thus serve to provide limits to the possible error of the theory.

The QCBED data were merged with g-ray diffraction results 17 for higher orders 

(where the electron diffraction is less accurate) and subject to multipole refinement using

the program VALRAY 18. The refinement parameters are the electron populations in the 

valence shell orbitals (monopoles), one cubic hexadecapole, with corresponding radial 

scaling parameters 11, 19. It is seen from table 1 that there are significant differences

between the multipole fits and QCBED/theory for low orders. To understand the origin of 

5
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these differences, the scattering factors of Cu orbitals are plotted in figure 1. We see that 

the 4s orbital affects reflections below s = 0.2 Å-1 (s=sinq/l is the scattering vector), and 

contributes to small negative values between s=0.2 and s=0.4,  while the 3d orbital 

contributes at higher scattering angles up to s=0.8. This analysis suggests that the 

differences in the X-ray structure factors for (111) (s=0.24 Å-1), (200), (220) and (310)

cannot be attributed to changes in the 4s orbital. A large deformation in the 3d orbital 

radial wave function must be responsible for these differences. To find a suitable model

for multipole refinement, we see that for the low order reflections, the measured X-ray 

structure factors are systematically lower than those for neutral atoms, indicating partial 

delocalization of the 3d orbital. We suggest that the 3d orbital radial wave-function has a 

tail that does not contribute significantly to the measured reflections, and we use 

additional occupancy of the Cu 4s orbital to simulate this effect. Thus the 3d radial wave

function in copper is written as 3ddeformed=3d
10-n

4s
n (n is a refinement parameter) with 

small changes in the radial scaling factors to simulate 3d radial wave-function 

deformation effects.

This proved to be a good approximation, as shown by the multipole refinement

results given in table 1. The results are given for a 3d
104s model (only radial scale 

parameters are refined); for a 3ddeformed
104s model (refinement considering 3d orbital

deformation), and an agreement index R-factor (residual), calculated from the seven 

QCBED measurements alone. It is found that 3ddeformed constructed from the d orbital of

the d
9 electron configuration (3d orbital in Cu+2 ion) produces a better fit in multipole

refinement, indicating that the localized 3d orbitals are more like 3d orbitals in Cu+2 ions, 

due to the reduced screening effect of delocalized 3d electrons. For the 3d
104s model, R = 

6
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0.64 % and the fit is outside the range of experimental error (note especially (111) and 

(200) ). For the 3ddeformd
104s model, R = 0.08 % (ten times less) and all calculated values 

agree with experiment within experimental errors. The refined value of n is 1.27(6) (in 

table 2).

The resulting valence charge density difference map shown in figure 2 shows a

spherical charge deficiency region (0.9Å in radius) around the copper atom and a charge 

surplus region between atoms. The charge surplus in the interstitial region is about 0.05 

e/Å3, or a 25% increase in valence electron density. Note the small hexadecapole 

population, which indicates a very small nonspherical charge deformation (see Table 2). 

Charge redistribution due to this is less than 10-6 e/Å3 between nearest-neighbor atoms,

much smaller than the valence electron density, which is about 0.2 e/Å3. Thus, the 

covalent contribution to bonding can be neglected. This finding agrees with the

theoretical result of Ogata et al
7, who concluded that Cu has a homogeneous charge 

distribution with little bond directionality.

There are two possible interpretations of the refined number n. Brewer 9 has 

proposed that the electronic configuration in copper is 3d
10-n

4s
1
4p

n, with n=1.5. This 

hypothesis, with 3d electrons being promoted into 4p free-electron-like orbitals, is used to 

explain the strong cohesion in noble metals, such as Cu, Ag, Au, but has been questioned 

by several researchers 20. This first possible explanation of our refinement would assume

dsp hybridization, with 1.27 electrons ‘promoted’ from the 3d to the 4sp orbital. However, 

owing to the eg and t2g energy splitting (about 1 eV), in that case the charge deformation

density would be non-spherical, there would be high-intensity white lines in L3-edge

electron energy-loss spectra (EELS) and X-ray absorption spectra (XAS); and the 3d

