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Abstract

This thesis is dedicated to Brownian dynamics simulations of rotational diffusion. A
rotation dynamics engine has been implemented and tested. This engine will in the
future be integrated as a part of a complete Brownian dynamics simulation tool. The
special case, when translational motion can be ignored, has thoroughly been studied.

Two choices of generalized coordinates describing angular orientation of the particles
are used. The Euler angles, which constitute the classical choice, and the Cartesian
components of the rotation vector, which was recently introduced as an alternative, are
being compared with regards to computational efficiency. Results from both equilibrium
and non-equilibrium simulations are presented. The consistency of two new algorithms
is demonstrated on systems of free rigid particles with arbitrary surface topographies.
The algorithms make use of only the principal values of the rotational mobility tensor,
assuming the corresponding principal axes coincide with the body-fixed coordinate system.
These three scalars contain all information about the particle surface topography relevant
for rotational diffusion. The calculation of the mobility tensor can be performed in a
pre-calculation step, which makes the algorithm itself highly efficient. Both choices of
generalized coordinates correctly reproduce theoretical predictions, but we have found
that the algorithm using the Cartesian components of the rotation vector as generalized
coordinates outperform its counterpart using the Euler angles by up to a factor 1000 in
extreme cases. The reason for this improvement is that the algorithm using the Cartesian
components of the rotation vector is free of singularities.
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Chapter 1

Introduction

This chapter presents the background, on which the work of this thesis is based. In
addition, a few of the key arguments and results are repeated.

This thesis focuses on Brownian dynamics simulation of rigid particles in dilute solution.
The particles of main interest are biopolymers, which are molecules of biological origin.
The length of these molecules are in the range 1 nm to 1 μm, and their weight are
103 - 107 g/mol. Characteristic times for biopolymer dynamics are in the range ps to
ns. Biopolymers can be divided into three main groups: A) Proteins or polypeptides,
B) Polysaccarides, and C) Polynucleic acids (RNA/DNA). Figure (1.1) shows sketches
of these types of biopolymers. In order to fully understand the functional roles of a
biopolymer, it is often sufficient to study the atomic structure. In many cases, however,
the dynamics of the particle plays an important role, and it is necessary to study the
biopolymer further. For example, the rate of a process, which requires the docking of two
particles, will strongly depend on the fraction of time the two particles have a particular
angular orientation relative to each other.

My main interest was to establish an algorithm able to study the dynamics of such systems.
Dynamics studies are important in order to understand quantitatively measurements of
nanoparticle transport properties. Measurements based on thermally induced density and
conformational fluctuations cannot be analyzed quantitatively without detailed modeling
and analysis of the dynamics. Common are measurements of translational and rotational
diffusion, sedimentation and electrophoresis.

Understanding polymer dynamics is important in industry and technology in connection
with processing of food, plastic manufacture, movement of biological fluids, performance of
lubricants, application of paint etc. During manufacturing and production, the polymers
are in liquid state. The flow and transport properties of polymers differ from standard
Newtonian flow behavior. Some examples of this unusual behavior are shear thinning,
rod climbing, and viscoelasticity. This non-Newtonian flow behavior of polymer liquids
must be considered. Dynamics studies of polymer systems are therefore an important and
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Figure 1.1: A schematic sketch of the three main groups of biopolymers. A) Proteins
(polypeptides), B) Polysaccarides, and C) Polynucleic acids: double helix DNA (”The
DNA Page” http://members.lycos.nl/TheDNApage/index.html)

rapidly growing branch of science.

The theory for describing the Brownian dynamics of polymer models consisting of spher-
ical subunits is well established [5, 6]. For many years it was believed that the extension
to non-spherical subunits would be too difficult and even impossible. The exponential
growth in computer power over the last twenty years has made it possible to perform
quantitative simulations of non-spherical nanoparticles in solution. For instance, the sim-
ulations in this thesis were carried out on standard PCs common in most homes today.
Figure (1.2) provides a sketch of these two polymer models.

To put this thesis into context, a description of the research philosophy of our group is
in order. Our main goal is to make the connection between nanoscopic and macroscopic
properties of rigid particles with arbitrary surface topography in dilute solutions. Our
primary aim is to make predictions of macroscopic properties using simulations, and
deductions of nanoscopic properties from experimental result. The precision of these
predictions and deductions should be at least one order of magnitude higher than the
current standard. The following plan has been devised in order to achieve this goal:

1. Introduce a precise formal theory for the Brownian dynamics of particles with ar-
bitrary shape or surface topography.

2. Develop Brownian dynamics algorithms able to perform quantitative simulations
based on the formal theory described in step 1.
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Figure 1.2: Schematic sketch of two types of polymer models. A) Model consisting of
spherical subunits. B) Model consisting of non-spherical subunits.

3. Implement the sufficiently effective algorithms described in step 2.

4. Perform quantitative simulations of nanoparticles in solution based on the effective
algorithms from step 3.

5. Establish state-of-the-art instruments for precise measurements of nanoparticles in
solution.

6. Perform precise measurements of nanoparticles in solution using the state-of-the-art
instruments from step 5.

The precise formal Brownian dynamics theory of step 1, and the development of the
associated algorithms (step 2) were carried out mainly by Naess and Elgsaeter [7, 8, 9, 10],
and the same authors have initiated work regarding the steps 5 and 6. The implementation
of the algorithms (step 3) and the execution of quantitative simulations based on these
implementations (step 4) are being partly addressed in the current thesis.

By performing computer simulations, one can expose nanoparticle systems to virtually ev-
ery imaginable condition; conditions that are impossible to realize experimentally. At this
point, it is important to remember that, although an important scientific tool, computer
simulations only produce results that are as good, or as bad, as the theory on which they
are based. Computer simulations could therefore never replace real experiments, which
provide true information about the physical system. As such, the experimental steps 5
and 6 are crucial for identifying mistakes in both theory and algorithms. When all the
steps listed above are completed, our intention is to compare simulation results obtained
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Figure 1.3: Integration of theory, simulations, and experiments is important to reach our
declared goal.

in step 4 and experimental data obtained in step 6. By integrating theory, simulations,
and experiments, as shown in Fig. 1.3, we believe that new information and details about
nanoparticle systems are revealed, and that these revelations would be of significant value
for future nanoparticle research and technology.

My thesis is an important part of a project where the primary objective is to develop an
efficient general algorithm for Brownian dynamics simulations of polymers consisting of
arbitrarily shaped rigid particles either free or linked in chains. The goal of this ongoing
project is to include translational-rotational fluid dynamic coupling for each individual
segment, full fluid dynamic interaction between all pairs of segments, freely selectable
linkage points on the particle surfaces, spring potential links, and holonomic constraints.
To ensure that the Brownian dynamics algorithm yields equilibrium results in agreement
with the generalized Boltzmann equilibrium probability densities, generalized coordinates
are used to describe particle translation and angular orientation. This also ensures that the
algorithm at all times yields results consistent with the fluctuation dissipation theorem.

We have chosen the Cartesian components of the rotation vector as generalized coordinates
describing angular orientation. Theoretical studies [9, 10] suggest that this choice should
yield algorithms free of singularities observed when using the Euler angles as generalized
coordinates. The focus of my thesis has been to develop and test the rotational dynamics
engine of the new Brownian dynamics algorithm. These tests have been devised in order to
compare the two choices of generalized coordinates. In order to study the characteristics
of the rotational dynamics engine, we have developed an analytical expression for the 3×3
rotational mobility tensor for the special case when translational motion can be ignored.
Our results indicate that this is a highly efficient method. The systems I have studied
consists of free rigid particles of arbitrarily surface topography.
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Figure 1.4: An illustration of the position of a Brownian particle as a function of time.

1.1 Brownian dynamics simulations

1.1.1 Background

The phenomenon known today as Brownian motion was first discovered by the Dutch
scientist Jan Ingen-Housz in 1784 [11]. However, it was later named after the Scottish
botanist Robert Brown, who in 1827, several years after Ingen-Housz had passed away,
published his work on the subject [12]. Brown studied the erratic and random motion of
small particles originating from pollen grains in water. His initial conclusion was that the
particles moved because the pollen grains were alive, but he later found that particles from
dead pollen grains as well as particles from other materials, such as minerals, also exhibited
the same characteristic motion. Experiments conducted by Brown and others also showed
that the motion depended on particle size, temperature and fluid viscosity. While earlier
explanations of the behavior included evaporation, electric forces, and interaction with
light, the true reason behind this phenomenon was not understood until several years later.
As it turned out, the discovery of Brownian motion became one of the first evidences of
the existence of molecules.

During the late 19th century, the development of kinetic theory of matter brought about
the first qualitative explanation for the motion studied by Brown. The fluid molecules are
in constant thermal motion. The velocity distribution of these molecules, the Maxwell
distribution, depends on the temperature. Suspended particles collide with the solute
molecules, and because of these impacts the particles move. The Brownian motion is the
resultant effect of these collisions. Fig. (1.4) gives an illustration of a two-dimensional
trajectory of a Brownian particle as a function of time. Famous publications on the topic
of Brownian motion include those of Albert Einstein [13] and Paul Langevin [14]. An
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English translation of the latter work is available in [15].

The paper by Langevin presents the first equation describing Brownian motion. The
driving force on the Brownian particle is modeled as random noise containing the full range
of frequency components. Because only the statistical properties of this force are known,
this class of equations is commonly referred to as stochastic differential equations, and
there are similar limitations on what can be predicted about the position coordinates of
the Brownian particles. The Langevin equation yields invaluable insight into the relation
between thermal molecular motions and simple macroscopic diffusion.

Despite its huge success, the Langevin equation appears to be the result of mainly well
educated guessing. It was not until 1969 that Zwanzig [16] for certain systems derived
the rigorous equivalence between the generalized diffusion equations and stochastic dif-
ferential equations describing Brownian motion. He also pointed out the fundamental
importance of this finding with regard to how new Brownian dynamics algorithms should
be established. The procedure initiated by Zwanzig consists of three steps:

I) Development of the generalized diffusion equation (Fokker-Planck equation) for the
molecular model of interest.

II) Establish a stochastic differential equation which yields the same statistical charac-
teristics as the generalized diffusion equation established in step I.

III) Development of a numerical algorithm that yields trajectories with statistical char-
acteristics in agreement with stochastic differential equation established in step II.

