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Abstract

This thesis presents four research papers. In the first three papers we have derived an-
alytical results for the transport properties in unconventional superconductors and fer-
romagnetic systems with multiple broken symmetries. In Paper I and parts of Paper II
we have studied tunneling transport between two non-unitary ferromagnetic spin-triplet
superconductors, and found a novel interplay between ferromagnetism and superconduc-
tivity manifested in the Josephson effect as a spin- and charge-current in the absence of
an applied voltage across the junction. The critical amplitudes of these currents can be
adjusted by the relative magnetization direction on each side of the junction. Furthermore,
in Paper II, we have found a way of controlling a spin-current between two ferromagnets
with spin-orbit coupling. Paper III considers a junction consisting of a ferromagnet and
a non-unitary ferromagnetic superconductor, and we show that the conductance spectra
contains detailed information about the superconducting gaps and pairing symmetry of
the Cooper-pairs.

In the last paper we present a Monte Carlo study of an effective Hamiltonian describing
orbital currents in the CuO2 layers of high-temperature superconductive cuprates. The
model features two intrinsically anisotropic Ising models, coupled through an anisotropic
next-nearest neighbor interaction, and an Ashkin–Teller nearest neighbor fourth order cou-
pling. We have studied the specific heat anomaly, as well as the anomaly in the staggered
magnetization associated with the orbital currents and its susceptibility. We have found
that in a limited parameter regime, the specific heat anomaly is substantially suppressed,
while the susceptibility has a non-analytical peak across the order-disorder transition. The
model is therefore a candidate for describing the breakup of hidden order when crossing
the pseudo-gap line on the under-doped side in the phase diagram of high-temperature
superconductors.
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nal control parameters. In this paper, we consider the broken SU(2) (internal spin)
symmetry of ferromagnetic systems coexisting with (i) the broken U(1) symmetry of
superconductors and (ii) the broken spatial inversion symmetry induced by a Rashba
term in a spin-orbit coupling Hamiltonian. In order to study the effect of these broken
symmetries, we consider tunneling currents that arise in two different systems; tun-
neling junctions consisting of non-unitary spin-triplet ferromagnetic superconductors
and junctions consisting of ferromagnets with spin-orbit coupling. In the former case,
we consider different pairing symmetries in a model where ferromagnetism and su-
perconductivity coexist uniformly. An interplay between the relative magnetization
orientation on each side of the junction and the superconducting phase difference
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is found, similar to that found in earlier studies on spin-singlet superconductivity
coexisting with spiral magnetism. This interplay gives rise to persistent spin- and
charge-currents in the absence of an electrostatic voltage that can be controlled by
adjusting the relative magnetization orientation on each side of the junction. In the
second system, we study transport of spin in a system consisting of two ferromagnets
with spin-orbit coupling separated by an insulating tunneling junction. A persistent
spin-current across the junction is found, which can be controlled in a well-defined
manner by external magnetic and electric fields. The behavior of this spin-current
for important geometries and limits is studied.
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J. Linder, M. S. Grønsleth, and A. Sudbø

Conductance spectra of ferromagnetic superconductors: Quantum transport in a fer-
romagnetic metal/non-unitary ferromagnetic superconductor junction

Physical Review B, 75, 054518 (2007) [3] arXiv:cond-mat/0611242

Recent findings of superconductors that simultaneously exhibit multiple sponta-
neously broken symmetries, such as ferromagnetic order or lack of an inversion center
and even combinations of such broken symmetries, have led to much theoretical and
experimental research. We consider quantum transport in a junction consisting of
a ferromagnetic metal and a non-unitary ferromagnetic superconductor. It is shown
that the conductance spectra provide detailed information about the superconducting
gaps, and are thus helpful in determining the pairing symmetry of the Cooper-pairs
in ferromagnetic superconductors.

Paper IV

M. S. Grønsleth, T. B. Nilssen, E. K. Dahl, C. M. Varma, and A. Sudbø

Specific heat, order parameter, and magnetic susceptibility from fluctuating orbital
currents in high-Tc superconducting cuprates

Preprint

We have performed large-scale Monte Carlo simulations on a two-dimensional gen-
eralized Ising model of thermally fluctuating orbital currents in CuO2-plaquettes of
high-Tc cuprates. The Ising variables represent Cu-Cu bond-currents on the lattice.
The model features intrinsically anisotropic Ising couplings, as well as an anisotropic
next-nearest neighbor interaction which tends to frustrate uniform ordering in the
system. In addition, the model features an Ashkin–Teller nearest-neighbor four-spin
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coupling. We find that the specific heat features a substantially suppressed anomaly
compared to the logarithmic singularity of the 2D Ising model. The anomaly does
not appear to scale with system size for finite antiferromagnetic Ashkin–Teller cou-
pling. We also compute the staggered magnetization of the system associated with
ordering of the orbital currents. We find that the staggered magnetization as well
as its susceptibility has the same characteristics as for the 2D Ising model with a
pronounced and easily discernible non-analytic behavior across the order-disorder
transition. The non-analytic behavior of the staggered magnetization implies that
a field-induced uniform magnetization also will feature non-analyticities across the
phase transition. A prediction from our calculations is therefore that a uniform field-
induced magnetization M0 should have a non-analytic behavior across the pseudogap
line of high-Tc cuprates on the underdoped side, as the staggered orbital magnetic
moment originating with the orbital currents within each unit cell sets in. Specifically,
we predict that M0 induced by a magnetic field H perpendicular to the CuO2-plane
will have the form H/M0 = A+B Θ(Tc−T ) |1−T/Tc|2β, where Θ is a step-function,
and β is a non-universal order-parameter exponent of the staggered magnetization
with a value 1/8 < β < 1/4.
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1 Introduction

Some everyday tools, such as a compass, are based on the discovery of simple physical
principles that reveal themselves in a straight forward way. In the case of the compass,
it was found that a magnetized needle placed in a cork floating in a bowl of water would
have one end pointing towards the (magnetic) north pole. Without further understanding
of the underlying physical concept of magnetism, this device proved extremely useful for
giving directions at sea since some thousand years back.

Today, the fundamental physics behind magnetism is much better understood, due to both
theoretical and experimental scientific research. Consequently, this has led to much more
sophisticated technology, such as devices for storing information on rotating disks coated
in a magnetic material, more commonly known as hard disk drives.

Superconductivity is another “everyday phenomenon”, at least in terms of its wide use in for
example medical imaging. Although one group of superconductors, the so-called conven-
tional superconductors, are well understood even at the microscopic level, there are many
open questions about how high-temperature superconductors really function. Nevertheless,
we are able to make use of their physical properties, without knowing how they really come
about. The aim is, however, to get to know the fundamental underlying physics on the
microscopic scale, and thereby learn how to tweak these materials to, for example, become
superconducting even at room-temperature. The potential for industrial applications is
enormous.

The ancient idea that everything in this world consists of earth, water, air and/or fire,
was rejected long ago. The more modern categorization into solid, liquid or gas states
works well in the kitchen, but is far from sufficient at describing the radically different
properties of a normal conductor and a superconductor, or even distinguishing a magnetic
metal from a non-magnetic one. The concept of broken symmetries, however, is a neat
way of classifying matter. In this scheme, we classify states of matter (primarily) by what
symmetries are “broken” and what the order parameters are. In the case of the magnet
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2 Theoretical Studies of Unconventional Superconductors

in its magnetized state, the order parameter is the magnetization vector, which points in
a given direction in space, and the lost symmetry is the rotational invariance, denoted
SO(3).1 More details on this is left for later treatment in this thesis—the point to be made
here is that this scheme serves as a structured and very powerful way of treating physical
systems theoretically. This will be prominent in this thesis.

Many physical concepts are well understood in their pure form, in which they have been
studied as isolated properties. Tunneling transport between two conventional superconduc-
tors is one example. A conventional superconductor in its superconducting phase possess
what we call a broken U(1)-symmetry, where the state has acquired a given phase. Now, if
we introduce a new broken symmetry to such a system, for example magnetization, char-
acterized by the loss of SO(3)-symmetry as mentioned above, we expect new transport
properties to unfold. Specifically, we would expect the internal magnetic moment of the
electrons to enter the equations. Much of this thesis is concerned with systems that are
characterized by two or more broken symmetries.

Outline

Apart from the papers, this thesis consists of three main introductory parts. In Chapter 2,
a brief introduction to some general concepts is given. It serves as a theoretical base for
what follows, and does not include any motivation for the work. This chapter can be
skipped by the experienced reader. In Chapter 3 more specific formalism and theory is
introduced which form the basis for the papers. Chapter 4 (Paper I-III [1, 2, 3]) and 5
(Paper IV [4]) present the motivation for the work and touch upon the results of the papers.
Acknowledgments can be found in the last chapter.

1Okay, the symmetry is of course not entirely broken—in this case it is rather reduced. It is sometimes
more precise to say that the state is fixed.



2 General concepts

This chapter will provide a brief summary of some mathematical tools and physical con-
cepts that are important for the subsequent discussion. It also serves as an introduction
to the notation used in the papers.

It is not meant as a comprehensive theoretical introduction, but rather to serve as a quick
reminder for readers who are already familiar with the field. Some sections, however,
include some basic notions that are meant for the novice reader. Natural units are used
where suitable.

2.1 Second quantization

In the field of condensed matter physics one is typically interested in calculating physical
observables from a microscopic description of a system. The microscopic model is usually
defined by the Hamiltonian, or in the first quantization formulation, the Hamilton operator.
It can often be described by three terms,

ĤTotal = T̂ + Û + V̂

=
∑

i

p̂2
i

2m
+

∑
i

U(ri) +
∑
i<j

V (ri, rj),
(2.1)

where the first term T̂ describes the kinetic energy of the particles, m is the particle mass,
and p̂ = −i}∇ is the momentum operator. For simplicity we have here assumed that the
external potential U and the particle-particle interaction V are independent of any internal
degrees of freedom, such as the electron spin. The sums are over all N particles in the
system, in the last term only for indices i < j to avoid double counting.

3



4 Theoretical Studies of Unconventional Superconductors

It is the interaction term that makes the Hamiltonian hard to solve—if the last term was
zero, the solution would simply be the sum of the individual single particle solutions.

If we let Ψ(r1, r2, . . . , rN) denote the many-particle wave function that holds all relevant
information about the system, we can (in principle) solve the Schrödinger equation

ĤΨ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN), (2.2)

if we assume a stationary state. Together with a set of boundary conditions1 appropriate
for the system in question, this eigenvalue equation will reveal all valid energy levels E of
the system.

It turns out, however, that when we deal with many-particle systems with identical parti-
cles, such as condensed matter systems where we want to describe the electrons, Eq. (2.2)
usually becomes incomprehensible. We will therefore turn to the second quantized formu-
lation.

Creation and annihilation

The discussion here will be confined to a quick summary of some key properties of the
creation and annihilation operators for fermions. For a more complete introduction to
second quantization2, the books by Gross, Runge and Heinonen [5] as well as Mandl and
Shaw [6] can be recommended.

The state Ψ of an interacting many-particle system is in the second quantized version
expressed in terms of occupation numbers,

|Ψ〉 = | . . . , nλi−1
, nλi

, nλi+1
, . . .〉

=
∏

i

|nλi
〉, (2.3)

where λi is a set of quantum numbers for particle i, for example for the spin projection
σ ∈ ±1 we would have λ = (k, σ) for fermions with momentum k, or λ = (r, σ) in real
space position r. The occupation number nλ denotes how many particles that are in the
given state. For fermions, only one particle can occupy each state, which is known as
the Pauli exclusion principle. Therefore, nλ ∈ {0, 1}, i.e. a state is either occupied or
unoccupied.

