
Towards Optical Quantum Computing

Cand.scient thesis in physics

by
Sverre Gullikstad Johnsen

Norwegian University of Science and Technology

NTNU

Department of Physics

Trondheim, Norway

December 2002

Towards Optical Quantum Computing

Sverre Gullikstad Johnsen

December 2002

Imagination is more im-
portant than knowledge.

Albert Einstein

To those who taught
me.

Preface

This thesis is a principal sketch of a new scheme of quantum computing.
The thesis explores some of the fundamentals of quantum optics and tries
to put these to work in quantum optical gates. The thesis tries to exploit
the properties of classical computing, which has proven quite successful over
the last decades, yet leaves the opportunity of parallel processing and other
quantum-mechanical effects wide open. In addition to developing quantum
optical gates, the thesis expands the present quantum-logic into the realms
of trinary algebra. The common Boolean algebraic gates are included as a
specialty of the quantum gates proposed. The writing of this thesis has been
a plunge into unrevealed terrain, and the work of this thesis may not at all
be regarded as fulfilled, however this is a step towards a solution to one of
the great concerns of modern computing and quantum computers.

The thesis is divided into four parts.
In Chapter 1, a brief introduction to quantum optics is given, i.e. quanti-
zation of the electro-magnetic field, coherent states and the beam-splitter.
Some knowledge of the formalism used in quantum mechanics may be re-
quired, to fully understand Chapter 1.
In Chapter 2, the history of computing, classical as well as quantum-mechanical,
is presented. In addition, the fundamental ideas and concepts of this thesis,
regarding optical computing and trinary logic, is presented.
In Chapter 3, a review of classical Boolean algebra and binary logic is given.
In addition, a trinary algebra, implementable in quantum-optical computing,
is proposed.
In Chapter 4, a variety of quantum optical gates are proposed. Some gates
are meant to act as computational devices alone, addition, multiplication,
whilst others are meant to perform trinary-logic operations, analogous to the
binary-logic operations AND, OR and NOT.

This work was carried out at the Department of Physics at the Norwegian
University of Science and Technology under the guidance of Prof. Bo-Sture

i

K. Skagerstam. Prof. Skagerstam has provided me with a unique source of
knowledge on the subject of quantum optics.

I would like to thank my fellow students, Ronny Kjelsberg, Lodve Berre, Øys-
tein O. Langangen, Andreas K. Evensen, Maria V. Bøe, Mona M. Lorentsen,
Skjalg A. Fagerjord, Morten Kolstø and Øivind Selnes for a fruitful collab-
oration over the past year. The discussions concerning theoretical physics,
aspects of everyday life and not so common aspects of everyday life as well
as technical computer problems have been of great help to me (at least for
making the time fly by). Furthermore, I would like to thank Øystein O. Lan-
gangen, Ronny Kjelsberg, Liv Gullikstad and Magnar G. Johnsen for reading
and providing me with many constructive remarks on the thesis.
Finally, I would like to thank, especially, Bo-Sture K. Skagerstam and all the
other lecturers at NTNU for teaching me during my years at the University.

Sverre G. Johnsen
NTNU, Trondheim,

13th of December 2002

ii

Contents

Preface i

Introduction 1

1 Introduction to Quantum Optics 2
1.1 Quantization of the Electro-Magnetic Field 2

1.1.1 Plane wave expansions 3
1.1.2 Unit polarization vectors 4
1.1.3 Energy of the electro-magnetic field 5
1.1.4 Canonical quantization of the transverse field 5
1.1.5 Spectrum of the energy; photons 7

1.2 Coherent States . 9
1.2.1 Fock representation of the coherent state 9
1.2.2 The displacement operator 11
1.2.3 Coherent states and orthogonality 11
1.2.4 Coherent states and the beam-splitter 12

2 Introduction to Trinary Quantum Computing 15
2.1 Quantum Computing, So Far 15

2.1.1 History of classical and quantum computing 15
2.1.2 Quantum bits . 20
2.1.3 Quantum computation 21

2.2 A New Way of Thinking? . 21
2.2.1 Fundamental idea . 21
2.2.2 Qubits or qutrits . 22
2.2.3 Qutrit representation by coherent states 25
2.2.4 Quantum parallelism 26
2.2.5 Quantum gates . 26

3 Introduction to Logic 30
3.1 Binary Logic . 30

iii

3.1.1 Definition of binary logic 30
3.1.2 Logic gates . 32

3.2 Boolean algebra . 33
3.2.1 Axiomatic definition of Boolean algebra 33
3.2.2 Basic theorems and properties of Boolean algebra . . . 36
3.2.3 Simplification of Boolean functions 38

3.3 Trinary Logic and Algebra . 41
3.3.1 A trinary-valued switching algebra 41
3.3.2 Map minimization . 44
3.3.3 Example: Three-valued carry-free half-adder 46

4 Quantum Optical Gates 50
4.1 Formalism . 51
4.2 Specialized Gates . 54

4.2.1 The linear light amplifier 54
4.2.2 Addition and subtraction 58
4.2.3 Square-gate . 60
4.2.4 Modulo 3-gate . 64
4.2.5 Multiplication-gate . 67

4.3 Elementary Logic Gates . 69
4.3.1 Minimum-gate . 69
4.3.2 Maximum-gate . 71
4.3.3 Literal-gate . 73
4.3.4 Cycle-gate . 77
4.3.5 Inverter-gate . 79

Final remarks 80

A Quantum-optical gates; an overview 82
A.1 Specialized Gates . 83
A.2 Elementary Logic Gates . 84

B Source Codes 85
B.1 Verification of the Huntington Postulates 85

B.1.1 Program to check postulate 4a 85
B.1.2 Program to check postulate 4b 86

B.2 Proofs of the Theorems of Boolean Algebra 86
B.2.1 Program to prove theorem 5a 86
B.2.2 Program to prove theorem 5b 87

B.3 Trinary Sum-type Functions 88

iv

C Linear Amplifier 90
C.1 Chaotic Light . 90
C.2 Calculations from Section 4.2.1 92

C.2.1 Master equation for the amplifier field 92
C.2.2 Solution of the master equation 94

D Further Reading 97

Bibliography 99

v

List of Figures

1.1 Schematic drawing of a beam-splitter with transmittivity T,
input operators 1̂, 2̂ and output operators â, b̂. 13

2.1 Most economical radix for a numbering system is e (about
2.718) when economy is measured as the product of the radix
and the width, or number of digits, needed to express a given
range of values. Here both the radix and the width are treated
as continuous variables (Ref. [7]). 24

2.2 Three-valued product-type functions. 28
2.3 Three-valued sum-type functions. 28

3.1 Map of the logical AND-operation. 31
3.2 Map of the logical OR-operation. 31
3.3 Map of the logical NOT-operation. 31
3.4 Basic logic gates. 32
3.5 Multiple-input AND-gate construction. 33
3.6 Multiple-input logic gates. 33
3.7 Example of a two-variable Venn diagram. 37
3.8 Mapping of the truth-table in Table 3.3. 39
3.9 Encircling of neighbouring 1’s. 39
3.10 Electronic circuit resulting directly from the algebraic expres-

sion F1. 40
3.11 Electronic circuit resulting directly from the algebraic expres-

sion F2. 40
3.12 Example of a map for three-variabled three-valued switching

function. 45
3.13 Prime implicants for the function of Table 3.5. 45
3.14 Map of half-adder function in Table 3.6. 46
3.15 Prime implicants for the function of Table 3.6. 47
3.16 Scheme for constructing a base2 half-adder. 48
3.17 Scheme for constructing a base3 carry-free half-adder based

on literal-, max- and min-gates. 49

vi

4.1 Basic Boolean algebra operations. 50
4.2 Some basic trinary-algebra operations. 51
4.3 Representation of the direction of movement for a coherent

state. 51
4.4 The process |kα〉|jα〉 → U |kα〉|jα〉 = |k′α〉|j ′α〉. 51
4.5 Representation of the 50/50 beam-splitter. 52
4.6 Representation of the 50/50 beam-splitter with one interesting

output only. 53
4.7 Representation of a non-linear crystal with the property U. . . 53
4.8 Representation of a 100% reflective mirror. 53
4.9 Symbol representing a linear amplifier with gain factor G. . . 58
4.10 Schematic drawing of an arithmetic adder/subtractor. 58
4.11 Map of addition modulo 3. 59
4.12 Symbols for arithmetic addition and subtraction. 59
4.13 Gate that squares the inputs (-1 0 1). 61
4.14 Gate that squares k=(0 1 2). 63
4.15 Gate that gives out const · k mod3, k=0,1,2,3,4,5. 66
4.16 Gate that produces kj/4 from two inputs k and j. 68
4.17 Transmittivity as a function of pump intensity 69
4.18 Realization of the minimum-gate. 70
4.19 Realization of the maximum-gate. 72
4.20 Gate that decides which is larger, X or a, and returns one of

the values 2 and 0 depending of the answer. 74
4.21 Symbol for the gate in Figure 4.20. 75
4.22 Symbol for the gate in Figure 4.23. 75
4.23 Realization of the literal-gate. 76
4.24 Schematic drawing of a cycle-gate. 78
4.25 Schematic drawing of an inverter-gate. 79

4.26 Drawing of the process in Eq. (4.37). 80

C.1 Integrand of average chaotic field, 〈ν〉 =
∫
νφ(ν)d2ν. 92

vii

List of Tables

3.1 Truth tables for logical AND, OR and NOT operations. 32
3.2 Postulates and Theorems of Boolean Algebra (note that x′ = x̄). 36
3.3 Truth table for the binary algebra-expressions F1 = x̄ȳz +

x̄yz + xȳ and F2 = xȳ + x̄z. 36
3.4 Postulate/theorem applied to F1 to obtain F2. 37
3.5 Table of combinations for a two-variable three-valued switch-

ing function. 43
3.6 Truth table for three-valued carry-free half-adder. 46

4.1 Truth-table for the cycle-gate. 77
4.2 Truth-table for the inverter-gate. 79

A.1 Overview of symbol, required input and output of specialized
quantum-optical gates proposed in Chapter 4. 83

A.2 Overview of symbol, required input and output of elementary
quantum-optical logic gates proposed in Chapter 4. 84

viii

Introduction

The work in this thesis concerns a new scheme of quantum computing. The
work is based upon two main ideas;
“It will prove advantageous to expand the present Boolean algebra into the
realms of higher order algebra. Since an increase in algebraic order will result
in an increase in flow of information.”
and
“Quantum-optical, coherent states are extremely resistant to noise and de-
coherence. They will therefore be very fit for expressing quantum-logical
states.”

These ideas may be regarded as naive, since we do not discuss them thor-
oughly. For instance, increased flow of information may be of no interest if
the cost of producing multiple-valued logic gates is increasing faster. As we
will see, the gates proposed in this thesis also result in intensity loss of the
coherent states used, i.e. weakening of the signals, which may actually be
regarded as a kind of decoherence.

Both the problems mentioned above, as well as other problems that may
arise, will not be discussed in this thesis. Here we merely state a possible
solution to the problem of multiple-valued optical quantum computing, and
we will leave it to others to verify whether the solution proposed is a good
one or not.

1

Chapter 1

Introduction to Quantum
Optics

1.1 Quantization of the Electro-Magnetic

Field

Let us consider a classical electro-magnetic field in empty space. In the
absence of charges and currents the field satisfies the homogeneous Maxwell
equations:

∇× E(~r, t) = − ∂

∂t
B(~r, t) , (1.1)

∇× B(~r, t) =
1

c2
∂

∂t
E(~r, t) , (1.2)

∇ · E(~r, t) = 0 , (1.3)

∇ · B(~r, t) = 0 , (1.4)

where E(~r, t) and B(~r, t) are the usual electric and magnetic field-vectors at
the space-time point (~r, t). We will represent the free electro-magnetic field
by the transverse vector potential A(~r, t), which satisfies the homogeneous
wave equation

∇2A(~r, t) − 1

c2
∂2

∂t2
A(~r, t) = 0 , (1.5)

and the radiation gauge condition

∇ · A(~r, t) = 0 . (1.6)

2

The electric and the magnetic fields are given, in terms of A(~r, t), by the
equations

E(~r, t) = − ∂

∂t
A(~r, t) , (1.7)

B(~r, t) = ∇× A(~r, t) . (1.8)

1.1.1 Plane wave expansions

To obtain the Hamiltonian equations of motion, we shall make a Fourier
decomposition of A(~r, t) with respect to it’s space variables x, y and z. We
imagine the electro-magnetic field to be contained in a large box of sides L,
and we impose periodic boundaries on the field.

We now write the three-dimensional Fourier expansion of A(~r, t) in terms of
plane-wave modes in the form

A(~r, t) =
1

ε
1/2
0 L3/2

∑

k

Ak(t)e
ik·r , (1.9)

where the vector k has components

k1 = 2πn1/L , n1 = 0,±1,±2, ...
k2 = 2πn2/L , n2 = 0,±1,±2, ...
k3 = 2πn3/L , n3 = 0,±1,±2, ...

(1.10)

forming a discrete set. The sum
∑

k
is understood to be a sum over the inte-

gers n1, n2, n3. The factor 1

ε
1/2
0 L3/2

where ε0 is the vacuum dielectric constant,

is introduced for later convenience.

If we apply Eq. (1.6) to Eq. (1.9), we easily see that we get the condition

k · Ak(t) = 0 . (1.11)

In addition, the reality of A(~r, t) leads to the condition

A−k(t) = A∗
k
(t) . (1.12)

Since we have Eq. (1.5), it follows immediately that Ak(t) satisfies the equa-
tion of motion (

∂2

∂t2
+ ω2

)

Ak(t) = 0 , (1.13)

3

where we have introduced the angular frequency ωk = ck and abbreviated
it by writing ω. The general solution to this equation, which also obeys the
condition (1.12), is given by

Ak(t) = cke
−iωt + c∗−k

eiωt . (1.14)

1.1.2 Unit polarization vectors

It will prove advantageous to resolve the vector ck into two orthogonal com-
ponents, which are chosen such that Eq. (1.11) is satisfied automatically.
This is most easily done by choosing a pair of orthonormal real base vectors
εk1, εk2 that obey the conditions

k · εks = 0 , (s = 1, 2)
ε∗
ks · εks′ = δss′ , (s, s′ = 1, 2)
εk1 × εk2 = k/k ≡ κ ,

(1.15)

which signify transversality, orthonormality and right-handedness, respec-
tively, and then putting

ck =

2∑

s=1

cksεks . (1.16)

On substituting from Eq. (1.16) into Eq. (1.14) and using the result from Eq.
(1.9) we get

A(r, t) =
1

ε
1/2
0 L3/2

∑

k

∑

s

[cksεkse
i(k·r−ωt) + c∗

ksε
∗
kse

−i(k·r−ωt)]

=
1

ε
1/2
0 L3/2

∑

k

∑

s

[uks(t)εkse
ik·r + u∗

ks(t)ε
∗
kse

−ik·r] , (1.17)

where we have written
uks(t) = ckse

−iωt . (1.18)

We may now make use of Eq. (1.7) and Eq. (1.8) to write mode expansions
for the E(~r, t) and B(~r, t) vectors. Thus

E(~r, t) =
i

ε
1/2
0 L3/2

∑

k

∑

s

ω[uks(t)εkse
ik·r − c.c.] , (1.19)

and

B(~r, t) =
i

ε
1/2
0 L3/2

∑

k

∑

s

[uks(t)(k × εks)e
ik·r − c.c.] . (1.20)

4

1.1.3 Energy of the electro-magnetic field

The energy of the field is given by

H =
1

2

∫

L3

[
ε0E

2(~r, t) +
1

µ0

B2(~r, t)
]
d3r . (1.21)

When solving this expression we obtain

H = 2
∑

k

∑

s

ω2|uks(t)|2 , (1.22)

which expresses the energy as a sum over the modes.

For the purpose of field quantization it is convenient to write H in Hamil-
tonian form, which we do by introducing a pair of real canonical variables
qks(t) and pks(t) defined by

qks(t) = [uks(t) + u∗
ks(t)] , (1.23)

pks(t) = −iω[uks(t) − u∗
ks(t)] . (1.24)

Substitution of Eq. (1.23) and Eq. (1.24) in Eq. (1.22) yields

H =
1

2

∑

k

∑

s

[p2
ks(t) + ω2q2

ks(t)] . (1.25)

This may be recognized as a system of independent harmonic oscillators, one
for each k, s mode of the electro-magnetic field.

1.1.4 Canonical quantization of the transverse field

In order to describe the electro-magnetic field in quantum mechanics, we
have to associate Hilbert space operators with the dynamical variables. The
Hilbert space operators will be denoted by the same symbols as their dynam-
ical counterparts, but with the caretˆ ; e.g. the operators corresponding to
qks(t) and pks(t) will be denoted by q̂ks(t) and p̂ks(t). As the classical vari-
ables associated with two different modes are uncoupled, the corresponding
Hilbert space operators commute. We therefore have

[q̂ks(t), p̂k′s′(t)] = i~δ3
kk

′δss′ , (1.26)

[q̂ks(t), q̂k′s′(t)] = 0 , (1.27)

[p̂ks(t), p̂k′s′(t)] = 0 . (1.28)

5

We may now write the quantum mechanical Hamiltonian

Ĥ =
1

2

∑

k

∑

s

[p̂2
ks(t) + ω2q̂2

ks(t)] . (1.29)

For our purposes it will be more convenient to deal with a set of non-
Hermitian operators defined by

âks(t) =
1

(2~ω)1/2
[ωq̂ks(t) + ip̂ks(t)] , (1.30)

â†
ks(t) =

1

(2~ω)1/2
[ωq̂ks(t) − ip̂ks(t)] , (1.31)

where the second is the Hermitian conjugate of the first. If inverted we get
the relations

q̂ks(t) = (~/2ω)1/2[âks(t) + â†
ks(t)] , (1.32)

p̂ks(t) = i(~ω/2)1/2[â†
ks(t) − âks(t)] . (1.33)

The commutation relations for âks(t) and â†
ks(t) become

[aks(t), a
†
k′s′(t)] = δ3

kk
′δss′ , (1.34)

[aks(t), ak′s′(t)] = 0 , (1.35)

[a†
ks(t), a

†
k′s′(t)] = 0 . (1.36)

It is evident that apart from some scaling factor, âks(t) and â†
ks(t) correspond

with the complex amplitudes uks(t) and u∗
ks(t), and they also have the same

time dependence,

âks(t) = âks(0)e−iωt , (1.37)

â†
ks(t) = â†

ks(0)eiωt . (1.38)

As we clearly see, the operator products âks(t)â
†
ks(t) and â†

ks(t)âks(t) are time
independent. Let us substitute for q̂ks(t) and p̂ks(t) in the Hamiltonian form
of Eq. (1.29). The Hamiltonian now becomes

Ĥ =
1

2

∑

k

∑

s

~ω[âks(t)â
†
ks(t) + â†

ks(t)âks(t)] . (1.39)

Alternatively

Ĥ =
∑

k

∑

s

~ω[â†
ks(t)âks(t) +

1

2
] , (1.40)

6

if we make use of Eq. (1.34). We notice that the so-called zero point contribu-

tion, ~ω
2

, contributes with an infinite energy for an unbounded set of modes.
This is a difficulty of QED that has never been resolved satisfactorily (Ref.
[1]). One may argue that this contribution has no physical meaning , so we
will merely neglect the term and write

Ĥ =
∑

k

∑

s

~ωâ†
ks(t)âks(t) , (1.41)

for the energy.

