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SUMMARY 

A direct finite element method is presented for nonlinear earthquake analysis of interacting dam-

water-foundation rock systems. The analysis procedure applies viscous damper absorbing 

boundaries to truncate the semi-unbounded fluid and foundation-rock domains, and specifies at 

these boundaries effective earthquake forces determined from the design ground motion defined 

at a control point on the free surface. The analysis procedure is validated numerically by 

computing the frequency response functions and transient response of an idealized dam-water-

foundation rock system and comparing against results from the substructure method. Because the 

analysis procedure is applicable to nonlinear systems, it allows for modeling of concrete 

cracking, as well as sliding and separation at construction joints, lift joints, and at concrete-rock 

interfaces. Implementation of the procedure is facilitated by commercial finite element software 

with nonlinear material models that permit modeling of viscous damper boundaries and 

specification of effective earthquake forces at these boundaries. 

 

1. INTRODUCTION 

Evaluating the seismic performance of concrete dams requires dynamic analysis of two- or three-

dimensional dam-water-foundation rock systems that recognize the factors known to be 

significant in the earthquake response of dams [1]: dam-water interaction including water 

compressibility and wave absorption due to sediments at the reservoir bottom [2,3]; dam-

foundation rock interaction including inertia effects of the rock [3,4]; radiation damping due to 
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the semi-unbounded sizes of the reservoir and foundation-rock domains [4,5]; spatial variation of 

ground motion [6]; nonlinear behavior of the dam and foundation rock [7–11]. 

 Analysis procedures based on the substructure method have been available since 1984 for 

frequency-domain analysis of the dam-water-foundation rock system [12,13]. These procedures 

model the semi-unbounded domains rigorously and specify the ground motion directly at the 

dam-foundation rock interface; however, they are restricted to homogeneous material properties 

and simple geometry of the reservoir and foundation-rock domains. More importantly, the 

substructure method is restricted to linear behavior of the entire system. Thus, nonlinear effects 

such as concrete cracking and separation and sliding at joints and interfaces cannot be modeled.  

 The direct method of analysis on the other hand, models the entire system in the time-

domain using finite elements. For many years, the dam engineering profession used a FE model 

that included a limited extent of foundation rock, assumed to have no mass, and approximated 

hydrodynamic effects by an added mass of water moving with the dam. The design ground 

motion – typically defined at a control point on the free surface – was applied at the bottom fixed 

boundary of the foundation-rock domain. These approximations are attractive because they 

simplify the analysis greatly, however, such a model solves a problem that is very different from 

the real problem on two counts: (1) the assumptions of massless rock and incompressible water – 

implied by the added mass water model – are unrealistic, as research has demonstrated [1]; and 

(2) applying ground motion specified at a control point on the free surface to the bottom 

boundary of the FE model contradicts recorded evidence that motions at depth generally differ 

significantly from surface motions. In recent years, some engineers have shifted away from this 

approach [14,15].  

To eliminate these unrealistic assumptions, the FE model of the dam must be extended to 

comprise a foundation-rock domain that includes mass, stiffness, and material damping 

appropriate for rock, and a fluid domain that includes water compressibility and reservoir bottom 

sediments. The semi-unbounded foundation-rock and fluid domains must be reduced to bounded 

sizes with appropriate radiation conditions at the domain boundaries to allow propagation of 

outgoing waves. Development of such absorbing boundaries is a vast field with rich literature 

[16–18]. The earthquake motion cannot be specified directly at the model truncations as this 

would render any absorbing boundary ineffective. Instead, effective earthquake forces are 

computed from the earthquake excitation and applied either directly at the absorbing boundaries 

[19–21] or via a single layer of finite elements interior of the absorbing boundaries [22–24].  

 Utilizing these concepts, a direct finite-element procedure for nonlinear analysis of dam-

water-foundation rock systems was developed by Basu [25]. Here, the high performing Perfectly 

Matched Layer (PML) [26] was selected as the absorbing boundary, and the Effective Seismic 

Input (ESI) method [22], also known as the Domain Reduction Method (DRM) [24], was used to 

determine the effective earthquake forces. Although the procedure rigorously incorporates all the 

previously stated factors significant in the earthquake response of dams, the PML boundary and 

DRM procedure are currently not available in most commercial FE codes; the only exception is 

LS-DYNA [27]. Thus, this procedure is not accessible to researchers and practicing engineers 

who, for various reasons, prefer other FE codes. These limitations can be overcome by modeling 

the absorbing boundaries by viscous dampers [28] and specifying the effective earthquake forces 

directly at these boundaries. Both of these features are available in most commercial FE codes 

and are therefore chosen herein.  

 The objective of this paper is to develop a direct finite element method for nonlinear 

analysis of semi-unbounded dam-water-foundation rock systems that incorporates all factors 
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significant in the earthquake response of dams, while ensuring broad applicability by using the 

well-known viscous dampers as absorbing boundaries. The equations of motion for the combined 

dam-water-foundation rock system are derived, and the analysis procedure is validated by 

computing the dynamic response of an idealized dam-water-foundation rock system and 

comparing against results from the substructure method.  
 

 

2. SYSTEM AND GROUND MOTION 

2.1. Semi-unbounded dam-water-foundation rock system 

The idealized, two-dimensional dam-water-foundation rock system (Fig. 1) consists of three 

components: (1) the dam with nonlinear properties; (2) the foundation-rock domain, consisting 

of a bounded region adjacent to the dam that may be nonlinear and inhomogeneous, and a semi-

unbounded region that is restricted to be linear; and (3) the fluid domain, consisting of a bounded 

region of arbitrary geometry adjacent to the dam that may be nonlinear, and a prismatic channel, 

unbounded in the upstream direction, that is restricted to be linear. Thus, nonlinear effects such 

as concrete cracking, sliding and separation at construction joints, lift joints, and concrete-rock 

interfaces, and cavitation in the fluid may be considered in the analysis.  