7
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orbital holes would be expected to give rise to magnetic properties similar to those of the

earlier 3 d metals. However experimental results show that EELS and XAS spectra have

no white lines 21, copper is a weakly diamagnetic metal 20 and our charge density 

refinement shows a spherical deformation density. The ratio of the eg and t2g orbital 

electron populations is 
3

)14(99994.1
calculated from multipole population 8, equal to 

6

4

within error, thus, none-spherical charge deformation is negligible, in strong contrast to 

the very non-spherical distribution found for the formal d10 shell of Cu in Cu2O
6. Further 

evidence in support of a monovalent model in copper comes from the free electron 

plasma oscillations. The number of free electrons per atom contributing to the plasmon is

1.04(4), ( where m
* is the electron effective mass and Ep is the plasmon energy), as

calculated using the free electron model from the first plasmon energy using (Ep = 9.3 eV

from measured optical properties and the free electron mass) 22. This is in agreement with 

a monovalent description of Cu. An additional plasmon peak, however, also occurs at Ep

= 19.3 eV, (not due to double scattering) 23, and if we use the free-electron plasmon 

model we then obtain 3.4 electrons per atom contributing to the bulk plasmon from this 

second peak. These 3.4 electrons may however stem from the relatively delocalized 3d

electrons. The two volume plasmon energies in copper thus reflect the different 

properties of free electrons, and those of delocalized 3d electrons.

The second interpretation possible is that the Cu 3d orbital has large deformation,

and so becomes much more diffuse compared with the neutral-atom ground state 3d

orbital. Multipole refinement quantitatively measures the 3d-band orbital radial wave 

function in Cu, which is shown in figure 3. It is constructed from the 3d
10-n4s

n electron

8
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configuration (with k3d=1.006, k4s=1.1, see table 2). We see that the 3d orbital in Cu has 

a long tail, and electrons are delocalized. Experimental Slater orbital parameters were 

fitted and are given in table 3. This kind of deformation cannot be simulated by refining

radial scaling factors alone in the multipole model. That is the reason for the failure of the 

ground state neutral-atom model. It has been proposed that 3d band electrons contribute 

substantially to the cohesive energy of Cu by d-s orbital hybridization 24. Thus of the total 

cohesive energy of 0.26 Ry, the calculated contribution from the 4s band is 0.11 Ry and 

thus d-s orbital hybridization contributes significantly to the cohesive energy of Cu (Note

that renormalization energy is -0.4 Ry for Cu, therefore, d-s orbital hybridization 

contributes 0.19 Ry ) 24.

We have also completed a multipole refinement for silver, to measure the 4d

orbital deformation.  Calculated X-ray structure factors were used and refined using

similar refinement procedures. The results are listed in table 2. We conclude that charge 

deformation is again spherical (from the small multipole population) and the 4d orbital in 

silver has a similar amount of deformation to the 3d orbital in copper. The ratio of the eg

and t2g orbital electron populations is, and again the charge deformation is very close to 

spherical. The Ag 4d orbital radial wave function is shown in figure 3 and the Slater 

orbital parameters are given in table 3. The number of free electrons, from the plasmon 

energy (Ep = 9.2 eV) is 1.0 23. We conclude that Ag is a monovalent metal.

It is important to point out that the orbital radial wave functions are deduced from

the charge density refinement based on an atomic model. It is well known however, that 

electrons form bands in crystals and so loose their individuality. Our refinement thus

provides an example of how a one-electron model can nevertheless retains useful validity 

9
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in the transition metals. We expect that this method can also be used in the transition 

metal compounds, where valence d orbitals form d-bands.

IV Summary 

Accurate low order X-ray structure factors have been measured for copper by 

quantitative convergent beam electron diffraction. Charge density deformation maps

refined using a multipole model show a spherical charge deformation in copper and silver. 