This constitutes the Golden Rules of Brownian Dynamics. The theoretical foundation
of step III was published in 1978 by Fixman [17, 18]. In the same year Ermak and
McCammon published another influential work on parts of the same topic [19].

A superb account of all three steps of this process can be found in the monograph published
in 1996 by Öttinger [6]. A highly regarded presentation of the complementary kinetic
theory is available in the book by Bird et. al. [5].

Combining multiple particles into chains has also been an important field of research.
Kramers [20] investigated the statistical behavior of polymer chains using kinetic theory on
beads interconnected by rods. This specific type of polymer chain model has consequently
been named Kramers chains. Rouse [21] and Zimm [22] introduced the bead-spring model,
where the beads are interconnected with spring potentials. For pure Hookean springs, the
bead-spring chain is usually referred to as a Rouse chain. A Kramers chain and a Rouse
chain are shown in Figure (1.5). The first to use kinetic theory in order to derive a Fokker-
Planck equation for polymers in solution was Kirkwood [23]. Because the Hookean spring
potential in principal allows the chain to extend infinitely, several amendments have been
introduced. The most successful in this regard is maybe the FENE model [24], which uses
a non-linear spring force with limited extensibility.
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Figure 1.5: Polymer chain models. A) Kramers chain consisting of spherical beads in-
terconnected by rods. B) Rouse chain consisting of spherical beads interconnected by
Hookean springs.

Rotational Brownian diffusion of large biomolecules has long been a favored topic in bio-
physics. Some of the earliest analytical studies of molecular rotational Brownian motion
were published in 1929 by Debye [25]. Shortly thereafter Perrin solved the rotational
diffusion equation for prolate ellipsoids [26]. In 1960 a full analytical analysis of the rota-
tional Brownian motion of free rigid bodies with arbitrary shape was carried out by Favro
[27]. The theory of anisotropic rotational diffusion has since been applied to the analyses
of the data from a long list of experiments. These include measurements of transient elec-
tric birefringence and dichroism, dielectric relaxation, electron spin resonance line widths,
NMR quadropolar relaxation, fluorescence depolarization and dynamics light scattering.

1.1.2 Simulation techniques

Although the kinetic theory of polymers in solution is well understood, the theory quickly
gets too complicated to be solved analytically. Analytical expressions can be found only
for the simplest cases. In order to obtain results for more complex models and condi-
tions, numerical simulations must be employed. The most common simulation techniques
are Monte Carlo simulations, molecular dynamics simulations, and Brownian dynamics
simulations [28].

Monte Carlo simulations are useful when studying equilibrium properties of particles in
solution. These particles can be free rigid nanoparticles, or long, interconnected polymer
chains. The technique relies on statistical mechanics and generates new states according
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to appropriate Boltzmann distributions. The macroscopic properties are then computed
as an average over an ensemble of particle conformations. However, Monte Carlo simula-
tions are less suited for studying non-equilibrium properties because the non-equilibrium
probability distribution, from which new states are sampled, is rarely known a priori.
Also, the time t is not a parameter in this technique.

The second commonly employed technique, molecular dynamics (MD) simulations, de-
scribes the entire system, nanoparticles and solvent particles, at an atomic scale. All the
atoms behave as if in vacuum, except for interactions with neighboring atoms and external
forces. The deterministic dynamics of the atoms are calculated using classical mechanics,
i.e. Newton’s laws of motion, once the atom coordinates in phase space, atom masses, and
interaction potentials are known. When all this information is available at time t = 0, the
state of the entire system can in principle be determined for any time t in the future. The
time scale of the MD-technique is, however, usually limited to one nanosecond because of
the small time steps required to handle the rapid movement of the solvent molecules. The
large number of variables needed to describe the entire system, and the small time steps,
renders this technique useless for a full MD-simulation of polymers or rigid particles in
solution. A second issue is that after a relatively small number of collisions, a stochastic
element is introduced because of phase space dependent velocity changes resulting from
various types of collisions. The accuracy of computer number representation is not high
enough to deal with these changes. Consequently, the deterministic process still becomes
stochastic.

In Brownian dynamics (BD) simulations, the solvent is modeled as a continuum which
influences the polymers through both a deterministic frictional force and a stochastic
Brownian force. This approach has been used in polymer physics since the late 1970s,
and has been proven as the only feasible alternative for simulations of polymers in solution.

One of the most cited papers on Brownian dynamics is Ermak and McCammon [19]. These
authors carried out simulations for bead-spring chains with fluid dynamic interaction.
Allison and McCammon [29] introduced a similar algorithm using bead-rod chains. This
algorithm proved to yield erroneous results, and Öttinger [30] published an alternative
and correct algorithm. Antosiewicz, Grycuk and Porschke [31] based their algorithm
on the work of Ermak and McCammon, but used the rotation vector to represent the
angular orientation of rigid particles. Brownian dynamics algorithms where the polymer
chains are modeled using non-spherical subunits have been addressed by several authors.
One attempt by Garcia de la Torre [32] involves modeling the non-spherical subunits
using a large number of densely packed beads. This approach has the major drawback
that all beads must be incorporated in the BD-simulations. This has the unfortunate
effect of introducing degrees of freedom that have no physical significance. Most of the
simulation time is spent calculating internal dynamics related to these degrees of freedom.
In addition, the stiffness of the interconnecting springs must be very high, resulting in
very small time steps. Because of this, only the simplest cases can be studied with success
using this approach.
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Figure 1.6: Schematic sketches of A) needle chain, B) needle spring chain, and C) chain of
arbitrarily shaped subunits interconnected with ball socket joints, rigid rods and springs.

In order to avoid this problem, Nyland et al. [33] introduced the first BD-algorithm
for needle chains, which contains only the degrees of freedom relevant for the problem.
The superior efficiency of this algorithm relative to the Ermak-McCammon algorithm
was demonstrated by Skjetne and Elgsaeter [34]. The first algorithm for BD-simulations
using needle spring chains was introduced by Mikkelsen et al. [35], and the authors Klave-
ness and Elgsaeter [36] derived the first algorithm for Brownian dynamics simulations
of polymers consisting of subunits with arbitrary shape interconnected by rigid rod, ball
socket joints or springs. This algorithm is rigorously derived from kinetic theory, and the
aspect of translational-rotational fluid dynamic interactions in BD-simulations of non-
spherical subunits was first introduced in this paper. Naess and Elgsaeter [8] corrected

this algorithm by including the component �F
(m,g)

of the metric force. These authors also
developed the algorithm further by changing the generalized coordinates describing angu-
lar orientation [7, 9, 10]. Substituting the commonly used Euler angles with the Cartesian
components of the rotation vector they arrived at an algorithm free of singularities. Fig-
ure (1.6) shows schematic sketches of needle chain, needle spring chain, and a chain of
arbitrarily shaped subunits interconnected with ball socket joints, rigid rods and springs.

The most popular Brownian dynamics algorithm for rotational diffusion can be traced
back more than two decades [37, 38, 39]. This algorithm is not derived from kinetic
theory. It does not include a set of generalized coordinates, but keeps track of the body-
fixed coordinate system in laboratory coordinates. Consequently, this algorithm does
not follow the Golden Rules of Brownian dynamics described in the previous section.
The formulation of Brownian dynamics algorithms based on the generalized Langevin
equations is notoriously difficult and commonly leads to mistakes. Another such example
is the once highly regarded SHAKE-HI algorithm [29]. In all work done prior to 2003 the
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popular BD-algorithm contained an error in the way the Brownian increment was added.
After more than 20 years of use, this error was finally recognized and corrected by the
introduction of the so-called unbiased rotational move [40].

1.1.3 Generalized coordinates

From classical mechanics, it is known that a rigid particle with no axial symmetries has
six degrees of freedom [41]. This means that at least six coordinates are required in
order to fully describe position and angular orientation of the particle. If the number of
coordinates is identical to the number of degrees of freedom, the coordinates are known
as generalized coordinates. To specify the position and orientation of a rigid body, three
Cartesian coordinate systems are needed as shown in Figure (1.7):

• Laboratory coordinate system with axes (x, y, z) .

• Local coordinate system with origin fixed in the particle and with axes,
(
x(l), z(l), z(l)

)
,

parallel with the laboratory axes.

• Body-fixed coordinate system with both origin and axes,
(
x(bf), z(bf), z(bf)

)
, fixed in

the particle.

The origin of the local and the body-fixed coordinate systems are usually placed in the
particle mass or hydrodynamic center. The position of the origin of the local coordinate
system relative to the laboratory coordinate system is given by the position vector �rc.
This gives the position of the particle, while the orientation of the particle is given by the
orientation of the body-fixed coordinate system relative to the local coordinate system.
The classical choice of generalized coordinates describing particle angular orientation in
Brownian dynamics algorithms are the Euler angles, (φ, θ, ψ), as shown in Figure (1.7).
In this thesis, y-convention Euler angles has been used. The first rotation, φ, is about
the body-fixed z(bf)-axis. The second rotation, θ, is about the new y(bf)-axis, and the last
rotation, ψ, is about the resulting new z(bf)-axis. The term y-convention refers to the
second rotation, which is about the new orientation of the body-fixed y(bf)-axis. In the x-
convention Euler angles, the second rotation is about the body-fixed x(bf)-axis. Note that
in y-convention Euler angles, the first two rotations, φ and θ, are identical to the polar
angles. In chapter 1.1.6, we will demonstrate that using the Euler angles in Brownian
dynamics simulations yields algorithms that contain severe singularities.

The Cartesian components of the rotation vector were recently introduced as an alter-
native in Brownian dynamics algorithms by Naess and Elgsaeter [9]. Figure (1.8) gives
an illustration of this option. The Euler theorem [41] states that, angular orientation
resulting from an arbitrary sequence of individual rotations of a rigid body always can
be obtained by one single rotation of the rigid body about a given axis. For a given final
orientation of the rigid body, both the angle of rotation Φ and the unit vector of the
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Figure 1.7: To fully describe the position and orientation of a particle we need three
Cartesian coordinate systems. The position of the origin of the local coordinate system
is given relative to the laboratory coordinate system by the position vector �rc. The
orientation of the body-fixed coordinate system relative to the local coordinate system is
given by three coordinates, in this case the Euler angles (φ, θ, ψ). The orientation of the
body-fixed axes after the last rotation, ψ, is not shown in this illustration.
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rotation �δ
(a)

are unique. Each angular orientation corresponds to one point in the coor-
dinate space, and vice-versa. The rotation vector describing the new angular orientation

is defined as �a := Φ�δ
(a)

. In the literature, alternative definitions have also been adopted
in otherwise unrelated fields of science [42]. This reference introduce a vector parameter-

ization of rotation (g, �δ
(a)

), where g = g(Φ) is the generating function, and �a := g(Φ)�δ
(a)

.
In this thesis, we have studied the generating function g(Φ) = Φ.