The creation operator c†λ and the annihilation operator cλ can alter the state |Ψ〉 according
to

c†λ|Ψ〉 = (−1)[
P

λ′<λ nλ′ ]
√

1− nλ| . . . , (nλ + 1), . . .〉, (2.4a)

cλ|Ψ〉 = (−1)[
P

λ′<λ nλ′ ]
√

nλ| . . . , (nλ − 1), . . .〉. (2.4b)

1It is these boundary conditions that leads to quantization, i.e. discrete energy levels etc.
2Second quantization is often referred to as canonical quantization.
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It follows that cλ|0〉 = 0, where |0〉 is the vacuum state, and for example c†λi
|0〉 =

|0, . . . , 0, 1λi
, 0, . . . , 0〉. The sign in front in (2.4) is due to the anti-symmetric nature of the

fermions, which can be expressed by the anti-commutator relations,

{cλ, c
†
λ′} = δλ,λ′ , (2.5a)

{cλ, cλ′} = 0, (2.5b)

{c†λ, c
†
λ′} = 0, (2.5c)

where {A, B} ≡ AB +BA, and δλ,λ′ is the Kronecker delta in the quantum numbers λ and
λ′.

As an example, the first term T̂ in (2.1), which alone describes a free Fermi gas, can be
expressed by

T̂ =
∑
〈i,j〉,σ

t̃ijc
†
iσcjσ, (2.6a)

where 〈·, ·〉 means that only nearest neighbors should be considered and

t̃ij = 〈λi|
p̂2

2m
|λj〉. (2.6b)

The last equation gives a relation between the operator p̂ and the second quantized matrix
element t̃.

Instead of expressing a given state in terms of the position i, one can use the momentum
space representation, given by the (lattice) Fourier transformation of the fermion operators,

ckσ =
1√
N

∑
i

ciσ e−ik·ri , (2.7a)

ciσ =
1√
N

∑
k

ckσ eik·ri . (2.7b)

This can now be inserted in (2.6a) to give T̂ =
∑

kσ εkc†kσckσ, where εk is the dispersion
relation.

One advantage of the second quantized formulation is that it automatically takes care
of what is known as the quantum mechanical principle of indistinguishability of identical
particles. That is, if one for example interchange two electrons of spin up, the wave-
function will only acquire a phase. This is what leads to the possible sign in (2.4). This
way, one avoids a lot of the redundant information that would otherwise be present in the
wave-function. Furthermore, the formulation is convenient for systems where the particle
number is not conserved, or where a wave-function formulation doesn’t exist.



6 Theoretical Studies of Unconventional Superconductors

HRHL

HT

Figure 2.1: Tunneling between two materials through an insulating layer.

2.1.1 Tunneling formalism

The second quantized notation proves to be useful in other contexts as well. For example,
if we want to study particle transport between two materials separated by an insulating
layer, as shown in Figure 2.1, we can write down the Hamiltonian

H = HL + HR + HT. (2.8)

Here, HL and HR are the isolated parts of the left and right hand side, respectively, and
the tunneling Hamiltonian HT describes the tunneling between the two sides,

HT =
∑
kpσ

(
Tkpc

†
kσdpσ + T ∗

kpd
†
pσckσ

)
. (2.9)

In (2.9) the notation is as follows: On the right side the fermion operator is denoted ckσ

and the momentum is k, whereas on the left side we have dpσ and p. Therefore, the last
term in (2.9) annihilates an electron on the right hand side, and creates an electron on the
left side, i.e. it transfers one electron over the junction. The first term does the opposite.

This formulation was introduced by Cohen in 1962 [7]. Although it might seem as a naive
approach, it was utilized by Josephson to correctly predict the two-particle supercurrent
that arises in superconducting junctions [8], now known as the Josephson current. More
rigorously, it was shown to be correct to the first order in perturbation theory by Prange
[9].3

3Who also acknowledges Josephson’s result in a note.
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2.2 Green’s functions

When describing a condensed matter system, one is often faced with a Hamiltonian of the
form

H = H0 + V, (2.10)

where H0 is a part that can be solved exactly, whereas V includes some interactions that
makes a direct approach extremely hard to pursue, if not impossible. If H0 is chosen so
that the effect of V is small, one can treat V perturbatively. One starts out by describing
the system with H0 alone, and then introduce V as a small correction, to see how that
changes the system. For this approach, the interaction representation is most convenient.
It is a representation that in some sense is a mix of the Schrödinger representation (where
the wave functions are time-dependent and the operators are not) and the Heisenberg
representation (where the operators are time-dependent, and the wave functions are not).
Specifically, in the interaction picture, the operators and wave functions are given a time-
dependence

Ô(t) = eiH0t O e−iH0t

Ψ̂(t) = eiH0t e−iHt Ψ(0),
(2.11)

respectively. In order to calculate the response to the perturbation V , we introduce Green’s
functions.

At zero temperature the single-particle fermion Green function is given by

G(λ1, t1; λ2, t2) = −i〈|Tt cλ1
(t1)c

†
λ2

(t2)|〉, (2.12)

where Tt is time ordering and λ is any quantum number, typically the wave vector k and
spin σ, so that λ = (k, σ). Thus, the Green function represents a propagator ; for t2 < t1
it is the probability amplitude for the propagation of an additional particle in state λ2 at
time t2 to state λ1 at time t1. Here, |〉 represents the ground state, and the operators cλ(t)

are represented in the Heisenberg picture, cλ(t) = ei(H−µN)t cλ e−i(H−µN)t, where µ is the
chemical potential and N is the particle number operator.

2.2.1 Matsubara–Green functions

When we take temperature into account, things get slightly more complicated, because we
need to include the statistical operator e−βH in the treatment. Luckily, Matsubara [10] saw
the formal similarities between this operator and the quantum mechanical time-evolution
operator eiHt. As a result, he introduced thermal (temperature-dependent) Green functions
which we call the Matsubara–Green functions, where the inverse temperature β = 1/kBT
is treated as a complex time.
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The Green function in (2.12) is also valid for non-zero temperatures if we exchange the
brackets with the thermodynamical average, which is a trace over the complete set of states
〈O〉 = Tr[e−β(H−µN−Ω) O], where the thermodynamical potential Ω is given by e−βΩ =
Tr[e−β(H−µN)]. The Matsubara–Green function is given by

G(λ1, τ1; λ2, τ2) = −
〈
Tτ cλ1

(τ1)c
†
λ2

(τ2)
〉

, (2.13)

where cλ(τ) = e(H−µN)τ cλ e−(H−µN)τ . In this notation it is much more convenient to
calculate expectation values by means of Matsubara sums over Matsubara frequencies, and
then get back to the real time Green functions by analytical continuation. The Matsubara
(temperature) Green function can be expressed in frequencies by the Fourier transform

G(λ, τ) =
1

β

∑
iωn

e−iωnτ G̃(λ, iωn) (2.14a)

G̃(λ, iωn) =

∫ β

0

dτ eiωnτ G(λ, τ), (2.14b)

where n is an integer and

ωn =

{
(2n+1)π

β
for fermions.

2nπ
β

for bosons.
(2.15)

The formalism is not restricted to single-particle propagators, and is useful in the deriva-
tion of spin- and charge-currents when using linear response theory. A comprehensive
introduction to Green’s functions is given in e.g. Refs. [11, 12].

2.2.2 Linear response theory and the Kubo formula

In order to get qualitative results out of the tunneling formalism introduced in Section 2.1.1,
one can make use of linear response theory [13, 14]. In short, what one does, is to consider
each subsystem in equilibrium, and treat the tunneling part as a small perturbation (that
does not give any feedback to the system).

If we let H(t) = H0 +H1(t), where H0 is the unperturbed Hamiltonian and H1(t) is a small
perturbation that we assume is vanishing at t = −∞, we can express the current as

〈J(t)〉 = −i

∫ t

−∞
dt′ 〈[J(t), H1(t

′)]〉 , (2.16)

where the left hand side is the real measurable current in the perturbed state, whereas
on the right hand side the expectation value is evaluated in the unperturbed state. What
Eq. (2.16) expresses, is simply that the output at time t depends not only on the present
value, but also on all past values.
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2.3 BTK formalism

One weakness of the tunneling formalism given in Section 2.1.1, is that it is only good
for high-barrier tunnel junctions, such as insulating oxide layers. For a better treatment
of junctions with varying barrier strengths, the so-called BTK formalism introduced by
Blonder, Tinkham and Klapwijk [15] can be used. The formalism is based on matching of
the slope and value of the wave functions across the junction, and considers the probabilities
of all possible outcomes of an incident electron. The details will not be presented here,
but one important quality of the model is that it accounts for Andreev reflection at the
interfaces. For a rigorous introduction, consult Ref. [15].

2.4 Statistical physics

The number of particles in a macroscopic system is usually tremendously high. For exam-
ple, in one mole of water there is about 6.022 · 1023 (Avogadro’s number) H2O molecules,
and that only amounts to about 18 ml. In order to describe the physical macroscopic
properties of such a system, one cannot simply go ahead and solve all the equations of
motion for each particle. Instead, one can describe the system in a probabilistic way, by
defining the partition function,

Z =
∑
{Ψ}

e−βHΨ . (2.17)

Here, HΨ is the Hamiltonian of the system in a given configuration Ψ, and β = 1/kBT .
The partition function therefore represents a weighted sum over all possible states of the
system. In fact, all relevant thermodynamical quantities are contained in Z, and we can
obtain the expectation values for any observable O of the system through the relation

〈O〉 =
1

Z
∑
{Ψ}

OΨ e−βHΨ . (2.18)

Z therefore also serves as a normalization factor. All thermodynamical quantities can now
be derived, such as the internal energy U ≡ 〈H〉 = −(∂/∂β) lnZ, Helmholtz free energy
F = −kBT lnZ and the heat capacity CV = −kBβ2(∂2/∂β2) lnZ.4

Statistical physics is therefore a framework that connects the observable macroscopic prop-
erties with the underlying microscopic structure of the system.

The heat capacity CV can also be expressed through the energy fluctuations in the system,

CV = kBβ2
〈
(H − 〈H〉)2

〉
= kBβ2

(
〈H2〉 − 〈H〉2

)
, (2.19)

4The specific heat is given by cV = CV /ρV , where ρ is the mass density and V = Ld is the volume of
the d dimensional system.
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or simply CV = kBβ2µH
2 , where µX

n is the n’th moment of the variable X. One important
feature of the heat capacity, is that it tends to diverge at a phase transition, as the energy
fluctuations go haywire; the competition between the ordered and disordered phase is at
its maximum. We say that the system is in a critical state, and that we study critical
phenomena. A good introduction is given in Ref. [16].

2.4.1 Broken symmetries and phase transitions

As we have seen in the previous sections, a many-particle system is usually described by
a Hamiltonian H. Now, if the energy HΨ remains unchanged under some transformation
of the microscopic state Ψ, we say that the system is symmetric or invariant under that
transformation.

This notion of symmetry can be illustrated using the Ising-model, which is rich in features
despite its simple Hamiltonian. It will be used to illustrate some concepts in the following.

In 1925 Ernst Ising solved a model of interacting spins on a one-dimensional chain [17].
The model, which today bears his name, describes a very simple ferromagnet. The Ising-
Hamiltonian reads

HIsing = −J
∑
〈i,j〉

σiσj − h
∑

i

σi, (2.20)

where σi = ±1 = ↑, ↓ represent spin up or spin down for particle i, and the first sum
goes over all nearest neighbors of such spins, and the second sum goes over all N spins.
The coupling constant J is assumed to be positive, so that in order to minimize the
internal energy, the spins will tend to point in the same direction5. In the last term, h
corresponds to an external magnetic field, that will force the spins to point in a given
direction depending on the sign of h. Let us first consider the case when h = 0, i.e. the
Ising-model in zero magnetic field. Clearly, in this case, the sum in (2.20) is unchanged
under the transformation σi → −σi (for all i), and we say that it has a Z2 symmetry. If
we look at the magnetization,

Mσ =
1

N

∑
i

σi, (2.21)

which serves as an order parameter, we see that this quantity does not necessarily have the
same symmetry. At high temperatures, in the disordered phase, the spins are fluctuating
randomly between pointing up or down. Consequently, the magnetization will be zero at

5In general, the Helmholz free energy F = U(T ) − TS(T ) is minimized, where U = 〈H〉, and S is the
entropy of the system. For high temperatures T , the internal energy U becomes irrelevant and the system
tends to reach a higher entropy, whereas for low temperatures, the internal energy U is minimized since
the last term becomes negligible.