The earthquake excitation is defined at a control point at the surface of the foundation 

rock by two components of free-field ground acceleration (Fig. 1): the horizontal component 

( )x

g
a t  transverse to the dam axis, and the vertical component ( )y

g
a t . The surface of the 

foundation-rock is assumed to be at the same elevation in the far upstream and downstream 

directions; this geometric restriction is introduced to define a convenient free-field state of the 

foundation rock in Section 3.  

 

Figure 1.  Semi-unbounded dam-water-foundation rock system showing main components: (1) the dam 
itself; (2) the foundation rock, consisting of a bounded, nonlinear region and a semi-unbounded, linear 

region; and (3) the fluid domain, consisting of an irregular, nonlinear region, and a semi-unbounded 
prismatic channel with linear fluid. 

Nonlinear part of 

foundation rock 

Semi-unbounded, linear foundation rock

Nonlinear dam

Irregular, nonlinear part of fluid domain

Sediments

Prismatic channel 

with linear fluid

Control

point

( )

( )

x

g

y

g

a t

a t



  

 4 

The dam-water-foundation rock system in Fig. 1 will be modeled by a finite-element 

discretization of a bounded system with viscous damper boundaries to represent the semi-

unbounded foundation-rock and fluid domains. The size of the foundation-rock and fluid 

domains included in this FE model is determined by the ability of the absorbing boundaries to 

absorb outgoing (scattered) waves from the dam. If an advanced boundary such as the PML is 

used, a small domain is sufficient to model the fluid and foundation-rock domains (Fig. 2a). In 

contrast, the simple viscous damper boundary selected in this formulation requires much larger 

domains (Fig. 2b).  

 

Figure 2.  Dam-water-foundation rock system with truncated foundation-rock and fluid domains: (a) small 
domain sizes with advanced absorbing boundary; (b) large domain sizes with simple absorbing boundary. 

 

2.2. Governing equations 

2.2.1. Dam and foundation-rock domain   

The equations of motion governing the vector of total displacements r
t
 of the finite-element 

model for the dam with a truncated foundation-rock domain and absorbing boundary Γ f  (Fig. 3) 

are 

 
st( )+ + = + + +mr cr f r R R R R&& &

t t t t t t

h b f
 (1) 

where m  and c  are the mass and damping matrices, respectively; ( )f r
t

 is the vector of internal 

forces due to material response, which may be nonlinear in the dam and adjacent part of the 

foundation rock; R
t

h  and R
t

b  are the vectors of hydrodynamic forces acting at the dam-water 

interface Γ
h
 and water-foundation rock interface Γ

b
, respectively; 

st
R  is the vector of static 

forces, including self-weight, hydrostatic pressures, and static foundation-rock reactions at Γ f ; 

and R t

f
 are the dynamic forces associated with the absorbing boundary Γ f , which includes the 

effect of the excitation caused by seismic waves propagating from a distant earthquake source to 

the dam site, and the radiation condition at the boundary. Expressions for the forces R
t

h , R
t

b  and 

R t

f
 will be derived later. 

 

 

 

 

Advanced absorbing 
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 e.g. viscous dampers
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2.2.2. Fluid domain   

The water in the reservoir is modeled as a linear
†
 inviscid, irrotational and compressible fluid 

moving with zero mean velocity. The boundary conditions for the fluid domain are  

 

ρ∇ ⋅ = − ⋅n n r&&
t

h h hp ,            at Γ
h
, the upstream face of the dam  

ρ∇ ⋅ + = − ⋅n n r&&&
t

b b bp qp ,     at Γ
b
, the reservoir bottom 

0=p ,                                 at the free water surface 

(2a) 
 

(2b) 
 

(2c) 

where p  is the hydrodynamic pressure in the water (in excess of hydrostatic pressure), n
h

 and 

n
b
 are the outward normal vectors to the fluid boundaries Γ

h
 and Γ

b
, respectively; and ρ  is the 

density of water. In addition to the boundary conditions of Eq. (2), an appropriate radiation 

condition must hold at the absorbing boundary Γ
r
. The second term on the left side of Eq. (2b) 

represents the partial absorption of incident hydrodynamic pressure waves by sediments 

invariably deposited at the reservoir bottom, where the damping coefficient q  is given by 

 
1

1

α

α

−
=

+
qC  (3) 

where C  is the speed of pressure waves in water and α  is the reservoir bottom reflection 

coefficient [12,29]. More sophisticated models for the reservoir bottom materials, such as a 

viscoelastic [30] or poroelastic layer [31] are also available.  

Discretizing the fluid domain as a finite-element system and defining pt  as the vector of 

hydrodynamic pressures – where the superscript t  has been added for consistency with the 

notation for the total displacements r
t
 – the standard discretization process results in 

 
T Tρ  + + = − + + sp bp hp Q Q r H&& & &&

t t t t t

h b r  (4) 

where s , b  and h  are the "mass", "damping" and "stiffness" matrices of the fluid [32], and H
t

r  

is the vector of forces associated with the absorbing boundary Γr  due to the radiation condition 

and the contribution from earthquake-induced pressures in the part of the fluid that has been 

eliminated. An expression for these forces will be derived later.  