Valence d orbital radial wave functions obtained from multipole refinement, show a large

deformation when compared with neutral atoms. Results support the monovalent metal

model in Cu and Ag.

Funded by DOE DE-FG03-02ER45596 (JCHS P.I.). J. Friis funded by Research 

Council of Norway (NFR), project 135270/410. Thanks to Dr. P. Rez (ASU) and Dr. P. 

Blaha (Vienna Tech.) for helpful discussions.
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Table 1. Measured (QCBED) and calculated structure factors for Cu. The column headed

3d
104s is a multipole refinement with fixed orbital occupation; the column headed 

3ddeformed
104s (3ddeformed = 3d10-n4sn with 3d orbital wave function from Cu2+ and 4s from 

neutral atom, and gives the best refined value of n=1.27). The residual R calculated for

the seven structure factors listed shows the agreement of theory with QCBED

experiment. The experimental structure factors are converted to their 0K static value.

hkl or R s=

sin(q)/l
QCBED Theory

(CGA)
Neutral
 atom

3d
104s 3ddeformed

10 4s

111 0.240 86.76 (16) 86.80 88.18 87.94 86.81
200 0.278 81.76 (16) 81.52 82.71 82.47 81.67
220 0.393 66.72 (12) 66.70 66.99 66.74 66.75
311 0.460 58.94 (08) 59.02 59.00 58.77 58.99
222 0.481 56.96 (32) 56.89 56.80 56.58 56.84
400 0.555 49.80 (40) 49.93 49.68 49.49 49.82
440 0.785 35.41 (16) 35.44 35.27 35.17 35.40
R (%) 0.15 0.71 0.64 0.08

11
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Table 2. Multipole refinement results for Cu and Ag. Refinements use the ion core plus d

orbital from a d9 configuration (d-orbital in Cu+2 or Ag+2 ion) and 4s or 5s orbitals from

neutral atoms. Multipoles up to forth-order are chosen for refinement. The allowed 

multipoles are selected according to the index-picking rules of Kurki-Suonio 19. The d-

orbital deformation is included in the refinement (by refining n ). The 4s or 5s electron 

population (Ps) is fixed at one. The corresponding kappa for monopoles or multipole is

refined. ( Note, Dawson normalization is used for multipole populations, see VALRAY 

manual for details 18. ) 

Parameters Cu Ag
Pd = (10-n) 8.73(6) 8.65(1)
kd = k4 1.006(5) 1.0083(7)

ks 1.1(1) 1.15(1)
Phex -0.0001(2) 0.024(6)
R 0.06% 0.02%

12
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Table 3  Slater orbital parameters of Cu 3d and Ag 4d  radial wave functions.

Radial wave function Rnl(r) is defined by

here,

ee Clementi et al
25 for details.

C

Rnl (r) = ci ci
i

ä (r )

w

i i ic (r) = (2n !)-1 / 2 (2z )ni +1/ 2
r

ni -1
e
- zir

S

rystal Parameters Values
Cu n 

c

    3       3        3        3        3

0.02947  0.15822  0.52916  0.33576  0.23600

9.01160 4.81177 2.37701 0.91309z 1.80063

Ag n

c

z

3 3 3 3 4 4 4 4

55814 -0.30714 -0.10501

49371 1.70772 0.80052

0.00632 0.09693 0.30863 -0.45737 0.07110 -0.

34.01846 15.42014 7.71913 5.10149 13.67176 3.

13
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Figure 1  Scattering factors of Cu 3d and 4s orbitals. The scattering angles of lowest

order reflections are shown. Note the contribution to these reflections from 4s orbital is 

small.
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Figure 2. Valence charge density deformation map on the (110) plane of copper. The map

shows the difference between an experimental charge density and a neutral atom model

as reference. The dashed lines are for contours with Dr < 0, the solid lines are for

contours with Dr > 0, the increment between contours is 0.01e/Å3.