General concepts 11

T

|Mσ|

Tc

(a)

T

h

Tc

↑

↓

↑

↓

(b)

Figure 2.2: (a) The magnetization Mσ goes continuously to zero at T = Tc when the
temperature is increased. (b) At h = 0, the thick line indicates a non-zero magnetization
Mσ, taking the value +1 or −1. For T < Tc, if the external magnetic field h is increased from
0− to 0+, the magnetization will undergo a first order transition.

high temperatures. However, if all the spins were to point in one direction, the magneti-
zation would be plus or minus one. When (if) the system enters this ordered phase, the
symmetry is spontaneously broken, i.e. the state Ψ does no longer possess the symmetry
of the Hamiltonian H.

As Ising showed in 1925, in no external field (h = 0), a one-dimensional chain of Ising-spins
does not have any phase transition for T > 0. The model does, however, have temperature
driven phase transitions in higher dimensions, e.g. for d = 2. In 1944 Lars Onsager showed
this by giving the exact solution of the Ising-model in two dimensions with no external
field6 [18]. From his paper, one can derive the analytical expression for the critical inverse
temperature for an isotropic Ising-model, namely βc = ln(1 +

√
2)/2 ' 0.44 (or Tc ' 2.27)

when J = 1, kB = 1.

So, for d = 2, the Ising-model has a temperature driven phase transition from a disordered
phase at high temperatures, to an ordered phase for T < Tc. This transition is continuous,
i.e. the magnetization in (2.21) goes continuously to zero when T → T−

c , see Figure 2.2(a).
If we turn on the external field by letting h > 0, and look at the system in the ordered
phase (T < Tc), we expect all spins to point upwards, as that would minimize the energy
in (2.20). Now, if we keep the temperature fixed, but gently decrease the field h to a
negative value, we will notice an abrupt change in the system—all spins will flip and point
downwards. This transition is clearly not continuous, and is called a first order phase
transition.

In the above we have seen that the two-dimensional Ising-model has both a continuous
and a first order phase transition, depending on the path in parameter space that is used,
in this case T or h.

6In fact, he considered an anisotropic Ising-model, where the interaction was different in the x- and
y-directions.
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(a) (b) (c)

Figure 2.3: Snapshots of an isotropic Ising model in two dimensions on a 128 × 128 grid,
computed using Monte Carlo simulations. (a) At high temperatures the spins are randomly
distributed between ↑ (red) and ↓ (black). (b) Near the critical temperature Tc ' 2.27
(βc ' 0.44, J = 1). (c) At low temperature, almost all spins point in the same direction—in
this case down.

In Figure 2.3 we see three snapshots of the continuous temperature driven phase transition
for the 2D Ising-model, based on a Monte Carlo simulation of a 128× 128 grid of spins.

2.5 Mean field approximation

When studying many-particle physics analytically, one is challenged by how to treat the
interaction term in the Hamiltonian when summing over all states. This boils down to a
combinatorial challenge when one tries to account for the symmetries of the problem. When
each particle in the system depends on all other particles, this is obviously an impractical
task. Even when only nearest neighbors are considered, it is convenient to convert the
two-particle interactions into a one-body problem. One way to do this is to apply the
mean field approximation.

If we turn to the Ising-model (2.20) and look at the interaction term there, we can express
the spin at site i by its deviation from the mean value, i.e.

σi = 〈σi〉+ δσi, (2.22)
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where we have defined δσi = σi − 〈σi〉. Now, if we insert this in (2.20), we get

HMF
Ising = −J

∑
〈i,j〉

(〈σi〉+ δσi) (〈σj〉+ δσj)

= −J
∑
〈i,j〉

(
Mσ(σi + σj)−M2

σ

)
+O(δσ)2

' JzNM2
σ − 2JzMσ

∑
i

σi,

(2.23)

where we have used that Mσ = 〈σi〉 (2.21) and that each lattice point has got z = 2d nearest
neighbor points, where d is the spatial dimension of the problem. This way, the two-particle
problem has been reduced to a single-particle problem, but the coupling constant is now
accompanied by the mean value of the sum variable.

As already mentioned, Ising and Onsager have solved the model exactly without using the
mean field approximation. In fact, if one tries to extract critical exponents or even the
critical temperature using the mean field approximation in d = 1, the results will be wrong.
For example, if we insert (2.23) in (2.17) and calculate the magnetization self-consistently,
we find that there should be a phase transition at βc = 1/2Jz, which is not the case in one
dimension.

Nevertheless, we will see later that the mean field approximation proves to be useful,
especially for second-quantized Hamiltonians describing systems far away from the critical
temperature.

2.6 Monte Carlo simulations

We saw in Section 2.4 that in order to calculate the expectation value of an observable
quantity one can use the partition function and evaluate (2.18). For example, the heat
capacity could be obtained through Z. However, in order to actually calculate Z, one has to
sum over all possible states, see (2.17). If we again turn to the 2D Ising-model, and consider
a 10× 10 grid, we find that we have 2100 ' 1030 possible states. In the thermodynamical
limit, when V = L2 → ∞, this direct approach is therefore not applicable. Instead, one
can use the Monte Carlo method .

For starters, let us look at a simple example in order to grasp the essence of what Monte
Carlo is. Say you want to calculate the number π, i.e. the ratio of a circle’s circumference
to its diameter. Imagine yourself on the beach. Draw a perfect square in the sand, and
inscribe a perfect circle in it.7 Now, toss a number of small stones into the square (in a

7Take this as a “Gedankenexperiment”. For a real life experiment, consider using a square and a circular
bucket outside on a rainy day.
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perfectly uniform manner). Then count the total number of stones inside the square Nsquare

and the fraction of stones inside the circle Ncircle. Since the areas are given by Asquare = 4r2

and Acircle = πr2, we can estimate the value of π by

π = 4
Acircle

Asquare

' 4
Ncircle

Nsquare

. (2.24)

If you do this with ∼ 10000 stones inside the square, you will find π to be around 3.14.
If you want to increase the accuracy, you can keep on tossing stones until you reach the
accuracy you want.

Now, this is certainly not the best way to calculate π, but it illustrates how one can use
randomness to achieve accurate results, i.e. randomness does not imply inaccuracy. The
name “Monte Carlo” is just a slang term for “statistical sampling”, with references to a
famous casino in Monaco.

Importance sampling

The plots showing snapshots of the magnetization in Section 2.4.1 were calculated using
Monte Carlo simulations. As a thermodynamical system, the ordering is governed by the
partition function (2.17), because the system tends to minimize the Helmholtz free energy.
This is done by “choosing” the states Ψ that do exactly that. Now, since only relatively
few states contribute to the sum in the partition function (2.17), it makes sense to focus
on those. According to the central limit theorem, the expectation value in (2.18) can be
estimated by the average

〈O〉 ' 1

N

N∑
α=1

O(Ψα), (2.25)

if the N states Ψα are picked out independently with a probability given by

p(Ψα) =
e−βH(Ψα)

Z
, (2.26)

known as the Boltzmann probability.

This way, it is more probable to pick out states that are thermodynamically close. Conse-
quently, one is ensured that the system spends most of the time in a state H(Ψ) ' 〈H〉,
so that time wasted on states that do not contribute much to the sum is at a minimum.

So instead of making a random sampling of the states Ψ, we use importance sampling ,
where only the most important states are considered.
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Markov chain

In order to pick out the important states independently according to the Boltzmann prob-
ability in (2.26), we need a way to generate a new state Ψα′ from the current state Ψα in a
random fashion. A process where the new state does not depend on any other states but
the previous one, is called a Markov process. If we introduce the transition probability
P (Ψα → Ψα′) with the accompanying normalization

∑
{α′} P (Ψα → Ψα′) = 1, there are

two more important requirements associated with the Markov process. First, we must be
sure that it is possible to reach the full phase space, i.e. that if we start out in any given
state Ψα0 , the system can evolve to any state Ψα′ in a finite number of steps. We can
call this accessibility8. Furthermore, at equilibrium, a detailed balance must be fulfilled,
namely

p(Ψα)P (Ψα → Ψα′) = p(Ψα′)P (Ψα′ → Ψα), (2.27)

which states that the rate at which a system in state Ψα goes to a state Ψα′ , is the same
as the rate of the opposite transition.

A Monte Carlo simulation constitutes a series of such random transitions, and we call it
the Markov chain. The transition probability P (Ψα → Ψα′) is yet undefined, but from the
detailed balance (2.27) we find that

P (Ψα → Ψα′)

P (Ψα′ → Ψα)
=

p(Ψα′)

p(Ψα)
= e−β(H(Ψα′ )−H(Ψα)) ≡ e−β∆H . (2.28)

Thus, we are left with some freedom in how we choose the transition probabilities. We will
consider one way of doing it, known as the Metropolis algorithm.

Metropolis–Hastings algorithm

In 1953 Metropolis et al. [19] gave a description of how to produce a set of Boltzmann
distributed variables from a set of random numbers. This is exactly what is needed in
order to implement the Markov chain described above on a computer. The method was
later generalized by Hastings [20], and is known as the Metropolis–Hastings algorithm, but
is often referred to simply as the Metropolis algorithm. Although the method is not the
only one possible that satisfies (2.28), it is simple, convenient and “does the job”.

The Metropolis algorithm brings the system from an initial state Ψ0 to the next state in
consecutive steps. It can be described by the following set of rules:

0. Generate the initial state Ψα = Ψ0.

8It is also often referred to as ergodicity , which means that at equilibrium, all states with the same
energy are equally probable, which also implies that they can all be reached.
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1. Generate a new state Ψα′ randomly.

2. Calculate ∆H = H(Ψα′)−H(Ψα).

3. Accept the new state with probability P = min(1, e−β∆H).
In other words: Draw a random number r ∈ [0, 1] from a uniform distribution, and
accept the new configuration if 9 r < P .

4. Make measurements on the state.

5. Repeat step 1 to 4 until the accuracy required is reached.

These rules constitute the core of the Monte Carlo simulation, and will after (usually)
several thousand iterations bring the system into an equilibrium where the next iteration
will keep the system in the same ensemble. It is easy to see that the detailed balance in
Eq. (2.27) is fulfilled, as

P (Ψα → Ψα′)

P (Ψα′ → Ψα)
=

min(1, e−β∆H)

min(1, eβ∆H)
=

{
1

eβ∆H for ∆H ≤ 0
e−β∆H

1
for ∆H ≥ 0

}
=

p(Ψα′)

p(Ψα)
. (2.29)

Note that in step 3 above, the new state is always accepted if it leads to a lowering of the
energy, which is the physical driving force.

2.6.1 Critical slowing down

Since the Metropolis algorithm evaluates the energy of the system at a given temperature
and accepts or rejects the new state based on the change in energy in a temperature-
dependent way, it is more likely to accept new states at high temperatures compared to
low temperatures. Also, since the new configuration depends on the previous configuration,
we find that near the phase-transition, when the system is highly correlated, updates are
less likely. The simulation is therefore said to suffer from critical slowing down.

This affects the errors in the variables one wants to measure, as consecutive states are not
really independent. One way to deal with this is to increase the number of Monte Carlo
sweeps, which of course means more CPU hours. Alternatively, one can turn to other, non-
local update methods, often referred to as cluster methods. The Swendsen–Wang algorithm
[21] is one example of a cluster algorithm.

9Equivalently, we can test for r < e−β∆H . In the actual code, we prepare a list of random numbers
R = ln(r)/β and check if R < −∆H.
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2.6.2 Critical exponents and finite size scaling

When doing Monte Carlo simulations, we are ultimately interested the behavior in the
thermodynamical limit, i.e. when L →∞. Specifically, we try to find the critical temper-
ature and the critical exponents of the system. As mentioned in Section 2.4, at the phase
transition the system is in a critical state. This is reflected in the thermodynamical quan-
tities by non-analyticies at T = Tc. The strength of this divergence is given by the critical
exponents, conventionally denoted α, β, γ, ν where the heat capacity CV ∼ |T − Tc|−α,
the magnetization M ∼ (Tc − T )β, the magnetic susceptibility χ ∼ |T − Tc|−γ, and the
correlation length ξ ∼ |T − Tc|−ν , just to mention a few.

