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Abstract In this paper we develop a real options approach to evaluate the
profitability of investing in a battery bank. The approach determines the op-
timal investment timing under conditions of uncertain future revenues and
investment cost. It includes time arbitrage of the spot price and profits by
providing ancillary services. Current studies of battery banks are limited, be-
cause they do not consider the uncertainty and the possibility of operating in
both markets at the same time. We confirm previous research in the sense that
when a battery bank participates in the spot market alone, the revenues are
not sufficient to cover the initial investment cost. However, under the condition
that the battery bank also can receive revenues from the balancing market,
both the net present value (NPV) and the real options value are positive. The
real options value is higher than the NPV, confirming the value of flexible
investment timing when both revenues and investment cost are uncertain.
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1 Introduction

In July 2015, one of the largest hydropower producers in Europe, Statkraft,
announced the launch of a grid scale battery project in Germany1. Indeed,
electric energy storage is receiving attention in the energy market as a po-
tential investment opportunity. The integration of large amounts of renewable
energy sources (RES) in the European market has created a need for decen-
tralized storage systems while the cost of lithium-ion battery banks are drop-
ping. Deutsche Bank is actually suggesting a 20-30% annual cost reduction for
lithium-ion batteries and predicts a mass adoption potential of battery banks
before 2020 (Shah and Booream-Phelps, 2015).

Investments in electric energy storage technologies have been a popular
topic in the literature over the last decade (Korpaas et al, 2003; Reuter et al,
2012; Fertig et al, 2014; Del Granado et al, 2016). Pumped hydroelectric stor-
age has received the most attention, because it is the dominant technology
accounting for 99% of the world’s storage capacity. In spite of this, there are
a number of other storage technologies in the market(Chen et al, 2009). The
choice of storage technology depends on a number of factors such as market
design, characteristics required, costs, location, and expected revenues. For
markets with large imbalances and large portion of RES, there is demand for
quick response technologies such as batteries.

In this paper we apply a real options framework to value investments in
lithium-ion battery banks in Germany and the United Kingdom. It is inter-
esting to consider battery technology, because of the rapid decrease in battery
cost and its favorable characteristics (i.e. quick response time and regulated
power output). Batteries also possess a number of other desirable features such
as pollution free operation, high round trip efficiency, scalable power and en-
ergy output, long life cycle and low maintenance costs (Dunn et al, 2011; Kim
et al, 2014).

To consider the potential revenues, we must study the electricity market in
more detail. In the past two decades electricity markets around the world have
been restructured (European Commission, 2013). Many electricity markets are
divided in two parts, the spot market and the balancing market. European spot
markets are day ahead markets with high liquidity, where the suppliers are
paid for the amount of electricity they provide. The balancing market consists
of different types of ancillary services that are required by the transmission
system operator in order to balance demand and supply. In the balancing
market suppliers are receiving two forms of payments; availability payments
for making their unit available for ancillary services, and utilization payments
for the energy delivered as instructed by the system operator. Battery banks
can participate in both markets, but can not allocate the same capacity in
both markets at the same time.

1 Launch of battery project in Germany Press release by Statkraft 27.07.15 http:

//statkraft.com/media/news/20151/launch-of-battery-project-in-germany/
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The spot price in general exhibits strong seasonality on the annual, weekly
and daily level, mean reversion, high volatility, clustering effects and extreme
price changes known as spikes. Two of the most common approaches to cap-
ture the spiking behavior of the power price are jump diffusion models and
Markov regime switching (MRS) models (Weron et al, 2004). The jump diffu-
sion model introduces spikes through a Poisson jump component. It is however
not able to generate consecutive spikes, because the jumps are independent
(Cartea and Figueroa, 2005; Weron et al, 2004). MRS is able to generate these
with a transition matrix that includes the probability of the spot price having
another spike (Weron et al, 2004). It has therefore been used extensively to
capture the unique behavior of the spot price (Weron et al, 2004; Arvesen et al,
2013; Janczura and Weron, 2012, 2010; Paraschiv et al, 2015). There has also
been recent work on other regime switching models, such as the LSTR model
proposed by (González et al, 2012).

Previous research that consider investment in batteries often find that it
is not profitable (Sioshansi et al, 2009; Kazempour et al, 2009). Our results
contrast with these papers by showing that a lithium-ion battery that receives
revenues from both spot and balancing markets are profitable. It is essential
to include revenues from both markets, as well as capturing the characteristics
of the prices to discover the total value of the investment.