The matrix Q
h

 relates hydrodynamic pressures in the fluid to accelerations of the dam at 

the dam-water interface Γ
h
 according to the boundary condition of Eq. (2a): 

 

T

Γ

= Γ∫Q N n N

h

h h h hd  (5) 

where Nh  and Nh  are the matrices of shape functions associated with the dam nodes and fluid 

nodes, respectively, on the interface Γ
h
. The matrix Q

b
 is computed similarly, but integrated 

over the interface Γ
b
. 

                                                 
†
 The subsequent formulation assumes, solely for convenience of notation, linear behavior also in the irregular part 

of the fluid domain. 
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Figure 3.  Schematic overview of finite-element model of the dam-water-foundation-rock system with 
semi-unbounded domains truncated by absorbing boundaries Γ

f  and Γr . 
 
 

3. INTERACTION AS A SCATTERING PROBLEM 

Dam-water-foundation rock interaction may be viewed as a scattering problem in which the dam 

perturbs the "free-field" motion in an auxiliary state of the system. Procedures based on this idea 

have been developed for analysis of soil-structure interaction problems [22–24], and of dam-

water-foundation rock systems using PML absorbing boundaries [25]. In this section, we will 

utilize these ideas to formulate an analysis procedure for the dam-water-foundation rock system 

with absorbing boundaries modeled by viscous dampers. 

Consider the auxiliary water-foundation rock system defined in Fig. 4a. It consists of 

three subdomains: Ωa
 denotes the foundation-rock region interior to the future absorbing 

boundary Γ f ; 
+Ω f  is the semi-unbounded foundation-rock region exterior to Γ f ; and 

+Ωr  is the 

prismatic fluid channel upstream of the future absorbing boundary Γ
r
. This auxiliary system 

does not correspond to any physical state, but is introduced to facilitate formulation of the 

analysis procedure. The displacements and hydrodynamic pressures in the auxiliary water-

foundation rock system are defined as r
a
 and pa , respectively.  

The dam-water-foundation rock system is also separated into three subdomains (Fig. 4b): 

Ω  denotes the dam and adjacent foundation rock and fluid regions interior to Γ f  and Γ
r
, and 

+Ω f  and 
+Ωr  are the semi-unbounded foundation-rock and fluid domains exterior to Γ f  and Γ

r
; 

these are identical to the exterior regions of the auxiliary system. In order to subsequently 

formulate the governing equations for the absorbing boundaries in terms of free-field quantities, 

we define the displacement field and hydrodynamic pressure field in the dam-water-foundation 

rock system by the variables 

 

r
t
 and pt ,                    in the interior region Ω  

−r r
t a

 and  −p pt a ,     in the exterior regions 
+Ω
f  and 

+Ω
r  

(6a) 

 

(6b) 
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The variables chosen in +Ω
f
 and 

+Ωr  represent the scattered motion and scattered hydrodynamic 

pressures, i.e., the perturbation of the motion and pressures in the auxiliary water-foundation 

rock system due to the presence of the dam and irregular foundation-rock and fluid regions. This 

choice of variables in the exterior domains will subsequently allow us to formulate the governing 

equations for the absorbing boundaries in a way that the unknown forces R
t

f  and H
t

r  associated 

with Γ f  and Γ
r
 (Eqs. 1 and 4) can be determined from r

a
 and pa . 

 

Figure 4.  Illustration of dam-water-foundation rock interaction as a scattering problem: (a) auxiliary 
water-foundation rock system in its "free-field" state with variables defined by p

a  in +Ω
r
 and r

a  in 
+Ω ∪ Ωa

f
 ; (b) dam-water-foundation rock system with variables defined by p

t  and r
t  in Ω  and the 

scattered variables −p p
t a  in +Ω

r
and −r r

t a  in +Ω f
.  

 

4. VISCOUS DAMPER ABSORBING BOUNDARIES 

A set of continuously distributed viscous dampers enforces the one-dimensional radiation 

condition for waves that impinge perpendicular to the foundation-rock boundaries [28]: 

 0σ ρ+ =&f pV u           0τ ρ+ =&
f sV w  (7) 

where σ  and τ  are the normal and tangential boundary tractions; u  and w  are the normal and 
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Ω
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tangential displacements
†
; ρ f  is the density of the foundation medium; and pV  and 

s
V  its 

pressure-wave velocity and shear-wave velocity. The viscous damper is a perfect absorber of 

body waves that arrive normal to the boundary, but only a partial absorber for body waves 

impinging at an arbitrary angle and for surface waves. However, the accuracy is generally 

acceptable provided the boundary is placed at sufficient distance from the wave source [17]. 

The viscous-damper boundary models the semi-unbounded foundation-rock region 
+Ω
f  

where the displacements were defined by the scattered motion (Eq. 6b), i.e., = −t a
u u u  and 

= −t a
w w w . Because the foundation rock in 

+Ω
f  is assumed to be linear, it follows that the 

tractions associated with the scattered motion are σ σ σ= −t a
 and τ τ τ= −t a

, where σ a  and 

τ a
 are the tractions of the auxiliary water-foundation rock system. Substituting for the scattered 

motion and the corresponding boundary tractions in Eq. (7) and rearranging terms we obtain 

 ( )σ σ ρ= − −& &
t a t a

f pV u u             ( )τ τ ρ= − −& &
t a t a

f sV w w  (8) 

At the upstream truncation of the reservoir , the distributed viscous dampers enforce the 

one-dimensional radiation condition for a fluid [32]:  

 
1

0
∂

+ =
∂

&
p

p
n C

 (9) 

where n denotes the outward normal to the fluid boundary. This viscous-damper boundary 

models the unbounded prismatic fluid channel 
+Ωr  where the scattered pressures −t ap p  was 

chosen as the primary variable (Eq. 6b). Substituting for these in Eq. (9) and rearranging terms 

we obtain 

 ( )1∂ ∂
= − −

∂ ∂
& &

t a
t ap p

p p
n n C

 (10) 

The distributed dampers described by Eqs. (7) to (10) can be lumped at the boundary 

nodes in a discretized model, resulting in discrete viscous dampers with coefficients 

 ρ=p f pc A V         ρ=s f sc A V           /=
r

c A C     (11) 

where pc , 
s

c  and 
r

c  are the coefficients normal and tangential to the foundation-rock boundary, 

and at the fluid boundary, respectively, and A is the tributary area (tributary length in a 2D 

model) for the boundary node. 