Since we can only consider systems of finite size in our computer simulations, we will not
see this singular behavior in the thermodynamical quantities. The divergences will be
finite, and the critical temperature may be shifted. This is known as finite size effects .
But since it is possible to do the simulations on various system sizes, we can still extract
the true critical behavior by treating the results for different L values systematically. This
is known as finite size scaling . What one usually does, is to consider the correlation length
mentioned above, which is a measure of the range over which fluctuations in one region
is correlated with those in another region. At the critical point, this quantity is known
to diverge, i.e. the whole system is correlated. Since any measure of length in a finite
system is confined by the system size, we expect that ξ → L as T → Tc. This implies that
|T − Tc| ∼ L−1/ν near Tc.

If we transfer this to the other quantities, we find that e.g. χ ∼ Lγ/ν . Thus, by measuring
the height of the peak in the susceptibility for various system sizes L, we can extract the
ratio γ/ν of the critical exponents. Similarly, one can consider the so-called Binder ratio
or Binder cumulant for the magnetization [22, 23],

GL =
〈m4〉L
〈m2〉2L

, (2.30)

where m is the magnetization vector of the system, m2 = m · m. This (dimensionless)
function has the property that when it is plotted as a function of temperature, all data for
different system sizes L will intersect at the critical temperature. Moreover, if it is plotted
as a function of L1/ν(T − Tc)/Tc, one can find the critical exponent ν by tuning it until
data collapse [24] occur. Details on finite size effects and scaling can be found in e.g. Refs.
[23, 25].





3 Building blocks

In Paper I, II and III [1, 2, 3] we have studied quantum transport in systems that has one
or more broken symmetries. That is, the systems under consideration have ferromagnetic
order, superconducting order or spin-orbit coupling present—or they possess a combination
of these properties. These papers will be introduced in Chapter 4. In Paper IV [4],
which will be introduced in Chapter 5, we have studied high-Tc superconductors in the
non-superconducting state.

In this chapter, the core ingredients mentioned above are introduced separately, so that the
various combinations that will be discussed in Chapter 4 have a common base for reference.
Natural units are used, } = kB = 1.

3.1 Ferromagnetism

Of all the phenomena that are due to cooperative electronic behavior, the macroscopic effect
called magnetism is maybe the longest known. The attractive force of magnetite was re-
ported by the Greeks some 2800 years ago. In daily language, when we talk about magnets,
we usually refer to ferrimagnetism or ferromagnetism, simply because permanent magnets
are either ferrimagnetic or ferromagnetic. A ferrimagnet has got anti-ferromagnetic order-
ing between the sublattices, but the opposing magnetic moments of each sublattice are
unequal, so that the material as a whole is magnetized. Magnetite (Fe3O4) is in fact a
ferrimagnet. Pure Iron (Fe), however, is a ferromagnet.

A ferromagnet is a material where all the magnetic moments in the lattice tend to point
in the same direction. Atoms with partially filled shells can experience a net magnetic
moment in the absence of an external field, due to unpaired spins. These spins can be
aligned when the material is exposed to an external magnetic field, and can cause the
material to be spontaneously magnetized and carry a net magnetic moment for some time,

19
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even when it is no longer in the external field.

Theory

In the following, we will deal with ferromagnets. They can be described by the so-called
Heisenberg Hamiltonian, where the spins of each lattice site interact via a vector interac-
tion. If we only consider nearest neighbors in the interaction and assume the interaction
to be isotropic, it reads

HFM = −J
∑
〈i,j〉

Si · Sj, (3.1)

where J is the (isotropic) coupling constant, Si = (1/2)
∑

αβ c†iασ̂αβciβ is the spin operator,

in which {α, β} ∈ ±1 are spin indices and σ̂ is a vector containing the Pauli matrices1.
The brackets 〈·, ·〉 in the sum indicates that only nearest neighbors should be considered.
This can be cast into a momentum space representation, where it reads

HFM = −JN
∑

k

η(k)Sk · S−k. (3.2)

Here, N is the number of particles, η(k) is a geometrical structure factor which for k = 0
reduces to the number of nearest lattice neighbors; η(0) = 4 in two dimensions, and the
spin operator Sk = (1/2)

∑
αβ c†kασ̂αβckβ.

If we compare (3.1) with the simple classical Ising version in (2.20) (in zero field, h = 0), we
see that we now have a second quantized version where the spins can point in an arbitrary
direction.

We will take the k = 0 component of the spin operator, to reflect the bulk global ferro-
magnetic order. Then, on the mean field level, we find

HFM = HFM
0 +

∑
k

φ†
kÂFM

k φk, (3.3a)

where the basis φk = (ck↑, ck↓)
T and

ÂFM
k = −

(
ζz ζxy

ζ†xy −ζz

)
= −ζ · σ̂ (3.3b)

ζz = 2Jη(0)mz

ζxy = 2Jη(0)(mx − imy).
(3.3c)

1σ̂ = (σ̂1, σ̂2, σ̂3), with σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
. Also, let σ̂0 =

(
1 0
0 1

)
.
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The magnetization is given by m = (mx, my, mz) = (1/N)
∑

i〈Si〉 = 〈Sk=0〉 in the
isotropic case that we are studying, and HFM

0 = Jη(0)m2.

In its present form, Eq. (3.3) is suitable for combination with other Hamiltonians, as we
will see in the following.

3.2 Superconductivity

In the previous section we looked at collective electron interactions that led to the macro-
scopic phenomenon called ferromagnetism. Superconductivity is also due to collective elec-
tron interactions, although of a much more sophisticated nature. It was discovered exper-
imentally by Heike Kamerlingh Onnes and co-workers in 1911 [26]. They found that the
electrical resistivity of mercury (Hg) dropped to zero near the extremely low temperature
of 4 K (−269◦C).

Another remarkable property was discovered by Meissner and Ochsenfeld in 1933 [27]—
perfect diamagnetism. That is, a superconducting material in its superconducting state,
will expel a magnetic field as long as it its strength is below some threshold2. It is know
as the Meissner effect.

The materials described here, are now known as type-I superconductors, and can be char-
acterized by the following two hallmarks:

• Perfect DC conductivity at temperatures below the critical temperature Tc.

• Perfect diamagnetism below the critical temperature Tc.

Examples of type-I superconductors are aluminum, (Al), lead (Pb), tin (Sn) and niobium
(Nb). A comprehensive introduction to superconductivity can be found in Ref. [28].

3.2.1 Type-I and type-II superconductors

The temperatures needed for type-I superconductivity were all extremely low, and required
liquid helium for cooling, which is rather expensive. When Bednorz and Müller in 1986
discovered high-temperature superconductivity [29], one was quickly able to use the much
cheaper coolant liquid nitrogen. Bednorz and Müller established the existence of supercon-
ductivity in a Ba doped La-Cu-O compound at about 30 K (−243◦C)—the highest critical

2Actually, even for a conventional type-I superconductor, the magnetic field will penetrate into the
material by a small distance λ, called the London penetration depth. For bulk superconductors λ is usually
less than a few hundreds nm.
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temperature till then. Shortly after, a Y-Ba-Cu-O compound was found to be supercon-
ducting at around 90 K (−183◦C), well above the boiling point of liquid nitrogen (77 K)
[30]. Bednorz and Müller were awarded the Nobel Prize in 1987 [31] for their discovery.

The materials in this new group of superconductors are, of course, also perfect conductors
below a critical temperature Tc, but their response to an externally applied magnetic field
is radically different. Whereas a type-I superconductor will revert to the normal phase if
the external magnetic field H exceeds a critical limit Hc, a type-II superconductor will
first enter an intermediate phase for Hc1 < H < Hc2 . In this phase an Abrikosov flux
lattice will form [32]. This state is often called the mixed state. When H > Hc2 a type-
II superconductor will also return to the normal state. In the mean field scheme, where
fluctuations are neglected, the classification of type-I and type-II superconductors can be
based on the relative magnitude of the magnetic penetration depth λ (typical radius of a
vortex) and the coherence length ξ (typical size of a Cooper-pair). The Ginzburg-Landau
parameter κ = λ/ξ predicts a type-I superconductor for κ < 1/

√
2 and a type-II for

κ > 1/
√

2. This prediction is based a sign-change in the surface energy associated with
the applied magnetic field, which for a type-II superconductor it is energetically favorable
to maximize the surface, and thus allows for flux penetration [28].

Today, superconductors play a central role in for example magnetic resonance imaging
(MRI), which makes use of nuclear magnetic resonance (NMR) in order to visualize struc-
tures inside a patient’s body3. In order to build up the strong magnetic field needed to
do MRI, superconducting electromagnets are used, typically a type-II superconductor, e.g.
niobium-titanium, NiTi.4

3.2.2 Theory of type-I superconductivity

A microscopic theory of type-I superconductivity was provided by John Bardeen, Leon
Nathan Cooper and John Robert Schrieffer in 1957, the so-called BCS-theory [33]. Al-
though the results in the BCS theory does not depend on the origin the attractive inter-
action that leads to Cooper-pairs, it is on most cases phonon-mediated in conventional
superconductors. In other terms, the attractive interaction between two electrons is an
indirect consequence of how the electrons interact with the atomic lattice. If we consider
an electron that moves through the material, it will attract positive charges in the lattice
and thus deform the lattice and leave a trace. Another electron will be attracted by the
increased positive charge density and move in the opposite direction. Effectively, these two
electrons are held together (in momentum space) by a certain binding energy that will be
higher than any interaction with the (vibrating) lattice—provided that the temperature

3MRI was formerly known as NMRI: Nuclear Magnetic Resonance Imaging, but was rephrased to MRI
because of negative associations with the word “nuclear”.

4NiTi is in fact a metallic type-II superconductor, as opposed to most type-II superconductors, that
are either isolators or poor conductors.
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is low enough. This way the electron pair, i.e. the Cooper-pair, will not experience any
resistance at T < Tc.

Leon Cooper was the first to show [34] how an arbitrarily small attraction between two
electrons could lead to a paired state with an energy lower than the Fermi energy. If
we let many electrons form pairs, one finds that there opens up a gap in the continuous
energy spectrum of allowed energy states for the fermions. This means that there will
be a minimum amount of energy needed to break the Cooper-pairs, and thus that small
excitations such as scattering is forbidden, which is just yet another way of saying that
resistivity is lost below Tc. Bardeen, Cooper and Schrieffer received the Nobel prize for the
BCS-theory in 1972 [35].

Hamiltonian

If we generalize the original BCS Hamiltonian [33] to also account for spin-triplet pairing,
it can be written as

HSC =
∑
kα

(εk − µ)c†kαckα +
1

2

∑
kk′αβ

Vkk′αβc†kαc†−kβc−k′β
c
k′α

, (3.4)

where α and β are spin indices, and Vkk′αβ is an effective electron-electron interaction

giving rise to Cooper-pairing. The chemical potential is denoted µ, and c†kσ (ckσ) creates
(annihilates) a fermion in state k with spin σ.5 If we apply the mean field approximation6,
we cast this into

HSC =
∑
kα

(εk − µ)c†kαckα −
1

2

∑
kαβ

[
∆†

kαβc−kβckα + ∆kαβc†kαc†−kβ −∆†
kαβbkαβ

]
, (3.5)

where bkαβ = 〈c−kβckα〉 is the two particle expectation value, and the order parameter
∆k′αβ = −

∑
k Vkk′αβbkαβ. In matrix form we have

HSC = HSC
0 − 1

2

∑
k

ϕ†
k∆̌kϕk, (3.6a)

5The conventional spin-singlet BCS Hamiltonian is regained by letting β → −α.
6One way of justifying the mean field approximation here, is by looking at (3.4) as an analogue to a

ferromagnet, for details see Ref. [28].
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where the basis ϕk = (φk, φ†T
−k)T = (ck↑, ck↓, c

†
−k↑, c

†
−k↓)

T, and

∆̌k =

(
0 ∆̂k

∆̂†
k 0

)
, (3.6b)

∆̂k =

(
∆k↑↑ ∆k↑↓
∆k↓↑ ∆k↓↓

)
= i(dk · σ̂ + d0

k)σy (3.6c)

d0
k =

1

2
(∆k↑↓ −∆k↓↑) (3.6d)

dk =
(
−1

2
(∆k↑↑ −∆k↓↓),− i

2
(∆k↑↑ + ∆k↓↓),

1
2
(∆k↑↓ + ∆k↓↑)

)
. (3.6e)

Also, HSC
0 =

∑
kαβ[(εk − µ)c†kαckαδαβ + ∆†

kαβbkαβ]/2. The d-vector formalism [36] intro-
duced above is convenient for categorizing the spin-triplet state, and allows for a more
compact representation of the energy spectrum. Here, and in the rest of this chapter, m̌
denotes a 4× 4 matrix, and m̂ denotes a 2× 2 matrix.