1.1.5 Spectrum of the energy; photons

The Hermitian operator â†
ksâks that appears in Eq. (1.41) is a particularly

important one and will be denoted by n̂ks. It is called the number opera-

tor. We will denote the eigenvalues of the number operator by nks and the
eigenstates by |nks〉, such that

n̂ks |nks〉 = nks |nks〉 . (1.42)

Since the number operator is self-adjoint, the eigenvalues are real, and it can
be shown that they are also non-negative. An important difference between
the classical energy expression in Eq. (1.21) and the quantum mechanical
energy operator in Eq. (1.41) is the energy spectrum. In the classical case the
energy may take any non-negative value. In the quantum mechanical case,
however, only discrete, non-negative, quantized values may be admitted as
eigenvalues of the energy operator1.

The electro-magnetic field will be represented by a Hilbert space vector

|φ〉 =
∏

ks

|nks〉 (1.43)

= |nk1s1〉|nk2s2〉... (1.44)

= |{n}〉. (1.45)

Such a state is known as a Fock state and is characterized by the set of
occupation numbers nk1s1 , nk2s2 , ... for all the modes. It follows that the
electro-magnetic field states are eigenstates of the Hamilton operator given
by Eq. (1.41), such that

Ĥ |{n}〉 =
(∑

k,s

nks~ω
)
|{n}〉 . (1.46)

1Since n̂ks contains squares of the operators p̂ and x̂ only, the expectation value of n̂ks

in any state cannot be negative, and hence the eigenvalues of n̂ks must be non-negative.

7

The discrete excitations, or quanta, of the electro-magnetic field, correspond-
ing to the occupation numbers n, are usually known as photons. Thus a state
|..., 0, 0, 1ks, 0, 0, ...〉 is described as a state with one photon of wave vector k
and polarization s. We may later find it convenient to denote this state as
|1〉ks.

âks(t) and â†
ks(t) are known as the annihilation and creation operators re-

spectively. The reason for this is that they lower and raise the photon number
corresponding to k and s by one. This can be realized from the following
proof.

Proof. First, construct the state âks(t)|nks〉.
Let us then operate on the state by the number operator:

n̂ksâks(t)|nks〉 = â†
ks(t)âks(t)âks(t)|nks〉

=
(

âks(t)â
†
ks(t) − 1

)

âks(t)|nks〉
= (n− 1)âks(t)|nks〉 , (1.47)

when applying Eq. (1.34).
Thus âks(t)|nks〉 is an eigenstate of the number operator and may when
applying Eq. (1.42), be written as

âks(t)|nks〉 = ca|nks − 1〉 , (1.48)

where ca is a normalization constant.
Futhermore, we have

〈nks − 1|nks − 1〉 =
1

c2a
〈nks|â†ks(t)âks(t)|nks〉

=
nks

c2a
· 〈nks|nks〉 , (1.49)

and by normalization, we get

ca =
√
nks , (1.50)

and
âks(t)|nks〉 =

√
nks|nks − 1〉 . (1.51)

It may by following the same procedure, be shown that

â†
ks(t)|nks〉 =

√
nks + 1 · |nks + 1〉 . (1.52)

The boson properties of photons are easily realized since the eigenvalues of
the number operators are unbounded and there may be found an arbitrary
number of photons in the same state.

8

1.2 Coherent States

Coherent states can be shown to be near-classical quantum states. The co-
herent states of the field comes as close as possible to being classical states
of definite complex amplitude (Ref. [1]). It is known that coherent states are
particularly appropriate for the description of lasers and parametric oscilla-
tors.

1.2.1 Fock representation of the coherent state

In this section we will focus on one single mode of the electro-magnetic field.
The theory may easily be expanded to cover a multiple mode state. We shall
therefore simplify the notation by discarding the mode label, k, s.

We will make use of the properties of the annihilation and creation operators,
namely

â|n〉 =
√
n |n− 1〉 , (1.53)

â†|n〉 =
√
n+ 1 |n+ 1〉 . (1.54)

It may be shown that n ≥ 0 so that â|0〉 ≡ 0.

Assume that there exists an eigenstate of â, |α〉, such that

â|α〉 = α|α〉 . (1.55)

The state |α〉 is for many reasons known as a coherent state (Ref. [1]). Since
the Fock states form a complete set, |α〉 may be represented as

|α〉 =

∞∑

n=0

cn|n〉 , (1.56)

in which cn are complex numbers. On substituting Eq. (1.56) in Eq. (1.55)
and by using Eq. (1.53) we get

â|α〉 =
∞∑

n=1

cn
√
n|n− 1〉

= α
∞∑

n=0

cn|n〉 .

As the |n〉 (n=(0,1,2,...)) form a set of orthogonal state vectors, this equation
is satisfied if and only if the coefficients of the corresponding Fock vectors on

9

both sides are equal. We therefore have

cn =
α√
n
cn−1 . (1.57)

By repeated application we obtain

cn =
α2

√

n(n− 1)
cn−2 = ... =

αn

√

(n!)
c0 , (1.58)

so that

|α〉 = c0

∞∑

n=0

αn

√

(n!)
|n〉 . (1.59)

If we require 〈α|α〉 ≡ 1, we get that

c0 = e−|α|2/2 , (1.60)

and

|α〉 = e−|α|2/2
∞∑

n=0

αn

√

(n!)
|n〉 . (1.61)

When α = 0, the coherent state becomes the vacuum state |0〉, which is both
a coherent state and a Fock state. The probability of finding n photons in a
coherent state, is given by the projection

pα(n) = |〈n|α〉|2

= |e−|α|2/2 αn

√

(n!)
|2

=
|α|2n

n!
e−|α|2 , (1.62)

which we recognize as the Poisson distribution in n. The mean number of
photons in a coherent state is given by

∞∑

n=0

npα(n) = |α|2 = 〈α|n̂|α〉 . (1.63)

A remarkable feature of a coherent state is that it is not altered by the
annihilation operator, and the number of photons at any time is totally
random. Even for extremely small αs there is a slight probability of finding
a huge number of photons.

10

1.2.2 The displacement operator

By making use of Eq. (1.61) and the properties of the creation operator (Eq.
(1.54)), we may write

|α〉 = e−|α|2/2

∞∑

n=0

αnâ†n

n!
|0〉

= e−|α|2/2eαâ† |0〉 , (1.64)

which shows that a coherent state is to be regarded as a displaced vacuum
state. We may express this in a somewhat more symmetric way by making
use of the properties of the annihilation operator (Eq. (1.53)). Thus

|α〉 = e−|α|2/2eαâ†

e−α∗â|0〉 . (1.65)

We now make use of the Campbell-Baker-Hausdorff operator-identity (Ref.
[1]) for two operators Â, B̂;

eÂ+B̂ = eÂ eB̂ e−[Â,B̂]/2 , (1.66)

provided that
[Â, [Â, B̂]] = 0 = [B̂, [Â, B̂]] . (1.67)

It can be proven that Eq. (1.67) holds for the creation and annihilation op-
erators. It can easily be checked that we may now write Eq. (1.65) as

|α〉 = D̂a(α)|0〉 = eαâ†−α∗â|0〉 . (1.68)

D̂a(α) is the displacement operator, which creates a coherent state |α〉 from
the vacuum state |0〉.

1.2.3 Coherent states and orthogonality

One important feature of the coherent states is their near-orthonormality
property, i.e.

〈β|α〉 '
{

1 α = β ,
0 α 6= β ,

(1.69)

wich we sloppily may rewrite,

〈β|α〉 ' δα,β . (1.70)

11

This can be seen from Eq. (1.61),

〈β|α〉 =
(
e−|β|2/2

∞∑

m=0

β∗m
√

(m!)
〈m|

)
·
(
e−|α|2/2

∞∑

n=0

αn

√

(n!)
|n〉

)

= e−
(|α|2+|β|2)

2

∞∑

m,n=0

β∗mαn

√
m!n!

〈m|n〉
︸ ︷︷ ︸

δm,n

= e−
(|α|2+|β|2)

2

∞∑

n=0

β∗nαn

n!

= e−
(|α|2+|β|2)

2 eβ∗α , (1.71)

|〈β|α〉|2 = exp
(
−|α|2 − |β|2 + β∗α + βα∗)

= exp
(
−|α− β|2

)
. (1.72)

Assuming α, β → ∞, we realize that Eq. (1.69) holds.
This means that the coherent states are near-orthonormal, i.e. for large αs
(and βs) the cross terms will disappear,

(
c∗α〈α| + c∗β〈β|

)(
cα|α〉 + cβ|β〉

)
' |cα|2 + |cβ|2 !

= 1 . (1.73)

1.2.4 Coherent states and the beam-splitter

The beam-splitter is a semi-transparent mirror where the transmittivity is
given by

T = η , (1.74)

and the reflectivity is given by

R = 1 − T = 1 − η . (1.75)

In quantum optics the beam-splitter has two input channels and two output
channels. In classical optics, input channels which experience no intensity
may be ignored. In the quantum optical case, however, we must consider
both input channels at all times. The vacuum state (origin of no intensity)
is also a state of the electro-magnetic field and may interfere with the other
input-state. Assuming there is a linear relation between 1̂,2̂,â and b̂, the
output annihilation operators, â, b̂, are given by

â =
√
η 1̂ +

√

1 − η 2̂ , (1.76)

b̂ =
√

1 − η 1̂ −√
η 2̂ , (1.77)

12

^

2

1

T

^

^ b̂

a

Figure 1.1: Schematic drawing of a beam-splitter with transmittivity T, input operators
1̂, 2̂ and output operators â, b̂.

which satisfy the commutation relations in Eq. (1.34)-(1.36). When inverted
these relations give

(
√
η +

√

1 − η)(â+ b̂) = (1 + 2
√
η
√

1 − η)1̂ + (1 − 2η)2̂ , (1.78)

(
√
η +

√

1 − η)(â− b̂) = (2η − 1)1̂ + (1 + 2
√
η
√

1 − η)2̂ . (1.79)

In the special case, which will be most important to us, where T = 1/2, we
get

1̂ =

√

1

2
(â+ b̂) , (1.80)

2̂ =

√

1

2
(â− b̂) . (1.81)

13

Furthermore, in the case where T = 1/2, the displacement operators become

D̂1(α) = eα1̂†−α∗1̂

= exp

[

α

√

1

2
(â† + b̂†) − α∗

√

1

2
(â+ b̂)

]

= D̂a(
α√
2
)D̂b(

α√
2
) , (1.82)

D̂2(α) = eα2̂†−α∗2̂

= exp

[

α

√

1

2
(â† − b̂†) − α∗

√

1

2
(â− b̂)

]

= D̂a(
α√
2
)D̂b(−

α√
2
) . (1.83)

If the two input states are |α〉 and |β〉, we experience interference and the
output states will be

|input〉1,2 = |α〉1|β〉2
= D1(α)D2(β)|0〉 (1.84)

|output〉a,b = D̂a(
α√
2
)D̂b(

α√
2
)D̂a(

β√
2
)D̂b(−

β√
2
)|0〉 . (1.85)

And since â and b̂ commute, we may write

D̂a(
α√
2
)D̂b(

α√
2
)D̂a(

β√
2
)D̂b(−

β√
2
)|0〉 =

D̂a(
α√
2
)D̂a(

β√
2
)D̂b(

α√
2
)D̂b(−

β√
2
)|0〉 =

D̂a(
α + β√

2
)D̂b(

α− β√
2

)|0〉 . (1.86)

14

Chapter 2

Introduction to Trinary
Quantum Computing

2.1 Quantum Computing, So Far

2.1.1 History of classical and quantum computing

Quantum computation and quantum information is the study of the informa-
tion processing tasks that can be accomplished using quantum mechanical
systems. Quantum mechanics is a mathematical framework or set of rules for
the construction of physical theories. One of the goals of quantum computa-
tion and quantum information is to develop tools which sharpen our intuition
about quantum mechanics, and make its predictions more transparent to hu-
man minds.

For example, in the early 1980s, interest arose in whether it might be pos-
sible to use quantum effects to signal faster than light, which according to
Einstein’s Theory of relativity would be impossible. The resolution to this
problem turned out to hinge on whether it was possible to clone an unknown
quantum state (Ref. [4]), i.e. construct a copy of a quantum state. If cloning
was possible, then it would be possible to signal faster than light using quan-
tum effects. However, cloning turned out to be impossible in general, in
quantum mechanics.

Theorem 1 (No-cloning theorem). In general, an exact copy of an arbi-

trary, unknown quantum mechanical state cannot be created.

Proof. Assume we have an initial superposition of the quantum states |ψ〉
and |φ〉, i.e. two arbitrary, unknown quantum states, 1√

2
(|ψ〉 + |φ〉) ≡ |ψφ〉.

15

Next assume there exists an unitary operator, U , such that U |ψφ〉 = |ψψ〉.
We may then construct the quantum state

|z〉 =
1√
2

(|ψ1〉 + |ψ2〉) , (2.1)

where |ψ1〉 and |ψ2〉 are two, in general, different, arbitrary and unknown
states. The effect of U on |zφ〉 will then be

U |zφ〉 =
1√
2
U (|ψ1φ〉 + |ψ2φ〉)

=
1√
2

(|ψ1ψ1〉 + |ψ2ψ2〉) . (2.2)

or

U |zφ〉 = |zz〉
=

1

2
(|ψ1ψ1〉 + |ψ1ψ2〉 + |ψ2ψ1〉 + |ψ2ψ2〉) . (2.3)

Since Eq. (2.2) and Eq. (2.3), in general, are not equivalent, we have the
contradiction that

U |zφ〉 6= U |zφ〉 . (2.4)

We therefore have to conclude that there exists no such operator, U , i.e.
cloning is impossible.

A related contribution to the development of quantum computation and
quantum information is the interest, that arose in the 1970s, in obtaining
complete control over single quantum systems. Prior to the 1970s, appli-
cations of quantum mechanics typically involved control over a bulk sample
containing an enormous amount of quantum mechanical systems, for instance
gases or solids. Since the 1970s many techniques for controlling single quan-
tum systems have been developed. Methods for trapping a single atom in an
”atom trap”, manipulating of single atoms with an electron microscope and
electronic devices transferring only single electrons are examples of manipu-
lations of single quantum systems.
The ability to control single quantum systems is essential if we are to exploit
the power that lies within quantum computing and quantum information.

Despite the efforts to build quantum information processing systems, the
results are modest. Experimental prototypes for doing quantum cryptogra-
phy, a way of sharing secret information, have been demonstrated and are

16

at the level where they may be put to use in daily life. However, it remains
a great challenge for scientists and engineers of the future to develop large-
scale quantum computers (Ref. [4]).

The modern incarnation of computer science was announced by the mathe-
matician Alan Turing in a 1936 paper. Turing developed in detail an abstract
notion of what we would now call a programmable computer, a model for
computation known as the Turing Machine. Turing showed that there is
a Universal Turing Machine that can be used to simulate any other Turing
Machine. That is, if an algorithm can be performed on any piece of hardware
or computational device, there exists an equivalent algorithm for a Univer-
sal Turing Machine, which performs exactly the same tasks as the original
algorithm. This assertion, known as the Church-Turing thesis, asserts the
equivalence between the physical concept of what class of algorithms can be
performed on some physical device. with the rigorous mathematical concept
of a Universal Turing Machine. The broad acceptance of this thesis laid the
foundation for a rich theory of computer science.

Not long after Turing’s paper, the first computers, developed from electronic
devices, were introduced. Hardware development truly started in 1947, when
the transistor was developed by John Bardeen, Walter Brattain and William
Shockley (Ref. [4]). The power of computer hardware has ever since grown
tremendously. Moore’s law, stated by Gordon Moore in 1965, states that
the computer power will double for constant cost, roughly every second year.
Amazingly, Moore’s law has held approximately true since the 1960s. How-
ever, already during the 1970s concern for the size of computers arose. The
concern regarded the fact that computers grew ever smaller and soon would
reach the limit for what was possible to produce. Twenty-thirty years later,
whilst operating at nano-meter scale, we may laugh at the 1970s pessimists.
However, we must still pay attention to the difficulties computer science soon
will come by. The quantum mechanical tunnel effect and the Heisenberg’s
uncertainty relation will cause a lot of pain for digital circuit designers, when
the distance between conductors become even smaller. Quantum mechanical
effects may cause electrons to jump back and forth between two conductors,
and in that way be the source of noise and corrupted signals.
Possible solutions to the problem posed by the failure of Moore’s law is to
move to a different computing paradigm. In the 1970s, multiple-valued logic
was seen as such a paradigm (Ref. [5]). By leaving the realm of binary logic
and Boolean algebra, one may process more information and still require less
resources. In an electronic device consisting of eight conductors, one may
represent the numbers 0 to 28 − 1 = 255 with two voltage-levels. To repre-

17

sent approximately the same range of numbers with three voltage-levels, we
just need five conductors. In the 1990s the quantum computer was expected
to be the required change of paradigm. In this thesis we propose a paradigm
based on both multiple-valued logic and quantum mechanical effects, namely
a trinary quantum computer (see Section 2.2).

The idea of quantum computing is to use quantum mechanics to perform
computations, instead of classical physics. It turns out that a classical, or-
dinary computer can be used to simulate a quantum computer, however it
appears to be impossible to perform the simulation efficiently 1. Thus quan-
tum computers offer an essential speed advantage over classical computers.
In a classical computer, a conductor may be either high or low (1 or 0, on
or off), which means that they cannot do more than one computation at a
time. Thus a classical computer is only capable of serial processing, i.e. if
we are to perform a number of computations, the total time spent is equal
to the sum of the individual computing times. One of the great assets of
a quantum computer is that a quantum state may be both high and low
at the same time, i.e. a superposition of for instance vacuum and a one-
particle state (1√

2
(|0〉 + |1〉)). This means that a quantum computer may

derive many results at the same time, parallel processing. The total time
spent equals the longest individual computing time. The speed advantage
of the quantum computer is so great that many researchers believe that no
conceivable amount of progress in classical computing would overcome the
gap between the power of a classical computer and the power of a quantum
computer (Ref. [4]).