15
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Figure 3  Cu 3d and Ag 4d orbital radial wave functions. It is seen that valence d orbitals

in the crystal spread outward, owing to d-band formation and d-s band hybridization. 

This kind of deformation can not be simulated by refining scaling parameters in the 

multipole model. (Note, the charge density peak of 4s or 5s orbitals at nuclear center is 

omitted to construct 3d or 4d orbitals to conform to the requirement that d orbital 

approach zero at nuclear center. It has negligible effect on scattering factor. ) 
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Chapter 1

QCBED measurements of
SrTiO3

1.1 Introduction

Strontium titanate (SrTiO3) is a typical perovskite structure, with phase
transitions from a cubic to a tetragonal structure at 110 K and from a tetrag-
onal to an orthorhombic structure at 65 K (Table 1.1). A phase transition to
a rhombohedral phase may also exist at 10 K. SrTiO3 was intensively studied
during the 1960s and 1970s because of the interesting phase-transitions (see
e.g. Lytle, 1964; Devanarayanan & Narayanan, 1968; Shirane & Yamada,
1969; Golding, 1970; Blazey, 1971; Willemsen et al., 1976).

Neutron diffraction experiments of SrTiO3 were performed by Hutton
et al. (1981). The intention of their work was to test the extinction model of
Becker & Coppens (1974), but they also provide very accurate anisotropic dis-
placement parameters (ADPs). More recent, quantitative convergent beam
electron diffraction (QCBED) experiments have been performed for accu-

Table 1.1: Phases in SrTiO3 when the temperature is lowered from room tem-
perature to 35 K (Lytle, 1964). α is the linear thermal expansion coefficient in the
cubic phase.

Temperature Space
range (K) Structure group Physical constants
300-110 Cubic Pm3̄m α = 9.4 × 10−6 K−1

110-65 Tetragonal I4/mcm c/a = 1.00056
65-35 Orthorhombic a : b : c = 0.9998 : 1 : 1.0002
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rate determination of lattice parameters and ADPs of the tetragonal low-
temperature phase (Tsuda & Tanaka, 1995).

Since the material has got an important application as substrate for
thin film high temperature superconductors, is simple with a small unit cell
(around 4 Å), and is well characterized, SrTiO3 seems to be a promising
candidate for charge density studies by QCBED. Careful experiments of the
cubic phase were performed by Bin Jiang at Arizona State University (ASU)
and the experimental data were brought to Trondheim for structure factor re-
finements and further analysis. During our refinements, Zhurova & Tsirelson
(2002) published their charge density studies, based on multipole analysis of
X-ray measurements performed by Abramov et al. (1995). However, it seems
possible to improve these X-ray results, by combining them with the present
high-accurate low-order QCBED measurements.

1.2 Experiments

The experiments were performed with the Zeiss 912 electron microscope (op-
erating at 120 kV) at ASU, equipped with an in-column Ω-filter and a 14 bit
dynamic range 1k×1k CCD camera. With a liquid nitrogen sample holder,
the temperature was kept just above the phase transition at 110 K. Read-
out temperatures from the holder varied from 108 K to 113 K, but we know
by experience (Friis et al., 2003a,b) that the true sample temperature is
some degrees higher. There were no evidence that the tetragonal phase was
reached in the diffraction patterns. After removing X-ray spots, the CBED
patterns were deconvoluted with the LUCY algorithm (Zuo, 1999) in order
to compensate for point spreading in the CCD.

1.3 Refinements

For structure factor refinements the high voltage, lattice parameters and
ADPs need to be known in advance to high accuracy. The high voltage
calibration of the microscope is described in Friis et al. (2003a).