Note that the Hamiltonians in Eqs. 3.4 and 3.5 are U(1) symmetric, i.e. they remain
unchanged under the transformation ckσ → ckσ eiθ/2. At the critical temperature, Tc, when
the Cooper-pairs condense, the phase of the gap function ∆kαβ will freeze in such a way
that the macroscopic system acquires a global phase, i.e. the U(1) symmetry is lost.

3.2.3 Pairing symmetry

Electrons are spin-1/2 particles so the total spin of a Cooper-pair can be either S = 0
(singlet) or S = 1 (triplet). The total wave function of the Cooper-pair should be anti-
symmetric under interchange of the fermions, due to the Pauli principle. Thus, provided
that the wave function factorizes into a spatial part and a spin part, which is usually the
case, the orbital part of the wave function for spin-singlet is symmetric (l = 0; s-wave,
l = 2; d-wave, etc.), and that for the spin-triplet it is anti-symmetric (l = 1; p-wave, etc.).
From (3.6d) we see that, with regard to spin, d0

k is anti-symmetric and corresponds to a
spin-singlet, with symmetric spatial part, e.g. s-wave, and that dk in (3.6e) has a symmetric
spin part and is therefore the triplet with anti-symmetric spatial part, e.g. p-wave.

A spin-triplet state is classified as unitary if idk × d∗
k = 0 and non-unitary otherwise.

Furthermore, the average spin of a triplet state is [37]

〈Sk〉 = idk × d∗
k, (3.7)

which means that only non-unitary triplet states can carry a net magnetic moment.

The spin-triplet pairing can be characterized analogously with that of 3He, where it is
divided in two main groups [37]; the A-phase (due to Anderson–Brinkman–Morel) and the
B-phase (due to Balian–Werthamer [36]) . The latter has an isotropic energy gap, with
Sz = 0, i.e. ∆k↑↓ 6= 0. The A-phase on the other hand, has an anisotropic gap, with
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Sz = ±1. In general, the A-phase has ∆k↑↓ = 0, ∆k↑↑ 6= 0, ∆k↓↓ 6= 0 and is characterized
by equal spin pairing (ESP). The A1-phase has only one gap ∆kσσ 6= 0, while ∆k,−σ,−σ = 0.
The A2-phase has ∆k↑↑ 6= ∆k↓↓ 6= 0.

Superconducting materials that do not fully conform to the BCS-theory are collectively
named unconventional superconductors . The original BCS-theory describes s-wave, type-I
superconductivity, but it can be generalized to cover other pairing symmetries. In Paper
I, II and III [1, 2, 3] we have considered non-unitary triplet pairing which can have a
net magnetic moment, as opposed to s-wave where the electrons in the Cooper-pair has
opposite spins and thus no magnetic moment.

3.2.4 High-temperature superconductors

As already mentioned, type-II superconductors usually have a much higher critical tem-
perature than type-I superconductors and are therefore often referred to as high-Tc su-
perconductors. As of today, there is no complete microscopic theory for this class of
superconductors. Apart from the lack of resistivity in the low-temperature phase, they are
fundamentally different from conventional superconductors. Although the superconducting
state is due to the formation of Cooper-pairs, the pairing mechanism might be something
other than phonon mediated.

One common feature of this group of superconductors is that they contain copper-oxide
(CuO2) layers in the crystal structure. It is believed that it is in this layer that the
superconductivity arises. Thus, understanding the physics that is governing this layer—
also away from the superconducting state—is of great interest. Paper IV addresses the
phase transitions in the high-temperature phase driven by current fluctuations in the two-
dimensional layers, see Chapter 5.

3.2.5 Josephson effect

Powered with the BCS-theory, Brian David Josephson was able to investigate what would
happen if two superconductors were brought in contact via a weak link, i.e. a junction with
a critical current much lower than each material on each side. A so-called SIS junction
is one example of a weak link, see Figure 2.1 of Section 2.1.1 for a sketch of the setup.
His theoretical predictions were published in 1962 [8] and is now known as the Josephson
effect. The two main predictions are:

• DC Josephson effect. Even when there is no externally applied voltage across the
junction, there can be a direct current between the two superconductors that is due
to Cooper-pair tunneling. This is the DC Josephson current I = Ic sin ∆θ, where ∆θ
is the superconducting phase difference, and Ic is the critical current.
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• AC Josephson effect. If a fixed voltage V is applied across the junction, the phase
θ will vary linearly with time t and give the frequency ωJ ≡ ∂t(θR − θL) = 2eV/}.
Consequently there will be an AC Josephson current I = Ic sin(∆θ + ωJt).

These predictions are readily observable, and Josephson received the Nobel prize for the
discovery in 1973 [38].

For instance, the effect is utilized in SQUIDs (Superconducting Quantum Interference De-
vices), for which various types were invented only a few years after Josephson’s prediction.
These are instruments based on superconducting loops with Josephson junctions, which
makes them extremely sensitive to magnetic fields. In fact, they can be used to measure
single flux quanta, and therefore serve as a tool for extremely accurate measurements of any
physical quantity that can be converted into a magnetic field. SQUIDs are in commercial
use in instruments that measure neural currents in the human brain [28].

3.3 Spin-orbit coupling

When electrons are moving in a magnetic field, they will experience an electric field, and
conversely—electrons that move in an electric field will experience a magnetic field. This
relativistic interaction between the spin and the motion of electrons is called the spin-orbit
coupling .

Spin-orbit coupling does not break any symmetries alone, but will reveal itself in non-
centrosymmetric crystals (i.e. crystals without inversion symmetry), as well as in e.g.
crystals with impurities, local confinement of electrons or in materials exposed to an ex-
ternal electrical field.

Theoretically, the effect can be derived as a relativistic correction to the Schrödinger equa-
tion. If one starts out with the relativistic expression for the kinetic energy of a particle
with rest mass m, namely H2 = c2p2 + m2c4, and then include electric and magnetic po-
tentials, and interpret H and p as operators, one will arrive at a relativistic wave equation
for electrons in an electric and magnetic field. This equation can again be cast into the
Dirac equation, which upon approximation and comparison with the Schrödinger equation
gives the relativistic corrections. One of these is the spin-orbit coupling ∼ (∇V × p) · σ̂.

The electromagnetic potential V can be divided in an intrinsic part Vint and an extrinsic
part Vext. The periodic crystal potential is included in Vint, whereas Vext is an aperiodic
potential due to any impurities, boundaries, or an external electrical field E = −∇Vext [39].
We have focused on the latter, where the Hamiltonian includes a Rashba term ∼ (E×p)·σ̂,
and E is treated as an externally applied electrical field.
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Spin-orbit Hamiltonian

The Rasbha spin-orbit Hamiltonian can be written

HSO =
∑

k

φ†
kBk · σ̂φk, (3.8)

where Bk = ξE × k, with ξ being a material dependent parameter, and E = −∇Vext is
the electrical field felt by the electrons. The basis is φk = (ck↑, ck↓)

T as in Section 3.1.

3.4 Coexistence

We have now looked at ferromagnetism, superconductivity and spin-orbit coupling as iso-
lated properties, and expressed the respective Hamiltonians in ways that are suitable for
being combined. As a closure of this chapter, let us therefore write up the most general
Hamiltonian in the current framework. Here, we will simply combine the Hamiltonians
mathematically, without going into details on whether this is physically feasible. In the
next chapter, however, where Papers I-III are introduced, we shall look at special cases of
this.

In order to combine the 2× 2 ferromagnetic (3.3) and spin-orbit (3.8) Hamiltonians with
the 4 × 4 superconducting Hamiltonian (3.6b), we need to expand the 2 × 2 matrices to
4× 4 matrices. For this, one can use the general formula

∑
k

φ†
kÂkφk =

1

2

∑
k

ϕ†
k

(
Âk 0

0 −ÂT
−k

)
ϕk +

1

2

∑
k

Tr Âk, (3.9)

which is valid for the fermion basis ϕk = (φk, φ†T
−k)T = (ck↑, ck↓, c

†
−k↑, c

†
−k↓)

T. We then
arrive at the total Hamiltonian

HFMSCSO = H ′
0 −

1

2

∑
k

ϕ†
k

(
−Âk ∆̂k

∆̂†
k ÂT

−k

)
︸ ︷︷ ︸

Ǎk

ϕk +
1

2

∑
k

Tr Âk, (3.10)

where H ′
0 is an irrelevant constant term and Âk = εkσ̂0 − ζ · σ̂ + Bk · σ̂, see Eqs. (3.3b),

(3.6b) and (3.8).7

7It is left as an exercise for the reader to show that the energy spectrum of this Hamiltonian is E = −λ/2,
where λ is the solution of the characteristic equation det(Ǎk−λσ̌0) = C4λ

4 +C3λ
3 +C2λ

2 +C1λ+C0 = 0
in which C4 = 1, C3 = 0 (follows from hermeticity of Ǎk) , C2 = −2(ε2

k + |ζ|2 + |Bk|2 + |dk|), C1 =
−8εkζ ·Bk, C0 = ε4

k + |ζ|4 + |Bk|4 + d2
k(d∗k)2 + εkζ · (idk ×d∗k)− 2ε2

k(|ζ|2 + |dk|2 + |Bk|2)− 2(|ζ ·dk|2 +
|ζ ·Bk|2 − |Bk · dk|2) + 2(|ζ × dk|2 + |ζ ×Bk|2 − |Bk × dk|2).





4 Quantum transport in systems with
multiple broken symmetries

In the previous chapter, we looked briefly at Hamiltonians describing ferromagnetism,
superconductivity and spin orbit coupling. In this chapter, we will look at combinations
of these, and see how they introduce novel effects in quantum transport.

From the discussion in the previous sections it is clear that conventional s-wave super-
conductivity and isotropic ferromagnetism are mutually excluding properties; the ferro-
magnetic order will tend to break the opposite spin Cooper-pairs in the superconducting
condensate. However, as early as in 1957, Ginzburg1 proposed that ferromagnetism and
superconductivity in fact could coexist [41], although not in the conventional way. Ferro-
magnetic superconductors have been experimentally confirmed to exist in e.g. UGe2 [42]
and in URhGe [43].

Whether the superconducting and ferromagnetic order parameters coexist uniformly, if
they are phase separated, or if they only exist as a surface effect, is of course crucial for the
understanding. The internal magnetization could in principle lead to an Abrikosov vortex
lattice [32, 44], as mentioned in Section 3.2.1. It is, however, possible to avoid this scenario
by letting the magnetization stay below the lower critical field Hc1 [45].2

In order to have true coexisting ferromagnetic and superconducting order intrinsically
with bulk order parameters3, one is most likely to have spin-triplet pairing, where the
Cooper-pairs carry a net magnetic moment. Experiments on e.g. UGe2 show [49] that the
critical temperature for the superconducting state is higher for larger magnetization. This

1Vitaly L. Ginzburg received the Nobel Prize in physics in 2003 for his theoretical work on supercon-
ductivity [40].

2It is argued quantitatively in Ref. [45] that URhGe is vortex free.
3Other choices are also possible, that for instance give rise to helimagnetic/Fulde–Ferrell–Larkin–

Ovchinnikov (FFLO/LOFF) order [46, 47, 48].

29
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suggests that ferromagnetism may in fact enhance superconductivity in these compounds.
Furthermore, Ref. [50] suggests that the pairing symmetry in URhGe is that of equal spin,
indicating p-wave pairing. Ref. [51] argues that the pairing symmetry realized in UGe2

must be a nonunitary triplet.