As an example, let us consider the case where we want to perform the two
binary-algebra computations 0 · 1 and 1 · 1 (see chapter 3). The classical
computer will first compute 0 · 1 → 0 and then 1 · 1 → 1. Let us represent
low, 0, by the vacuum state, |0〉, and high, 1, by the one-particle state |1〉.
A quantum computer may now use the state |input1〉 = 1√

2
(|0〉 u |1〉) as one

input and |input2〉 = |1〉 as the other2. Assuming we have an operator U ,
such that3 U |xy〉 = |x AND y〉|y〉, where |xy〉 ≡ |x〉|y〉, the quantum com-
puter may perform the parallel process U |input1〉|1〉 = 1√

2
U (|01〉 u |11〉) →

1√
2
(|0〉 u |1〉) |1〉. Thus the quantum computer has performed both compu-

1Computations may be efficient or inefficient. Roughly speaking, an efficient algorithm
is one which runs in time polynomial in the size of the problem solved. In contrast, an
inefficient algorithm requires super-polynomial (typically exponential) time.

2u denotes ordinary addition of vectors, and · denotes logical AND.
3See Section 3.1.1 for definition of AND.

18

tations at the same time.

Another great asset of quantum computers is the ability to generate totally
random numbers. If measuring the earlier described state, |input1〉, the re-
sult will, totally randomly, be either 1 or 0. For classical computers a number
of random number-generators have been proposed, but they are all in prin-
ciple deterministic. Whilst the classical computer calculates the ”random”
number (pseudo-randomness), and any other classical computer may predict
which number will be chosen, a quantum computer picks random numbers
100% stochastically, and it cannot be predicted certainly what number will be
chosen next. Obviously this is a big difference between a classical computer
and a quantum computer, and a classical computer simulation of a quantum
computer random number-generator will not be realistic. A number of alge-
braic algorithms uses randomness as an essential part of the algorithm. Such
algorithms are of course impossible to perform on a deterministic, classical
computer.

During the revolutionary development of computational devices and compu-
tational algorithms after Turing’s paper in 1936, the Church-Turing thesis
was modified at various occasions. The continuous ad-hoc adaption of the
Church-Turing thesis motivated a doubt in whether it was possible to find a
single model of computation which was guaranteed to be able to efficiently
simulate any other model of computation. Motivated by this doubt, in 1985
David Deutsch asked whether the laws of physics could be used to derive
an even stronger version of the Church-Turing thesis. Because the laws of
physics are ultimately quantum mechanical, Deutsch was led to considering
computing devices based upon the principles of quantum mechanics. These
devices led ultimately to the modern concept of quantum computers. It is
still not clear whether Deutsch’s notion of a Universal Quantum Computer is
sufficient to efficiently simulate an arbitrary physical system. This is one of
the great, open problems for the field of quantum computing and quantum
information theory. There are still unexplored realms of physics, e.g. string
theory or quantum gravitation, that may take us beyond Deutsch’s Universal
Quantum Computer.

Deutsch was the first to prove that the powers of a quantum computer indeed
exceeded the powers of classical computing devices. Deutsch’s first step was
subsequently followed by remarkable discoveries and algorithms. In 1994 Pe-
ter Shor demonstrated how a quantum computer efficiently could solve two
extremely important problems, namely factorizing of large integers and the
so-called ”discrete logarithm” problem (Ref. [4]). In 1995 Lov Gover showed

19

how search through some unstructured search space could also be sped up
on a quantum computer. Both the results of Shor and Gover are strongly in-
dicating that quantum computers are even more powerful than probabilistic
Turing machines.
At about the same time as Shor’s and Gover’s algorithms were discovered,
numerous physicists were following Richard Feynman’s 1982 idea that quan-
tum mechanical systems best would be simulated by quantum mechanical
systems, or a computing device based upon quantum mechanical principles.
Classical computers had revealed difficulties with simulating quantum me-
chanical systems. During the 1990s it was shown that it is indeed possible to
use quantum computers to simulate quantum mechanical systems efficiently.

2.1.2 Quantum bits

The bit is the fundamental concept of classical computation and classical
information. Quantum computation and quantum information are built upon
an analogous concept, the quantum bit, or qubit for short. A classical bit may
be in one out of the two states 0 and 1, which may be regarded as orthogonal
states. Two possible orthogonal states for a qubit are the states |0〉 and |1〉,
which may correspond to the classical states 0 and 1. The difference between
bits and qubits is that a qubit can be in a state other than |0〉 or |1〉, namely
a superposition of the two. In general, the qubit is of the form

|φ〉 = α|0〉 + β|1〉. (2.5)

The numbers α and β are complex numbers and the special states |0〉 and
|1〉 are known as computational basis states, and they form an orthogonal
basis in a Hilbert space. A classical state may at all times be examined to
determine whether it is 0 or 1. A qubit, however, cannot be examined in
the same way. That is, we cannot determine α and β. When measuring a
quantum state, we get either |0〉 or |1〉 with the probabilities |α|2 and |β|2,
respectively. It turns out that only if infinitely many identical qubits were
prepared and measured would one be able to determine α and β for a qubit in
the state given in Eq. (2.5). This dichotomy between the unobservable state
of a qubit and the observations we can make, lies at the heart of quantum
computation and quantum information.

Despite the strangeness of qubits, they are verifiably real. Their existence
are extensively validated by experiments, and many physical systems can
be used to realize qubits. The two different polarizations of a photon, the
alignment of nuclear spin in a magnetic field and two energy eigen-states of

20

an electron orbiting a single atom, are some of the different systems that
may be used.

Multiple qubits

Suppose we have two qubits. If these were classical bits, there would be four
possible combinations, namely 00, 01, 10 and 11. So is the case with qubits.
The computational basis is |00〉, |01〉, |10〉 and |11〉. Any quantum state
may be expressed as a linear superposition of these,

|φ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉, (2.6)

where we have the normalization condition
1∑

i,j=0

|αij|2 = 1. (2.7)

Similarly we may have n qubits, with 2n possible combinations. The com-
putational basis states of this system is of the form |x1x2...xn〉, where each
xi may be 0 or 1. This n-qubit state is to be compared to an n-bit bus in
classical computers.

2.1.3 Quantum computation

Analogous to a classical computer, built from electrical circuits containing
wires and logic gates, a quantum computer is built from quantum circuits
containing wires and quantum gates. The quantum gates operate on the
quantum states to alter the states and thereby manipulate the quantum
information.
A variety of quantum gates have earlier been proposed, both for single qubit
manipulations and for multiple qubit manipulations. However we will not
study these here. The quantum gates studied in this thesis are designed
without concern regarding previously proposed quantum gates.
There have been suggested quantum circuits to perform a variety of quantum
algorithms, such as the factoring algorithm, searching algorithms and the
quantum Fourier transform. These will also be left out of this thesis.

2.2 A New Way of Thinking?

2.2.1 Fundamental idea

The way of computing suggested in this thesis is not purely quantum me-
chanical, as are earlier quantum computers proposed. Some of the concepts

21

involved may even be comprehended by considering classical physics only.
The fundamental idea of this thesis is to propose a way of computing that
holds the great advantages of quantum computing, yet is built upon many
of the concepts of a classical computer. After all, classical computers have
proven successful, and the methods and algebras used in classical computing
have been tested and found working for more than half a century. The main
concern of this thesis is therefore to create quantum states and quantum
gates that make use of the successful methods of classical computing, yet
achieves the powerful results of quantum computing.
In classical computation, the operations on states are, in general, not re-
versible. This is not possible in quantum computation. Quantum compu-
tation is achieved through unitary operations, and it can be shown that all
unitary operators are invertible, i.e. all manipulations of quantum states are
reversible. So is the case with the quantum gates proposed in this thesis,
too. If we consider all outputs of the quantum gates described in this thesis,
we may from the output states and the properties of the operators derive
the input states. However, not all the outputs are interesting, and we will
usually just throw away those we do not need, which results in irreversible
operations.

2.2.2 Qubits or qutrits

As explained in the previous section, qubits are the quantum computational
analogy to the bits of classical computation. In this thesis we will make use of
a new concept, namely qutrits or quantum trits. Trits are the three possible
states of a trinary algebra, and qutrits will be the quantum computational
analogy.
In the youth of classical computing, it had still not been decided which num-
ber system to rely on. In Russia in the fifties, a trinary computer was built
from magnetic cores wired in tandem (Ref. [9]). This computer, that was
named Setun, after a nearby river, worked quite fine and was actually in use
throughout the fifties and the sixties. Unfortunately, the technology was not
yet capable of embracing the trinary concept. Using two cores, capable of
three stable states, one could generate the numbers -1, 0 and 1 in trinary
algebra (negative parallel, opposite and parallel magnetic fields), and the
numbers 00, 01, 10 and 11 (0,1,2 and 3) in binary algebra. As we realize, the
binary system was actually more efficient using electrical coils.
Over the years, the binary logic was preferred, as binary switching (Boolean)
algebra is extremely well suited to mathematically describe electronic cir-
cuits.
As logic has been developed and electronic circuitry is approaching its phys-

22

ical limits, concerning size, alternatives to binary logic has been proposed.
Theorists of logic state that a black and white (0s and 1s, trues and falses)
formalism is not suited to describe the real world. That is, “maybe” ought
to be a possible choice of answer. E.g. if we know that the sky is blue, and
the grass is green, we cannot answer yes or no to the question ”Is the car
red?”. We have to answer “maybe”. Fuzzy logic and multiple-valued logic
handles questions like this. In this thesis we will concentrate on a trinary
logic, however, in principle, it is possible to expand into logic of higher order.
The advantage of employing higher order logic is that each wire in a circuit
may store more information. As a binary computer in an n-bit bus may
represent the numbers 0 to 2n − 1, a trinary computer may represent the
numbers 0 to 3n − 1. Such effects of a higher order logic would revolutionize
both memory storing-capabilities, other storing devices and transferring of
data over networks.
The disadvantages may be that trinary logic gates have proven both difficult
and expensive to create. In a classical computer, a trinary logic could be im-
plemented by introducing a negative voltage-level, witch requires the circuit
to conduct in both directions, or by introducing another positive voltage-
level. Both solutions have proven too complicated to realize commercially.

In this thesis we propose a solution based on coherent light (laser). The in-
tensity of the laser-beam defines the magnitude of the trit. As shown in this
thesis, the construction of logic gate-like quantum gates for coherent light is
not so hard.

In any given number system, any number may be represented by the sum

... + d3r
3 + d2r

2 + d1r
1 + d0r

0, (2.8)

where r is the base, or radix, and the coefficients di are the digits of the
number representation. For instance does the decimal representation 6510,
where the subscript commonly is omitted, mean 6 · 101 + 5 · 100. Writing the
same number in a trinary base, we must write 2·33+1·32+0·31+2·30 = 21023.
As we see, the same number may be represented totally different in different
computational bases. The number of digits used to represent a number in
a given base is called the width and is denoted by the letter w. Obviously,
a way of defining the cost of computation in a given base, is by calculating
the product of radix, or available symbols (in trinary 3 and in hexadecimal
10), with the digits needed to represent a given number. That is, we want to
minimize the expression

cost = r · w , (2.9)

23

when

rw = constant

m

w =
ln constant

ln r
. (2.10)

Substitution of Eq. (2.9) in Eq. (2.10) gives

cost = rw

= r
ln constant

ln r
. (2.11)

Treating r as a continuous variable, we may calculate

d cost

dr
=0

d

dr

(

ln constant · r

ln r

)

=0

i.e. r =e ≈ 2.718 .
(2.12)

So the number e minimizes the cost-function.
Since it is absurd to have a non-natural number as radix, we accept 3, which
is closest to e, as the most effective base.

Figure 2.1: Most economical radix for a numbering system is e (about 2.718) when
economy is measured as the product of the radix and the width, or number of digits,
needed to express a given range of values. Here both the radix and the width are treated
as continuous variables (Ref. [7]).

24

2.2.3 Qutrit representation by coherent states

As shown (see Section 1.2.3), coherent states with a large intensity of photons
are near-orthonormal. Assuming the characteristic parameter large enough,
we may suppress any cross-terms, and coherent states form an orthonormal
set,

〈α|β〉 = δα,β. (2.13)

Provided α is a large number, we may represent our qutrits by the coherent
states, |0〉 = vacuum, |1 ·α〉 and |2 ·α〉. The three different states may easily
be identified using a photon-detector.
Coherent states are incredibly resistant to noise. If an additional photon is
added, or if a photon is annihilated, this does not alter the coherent state
much. If one decided that the logic basis was to be vacuum, a one-photon
state and a two-photon state, one cosmic photon could ruin the whole thing.
In previous attempts of realizing quantum computers, decoherence has been
a big issue. Suppose we want to use two-level atoms as our basic idea for
computing. Let the excited state of the atom represent 1 and the ground
state represent 0. Suppose we want to use a line of trapped atoms as a mem-
ory, storing 0’s and 1’s. We will quickly discover that our memory is no good.
It is not stable enough, since the excited state of an atom is not stable, so
the memory will quickly fade.
This is not a problem with the coherent states suggested in this thesis. Co-
herent states of light are extremely stable and resistant to noise/decoherence.

Analog computing

The ability to resist noise also enables the option of analog computing. A
computer is analog when the physical representation of information, namely
the intensity of a coherent state, it uses for computation is based on con-
tinuous degrees of freedom, instead of discrete logic values. For example, a
thermometer is an analog computer. Analog computers have an infinite re-
source to draw upon in the ideal limit, since continuous variables may store
an unlimited amount of information. In the presence of noise an analog
computer is worthless. The presence of a finite amount of noise reduces the
number of distinguishable states of a continuous variable to a finite number,
and thus restricts analog computers to the representation of a finite amount
of information. The possibility of optical analog computing, however, is not
a subject of this thesis, and it is only mentioned as an opportunity.

25

2.2.4 Quantum parallelism

As mentioned, parallelism is one of the great advantages of quantum com-
puting. We are not restricted to serial computation, as in classical comput-
ing, because we are not restricted to on-base logic states. As mentioned,
a quantum state may be a superposition of, or in between, logic states,
|φ〉 = α|0〉 + β|1〉. With the trinary, optical quantum computer, this advan-
tage is stretched even further. A general quantum state may be expressed as
a superposition of the three basis-states, |φ〉 = β0|0〉 + β1|1 · α〉 + β2|2 · α〉.
In addition to this advantage, the optical comprehension of a quantum com-
puter makes use of the fact that coherent states of different “colour” are
orthogonal. Since we have the operator relations Eq. (1.34) to Eq. (1.36), we
can make use of either one of or a combination of the two following coherent
quantum states

|ψ〉n colours = |φ〉k1 + |φ〉k2 + ... + |φ〉kn, (2.14)

|ψ〉spin = |φ〉s1 + |φ〉s2, (2.15)

where ki denotes the momentum of the ith state and s1 and s2 are two
orthonormal directions of polarization. This means that we may mix two
coherent states with either different polarization or different colour to create
a quantum state that carries twice as much information as the single states
alone. This is an opportunity that enables an incredible increase in the flow
of data.

2.2.5 Quantum gates

This thesis does not at all look at the existing quantum gates, such as the
Hadamard gate, the Fredkin gate (Ref. [4]) or any other as such. However,
there is nothing principally wrong with the idea of extending the existing
quantum logic into a base 3 (or even higher order) logic.
This thesis focuses on the development of gates that are similar to those used
in classical computing, i.e. AND, OR and NOT.

Binary logic

As we will see in Section 3.2, there are algebraic properties that state

x · 0 = 0 · x = 0 , (2.16)

x · 1 = 1 · x = x , (2.17)

x + 0 = 0 + x = x , (2.18)

26

and these properties define the binary algebraic product-type and sum-type
operators. x may be any of the available logic values. For a two-valued
algebra, with the available values 0 and 1, we may now construct the following
two-input, binary, operators:

a · b 0 1

0 0 0

1 0 1

and

a+ b 0 1

0 0 1

1 1 ?

.

As we can see, there is only one possible choice for a product-type operator,
and this is the binary-logic AND-operator.
In the map of the sum-type operator, there is a choice. We may either choose
1 + 1 = 0 or we may choose 1 + 1 = 1. Both results are quite interesting and
both operators are widely in use in binary logic.

a+ b 0 1

0 0 1

1 1 1

is called the OR-gate, and

a+ b 0 1

0 0 1

1 1 0

is called the XOR-

gate.
All binary-logic gates may be constructed from either AND and OR or AND
and XOR together with NOT.

Trinary logic

In Section 3.3 we will see that some of the most important properties of the
trinary algebra are the relations

x · 0 = 0 · x = 0 , (2.19)

x · 2 = 2 · x = x , (2.20)

x + 0 = 0 + x = x . (2.21)

These equations are in fact the definitions of product-type and sum-type oper-
ators (Ref. [8]) for a trinary logic. These constraints lead us to basic logic
operations, a · b and a+ b, that map as

a · b 0 1 2
0 0 0 0
1 0 ? 1
2 0 1 2

and

a + b 0 1 2
0 0 1 2
1 1 ? ?
2 2 ? ?

.

27

It is obvious that there are only three different product-type functions, name-
ly those shown in Figure 2.2.
Since there are four open spaces in the sum-type map, there are 34 = 81

a\b 0 1 2
0 0 0 0
1 0 0 1
2 0 1 2

(a)

a\b 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

(b) MIN

a\b 0 1 2
0 0 0 0
1 0 2 1
2 0 1 2

(c)

Figure 2.2: Three-valued product-type functions.

different maps. However, the constraint x + y = y + x reduces the number
of maps to twenty-seven. If we demand that the functions fulfil both the
commutative and associative laws as well, we reduce the total number to
nine.

a\b 0 1 2
0 0 1 2
1 1 0 2
2 2 2 2

(a)

a\b 0 1 2
0 0 1 2
1 1 1 1
2 2 1 0

(b)

a\b 0 1 2
0 0 1 2
1 1 1 1
2 2 1 1

(c)

a\b 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

(d)

a\b 0 1 2
0 0 1 2
1 1 1 2
2 2 2 1

(e)

a\b 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

(f) MAX

a\b 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

(g) MODSUM

a\b 0 1 2
0 0 1 2
1 1 2 1
2 2 1 2

(h)

a\b 0 1 2
0 0 1 2
1 1 2 2
2 2 2 2

(i) TSUM

Figure 2.3: Three-valued sum-type functions.

28

All of these functions may be used as basic logic operations, but they are not
all equally well suited. It can be shown that the product-type functions are
equally good and that the MODSUM operation is the best suited sum-type
operation (Ref. [8]), i.e. MODSUM in general, requires fewer product-terms
(see Section 3.3), than the other sum-type functions to express an algebraic
expression. The MAX-function is here actually, the least suited function.
It is however an important feature of the MAX-function that the binary-
algebra OR-gate is included as a special case. The binary-algebra AND-gate
is included in the MIN-function.