Figure 1.8: Illustration of the Cartesian rotation vector. The Cartesian components of the
rotation vector constitute an alternative to the Euler angles describing particle angular

orientation, and are given by �a = {a1, a2, a3} := Φ�δ
(a)

, where Φ is the angle of rotation

about the unit vector �δ
(a)

. The reference orientation of the body-fixed position vector,

�r, is along the z-axis of the laboratory coordinate system. After a rotation Φ about �δ
(a)

,
the body-fixed position vector is changed to �r′.

The coordinate space of the rotation vector can be subdivided into infinitely many concen-
tric spherical shells around a spherical subspace with its center at the origin of the fixed
Cartesian laboratory coordinate system. The radius of the spherical subspace equals 2π
and the concentric spherical shells all have thickness 2π. Each of these subspaces contain
identical information about the particle angular orientation (Φ and Φ+2π constitute the
same physical orientation). Brownian dynamics simulations can therefore be limited to
any of these subspaces, but for each of these subspaces the numerical algorithms show
weak singularities at the subspace boundaries. The coordinate space can be limited even
further. It can be derived, because of symmetry reasons, that the inner half of the spher-
ical subspace described above, i.e. for a < π, contains all possible particle orientation. In
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chapter 1.1.7, we see that, in this subspace, the BD-algorithm displays no singularities
[10].

The work and papers presented in this thesis contain simulation results based on algo-
rithms using these two choices of generalized coordinates describing angular orientation.

1.1.4 Fokker-Planck equations

The Fokker-Planck equation (diffusion equation) is mathematically a linear second-order
partial differential equation of parabolic type. This equation describes the time evolution
of the probability density in coordinate space, p(�q, t), where �q denotes particle position
and parameter t is time. The equation is also known as the Smoluchowski equation or
Kolmogorov’s forward equation [43]. The Fokker-Planck equation is not restricted to
systems near equilibrium, but may also be applied to systems in a non-equilibrium state.
This equation has the general form [6]

∂

∂t
p(�q, t) = −∑

s

∂

∂qs
[As(�q, t) p(�q, t)] +

∑
tu

∂2

∂qt∂qu
[Dtu(�q, t) p(�q, t)] , (1.1-1)

where �A denotes the drift vector and
⇒

D gives the diffusion properties. The first and
second term on the right hand side is called the drift and diffusion term, respectively.
Thus, the Fokker-Planck equation describes a combined drift and diffusion process with
a continuous time parameter.

For systems with no fluid velocity field, it can be shown, using kinetic and stochastic
theory as well as standard methods from statistical physics, that the general Fokker-
Planck equation for the Brownian motion of rigid molecules reads [6, 8]

∂

∂t
p (�q, t) = −

d∑
i=1

∂

∂qi

⎧⎨
⎩

d∑
j=1

μij
[
F (Φ)
j + F (e)

j + F (m,q)
j

]
p (�q, t)

⎫⎬
⎭

− kB T
d∑
i=1

∂

∂qi

⎧⎨
⎩
⎡
⎣ d∑
j=1

∂

∂qj
μij

⎤
⎦ p (�q, t)

⎫⎬
⎭

+ kB T
d∑

i,j=1

∂

∂qi

∂

∂qj
{μij p (�q, t)} . (1.1-2)

Here, d is the number of degrees of freedom, kB is the Boltzmann constant, and T is the
absolute temperature. The parameters μst are the components of the particle mobility

tensor
⇒
μ. The vector �F

(Φ)
is the conservative spatial force derived from intra molecule

potentials, i.e. excluded volume forces. The force �F
(e)

is the generalized deterministic
force associated with external potentials, such as electric potentials or particle buoyancy.

The generalized metric force �F
(m,q)

ensures that for any choice of generalized coordinates
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and for any positive semi-definite mobility tensor, the equilibrium probability density
equals the Boltzmann distribution.

Except for the simplest system conditions, the Fokker-Planck equation cannot be solved
analytically. When the number of degrees of freedom is large, parabolic partial differential
equations are often impossible to solve using numerical methods. This poses an additional
difficulty. For most particle systems the only viable option is therefore to solve the
equivalent stochastic differential equation, which is the topic of the next section.

1.1.5 Stochastic differential equations

In physics literature, stochastic differential equations are commonly referred to as Langevin
equations, after the French physicist Paul Langewin. The Langevin equation describes
Brownian motion by using Newton’s equation of motion. In this naive approach to
stochastic differential equations, it is assumed that the total force on the particle is the
sum of a frictional force and a random Brownian force. In one dimension we obtain [14, 15]

m
dv

dt
= −ζv + FB, (1.1-3)

where m is the particle mass, and v denotes the time-dependent particle velocity. The
frictional force is proportional to and opposing the motion, and ζ is the frictional coeffi-
cient. The Brownian force is modeled by a stochastic process FB, and is a consequence
of the frequent impacts of fluid particles on the Brownian particle.

History has shown that ”ad hoc” Langevin equations frequently lead to erroneous results.
It is crucial that stochastic differential equations are rigorously derived. In our approach,
the Fokker-Planck equation (1.1-2) is rigorously derived from kinetic theory and in this
section we give the equivalent stochastic differential equation derived from this.

Öttinger [6] states the form of the general stochastic differential equation (SDE) as

d

dt
�q(t) = �A(�q, t) +

√
2

⇒

B (�q, t) · �f(t), (1.1-4)

where the vector �A and matrix
⇒

B are arbitrary, and �f (t) is a stochastic process. Our

algorithm is based on stochastic processes where the integral of �f (t) equals the Wiener
process

d �W (t) :=
∫ t+dt

t

�f (t′) dt′. (1.1-5)

The Wiener process can be realized in several ways. We use a Gaussian process with
zero mean and standard deviation Δt. This way the standard deviation equals the time
step in the numerical algorithm. Because of the large, and fundamental, difference be-
tween deterministic calculus and stochastic calculus, integration of Equation (1.1-4) us-
ing Riemann-integration produces erroneous results. Instead, Ito integration of Equation
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(1.1-4) yields

d�q(t) = �A(�q, t) dt+
√

2
⇒

B (�q, t) · d �W . (1.1-6)

In general, Equation (1.1-6) gives a microscopic description of stochastic processes that,
on the macroscopic level, consists of both drift and diffusion. The drift and diffusion
processes are given as

〈�q(t+ dt)− �q(t)〉 = �A(�q, t) dt (1.1-7)

〈(�q(t+ dt) − �q(t))(�q(t+ dt)− �q(t))〉 = 2
⇒

B (�q, t)·
⇒

B (�q, t)T dt. (1.1-8)

When the drift and diffusion processes described in the Fokker-Planck equation (1.1-
2) and the stochastic differential equation (1.1-6) are identical, the two equations offer
alternative descriptions of the same physical system. This will be satisfied when the drift
vector is the same in both cases, and

⇒

D (�q, t) =
⇒

B (�q, t)· ⇒

B (�q, t)T. (1.1-9)

But, even when a decomposition
⇒

D=
⇒

B · ⇒

B
T

is specified, there is not a one-to-one corre-
spondence between the Fokker-Planck equation and the stochastic differential equation.
The Fokker-Planck equation only specifies the distribution of the stochastic process, and

the stochastic differential equation determines the actual trajectory. If
⇒

B satisfies (1.1-9)

so does
⇒

B ·
⇒

S if
⇒

S ·
⇒

S
T

=
⇒

δ , where
⇒

δ is the unity tensor. In other words, processes de-
scribed by the stochastic differential equation can be different on the microscale, but still
have identical Fokker-Planck equations. This is referred to as weak equivalence.

For rigid molecules, the Itô stochastic differential equation

dqi =
d∑
j=1

μij [F (Φ)
j + F (e)

j + F (m,q)
j ] dt

+ kBT
d∑
j=1

∂

∂qj
μij dt+

√
2kBT

d∑
j=1

Bij dWj (1.1-10)

is weakly equivalent with the Fokker-Planck equation (1.1-2). Both Equation (1.1-9) and
Equation (1.1-10) are valid for any choice of generalized coordinates. It is important to
mention that the stochastic part of the dynamics is expressed in terms of the mobility
tensor for deterministic motion. This is in accordance with the fluctuation-dissipation
theorem [44].

1.1.6 Numerical algorithms

The Itô stochastic differential equation for rigid particles with arbitrary surface topogra-
phy can readily be integrated using the standard Euler-Maruyama integration scheme [6].
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The resulting numerical algorithm reads

qi(t+ Δt) = qi(t) +
d∑
j=1

μij
[
F (Φ)
j + F (e)

j + F (m,q)
j

]
Δt

+ kBT
d∑
j=1

∂

∂qj
μij Δt+

√
2kBT

d∑
j=1

Bij ΔWj, (1.1-11)

or equivalently on vector form

�q(t+ Δt) = �q(t) +
[
⇒
μ ·

(
�F

(Φ)
+ �F

(e)
+ �F

(m,q)
)]

0
Δt

+ kBT

[
∂

∂�q

⇒
μ

]
0

Δt+
√

2kBT
⇒

B0 Δ �W , (1.1-12)

The subscript 0, denotes that this value is obtained at time t. The matrix
⇒

B
(n)

is usually
obtained using Cholesky decomposition of

⇒
μ, but we will demonstrate that there are other

more computationally efficient methods.

The algorithm in Equation (1.1-12) constitutes the natural basis for Brownian dynamics
simulations of systems containing rigid particles provided that the quantitative numerical
values of the mobility tensor are available.