When studying transport in such systems, one also needs to consider the orbital effect
that may lead to Cooper-pair breakup. This can be avoided by considering thin films with
in-plane magnetization.4

Why study quantum transport?

The motivation for studying quantum transport in systems with multiple broken sym-
metries is twofold. First off, it is of great interest to utilize the electron spin degree
of freedom—and not only the charge—in electronic devices. Secondly, by measuring for
example tunneling currents, one can probe for the symmetry inside materials, e.g. the
symmetry of the superconducting gap.

When it comes to electron transport in electronic devices, in most cases, only the electron
charge current is utilized, where for example the binary numbers 0 and 1 are represented
by “no current” and “current”. Notable exceptions to this is the GMR (Giant Magneto
Resistance), in which the electron spin plays a central role in the reading head of almost
all conventional hard drives nowadays. GMR was discovered independently by Albert Fert
and Peter Grünberg [53, 54], and they received the Nobel prize in physics in 2007 for their
discovery [55].

Ideally, one would like to utilize both the charge and spin degree of freedom of the electron,
in order to produce e.g. a spin-current without a charge-current etc. One aim is to create
smaller and more energy efficient devices, but one is also interested in more sophisticated
effects such as entanglement and quantum computing, where quantum mechanical nature
of the electron is more prominent.

Moreover, studying systems with simultaneous broken symmetries offers a plethora of new
physics and therefore possibly yet unforeseen effects which can lead to new applications.
Since these systems are so rich in physics, they give us the opportunity to learn if the
tunneling currents can be controlled by means of external control parameters. This is of
course of great interest when it comes to inventing new electronic devices.

So quantum transport plays an important role in nanotechnology, spintronics and infor-
mation and communication technology (ICT) in general, but it also important for under-
standing the fundamental underlying physics in unconventional materials.

In the next sections, the three first papers will be introduced.

4Ginzburg actually suggests thin films in his Nobel lecture [52] with references to his paper [41].
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Figure 4.1: Tunneling of Cooper-pairs between two thin-film non-unitary ferromagnetic
superconductors with non-collinear magnetization.

4.1 Josephson effect in ferromagnetic superconductors

In Paper I [1] we present a model describing tunneling between two ferromagnetic super-
conductors and give the resulting charge- and spin-currents. Paper II [2] is a follow-up on
the first, where about one half is devoted to a more detailed discussion on this (the second
part is discussed in the Section 4.2).

Figure 4.1 shows two thin film non-unitary ferromagnetic superconductors with spin-triplet
p-wave pairing symmetry. They are connected via a thin insulating layer that is assumed
to be spin-inactive. We have studied the Josephson effect that arises in such a setup. As
mentioned in Section 3.2.3, the non-unitary state means that the Cooper-pairs can carry
a net magnetic moment, and can therefore be compatible with bulk ferromagnetic order.

It is assumed that the strength of the internal magnetization is weak enough to avoid
formation of an Abrikosov flux-lattice, and the reason for studying thin films is to make
sure that the orbital effect does not break the Cooper-pairs. The ferromagnetic and su-
perconducting order parameters are assumed to coexist uniformly, and the superconductor
is in general assumed to be in the A2-phase, with5 ∆k↑↑ 6= ∆k↓↓ 6= 0 and ∆k↑↓ = 0 (see
Section 3.2.3).

The ferromagnetic superconductors can be thought to have arisen out of a ferromagnetic
state, where the same itinerant electrons that give rise to ferromagnetism condense into
Cooper-pairs.

Our starting point is the spin generalized number operator Nαβ =
∑

k c†kαckβ, for which we
calculate the time evolution by expressing it in the interaction picture, and find the general
spin- and charge-currents by using the Kubo formula. Following the details given in Paper
I and II [1, 2], we arrive at the resulting, general spin- and charge-current between the two

5An A1-phase can be considered as a special case by letting ∆kσσ = 0 while ∆k,−σ,−σ 6= 0.
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sides, for zero bias voltage, namely

I
(C
S)

J,z =
∑
kpαβ

(
−e
α

)
|Tkp|2 [1 + αβ cos(ϑ)] sin(θL

ββ − θR
αα)

×|∆kαα||∆pββ|
EkαEpβ

cos(θp − θk)Fkpαβ

(4.1a)

where

Fkpαβ = −1

2

∑
±

f(±Ekα)− f(Epβ)

Ekα ∓ Epβ

. (4.1b)

Here IC
J is the charge Josephson current, and IS

J,z is the z component of the spin Josephson
current. Note that the equation is written in a condensed way, such that the k and
p indices implicitly mean the right and left side of the junction, respectively. Ekα =√

ξ2
kα + |∆kαα|2; ξkα = εkα − µR; εkα = εk − αζR

z , and similarly for the left side with R →
L and k → p. The spin indices are α, β ∈ ±1. Also note that Eq. (4.1a) can be written
as I = I0 + Im cos(ϑ). This means that the critical Josephson current can be controlled by
the twist in the magnetization across the junction.

Note that the definition of the spin current we have used is the rate at which the spin vector
S on one side of the junction changes as a result of tunneling across the junction [1].

4.2 Tunneling currents in ferromagnets with spin-orbit
coupling

In Paper II [2] we investigate how ferromagnetism and spin-orbit coupling affect the tun-
neling currents. Our approach is to calculate the general result for the spin and charge
currents between two ferromagnets with spin-orbit coupling, and then consider important
geometries and physical limits.

Figure 4.2 shows a general tunneling junction consisting of two ferromagnets with spin-orbit
coupling separated by an insulating tunneling barrier.

Starting from a general Heisenberg ferromagnet in three dimensions, we add a Rashba
spin-orbit term in order to describe a quite general system. We are then able to express
the Hamiltonian by a 2 × 2 matrix which is the sum of (3.3) and (3.8) in addition to the
free Fermi gas term

∑
kσ εkc†kσckσ.

Upon calculating the time evolution of the spin generalized number operator, by utilizing
the Kubo formula (2.16), the Matsubara–Green formalism (see Section 2.2), we find the
z-component of the (one particle) spin current for zero bias voltage (Eq. (53) in Paper
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Figure 4.2: Two ferromagnetic metals with spin-orbit coupling separated by a thin insulat-
ing barrier. The magnetization m and electrical field E are allowed to point in any direction
so that the results are generally valid, while special cases such as planar magnetization etc.
are easily obtained by applying the proper limits to the general expressions.

II [2]). The charge current is naturally zero in this case. Special cases, such as specific
geometries, are discussed.

The main result is that, in the general case where both ferromagnetism and spin-orbit
coupling are included, there is an additional term in the spin-current that describes an
interplay between the spin-orbit interaction and the ferromagnetic order. In the spin
channel we have therefore found a term that is more than just the sum of the individual
contributions.

4.3 Conductance spectra

In Paper III [3] we look at the conductance spectra in a junction consisting of a ferro-
magnetic metal and a non-unitary ferromagnetic superconductor. We predict that the
conductance spectra will provide detailed information about the pairing symmetry of the
superconductor.

As mentioned before, finding ways of getting information about the symmetry of the su-
perconducting phase is important to understand unconventional superconductivity.

In contrast to Paper I and II, where we studied tunneling currents by using the tunneling
formalism (see Section 2.1.1), we here utilize a spin generalized BTK formalism (see Section
2.3) to account for surface effects and to allow for varying barrier strengths. Although one
in general would expect the proximity effect at the surface to cause the superconducting gap
to leak into the ferromagnetic region, we have disregarded this effect and modeled the gap
as a step function at the interface. Since we have one ferromagnet in the superconducting
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state and one ferromagnet in the normal state, there will be no Josephson current in the
problem.

In accordance with the discussion in the preceding sections, we have studied a thin film of
a ferromagnetic superconductor in a non-unitary spin-triplet state with equal spin-pairing,
i.e. an A2-phase equivalent (see Section 3.2.3).

Our starting point is the Bogoliubov-de Gennes (BdG) equation for the ferromagnetic su-
perconductor, which is nothing but the eigenvector equation for the transformation matrix
which diagonalize the Hamiltonian—in this case Ǎk given in Eq. (3.10) with Bk = 0.6 The
spin-dependent coherence factors of these eigenvectors are then the wave-function solutions
that turn up in the reflection coefficients, which let us calculate the conductance.

We show how the conductance spectra provide information about the superconducting
gaps, specifically the magnitude of the various components of the gap, and possibly their
relative orientation in k-space. The latter can be seen due to the formation of zero bias
conductance peaks for certain pairing-symmetries.

6In Paper III a slightly different sign-convention is used, in accordance with [56].



5 High-Tc cuprates

In Paper IV [4], we have studied a model describing thermal orbital current-fluctuations
in the CuO2 layers of high-Tc superconducting cuprates in the non-superconducting state.
This was done by large scale Monte Carlo simulations. A microscopic theory support-
ing ordering of such currents was first proposed by Chandra Varma [57]. Details on the
derivation of the effective theory can be found elsewhere [58, 59].

We have considered the classical part of the effective Hamiltonian, which is described
by two intrinsically anisotropic Ising models, coupled by an Ashkin–Teller four-spin term
[60, 61, 62], as well as a next-nearest neighbor term favoring striped order. The effective
Hamiltonian reads

H = −
∑
〈i,j〉

(
Kx

ijσiσj + Ky
ijτiτj

)
−

∑
〈〈i,j〉〉

Kxy
ij (τiσj + σiτj)−K4

∑
〈i,j〉

σiσjτiτj, (5.1)

where σi, τi ∈ ±1 are Ising variables representing the coherent part of the orbital current
in the x- and y-directions through the Cu-sites, respectively, see Figure 5.1. In the sums
〈·, ·〉 and 〈〈·, ·〉〉 denotes nearest and next-nearest neighbors, respectively.

The two Ising parts are both intrinsically anisotropic, where the anisotropy is of equal
strength but in opposite direction. More precisely we have the anisotropy parameter A ≡
Kt/Kl and

Kx
ij =

{
Kl for j = i± x̂

Kt for j = i± ŷ
Ky

ij =

{
Kt for j = i± x̂

Kl for j = i± ŷ
, (5.2)

where Kl, Kt > 0 and x̂ and ŷ represent the lattice constant in the x- and y-directions,
respectively. The critical temperature for the ordered phase, in the case where Kxy

ij =
K4 = 0 and A = 1, is therefore at the Ising critical temperature, Tc ' 2.269.
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Figure 5.1: An ordered current pattern in a CuO2 plane.

The Kxy
ij coupling term is of opposite sign in the two diagonal directions;

Kxy
ij =

{
K3 for j = i± (x̂ + ŷ)

−K3 for j = i± (x̂− ŷ)
(5.3)

with K3 > 0. In (5.1), K4 is constant and will take negative values, K4 < 0, favoring
anti-ferromagnetic ordering of the composite spins σiτi.

The phase diagram for high-Tc superconducting cuprates is given in Figure 5.2. Inspired
by experiments [63, 64], we have studied the phase transition from ordered to disordered
orbital currents, which corresponds to the pseudogap to strange metal transition in the
figure. This in order to see if the model features a lack of specific heat anomaly across
this line, while at the same time exhibit an anomaly in the susceptibility of the staggered
magnetization. This staggered magnetization, which is a measure of the ordering of the
orbital currents, is given by

Mso ≡
√
〈m〉2

2
=

√
〈mx〉2 + 〈my〉2

2
, (5.4)

where m = S ≡ (mx, my), mx =
∑

i σi and my =
∑

i τi. Since this order parameter is not
directly measurable, and since the breakup of this ordering does not lead to a specific heat
anomaly, this is often referred to as hidden order .