The gates provided by this thesis work on the basis states, |0〉, |α〉 and |2α〉,
but not necessarily on superpositions of the basis states. Especially the gates
that are intensity-dependent will experience problems. In some gates there
has been assumed an existence of non-linear crystals with an intensity de-
pendent transmittivity. In practice this means that the intensity, the number
operator, â†â, is measured by the crystal. The crystal will be transparent to
all states in the superposition whenever their total intensity surpass a given
threshold-value, even though the gate was meant to transmit only some of
the states.
This is a problem that will not be taken into account in this thesis. The
gates have been shown to work on single states.
Solutions to the problem with superpositions may be to time-delay the dif-
ferent states of the superpositions, so that they don’t appear at the crystal
at the same time, to make superpositions of states with different frequency
(see Eq. (2.14)) or of states with different polarization (see Eq. (2.15)).

29

Chapter 3

Introduction to Logic

3.1 Binary Logic

Binary logic (Ref. [3]) deals with variables that take on two discrete values
and with operations that assume logical meaning. The two variables may be
called by any names, but the most convenient, for mathematical purposes,
are 0 and 1 (false and true). Binary logic may be used to describe, in a
mathematical way, the processing of binary information and has been espe-
cially well suited for the analysis and design of digital systems. Binary logic
is equivalent to the algebra called Boolean algebra.

3.1.1 Definition of binary logic

Binary logic consists of binary variables and logical operators. The variables
are designated by letters and may take one out of two distinct possible values,
1 and 0. In binary logic there are three basic logical operations, AND, OR
and NOT1 AND and OR are so-called binary operators, i.e. operators that
has two inputs. NOT is a unary operator, i.e. an operator that operates on
one variable only.

1. AND is represented by the symbol · or by the absence of an operator,
i.e. x · y ≡ xy ≡ x AND y. The operator AND passes on the smallest
of the two binary variables, i.e. if z = x · y, z = 1 if and only if both
x and y equals 1. Otherwise z equals 0. The AND operator may be
represented by the map in Figure 3.1.

1Here OR is chosen as basic operator. As stated in Section 2.2.5, XOR would be an
equally good choice.

30

AND 0 1

0 0 0

1 0 1

Figure 3.1: Map of the logical AND-operation.

2. OR is represented by the symbol +. OR passes on the larger of two
variables, i.e. if z = x + y, z = 0 if and only if both x and y are equal
to zero. Otherwise, z equals 1. OR may be represented by the map in
Figure 3.2.

OR 0 1

0 0 1

1 1 1

Figure 3.2: Map of the logical OR-operation.

3. NOT is represented by a bar or a prime, i.e. x̄ = x′ = NOT x. The
operator passes on the “other possible” value, i.e. 0̄ = 1 and 1̄ = 0.
We may represent NOT by the map in Figure 3.3.

X X̄

0 1

1 0

Figure 3.3: Map of the logical NOT-operation.

Binary logic resembles binary arithmetic. The symbols used for AND and
OR are the same as those used for multiplication and addition. However,
one must be careful not to confuse binary logic and binary arithmetic. An
arithmetic variable designates a number that may consist of many digits. A
logic variable is always either 1 or 0. For example, in binary arithmetic we
have 1 + 1 = 10, whereas in binary logic, we have 1 + 1 = 1.

For each combination of the values of x and y, there is a value of z specified
by the definition of the logical operation. These definitions may be listed in

31

two-dimensional maps as shown in figures 3.1-3.3 or in truth tables, as shown
in Table 3.1. A truth table is a table, of all possible combinations, of the
possible values, of the input variables, showing the logical result of a given
operation on the input variables. Truth tables corresponding to the maps in
Figure 3.1-(3.3) would be the following tables

Table 3.1: Truth tables for logical AND, OR and NOT operations.

AND OR NOT
x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

x y x+ y
0 0 0
0 1 1
1 0 1
1 1 1

x x̄
0 1
1 0

3.1.2 Logic gates

Electronic digital circuits are also known as logic circuits, because with the
proper input they establish logic manipulation paths. Any desired informa-
tion for computing or control can be operated upon by passing binary signals
through various combinations of logic circuits. Blocks of hardware, contain-
ing electronic circuits, based on semi-conductor technology, that perform the
logical operations of AND, OR and NOT have been invented and are widely
in use in electronic digital design. The main concern of this thesis, however,
is not electronics, and we will leave this topic unexplored. We will rather
try to copy the properties of the logic operations. The logic circuits, called
gates, are represented by the symbols shown in Figure 3.4, and we will adopt
these symbols for later use.

z = xy
y

x

(a) AND-gate

z = x+y

x

y

(b) OR-gate

x x’

(c) NOT-gate

Figure 3.4: Basic logic gates.

One may construct multiple-input logic gates from two or more basic gates

32

as shown in Figure 3.5. The logic gate in Figure 3.5 will perform the AND

z=xypq

x

y

p

q

xy

pq

Figure 3.5: Multiple-input AND-gate construction.

operation on four inputs, i.e. the output, z, will be equal to the smallest of
the four inputs.
For simplicity such blocks of logic gates are denoted with symbols similar to
those in Figure 3.6. The mathematical system of binary logic is better known

q

z=xypq

x
y
p

(a) 4-input AND-
gate

z=x+y+p+qy
p
q

x

(b) 4-input OR-
gate

Figure 3.6: Multiple-input logic gates.

as Boolean algebra, or switching algebra. This algebra is conveniently used
to describe the operation of complex networks of digital circuits. Boolean
algebra may be used to transform circuit diagrams into algebraic expressions
and vice versa.

3.2 Boolean algebra

3.2.1 Axiomatic definition of Boolean algebra

In 1854 George Boole introduced a systematic treatment of logic (Ref. [3])
and developed for this purpose an algebraic system now called Boolean alge-
bra. In 1938 C. E. Shannon introduced the two-valued Boolean algebra called
switching algebra (Ref. [3]), in which he demonstrated that the properties of

33

bistable electrical switching circuits can be represented by this algebra. The
formal definition of Boolean algebra employs the Huntington postulates, for-
mulated by E. V. Huntington in 1904.

Boolean algebra is an algebraic structure defined on a set of elements B,
together with two binary operators, + and ·, provided the Huntington-
postulates are satisfied:

1. (a) Closure with respect to the operator +.

(b) Closure with respect to the operator ·.

2. (a) An identity element with respect to +, designated by 0: x + 0 =
0 + x = x.

(b) An identity element with respect to ·, designated by
�
: x · � =� · x = x.

3. (a) Commutative with respect to + : x+ y = y + x.

(b) Commutative with respect to · : x · y = y · x.

4. (a) · is distributive over + : x · (y + z) = (x · y) + (x · z).
(b) + is distributive over · : x + (y · z) = (x+ y) · (x + z).

5. For every element x ∈ B, there exists an element x̄ ∈ B (called the
complement of x) such that (a) x + x̄ =

�
and (b) x · x̄ = 0.

6. There exists at least two elements x,y ∈ B such that x 6= y.

Comparing this algebra with ordinary algebra, we note the following differ-
ences:

1. The Huntington postulates do not include the associative law. How-
ever, this law holds for Boolean algebra and can be derived (for both
operators) from the other postulates.

2. The distributive law of + over ·, i.e. x + (y · z) = (x + y) · (x + z), is
valid for Boolean algebra, but not for ordinary algebra.

3. Boolean algebra does not have additive or multiplicative inverses; there-
fore, there are no subtraction or division operations.

4. Postulate 5 defines an operator called complement that is not available
in ordinary algebra.

34

It can be seen from postulate 5 that a Boolean algebra must consist of an
even number of elements.

Proof. First, assume that an element x is the complement of itself, i.e. x̄ =
x. Theorem 1 states that we have x + x = x · x = x for any element x.
From postulate 5 we then have x + x̄ = x + x = x = 1 and we also have
x · x̄ = x · x = x = 0. So x is both 1 and 0, which is impossible.
An element cannot be the complement of itself.

Second, assume that two elements in B, x̄ and x′ have the same complement,
x, i.e.

x + x̄ = 1 ∧ x · x̄ = 0

x+ x′ = 1 ∧ x · x′ = 0

We then have the following

x̄ = x̄+ x̄

=
�

︸︷︷︸

x+x′

·x̄+ x̄

= xx̄
︸︷︷︸

0

+x′x̄ + x̄

= x̄+ x̄x′ + xx′

= x̄+ (x̄ + x)
︸ ︷︷ ︸

1

x′

= x̄+ x′

This yields the same result for x̄→ x′ so we get

x̄ = x̄ + x′ = x′

If no element can be the complement of itself, and no element can be the
complement of more than one element, the set B must consist of an even
number elements.

35

3.2.2 Basic theorems and properties of Boolean alge-
bra

The following theorems may be proven generally or by calculating every pos-
sibility, but neither will be done here (Ref. [3]).

Table 3.2: Postulates and Theorems of Boolean Algebra (note that x′ = x̄).
Postulate 2 (a) x + 0 = x (b) x · 1 = x
Postulate 5 (a) x + x̄ = 1 (b) x · x̄ = 0
Theorem 1 (a) x + x = x (b) x · x = x
Theorem 2 (a) x + 1 = 1 (b) x · 0 = 0
Theorem 3, involution x′′ = x
Postulate 3, commutative (a) x + y = y + x (b) xy = yx
Theorem 4, associative (a) x + (y + z) = (x + y) + z (b) x(yz) = (xy)z
Postulate 4, distributive (a) x(y + z) = xy + xz (b) x + yz = (x + y)(x + z)
Theorem 5, DeMorgan (a) (x + y)′ = x̄ȳ (b) (xy)′ = x̄ + ȳ
Theorem 6, absorption (a) x + xy = x (b) x(x + y) = x

The operator precedence for evaluating Boolean expressions is (1) parenthe-
ses, (2) NOT, (3) AND, and (4) OR. This will later be adopted when we
extend the algebra to the trinary case.
Any Boolean function may be represented in a truth table, and the truth
table is unique. However, there may be numerous different algebraic expres-
sions leading to the same truth table. As an example we may consider the
binary algebra expressions

F1 = x̄ȳz + x̄yz + xȳ , (3.1)

F2 = xȳ + x̄z . (3.2)

These expressions may at first sight seem different, but if we take a look at
their truth tables (Table 3.3), we see that they are in fact equal.

Table 3.3: Truth table for the binary algebra-expressions F1 = x̄ȳz + x̄yz + xȳ and
F2 = xȳ + x̄z.

x y z F1 F2

0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 0 0
1 1 1 0 0

36

Because of the uniqueness of truth tables we deduce that the two algebraic
expressions must be equal. This can be seen through some algebraic manip-
ulations:

Table 3.4: Postulate/theorem applied to F1 to obtain F2.

Algebraic expression Postulate or theorem applied
F1 = x̄ȳz + x̄yz + xȳ
x̄zȳ + x̄zy + xȳ Postulate 3(b)
x̄z(ȳ + y) + xȳ Postulate 4(a)
x̄z · 1 + xȳ Postulate 5(a)
x̄z + xȳ Postulate 2(b)
xȳ + x̄z = F2 Postulate 3(a)

In similar ways we may alter algebraic expressions to obtain different expres-
sions with equal truth tables.

A binary variable may appear either in it’s normal form (x) or in it’s com-
plement form (x̄). Two binary variables combined with an AND operation
may therefore appear in four different ways, (xy),(x̄y),(xȳ) or (x̄ȳ), which
each represents one distinct area of a Venn diagram (Ref. [3]).

X

X Y

��

��
X Y

��

��

XY ��

��

���������������
���������������
������������

	�		�		�		�		�	
	�		�		�		�		�	
	�		�		�		�	

XY

�
�

�
�

�
�

�
�

�
�
�������������������������
Y

����������������������������

Figure 3.7: Example of a two-variable Venn diagram.

Each of the terms, (xy), (x̄y), (xȳ) and (x̄ȳ), are referred to as a minterm,
or a standard product. n variables may in a similar way be combined to form
2n minterms.

Any Boolean function may be represented as a sum of minterms
(sum meaning OR) (Ref. [3]).

2n minterms may become a huge number of minterms, but one of the Hunt-
ington postulates saves us, namely postulate 5, which states x+ x̄ = 1. This
means that minterms that differ in one variable only may be simplified, i.e.

37

two minterms may be reduced to one minterm, yx + yx̄ = y(x + x̄) = y.
If this process is repeated, a complex algebraic form of minterms may be
reduced to a quite simple one. This is the goal for the next section.

3.2.3 Simplification of Boolean functions

An important feature of Boolean algebra and it’s relation to binary logic,
is how an electronic circuit easily may be realized from an algebraic expres-
sion. Although the truth tables are unique, their algebraic equivalences may
appear in many different forms, as shown in the previous section. To make
efficient and economic electronic circuits it is important to minimize the al-
gebraic expressions related to a given truth table, since the complexity of the
algebraic expression is reflected in the complexity of the electronic circuit.
The map method provides a simple straightforward procedure for minimizing
Boolean functions. The method was first proposed by Veitch and later modi-
fied by Karnaugh, and it is known as the “Veitch diagram” or the “Karnaugh
map” (Ref. [3]).
The goal of the Karnaugh map is to express an algebraic expression as sim-
ply as possible in minterms. The method relies totally on postulate 5 and a
quick description will be given below.

1. Express the algebraic form as a map. If there are more than two vari-
ables, groups of variables (ANDed together) may be regarded as single
variables. Make sure that only one of the input variables of two neigh-
bouring cells varies with 1, i.e. 01 and 11 may be neighbours, but 01
and 10 may not.

2. Encircle neigbouring 1’s in the map. Note that only rectangular blocks
of 1’s may be encircled.

3. Each rectangular grouping of 1’s now represents a minterm in the final,
minimized algebraic expression. The rectangular shapes will contain
minterms that only differ in one variable, and these may be simplified
until they just contain variables that don’t change.

Consider the following example:

Example of minimization

Let us consider the previous example of algebraic expressions. Let us mini-
mize the expression F1 = x̄ȳz + x̄yz + xȳ.

38

1. First we express the algebraic expression in a map:

10
0
1

00 01

X

YZ

0 0
00

1 1
11

11

Figure 3.8: Mapping of the truth-table in Table 3.3.

Notice two things; first, there are numerous alternative ways to write
down the map of F1 by for instance changing the order of the variables,
second that for two neigbouring cells, the expression yz never differs in
more than one variable. This leads to the fact that the first and the
last columns of the map are neighbours, as well.

2. We then encircle neigbouring 1’s.

11
0
1

00 01

X

YZ

0 0
00

1 1
11

10

Figure 3.9: Encircling of neighbouring 1’s.

Notice that it is not necessary to encircle the minterms 001 and 101
since both are included in other groupings of minterms.

3. We write down the minimized expression2:

x̄ȳz + x̄yz + xȳz̄ + xȳz = x̄z + xȳ = xȳ + x̄z,

which is exactly F2. I.e. F2 is the minimized expression for the truth-
table given in Table 3.3.

The value of the minimization procedure is easily seen if comparing the elec-
tronic circuits resulting directly from the algebraic expressions (Figure 3.10
and Figure 3.11).

2In this expression x̄ means x = 0 and x means x = 1, so that the expression x̄ȳz
means 0x0y1z, i.e. the cell where x=0, y=0 and z=1.

39

1

x

z

y

F =xyz+xyz+xy

Figure 3.10: Electronic circuit resulting directly from the algebraic expression F1.

z

x

y

F =xy+xz2

Figure 3.11: Electronic circuit resulting directly from the algebraic expression F2.

40

3.3 Trinary Logic and Algebra

3.3.1 A trinary-valued switching algebra

The fundamental principle underlying multiple-valued logic systems is that
they have n input variables and t output variables such that there are at
most m values for each of the physical variables, where the physical values
are v1, v2, ..., vm (Ref. [5]). Furthermore, if v1 < v2 < ... < vm, the integer 0
can be assigned to v1, 1 to v2, ..., m − 1 = p to vm. Then each input and
output variable may assume at any instant one of the set of m logic values
from L, where L = {0, 1, 2, ..., p} and p = m− 1. For a trinary logic system
this leads to L = {0, 1, 2} and p = 2.

As shown, the Boolean algebra cannot be used as an adequate model for the
trinary-valued logic system, as it requires an even number of elements in L.
The algebra used in this section is an implementable three-valued switching
algebra.

We can now define two operations, (+) and (·), by

Definition 1 (Max- and min-operations).

x + y = max(x, y)

x · y = xy = min(x, y)

where x, y ∈ L = {0, 1, 2}.
From this definition it can easily be proven, either generally or by calculat-
ing all possibilities (see appendix A), that for any x, y, z ∈ L the following
properties are true:3

Idempotent : x + x = x, xx = x;
Commutative : x + y = y + x, xy = yx;
Associative : (x + y) + z = x+ (y + z), (xy)z = x(yz);
Absorbtion : x + xy = x, x(x+ y) = x;
Distributive : x + yz = (x+ y)(x+ z), x(y + z) = xy + xz;
Nullelement : x + 0 = x, x0 = 0;
Universalelement : x + 2 = 2, x2 = x.

As we can see, the only difference from the properties of a Boolean algebra
is that of the unique complement. There are numerous possible unary4 op-
erations that can be defined, however only a few will be introduced here.

3We will always assume that (·) has precedence over (+)
4A unary operator is operating on one variable at a time. Accordingly, a binary operator

has two inputs.

41

The unary operator (a, b) on the variable X, called a literal and denoted by
X(a, b), is given by

Definition 2 (Literal).

X(a, b) =

{
0 for X /∈ {a, b} ,
2 for X ∈ {a, b} .

The unary operator + on the variable X, called a cycle and denoted by X+,
is given by

Definition 3 (Cycle).

X+ = X u 1 mod3 ,

where u denotes arithmetic addition.

The unary operator¯or ′ on the variable X, called complement and denoted
by X̂ or X ′, is given by

Definition 4 (Complement).

X X̂
0 2
1 1
2 0

In addition to these binary and unary operations, we will in the Chapter 4
mention some other operations that may prove useful.

Before we move on, let us consider a simple example on the use of literals.
Table 3.5 is formed in a manner completely analogous to the two-valued logic
case. The left side of the table lists all possible values of α ∈ L2, i.e.. all
possible combinations of two trinary logic variables. The right column lists
the output values as a function of the two inputs.

Consider the (X1, X2) = (1, 0) row of Table 3.5 and the product term 1 ·
X1(1, 1) ·X2(0, 0). From the definitions of the literal and the min operators,
1 ·X1(1, 1) ·X2(0, 0) will take on the value 1 when X1 = 1 and simultaneously
X2 = 0. For all other values of X1 and X2 the term will take the value 0, since
either X1(1, 1) or X2(0, 0) will have the logic value 0. From this discussion
it can be concluded that the (X1, X2) = (1, 0) row is sufficiently represented
by the term

1 ·X1(1, 1) ·X2(0, 0) .

42

Table 3.5: Table of combinations for a two-variable three-valued switching function.