1.3.1 Anisotropic displacement parameters

A schematic drawing of the SrTiO3 structure is shown in Fig. 1.1. The Sr and
Ti atoms are at cubic site symmetry positions m3̄m while the O atoms have
the site symmetry 4/mmm. Neglecting anharmonicity, the isotropic vibra-
tions of Sr and Ti are therefore described by only one parameter, 2π2USr =
β11

Sr = β22
Sr = β33

Sr and 2π2UTi = β11
Ti = β22

Ti = β33
Ti , respectively, where β denotes
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Sr

Ti

O

Figure 1.1: Schematic drawing of the SrTiO3 structure.

the anisotropic displacement tensor (see Appendix B.3). The oxygen atoms
can vibrate both in the plane spanned by the four closest Sr atoms, U 1

O, and
along the line between the closest two Ti atoms, U 2

O. In the refinements we
have used the ADPs found in the neutron diffraction experiment at 112(1) K
by Hutton et al. (1981). The values of the ADPs derived from this exper-
iment are USr = 0.00252(5) Å2, UTi = 0.00196(6) Å2, U1

O = 0.00552(5) Å2

and U2
O = 0.00228(5) Å2.

1.3.2 Lattice constant

The lattice constant was determined from refinements of the high order Laue
zone (HOLZ) line positions in the center disk, close to the [014]-zone axis.
Dynamical calculations of the exact HOLZ-line positions (Zuo et al., 1998),
were performed for three areas in the central disk (Fig 1.2). The areas were
chosen in order to avoid overlap with neighboring disks and to reduce the
influence of low order structure factors, which might be affected by bonding
and hence differ from their IAM values. Since only the HOLZ-line posi-
tions are of interest, the CBED pattern in Fig 1.2a was made binary using a
threshold of 25% of the full image intensity (Fig 1.2b). The refinement was
performed in a two step procedure. First, a full-intensity refinement of the
experimental parameters (incident beam angle, sample thickness and pattern
geometry) was performed. These values were then used as a starting point in
the lattice parameter refinement of the binary pattern. The lattice param-
eter at the goodness-of-fit minimum was a = 3.89975 Å. Using this lattice
parameter, it might be possible to derive the true experimental temperature,
by e.g. comparing with the thermal expansion experiments (Devanarayanan
& Narayanan, 1968; Golding, 1970; Willemsen et al., 1976).
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(a) (b)

Figure 1.2: Determination of the lattice constant. (a) CBED pattern of the
central disk, close to the [014]-zone axis in SrTiO3. The three areas chosen for
lattice parameter refinement are shown. (b) A binary version of the CBED pattern
in (a). The calculated HOLZ-line positions are shown in red.
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Figure 1.3: A CBED pattern of the (100) systematic row in SrTiO3. Since the
(100) disk is too weak to show up in the full dynamical (color) range (a), the same
pattern is also shown in a reduced color range (b). The four line scans used in the
refinements are shown in red.
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Figure 1.4: Best fit between theoretically calculated intensities (lines) and exper-
iment (circles) after structure factor refinement of the (100) systematic row shown
in Fig. 1.3. The differences between theory and experiment are shown with small
dots. For this refinement of the (100) and (200) structure factors, 324 pixels were
included along four line scans.

1.3.3 Preliminary structure factor refinements

Twelve structure factors have so far been refined. It was even possible to
refine the very weak (100) reflection. For this very low order structure factor
we had to choose a small condenser aperture in order to avoid overlapping
disks. A CBED pattern of the (100) systematic row is shown in Fig. 1.3 with
the corresponding best fit between theoretically and experimentally intensi-
ties in Fig. 1.4. For the refinement shown Fig. 1.4 we see that the χ2 is even
less than one. This is a much lower value than what is normally obtained
with larger condenser aperture (around 1.5). Probably this low value is due
to an overestimation of the standard deviation in the pixel intensities, since
the characterization of the CCD was performed for an average count at about
3000.