We show that in a limited parameter regime, the model exhibit a substantially suppressed
specific heat anomaly at the transition from disordered to ordered orbital currents.
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Figure 5.2: Temperature (T ) vs. doping (x) phase diagram for high-Tc superconductivity.
For low doping we have an anti-ferromagnetic phase (AFM), and for intermediate doping and
low temperature we have a superconducting phase (SC).
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We have performed large-scale Monte Carlo simulations on a two-dimensional generalised Ising
model of thermally fluctuating orbital currents in CuO2-plaquettes of high-Tc cuprates. The Ising
variables represent Cu−Cu bond-currents on the lattice. The model features intrinsically anisotropic
Ising couplings, as well as an anisotropic next-nearest neighbor interaction which tends to frustrate
uniform ordering in the system. In addition, the model features an Ashkin–Teller nearest-neighbor
four-spin coupling. We find that the specific heat features a substantially suppressed anomaly
compared to the logarithmic singularity of the 2D Ising model. The anomaly does not appear
to scale with system size for finite antiferromagnetic Ashkin–Teller coupling. We also compute the
staggered magnetization of the system associated with ordering of the orbital currents. We find that
the staggered magnetization as well as its susceptibility has the same characteristics as for the 2D
Ising model with a pronounced and easily discernible non-analytic behavior across the order-disorder
transition. The non-analytic behavior of the staggered magnetization implies that a field-induced
uniform magnetisation also will feature non-analyticities across the phase transition. A prediction
from our calculations is therefore that a uniform field-induced magnetization M0 should have a
non-analytic behavior across the pseudogap line of high-Tc cuprates on the underdoped side, as the
staggered orbital magnetic moment originating with the orbital currents within each unit cell sets
in. Specifically, we predict that M0 induced by a magnetic field H perpendicular to the CuO2-plane
will have the form H/M0 = A + B Θ(Tc − T ) |1 − T/Tc|

2β , where Θ is a step-function, and β is a
non-universal order-parameter exponent of the staggered magnetisation with a value 1/8 < β < 1/4.

PACS numbers: 74.20.Rp, 74.50.+r, 74.20.-z

I. INTRODUCTION

It has recently been proposed that quantum critical
fluctuations associated with the breakup of a particu-
lar form of hidden order in high-Tc cuprate supercon-
ductors could be responsible for the anomalous trans-
port properties of these compounds1, by producing a
Marginal Fermi Liquid2. Within this scenario, these fluc-
tuations would also provide a dx2−y2 pairing glue in the
normal state1. The particular form of proposed hidden
order involves circulating currents within a CuO2 unit
cell where the currents run horizontally and vertically
through a Cu site and close by direct hopping between
O orbitals. This results in a pattern of staggered orbital
magnetic moments within each CuO2 unit cell, in such
a way that the magnetic pattern repeats from unit cell
to unit cell, as depicted in Fig. 1. (See also Fig. 1 of
Refs. 1,3). These circulating current patterns are gener-
ated by a nearest-neighbor repulsion V between Cu and
O-atoms in the CuO2-sheets. The effect of such a re-
pulsive V -term has been extensively investigated in 1D
CuO-chains, where it has been shown to drive charge-
transfer instabilities and superconductivity5–7. Other
types of current-patterns and charge-fluctuations are also
possible8,9. The circulating-current pattern does not al-
ter the translational symmetry of the underlying CuO2-
lattice. Significantly, it does not lead to a doubling of
the unit cell, in contrast to what is the case for d-density
waves10.

We note that there now seems to be substantial ex-
perimental evidence11,12 in favor of the current-pattern
proposed in Fig. 1. It is therefore important to investi-
gate whether or not the proposed models for these novel
broken symmetries would predict the lack or presence
of prominent signals in such quantities as specific heat
or (indirectly) magnetisation. While the current pattern
shown in Fig. 1 provides a staggered magnetisation and
no net magnetism in the system, it is well known that an
antiferromagnetic-to-paramagnetic phase-transition will
show up as non-analyticities in the uniform magnetic sus-
ceptibility as well. Measuring the uniform magnetic sus-
ceptibility is relatively straightforward. In the context
of the phasediagram of the cuprates, we want to inves-
tigate the possibility of breaking up an Ising-like order
associated with staggered circulating currents within a
CuO2 unit cell, without having an observable logarith-
mic singularity in the specific heat, while at the same
time having observable non-analyticities as a function of
temperature in a field-induced uniform magnetisation.

The effective model we will perform Monte Carlo sim-
ulations on, has been derived elsewhere3,4. The action S
is written on the form S = SC+SQ, where SC is the clas-
sical piece of the action, and SQ is part of the action that
is needed in the quantum domain of the theory. In this
paper, we will focus on discussing the effects of thermal
fluctuations, and will there not need SQ. The classical
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FIG. 1: (Color online) The circulating current phase ΘII
1.

The Cu sites are red circles, O sites are blue. The unit cell is
shown by the dashed square. A staggered magnetic moment
pattern within each unit cell that repeats from unit cell to
unit cell (the curl of the directed circles) is indicated. The
currents Jx and Jy represent the horizontal end vertical cur-
rents, respectively, to be used in the derived effective model,
Eqs. 1 and 2 below. Physically, they represent the coherent

parts of the orbital fermionic currents in the problem.

piece of the action, SC, is given by3,4

SC = − β
∑

〈r,r′〉

(Kx Jx
r
Jx
r
′ + Ky Jy

r
Jy
r
′)

− β
∑

〈〈r,r′〉〉

Kxy
(

Jx
r
Jy
r
′ + Jy

r
Jx
r
′

)

. (1)

Here, 〈r, r′〉 and 〈〈r, r′〉〉 denote nearest-neighbor and
next-nearest-neighbor summations, respectively. For
r− r′ = ±x̂, Kx = Kl and Ky = Kt, whereas when
r− r′ = ±ŷ, Kx = Kt and Ky = Kl. The parameter
Kxy = K3 when r− r′ = ±(x̂ + ŷ) and Kxy = −K3

when r− r′ = ±(x̂ − ŷ). Finally, β = 1/T where
T is temperature, and we work in units where Boltz-
mann’s constant kB = 1. We will in the following also
need the anisotropy parameter A ≡ Kt/Kl. Fluctua-
tions (Jx

r
→ −Jx

r
, Jy

r
→ Jy

r
) corresponds to going from

the depicted current pattern (Fig. 1) to a new one
which is obtained by a counterclockwise rotation by π/2,
(Jx

r
→ Jx

r
, Jy

r
→ −Jy

r
) corresponds to clockwise rotation

of π/2, and (Jx
r
→ −Jx

r
, Jy

r
→ −Jy

r
) to a rotation of π.

In general, we have Kl 6= Kt.
In addition, to quartic order there will appear a term

contributing to SC of the form

SAT
C = −K4 β

∑

〈r,r′〉

Jx
r
Jx
r
′Jy

r
Jy
r
′ , (2)

which is seen to represent a coupling term of the form ap-
pearing in the well-known Ashkin–Teller (AT) model15,
for which several exact results are known16. There will
also be other terms appearing to quartic order, most of
which either are constants or renormalize the quadratic

piece of the action. Note that four Ising variables of two
distinct species all located on one single lattice site simply
contributes a constant to the action. If we now limit our-
selves to terms that have four J-fields distributed on two
nearest neighbor lattice sites, there only two distinct pos-
sibilities. Firstly, we may have a term with three J ’s on
one lattice site and one J on a nearest-neighbor site. This
merely represents a renormalization of the quadratic cou-
plings. Secondly, we may have two J ’s on one lattice site
and another two on a nearest neighbor. Unless there are
two distinct species of J ’s on each of the lattice sites, such
a term will represent a constant contribution to the ac-
tion. If the J ’s on each lattice site are of distinct species,
the term will be of the AT-form, as written above. We
will ignore terms that have J-fields distributed on three
or four distinct lattice sites, as these are generated by
much higher order terms in tpd, tpp.

Note that although the Kx and Ky couplings between
the two different types of Ising fields in this model are
anisotropic3,4,17, there is only one (doubly degenerate)
Ising transition in the system for Kxy = 0; K4 = 0.
Hence, when we introduce the AT coupling, the Ising
critical point evolves into a single phase-transition line
with non-universal critical exponents. In particular, the
specific heat exponent α becomes negative, with the tran-
sition line itself being a selfdual critical line16. In this
sense, the model is similar to an isotropic AT model,
where the exact result for the critical exponents are
known, and for instance given by16 α = (2−2y)/(3−2y)
and β = (2 − y)/(24 − 16y). From this, we deduce the
susceptibility exponent γ = (14− 7y)/(12− 8y) and the
correlation length exponent ν = (2 − y)/(3 − 2y). Here
y = 2µ/π and cos(µ) = [e4K4 − 1]/2. Hence, for K4 ≤ 0,
we have π/2 ≤ µ < 2π/3, such that 1 ≤ y < 4/3. These
exponents are plotted in Fig. 2. The most extreme de-
viation from the 2D Ising values α = 0, β = 1/8, γ =
7/4, ν = 1 is given by the case K4 → −∞, y = 4/3,
where α = −2, β = 1/4, γ = 7/2, ν = 2. Note the weak
variation in β as a function of K4. It is the evolution of
the anomaly in the specific heat, concomitant with the
evolution of the staggered orbital magnetic moment as
well as the susceptibility of the staggered orbital mag-
netic moment as we vary K4 in SC = SC + SAT

C in Eqs.
1 and 2, which will be considered in this paper. The
specific heat Cv is given by

Cv =
1

L2
〈(SC − 〈SC〉)2〉. (3)

We will also consider the staggered order parameter and
its susceptibility. Considering Fig. 3, we see that we
may define a pseudo-“spin” S on each lattice given by
Sr ≡ (Jx

r
, Jy

r
). The various states of the system are then

described by a 4-state clock pseudospin Sr = (±1,±1) on
a 2-dimensional square lattice. We define the staggered
order parameter in the standard way it would be defined
for a clock model, namely

Mso ≡
√

〈mx〉2 + 〈my〉2
2

, (4)
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FIG. 2: (Color online) Critical exponents α, β, and γ from the
Ashkin–Teller model, as a function of the four-spin coupling
βcK4 ≤ 016. In this parameter range, we have −2 < α ≤ 0,
1/8 ≤ β < 1/4, and 7/4 ≤ γ < 7/2, 1 ≤ ν < 2.
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FIG. 3: (Color online) An illustration of the pseudo-“spin”
S = (Jx

r
, Jy

r
) we use to compute the staggered order parame-

ter and its susceptibility, Eqs. 4 and 5.

where mα ≡
∑

r
Jα
r

, α ∈ (x, y). Furthermore, we will
consider the susceptibility of this staggered order param-
eter, given by

χM =
1

L2

∑

α=x,y

[

〈(mα)2〉 − 〈mα〉2
]

. (5)

We will contrast these quantities with the evolution of
the anomaly in the specific heat as the parameter K4

is varied. While the above staggered moment does not
couple linearly to an external uniform magnetic field, it
will couple to a field-induced uniform magnetic moment
via a quartic term in the free energy. The field-induced
uniform magnetisation will therefore have a non-analytic
behavior across the phase transition where the staggered
magnetisation associated with the ordering of the orbital
currents sets in. We will return to this point at the end
of Section II.

For the purposes of extracting critical exponents, we
will consider the Binder cumulant, defined by

G ≡ 〈m4〉
〈m2〉2 , (6)

where m2 = (mx)2+(my)2. In the ordered phase, G = 1.
For an N -component order parameter, G = (N + 2)/N
in the disordered phase. In our case, therefore, G will
exhibit a rise from 1 to 2 as the systems disorders. When
computing this quantity for different L and plotting it as
a function of T , the curves will cross at the same point,
thus defining Tc. On the other hand, plotting it as a func-
tion of L1/ν |(T − Tc)/Tc)|, all the curves will collapse on
each other. By adjusting ν to get data-collapse, one ob-
tains the correlation length exponent. Furthermore, the
order-parameter exponent β is obtained from the mag-
netisation Mso for various system sizes by considering the
quantity Lβ/νMso and adjusting β and ν so as to obtain
data-collapse when plotting this quantity as a function
of L1/ν |(T − Tc)/Tc)|.