X1 X2 F (X1, X2)
0 0 2
0 1 2
0 2 0
1 0 1
1 1 2
1 2 1
2 0 0
2 1 2
2 2 1

In general, any output function F (X1, X2, ..., Xn) may be represented by the
max (i.e. the logical sum) of product terms of the form

F (αt) ·X1(i, i) ·X2(j, j) · ... ·Xn(k, k) , (3.3)

where i, j, ..., k are the values assigned to the variables of the function in the
tth row of the table of combinations; i.e., αt = (i, j, ..., k). Only those terms
not identically equal to zero need be included in the sum representing F . To
illustrate the above, consider the function in Table 3.5. This function may
be represented by the expression:

F (X1, X2) = 2X1(0, 0)X2(0, 0) + 2X1(0, 0)X2(0, 1) + 1X1(1, 1)X2(0, 0) +

2X1(1, 1)X2(1, 1) + 1X1(1, 1)X2(2, 2) + 2X1(2, 2)X2(1, 1) +

1X1(2, 2)X2(2, 2)

= 1
(
X1(1, 1)X2(0, 0) +X1(1, 1)X2(2, 2) +X1(2, 2)X2(2, 2)

)
+

2
(
X1(0, 0)X2(0, 0) +X1(0, 0)X2(1, 1) +X1(1, 1)X2(1, 1) +

X1(2, 2)X2(1, 1)
)
.

(3.4)

For the purposes of specifying an algorithmic minimization process it has
been defined implicants, prime implicants and subsuming. One product term

r1Φ1 = r1X1(a1, b1)X2(a2, b2)...Xn(an, bn) ,

subsumes a second product term

r2Φ2 = r2X1(c1, d1)X2(c2, d2)...Xn(cn, dn) ,

43

if and only if both
(1) r1 ≤ r2 and (2) ci ≤ ai ≤ bi ≤ di for all Xi, i = 1, 2, ..., n.

For simplicity, subsumes were defined with respect to two product terms in
which all variables appear. Any product term not including some variable
Xi may be replaced by another product term with Xi(0, 2) included. It will
be shown that in the final step of the minimization process, all literals of
the form Xi(0, 2) will be deleted. The definition of subsumes implies that
r1Φ1(α) ≤ r2Φ2(α) for all α ∈ Ln.
The product term rΦ is said to be an implicant of F if and only if
(1) rΦ(α) > 0 for some α ∈ Ln and (2) rΦ(α) ≤ F (α) for all α ∈ Ln.

An implicant is said to be prime if it subsumes no other implicant of F .

3.3.2 Map minimization

The map representation of a three-valued switching function is essentially
just a rearrangement of it’s table of combinations. An example of a map for
a three-variable three-valued switching function is given in Figure 3.12
Note that if the function is not completely specified for a particular n-
tuple input, the corresponding cell in the map contains a (-) and is called
a don’t care-condition. Let us take a look at the product term rΦr =
r · X1(a1, b1)X2(a2, b2)...Xn(an, bn), which takes the value r for all input n-
tuples, α(i, j, ..., k), such that a1 ≤ i ≤ b1, a2 ≤ j ≤ b2, ..., an ≤ k ≤ bn.
From the arrangement of the multiple-valued map it can be seen that these
n-tuples for which r · Φr = r constitute a rectangular grouping of cells in
n-dimensional space. This rectangular grouping is of size (b1−a1 u1)× (b2 −
a2 u 1) × ...× (bn − an u 1) cells5.

The following algorithm for determination of just the prime implicants of a
function directly from its map was proposed by C. Michael Allen and Donald

D. Givone (Ref. [5]):

1. Set the logic value inside each cell containing a (-) to the logic value p
(i.e. 2 in a three-valued algebra). Let k be an index starting with the
value p.

2. Find all n-dimensional rectangular groupings of cells which have the
logic value k, or higher, and which are not totally contained in any
larger rectangular grouping of cells which have the logic value k, or

5The operation - denotes arithmetic subtraction, the operation u denotes arithmetic
addition and the operation × denotes arithmetic multiplication

44

X2X3
00 01 02

0 f(0,0,0) f(0,0,1) f(0,0,2)
X1 1 f(1,0,0) f(1,0,1) f(1,0,2)

2 f(2,0,0) f(2,0,1) f(2,0,2)

X2X3
10 11 12

0 f(0,1,0) f(0,1,1) f(0,1,2)
X1 1 f(1,1,0) f(1,1,1) f(1,1,2)

2 f(2,1,0) f(2,1,1) f(2,1,2)

X2X3
20 21 22

0 f(0,2,0) f(0,2,1) f(0,2,2)
X1 1 f(1,2,0) f(1,2,1) f(1,2,2)

2 f(2,2,0) f(2,2,1) f(2,2,2)

Figure 3.12: Example of a map for three-variabled three-valued switching function.

higher. The product terms which correspond to these groupings are
prime implicants if and only if they subsume no term previously found
to be a prime implicant.

3. Set k to k-1.

4. If k > 0, repeat from step 2. Otherwise, just prime implicants have
been found, so the process terminates.

(b)

2

2 2 0

0

1 1

1 2

2

2 2 0

0

1 1

1

2

2

10

0

1

X

X 2

1

2

2

10

0

1

X

X 2

1

(a)

2

Figure 3.13: Prime implicants for the function of Table 3.5.

A : 2 ·X1(0, 0) ·X2(0, 1) C : 1 ·X1(0, 1) ·X2(0, 1),
B : 2 ·X1(0, 2) ·X2(1, 1) D : 1 ·X1(1, 1) ·X2(0, 2),

E : 1 ·X1(1, 2) ·X2(1, 2).

45

3.3.3 Example: Three-valued carry-free half-adder

A carry-free half-adder is a gate that carries out addition modulo B, where B
is the base we are working in (2 in binary algebra, 3 in trinary algebra, etc.).
Our base is 3, so the half-adder described here will carry out addition modulo
3. The truth table for such a gate is given in Table 3.6. The carry, that is
left out here, since the gate is carry-free, takes care of whatever exceeds 2.
For example, 2 + 2 mod3 = 1, so the output of this gate will in this case be
1, the carry would also have been one since 2 + 2 = 11 in base 3. In other
words, the carry takes care of “the next digit”.

Table 3.6: Truth table for three-valued carry-free half-adder.

X1 X2 F (X1, X2) =
X1 uX2 mod3

0 0 0
0 1 1
0 2 2
1 0 1
1 1 2
1 2 0
2 0 2
2 1 0
2 2 1

1

2

2

2

2

2

1

1

1

0

0

0

0

0

1

1

X

X 2

Figure 3.14: Map of half-adder function in Table 3.6.

Let us now step by step follow the procedure described by Allen and Givone

and construct a half-adder. Figure 3.14 shows the map for the function of
Table 3.6. We note that there are no “don’t care-terms” in the map, so we
may start at step 2 of the algorithm. First, all rectangular groupings of cells
containing the value 2 are found. There are only three not-adjacent cells con-
taining a 2, and these will each be counted as a rectangular grouping of one

46

cell each. These are shown in Figure 3.15a along with their corresponding
product terms. Next, all rectangular groupings of cells containing a 1 or a 2
are shown if Figure 3.15b along with their corresponding product terms.

(b)

2

2

2

2

2

1

1

1

0

0

0

0

0

1

1

X

X 2

1

2

2

2

2

2

1

1

1

0

0

0

0

0

1

1

X

X 2

1

(a)

Figure 3.15: Prime implicants for the function of Table 3.6.

A : 2 ·X1(2, 2) ·X2(0, 0) D : 1 ·X1(1, 2) ·X2(0, 0),
B : 2 ·X1(1, 1) ·X2(1, 1) E : 1 ·X1(0, 1) ·X2(1, 1),
C : 2 ·X1(0, 0) ·X2(2, 2) F : 1 ·X1(0, 0) ·X2(1, 2),

G : 1 ·X1(1, 1) ·X2(0, 1),
H : 1 ·X1(2, 2) ·X2(2, 2).

Thus there are eight prime implicants of this function. It can be seen that
all the prime implicants are needed for constructing this function. We may
now write

F (X1, X2) = A+B + C +D + E + F +G+H

= 2 ·X1(2, 2) ·X2(0, 0) + 2 ·X1(1, 1) ·X2(1, 1)

+2 ·X1(0, 0) ·X2(2, 2) + 1 ·X1(1, 2) ·X2(0, 0)

+1 ·X1(0, 1) ·X2(1, 1) + 1 ·X1(0, 0) ·X2(1, 2)

+1 ·X1(1, 1) ·X2(0, 1) + 1 ·X1(2, 2) ·X2(2, 2)

= 2 ·
(
X1(2, 2) ·X2(0, 0) +X1(1, 1) ·X2(1, 1)

+X1(0, 0) ·X2(2, 2)
)

+1 ·
(
X1(1, 2) ·X2(0, 0) +X1(0, 1) ·X2(1, 1)

+X1(0, 0) ·X2(1, 2) +X1(1, 1) ·X2(0, 1)

+X1(2, 2) ·X2(2, 2)
)
. (3.5)

And from this expression it is easy to construct the gate from the elementary
gates literal, max and min. As seen in Figure 3.17, the construction becomes
complicated, and we realize that techniques of simplification have to be found.

47

For binary logic the simplicity of the half-adder is stunning compared to the
gate just described. The binary half-adder is shown in Figure 3.16.

NOT

p

q

sum

carry

OR

AND

AND

Figure 3.16: Scheme for constructing a base2 half-adder.

48

(2,2)

2
1

X
+X

 m
od3X

2
X

1
1

2

(0,0)

(0,0)

(1,1)

(1,1)

(2,2)

(2,2)

(0,1)

(0,1)

(1,2)

(1,2)

(0,0)

(0,0)

(2,2)

(1,1)

(1,1)

Figure 3.17: Scheme for constructing a base3 carry-free half-adder based on literal-,
max- and min-gates.

49

Chapter 4

Quantum Optical Gates

If we take a look at a classical computer, it consists of small units, or gates.
The most basic gates are AND, OR, XOR and NOT. In fact one may choose
between OR and XOR, i.e. one may construct either one of the two from
AND and the other of the two, together with NOT. The basic gates provide
the operations given in the maps of Figure 4.1.

AND 0 1
0 0 0
1 0 1

(a) AND

OR 0 1
0 0 1
1 1 0

(b) OR

XOR 0 1
0 0 1
1 1 0

(c) XOR

p NOT(p)
0 1
1 0

(d) NOT

Figure 4.1: Basic Boolean algebra operations.

It may easily be checked that

x XOR y = x̄y + xȳ. (4.1)

If we take a look at these operations, we realize that they may be regarded in
different ways. For instance, the AND-operation may either be regarded as a
multiplication of the two inputs (MULT.), or it may be viewed as the opera-
tion giving the smallest of the two inputs (MIN). OR may be viewed as a gate
putting out the largest of the two inputs (MAX), and XOR may be viewed
as a sum modulo 2 (MODSUM). As was pointed out in Section 2.2.5, there
are a variety of different product-type (AND) and sum-type (OR) operations
when extending the algebra to higher orders. In this thesis, we provide the
ideas necessary to construct the minimum-gate, the multiplication-gate, the
maximum-gate and the MODSUM-gate for a three-valued algebra.

50

k\j 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

(a) MINIMUM

k\j 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

(b) MULTIPLI-

CATION(mod3)

k\j 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

(c) MAXIMUM

k\j 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

(d) MODSUM

Figure 4.2: Some basic trinary-algebra operations.

4.1 Formalism

In this chapter, a series of schematic drawings are presented in an attempt to
achieve the operations described in the previous section. In this section we
will present the formalism and terminology used in the schematic drawings
of Chapter 4. First of all, all incoming signals start at the left. All outgoing
signals leave at the right of the drawing. Lines and arrows are representing
the direction of movement of a coherent state (laser-beam), e.g. in an optical
fiber.

Figure 4.3: Representation of the direction of movement for a coherent state.

All input- and output-signals (states) are denoted by Dirac-formalism, ket-
vectors, at their respective input-/output-ports.
The process

|output〉 = |k′α〉|j ′α〉 = U |kα〉|jα〉 , (4.2)

will be denoted by the drawing in Figure 4.4, where the box with an U is an
undefined circuit.

U|kα>

|jα>

α|k’ >

|j’α>

Figure 4.4: Representation of the process |kα〉|jα〉 → U |kα〉|jα〉 = |k′α〉|j′α〉.

At several occasions, there will be output signals of no interest. Suppose

51

there is a gate U, with two inputs, 1 and 2, and with three output-ports, a,b
and c. This gate will perform the operation

|kα〉1|jα〉2 → U |kα〉1|jα〉2 = |iα〉a|lα〉b|mα〉c , (4.3)

where i,j,k,l and m are constants.
If the output at port c is of no interest, we will suppress the c-term and write

|iα〉a|lα〉b|mα〉c = |iα〉a|lα〉b . (4.4)

Where a state is denoted by for instance |kα〉, k is a variable that may take
any of the values allowed (0,1 or 2 in a trinary base). Some of the gates may
accept inputs other than those allowed in trinary algebra.
To show what the intensity of an “internal” state, a state within the circuit,
the sloppy notation k, meaning |kα〉 may be used.

The circuits described in this chapter are based on beam-splitters and non-
linear crystals. The beam-splitters are balanced, i.e. T = 1/2 (see section
(1.2.4). The beam-splitters will be denoted by the symbol in Figure 4.5.

Figure 4.5: Representation of the 50/50 beam-splitter.

When we are interested in one of the two outputs only, we just neglect the
other output as shown in Figure 4.6.
Non-linear crystals needed throughout this chapter may or may not exist,
but there is nothing principally wrong in assuming their existence. In the
case they do not exist, it might be possible to design gates that have the
desired effects on coherent states. The theory of non-linear crystals will be
left out of this text, since this thesis is meant as nothing more than a sketch
of how optical computing may be carried out. Wherever non-linear crystals
are used, the properties needed are specified. The non-linear crystals will be
represented by the symbols in Figure 4.7. Some non-linear crystals need to
be pumped, or “charged”, by a laser in order to work. In some of the circuits

52

Figure 4.6: Representation of the 50/50 beam-splitter with one interesting output only.

pump

α U|k >α
U

|k >

(a) Pumped crystal

αα U|k >|k > U
(b) No pump

Figure 4.7: Representation of a non-linear crystal with the property U.

proposed, the pump, and thereby the properties of the crystal, is depending
on the incoming coherent state. Effects we assume non-linear crystals may
produce, are such as intensity dependent intensity-reduction and phase-shift
and intensity independent intensity-reduction and phase-shift1.

The symbol in Figure 4.8 will represent a 100% reflective mirror. We will
assume that the mirrors do not alter any other property of the coherent states
than their momentum.

���
���
�
��
�

Figure 4.8: Representation of a 100% reflective mirror.

1A coherent state, |kα〉, with intensity k2|α|2 may for instance be altered to the state

| k√
2
α〉 with the intensity k2

2 |α|2. Since α in general is a complex number, we may want to

alter the phase of α, such that α → α · eiφ.

53

4.2 Specialized Gates

As we have seen, without minimization procedures, and maybe even with,
circuits may become extremely complex, even for quite small operations. It
would therefore be convenient to create gates that can perform more than
the most elementary operations. This section will concentrate on such gates.

4.2.1 The linear light amplifier

In this section we shall concentrate on the simplest kind of amplifier, con-
sisting of a partly inverted population of two-level atoms that effectively all
see the same optical field (Ref. [1]). The population inversion is assumed
to be maintained by some optical pumping scheme, so that it behaves as a
reservoir.

Master equation for the amplifier field

We consider a system of N identical two-level atoms, of which N2 are excited
and N1 are unexcited, interacting with a single mode quantum field. In
order to make the problem as simple as possible, we shall suppose that we
are dealing with an eigenmode of a free field, and that all atoms see essentially
the same field. We assume that the field frequency is resonant with the atomic
frequency, and we ignore the direct dipole interaction between atoms. We
shall further assume that N1 and N2 are maintained approximately constant
in time by some pump and loss mechanism. For the reduced density matrix,
ρ̂, it can be shown that the master equation in the interaction picture is

∂ρ̂

∂t
= −1

2
A(ââ†ρ̂− â†ρ̂â+ h.c.) − 1

2
C(â†âρ̂− âρ̂â† + h.c.). (4.5)

A represents the gain rate that is associated with the excited atom popu-
lation, and C represents the loss rate that is associated with the unexcited
atoms. For simplicity we shall take the gain and loss rates to be proportional
to the populations N2 and N1, so that

A = 2λN2 ,
C = 2λN1 ,

}

(4.6)

where λ is a rate that is of the order of the atomic line-width.

It can be shown (see Appendix C.1) that by making a diagonal coherent-state
representation of the density operator ρ̂(t), namely

ρ̂(t) =

∫

φ(ν, t)|ν〉〈ν|d2ν, (4.7)

54

substituting this representation into the master equation and replacing â, â†

by differential operators, one can convert the operator equation for ρ̂ into
a c-number Fokker-Planck equation for φ(ν, t). We may then look at the
initial phase-space density φ(ν, 0) as representing the input field to the light
amplifier whose output, after a time t, is φ(ν, t). The equation now becomes

1

λ

∂φ(ν, t)

∂t
= −(N2 −N1)

[
∂

∂ν
(νφ(ν, t)) +

∂

∂ν∗
(ν∗φ(ν, t))

]

+ 2N2
∂2φ(ν, t)

∂ν∂ν∗
.

(4.8)
We shall take this as the equation of motion, describing the linear light
amplifier with input φ(ν, 0) and output φ(ν, t).

The equation is analytically solvable, but we will merely present the answer
in this text. It can be shown (see Appendix C.1) that the output field φ(ν, t)
is expressible as a simple convolution of the input, φ(ν, 0), with the phase-
space density φs(ν, t) of a thermal field that is associated with spontaneous
emission. Thus

φ(ν, t) =

∫

φ0(ν
′)φs(ν −G(t)ν ′, t)d2ν ′, (4.9)

where

φs(ν, t) ≡
1

πm(t)
e−|ν|2/m(t) , (4.10)

m(t) ≡
(

N2

N2 −N1

)

[|G(t)|2 − 1] , (4.11)

G(t) ≡ e(N2−N1)λte−iωt. (4.12)

It is evident that m(t) represents the average photon number of the thermal
or spontaneous emission field. It will be shown that G(t) represents the
amplifier gain after a time t.

If we make the change of variable ν −G(t)ν ′ = ν ′′ in Eq. (4.9) and write

φ(ν, t) =

∫

φ0

(
ν − ν ′′

G

)

φs(ν
′′)d2ν ′′, (4.13)

then it is apparent from the convolution structure that the output of the light
amplifier can be regarded as resulting from the interference of the amplified
input field with the spontaneous emission field. For example if we calculate

55

the average output field amplitude 〈â(t)〉 at time t from Eq. (4.9), we have

〈â(t)〉 = 〈ν〉t =

∫

νφ(ν, t)d2ν

=

∫ ∫

(ν −G(t)ν ′)φs(ν −G(t)ν ′, t)φ0(ν
′)d2ν ′d2ν

+ G(t)

∫ ∫

ν ′φ0(ν
′)φs(ν −G(t)ν ′, t)d2ν ′d2ν.