1.1.7 Micro Fluid Dynamics

My main focus in this thesis has been rotational diffusion, and comparing the computa-
tional efficiency of the corresponding algorithms when the Euler angles and the Cartesian
components of the rotation vector are used as generalized coordinates. For such tasks,
it is important to avoid unintentional skewing of the playing field in favor of one or the
other algorithm. In our case, the challenge has been to find a procedure for calculating
the rotational mobility tensor that does not favor the rotation vector over the Euler an-
gles, and vice versa. In this section, we start by giving the theoretical background for the
mobility tensor, followed by how this non-skewed playing field is obtained.

The Navier-Stokes equation for incompressible fluids reads

ρ
D

Dt
�v(κ) = −∇p+ η∇2�v(κ) + ρ �g, (1.1-13)

where ρ is the fluid mass density, �v(κ) is the fluid flow field, D/Dt denotes the substantial

derivative D/Dt = δ/δt + �v(κ) · ∇. Parameter p is the fluid-dynamic pressure, η is the
fluid viscosity, and �g denotes the gravitational field.

The Navier-Stokes equation is non-linear, because the term on the left hand side in the
equation above is of order two in �v(κ). For steady laminar flow ( ∂

∂t
= 0) and no fluid
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inertia effects (ρm�v
(κ) · ∇�v(κ) = 0), the Navier-Stokes equation becomes linear

−∇p+ ηs∇2�v(κ) = −ρ �g. (1.1-14)

This is commonly referred to as creep flow or Stokes flow. A parameter called the Reynolds
number is used to decide if the flow is laminar or turbulent. The Reynolds number is
defined as

Re :=
ρ

η
V0l0, (1.1-15)

where V0 is a typical fluid velocity, and l0 is a relevant length of the problem. For Re ≤
0.1 Eq. (1.1-14) provides a good description of the fluid.

From Eq. (1.1-14) we get the relation between the particle spatial velocity �̇r and the

fluid-dynamic force �F
(fd)

[45]

�F
(fd)

= −
⇒

ζ · (�̇r − �v(κ)). (1.1-16)

In the general case the friction tensor,
⇒

ζ does not exist in a simple form, but for a single
spherical nanoparticle we get

⇒

ζ =

⎛
⎝ ζ(t)

⇒

δ
⇒
0

⇒
0 ζ(r)

⇒

δ

⎞
⎠ (1.1-17)

and

ζ(t) = 6πηsσν (1.1-18)

ζ(r) = 8πηsσ
3
ν, (1.1-19)

where ζ(t) is the translational friction coefficient, ζ(r) is the rotational friction coefficient
and σ is the radius of the spherical particle. The relation between the friction tensor and
the mobility tensor for a single rigid particle is given by

⇒

ζ :=
⇒
μ

−1
. (1.1-20)

Using Eq. (1.1-20) we rewrite Eq. (1.1-16)

�̇r − �v(κ) = − ⇒
μ · �F (fd)

. (1.1-21)

When only deterministic dynamics is studied and inertia forces can be neglected, the force
balance of the particle reads [5]

�F
(fd)

+ �F
(Φ)

+ �F
(e)

= �0, (1.1-22)

where �F
(Φ)

is the conservative force derived from inter-particle potentials, i.e. excluded

volume forces and �F
(e)

is the conservative force due to external potentials, such as particle
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buoyancy. The particle surface topography affects the particle dynamics partly through
the mobility tensor and partly through the excluded volume interactions.

As explained, the main focus of this thesis is rotational diffusion. Calculating the rota-
tional mobility tensor in a manner which does not favor one algorithm over the other is the
essential task when the relative efficiency of the two algorithms is to be compared. This

is achieved by using the 3 × 3 rotational mobility tensor,
⇒
μ

(ω)
, as the starting point for

the calculation. Tensor
⇒
μ

(ω)
gives the relation between torque, �T , and angular velocity,

�ω. For any choice of generalized coordinates, �q, describing angular orientation, there is a
one to one relation between �ω and generalized velocity �̇q given by

�̇q =
⇒

Ξ
(q)

· �ω, (1.1-23)

where
⇒

Ξ
(q)

is the transformation matrix. This gives the following expression for the
rotational mobility tensor, which is equally simple for any choice of generalized coordinates
[7, 2]

⇒
μ

(q)
=

⇒

Ξ
(q)

· ⇒
μ

(ω)· ⇒

Ξ
(q)T

. (1.1-24)

For particles with arbitrary surface topography the rate of energy dissipation associated
with angular velocity, �ω, is given as

W̄ = �T
T· �ω = �T

T· ⇒
μ

(ω)· �T . (1.1-25)

For all non-zero external torque, the rate of energy dissipation in a viscous medium is

always non-negative, i.e. W̄ ≥ 0. This means that the mobility tensor,
⇒
μ

(ω)
, is positive

semi-definite. Because of this, and the fact that the mobility tensor also is symmetric,

there always exists an angular orientation for which
⇒
μ

(ω)
is diagonal. When both the ori-

entation of the principal axes and the principal values of
⇒
μ

(ω)
are known, the components

of tensor
⇒
μ

(ω)
for any possible angular orientation can be found using standard rotation

matrix,
⇒

Ω
(q)

[41, 9]
⇒
μ

(ω)
=

⇒

Ω
(q)T

· ⇒
μ

(ω)

d · ⇒

Ω
(q)

. (1.1-26)

Subscript d denotes a diagonal tensor, and superscript (q) indicates the chosen set of
generalized coordinates.

In the BD-algorithm, we need the matrix
⇒

B defined by
⇒
μ

(q)
=

⇒

B ·
⇒

B
T

. Because there

always exists an orientation where
⇒
μ

(ω)
is diagonal, the following is also always valid

⇒
μ

(q)
=

⇒

Ξ
(q)

·
⇒

Ω
(q)T

· ⇒
μ

(ω)

d ·
⇒

Ω
(q)

·
⇒

Ξ
(q)T

=

[
⇒

Ξ
(q)

· ⇒

Ω
(q)T

·
(
⇒
μ

(ω)

d

)1/2

· ⇒

S

]
·
[
⇒

S
T

·
(
⇒
μ

(ω)

d

)1/2

· ⇒

Ω
(q)

· ⇒

Ξ
(q)T

]

=

[
⇒

Ξ
(q)

· ⇒

Ω
(q)T

·
(
⇒
μ

(ω)

d

)1/2

· ⇒

S

]
·
[
⇒

Ξ
(q)

· ⇒

Ω
(q)T

·
(
⇒
μ

(ω)

d

)1/2

· ⇒

S

]T

(1.1-27)
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provided that that
⇒

S is an orthogonal matrix,
⇒

S ·
⇒

S
T

=
⇒

δ , where
⇒

δ is the unit matrix. In

other words, there exist an infinitely large number of different values of
⇒

B,

⇒

B =
⇒

Ξ
(q)

· ⇒

Ω
(q)T

·
(
⇒
μ

(ω)

d

)1/2

· ⇒

S, (1.1-28)

that all yield the same macroscopic diffusion properties. Each different value of
⇒

B cor-
responds to different Brownian trajectory. However, the trajectory is still a realization
of the probability distribution obtained as a solution of the corresponding Fokker-Planck
equation. This is often referred to as weak equivalence between the stochastic differential

equation and the Fokker-Planck equation. Applying tensor
⇒

S is equivalent to rotating
the Wiener process. The result is also a Wiener process. We also note that, for a given

choice of
⇒

S, the tensor
⇒

B required in the algorithm can be acquired using simple matrix
multiplication, O(2), instead of the Cholesky decomposition, O(3).

The relation between the mobility tensor and particle surface topography described above
is bad news for experimentalists. When someone has experimentally determined the

principal values of
⇒
μ

(ω)
, all that can be said about the particle is that it belongs to

an infinitely large group of particles, all with different surface topographies. Additional
information will always be needed in order to determine the exact geometry of the particle
in the sample. But for someone testing the integrity and numerical efficiency of new
algorithms, this is an ideal situation. When a test has been carried out for one set
of principal values for the mobility tensor, the algorithm has in fact been tested for an
infinitely larger number of surface topographies. Some of these topographies will be highly
irregular, but many of these surface topographies will be highly realistic representations
of biomolecules.

The arguments given above are mathematically similar to those used to describe rotational
kinetic energy of rigid bodies. The rotational kinetic energy of a rigid body can be
expressed in terms of only the principal values of the moment of inertia tensor. For each
set of principal values of this tensor, there exist an infinitely large number of rigid bodies,
all with different surface topography and mass density distributions.

Euler angles

Equation (1.1-24) is independent of the choice of generalized coordinates describing angu-
lar orientation of the particles. Apart from the metric force, only the explicit expressions

for the individual matrix components of
⇒

Ω
(q)

and
⇒

Ξ
(q)

will change if other choices of
generalized coordinates are made.

When y-convention Eulerian angles are used to describe the orientation of the principal

axes of the particle relative to the laboratory coordinate system,
⇒

Ω
(q)

and
⇒

Ξ
(q)

can be
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found in several textbooks on classical mechanics, e.g. Goldstein [41], and read

⇒

Ω
(φθψ)

=

⎛
⎜⎝ cψcθcφ− sψsφ cψcθsφ+ sψcφ −cψsθ

−sψcθcφ− cψsφ cψcφ− sψcθsφ sψsθ
cφsθ sφsθ cθ

⎞
⎟⎠ (1.1-29)

and

⇒

Ξ
(φθψ)

=

⎛
⎜⎝ 0 −sφ cφsθ

0 cφ sφsθ
1 0 cθ

⎞
⎟⎠

−1

. (1.1-30)

In Equations (1.1-29) and (1.1-30) sφ, cφ etc. denotes sinφ and cos φ respectively. It can

be seen that tensor
⇒

Ξ
(φθψ)

is singular for θ = 0 and θ = π.