The investment cost has generally been considered to be fixed or determin-
istic (Dixit and Pindyck, 1994). However, for real world investment decisions
the investment cost will change over time because of changing market condi-
tions such as rise in commodity prices, decrease in demand and technology
development. We assume that investment cost follow a geometric Brownian
motion.

The main contribution of this paper is a quantification of the value of
investing in a battery bank in a real options context. In addition, we use a
state of the art MRS for the spot price that captures the characteristics of the
prices. We are also the first to propose a MRS for the balancing price. Further,
the approach for optimal hourly dispatch of the battery bank includes partic-
ipation in both the spot and balancing market. Finally, the model takes into
account the uncertainty of the investment cost and the revenues by applying
the real options framework.

The paper is structured as follows: In Section 2 we describe the data used
and the characteristics of the spot and balance price in Germany and the
United Kingdom. In Section 3 we explain the model for the valuation of the
battery bank. This consists of the real options valuation, the optimal dispatch
of the battery bank and the MRS for the spot and balancing prices. Results
are presented in Section 4 and the conclusion in Section 5.

2 The datasets

The datasets in this study include market data from Germany (2010–2014) and
the United Kingdom (2010–2014). This allows for an evaluation of investment
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under different market conditions. The UK market is isolated because of its
location on an island, which creates a need for balancing. The price level for
both spot and balancing is also high. The German market on the other hand
is much more interconnected and the spot price has decreased more than 32%
since 2010. However, it exhibits variable market behavior with extreme spikes
and it has a rapidly growing portion of RES installed. In combination with
the decision to close down all nuclear plants by the end of 2020, this escalates
the need for balancing, which increases the prices in the balancing market.

2.1 Time series of market prices for the United Kingdom (2010–2014)

The data set includes the hourly market clearing price from the Amsterdam
Power Exchange (APX Power UK) and the hourly balancing price from the
system operator National Grid. The historical data for both the spot and
balancing prices are mean reverting. There are however hours with extreme
values, which we define as negative and positive spikes. Inspecting the time
series, it is also clear that the prices have diurnal, weekly and seasonal patterns.
The volatility is greater in some periods than others, indicating a clustering
effect. Another important observation is that the spot price is nonnegative.
This is because of the market design that forbids participants to enter trades
with a negative spot price. The time series of prices in week 5 of 2014 is
presented in Figure 1.
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Fig. 1 Spot and balancing price UK week 5, 2014.
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2.2 Time series of market prices for Germany (2010–2014)

This data set includes the hourly market clearing price from the European
Energy Exchange AG (EEX) and hourly balancing price from the system op-
erator TenneT. By evaluating historical data from the German market, it is
clear that the spot and balancing prices have the same characteristics as in
the UK market. The only exception is the spot price, which has no price floor.
Refer to Zhou et al (2016) for an analysis of battery operation policies empha-
sizing the implications of the presence of negative electricity prices. Figure 2
shows the time series of prices in week 5 of 2014.
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Fig. 2 Spot and balancing price Germany week 5, 2014.

3 Model description

The valuation of the battery bank consists of four steps: price forecasts of the
spot price and balance price, an optimization model for operation of the bat-
tery bank, investment cost dynamics and a real options valuation (see Figure

Fig. 3 The structure of the approach.
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3). To be able to value a battery bank, we need to accurately forecast the
power price and balance price. The forecast must capture the characteristics
of the two prices and the correlation between them. The simulated future spot
and balance prices serve as input to the optimization model. The economic
dispatch is found by maximizing the revenues of the battery bank. Annual
revenues from the optimal operation of the battery bank serve as input to the
real options valuation together with the investment cost forecasts. The real
options model in turn gives us the optimal decision rule for the investment.

3.1 Price dynamics

The future spot and balancing price are both forecasted using Markov regime
switching with three independent regimes. In the following subsections we will
go through the procedures we have used to develop the different submodels,
the calibration of the parameters and the final results.

3.1.1 Spot price

The spot price dynamics must be able to capture the seasonal patterns and the
stochastic behavior of the spot price. We therefore choose to let the spot price,
PSt , be a sum of two independent parts: a deterministic seasonal component
(ft) and a residual stochastic component (XS

t ); PSt = ft +XS
t .