The first integral on the right yields zero because the average value of the
thermal field is zero (Eq. (C.8)), i.e.

∫

νφs(ν)d
2ν = 0,

whereas the second term gives

G(t)

∫

ν ′φ0(ν
′)d2ν ′ = G(t)〈ν ′〉0,

because the integral over ν yields unity. Finally

〈â(t)〉 = 〈ν〉t = G(t)〈â(0)〉. (4.14)

Hence the average output field equals the average input field multiplied by
G(t), which is the amplifier gain, because the spontaneous emission field is
zero.

The spontaneous emission field does however contribute to the average pho-
ton number 〈n̂(t)〉 at the output. Thus we have with Eq. (4.9) with the help
of the optical equivalence theorem (Ref. [1]),

〈n̂(t)〉 = 〈â†(t)â(t)〉 = 〈|ν|2〉t
=

∫

|ν|2φ(ν, t)d2ν

=

∫ ∫

|ν|2φs(ν, t)φ0(ν
′)d2ν ′d2ν

+ |G(t)|2
∫ ∫

|ν ′|2φ0(ν
′)φs(ν, t)d

2ν ′d2ν

+ G(t)

∫ ∫

ν∗ν ′φ0(ν
′)φs(ν, t)d

2ν ′d2ν + c.c.

= m(t) + |G(t)|2〈n̂(0)〉, (4.15)

because the two last integrals on the right vanish. Thus the amplification
contributes |G(t)|2〈n̂(0)〉 photons and the spontaneous emission contributes
m(t) photons to the output field on the average.

56

Input-output correlations

In order to show that, except for the spontaneous emission, the amplifier
output field is coherent with the input field, we now calculate the input-
output cross-correlation function 〈â†(0)â(t)〉. For this purpose we need to
construct the Green function G(ν, t|ν0, 0), or the conditional phase space
density, from Eq. (4.9) by putting φ0(ν

′) = δ2(ν ′ − ν0). We then obtain the
equation

G(ν, t|ν0, 0) = φs(ν −G(t)ν0, t) =
1

πm(t)
e−|ν−G(t)ν0 |2/m2(t), (4.16)

and it follows that

〈â†(0)â(t)〉 =

∫ ∫

ν∗0νG(ν, t|ν0, 0)φ0(ν0)d
2ν0d

2ν

=

∫ ∫

ν∗0(ν
′ +G(t)ν0)

1

πm(t)
e−|ν−G(t)ν0 |2/m2(t)d2ν0d

2ν ′,

where we have used Eq. (4.16) and have put ν = ν ′ +G(t)ν0. Hence

〈â†(0)â(t)〉 = G(t)〈n̂(0)〉,
or

〈ν∗(0)ν(t)〉 = G(t)〈ν∗(0)ν(0)〉,

(4.17)

because the integral involving the term ν∗0ν
′ vanishes. The input-output

cross-correlation therefore coincides with the input autocorrelation except
for the amplifier gain factor G(t). Hence the output state is coherent for a
coherent input state.

Conclusion

The linear amplifier will provide important features in an optical quantum
computer. As the quantum states evolve in quantum gates one may experi-
ence loss of intensity. Due to the intensity sensitivity of some of the gates,
problems may occur. With the linear amplifier however, the original intensity
of the laser beam may be restored. An important matter is the frequency
sensitivity of the amplifier. One of the great assets of a quantum computer
is the ability of parallel processing, and one way to conduct this is to mix
states of different colour, i.e. different frequency. To make use of this asset,
we will be needing a linear amplifier that can deal with all the necessary
frequencies. We will during this paper assume that this is only a matter of
technology, and we will assume that such an amplifier may be constructed.

We will represent a linear amplifier with gain factor G, by the symbol in
Figure 4.9.

57

Amp=G

Figure 4.9: Symbol representing a linear amplifier with gain factor G.

4.2.2 Addition and subtraction

Arithmetic addition of two numbers is easily achieved in the proposed para-
digm. As previously mentioned, the coherent states make an excellent basis
for analog computing (see Section(2.2.3)). Arithmetic addition of both anal-
ogous signals and qutrits may prove useful, and may be achieved by the same
gate.

^

|j >α

2

2

2

1

T

k−j

k+j

|k >α

α

α

| >

| >^

^

b

â

Figure 4.10: Schematic drawing of an arithmetic adder/subtractor.

The addition operation, as well as subtraction, may be achieved by making
use of a 50/50 beam-splitter (and an amplifier). As described in Section
(1.2.4), a beam-splitter has two inputs and two outputs. The outputs may
be understood as weighted addition and subtraction of the two inputs respec-
tively. When employing a 50/50 beam-splitter, T = 1/2, we achieve balanced
addition/subtraction such that

|input〉 = |kα〉1|jα〉2 → |output〉 = |k + j√
2
α〉a|

k − j√
2
α〉b . (4.18)

We realize that k and j may be continuous, complex variables, thus being a

58

base for analogous, complex computing, or they may be discrete variables,
thus being a base for discrete computation. The output of the beam-splitter
is of course not restricted to any base of computation, other than that of the
complex number system. We therefore have to employ other gates as well
to restrict the output to the base we are working in. The modulo 3-gate,
described in Section (4.2.4), and the linear amplifier, described in Section
(4.2.1), are useful gates in this case. If working with analogous computing,
there is no obvious need to modify the output.

Addition modulo 3 will, in a trinary algebra, result in the map of Figure
4.11.

k\j 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Figure 4.11: Map of addition modulo 3.

If analyzing the binary logic XOR-gate,
x\y 0 1
0 0 1
1 1 0

, we notice that this

gate actually performs addition modulo 2. Thus addition modulo 3 may
be viewed as a trinary algebra equivalent to the XOR-gate. An important
feature, however, of the basic gates proposed in Section 4.3 is that the binary
operators are included in the trinary operators. This is as we easily realize
not the case with XOR and addition modulo 3, since 1 added to 1 modulo 3
equals 2 and 1 XOR 1 equals 0.

The addition-gate and the subtraction-gate will be denoted by the symbols
in Figure 4.12

k ����
2

k+j
j

��������

(a) Adder

k

2
k−j

j ��������
(b) Subtractor

Figure 4.12: Symbols for arithmetic addition and subtraction.

59

4.2.3 Square-gate

As has been pointed out, it will prove convenient to construct specialized
gates, since these may require less resources than the equivalent circuits
designed from the basic binary operators, AND and OR. This section will
provide two unary operations that may prove useful.

Definition 5 (Larger than/less than). There exist two binary relations

referred to as larger than and less than and denoted by > and < respectively,

that apply to trinary algebra.

The expression x > y is read as x larger than y and the expression x < y is

read as x less than y.
The relations are to be considered as inverses of each other such that if x < y
holds, y > x is also true.

Definition 6 (Magnitude of trinary numbers). Based on the previous

definition of relations, we now define the order of the elements of the trinary

algebra as

0 < 1 < 2 . (4.19)

Definition 7 (Linear unary operator). Assume there exists a unary op-

erator, O with the property Oix = ox.

The operator O is called a linear unary operator if and only if

ix < iy

m (4.20)

ox < oy ,

for all possible inputs.

If this is not true, the operator O is called a non-linear unary operator.

The beam-splitter is a linear optical medium, and hence we cannot con-
struct a non-linear unary operator from beam-splitters alone. However beam-
splitters and non-linear crystals may together achieve non-linear effects.
In the construction below, we use a non-linear medium that gives a phase
shift depending on the intensity of the control- or pump-trit. As a special
case we leave the trinary domain, and the control-trit may be either -1,0
or 1. Such a control trit is easily created from a normal trinary input by
subtracting 1 (see Section 4.2.2). The phase shift, caused by the non-linear
crystal, will be iπ plus an additional iπc, where c ∈ {−1, 0, 1}. As we easily
realize, control-trit c = 0 is the only case where we experience an actual

60

phase shift. If we represent the three possible inputs in a vector, we may
now easily create a gate that performs the non-linear operation

O

−1
0
1

 =

1
0
1

 . (4.21)

We realize that the operator O squares the input, which is a non-linear
operation. Obviously, the order2 of the outputs is not the same as the order
of the corresponding inputs. This non-linear unary operation may act as a
source for non-linear effects. The output may easily be manipulated to suit
different needs. As we shall see we may easily expand the circuit to square
trinary numbers.

The operator may be realized as the gate in Figure 4.13

e

��
������������������������������������

��

α>|cα>|c

α>(1−e)/2i π c| α>|

ei (1+c)π

i π

Figure 4.13: Gate that squares the inputs (-1 0 1).

The gate in Figure 4.13 produces the truth-table

c 1−exp(iπc)
2

-1 1
0 0
1 1

To square the elements of the trinary algebra, we have to manipulate quite
a bit with the previously described gate 3.

2Order as defined in definition 6, but extended to involve -1 as well, −1 < 0
3The input of a gate may be one and only one out of three different values, i0, i1 and i2,

and these are represented in a row-vector, i0 i1 i2. When operating on the input value,
the operation is described at the left of the table, and the resulting output is written down
as a row vector also, o0 o1 o2, where the indices relate.

61

First add the two outputs of the previously
described gate.

1 0 1

u -1 0 1
Then add the ordinary trit corresponding to the 0 0 2
squared input, (0 1 2). u 0 1 2
And we get the square of (0 1 2) 0 1 4

To square a trinary number (0,1 or 2) one may therefore construct the fol-
lowing circuit. Notice that the output is not a trinary number and may need
to be modified by the modulo3-gate described in Section 4.2.4.

62

 α>

|k
α>

|c

α>
|k

α>
|2

k

−1
/2

α>
|c

[(1−e)/2+c]i π c α>−1/22|

α>(1−e)/2i π c|

α>
|2

k

−1
/2

α>|
α>

3/
2

|2

i π c

��������������������������������������� � � � � � � � � � � � � � � �

!�!�!�!�!�!!�!�!�!�!�!!�!�!�!�!�!!�!�!�!�!�!
"�"�"�"�""�"�"�"�""�"�"�"�""�"�"�"�"

#�#�#�#�#�#�#�##�#�#�#�#�#�#�##�#�#�#�#�#�#�#$�$�$�$�$�$�$$�$�$�$�$�$�$$�$�$�$�$�$�$

%�%�%�%�%�%�%�%%�%�%�%�%�%�%�%%�%�%�%�%�%�%�%%�%�%�%�%�%�%�%
&�&�&�&�&�&�&&�&�&�&�&�&�&&�&�&�&�&�&�&&�&�&�&�&�&�&

'�'�'�'�'�'�''�'�'�'�'�'�''�'�'�'�'�'�''�'�'�'�'�'�'
(�(�(�(�((�(�(�(�((�(�(�(�((�(�(�(�(

)�)�)�)�)�))�)�)�)�)�))�)�)�)�)�))�)�)�)�)�)
��*�*�**�*�*�*�**�*�*�*�**�*�*�*�*

(k
=0

 1
 2

)
(c

=−
1

0
1)

eiπ
(1

+c
)

eiπ

|

 [(1−e) /2+c+k] 2 −1/2

α>

Figure 4.14: Gate that squares k=(0 1 2).

63

4.2.4 Modulo 3-gate

One of the possibilities we have when using “optical electronics”, is that we
may add any two numbers, i.e. we are not restricted to a number system,
and both the input and the output may be arbitrarily large. In classical
electronics, calculations are restricted to the binary number system. Neither
inputs nor outputs of gates may exceed 1. In the quantum optical gates
proposed in this thesis we are not principally restricted to any number system.
In an adder (Section 4.2.2) there are no problems associated with adding
numbers that are not contained in the binary, trinary or any other limited
system. The answer may be “outside” the system we are operating in as
well. However, in this thesis we have decided to explore the realms of trinary
logic and trinary algebra. Analogously to the classical binary computers
(1 u 1 = 2 mod2 = 0),4 we wish to stay within the trinary system, such that
all calculations will be modulo 3 (1u2 = 3mod3 = 0 and 2u2 = 4mod3 = 1).

In a binary computer any number X = a82
8 +a72

7 + ...+a12
1 +a02

0 may be
represented as the number a8a7...a1a0 in an 8-bit bus (a system of 8 separate
conductors each holding a voltage of 0 or 1).
We want to copy the mod2 properties of the classical computers and it would
therefore be convenient to design a gate that makes sure we stay within the
boundaries of trinary algebra. This gate will be known as the modulo 3-gate,
and the operation will be denoted by mod 3, i.e. X mod 3 means that the
modulo 3-operation is performed on the number X. Assuming we take care
and never exceed the natural number 5, it is sufficient that the modulo 3-gate
has the arithmetic properties

X mod 3 ' const ·
{

X 0 ≤ X < 3 ,

X − 3 3 ≤ X < 6 ,
(4.22)

where const is an arbitrary constant.
We must stress the fact that the modulo 3-gate is not designed to cope with
inputs larger than 5. Because of the nature of the non-linear media used, we
get into trouble if trying to operate on larger numbers. One must be sure
to apply the modulo3-gate wherever and whenever the output intensity of a
gate or circuit may exceed the equivalent intensity of the number 2.
By combining the modulo 3-gate and adder-gates, we may for instance build
half- and full adders that are similar to those used in classical binary com-
puters.

4u means arithmetic addition

64

In constructing the following modulo 3-gate we have assumed the existence
of a non-linear optical media which modifies the phase of the input signal,
depending on the intensity of a pump-laser. The wanted effect may possibly
be achieved by using a Kerr-medium. The Kerr effect is a nonlinear process
involving the third-order nonlinear polarisability of a nonlinear medium (Ref.
[2]). The field undergoes an intensity dependent phase shift.
The following construction requires a medium that gives a phase shift of π
whenever the medium is “turned off”, m,n=0. When the medium is “turned
on”, m,n=1, the phase shift is zero.
We will also need a medium that simply gives a phase shift of π and a medium
that has a constant transmittivity of less than 1.

m and n are given by

m =

{

1 for k
6
< 2 ,

0 for k
6
≥ 2 ,

(4.23)

and

n =

{

1 for k − 3 < 0 ,

0 for k − 3 ≥ 0 .
(4.24)

Furthermore are

f(k) =

{

0 for k < 3 ,
3−k
2

for k ≥ 3 ,
(4.25)

g(k) =

{ √
2 k
6

for k < 3 ,

0 for k ≥ 3 ,
(4.26)

and the output is given by

h(k) =
g(k) −

√
2

3
f(k)√

2
=

{
k
6

for k < 3
k−3
6

for k ≥ 3
(4.27)

= 1/6 · (k modulo 3) .

65

2/9

|k α>|g(k)

2

−k

2

−k

2

 k

6

+

2

α>|f(k)

|h(k)α>=
(k modulo3)| α>

2

2

k−3

2

2

 k

i πe
+

+ + + + + ++ + + + + ++ + + + + ++ + + + + ++ + + + + +
, , , , ,, , , , ,, , , , ,, , , , ,, , , , ,

- - - - - - - -- - - - - - - -- - - - - - - -- - - - - - - -
. / / / / / // / / / / // / / / / // / / / / // / / / / /

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 1
2 2 2 2 2 22 2 2 2 2 22 2 2 2 2 22 2 2 2 2 2

3 3 3 3 33 3 3 3 33 3 3 3 33 3 3 3 3
4 4 4 4 44 4 4 4 44 4 4 4 44 4 4 4 4

5 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 55 5 5 5 5 5
6 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 66 6 6 6 6

−

α>|−3

 k

−k

6

6
k

−3

ei π k−3n

k−3

2

2

Τ= 1/9

Τ= 1/9 ei π (1+m)

Τ=

α>F
ig

u
r
e

4
.1

5
:

G
a
te

th
a
t

g
iv

es
o
u
t

con
st·k

m
od

3
,
k
=

0
,1

,2
,3

,4
,5

.

66

4.2.5 Multiplication-gate

Multiplication is one of the fundamental tasks we would like a computer to
perform. The goal for a multiplication-gate is to multiply the two or more
input signals, i.e. the two input signals, k and j, initialize an output of mag-
nitude const · k · j, where the constant may be arbitrary. We may adjust the
output at a later point. The configuration described below will produce an
output kj

4
. We experience loss of intensity, but this may be fixed later with

an amplifier (see Section 4.2.1).

The following gate largely relies on 50/50 beam-splitters as described in Sec-
tion 1.2.4. Non-linear crystals are also used to achieve the necessary phase
shifts of the coherent states. Some of the crystals simply affect the coherent
state by a phase shift of π in the complex plane, while others are “pumped”
by the input signal, |jα >, and give a phase shift depending on the intensity
|jα|2. The phase shift is π when j = 0 and 2π when j 6= 0.

This is expressed mathematically by

m =

{

0 for pump = |j| = 0 ,

1 for pump = |j| > 0 .
(4.28)

The input |kα〉 is then transformed, by the crystal, to |keiπ(m+1)α〉.
The multiplication-gate makes use of serial addition, where k is the primary
input and j is the control input. If j = 2, k is added to itself to obtain 2k,
if j = 1, k remains unchanged, and if j = 0, k is subtracted from itself to
obtain 0. The result of the manipulations now becomes

|kα > |jα > |2α >→ |(j − 2)α >

|0 > for j = 0 ,

|k
4
α > for j = 1 ,

|2k
4
α > for j = 2 ,

(4.29)

when we neglect output signals of no importance to us.

67

α
2

−k

2

−k

2

2

 k k

4

 k

4

−k

8

8

 k

8

 k

 k

4

 k

4

e i (m+1)π e i (m+1)π e i (m+1)π

e i π

e i π

e i πe i π

e i π

 k

2

 k

2
for j=0

0 for j>0{
8

 k{0 for j=0

for j>0 8

 k{0 for j=0

for j>0

−k

88

 k
0 for j=0

for j>0} 8

 k

0 for j−2<0
for j−2=0{

|jα >α|(j−2)

7 7 77 7 78 88 8 9 99 9
9 9

: :: :
: :

; ; ;; ; ;; ; ;
< << <

= = == = => >> > ? ? ?? ? ?? ? ?
@ @@ @

@ @
A A AA A AA A A
B BB BC C CC C CD DD D

E E EE E EF FF F G G GG G GG G G
H HH H

H H

I I II I IJ JJ JK KK K
K K

L LL L
L L

M M MM M MN NN N O O OO O OP P PP P P

Q QQ Q
Q Q

R RR R

S SS S
S S

T TT T
T T

U U UU U UV VV V

 k

++− −
−+

|kα >

|2α >

> pumppumppump

{|k/4 > for j=1
|k/2 > for j=2

|0> for j=0
α

F
ig

u
r
e

4
.1

6
:

G
a
te

th
a
t

p
ro

d
u
ces

k
j/

4
fro

m
tw

o
in

p
u
ts

k
a
n
d

j.