The equilibrium probability density is given by

p(eq) (θ) ∝ sin θ. (1.1-31)

Cartesian components of the rotation vector

Using the Cartesian components of the rotation vector as generalized coordinates describ-
ing angular orientation gives different rotation and transformation matrices. They can be
found through geometrical considerations [9, 42], and read

⇒

Ω
(a)

=
1

Φ2

⎛
⎜⎝

Φ2 cos Φ −a3Φsin Φ a2Φsin Φ
a3Φsin Φ Φ2 cosΦ −a1ΦsinΦ
−a2ΦsinΦ a1Φsin Φ Φ2 cos Φ

⎞
⎟⎠

+
1 − cosΦ

Φ2

⎛
⎜⎝ a1a1 a1a2 a1a3

a2a1 a2a2 a2a3

a3a1 a3a2 a3a3

⎞
⎟⎠ (1.1-32)

and

⇒

Ξ
(a)

=
1

2

[
1

Φ2
− sinΦ

2Φ (1 − cos Φ)

]⎛⎜⎝ a1a1 a1a2 a1a3

a2a1 a2a2 a2a3

a3a1 a3a2 a3a3

⎞
⎟⎠

+

⎛
⎜⎝

Φ sinΦ
1−cos Φ

−a3 a2

a3
Φ sinΦ
1−cosΦ

−a1

−a2 a1
Φ sinΦ
1−cosΦ

⎞
⎟⎠ . (1.1-33)

It can readily be shown using Taylor series expansion that the tensor
⇒

Ξ
(a)

exhibits no
singularities in the subspace Φ ∈ [0, π〉.
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For the general definition of the rotation vector �a = g(Φ)�δ
(a)

, the equilibrium probability
density is given by

p(eq) (�a) ∝ 1 − cosΦ

[g(Φ)]2 g′(Φ)
. (1.1-34)

When g(Φ) = Φ, this yields [9]

p(eq) (�a) ∝ 1 − cosΦ

Φ2
. (1.1-35)

1.1.8 Metric Force

The metric force for rotational Brownian dynamics reads [6, 35, 46]

�F
(m,rot)

=
1

2
kBT

∂

∂�q
ln
∣∣∣∣⇒m(q,rot)

∣∣∣∣ , (1.1-36)

where the generalized mass tensor
⇒
m

(q,rot)
is given by the following expression for the

rotational kinetic energy

K =
1

2
�̇q

(rot) · ⇒
m

(q,rot) · �̇q(rot)
. (1.1-37)

The rotational kinetic energy may also be expressed as

K =
1

2
�ω · ⇒

m
(ω,rot) · �ω, (1.1-38)

where �ω is the Cartesian angular velocity of the particle and the associated generalized

mass tensor
⇒
m

(ω,rot)
equals the moment of inertia tensor.

Using the transformation matrix
⇒

Ξ
(q)

between the Cartesian angular velocities and the
choice of generalized coordinate velocities we get that

⇒
m

(q,rot)
=

⇒

Ξ
(q)

·
(

⇒

Ω
(q)T

· ⇒
m

(ω,rot)

d · ⇒

Ω
(q)
)
· ⇒

Ξ
(q)T

, (1.1-39)

where
⇒

Ω
(q)

is rotation matrix in terms of the chosen generalized coordinates describing

the angular orientation and
⇒
m

(ω,rot)

d is a diagonal tensor.

This shows that changing the particle mass density distribution only affects the generalized

mass tensor through the numerical values of
⇒
m

(ω,rot)

d , i.e. the principal values of the
moment of inertia tensor.
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Figure 1.9: Typical example of birefringence. In this case the phenomenon is observed in
a CaCO3-crystal.

When the y-convention Euler angles are used as generalized coordinates describing angular
orientation, the analytic expressions for the metric force reads [6, 35, 46]

�F
(m,φθψ)

= kBT
cos θ

sin θ

⎛
⎜⎝

0
1
0

⎞
⎟⎠ . (1.1-40)

This expression is singular for θ = 0 and θ = π. Instead, choosing the Cartesian compo-
nents of the rotation vector yields the following expression for the metric force

�F
(m,a)

= kBT
[

sinΦ

1 − cos Φ
− 2

Φ

]
�δ

(a)
, (1.1-41)

which is non-singular in the subspace used in the algorithm, Φ ∈ [0, π〉.

1.2 Electro-optics

The algorithms have been tested on both equilibrium and non-equilibrium systems. Tran-
sient electrically induced birefringence is the main physical phenomenon I have simulated
in order to verify the output of the algorithms. Figure (1.9) shows a typical example of
birefringence. In this section, a short description of the theoretical framework for transient
electrically induced birefringence is given.

The Maxwell equations treat the optical medium as a continuum [47]. The displacement

vector, �D, is defined as
�D = ε0�E + �P , (1.2-1)
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where ε0 is the permittivity of vacuum, �E is the electric field, and �P equals the total local
density of electric dipole moments. This includes both the solvent and solute molecules.
The electric dipole moment of the rigid molecule ν reads

�P ν =
⇒
αν ·�E , (1.2-2)

where
⇒
αν equals the electric susceptibility or polarization tensor of the rigid particle.

The polarization tensor is positive semi-definite. This means, that for a certain angular
orientation of the molecule, the polarization tensor will be diagonal. The diagonal values
are referred to as the principal values of the polarization tensor, while the axes of the
associated body-fixed coordinate system are referred to as the principal axes of electric
polarization. For most biomolecules, the three principal values of the polarization tensor
will be different. When this is the case, the molecules are said to be optically anisotropic.
Combining Equations (1.2-1) and (1.2-2) yields

�D = ε0�E +
〈
⇒
αν

〉
· �E

=
(
ε0

⇒

δ +
〈
⇒
αν

〉)
· �E

=
⇒
ε · �E, (1.2-3)

where 〈...〉 denotes the ensemble average, and
⇒
ε is the permittivity tensor. For systems

in thermal equilibrium,
⇒
ε= ε0

⇒

δ even when the system contains a multitude of different
optically anisotropic particles.

Most large biomolecules have several fixed electrically charged groups on the surface.
Normally, this also means that these molecules have an associated permanent electric
dipole moment. The presence of an external electric field will then give rise to a torque on
the particle and an associated new equilibrium probability density in the molecule angular
coordinate space. When this is true, the principal values of

⇒
ε will no longer be the same.

As a result, the optical properties of the solution will depend on both the direction and the
polarization of the beam of light that passes through specimen. In such cases, the Maxwell
equations yield that the phase velocity of two light beams with orthogonal polarization
will in general be different. This is referred to as optical birefringence.

In addition, large biomolecules have often so called electrically induced dipole moments.
These dipole moments are highly influenced by an external electric field. As for permanent
electric dipole moments, the induced dipole moments also give rise to a torque. This
torque is caused by the same external electric field. The induced dipole moments will in
turn have an influence on the equilibrium probability density, which consequently affects
the optical birefringence.

Most biomolecules exhibit larger polarizability at low frequencies than at optical frequen-
cies. In measurements of electrically induced birefringence the rise and fall time of the
external electric field pulses can be in the nanosecond range. This means that, for these
types of experiments, the characteristic frequency components of the external field pulses
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are in the GHz range. Optical frequencies are typically about 500000 GHz. The expres-
sion for the electric dipole induced by the external field is analogous to those for optical
frequencies, but the numerical values will in general be different

�P ν =
⇒
α0,ν · �E, (1.2-4)

where
⇒
α0,ν often is often referred to as the ”low-frequency” electric susceptibility. The

dipole moment induced by the external electric field pulse contributes to the alignment of
the molecules parallel to the external electric field, and thus the stationary birefringence of
the sample. The principal axes of the ”low-frequency” polarization tensor will in general
not coincide with the principal axes of the susceptibility tensor at optical frequencies.

The phase velocity of a light beam is inversely proportional to the index of refraction.
The birefringence of the macromolecular solution is defined as

Δn = n‖ − n⊥, (1.2-5)

where n‖ and n⊥ are the indices of refraction for light polarized in directions parallel and
perpendicular to the external electric field, respectively.

For particles with elongated shape it can be shown [48, 49, 50] that, when an external
electric field is applied, the rise of the time-dependent relative birefringence reads

Δn(t)

Δn0
= 1 − 3p2/q

2 (p2/q + 1)
exp (−2DRt) +

p2/q − 2

2 (p2/q + 1)
exp (−6DRt) . (1.2-6)

Here, t is time, Δn0 is the stationary birefringence level, p and q are the dimensionless
permanent and induced dipole moments, respectively, and DR is the macroscopic rota-
tional diffusion coefficient. For a symmetric reversing electric pulse, when the reverse
electric field is applied, the time-dependent relative birefringence is given as

Δn(t)

Δn0
= 1 − 3p2/q

p2/q + 1
[exp (−2DRt) − exp (−6DRt)] . (1.2-7)

In Equations (1.2-6) and (1.2-7), the dimensionless permanent and induced dipole mo-
ments are defined as p := μpE/(kBT ) and q := (αz−αx)E2/(kBT ). The permanent electric
dipole moment equals μp, and the induced electric dipole moment equals the difference
between the polarizabilities αx and αz along the particle axes x and z, respectively. The
parameter E is the amplitude of the external electric field. Equations (1.2-6) and (1.2-7)
are both exact in the limit p → 0 and q → 0. For constant non-zero electric fields these
equations provide accurate estimates of the birefringence only as long as p and q both are
much smaller than 1.

When the external electric field is abruptly turned off, the behavior of the time-dependent
relative birefringence becomes the well-known free decay process

Δn(t)

Δn0
= exp (−6DRt) . (1.2-8)
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Figure 1.10: Theoretical time-dependent relative birefringence. Dimensionless time t∗ =
DRt is used. The system is exposed to one symmetric reversing electric pulse. At time
t∗ = 0, the electric field is switched on, and at time t∗ = 5 the direction of the electric
field is reversed. At time t∗ = 10, the electric field is switched off. Dashed line: Pure
permanent dipole moment (p = 1.0, q = 0.0). Short dashed line: Pure induced dipole
moment (p = 0.0, q = 1.0). Solid line: Combination of permanent and induced dipole
moments (p = 1.0, q = 1.0).
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For rigid particles with other surface topographies, the equations (1.2-6-1.2-8) assume a
different form. For example, the decay process is thoroughly studied by Favro [27] and
Wegener [51]. Figure (1.10) shows the theoretical time-dependent birefringence when
three different systems are exposed to two electric pulses with opposite polarity. Because
of a relatively low signal-to-noise ratio in the simulation results when p and q are very
small, we have for practical reasons studied systems where p and q are slightly larger
than the theoretical recommendations. The theoretical curves are obtained for particles
with pure permanent dipole moment (p = 1.0, q = 0.0), particles with pure induced
dipole moment (p = 0.0, q = 1.0), and particles with both permanent and induced dipole
moments (p = 1.0, q = 1.0). The electric field is switched on at time t = 0, and at time
t = 5 the direction of the electric field is reversed. Finally, following the electric field being
switched off at time t = 10, the system approaches equilibrium where the birefringence is
0.