We let the deterministic component be composed of a daily (dt) and weekly
(wt) periodic part (i.e. short term seasonal component, STSC) and a long
term seasonal component (LTSC), st. The STSC is caused by variations in
consumption throughout the day and business cycles, while the long term
component is explained by the changing climate throughout the year. The
deterministic component can therefore be expressed as:

ft = dt + wt + st. (1)

There are different ways of handling the seasonality of the spot price. Some
authors use dummy variables for each month, day of the week or hour of the
day (Fleten et al, 2011; Arvesen et al, 2013). Other use sinusoidal functions or
sums of sinusoidal functions (Janczura and Weron, 2010; Janczura et al, 2013).
Wavelet smoothing is another possibility that is less sensitive to outliers and
less periodic (Janczura et al, 2013; Nowotarski et al, 2013). Wavelets offer a
very good in-sample fit to the data, but the ability of wavelets to forecast
is poor (Ramsey, 2002). As we are considering an investment that uses the
forecasted prices, wavelet smoothing is not suited. We therefore choose to apply
the method presented in the paper of Janczura and Weron (2010), where the
LTSC is represented as a sum of sinusoidal functions.

The historical data is deseasonalized in three steps; first by subtracting st
from PSt , then subtracting the daily component, and finally by removing the
weekly seasonality. The daily periodic part (dt) is found by calculating the
“average day” from the detrended data (PSt − st). The weekly periodic part



Investment in Electric Energy Storage Under Uncertainty 7

(wt) is found the same way as for the day, by calculating the “average week”,
from the detrended data (PSt − st − dt ). The approach used to calculate
the STSC is the same as having seasonality expressed by dummy variables
(Janczura and Weron, 2012). The deterministic component is found by adding
all the seasonal components as in Equation (1).

We use Markov regime switching to represent the stochastic component of
the spot price. It represents the observed stochastic behavior of a specific time
series by more than one separate regime with different underlying stochastic
processes (Janczura and Weron, 2012). The switching mechanism between the
different regimes is assumed to follow a Markov chain, i.e. the underlying
process does only depend upon the current state.

To capture the characteristics of the spot price, the stochastic component
(Xt) is represented with three independent states:

XS
t =


Xt,1 if RSt = 1,

Xt,2 if RSt = 2,

Xt,3 if RSt = 3.

(2)

RSt describes the actual state of the market, i.e. normal behavior, spike
or drop. The three regimes are independent and the switching mechanism be-
tween the regimes is assumed to be a latent Markov chain. It can be described
by a transition matrix P, that contains the probabilities of switching from one
regime i at time t to regime j at time t+ 1.

P = P (RSt+1 = j‖RSt = i) = ρij =

ρ11 ρ12 ρ13ρ21 ρ22 ρ23
ρ31 ρ32 ρ33

 . (3)

The base regime (XS
t,1) describes the statistical “normal” price behavior

and is given by the Chan-Karolyi-Longstaff-Sanders differential equation2:

dXt,1 = (α1 − β1Xt,1)dt+ σ1|Xt,1|γ1dZt,1, (4)

where α1, β1, γ1 and σ1 are constants and dZt,1 is the increment of a standard
Wiener process. Here β1 describes the speed of mean reversion, α1

β1
the equi-

librium level toward which the process drifts, σ1 the volatility of the process
and γ1 determines the volatility’s dependence on the price level.

The upper regime (XS
t,2), that represents the sudden price jump (positive

spikes), is given by independent and identically distributed (i.i.d.) random vari-
ables from the shifted log-normal distribution(Janczura and Weron, 2012)3:

log(Xt,2 −X(Q2)) ∼ N(α2, σ2), Xt,2 > X(Q2), (5)

2 The Chan-Karolyi-Longstaff-Sanders differential equation nests several processes com-
monly used to represent commodity prices, including the GBM, Vasicek, Merton and
Brennan-Schwartz model. It can assume the form of any of these processes by altering
the parametrization, without changing the solution of the equation. This allows us to incor-
porate elements such as mean reversion and inverse leverage effects in our model. We refer
to Chan et al (1992) for further details.