The refined structure factors, converted to their corresponding X-ray val-
ues, are listed in Table 1.2 together with structure factors obtained from
the independent atom model (IAM), density functional theory (DFT) cal-
culations and the X-ray diffraction experiment used by Zhurova & Tsirelson
(2002). Even though these are preliminary results, it is clear that the QCBED
and X-ray results differ quite a lot. However, it is interesting to notice that
for the weak (100) reflection, for which extinction effects should be small,
the agreement between X-ray and QCBED is within one standard deviation.
The general agreement of the DFT calculations is also better compared to
the QCBED values than to the X-ray values.

Further work on SrTiO3 includes some more independent refinements of
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Table 1.2: Preliminary experimental and theoretical static lattice structure fac-
tors for the cubic phase of SrTiO3. The IAM values are those of Doyle & Turner
(1968) and the DFT values are calculated with WIEN2k (Blaha et al., 2001) us-
ing the generalized gradient approximation (GGA) of Perdew et al. (1996). The
X-ray data are from Zhurova & Tsirelson (2002) and QCBED is the present ex-
periments. n is the number of independent QCBED refinements performed so far
for each reflection.

hkl sin θ/λ IAM DFT X-ray QCBED n
100 0.128 7.891 7.801 7.86(5) 7.89(3) 5
110 0.181 42.48 41.06 40.63(10) 40.96(2) 1
111 0.222 29.43 30.38 30.65(10) 30.38(4) 3
200 0.256 56.13 56.51 56.91(14) 56.52(6) 9
211 0.314 34.27 34.14 33.95(8) 34.25(7) 5
220 0.363 45.39 45.41 45.06(11) 45.62(10) 1
310 0.405 30.13 30.30 30.23(7) 29.98(16) 3
311 0.425 19.84 19.77 19.77(5) 19.85(17) 4
222 0.444 39.31 39.31 38.89(10) 39.27(7) 3
321 0.480 27.34 27.42 27.34(6) 27.34(20) 4
400 0.513 35.39 35.52 35.07(10) 35.33(11) 4
422 0.628 30.49 30.54 30.43(7) 30.40(24) 4

the (110)-(220) systematic row and some fine adjustments of the refinements,
which seem to have been trapped in local minima. A Wilson plot, based on
DFT as a static lattice reference (Friis et al., 2003b), should also be performed
in order to check the consistency of ADPs taken from Hutton et al. (1981).
The QCBED data set could then be combined with the 131 structure factors
from Zhurova & Tsirelson (2002) for a multipole refinement. Including our
very accurate low order structure factors and by comparing with DFT, it
may be possible to describe the bonding in strontium titanate in detail.
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Appendix A

Mott formula

A.1 A short derivation of Mott formula tak-

ing the thermal motion into account

This derivation of the Mott formula follows the derivation in Spence & Zuo
(1992) but treats the thermal motion more rigorous.

The electron atomic scattering factor is defined by

f e(s) = F{V } =

∫
V e−4πis·rdr (A.1)

where F denotes the Fourier transform, V = V (r) is the atomic potential
and s is the scattering vector. The thermal average of Eq. (A.1) is given by

〈f e(s)〉 =

∫
〈V 〉 e−4πis·rdr

= − 1

16π2s2

∫
〈V 〉∇2 e−4πis·rdr

= − 1

16π2s2

∫ (
∇2〈V 〉

)
e−4πis·rdr

= − 1

16π2s2

∫ 〈
∇2V

〉
e−4πis·rdr (A.2)

where we in the third step have used integration by parts and assumed that
V (r) → 0 when r → ∞. From Poisson’s equation we have

〈
∇2V

〉
=

〈
−|e|

ε
(ρn − ρ)

〉
= −|e|

ε
(〈ρn〉 − 〈ρ〉) (A.3)
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where ρn and ρ are the nucleus and electron charge densities, respectively.
By inserting Eq. (A.3) into (A.2) we obtain

〈f e(s)〉 =
|e|

16π2εs2

∫
(〈ρn〉 − 〈ρ〉) e−4πis·rdr

=
|e|

16π2εs2
[F〈ρn〉 − F〈ρ〉] (A.4)