The stationary birefringence level, Δn0, follows the Kerr law when the potential energy
of the dipole moment in the external electric field is less that the thermal energy (the
thermal regime)

Δn0 = Kλ0 E2. (1.2-9)

Here K is the Kerr constant and λ0 is the wavelength of the light passing through the
system. At high electric field strengths, the molecules orient themselves parallel to the
electric field and a saturation level, Δns, is observed. In the thermal regime, the steady
state is described by

lim
E→0

Δn0

E2
=

Δns
15E2

(
p2 + q

)
. (1.2-10)

This expression provides a relation between the saturation level and the thermal regime
stationary birefringence level, and can be used when the wavelength and the Kerr constant
are unknown.
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Chapter 2

Concluding remarks and future
perspective

This thesis has brought the plan consisting of 6 steps described early in chapter 1 closer
to completion. Steps 1 and 2 were completed in the previous works [8] and [9, 10]. Steps
3 and 4 have been addressed by the current thesis. The work on steps 5 and 6 has been
initiated and has in part been completed, but still there remains some work before the
long term goal has been reached.

Generalized coordinates have been used, rather that other common parameterizations
of angular orientation. This ensures that the algorithm yields equilibrium probability
densities that are in agreement with the generalized Boltzmann equilibrium probabil-
ity densities. Also, the algorithm will at all times produce results consistent with the
fluctuation dissipation theorem.

We have devised a method for comparing the computational efficiency of Brownian dy-
namics algorithms using different generalized coordinates describing angular orientation.
The method is independent of the particle mobility tensor, which means that the calcula-
tion of this tensor can be performed in a pre-calculation step. This leaves the algorithms
themselves unaffected, and the simulations become computationally highly efficient. The
mobility tensor itself can be obtained using already existing methods.

Two choices of generalized coordinates describing angular orientation have been compared:
the Euler angles and the Cartesian components of the rotation vector. The corresponding
algorithms both yield results in agreement with theory as long as the numerical time
steps are small enough. However, as predicted by the theoretical work, the Cartesian
components of the rotation vector prove to be more efficient because of the non-singular
expressions. We have shown that the relative computational efficiency depends on the
physical conditions imposed on the simulations. In extreme non-equilibrium situations,
we have observed a factor 103 in favor of the Cartesian components of the rotation vector.
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In order to compare the algorithms, the nanoparticle systems have been kept as simple
as possible. Consequently, the simulations made in this thesis only involve single rigid
particles with arbitrary surface topographies, for which we have shown that the results are
in accordance with theoretical predictions. Such particles are commercially available, i.e.
proteins, DNA, and RNA. The particular case when translational motion can be ignored,
and thus no coupling between translational and rotational motion, has, in this thesis,
thoroughly been studied. To achieve a complete understanding of Brownian dynamics in
nanoparticle systems, however, coupling between translational and rotational motion is
required. It is also necessary to take into account chains of arbitrarily shaped particles.
The theory exists, and already most of the foundations have been implemented. The inter-
particle constraints or forces, i.e. interconnecting springs or excluded volume, remain.

As stated at the beginning of this text, our long term goal is to obtain predictions from
simulations and experiments that are one order of magnitude more precise than the cur-
rent standard. Substantial progress has been made toward this goal, as now the non-
singular behavior of the Cartesian components of the rotation vector, and the consistency
of our rotational dynamics engine, have both been verified. The simulation tool to obtain
such predictions is therefore much closer to completion. We are aware, however, that a
large amount of work still remains and most likely, unexpected hurdles will appear along
the road. The next natural step is to integrate the rotational dynamics engine into the
complete Brownian dynamics algorithm, which includes translation and rotation of N ar-
bitrarily shaped particles linked together as a polymer, and where complete fluid dynamic
interaction between any particle pair is included.

When all the 6 steps are completed and our long term goal is achieved, it will represent
a major scientific step forward. We will then be able to compare quantitative simulation
results and high-quality experimental data. From this detailed comparison, we expect to
extract new important information about nanoparticle systems, and it will be possible to
provide detailed answers to many of the so far unanswered fundamental questions related
to nanoparticle dynamics.
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Chapter 3

Summary of papers

Paper I [1]:
We compare the two sets of generalized coordinates, the Euler angles and the Cartesian
components of the rotation vector, and describe their advantages and disadvantages. This
is done with respect to diffusion equations and analytical expressions of electro-optics.
We also show that, in a special case, the generalized force associated with Cartesian
components of the rotation vector equals the torque. In addition, we introduce a new
graphical approach to quantitatively track how changes in the Euler angles affect the
rotation vector.

Paper II [2]:
We demonstrate a new Brownian dynamics algorithm that can be used to study free rota-
tional diffusion of rigid particles with arbitrary surface topography. The only parameters
dependent on particle shape are the three principal values of the rotational mobility ten-
sor. These three scalars contain all information about the surface topography relevant for
particle rotational diffusion. The algorithm is highly efficient because the principal values
of the rotational mobility tensor only need to be pre-calculated once. In this paper, the
Euler angles are used as generalized coordinates describing angular orientation.

Paper III [3]:
We present the first report on the merit of using the Cartesian components of the rotation
vector as generalized coordinate describing angular orientation in Brownian dynamics
simulations. This choice of coordinates is compared to the use of the standard choice of
coordinates, the Euler angles. We find that the Cartesian components of the rotation
vector, in some cases, yield more than a 1000-fold increase in computational efficiency.

Paper IV [4]
We study the transient electrically induced birefringence in dilute solutions of rigid parti-
cles in response to external electric field pulses. This is achieved using our new Brownian
dynamics algorithm rigorously derived from kinetic and stochastic theory. Both one sin-
gle electric pulse and two electric pulses with opposite polarity are being analyzed. We
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document that our singularity-free algorithm performs flawlessly, and that it in general
outperforms algorithms based on the Euler angles.
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Abstract

Comparing the Euler angles, the classical choice of generalized coordinates describing the three rotational degrees of freedom of a rigid body,
and the Cartesian rotation vector, we show that they both have their advantages and disadvantages in kinetic theory and Brownian dynamics analysis
of molecular electro-optics. The Eulerian angles often yield relatively simple, yet singular, equations of motion, while their counterparts expressed
in terms of Cartesian rotation vector are non-singular but more complex. In a special case, we show that the generalized force associated with the
Cartesian rotation vector equals the torque. In addition, we introduce a new graphical approach to qualitatively track how changes in the Eulerian
angles affect the Cartesian rotation vector.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Molecular electro-optics; Cartesian rotation vector; Eulerian angles; Brownian dynamics; Theory

1. Introduction

Measuring the response to changes in external electric fields
constitutes an important method for determining nanoparticle,
or macromolecular, structure and function. Studies of electro-
optic phenomena, such as electrically induced birefringence,
are usually performed without much consideration given to
the choice of generalized coordinates employed to specify the
angular orientation of the macromolecules. Depending on the
nature of the studies, this choice can, however, be important.
The classical choice of generalized coordinates for this task is
the Eulerian angles. But the Cartesian rotation vector offers
an interesting alternative set of generalized coordinates. Eu-
ler fathered the theoretical foundation of also the latter choice
of generalized coordinates, and it has lately been successfully
employed in a several fields, such as robotics [1], aerospace
engineering [2], and astronautical sciences [3]. The authors
Naess and Elgsaeter [4,5] use this set of generalized coordinates
to formally derive the conformation space diffusion equations
from kinetic theory. They proceed by employing the equiva-

∗ Corresponding author. Tel.: +47 73593435; fax: +47 73597710.
E-mail address: Stine.Nass@phys.ntnu.no (S.N. Naess).

lent stochastic differential equations as a base for a Brownian
dynamics algorithm for chains with and without holonomic con-
straints.

In this paper, we compare the two choices, Eulerian angles
and Cartesian rotation vector, and explore some of their
advantages and disadvantages. We find that, in molecular
electro-optics analysis, the Eulerian angles often produce
relatively simple analytical expressions. Most often, however,
these expressions are singular. Cartesian rotation vector, on
the other hand, yields quite opposite results—complex, but
non-singular analytical expressions. In a special case, we show
that the conjugated generalized force of the Cartesian rotation
vector simply equals the torque. This is employed to extract
information about the mobility tensor of a rigid body.

2. Eulerian angles

The classical and most common choice of generalized coor-
dinates used to describe the angular orientation of a rigid body
relative to the laboratory coordinate system is the Eulerian an-
gles. In this text, we will only consider y-convention Eulerian
angles, but the principles described and arguments given here
apply to other conventions as well. The y-convention Eulerian
angles are φ, θ, and ψ as shown in Fig. 1.

0927-7765/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.colsurfb.2006.12.007
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Fig. 1. Schematic illustration of the y-convention Eulerian angles. The sequence
of rotations is φ, θ, and ψ.

2.1. Analytical expressions

What are the attractive features of the Eulerian angles that
have made them so popular over the years? One major advantage
of using Eulerian angles in molecular electro-optics, is that many
important relations turn out to be functions of only one of the
Eulerian angles: θ. This analytical simplicity does not appear, as
will be seen, for other choices of generalized coordinates such
as the Cartesian components of the rotation vector.

For example, consider an ellipsoidal rigid nanoparticle with
permanent electric dipole moment aligned along the axis of
rotational symmetry. The electric polarizability is assumed to
be homogeneous through out the nanoparticle. Then, the po-
lar angles φ and θ, a subset of the Eulerian angles, suffice
to represent its orientation. In this case, the potential energy
of the dipole in an external electric field depends only on the
angle θ

V (θ) = −μE cos θ − 1
2ν(α̂1 cos2 θ + α̂2 sin2 θ)E2, (1)

where �E is the external electric field, μ the permanent dipole
moment, and ν is the volume of the body [6]. The parameters α̂1
and α̂2 are the electrical polarizabilities per unit volume when
the electric field is parallel and perpendicular to the axis of rota-
tional symmetry, respectively. The first term is associated with
the permanent dipole moment, while the second is due to the
induced dipole moment.