3 We refer to Janczura and Weron (2009, 2010) for a more in depth analysis of the shifted
lognormal distribution and how this better fits electricity prices than other alternatives.
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where X(Q2) and X(Q3) (below) are Q-quantiles of the dataset. Here we
choose Q2 = 0.75 and Q3 = 0.25.

The lower regime (Xt,3), that represents the sudden price drops (negative
spikes), is given by i.i.d. random variables from the shifted inverse log-normal
distribution:

log(−Xt,3 +X(Q3)) ∼ N(α3, σ3), Xt,3 > X(Q3). (6)

3.1.2 Balancing price

The modeling of balancing prices have received less attention than the model-
ing of day ahead spot prices. One of the explanations is that the design of the
balancing market varies according to the country. This explains why Skytte
(1999) finds that the balancing price can be explained by the day ahead mar-
ket price, while Jaehnert et al (2009) indicate no correlation between the spot
and balancing prices. Jaehnert et al (2009) model the balancing price as the
difference to the day ahead market price, while both Olsson and Söder (2008)
and Klæboe et al (2015) model it directly including correlation with the spot
price.

Characteristics of the UK and German balancing price include positive and
negative spikes, mean reversion and volatility clustering. To capture these price
characteristics, we choose to use a MRS model with three regimes: base, upper
and lower regime. We also find that the balancing prices have seasonal compo-
nents that changes during the day, week and year We apply the same methods
as in the last subsection to determine the deterministic seasonal components
of the balancing price.

Since the balancing price is dependent on market design, the correlation
between the spot price and balancing price will differ. We therefore tested the
correlation between the spot and balancing price in our datasets, and found
differing results. For the German market, we find no significant correlation
between the spot and balancing price. The price forecast of the balancing price
is therefore modeled in the same way as for the spot price in Section 3.1.1.
However, for the UK market, the correlation between the spot and balancing
price increments was found to be significant.

The balancing price is modeled by MRS, with the corresponding determin-
istic seasonal component (gt) as for the spot price, i.e. PBt = gt +XB

t . There
are three independent regimes:

XB
t =


Xt,4 if RBt = 1,

Xt,5 if RBt = 2,

Xt,6 if RBt = 3.

(7)

RBt describes the actual state of the market, i.e. normal behavior, spike
or drop, and is assumed to follow a latent Markov chain (see Section 3.1.1).
The three regimes are assumed to be independent, where the base regime



Investment in Electric Energy Storage Under Uncertainty 9

(Xt,4) is a mean reverting process, the upper regime (Xt,5) has a shifted log-
normal distribution and the lower regime (Xt,6) a shifted inverse log-normal
distribution.

The base regime for the UK balance price is given by the following:

dXt,4 = (α4 − β4Xt,4)dt+ σ4|Xt,4|γ4dZt,4, (8)

where the balance price increment (dZ4) is correlated with the spot price
increment (dZ1) by a factor ρ. From the time series ρ was calculated and
approximated to 0.25.

Table 1 Calibration results for MRS models with three independent regimes fitted to the
deseasonalized EEX and APX spot prices.

α1 β1 σ1 γ α2 σ2 α3 σ3 p11 p22 p33

EEX 4.26 0.10 4.15 0.00 2.46 0.83 2.29 1.18 0.992 0.750 0.851
APX 8.20 0.18 4.71 0.01 2.17 1.19 2.54 0.6 0.990 0.551 0.000

Table 2 Calibration results for MRS models with three independent regimes fitted to the
deseasonalized EEX and APX balance prices.

α4 β4 σ4 γ α5 σ5 α6 σ6 p11 p22 p33

EEX 12.30 0.34 24.18 0.08 3.36 1.22 4.22 0.88 0.977 0.704 0.591
APX 7.57 0.2 0.35 0.7 2.27 1.01 2.42 1.31 0.982 0.633 0.525

3.1.3 Parameter calibration

We estimate the parameters by applying the expectation-maximization (EM)
algorithm described in Janczura and Weron (2012). This procedure can be
applied to all MRS models where at least one regime is described by a mean
reverting process. The results from the parameter calibration of the histori-
cal EEX and APX prices are shown in Tables 1 and 2. We use the bivarate
conditional expectation when determining dZ4.

Simulated spot and balance price paths for the United Kingdom for a week
are illustrated in Figure 4.