68

4.3 Elementary Logic Gates

4.3.1 Minimum-gate

As stated in Section 2.2.5, there are three possible product-type binary op-
erators, and they are all equally well suited (Ref. [8]). Because of our wish
to copy classical binary computing, we will choose the MIN-function to act
as a trinary AND-function. The MIN-function is represented by the map

j\k 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

, (4.30)

and we can see that the binary-input AND-gate is included as a special case
where k, j < 2.
In the design of this trinary-input AND-gate, we have assumed that it is
possible to create a medium that has a non-constant transmittivity. We
would like the medium’s transmittivity, T, to be dependent of the intensity
of a pump-laser such that

T =

1 for Ipump >
1
2
,

1
2

for Ipump = 1
2
,

0 for Ipump <
1
2
.

(4.31)

0

0.2

0.4

0.6

0.8

1

Transmittivity

0.2 0.4 0.6 0.8 1
Pump intensity

Figure 4.17: Transmittivity as a function of the pump intensity

T (Ipump) =
arctan(100 Ipump−50)+ π

2

π
.

69

N
ote

th
at

th
e

in
ten

sity
of

a
coh

eren
t

state
is

d
efi

n
ed

as
I

=
〈α|â

â
†|α〉

=
|α| 2.

W
ith

su
ch

a
m

ed
iu

m
w

e
can

realize
th

e
m

in
im

u
m

-gate
as

sh
ow

n
in

F
igu

re
4.18.

k−j+2

1 for |pump| > 1/ 2

W W W W W WW W W W W WW W W W W W
X X X X XX X X X XX X X X X

Y Y Y Y Y Y YY Y Y Y Y Y YY Y Y Y Y Y Y
Z Z Z Z ZZ Z Z Z ZZ Z Z Z Z

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
\ \ \ \ \\ \ \ \ \\ \ \ \ \

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
^ ^ ^ ^ ^^ ^ ^ ^ ^^ ^ ^ ^ ^^ ^ ^ ^ ^

_ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _
` ` ` ` `` ` ` ` `` ` ` ` `

a a a a a a aa a a a a a aa a a a a a a
b b b b bb b b b bb b b b b

|k for |pump| =

k−j−2

1/ 2

0 for |pump| < 1/ 2{T=α>

|j α>

|α>

min(k,j)

2

_
2
1

8

8

F
ig

u
r
e

4
.1

8
:

R
ea

liza
tio

n
o
f
th

e
m

in
im

u
m

-g
a
te.

70

4.3.2 Maximum-gate

The classical binary-input OR-gate may be viewed as a gate which puts out
the larger of the two inputs. If following this procedure, a trinary-input
OR-gate would produce the following map.

j\k 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

. (4.32)

We see that the binary-input map is included as the case where k, j < 2.
As we have seen, it was possible to create the trinary-input max-gate from
a nonlinear medium and some beam-splitters. The AND-gate was viewed as
a gate putting out the least of the two inputs. It is now easy to design the
max-gate, since we just have to put out the signal MIN don’t put out. The
scheme will be exactly the same, except for the third input-state, which for
the MIN-gate was |α〉. The third input-state for the max-gate will be | −α〉,
and we will keep the non-linear medium with the property

T =

1 for Ipump >
1
2
,

1
2

for Ipump = 1
2
,

0 for Ipump <
1
2
,

(4.33)

where T is the transmittivity as a function of pump intensity.
The max-gate may be realized as shown in Figure 4.19.

71

1/ 20 for |pump| <{T= for |pump| =

c c c c c cc c c c c cc c c c c c
d d d d dd d d d dd d d d d

e e e e e e ee e e e e e ee e e e e e e
f f f f ff f f f ff f f f f

g g g g g g gg g g g g g gg g g g g g gg g g g g g g
h h h h hh h h h hh h h h hh h h h h

i i i i i i ii i i i i i ii i i i i i ii i i i i i i
j j j j jj j j j jj j j j j

k k k k k k kk k k k k k kk k k k k k kk k k k k k k
l l l l ll l l l ll l l l ll l l l l

m m m m m mm m m m m mm m m m m m
n n n n nn n n n nn n n n n

|−α>

k−j−2

k−j+2

2

|k

max(k,j)

α>

|j α>
8

8

_
2
1

1 for |pump| > 1/ 2

1/ 2

F
ig

u
r
e

4
.1

9
:

R
ea

liza
tio

n
o
f
th

e
m

a
x
im

u
m

-g
a
te.

72

4.3.3 Literal-gate

As earlier stated, we will need a gate that performs the operation literal, i.e.
for an input signal X and two trinary values a ≤ b we get

X(a, b) =

{
0 X /∈ {a, b} ,
2 X ∈ {a, b} , (4.34)

where {a, b} denotes an interval of logic values.
First it will be convenient to create a gate, half-literal, that gives an output
dependent on which is larger, X or a. If we denote the output c, we get

c =

{
0 X < a ,
2 X ≥ a .

(4.35)

This gate will be closely related to the minimum- and maximum-gates, since
they also decide which is the largest of the two inputs. We will use the same
non-linear media as we used when designing those two gates, but we get into
trouble whenever X = a since the transmittivity of the media in such a case
is one half. We solve this problem by exchanging the input parameter |α〉 by
another input parameter |(1 + ε)α〉, where ε ≈ 0.5. In this way we will never
get in a situation where T = 1/2. The gate in Figure 4.20 will produce the
desired output.

73

2
X|

α>2

8 α>

|(1+)ε α>

8
εX−a+2+2

8

o o o o o o oo o o o o o oo o o o o o o
p p p p pp p p p pp p p p p

q q q q q q qq q q q q q qq q q q q q qq q q q q q q
r r r r rr r r r rr r r r r

s s s s s ss s s s s ss s s s s ss s s s s s
t t t t tt t t t tt t t t t

u u u u u uu u u u u uu u u u u u
v v v v vv v v v vv v v v vw w w w w ww w w w w ww w w w w ww w w w w w

x x x x xx x x x xx x x x xx x x x x T={ for |pump| =
0 for |pump| <

1 for |pump| >

α>|c

| a

|

ε

_

X−a−2−2

2
1 1/ 2

1/ 2

1/ 2

| >0

c={0 X<a
2 X>a

X−a
2α>

F
ig

u
r
e

4
.2

0
:

G
a
te

th
a
t

d
ecid

es
w

h
ich

is
la

rg
er,

X
o
r

a
,
a
n
d

retu
rn

s
o
n
e

o
f
th

e
va

lu
es

2
a
n
d

0
d
ep

en
d
in

g
o
f
th

e
a
n
sw

er.

74

We will now denote the half-literal-gate in Figure 4.20 by the symbol

cX
a

1/2

Figure 4.21: Symbol for the gate in Figure 4.20.

We may in the same fashion rather easily construct a gate that performs the
literal operation. The half-literal gate is included as an important part of the
literal-gate. The output of the half-literal will be either 0 or 2 depending on
the size of X compared to a. If X is less than a, the half-literal produces the
value 0, and the output of the literal-gate has to be 0. On the other hand, if
X is larger than or equal to a, the half-literal produces a 2, and the output
of the literal gate may be either 0 or 2 depending on the size of X compared
to the size of b (0 if X > b and 2 if X ≤ b). The literal-gate may be realized
as shown in Figure 4.23. We will denote the literal-gate by the symbol

(a,b)

Figure 4.22: Symbol for the gate in Figure 4.23.

75

| >0

α>2
| b

>|X α

|−(1+)ε α >

8
X−b−2−2ε

8

α>2
| a X

(a,b)={
y y y y y yy y y y y yy y y y y yy y y y y y
z z z z zz z z z zz z z z z

{ { { { { {{ { { { { {{ { { { { {
| | | | || | | | || | | | |

} } } } } } }} } } } } } }} } } } } } }} } } } } } }
~ ~ ~ ~ ~~ ~ ~ ~ ~~ ~ ~ ~ ~

� � � � � � �� � � � � � �� � � � � � �
� � � � �� � � � �� � � � �

_

� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �� � � � � T={ for |pump| =

0 for |pump| <

1 for |pump| >

2
X−b

εX−b+2+2

0 , X
 {a,b}

2 , X
 {a,b}

2
1 1/ 2

1/ 2

1/ 2

2

X(a,b) α>|

cX
a

1/2

F
ig

u
r
e

4
.2

3
:

R
ea

liza
tio

n
o
f
th

e
litera

l-g
a
te.

76

4.3.4 Cycle-gate

The cycle-gate is a unary operator and will give the truth-table in Table 4.1.

Table 4.1: Truth-table for the cycle-gate.

X X+

0 1
1 2
2 0

As seen in the truth-table, we will denote the cycle operation with a +,
meaning +1 mod3. We could also have defined a negative cycle operation −

meaning −1 mod3, but since two cycle operations achieve the same result as
one negative cycle operation, this will not be done.

We will assume that there exists a non-linear crystal with the transmittivity
property

T =

{

0 pump < α ,
1√
2

pump ≥ α ,
(4.36)

i.e. an input beam of intensity I has the intensity T 2 · I when exiting the
crystal.
As seen in Figure 4.24, the pump intensity will be one fourth of the input
intensity5, |kα|2. This means that the crystal is only transparent when the
input trit, k, is 2 or higher6. When the crystal is transparent, it lets the
beam of intensity 9|α|2 through, and this beam may now interfere with the
modified input.

5We recall that the intensity of a coherent state, |xα〉, is given by 〈xα|â†â|xα〉 = x2 ·|α|2
(x2 in sloppy notation).

6In theory, the input trit can never become larger than 2. It may however come in
handy to remember that this gate also may accept intensities that lies beyond the limits
of trinary algebra.

77

pump

k+1−g(k)
2

g(k)=
 k=2

0 k<2

| 3

α|

k

k+1

2

 > α|g(k)

 α {

2

2
k−1

> α| k

2

 > 3

 α>|

2
 1|

>

� � � � � �� � � � � �� � � � � �� � � � � �
� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �

 α

>

F
ig

u
r
e

4
.2

4
:

S
ch

em
a
tic

d
raw

in
g

o
f
a

cy
cle-g

a
te.

78

4.3.5 Inverter-gate

The inverter-gate is a unary operator and will give the truth-table in Table
4.2.

Table 4.2: Truth-table for the inverter-gate.

X X̄
0 2
1 1
2 0

As seen in the table, we have adopted the complement notation from Boolean
algebra. If we take a look at many-valued logic, 0 may represent false, 1
possibly and 2 truth. The negation of this will become what is shown in
Table 4.2. The negation, or inversion, of false is truth, of possible is possible
and of truth is false.

The realization of the inverter is quite simple. The input, which is either 0,1
or 2, is subtracted from a constant input of intensity 2. The result, 2− k, is
exactly the negation as described above.

2
2−k

>

|

 α| k �����������
�����������
�����������
���������
���������
���������

> α| 2 α>

Figure 4.25: Schematic drawing of an inverter-gate.

79

Final remarks

The reason for writing this thesis, was to propose an efficient scheme for op-
tical quantum computing. As it turned out during the process, the subject
is too large to be covered within the time-scale of a cand.scient. degree. We
therefore have to be satisfied with the small taste we managed to get, of an
interesting and unexplored area of modern physics and computer science.
As was stated in the preface, we may in no way regard this thesis as finished.
It should be regarded as a stepping stone for further study.
Two of the most significant problems, that need to be solved are:

1. To be able to exploit the great assets of quantum computing, we need
quantum gates that are capable of parallel processing, e.g. an AND-
gate that may perform the operation

|1〉AND(α1|0〉 + β1|1〉) = α2|0〉 + β2|1〉, (4.37)

where the ket-vectors denote logic states, 0 or 1, and we have sup-
pressed outputs of no interest.

2

| > + β | >0 11 1

2

α

α | > + β | >0 1

| >1

Figure 4.26: Drawing of the process in Eq. (4.37).

At present time, in the descriptions given in Chapter 4, not all gates
proposed are able to perform these kinds of parallel processes. As pre-
viously mentioned, this is especially the case where non-linear crystals
are used. This is a problem that needs to be solved in order to create
effective quantum computers.

80

2. When rejecting outputs of the quantum-gates, as they are of no inter-
est, we experience intensity-loss at a large scale. The loss differs from
gate to gate, but it generally represents a severe problem. As we have
decided that the logic states are represented by coherent states of cor-
responding intensity, a logic state is actually altered as a corresponding
coherent state looses intensity. Of course this problem is easily solved
in simple circuits. However, the problem grows as the complexity of the
circuits grow. Since most of the gates are quite fastidious, regarding
the intensity of the input signals, we will have to restore the origi-
nal signal, i.e. amplify the present signal, at frequent occasions. This
problem needs to be solved in order to create large, complex quantum
circuits.

One may wonder, whether it turned out to be a good idea or not, to develop
the quantum gates in a trinary environment. As we have seen, the algebraic
expressions grow quite complicated, and the minimization procedures are
not fully developed. It may have been simpler to develop a quantum-optical
scheme of computing within the already existing, Boolean algebra. Note,
however, that most of the quantum-gates proposed in this thesis include the
binary-logic gates, e.g. if going back to binary logic, MAX acts as OR and
MIN acts as AND. One may even choose which state (of the three trinary
states, |0〉, |1 · α〉 and |2 · α〉) we shall remove. The easiest will perhaps be
to remove the possible-state, i.e. 1 (|1 ·α〉). Then |0〉 will denote logic 0 and
|2 · α〉 will denote logic 1 (in binary logic). The inverter-gate will then be
equivalent to logic NOT, and all the basic logic gates of Boolean algebra are
recalled.

Despite the problems discovered during the writing of this thesis, the author
strongly believes that the quantum-optical approach to quantum comput-
ing is the most practical approach. The value of higher order logic may
as stated be discussed, but even with the present Boolean algebra or the
existing quantum-logic, the author believes that the advantages of quantum-
optical states as logic states, in the long run will ensure that quantum-optical
computers emerge victorious from the struggle against present computing
regimes.
There might however still be undiscovered physical systems or properties of
already known systems, which would be even more fit to solve the computa-
tional tasks.

81

Appendix A

Quantum-optical gates; an
overview

In Chapter 4, there is proposed a variety of quantum-optical gates. In the
tables below, an overview of these is provided, together with each gate’s
specific properties, i.e. symbol, required input and output.

82

A.1 Specialized Gates

Table A.1: Overview of symbol, required input and output of specialized quantum-optical
gates proposed in Chapter 4.

Symbol Input Output Comment
Amplifier
(Section 4.2.1).

amp=G | >| >α β

|α〉,
where
〈α|â†â|α〉 =
n

|β〉,
where
〈β|â†â|β〉 =
m + G · n

The spontaneous emission
field contributes with m pho-
tons. The amplifier field con-
tributes with G · n photons.

Adder
(Section 4.2.2).

k ������
2

k+j
j ����

|k · α〉 and
|j · α〉,
where
k, j ∈ C.

1√
2
|(k+ j) ·α〉. Since k may be any complex

number, the adder is actually
an analog computer.

Subtractor
(Section 4.2.2).

k

2
k−j

j ����

|k · α〉 and
|j · α〉,
where
k, j ∈ C.

1√
2
|(k− j) ·α〉. Since k may be any complex

number, the subtractor is ac-
tually an analog computer.
The adder together with the
modulo3-gate is also called
MODSUM and may be re-
garded as an equivalent to
binary-logic OR.

Square-gate
(Section 4.2.3).

^2
2
k2k

|k · α〉,
where
k ∈ {0, 1, 2}.

| k2

√
2
α〉. The gate may accept other in-

puts, but the outputs must
be calculated by analyzing
the schematic drawing of the
gate.

Modulo3-gate
(Section 4.2.4).

k mod3 k mod3
6

|k · α〉,
where
k ∈ {0, 1, 2}.

|k modulo 3
6 α〉. Some gates may put out sig-

nals that are outside the
boundaries of the trinary al-
gebra. We may then have to
modify the output signal by
the modulo3-gate.

Multiplication-gate
(Section 4.2.5).

k
k j
4j

|k · α〉 and
|j · α〉,
where
k, j ∈
{0, 1, 2}.

|k·j4 α〉. The multiplication-gate to-
gether with the modulo3-
gate may be regarded as an
equivalent to the binary-logic
XOR.

83

A.2 Elementary Logic Gates

Table A.2: Overview of symbol, required input and output of elementary quantum-
optical logic gates proposed in Chapter 4.

Symbol Input Output Comment
Minimum-gate
(Section 4.3.1)

j
min(k,j)

k

|kα〉 and |jα〉,
where
k, j ∈ {0, 1, 2}.

|min(k,j)
2 α〉 The minimum-gate

may be interpreted
as an AND-gate. For
the trinary values
0 and 1, the gate
behaves exactly like
binary logic AND.

Maximum-gate
(Section 4.3.2)

max(k,j)

k

j

|kα〉 and |jα〉,
where
k, j ∈ {0, 1, 2}.

|max(k,j)
2 α〉 The maximum-gate

may be interpreted
as an OR-gate. For
the trinary values 0
and 1, the gate be-
haves exactly like bi-
nary logic OR.

Literal
(Section 4.3.3)

X X(a,b) (a,b)

|aα〉, |bα〉 and
|Xα〉,
where
a, b, X ∈
{0, 1, 2}.

|X(a,b)√
2

α〉, where

X(a, b) =
{

0 X /∈ [a, b]
2 X ∈ [a, b]

Cycle-gate
(Section 4.3.4)

2

+1k (k+1)mod3

|kα〉,
where
k ∈ {0, 1, 2}.

| (k+1)mod3
2 α〉.

Inverter-gate
(Section 4.3.5)

k k’

|kα〉,
where
k ∈ {0, 1, 2}.

| 2−k√
2

α〉. The inverter-gate
may be regarded as a
trinary NOT-gate.

84

Appendix B

Source Codes

B.1 Verification of the Huntington Postulates

In this section some of the Huntington postulates are verified for a trinary
algebra, by testing all possibilities.

B.1.1 Program to check postulate 4a
#include<iostream.h>

int max(int a, int b){

int c;

if (a>=b) c=a;

else c=b;

return c;

}

int min(int a, int b){

int c;

if (a<=b) c=a;

else c=b;

return c;

}

void main(){

int i,j,k;

int result1, result2;

cout << "i,j,k" << " " << "x(y+z)" << " " << "(xy)+(xz)" << "\n";

for(i=0;i<3;i++){

for(j=0;j<3;j++){

for(k=0;k<3;k++){

result1=min(i,max(j,k));

result2=max(min(i,j),min(i,k));

cout << i << "," << j << "," << k<< " " << result1 << " " << result2 << "\n";

}

}

85

}

}

B.1.2 Program to check postulate 4b
#include<iostream.h>

int max(int a, int b){

int c;

if (a>=b) c=a;

else c=b;

return c;

}

int min(int a, int b){

int c;

if (a<=b) c=a;

else c=b;

return c;

}

void main(){

int i,j,k;

int result1, result2;

cout << "i,j,k" << " " << "x+(yz)" << " " << "(x+y)(x+z)" << "\n";

for(i=0;i<3;i++){

for(j=0;j<3;j++){

for(k=0;k<3;k++){

result1=max(i,min(j,k));

result2=min(max(i,j),max(i,k));

cout << i << "," << j << "," << k << " " << result1 << " " << result2 << "\n";

}

}

}

}

B.2 Proofs of the Theorems of Boolean Al-

gebra

In this section some of the theorems from Boolean algebra are shown to apply
to trinary algebra as well.