 

 

5. EQUATIONS OF MOTION 

The hydrodynamic forces R
t

h  and R
t

b  in Eq. (1) that act on the dam and foundation rock, 

respectively, can be expressed in terms of the hydrodynamic pressures pt  as [32] 

 =R Q p
t t

h h h            =R Q p
t t

b b b  (12) 

                                                 
†
 Temporarily – for convenience of notation – we use u and w instead of r

t
 for displacements. 
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Substituting these expressions into Eq. (1) and combining with Eq. (4) gives the equations of 

motion for the dam-water-foundation rock system with absorbing boundaries: 

 

T T

st

( )

( )( )

ρ

      
+      +       

− +      + 
+ + =      

      

m 0 c 0r r

Q Q s 0 bp p

0 Q Q r R Rf r

0 h p H0

&& &

&& &

t t

t t
h b

t tt
h b f

t t

r

 (13) 

where the coupling matrices Q
h
 and Q

b
 have non-zero entries only on the interfaces Γ

h
 and  

Γ
b
, respectively. The forces R t

f
 and H

t

r  associated with the absorbing boundaries Γ f  and Γ
r
 

are defined by the boundary conditions of Eqs. (8) and (10). These can be written in finite-

element notation as  

  = − − R R c r r& &
t a t a

f f f f f            = − − H H c p p& &
t a t a

r r r r r  (14) 

where c f  is the matrix of damper coefficients pc  and 
s

c ; cr  is the matrix of damping 

coefficients 
r

c ; R
a

f  are the forces consistent with the boundary tractions σ a  and τ a  at Γ f ; and 

H
a

r  the forces consistent with the hydrodynamic pressure gradient /∂ ∂ap n  at Γ
r
. The vectors 

R
t

f , R
a

f , and matrix c f  contain non-zero entries only for nodes on Γ f ; and H
t

r , H
a

r , and cr  

contain non-zero entries only for nodes on Γ
r
. 

Included in Eq. (13) are various interaction effects: dam-foundation rock interaction is 

included directly in the finite-element system matrices, dam-water and water-foundation rock 

interaction is represented by the coupling matrices Q
h
 and Q

b
, respectively, and reservoir 

bottom absorption is represented through the damping matrix b .  

Water-foundation rock interaction is also considered in the exterior domain 
+ +Ω ∪ Ω
f r  

through the variables in Eq. (14): the displacements r
a

f  and forces Ra

f
 at Γ f  include the effects 

of hydrodynamic pressures on the foundation-rock motion, and the pressures p
a

r  and forces H
a

r  

at Γ
r
 include the effects of foundation-rock flexibility on the hydrodynamic pressures.  

5.1. Approximating water-foundation rock interaction 

These quantities are to be determined by analysis of the auxiliary water-foundation rock system 

(Fig. 4a). This expensive analysis may be simplified by ignoring the effects of water-foundation 

rock interaction in 
+ +Ω ∪ Ω
f r  by introducing the following approximations: 

 

0≈r r
a

f f  and 
0≈R R

a

f f  in the foundation-rock domain 
+Ω ∪ Ωa

f  

0≈p p
a

r r  and 
0≈ ≡H H 0

a

r r

†
 in the fluid domain 

+Ω
r  

(15a) 

 

(15b) 

where the free-field motion 
0

rf  and forces 
0

R f  at the boundary Γ f  are computed from analysis of 
+Ω ∪ Ωa

f  – the foundation-rock part of Fig. 4a – alone, thus ignoring the effects of 

hydrodynamic pressures in 
+Ωr  on the foundation-rock motions; and the free-field hydrodynamic 

                                                 
†
 The forces 

0
H

r
 are zero for both horizontal and vertical ground motion because the pressure gradient 

0 /∂ ∂p n  at 

Γr  is zero when the foundation rock is rigid and the reservoir bottom is horizontal. 
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pressures 
0

pr  and forces 
0

Hr  are computed from analysis of 
+Ωr  – the fluid part of Fig. 4a – alone 

with rigid foundation rock, thus ignoring the effects of foundation-rock flexibility on the 

hydrodynamic pressures in 
+Ωr . It has been demonstrated through numerical results that the 

response of gravity dams to horizontal ground motion is essentially unaffected by this 

approximation of water-foundation rock interaction, and that the response to vertical ground 

motion is affected noticeably only for large values of the wave-reflection coefficient α , where 

the approximate result tends to overestimate the response near resonant peaks [25].  

Although the secondary effects of water-foundation rock interaction in 
+ +Ω ∪ Ω
f r  are 

neglected, the dominant effects within the truncated finite-element domain Ω  are still rigorously 

represented by the coupling matrix Q
b
.  