3.2 Optimal dispatch of the battery bank

The optimization model we develop in this paper generates the dispatch and
expected profit of the battery bank for an average year, given the hourly spot
price, PSt , and balancing price, PBt . The economic dispatch determines the
highest expected profit based on participation in both markets. At each hour
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Fig. 4 Simulated spot and balance prices for one week for the United Kingdom.

Table 3 Parameters and variables in the operation of the battery bank.

Symbol Explanation Value Unit

qt Spot discharge - MW
rt Cap. reserved in balancing mkt - MW
bt Battery charging - MW
lt State of charge - MWh
PS
t Forecasted spot prices - e/MWh
PB
t Forecasted balancing prices - e/MWh
C Operation and maint. costs 0.1 e/MWh
N Length of operation period 24 hours
U Utilization factor 0.1 -
Q̄ Max. production capacity 5 MW
B̄ Max. discharging capacity 5 MW
L0 Initial storage level 0 MWh
L̄ Max. storage level 10 MWh
η1 Efficiency of discharge 0.975 -
η2 Efficiency of charging 0.975 -
θ Penalty 0.9 -

Subscript t denotes quantities that may change hourly.

t, the battery will be in one of the following states: charging, discharging or
idle. When operating in the spot market the owner of the battery bank either
receives or pays the spot price, depending on the state of operation. In the
balancing market, it receives the hourly balancing price and additionally the
hourly spot price if the battery is called to discharge (i.e. asked to supply
power into the balancing market). The probability of being called to discharge
is given by U and is based on historical data (Kazempour et al, 2009; Kirby,
2007).

The battery bank is optimized over a planning horizon of 24 hours. The
daily profits are summed up over the first year. This allows new information



Investment in Electric Energy Storage Under Uncertainty 11

to be incorporated on a daily basis without assuming future knowledge of
prices beyond a day. This means that the battery make price dependent bids,
resulting in an overestimation of the profits from operation. Contreras et al
(2003) found that with a good forecasting model, the error applying daily
forecasted prices would be maximum 11%. In accordance with these findings,
we penalize the annual revenue by multiplying by a constant (θ) to adjust for
the overestimated earnings from knowing the prices in advance.

The objective of the storage owner is to optimize the operation of the
battery to maximize the profit, i.e. revenues less operation and maintenance
costs. The following linear programming problem maximizes the profit over a
day:

max

( N∑
t=1

PSt (qt − bt + Urt) +

N∑
t=1

PBt rt

−
N∑
t=1

C(qt + bt + Urt)

)
, (9)

subject to:

lt = lt−1 −
qt
η1

+ btη2 −
Urt
η1

(10)

qt + rt ≤ Q̄ (11)

lt ≤ L̄, bt ≤ B̄, qt ≤ Q̄, rt ≤ Q̄ (12)

All variables are nonnegative. Variables and parameters in the economic
dispatch are summarized in Table 3. The operation is controlled by discharge
in the spot market, qt, what is reserved in the balancing market, rt, and the
charging in the spot market, bt. We assume that the storage level is zero at
the beginning of operation. Further, operation and maintenance cost, C, and
efficiency for both charging, η1, and discharging, η2, are assumed constant.
The efficiencies are consistent with e.g. Leadbetter and Swan (2012).

The objective function, (9), consists of three components. The first term
calculates the revenue from delivering power in the spot market and the costs
of charging the battery. The second term calculates the revenue from reserving
capacity in the balancing market. The third term accounts for the operation
and maintenance costs of operating the battery. Eq. (10) balances the energy
storage level of the battery. The energy storage level is equal to the storage
level at the previous time step, plus the energy charged minus the energy
discharged. Eq. (11) sets a fixed maximum battery capacity. The energy sold
in the spot and balancing markets in each hour cannot exceed the maximum
capacity of the battery. Eq. (12) bounds the charging, discharging and storage
levels.

This economic dispatch is a linear program. To obtain a solution the model
is formulated in the General Algebraic Modeling System (GAMS) and solved
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using the CPLEX solver. The whole system is solved for the whole 15 year
period simultaneously. All exit states from the final hour of one day automat-
ically carry over as input states for the first hour of the next day.