B.2.1 Program to prove theorem 5a
#include<iostream.h>

int max(int a, int b){

int c;

if (a>=b) c=a;

86

else c=b;

return c;

}

int min(int a, int b){

int c;

if (a<=b) c=a;

else c=b;

return c;

}

int comp(int a){

int c=2-a;

return c;

}

void main(){

int i,j,k;

int result1, result2;

cout << "i,j" << " " << "(x+y)’" << " " << "x’y’" << "\n";

for(i=0;i<3;i++){

for(j=0;j<3;j++){

result1=comp(max(i,j));

result2=min(comp(i),comp(j));

cout << i << "," << j << " " << result1 << " " << result2 << "\n";

}

}

}

B.2.2 Program to prove theorem 5b
#include<iostream.h>

int max(int a, int b){

int c;

if (a>=b) c=a;

else c=b;

return c;

}

int min(int a, int b){

int c;

if (a<=b) c=a;

else c=b;

return c;

}

int comp(int a){

int c=2-a;

return c;

}

void main(){

87

int i,j,k;

int result1, result2;

cout << "i,j" << " " << "(x+y)’" << " " << "x’y’" << "\n";

for(i=0;i<3;i++){

for(j=0;j<3;j++){

result1=comp(min(i,j));

result2=max(comp(i),comp(j));

cout << i << "," << j << " " << result1 << " " << result2 << "\n";

}

}

}

B.3 Trinary Sum-type Functions

There are 39 possible two-variable three-valued functions. Sum-type func-
tions, denoted by +, are associative, commutative and they give x + 0 = x.
The following C++ program calculates all possible functions and prints the
sum-type functions to the screen.

//Calculates all possible two-input three-valued functions and prints

//to the screen those which are sum-type.

#include <iostream.h>

void main(){

int vector1[9];

int array[3][3];

int flag1=0;

int flag2=0;

int flag3=0;

int commutative1, commutative2;

int associative1, associative2;

int i,j,k,l;

int number=0;

//Initializing array

for(i=0;i<3;i++)

for(j=0;j<3;j++)

array[i][j]=0;

//Initializing vector1

for(i=0;i<9;i++)

vector1[i]=0;

//generating 3^9 different functions

for(i=0;i<100000;i++){

flag1=0;

flag2=0;

flag3=0;

for(j=0;j<8;j++){

if(vector1[j]==3){

88

vector1[j]=0;

vector1[j+1]++;

}

}

//converting vector->array

for(j=0;j<3;j++){

array[0][j]=vector1[j];

array[1][j]=vector1[j+3];

array[2][j]=vector1[j+6];

}

//Checking 0+x=x

for(j=0;j<3;j++)

if(array[0][j]==j)

flag1++;

if(flag1==3)

flag1=1;

else flag1=0;

//Checking commutativity if x+0=x

if(flag1==1)

for(j=0;j<3;j++)

for(k=0;k<3;k++)

if(array[j][k]==array[k][j])

flag2++;

if(flag2==9)

flag2=1;

else flag2=0;

//Checking associativity if commutative

if(flag2==1)

for(j=0;j<3;j++)

for(k=0;k<3;k++)

for(l=0;l<3;l++)

if(array[j][array[k][l]]==array[array[j][k]][l])

flag3++;

if(flag3==27)

flag3=1;

else flag3=0;

//Printing the function if commutative and associative

if(flag3==1){

number++;

cout << " |0 1 2\n" << " ___________\n" << " 0 |"

<< array[0][0] << " " << array[0][1] << " " << array[0][2]

<< "\n" << " 1 |"<< array[1][0] << " " << array[1][1]

<< " " << array[1][2] << "\n" << " 2 |" << array[2][0]

<< " " << array[2][1] << " " << array[2][2] << "\n\n"

<< " (" << number << ")\n\n\n";

}

if(vector1[8]==3) break;

vector1[0]++;

}

}

89

Appendix C

Linear Amplifier

C.1 Chaotic Light

When blackbody radiation is passed through some filter, the radiation may
be altered in such a way that it is no longer true blackbody radiation. The
light may be directional rather than isotropic, partially polarized rather than
unpolarized, spatially inhomogeneous, and it may have a spectral distribution
different from that given by the Planck distribution (Ref. [1]). Radiation
derivable from blackbody radiation by any linear filtering process is called
chaotic radiation.

The density operator of a blackbody radiation field may be represented by
coherent states as

ρ̂ =

∫

φ({ν})|{ν}〉〈{ν}|d{ν} , (C.1)

with the phase-space functional given by

φ({ν}) =

∫

〈−{u}|ρ̂|{u}〉
∏

k,s

[

e|νks|2+|uks|2eu∗
ksνks−uksν∗

ks
d2uks

π2

]

. (C.2)

It may now be shown that

φ({ν}) =
∏

k,s

1

π〈nks〉
e
−|νks|

2/〈nks〉 , (C.3)

where 〈nks〉 is the mean photon number of mode k, s,

〈nks〉 =
1

e~ω/kBT − 1
. (C.4)

90

If the effect of the filter is represented by a homogeneous linear transforma-
tion of the field, then the Gaussian statistics of the Fourier amplitudes of
blackbody radiation will be retained by chaotic radiation (Ref. [1]), and the
phase space functional φ({ν}) describing the state will again be Gaussian.
However, φ({ν}) is now of the general multivariate Gaussian form

φ({ν}) =
1

det(πµ)
e−v

†µ−1
v , (C.5)

rather than of the particular form of Eq. (C.3). v stands for the column
matrix formed by the set of complex amplitudes {ν}, and µ is the covariant
matrix with elements µks,k′s′ = 〈ν∗

ksνk′s′〉φ. The exponent is a general bilinear
functional of the set {ν}, and it can be written as

v†µ−1v =
∑

k,s

∑

k′,s′

ν∗
ksµ

−1
ks,k′s′νk′s′ . (C.6)

Since µ−1 is not necessarily diagonal, the phase space functional φ({ν}) no
longer factorizes into a product of separate mode distributions, and the dif-
ferent mode amplitudes, νks, are not statistically independent in general.
However, if we integrate over all modes except one, in order to derive the
phase space distribution of the k′, s′ mode, we find that

φ({νk′s′}) =
1

π〈nk′s′〉
e−|ν

k′s′ |2/〈n
k′s′〉 . (C.7)

where the average photon number, 〈nk′s′〉 no longer is given by Eq. (C.4).

Let us now calculate the average value of the thermal field. We will evaluate
the integral

∫

plane

νφs(ν, ν
∗)d2ν ∼

∫

plane

νe−|ν|2d2ν = 0 . (C.8)

So the average value of the thermal field is 0. When taking a look at the plot
of the integrand in Figure C.1, we can clearly see that it is anti-symmetric.
Hence, the integral must be zero, i.e. the average value of the thermal field
is zero.

91

–2–1012

x

–2

0

2

y–100

–50

0

50

100

Figure C.1: Integrand of average chaotic field, 〈ν〉 =
∫

νφ(ν)d2ν.

C.2 Calculations from Section 4.2.1

C.2.1 Master equation for the amplifier field

As stated in Section 4.2.1, the master equation for the amplifier field is

∂ρ̂

∂t
= −1

2
A(ââ†ρ̂− â†ρ̂â+ h.c.) − 1

2
C(â†âρ̂− âρ̂â† + h.c.) . (C.9)

We may now make use of the relations (Ref. [1])

â†|ν〉〈ν| =

(

ν∗ +
∂

∂ν

)

|ν〉〈ν| , (C.10)

|ν〉〈ν|â =

(

ν +
∂

∂ν∗

)

|ν〉〈ν| . (C.11)

92

By using Eq. (C.10) and Eq. (C.11) we get

ââ†|ν〉〈ν| = (â†â+ 1)|ν〉〈ν|

=

[

ν(ν∗ +
∂

∂ν
)

]

|ν〉〈ν| , (C.12)

−â†|ν〉〈ν|â = −
(

ν∗ +
∂

∂ν

) (

ν +
∂

∂ν∗

)

|ν〉〈ν|

= −
(

|ν|2 + ν∗
∂

∂ν
+ ν

∂

∂ν∗
+

∂2

∂ν∂ν∗

)

|ν〉〈ν| , (C.13)

â†â|ν〉〈ν| = ν

(

ν∗ +
∂

∂ν

)

|ν〉〈ν| (C.14)

and

−â|ν〉〈ν|â† = −|ν|2|ν〉〈ν| . (C.15)

We now insert the representation

ρ̂(t) =

∫

φ(ν, t)|ν〉〈ν|d2ν , (C.16)

of the density operator into the master equation Eq. (C.9), and we replace
â and â† by the corresponding differential operators as shown in Eq. (C.10)
and Eq. (C.11). We then get, after some rearrangements, the equation of
motion

∫
∂φ(ν, t)

∂t
|ν〉〈ν|d2ν =

∫

φ(ν, t)

{

−1

2
A

[

−ν∗ ∂

∂ν∗
− ν

∂

∂ν
− 2

∂2

∂ν∂ν∗

]

− 1

2
C

[

ν∗
∂

∂ν∗
+ ν

∂

∂ν

]}

|ν〉〈ν|d2ν . (C.17)

By formally integrating by parts, with the assumption that φ(ν, t) vanishes
at infinity faster than any power of ν and ν∗, we can convert the integrand
on the right into a product of |ν〉〈ν| and a c-number function of ν and ν∗,
and we obtain the formula

∫

|ν〉〈ν|∂φ(ν, t)

∂t
d2ν =

∫

|ν〉〈ν|
{

−1

2
(A− C)

(
∂

∂ν
ν +

∂

∂ν∗
ν∗

)

+ A
∂2

∂ν∂ν∗

}

d2ν , (C.18)

93

which leads us to the equation

1

λ

∂φ(ν, t)

∂t
=

− (N2 −N1)

[
∂

∂ν
(νφ(ν, t)) +

∂

∂ν∗
(ν∗φ(ν, t))

]

+ 2N2
∂2φ(ν, t)

∂ν∂ν∗
. (C.19)

C.2.2 Solution of the master equation

Assuming we have the coherent state, |ν ′〉, whose density matrix, ρ, is given
by

ρ =

∫

φs(ν
′, t)|ν ′〉〈ν ′|d2ν . (C.20)

The Fokker-Planck equation for the amplifier field is, for the initial state,
|ν ′〉, (see Eq. (C.19))

1

λ

∂φs(ν, t)

∂t
=

− (N2 −N1)

[
∂

∂ν
(νφs(ν, t)) +

∂

∂ν∗
(ν∗φs(ν, t))

]

+ 2N2
∂2φs(ν, t)

∂ν∂ν∗
. (C.21)

If substituting for

C ≡ −2λ(N2 −N1) , (C.22)

n̄ ≡ −N2

N2 −N1

, (C.23)

we get the equation

∂φs(ν, t)

∂t
=

C

2

[
∂

∂ν
(νφ(ν, t)) +

∂

∂ν∗
(ν∗φ(ν, t))

]

+ C n̄
∂2φ(ν, t)

∂ν∂ν∗
. (C.24)

Since the initial field is coherent,

φs(ν, 0) = δ2(ν − ν ′) , (C.25)

which in the Gaussian representation becomes

φs(ν, t) = lim
ε→0

1

πε
exp

(−|ν − ν ′|2
ε

)

. (C.26)

We may now search for a solution of the form

exp [−a(t) + b(t)ν + c(t)ν∗ − d(t)νν∗] , (C.27)

94

subject to the initial conditions

a(0) =
|ν ′|2
ε

+ ln(πε) , (C.28)

b(0) =
ν ′∗

ε
, (C.29)

c(0) =
ν ′

ε
, (C.30)

d(0) =
1

ε
. (C.31)

On substituting Eq. (C.27) into Eq. (C.24) and carrying out the necessary t
and ν differentiations, we get

− ȧ + ḃν ′ + ċν ′∗ − ḋ|ν ′|2 =

C

[

1 + n̄(bc− d) + (
b

2
− n̄bd)ν ′ + (

c

2
− n̄cd)ν ′∗ − (d− n̄d2)|ν ′|2

]

. (C.32)

By comparing terms proportional to ν ′,ν ′∗,|ν ′|2 and unity, we get the following
set of differential equations:

ȧ = −C [1 + n̄(bc− d)] , (C.33)

ḃ = C

(
b

2
− n̄bd

)

, (C.34)

ċ = C

(c

2
− n̄cd

)

, (C.35)

ḋ = C
(
d− n̄d2

)
. (C.36)

The solution of these equations subject to the initial conditions (Eq. (C.28)-
(C.31)) is given by

a(t) =
|ν ′|2e−C t

n̄(1 − e−t) + εe−C t
+ ln

{
π

[
n̄

(
1 − e−C t

)
+ εe−C t

]}
, (C.37)

b(t) =
ν ′∗e−C t

n̄(1 − e−t) + εe−C t
, (C.38)

c(t) =
ν ′e−C t

n̄(1 − e−t) + εe−C t
, (C.39)

d(t) =
1

n̄(1 − e−t) + εe−C t
. (C.40)

95

A substitution of these equations into Eq. (C.27) results in the Gaussian form

φs(ν, t) =
1

πm(t)
exp

[

−|ν −G(t)ν ′|2
m(t)

]

, (C.41)

which we recognize as a displaced spontaneous emission field (Eq. (C.7)). We
here have the relations

G(t) = e−C t , (C.42)

and
m(t) = n̄(1 − e−C t) = −n̄(|G(t)2 − 1) . (C.43)

Since φs(ν, t) is a solution to the Fokker-Planck equation, Eq. (C.24),

φ(ν, t) =

∫

φ0(ν
′)φs(ν −G(t)ν ′, t)d2ν , (C.44)

where φ0(ν
′) denotes the phase space density at zero-time, is also a solution.

Hence we have shown that the amplified field may be regarded as a simple
convolution of the input, or zero-time phase space density, with the phase
space density associated with spontaneous emission.

Since we have m(t) → 0 as t→ 0, we have

lim
t→0

φs(ν, t) =

{

∞ ν = 0 ,

0 ν 6= 0 ,
(C.45)

which correspond to a δ-function, i.e.

lim
t→0

φs(ν − ν ′, t) = δ2(ν − ν ′) . (C.46)

We may therefore calculate

φ(ν, 0) = lim
t→0

φ(ν, t)

= lim
t→0

∫

φ0(ν
′)φs(ν −G(t)ν ′, t)d2ν

=

∫

φ0(ν
′)δ2(ν − ν ′)d2ν ′

= φ0(ν) , (C.47)

so the initial condition is satisfied for φ(ν, t).

96

Appendix D

Further Reading

� Center for Quantum Computing, www.qubit.org

� arXiv.org e-Print archive, http://arxiv.org

� M.O. Scully and M.S. Zubairy “Quantum Optics” (Cambridge Univer-
sity Press, 1997)

� S. Whealton, “The Number Wars”,
http://washingtonart.net/whealton/wars.html

� D. Deutsch, “Quantum Computation”, Physics World (June 1992)

� H. Jeong and M.S. Kim, “Efficient Quantum Computation Using Co-

herent States”, quant-ph/019077

� C. Zalka, “An Introduction to Quantum Computers”,
quant-ph/9811006

� G. Brassard, “New Trends in Quantum Computing”, quant-ph/9602014

� A. Steane, “Quantum Computing”,
Rept. Prog. Phys. 61 117-173 (1998)

� H. Jeong and M.S. Kim, “Entanglement Purification for Entagled Co-

herent States”, quant-ph/0111015

� M.G.A. Paris, “Optical Qubit Using Linear Elements”,
quant-ph/0009095

� S. Lloyd, “Quantum Computation over Continuous Variables”, quant-
ph/9810082

97

� C. Adami and N.J. Cerf, “Quantum Computation with Linear Optics”,
quant-ph/9806048

� N.J. Cerf, T. Durt and N. Gisin, “Cloning a Qutrit”,
quant-ph/01100092

� S.D. Bartlett and B.C. Sanders, “Universal Continuous-variable Quan-

tum Computation: Requirement of Optical Nonlinearity for Photon

Counting”, quant-ph/0110039

� I.L. Chuang and Y. Yamamoto, “Simple Quantum Computer”, Phys.
Rev. A 52(5) 3489 (November 1995)

� E. Knill, R. Laflamme and G.J. Milburn,
“A Scheme for Efficient Quantum Computation with Linear Optics”,
Nature 409 (January 2001)

� G.J. Milburn, “Quantum Optical Fredkin Gate”, Phys. Rev. Lett.
62(18) 2124-2127 (May 1989)

� S.P. Hotaling and A.R. Pirich (editors), “Photonic Quantum Comput-

ing”, Proceedings of SPIE 3076 (April 1997)

� T.T. Dao and D.M. Campbell, “Multiple-valued Logic; an Implemen-

tation”, Opt. Eng. 25(1) 14-21 (January 1986)

� B.L. Drake et al., “Photonic Computing Using the Modified Signed-digit

Number Representation”, Opt. Eng. 25(1) 38-43 (January 1986)

� S.L. Hurst, “Multiple-valued Threshold Logic; its Status and its Real-

ization”, Opt. Eng. 25(1) 44-55 (January 1986)

� Ye Olde Thinkquest, http://library.thinkquest.org/19488/

98

Bibliography

[1] L. Mandel and E. Wolf, “Optical Coherence and Quantum Optics”

(Cambridge University Press, 1995)

[2] D.F. Walls and G.J. Milburn, “Quantum Optics” (Springer, 1995)

[3] M.M. Mano “Digital Design” (Prentice-Hall International, 1991)

[4] M.A. Nielsen and I.L. Chuang, “Quantum Computation and Quantum

Information” (Cambridge University Press, 2000)

[5] D.C. Rine, “Computer Science and Multiple-valued Logic” (North-
Holland Publishing Company, 1977)

[6] A.A.S. Awwal and K.M. Iftekharuddin, “Graphical Approach for

Multiple-valued Logic Minimization”, Opt. Eng. 38(3) 462-467 (March
1999)

[7] Brian Hayes, “Third Base”, Am. Sci. 89(6) 490 (November-December
2001)

[8] T. Hozumi, O. Kakusho and Y. Hata, “On Low Cost Realization

of Multiple-valued Logic Functions”, Proc. 28th IEEE Int. Symp. on
Multiple-valued Logic 233-238 (1998)

[9] N.P. Brousentsov, S.P. Maslov, J. Ramil Alvarez and E.A. Zhogolev,
“Development of Ternary Computers at Moscow State University”,
Russian Virtual Computer Museum, 1997-2002, http://www.computer-
museum.ru/english/setun.htm

99