5.2. Final equations of motion 

With the preceding approximations in modeling water-foundation rock interaction, the forces 

R
t

f  and H
t

r  can be determined independently of each other by consideration of the individual 

parts of the auxiliary system, +Ω ∪ Ωa

f
 and 

+Ωr , respectively. Substituting Eq. (14) with the 

approximations in Eq. (15) into Eq. (13), we obtain the final equations of motion for the dam-

water-foundation rock system: 

 

T T

0st

0

( )

( )( )

ρ

+      
+      + +      

− +        
+ + = +        

        

m 0 c c 0r r

Q Q s 0 b cp p

0 Q Q Pf r r R

0 h P0 p 0

&& &

&& &

t t
f

t t
h b r

t t
h b f

t

r

 
(16) 

 

where the effective earthquake forces are  

 

0 0 0= +P R c r&
f f f f

 at the foundation-rock boundary Γ f  

0 0=P c p&r r r  at the fluid boundary Γ
r
 

(17a) 

 

(17b) 

Observe by comparing Eqs. (16) and (13) that the unknown forces R t

f
 associated with the 

absorbing boundary Γ f  have now been expressed in terms of the viscous damper forces c r&
t

f  

and the effective earthquake forces 0P
f

, and H
t

r  associated with Γ
r
 have been expressed in terms 

of the viscous damper forces c p&
t

r  and the effective earthquake forces 
0

Pr . Working with the 

scattered variables in 
+Ω f  and 

+Ωr , and approximating water-foundation rock interaction, has 

enabled us to derive Eq. (17) for the effective earthquake forces in terms of free-field variables 

only. 

In the finite-element model, interface elements are introduced at the dam-water interface 

Γ
h
 and water-foundation rock interface Γ

b
 to couple the dam and foundation-rock with the fluid 

domain through Eq. (5) localized to the element level. Assembly of the interface element 

matrices produces the global matrices involving Q
h
 and Q

b
 in Eq. (16). These coupling terms 

lead to an unsymmetric system of global equations, but this does not pose any major 

complications because recent advances in computer power and equation-solver technology have 

greatly reduced the computational time required to solve sparse unsymmetric systems of linear 

equations. 
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6. FREE-FIELD EARTHQUAKE MOTION  

The free-field motion 0r
f
 required to compute the effective earthquake forces 0P

f
 can be 

determined by various methods. The most general approach is to perform a large-scale 

simulation of seismic wave propagation from an earthquake source to the dam site using physics-

based 3D finite-element or finite-difference models of large regions [33]. The ability of such 

models to generate accurate results depends on the quality of the information available regarding 

the earthquake faults and their rupture characteristics, the geological materials between the 

earthquake source and the site, and local site conditions. Because this information is rarely 

available, such simulations are impractical at the present time, especially for defining motions in 

the high frequency range that is relevant for concrete dams. 

Therefore, the standard procedure is to define the ground motion at the control point (Fig. 

1) to be consistent with a design spectrum. This target spectrum may be the uniform hazard 

spectrum (UHS) determined by probabilistic seismic hazard analysis (PSHA), or a conditional 

mean spectrum. Recorded ground motions are selected, scaled and modified to "match" in some 

sense the target spectrum; alternatively synthetic motions may be developed for an earthquake 

scenario. These methods are well developed for a single component of ground motion; work on 

extending these methods to two- or three components is in progress.  

To determine the required free-field motion 0r
f
 at the boundary Γ f  from the ground 

motion at the control point it is necessary to introduce assumptions on the type of seismic waves 

and their incidence angle. The simplest assumption, often used for site response analyses and 

soil-structure interaction analyses, is vertically propagating SH-waves and P-waves [16,34]. This 

is clearly a major simplification of the actual seismic wave field, which generally consists of a 

combination of vertically and horizontally propagating SH-, SV- and P-waves, and horizontally 

propagating surface waves, but at the present time it seems to be the only pragmatic choice.  

Under the assumption of vertically propagating body waves and homogeneous or layered 

rock in 
+Ω ∪ Ωa

f , the free-field motion 0r
f
 at Γ f  can be obtained by one-dimensional 

deconvolution of the ground motion at the control point, ( )k

g
a t , using well-known procedures; 

software such as SHAKE [34] or DeepSoil [35] can be utilized for this purpose. In principle, the 

deconvolution analysis can provide directly the motion at every nodal point on Γ f , but this 

approach may become cumbersome for a large number of elevations. An alternative method that 

overcomes this problem is presented in the next section.  

 

 

7. COMPUTING EFFECTIVE EARTHQUAKE FORCES 

7.1. Effective earthquake forces at foundation-rock boundary 

7.1.1. Bottom boundary 

Following the method first proposed by Joyner and Chen [36], where the boundary tractions are 

reformulated in terms of the incident and reflected seismic waves, the effective earthquake forces 

at the bottom boundary can be expressed as: 
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0 02=P c r&
f f I

  (18) 

where 
0

rI  is the motion at the bottom boundary due to the incident (upward propagating) seismic 

waves. This equation has the distinct advantage in that it requires only the motion 
0

rI  of the 

incident wave, thus avoiding computation of the free-field tractions required in Eq. (17a). 

Furthermore, the incident motion 
0

rI  is easily computed as 1/2 the outcrop motion
†
 at the bottom 

boundary, which is extracted directly from the deconvolution analysis.  

7.1.2. Vertical side boundaries  

The free-field motion 
0

rf  (and its time derivatives) required to compute the effective earthquake 

forces 
0

Pf  at the vertical side boundaries can be obtained directly from the deconvolution 

analysis; free-field tractions are then computed from one-dimensional stress-strain relations and 

these stresses converted to forces. Alternatively, both quantities can be computed by an analysis 

of the foundation rock in its free-field state: 
+Ω ∪ Ωa

f  in Fig. 4a. Analysis of this system reduces 

to a single column of foundation-rock elements with a viscous damper at its base that is 

subjected to the forces of Eq. (18) and analyzed to determine 0r&
f
 and 0R

f
 at each nodal point 

along the height (Fig. 5a). 