If u is the thermal displacement of an atom, the time-averaged nucleus den-
sity for that atom is1

〈ρn(r)〉 =

∫
Zδ(r − u)P (u) du = ZP (r) (A.5)

where P (u) is the displacement probability distribution of the nuclei and Z
is the atomic number. The Fourier transform of 〈ρn(r)〉 is then given by

F〈ρn〉 = ZT (s) (A.6)

where T (s) = F{P (u)} is the temperature factor. Inserting Eq. (A.6) into
(A.4) yields

〈f e(s)〉 =
|e|

16π2εs2

[
ZT (s) −

〈
fX(s)

〉]
(A.7)

where fX(s) = F{ρ} is the X-ray scattering factor. By rearranging Eq.
(A.7) we obtain 〈

fX(s)
〉

= ZT (s) − 16π2εs2

|e| 〈f e(s)〉 (A.8)

We introduce the structure factors

Fg =
∑

j

〈
fX(s)

〉
e−2πg·rj

Vg =
1

Ω

∑
j

〈f e(s)〉 e−2πg·rj =
h2

2m|e|Ug =
h2

2m0γ|e|
Ug (A.9)

where Fg and Ug are known as the X-ray structure factor and the electron
structure factor, respectively. By multiplying Eq. (A.8) with a phase factor
e−2πg·rj and sum over all atoms in the unit cell, we obtain

Fg =
∑

j

ZjTj(s) e−2πg·r − 16π2εΩs2

|e| Vg

=
∑

j

ZjTj(s) e−2πg·r − 8π2εh2Ωs2

m0γ|e|2
Ug (A.10)

1An interesting discussion with Tsirelson & Olaussen (2003) about the the validity of
Eq. (A.5) motivated this appendix.
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This equation gives a relation between the X-ray and electron structure fac-
tors and is usually referred to as Mott2 formula.
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Appendix B

Structure factor error analysis

Here follows a short description of the error analysis applied to the structure
factor measurements of Mg (Friis et al., 2003b) and SrTiO3 (Part III).

B.1 Motivation

Doing QCBED experiments, it is common to take several diffraction patterns
under different experimental conditions (e.g. different geometry and sample
thickness) in order to get better statistics and to be able to check the con-
sistency of the data. From each refinement one gets a value for the standard
deviation based on the depth of the χ2 minimum. However, these standard
deviations are usually underestimated, since uncertainties in the non-refined
parameters are neglected. Therefore it is common to obtain the standard de-
viation as a simple spot check standard deviation of the measured structure
factor values (Jiang et al., 2003; Friis et al., 2003a).

However, a more rigorous analysis, as shown in the two next sections,
should also use the information in the standard deviation of the individual
refinements and, more importantly, take the uncertainties in the temperature
factors into account.

B.2 The expectation value and variance

Lets assume that we have performed n refinements of a certain reflection
resulting in the structure factors Ui and standard deviations si, with i =
1..n. If we assign a weight wi, with

∑
i wi = 1, the weighted average of the

structure factors is

Ū =
∑

i

wiUi. (B.1)

137
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It is possible to show that the expectation value and variance of the true
structure factor are given by Ū and

s2 =
∑

i

w2
i s

2
i +

∑
i

wi(Ui − Ū)2, (B.2)

respectively. In the analysis of Mg and SrTiO3 the weighting were, as nor-
mally, simply chosen proportional to 1/si, i.e.

wi =
1/si∑
j 1/sj

. (B.3)

The expectation value of Ū equals the expectation value of the refinements
µ = E(Ui) as seen from

E(Ū) = E

(∑
i

wiUi

)
=

∑
i

wiE(Ui) =
∑

i

wiµ = µ, (B.4)

where we have assumed that the measurements Ui are independent.