The solution to the optimal dispatch problem is the battery bank profit for
one day. To get the cash flow, Z, from operating the battery bank for a year,
we run the optimization problem for the number of days in the year and add
up the daily profits. We choose to do this for one year, instead of for the entire
lifetime of the battery bank, because the yearly profits throughout the lifetime
of the battery bank are approximately the same. To get the total profit of the
battery bank, F , we sum the discounted yearly profit throughout the lifetime
of the battery. We assume an interest rate of 4% and a lifetime of K = 15
years for the battery bank. The present value of the total cash flows is:

F =

K∑
k=1

θZ

(1 + r)k
= θZ

[
1− (1 + r)−K

r

]
, (13)

where θ is the price anticipation penalty and r is the risk free rate.
The optimization algorithm is repeated for the 10 000 different spot and

balancing price paths, i, generated from the price models in Section 3.1. The
correlation between the spot price and the balancing price is included in the
generation of these price paths. This is done by including a correlation term
in the balancing price. Covariance in the spot and reserve price is included,
ensuring that the reserve price does not move unrealistically high or low rela-
tive to the spot price. We use the results, Fi, as an input variable in the real
options valuation.

3.3 Investment cost

The cost of lithium-ion batteries for consumer electronics and electrical vehi-
cles have decreased rapidly the last decade, with over 10% each year. However,
none of the papers that consider investment in battery storage include such
uncertainty in technology development for grid scale batteries (Cho and Kleit,
2015; Sioshansi et al, 2009; Kazempour et al, 2009). If investors fail to take into
account the uncertainty of technology development, they risk underestimating
the value of the battery as well as investing before the optimal investment
time.

Since the cost for comparable technology (i.e. small and medium scale
lithium-ion batteries) has steadily decreased the last decade, we assume that
the cost for battery banks also will develop in a similar manner. Therefore, we
let the investment cost follows a geometric Brownian motion4 with a negative

4 Investment costs is an economic variable that is highly affected by the business cycle.
It exhibits long-term variation, and changes in the cost level be expected to persist for a
long while. It is also natural to expect that changes in costs are normally distributed when
considering relative changes (as opposed to absolute EUR/kWh changes). These features
point toward a geometric Brownian motion for these costs.
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growth rate:
dI = αIIdt+ σIIdzI , (14)

where αI < 0 is the growth rate, σI > 0 is the volatility and dzI is the incre-
ment of the Wiener process. Table 4 shows the parameters of the investment
cost. Estimates are conservative compared to e.g. Hadjipaschalis et al (2009).

Table 4 Parameters of the investment cost dynamics.

Parameters Value

Initial inv. cost (e/kWh) 1350
Capacity (MWh) 10
Growth rate -0.1
Volatility 0.2

3.4 Real options valuation

One of the strengths of the real options approach is that it explicitly accounts
for the value of postponing investment to wait for more information (Dixit
and Pindyck, 1994).

We are considering the following investment opportunity: at any time, τ ,
the firm can pay an investment cost, I, in order to buy a battery bank, given
the profit flow from operation of the battery bank F . The battery bank invest-
ment decision is characterized by a large sunk cost and a time interval during
which investment is possible. We therefore choose to value the investment as a
Bermudan call option. This type of exotic option allows the owner to exercise
the option only once, but has flexibility to choose the optimal exercise date
between a number of given discrete times during the lifetime of the option T .
The lifetime of the option is set to 10 years. We have discretized the problem
in such a way that the decision maker can exercise this option once every year.
This makes the problem a lot less complex to solve computationally. It also
more closely resembles a real life business process, where decisions like this
are typically made yearly or quarterly as part of a business cycle and not in
continous time. The value of the investment opportunity is calculated as:

ROV = max
0≤τ≤T

(
Eτ
[
e−rτ (F (τ)− I(τ))

]
, 0

)
. (15)

The key to optimally exercising a Bermudan option is identifying the con-
ditional expected value of continuation. We will therefore apply least squares
Monte Carlo described in the paper of Carriere (1996) and further extended
by Longstaff and Schwartz (2001). This is a simulation-projection approach
based on Monte Carlo sampling and where the dynamic programming-style
continuation value is approximated using regressions. The continuation value
is approximated using a polynomial function of second degree. This is a quite
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simple approximation, but several numerical tests confirm that even simple
powers of the state variable gives accurate results (Longstaff and Schwartz,
2001).