Another example of an important relation expressed in terms
of only one of the Eulerian angles is the total birefringence of a
homogenous solution or a suspension of nanoparticles [7]

�n = Nν(α̂1 − α̂2)

2n0ε0

∫ π

0
2π sin θ P2(cos θ)f (θ) dθ, (2)

where N is the number of particles per volume, n0 the refractive
index of the solution, ε0 the permittivity of vacuum, and P2(u) is
the second Legendre polynomial P2(u) = (3u2 − 1)/3. The to-

tal birefringence is also a function of θ alone. The mathematical
expression for the dichroism of a solution/suspension is similar,
but this will not be considered here.

The conformation angular diffusion equation [8] shows sin-
gular behavior for θ = 0 and θ = π, but still has a relatively
simple analytical form

1

D(R)

∂Ψ

∂t
= 1

sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+ 1

sin2 θ

∂2Ψ

∂φ2 , (3)

where D(R) is the rotational diffusion coefficient, p(�q, t)
the probability density in conformation space, and Ψ (�q, t) =
p(�q, t)/ sin θ.

All the examples above demonstrate the analytical simplic-
ity that the use of Eulerian angles often offers. In order to nu-
merically simulate the diffusion described by Eq. 3, we employ
Brownian dynamics analysis. In the next section, we will present
some of the results from the Brownian dynamics analysis, and
also consider some of the other consequences of choosing the
Eulerian angles as the generalized coordinates.

2.2. Brownian dynamics analysis

We start the derivation of some aspects of the Brownian dy-
namics formalism from the equilibrium probability density in
phase space. For any choice of generalized coordinates, �q, and
conjugated momenta, �p, the equilibrium probability density in
phase space reads

p(eq,pq)(�p, �q) = exp{−H(�p, �q)/(kBT )}∫∫
exp{−H(�p, �q)/(kBT )} d�p d�q , (4)

where kB is the Boltzmann constant, and T is the absolute tem-
perature. The Hamiltonian equals

H(�p, �q) = 1

2

∑
s

∑
t

[
⇒
m

(q)
]
−1

st pspt + Φ(�q), (5)

where
⇒
m

(q)
(�q) is the generalized mass tensor, and Φ(�q) is the

potential energy. Contraction of Eq. (4) over the momentum
part of the phase space and assuming thermal equilibrium in
this part of the phase space, yield the following conformation
space probability density [9,10]

p(eq,q)(�q) = exp{−Φ(�q)/(kBT )}|⇒m(q)|1/2∫
exp{−Φ(�q)/(kBT )}|⇒m(q)|1/2 d�q

= exp{−[Φ(�q) + Φ(m)(�q)]/(kBT )}∫
exp{−[Φ(�q) + Φ(m)(�q)]/(kBT )} d�q . (6)

In the last part of Eq. (6), we have introduced the potential

Φ(m)(�q) := − 1
2kBT ln |⇒m(q)|. (7)

This new potential corresponds to the force

�F (m)
:= ∂Φ(m)(�q)

∂�q , (8)

which is commonly referred to as the metric force. Using Eule-
rian angles to describe the angular orientation of a rigid body,
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the components of the vector �r∗ = {�r(trans), φ, θ, ψ} constitute
the full set of generalized coordinates. The generalized coordi-
nates for the rigid body center of mass are denoted �r(trans). In
this case, the metric force reads [11]

�F∗(m) = kBT
cos θ

sin θ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

which is singular for θ = 0 and θ = π. It is interesting to note that

the metric force, �F∗(m)
, appears as a consequence of contraction

of the momentum space, yet �F∗(m)
is a function of θ alone, and

not of φ and ψ. Here, the generalized coordinates and conjugated
momenta are per definition treated as independent variables.

The mobility tensor,
⇒
μ(q), is defined by

�̇q := ⇒
μ(q) �F (q), (10)

where �F (q)
is the generalized force associated with the choice of

generalized coordinates. When Eulerian angles are used to de-
scribe the orientation of principal axes of the rotational mobility
tensor relative to the laboratory coordinate system, the mobility
tensor is singular for θ = 0 and θ = π. Naess et al. [12] show
that, for the special case when the first two principal values of the
rotational mobility tensor are equal, μRR

11 = μRR
22 , the rotational

mobility tensor reads

⇒
μ

(RR,φθψ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ
(RR)
11

sin2 θ
0

−μ
(RR)
11 cos θ

sin2 θ

0 μ
(RR)
11 0

−μ
(RR)
11 cos θ

sin2 θ
0

μ
(RR)
33 + μ

(RR)
11 cos2 θ

sin2 θ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(11)

The singularities described above give rise to several difficul-
ties when the Eulerian angles are used as generalized coordinates
in numerical simulations. One standard technique used to reduce
some of these difficulties is to decrease the size of the simula-
tion time steps. If the time steps used in the simulations are too
large, the numerics tend to go astray and the results become less
valuable. Use of too small time steps, on the other hand, sharply
reduces the efficiency of the algorithm. Finding the right balance
is therefore an important task, but not always a simple one. Due
to the singular mobility tensor, one may also experience that a
rigid body , e.g. make excessive jumps in conformation space
even for small numerical time step. As a consequence, caution
must continously be taken when determining the correct quad-
rant of the Eulerian angles.

2.3. Generalized force

The generalized force was introduced in Eq. (10). We will in
this section explore this force further.

Suppose that the rigid body has an ellipsoidal shape and that
the generalized velocities, φ̇, θ̇, and ψ̇, are constant. From clas-
sical mechanics [13], the generalized force is then defined as

�F (q) = ∂(K − V )

∂�q , (12)

where K and V are the kinetic and potential energies, respec-
tively. For simplicity, we assume that the body is located in a
potential free environment, V = 0. Generally, the kinetic energy
is given by

K = 1
2 �̇qT⇒

m
(q) �̇q. (13)

It can readily be verified that the kinetic energy of the ellipsoidal
body equals

K = 1
2 [I1θ̇

2+(I1 sin2 θ+I3 cos2 θ)φ̇2+2I3 cos θφ̇ψ̇ + I3ψ̇
2],

(14)

where the elements of the diagonal inertia tensor are (I1, I1, I3).
For point masses, we have that ∂K/∂�q = �0. In our case the co-
ordinate dependent mass tensor yields the kinetic energy in Eq.
(14). It follows, that the conjugated generalized force for Eule-
rian angles in the absence of external forces (V = 0) reads

�F (φθψ) =

⎛
⎜⎝

0

φ̇2(I1 − I3) sin θ cos θ

0

⎞
⎟⎠ . (15)

Here we have ignored the term containing φ̇ψ̇, as this term van-
ishes during averaging.

We observe from several of the equations in this and the
previous sections that sin θ is a common factor for this choice
of generalized coordinates, and that singularities frequently ap-
pear. In the next section, we take a closer look at some of the
consequences of this factor and investigate the singularities.

2.4. The singularities accompanying Eulerian angles

As we have seen, the use of Eulerian angles results in singular
equations of diffusion dynamics. In kinetic theory, the Eulerian
angles form an orthonormal set of coordinates, just like any
other set of generalized coordinates. Therefore, this cannot be
the reason for these singularities. We now investigate some of
these difficulties.

When viewing the Eulerian angles as regular Cartesian co-
ordinates in a Euclidean three-dimensional space, the ranges of
φ, θ, and ψ form a cuboid. For the planes θ = 0 and θ = π,
however, this choice of generalized coordinates degenerates, as
there exist an infinite number of configurations that correspond
to these two θ-angles.

For a rigid body of ellipsoidal form, the polar angles (φ, θ)
fully describe the orientation of the body. This is a simplifi-
cation compared to using the complete set of Eulerian angles,
but the observations that follow are similar in both cases. The
kinematical metric for this choice of generalized coordinates
reads
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Fig. 2. Schematic illustration of the singularities at the poles that accompanies
the Eulerian angles.

(ds)2 = (dx)2 + (dy)2 + (dz)2 = (dθ)2 + sin2 θ (dφ)2

=
(

dφ

dθ

)T (
sin2 θ 0

0 1

) (
dφ

dθ

)
. (16)

We observe that the space curvature is proportional to sin θ.
Studying Fig. 2 we observe that the kinematical metric in Eq.
(16) becomes very small for a constant θ (dθ = 0) close to the
pole (θ = ε � 1). When ds → 0, the velocity also exhibits the
same behavior, ṡ = ds/dt → 0. After dividing Eq. (16) by (dt)2,
it follows that the velocity has the same form as the kinetic
energy in Eq. (13). It can be shown that the determinant of the

mass tensor in Eq. (13) is |⇒m(q)| ∝ sin2 θ, which is proportional
to the curvature squared. The kinetic energy forms a complete
metric in this space. But, changing the angular velocities would
not change the kinetic energy for configurations where θ is close
to 0. In our case, however, the mass is not a point mass, but rather
coordinate dependent. As seen from Eqs. (7) and (8), this gives
rise to the singular metric force, which in the diffusion equation
forms a particle flux radially from each of the two poles.

A different approach to characterizing the Eulerian angles
consists of observing the surface integral

A =
∫∫

dx dy =
∫∫

|J | dφ dθ, (17)

where J is the Jacobi determinant. The absolute value of the
Jacobi determinant in this case is well known

|J | = sin θ. (18)

The Jacobi determinant has many interpretations [14], one of
which is the volume of a parallelepiped in n-dimensional space.
This volume is most often seen as a factor in the infinitesimal
volume element in multiple integrals. Near the poles, θ = 0 or
θ = π, this volume is close to 0, and the surface integral (17)
vanishes, even when taking large ϕ-steps.

3. Rotation vector

We observed in the previous section that the Eulerian angles
resulted in relatively simple analytical expressions for both the
potential energy of a dipole in Eq. (1) and the total birefringence
in Eq. (2). As we will show, this is not the case for the Carte-

sian rotation vector. But first, we give a short introduction to
vector parameterization of angular orientation and the Cartesian
rotation vector.