Similarly, we want to show that E(s2) equals the distribution variance of
the measurements V (Ui). Since, the variance of Ū is

V (Ū) = V

(∑
i

wiUi

)
=

∑
i

w2
i V (Ui) =

∑
i

w2
i E(s2

i ) (B.5)

we have

E(s2) = E

(∑
i

w2
i s

2
i

)
+ E

(∑
i

wi(Ui − Ū)2

)

=
∑

i

w2
i E(s2

i ) + E

(∑
i

wi(Ui − µ)2 − (Ū − µ)2

)

= V (Ū) + E

(∑
i

wi(Ui − µ)2

)
︸ ︷︷ ︸

V (U)

−E
(
(Ū − µ)2

)︸ ︷︷ ︸
V (Ū)

= V (U) (B.6)

Q.E.D. �
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B.3 Error in the final X-ray structure factors

We are often interested in X-ray structure factors at a certain temperature
(e.g. at static lattice temperature where Tj(s) = 1, ∀j). The Mott formula
(A.10) gives the X-ray structure factor F initial at the experimental tempera-
ture. In the case of only one kind of atoms (at equal site symmetry) in the
unit cell, the structure factor at the wanted temperature is simply

F final =
T final

T initial
F initial. (B.7)

For more than one atom in the unit cell F final can be approximated by

F final ≈
∑

j fjT
final
j e−2πig·rj∑

j fjT initial
j e−2πig·rj

F initial, (B.8)

where fj is the scattering factor of the jth atom. Note that if only one kind
of atoms is present, Eq. (B.8) reduces to Eq. (B.7).

From the Mott formula (A.10) the variance of F initial is given by

V (F initial) =
∑

j

(
Zj e−2πig·r)2

V (Tj) +

(
CΩs2

γ

)2

V (U) (B.9)

where

C =
8π2εh2

m0|e|2
= 131.2625 Å (B.10)

if U and T initial
i ; i = 1..n are independent.

The temperature factor is, in the harmonic approximation, given by

Tj = Tj(s) = e−βik
j gigk (B.11)

where βik
j = 2π2〈uiuk〉j and where 〈uiuk〉j is the anisotropic displacement

tensor for atom j. Summation over repeated indices is implicitly assumed
according to Einsteins summation convention. The variance of Tj can now,
using the Gauss approximation formula for the variance of a function of a
stochastic variable X

V (g(X)) ≈ V (X)[g′(E(X))]2, (B.12)

be written as

V (Tj) = e−2βik
j gigkV (βik

j gigk) = T 2
j

∑
ik

(gigk)
2V (βik

j ) ≈
∑
ik

(gigk)
2V (βik

j )

(B.13)
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where we in the last step have used that Tj is close to unity at low tempera-
tures and small scattering angles (which is the case for QCBED).

By taking the variance of Eq. (B.8) and use (B.9) and (B.12) it follows
that the variance of F final is given by

V (F final) ≈
∑

j

(
Zj e−2πig·rj

)2
V (Tj) +

(
CΩs2

γ

)2

V (U)

+ 2
∑

j

(
fj e−2πig·rj

)2
V (Tj). (B.14)

B.4 Correction due to lattice expansion

Since the structure factors depend on the lattice parameters, via the scatter-
ing factor, a small correction is needed in order to account for the change in
lattice parameters, when converting structure factors between temperatures.
When converting from a higher to a lower temperature, this effect tends to
counteract the reduction of the structure factor, caused by the smearing ac-
counted for by the temperature factor Tj . However, this is a very small effect
of the size of the uncertainties (around 0.2% when converting from liquid
nitrogen temperature to static lattice, see e.g. the rescaled values in Table
1. in Tabbernor et al. (1990)).

This effect can easily be accounted for by also considering the change of
scattering angle in Eq. (B.8)

F final ≈
∑

j fj(s
final)T final

j e−2πig·rj∑
j fj(sinitial)T initial

j e−2πig·rj
F initial. (B.15)
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