The inputs for the least squares Monte Carlo valuation are two exogenous
variables; battery cash flow and investment cost. Both of these exist for each
of the 10 000 unique paths (i), and each year k, and we denote them Fik and
Iik; the index for time has changed to reflect the time discretization in the
algorithm. Although an investment opportunity can be considered more often
than once per year, annual time steps still gives insight about the investments
in battery banks. The algorithm optimizes the exercise date based on the trade
off between immediately exercising and the continuation value of keeping the
option alive for each individual in-the-money path. The value vector Vik at
each time k is given by:

Vik =

{
Fik − Iik if Fik − Iik > Wik

Wik else,
(16)

where Wik is the (discounted) continuation value of keeping the option alive.
The option value is calculated by averaging the sum of all payoff paths at year
zero. If the value of the option is greater than zero, the value of investing in a
battery bank is positive. If the option value is zero or less, it is never optimal
to invest. See Longstaff and Schwartz (2001) for a more detailed description
of the approach.

4 Results

The results are based on a base case considering an interest rate of 4%, battery
bank and option lifetime of 15 and 10 years, and initial investment cost of 1350
e/kWh with volatility of 20% and negative growth rate of 10%.

The results from the real options valuation of the battery bank investments
are given in Table 5. To compare the investments in the two countries, we
convert the option value of investing in the United Kingdom from pounds to
euro applying an exchange rate of 1.3 e/ £. The option values of investing in
Germany (6.5 million) and the United Kingdom (9.9 million) are both positive.
Therefore, it is profitable to invest in a battery bank in both countries in our
base case.

Table 5 Results of the valuation. Measures of economic worth of the battery bank.

Germany United Kingdom

NPV (mill. e) 6.1 9.6
Option value (mill. e) 6.5 9.9
Payback period (years) 7.6 6.3
Investment time (years) 2 1
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The project with the highest option value is in the United Kingdom, with a
34% higher option value than the project in Germany. This is due to a higher
price level in the United Kingdom, compared to Germany. However, the results
show that it can be profitable to invest in markets with different characteristics.
This is an important finding, which confirms that battery storage can be a cost
efficient alternative to peak power plants.

The lifetime of a battery bank is 15 years, resulting in additional profits
past the first six (the United Kingdom) and seven (Germany) years (see Table
5). If we compare this to another electric energy storage technology, pumped
hydroelectric storage, the battery bank has a much shorter payback time. The
reason for this is that the upfront investment cost on average is many times
larger for pumped hydroelectric storage.

The average time to invest is after two years in Germany and after one
year in the United Kingdom. We find this numerically by calculating the av-
erage optimal investment time of the 10 000 independent paths. For investors
following a traditional NPV rule, they will invest immediately since both in-
vestments have positive NPV of 6.1 and 9.6 million. When considering the
flexibility to postpone the investment decision for up to ten years, to wait for
a decrease in investment cost, the value of the investment opportunities are
6.5 and 9.9 million.

The real options framework can help policy makers increase their insight on
how to trigger investment in battery storage. As stated earlier, there has been
a reluctance to invest in storage technologies. This investor behavior cannot
be explained by the traditional NPV methodology, which assumes that an
investment will be undertaken as long as the project has a positive NPV. The
real options valuation however explains this behavior by showing that when
there is great uncertainty, investors are favoring the option to wait for more
information. This shows that the reason why investors are not investing in
batteries is not because they are not profitable, but rather that investors are
waiting for the cost of batteries to decrease.

From the economic dispatch we find that batteries most of the time will
offer their services in the balancing market, with the only exceptions being
when there are spikes in the spot price. This result indicates that battery banks
earn most of their profit from ancillary services, and only makes a small profit
from time arbitrage of the spot price. In fact, participation in the balancing
market accounts for over 70% of its total revenues. This is consistent with the
results of a growing body of research such as Steffen (2012), Byrne and Silva-
Monroy (2012), Denholm et al (2013) and Xi and Sioshansi (2014). Energy
storage provides more ancillary services than arbitrage, and operating in the
reserve market and arbitrage market simultaneously increases revenues by a
large amount relative to just operating in the arbitrage market alone. This
further demonstrates the importance of convincing investors to rethink how
they choose to operate the battery to maximize its profit. By only considering
revenues from the spot market, investors risk underestimating its value. This
contradicts Faria and Fleten (2011), which found that participating in the
balancing market do not significantly impact the profit of electrical energy
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storage. However, in Faria and Fleten (2011), the producer participates in
a hydro-dominated market, where the production is more flexible and the
demand for balance power is lower than in Germany and the UK.