3.1. Vector parameterization

The rotation vector is a vector parameterization of rigid body
rotation that originates from Euler. Vector parameterizations of
rotation form a general class of techniques based on a minimal

set of parameters. This set consists of the pair (p, �δ(a)
), where

p = p(Φ) is the generating function of the parameterization and
Φ is the rotation angle about the unit vector of the axis of rotation
�δ(a)

. The generating function must be an odd function Φ, and
have the limit behavior

lim
Φ→0

p(Φ)

Φ
= κ, (19)

where � is a real normalization factor. Bauchau and Trainelli [2]
presents a number of generating functions, including p(Φ) = Φ.
Naess and Elgsaeter [4,5] uses this choice of parameterization
to formally derive conformation space diffusion equations from
kinetic theory. They proceed by applying the equivalent stochas-
tic differential equations as a base for Brownian dynamics algo-
rithm for chains with and without holonomic constraints. The
vector parameterization framework allows the design of new
parameterizations at will, i.e. in order to satisfy algorithmic re-
quirements.

3.2. Cartesian rotation vector

The Cartesian components of the rotation vector are a set of
generalized coordinates describing angular orientation and are
given by [4]

�a(t) = Φ(t)�δ(a)
(θ(a), φ(a), t) := {a1(t), a2(t), a3(t)}, (20)

where the direction of the unit vector �δ(a)
is specified by the polar

angles θ(a) and φ(a). The angle Φ describes the rotation about �δ(a)
.

The components of �a in the Cartesian space are defined in terms
of the polar representation of the rotation vector

a1 := Φ sin θ(a) cos φ(a) (21)

a2 := Φ sin θ(a) sin φ(a) (22)

a3 := Φ cos θ(a). (23)

For short, we call �a the Cartesian rotation vector. Note that Φ2 =
a2

1 + a2
2 + a2

3. From the definition in Eq. (20), it can be seen that

�a = (Φ + 2πn)�δ(a)
for all integer values of n. This means that

the information associated with each of the following subspaces
in the conformation space Φ ∈ [0, 2π〉, [2π, 4π〉, [4π, 6π〉, . . .
is identical. These subspaces form spherical concentric shells,
one outside the other. Naess and Elgsaeter [5] show that due to

the symmetry �a = (2π − Φ)�δ(a) = −Φ�δ(a)
, all possible angular

orientations of the body are also included in the subspace

Φ ∈ [0, π〉, θ(a) ∈ [0, π], φ(a) ∈ [0, 2π〉. (24)
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The Cartesian components of the rotation vector have not been
employed previously in formal studies of rigid particle kinetic
theory. Naess and Elgsaeter [4] use the choice p(Φ) = Φ and
provide the necessary mathematical expressions for transfor-
mations from �a to the Eulerian angles, and vice versa. In their
preliminary efforts leading up to the latter work, the authors also
found that there exists a choice for p(Φ), which yields a homoge-
nous equilibrium density in the rotation vector conformation
space. This choice appeared not to offer any additional numeric
benefits, and was therefore abandoned. They also present a dia-
gram which shows how to determine φ, θ, and ψ when �a is given.
In our work, we find the additional graphical approach in Fig.
3 to be very helpful. Using this figure, it is quite simple to gain
a qualitative impression for how changes in the Eulerian angles
affect �a. The vectors from the origin to a point in the rigid body
before and after the rotation are denoted �r and �r′, respectively.
For any value of ψ, the rotation vector is located in the plane that
passes through the origin and is orthogonal to the plane defined
by �r and �r′. The angles between this plane and the vectors �r and
�r′ are equal. The exact location of �a in this plane varies when ψ

is changed. For ψ = 0, the position of �a in this plane depends
on the value of φ.

We end this section by illustrating how a plane with con-
stant coordinate value transforms between Eulerian angles and

Fig. 3. Schematic illustration of how to determine the rotation vector for a given
set of Eulerian angles. The vectors from the origin to a point in the rigid body
before and after the rotation are denoted �r and �r′, respectively. The orientation in
Eulerian angles are (φ, θ, ψ). For any value of ψ, the rotation vector �a is located
in the �a-plane, which passes through the origin, and is orthogonal to the plane
determined by the vectors �r and �r′. The angles between the �a-plane and the
vectors �r and �r′ are identical. The exact position of �a varies when ψ is changed.
For ψ = 0, the position of �a is a function of φ.

Cartesian rotation vector. Fig. 4 shows the plane ψ = 0 in vari-
ous coordinate systems. Using Cartesian coordinates, this plane
is the familiar sphere with the singularities at the poles. Trans-
formation to Cartesian rotation vector, however, yields a non-
singular surface in �a-space. The surface is formed as a ridge
that runs along the negative a1-axis. Rotational diffusion in Eu-
lerian polar coordinates (φ, θ) transforms into diffusion on this
ridge.

3.3. Analytical expressions

After this compact introduction to the Cartesian rotation vec-
tor, we now compare some of the mathematical expressions pre-
sented in the previous section for the Eulerian angles with their
Cartesian rotation vector counterparts. To obtain an expression
for the potential energy of the dipole described earlier, we may
apply Eq. (23) and a relation given in ref. [4]

cos θ = 1 − (1 − cos Φ) sin2 θ(a). (25)

Then, the potential energy reads

V (�a) = −μE

{
1 − (1 − cos |�a|)

(
1 − a2

3

|�a|2
)}

− να̂1

2

{
1 − (1 − cos |�a|)

(
1 − a2

3

|�a|2
)}2

− να̂2

2

⎡
⎣1 −

{
1 − (1 − cos |�a|)

(
1 − a2

3

|�a|2
)}2

⎤
⎦E2. (26)

This expression is more complex than its Eulerian angle counter-
part, because all three Cartesian components of the rotation vec-
tor are needed. The expression describing the total birefringence
is even more complex and will not be given here. However, using
Eq. (25) and other similar expressions given by Naess and El-
gsaeter [4], numerical values can easily be obtained and they are
all without singularities for |�a| ∈ [0, π〉. These singularity-free
expressions are the main advantages of the Cartesian rotation
vector components.

If we consider a spherical rigid body with no external forces
acting on it, and we assume that the equilibrium probability
density in conformation space is separable, p(�a, t) = Ψ (�a)f (t),
the conformation space diffusion (Fokker–Planck) equation in
Cartesian components of the rotation vector reads

∂2Ψ

∂�a2 − ∂

∂�a
[(

sin |�a|
1 − cos |�a| − 2

|�a|
) �a

|�a|Ψ
]

= λ

kBTμ0
Ψ, (27)

where μ0 is the diagonal element of the rotational part of the mo-
bility tensor, and λ is a time constant derived from ∂f/∂t = λf .
Eq. (27) is non-singular in the subspace given by |�a| ∈ [0, π〉.

3.4. Brownian dynamics analysis

The Cartesian components of the rotation vector in the sub-
space given by |�a| ∈ [0, π〉, do not have the singularity difficul-
ties associated with the Eulerian angles, and therefore may be
the preferred choice for numerical simulations. Following the
same procedure as for Eulerian angles, Naess and Elgsaeter [4]
show that the expression for the metric force using Cartesian
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Fig. 4. (Top) Eulerian angles. The surfaces with constant ψ are planes parallel to the plane defined by the φ- and θ-axes. The shown plane corresponds to constant ψ

(ψ = 0), and φ ∈ [0, 2π〉 and θ ∈ [0, π〉. (Bottom left) The surface that corresponds to constant ψ using polar coordinates in a regular Cartesian coordinate system.
(Bottom right) The same surface transformed into Cartesian rotation vector space.

components of the rotation vector is given by

�F (m,rot) = kBT

[
sin |�a|

1 − cos |�a| − 2

|�a|
]

�δ(a)
. (28)

Using power series expansions, it may easily be verified that
Eq. (28) shows no singularity for |�a| = 0. In fact, the met-
ric force equals �0 for �a = �0. The metric force is singular for
|�a| = Φ = 2nπ, for integer n ≥ 1. However, the fortunate find-
ing that the numerical simulation can be limited to the part of
conformation space given by |�a| ∈ [0, π〉 facilitates avoiding this
problem.

Naess and Elgsaeter [5] also demonstrate that the mobility

tensor
⇒
μ

∗(a)
in Cartesian rotation vector conformation space

shows no singularities.

3.5. Generalized force

Expressed in terms of the Cartesian rotation vector compo-

nents, the rotational mobility tensor,
⇒
μ

(a)
, is defined by

�̇a := ⇒
μ

(a) �F (a)
, (29)

where �F (a)
is the generalized force associated with the Cartesian

rotation vector components of the body in question. For a rigid
body of ellipsoidal symmetry rotating with angular velocity �ω
about its axis of rotational symmetry and the unit vector of �ω
being time independent, the kinetic energy reads

K = 1
2I1 �ω2 = 1

2I1Φ̇
2. (30)

Here, I1 equals the principal value of the moment of inertia
about the axis of rotational symmetry. When the axis of rotation
coincides with the a1-axis, the angle of rotation equals a1, and
the expression for K becomes

K = 1
2I1ȧ

2
1. (31)

For a potential V (a1) = −T1a1, where T1 is the torque and a1 is
the angle of rotation, the conjugated generalized force reads

F
(a)
1 = ∂

∂a1
(K − V ) = −∂V (a1)

∂a1
= −∂(−T1a1)

∂a1
= T1. (32)

This means, in this special case, that the conjugated generalized
force of a1 simply equals the torque about the a1-axis. Similar
results are obtained for rigid body rotation about the a2- or thea3-
axis. This suggests that there are only three scalars that determine
the rotational mobility of a rigid body. In turn, this suggests
that in analysis of experimental data, e.g. transient birefringence
of rigid bodies, it is not possible to determine more than three
independent parameters.

4. Conclusion

This text compares the use of the Eulerian angles and the
Cartesian rotation vector components as the generalized co-
ordinates employed to describe the angular orientation of a
rigid body in kinetic theory and Brownian dynamics analysis
of molecular electro-optics. In most cases, the Eulerian angles
yield relatively simple, yet singular, analytical expressions. The
use of Cartesian rotation vector components, on the other hand,
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result in non-singular behavior, but the analytical expressions
tend to be more complex.

In a special case, we show that the generalized force associ-
ated with the Cartesian rotation vector equals the torque. In ad-
dition, we introduce a new graphical approach to qualitatively
track how changes in the Eulerian angles affect the Cartesian
rotation vector.

The absence of singularities in the numerical algorithms
when the Cartesian rotation vector components are used as
the generalized coordinates represents a major advantage. This
makes the Cartesian rotation vector the most promising choice
of generalized coordinates in numerical analysis of molecular
electro-optics. Implementation and testing of algorithms for this
purpose are in progress, and the results will be published at a
later date.
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