Although straightforward, both of these approaches require the force histories 
0

Pf  at all 

nodal points on the vertical boundaries to be stored for later use in setting up Eq. (17a). Clearly, 

such "book-keeping" may become cumbersome for large models, especially for a three-

dimensional system [21]. These difficulties can be avoided by introducing free-field boundary 

elements in the form of one-dimensional foundation-rock columns at the vertical boundaries that 

are solved in parallel with the main FE model. Such elements have been implemented in 

ABAQUS [37] and FLAC [38]; a complete element formulation can be found in ref. [37]. 

7.2. Effective earthquake forces at fluid boundary 

The effective earthquake forces 
0

Pr  at Γ
r
 are to be computed by analysis of the prismatic fluid 

channel of uniform depth: 
+Ω
r  in Fig. 4a with rigid foundation rock. Horizontal ground motion 

will not generate any hydrodynamic pressures because the reservoir bottom is horizontal, hence 
0 =P 0r . Analysis of the prismatic channel to vertical ground motion reduces to a single column 

of fluid elements of unit width subjected to the force ρ− y

g
a  at its base (Fig. 5b). This analysis 

provides the pressures 
0

pr  (and its time derivatives) that enter in Eq. (17b). 

 

 

8. SUMMARY OF PROCEDURE 

Analysis of the dam-water-foundation rock system subjected to the free-field ground acceleration 

( )k

g
a t , ,=k x y , defined at a control point on the surface of the foundation rock (Fig. 1) is 

organized in three major phases: initial static analysis, linear analyses of the free-field 

foundation-rock and fluid systems, and nonlinear dynamic analysis of the dam-water-foundation 

rock system. 

                                                 
†
 The reflected motion must equal the incident motion at every rock outcrop (stress-free boundary), hence is the 

incident motion identically equal to 1/2 the outcrop motion. 
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Initial static analysis:  

1. Develop a finite-element model for static analysis of the dam-foundation rock system 

with an appropriate material model for the dam concrete and an appropriate (static) model 

for the semi-unbounded foundation rock. 

2. Compute the static response of this system to hydrostatic forces and the self-weight of the 

dam and foundation rock. 

3. Record the static state of the dam and foundation rock, including displacements, stresses 

and strains, and reactions from the foundation rock at the boundary Γ f . 

 

Linear analysis of the free-field foundation rock (Fig. 5a): 

4. Obtain the free-field motion at the base of the foundation-rock model by deconvolution of 

the surface ground motion ( )k

g
a t . 

5. Calculate the effective earthquake forces 0P
f
 at the bottom boundary of the foundation-

rock domain from Eq. (18), with the motion 
0

rI  due to the incident (upward propagating) 

seismic wave taken as 1/2 the outcrop motion extracted from the deconvolution analysis. 

6. Develop a finite-element model for the free-field foundation rock: a single column of 

elements that has the same mesh density as the main FE model adjacent to the vertical 

boundaries, with viscous dampers at the base in the x- and y-directions.  

7. Compute 0r&
f
 and 0R

f
 at each nodal point along the height by analyzing the foundation-

rock column subjected to forces given by Eq. (18) at its base.  

8. Calculate the effective earthquake forces 0P
f

 at the vertical boundaries of the foundation-

rock domain from Eq. (17a) using 0r&
f
 and 0R

f
 from Step 7. 

Steps 6-8 may be avoided if free-field boundary elements [37] are added along the vertical 

boundaries. 

 

Linear analysis of the free-field fluid (Fig. 5b): 

9. Develop a finite-element model for the free-field fluid: a single column of elements of 

unit width with the same vertical mesh density as the fluid adjacent to the boundary Γr , 

add a single line element to model reservoir bottom sediments. 

10. Calculate 
0

p& r  at every nodal point along the height by analyzing the fluid column 

subjected to the force ρ− y

g
a  at its base. 

11. Compute the effective earthquake forces 
0

Pr  at the fluid boundary Γr  from Eq. (17b) 

using 
0

p& r  from Step 10. 

Analysis of the free-field fluid system (Steps 9-11) is not necessary if the ground motion is 

purely horizontal. 

 

Nonlinear dynamic analysis of dam-water-foundation rock system (Fig. 5c): 
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12. Develop a finite-element model of the dam-water-foundation rock system with viscous 

damper boundaries to truncate the semi-unbounded foundation-rock and fluid domains at 

Γ f  and Γ
r
, respectively, using solid and fluid elements for the dam, foundation rock, 

and fluid, as well as dam-water and water-foundation rock interface elements, and line 

elements for the reservoir bottom sediments.  

13. Calculate the response of the finite-element model of the dam-water-foundation rock 

system subjected to the effective earthquake forces 0P
f

 at the boundary Γ
f  computed in 

Steps 5 and 8, 
0

Pr  at the boundary Γr  calculated in Step 11, as well as self-weight, 

hydrostatic forces and static foundation-rock reactions at Γ
f . The static state of the dam 

(Step 3) is taken as the initial state in the nonlinear dynamic analysis. This phase of the 

analysis is implemented by solving Eq. (16). 