The main result of this paper is that a battery bank can be profitable under
the conditions given in our base case. This is a contrast to recent published
papers (Reuter et al, 2012; Bradbury et al, 2014; Sioshansi et al, 2009). They
assume that a battery will only operate in the spot market and revenues are
therefore only gained by time arbitrage of the spot price. When we use this
assumption we also find it unprofitable to invest. We find that in this case both
investments have a negative NPV of −12.6 (Germany) and −11.8 million (the
United Kingdom). From our valuation we also find that both projects have
an option value equal to zero, which means that it is never optimal to invest.
These results clearly demonstrate that it is essential for the profitability of a
battery bank to operate in both markets.

4.1 Sensitivity analysis

In this subsection we perform a sensitivity analysis of the option value. We
choose to only consider the German market, as the effects are the same as for
the UK market.

Examining the sensitivity of the option value to volatility in investment
cost, Figure 5 shows how the option value changes with an increase in volatil-
ity from 0 to 30%. The figure illustrates that the option value increases with
volatility, when the volatility changes from 2 to 30%. As the volatility in-
creases, the flexibility of postponing the investment to wait for more informa-
tion is more valuable, i.e. the option holder is encouraged to wait. However,
a surprising result of the analysis is the nonmonotonic behavior of the option
value as the volatility increases. When the volatility increases from 0–2%, the
option value decreases. This is not consistent with the characteristic feature of
the Black-Scholes model; that the sensitivity of the option price with respect
to the underlying assets volatility is always positive, i.e. the option value in-
creases with volatility. Permana et al (2007) argue that this does not contradict
the Black-Scholes model. They reason that by increasing one of the volatilities
it can lead to a lower variability of the spread, that ultimately drives down
the option value. This is exactly the same result we obtain in our analysis,
by increasing the volatility from 0–2% the option value decreases because of
reduced difference between the investment cost and the profit flow. This sug-
gests that for options that has more than one source of uncertainty, the option
value can decrease in some intervals.

Next we will consider the sensitivity of the profit flow, keeping the parame-
ters of the investment cost constant. An important benchmark for investors is
the average annual revenue required to make the investment profitable. Figure
6 shows the option value with respect to average annual revenues. Without
public support, the investment would not be profitable when the annual profit
is expected to be under 0.5 million. When considering operation in both mar-
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Fig. 5 Sensitivity of option value to volatility of the investment cost. The option value
decrease with volatility at very low volatility.

kets, the annual revenue is 1.8 million. It is not likely that it will decrease to
the 0.5 million threshold. On the other hand, when only participating in the
spot market, the annual revenue is 0.2 million. Policy makers therefore have
two options when wanting to trigger investment in battery banks, they can
either give public support or allow batteries to participate in the balancing
market.
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Fig. 6 Sensitivity of option value to the annual revenue. The investment is not profitable
when the battery bank is only operating in the spot market (annual revenue is equal to 0.2
million).
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5 Conclusion

We have analyzed the profitability of investing in a lithium-ion battery bank
in Germany and the United Kingdom, considering the opportunity to operate
in both spot and balancing markets. The value of the investments are found by
applying a real options model, that determines the option value and optimal
investment time for a battery bank under the conditions of uncertain revenue
stream and investment cost. Our results show that batteries can be a cost
efficient solution to help the green transition in Europe. They further show that
investment is profitable in both countries, and that it is optimal to postpone
any investment for at least a year.

The real options model developed in this paper can help policy makers
increase their insight on investor behavior and how to trigger investments.
The results from our analysis show that the reluctance to invest in storage
batteries cannot be explained by batteries being unprofitable, but rather by
high uncertainty. We find that high uncertainty in the development of battery
costs lead investors to favor the option to wait for more information.

From the economic dispatch of the battery bank, we find that operating
the battery bank by time arbitrage of the spot price is not generating high
enough revenues to cover the initial investment cost. This result indicates that
investors should rethink how they choose to operate the battery to maximize
its profit. Participation in the balancing market accounts for more than 70%
of the battery bank’s total revenues. Realizing this opportunity will greatly
increase the expected value of the investment. We therefore point out the
importance of including revenues from the balancing market when valuing
investment in quick responsive electrical energy storage.
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