 

Figure 5.  Summary of analysis procedure: (a) analysis of single column of foundation-rock elements to 
compute 0

r& f
 and 0

R f
;  (b) analysis of single column of fluid elements to calculate 0

p&
r
 for vertical ground 

motion; (c) application of effective earthquake forces to truncated FE model.  
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9. NUMERICAL VALIDATION 

9.1. System analyzed 

The analysis procedure developed in the preceding sections is implemented in OpenSees [39] 

and validated numerically by computing the dynamic response of the idealized dam-water-

foundation rock system shown in Fig. 6. The idealized dam has a triangular cross-section of 

height H  = 120 m, a vertical upstream face and a downstream face with a slope of 0.8 to 1. The 

concrete in the dam is assumed to be homogeneous, isotropic and linearly elastic, in a state of 

generalized plane stress, with modulus of elasticity 
s

E  = 22.4 GPa, density ρ
s
 = 2483 kg/m

3
, 

and Poisson's ratio ν
s
 = 0.20. The foundation rock is assumed to be homogeneous, isotropic and 

linearly elastic, in a state of generalized plane stress, with modulus of elasticity fE  = 22.4 GPa 

(i.e. /f sE E  = 1) density ρ f  = 2643 kg/m
3
, and Poisson's ratio ν f  = 0.33. Material damping is 

modeled by Rayleigh damping with 2%ζ =
s

 and 2%ζ =f  viscous damping specified for the 

dam and foundation-rock separately; the damping matrix for the complete system is constructed 

by assembling the individual Rayleigh damping matrices for the two subdomains [40]. The 

impounded water has the same depth as the height of the dam, density ρ  =  

1000 kg/m
3
, and pressure-wave velocity C  = 1440 m/s. The reservoir-bottom reflection 

coefficient is selected as α  = 0.75. 

 

 

Figure 6.  Schematic diagram of FE model for idealized dam-water-foundation rock system with viscous 
damper boundaries to truncate semi-unbounded foundation-rock and fluid domains.  

 

The FE mesh for the dam has 15 elements along the base and 29 elements along the 

height. The FE meshes of the dam, foundation-rock and fluid domains match at their respective 

interfaces, with a gradually increasing element size towards the outer edges of the model. The 

maximum element size in the foundation-rock is limited to less than one-tenth of the shortest 

wavelength considered in the analysis to ensure satisfactory wave propagation in the mesh. The 

FE model includes solid and acoustic elements in the dam, foundation-rock and fluid domain; 

interface elements at the dam-water and water-foundation rock interfaces; and line elements at 
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the reservoir bottom. The width (on both sides of the dam) and depth of the foundation-rock 

domain is selected as 4H and 2.5H, respectively; these dimensions are considered sufficiently 

large to minimize wave reflections from the absorbing boundaries for the selected system 

parameters. 

9.2. Frequency response functions for dam response 

Frequency response functions are computed by time-domain analysis of the FE system with free-

field surface motions ( )x

g
a t  and ( )y

g
a t  defined by a harmonic function of unit amplitude. The 

response of the dam for a single excitation frequency is computed by solving Eq. (16) for long 

enough time to determine the amplitude of the steady-state response. The response was also 

computed directly in the frequency domain by the substructure method [12] using the computer 

program EAGD84 [41]. In this program, the foundation rock is modeled as a viscoelastic 

halfspace, the fluid domain is treated as an infinitely long continuum, and the earthquake 

excitation is specified directly at the dam-foundation interface, thus avoiding the need for 

artificial model truncations, absorbing boundaries, and deconvolution of the ground motion. 

Material damping in EAGD84 is modeled by constant hysteretic damping specified by 

the hysteretic damping factors 0.04η =
s

 and 0.04η =f  for the dam and foundation-rock; this 

corresponds to viscous damping ratios of 2%ζ =
s

 and 2%ζ =f . For time-domain analysisthe 

direct FE method, the Rayleigh coefficients 0a  and 1a  are determined by specifying ζ
s
 and ζ f  

at the excitation frequency / 2ω π=f , where ω  is the angular frequency of the harmonic 

excitation, and at f = 1 Hz. This unconventional choice defines frequency-dependent Rayleigh 

damping to be as consistent as possible with frequency-independent hysteretic damping, thus 

ensuring a meaningful comparison of the frequency response functions from the direct FE and 

substructure methods. For the response history analyses to earthquake excitation presented in 

Section 9.3, the Rayleigh damping matrix is constructed by standard procedures [40]. 

9.2.1. Dam-foundation rock interaction   

The frequency response functions for the amplitude of the relative horizontal acceleration at the 

crest of the dam on flexible foundation rock with empty reservoir are presented in Fig. 7. The 

results obtained by the direct method are generally close to those from the substructure method, 

thus validating its ability to model the semi-unbounded dam-foundation rock system. The 

discrepancies observable at some frequencies are due to the inability of the viscous damper 

boundary to perfectly absorb outgoing (scattered) waves from the dam; such discrepancies will 

generally decrease as the size of the foundation-rock domain included in the FE model increases.  

The dam engineering profession has been using a variation of the rigorous method 

summarized in Section 8 wherein the effective earthquake forces 0P
f

 are applied only at the 

bottom boundary, i.e., the forces at the vertical side boundaries are neglected. Initiated by the US 

Bureau of Reclamation [15] and applied to actual projects [14,42], variations of the method have 

also been used by other dam engineering professionals [43]. 

The results obtained from such an analysis procedure are seen to be in significant error 

for both horizontal and vertical ground motion (Fig. 8). These discrepancies arise from the 

inability of this model to reproduce free-field conditions. Attempts have been made to correct for 

this shortcoming by modifying the amplitude and/or frequency content of the input ground 
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motion. However, it is not clear whether such modifications will lead to acceptable results, and 

neither version of the approximate method has been validated against the substructure method.  

 

Figure 7.  Comparison of frequency response functions from direct and substructure methods for the 
amplitude of relative horizontal acceleration at the crest of dam on flexible foundation rock due to 

horizontal and vertical ground motion. Results are plotted against normalized frequency 1/ω ω  where 1ω  
is the fundamental frequency of the dam alone on rigid foundation. 

 

 

Figure 8.  Comparison of frequency response functions from the USBR direct and substructure methods 
for the amplitude of relative horizontal acceleration at the crest of dam on flexible foundation rock due to 
horizontal and vertical ground motion. Results are plotted against normalized frequency 1/ω ω  where 1ω  

is the fundamental frequency of the dam alone on rigid foundation. 
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9.2.2. Dam-water interaction 

The frequency response functions for the amplitude of the relative horizontal acceleration at the 

crest of the dam on rigid foundation rock with impounded water are presented in Fig. 9, where 

the damping ratio for the dam alone is selected as ζ s
= 5% . The results from the direct method 

closely match the results of the substructure method for both horizontal and vertical ground 

motion, thus validating its ability to model the semi-unbounded fluid domain. 

 

 

Figure 9.  Comparison of frequency response functions from direct and substructure methods for the 
amplitude of relative horizontal acceleration at the crest of dam with impounded reservoir due to 

horizontal and vertical ground motion. Results are plotted against normalized frequency 1/ω ω  where 1ω  
is the fundamental frequency of the dam alone on rigid foundation. ζ

s
= 5%. 

 

9.2.3. Dam-water-foundation rock interaction 

The frequency response functions for the amplitude of the relative horizontal acceleration at the 

crest of the dam on flexible foundation rock with impounded water are shown in Fig. 10, where 

they are compared to the substructure method results. Because the computer program EAGD84 – 

where the substructure method is implemented – ignores water-foundation rock interaction 

completely, this interaction is also ignored in the direct method for these validation analyses.  

The results computed by the direct method are generally close to the results from the 

substructure method for both vertical and horizontal ground motion, thus validating its ability to 

model the semi-unbounded dam-water-foundation rock system. The slight differences are 

attributable to the approximate nature of the viscous damper boundary, which is unable to 

perfectly absorb all outgoing waves. 
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Figure 10.  Comparison of frequency response functions from direct and substructure methods for the 
amplitude of relative horizontal acceleration at the crest of dam on flexible foundation rock with 

impounded reservoir due to horizontal and vertical ground motion. Results are plotted against normalized 
frequency 1/ω ω  where 1ω  is the fundamental frequency of the dam alone on rigid foundation. 

 

9.3. Response to transient motion 

To demonstrate the ability of the direct method to accurately compute the response of the dam-

water-foundation rock system to earthquake excitation, the system in Fig. 6 is analyzed for ( )x

g
a t  

and ( )y

g
a t  specified as the S69E and vertical components, respectively, of the ground motion 

recorded at Taft Lincoln School Tunnel during the 1952 Kern County earthquake. The response 

was also computed by the substructure method. The relative horizontal displacements and 

accelerations at the crest of the dam are presented in Fig. 11, and the envelope values of the 

maximum principal stresses in Fig. 12. It can be seen that the results from the direct method 

closely match the results from the substructure method, as expected because of the close 

agreement observed earlier for the frequency response functions.  
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Figure 11.  Relative horizontal displacements and accelerations at the crest of the dam on flexible 
foundation rock with impounded reservoir due to the S69E and vertical components, separately, of Taft 

ground motion. Results are computed by the direct and substructure methods. 

 

 

Figure 12.   Envelope values of maximum principal stresses, in MPa, in dam on flexible foundation rock 
with impounded reservoir due to S69E component of Taft ground motion; initial static stresses are 

excluded. Results are computed by the direct and substructure methods. 
 
 

10. CONCLUSIONS 

We have developed a direct finite element method for earthquake analysis of concrete dams 

interacting with fluid and foundation rock, where the semi-unbounded fluid and foundation-rock 

domains are truncated by absorbing boundaries modeled by viscous dampers. The analysis 

procedure is formulated by interpreting dam-water-foundation rock interaction as a scattering 

problem [24,25] wherein the dam perturbs a free-field state of the system.  

The use of finite elements permits (1) modeling of an arbitrarily shaped dam, foundation-

rock surface and fluid domain, and (2) nonlinear modeling of the dam and adjacent parts of the 
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and reservoir bottom sediments, and the FE model for the foundation-rock domain includes 

mass, stiffness, and material damping appropriate for rock. Thus, the unrealistic assumptions of 

massless rock and incompressible water, sometimes used in dam engineering practice, are 

eliminated. 

The seismic input to the analysis procedure is the design ground motion specified at a 

control point on the free surface. The free-field motion at depth in the foundation-rock is 

determined by deconvolution of this motion.  The effective earthquake forces at the boundaries 

of the foundation-rock and fluid domains are determined from analysis of two individual one-

dimensional free-field systems. Implementation of these analyses is straightforward, and does 

not require modification of the source code of a commercial finite element program.  

The analysis procedure has been validated numerically by computing the frequency 

response functions and transient response of an idealized dam-water-foundation rock system and 

comparing against results from the substructure method. The excellent agreement demonstrates 

that (1) the truncated foundation-rock and fluid models with viscous damper boundaries are able 

to model the semi-unbounded domains; (2) the earthquake excitation is properly defined by the 

effective earthquake forces determined from the free-field variables. 

Because the analysis procedure is applicable to nonlinear systems, it allows for modeling 

of concrete cracking, as well as sliding and separation at construction joints, lift joints, and at 

concrete-rock interfaces. Implementation of the procedure is facilitated by commercial finite 

element software, with their nonlinear material models, that permit modeling of viscous damper 

boundaries and specification of effective earthquake forces at these boundaries. 
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