II. MONTE-CARLO RESULTS

The Monte-Carlo computations were performed us-
ing the standard single-spin update Metropolis-Hastings
algorithm18,19, making local updates of the Ising-fields
Jx
r

and Jy
r
, as well as local updates of the composite

Ising-field Jx
r
Jy
r

at each lattice site. The system-grid is
defined by two 2-dimensional subgrids, one for each Ising-
field, and the local updates were performed for all points
on the grid. All the Ising-fields on both subgrids were
initially set to 1. We started all simulations at the high-
temperature end, and discarded the first 100000 sweeps
for the purposes of initial thermalization. After that,
measurements were made for every 100 sweeps. For each
value of β, we ran up to 3 ·106 MC sweeps, and after each
sweep the total energy as well as the staggered magnetisa-
tion within each unit cell Mso on each subgrid, were saved
to file. During the computations, we sampled the specific
heat Cv and the susceptibility χM. The system sizes that
were considered were L × L with L = 32, 64, 128, 256.
In all simulations, we have set Kl = 1.0, such that all
other couplings are measured relative to this parame-
ter. In these units, the inverse critical temperature βc

of the system for A = 1.0, K3 = 0, K4 = 0 is given by
βc = ln(1 +

√
2)/2 ≈ 0.44. This sets the scale of the

critical couplings in the plots we will show below.

A. Specific heat

Let us first investigate what effect K3 has on the loga-
rithmic singularity of the 2D Ising model. In Fig. 4, we
show the specific heat anomaly for A = 1.0 and K4 = 0,
upon varying K3 = 0.0, 0.1, 0.2, 0.3. We limit the varia-
tions in K3 so as to remain within a state of uniformly



4

ordered current-patterns and to avoid orbital current pat-
terns exhibiting striped order. It is seen that the K3

term leaves the logarithmic singularity of the anisotropic
double-Ising-model (Eq. 1 with K3 = 0, K4 = 0) un-

altered, only the amplitude of the anomaly is changed.
This is easily understood, since we may write the classi-
cal part of the model for general A and finite K3 on the
form3,4

SC = −β







∑

〈r,r′〉

[

K̄ cos(θr − θr
′) + ∆K sin(θr + θr

′)
]

+ 2
∑

〈〈r,r′〉〉

Kxy cos(θr + θr
′)







, (7)

where we have defined K̄ = Kx + Ky, ∆K = Kx −Ky,
and we have parametrised the action in terms of the
angles θr

′τ defined by cos(θr
′τ ) = [Jx

r
(τ) + Jy

r
(τ)] /2

and sin(θr
′τ ) = [Jx

r
(τ)− Jy

r
(τ)] /2. The Ising char-

acter of the fields Jx
r
(τ) and Jy

r
(τ) then implies that

θrτ ∈ (0, π/2, π, 3π/2). The latter restriction on θr im-
plies that θr,τ − θr

′,τ and θr,τ + θr
′,τ differ by an integer

multiple of π. Therefore, under a global Z4 symmetry
operation on the fields θr → θ

′

r
= θr + nπ/2; n = 1, 2, 3,

the transformed quantities θ
′

r,τ − θ
′

r
′,τ and θ

′

r,τ + θ
′

r
′,τ

will differ globally by an integer multiple of π, which
at most leads to a global sign-change in the last two
terms in Eq. 7. However, by the definitions given for
Kx, Ky and Kxy below Eq. 2, it is clear that the sign
of these coefficients is immaterial since a sign change
may be compensated by interchanging Kl and Kt and
changing the sign of K3. The model is therefore a global
Z4-symmetric model, which is equivalent to the original
Z2 × Z2-symmetry. Hence, introduction of K3 does not
alter the Ising symmetry of the problem, and therefore
the universality class of the phase-transition is unaltered
(as long as we consider a phase-transition for a uniformly
ordered to a completely disordered state).

We now investigate the effect of including K4. Note
that in terms of the variable θr, the AT-term in Eq. 2

may be written on the form (again replacing
∫ β

0
dτ with

β and omitting the τ -dependence of the fields)

SAT
C = −β K4

∑

〈r,r′〉

cos (2θr) cos (2θr
′)

= −β K4

∑

〈r,r′〉

cos (2(θr − θr
′)) . (8)

In the last equality, we have used the fact that 2(θr−θr
′)

differs from 2(θr + θr
′) by an integer multiple of 2π

with our restrictions on θr. Eq. 8 exhibits a local
Ising-symmetry in addition to the global Ising symmetry.
Namely, one can make local changes Jx

r
(τ) → −Jx

r
(τ)

and Jy
r
(τ) → −Jy

r
(τ), equivalently local changes in θr in

multiples of π. These are symmetries that the previously
discussed terms do not have. Hence, SAT

C changes the
global Z2 × Z2-symmetry of the problem, and we thus
expect changes in the specific heat anomalies when K4

is introduced. We emphasize that we will only consider

negative K4 in this paper. A positive K4 will lead to
stronger specific heat singularities than in the 2D Ising
case. It is therefore clear a priori that the effective the-
ory of Eqs. 1 and 2 with K4 > 0 is not a viable theory
for the pseudogap-line.

We first consider the case of isotropic Ising coupling
Kl = Kt, i.e. A = 1.0, next-nearest neighbor coupling
K3 = 0.0, and increasing |K4|. We use this case for
reference, as this parameter set represents the standard
isotropic AT model15,20. The results for the specific heat
are shown in Fig. 5. A substantial suppression of the
logarithmic specific heat-anomaly of the Ising model is
clearly seen, as |K4| increases.

We next consider the effect of increasing the anisotropy
(A < 1), such as to weaken the ordering in each of the
Jy(r)- and Jx(r) Ising fields. Note, however, that because
the anisotropy introduced is equal for both of the Ising
fields (only the direction of the anisotropy is changed)
the model only has one single critical point even in the
absence of a K4-coupling. The model is then merely
two copies of one and the same anisotropic 2D Ising
model. However, an increase in |K4| is expected to have
a stronger effect for A < 1.0 than when A = 1.0, due
to weaker ordering and lower critical temperature when
A < 1.0. This enhancement of the anomaly-suppression
is indeed seen in Fig. 6 compared to Fig. 5.

We will now repeat the above computations for A = 1.0
with K3 = 0.1, 0.2 and 0.3. This coupling will tend to
frustrate the Ising ordering, since the presence of K3

tends to promote striped order instead of uniform or-
dering in the Ising-fields, due to the diagonal anisotropy
(represented by a change of sign in K3 upon π/2 rota-
tions of next-nearest neighbor vectors). It is of interest
to see how the presence of K3 affects the introduction
of the AT coupling K4. Naively, since the coupling K3

promotes striped order and frustrates the uniform order
promoted by Kx, Ky, we would in principle expect that
the suppressed anomalies are pushed to lower tempera-
tures when K3 is increased. In Figs. 7, 8, and 9, we
show the specific heat anomaly for the same sets of pa-
rameters as in Fig. 5, except that now K3 = 0.1, 0.2, 0.3,
respectively.

Again, we see a substantial suppression of the specific
heat anomaly, although the suppressed features appear
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FIG. 4: (Color online) Specific heat anomaly as a function of
inverse temperature 1/T for the classical part of the model
in Eqs. (1) and (2), with A = 1.0 and K4 = 0.0, for vari-
ous values of K3 = 0.0, 0.1, 0.2, 0.3, and various system sizes
L = 32, 64, 128, 256. The amplitude of the logarithmic spe-
cific heat of the Ising model (K3 = 0), is enhanced as K3 in-
creases, but the anomaly remains logarithmic. The K3-term
does not alter the global Z2×Z2-symmetry of the anisotropic
double-Ising-model. Note also that for this set of parameters,
K3 hardly alters the critical coupling βc ≈ 0.44 of the model
with K3 = 0.

to become sharper. We also see that the anomalies that
remain are pushed slightly downwards in temperature
compared to the case K3 = 0, cf. the lower right panel
in Fig. 5. The change is however only minor for the
cases K3 = 0.1 and K3 = 0.2, consistent with the weak
suppression of the critical temperature we found upon
increasing K3 in Fig. 4. However, for K3 = 0.3 this is no
longer the case. The conclusion we draw from these com-
putations is that it is indeed possible to obtain a drastic
reduction of the specific heat anomaly compared to the
Ising case when an Ashkin-Teller coupling K4 is included,
but that the parameter K3 impedes the reduction of the
anomaly.

Finally, we consider the most general case of
anisotropic Ising coupling A = 0.5 and finite K3 = 0.3, as
|K4| is increased, shown in Fig. 10. It is clear from Fig.
10 that the introduction of anisotropy A = Kt/Kl = 0.5
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FIG. 5: (Color online) Specific heat anomaly as a function of
inverse temperature 1/T for the classical part of the general-
ized AT model Eqs. (1) and (2), with A = 1.0 and K3 = 0.0,
for various values of K4 = 0.0,−0.1,−0.25,−0.3,−0.5, and
various system sizes L = 32, 64, 128, 256. The logarithmic
specific heat of the Ising model (K4 = 0), is seen to be strongly
suppressed as |K4| increases.

appears to facilitate the reduction of the specific heat
anomaly. This is easily understood, since increasing
anisotropy implies that the magnitude of K4 relative to
the Ising couplings in the problem will increase. The
effect of a given increase in K4 will therefore be more
strongly felt. Moreover, as in the isotropic case, the
anomalies are pushed down in temperature compared to
the case K3 = 0, cf. the lower right panel of Fig. 6.

B. Order parameter and susceptibility

Let us now study the order parameter and susceptibil-
ity of the order parameter, Mso and χM, Eqs. 4 and 5.
We have chosen parameters A = 1.0, K3 = 0, and varied
K4, for which the evolution of the specific heat anomaly
is shown in Fig. 5. The results for Mso and χM are shown
in Figs. 11 and 12, respectively. We see that the stag-
gered magnetisation retains a non-analytic behavior as in
the pure Ising case even for K4 = −0.5. This contrasts
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FIG. 6: (Color online) Specific heat anomaly as a function of
inverse temperature 1/T for the classical part of the general-
ized AT model Eqs. (1) and (2), with A = 0.5 and K3 = 0.0,
for various values of K4 = 0.0,−0.1,−0.25,−0.3,−0.5, and
various system sizes L = 32, 64, 128, 256. Compared to the
case shown in Fig. 5, with A = 1.0, precisely the same trends
are seen in the evolution of the anomaly as the AT coupling
|K4| is increased, only slightly more pronounced.

sharply with the lack of any traces of singular behavior
in the specific heat, cf. Fig. 5. From Fig. 12 we see the
same trend, namely that the susceptibility retains a non-
analytic feature even for the largest K4 values we have
considered, and which suffice to completely suppress the
anomalies in the specific heat. Moreover, by inspecting
these results in more detail, we see from Fig. 12 that the
peak-height in χM evolves quite differently as a function
of system size L for the cases K4 = 0 and K4 = −0.5.
The peak height in χM has a much more rapid growth
for the latter case. This indicates that the susceptibility
exponent γ increases when −K4 increases. This is consis-
tent with known results for Ashkin–Teller exponents16.
We have not attempted a detailed finite-size scaling anal-
ysis to actually determine the precise values of the critical
exponents for our model. We have repeated these calcu-
lation also with K3 = 0.3. The results are shown in Figs.
13 and 14, with essentially the same results as in Figs.
11 and 12.

The above has interesting ramifications for thermody-
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FIG. 7: (Color online) Specific heat anomaly as a function of
inverse temperature 1/T for the classical part of the general-
ized AT model Eqs. (1) and (2), with A = 1.0 and K3 = 0.1,
for various values of K4 = 0.0,−0.1,−0.25,−0.3,−0.5, and
various system sizes L = 32, 64, 128, 256.

namic signals across the phase transition for the system
in a uniform external magnetic field. Such a magnetic
field will induce a uniform magnetisation in the system
that couples to the staggered magnetisation. Hence, an
onset of the staggered magnetisation at the phase transi-
tion will induce a non-analytic reduction of the uniform
field-induced magnetisation across the phase transition.

To investigate this point in detail, we consider a sim-
ple Ginzburg–Landau theory of a system exhibiting stag-
gered magnetisation Mso in a uniform external magnetic
field H . Such an external field will induce a uniform
magnetisation M0 in the system, but does not couple di-
rectly to the staggered magnetisation Mso, and hence H
will not destroy the phase transition in the Mso sector.
We assume for simplicity that the magnetic moments are
of Ising character, consistent with what we have done
so far. Hence, the Ginzburg–Landau free energy of the
system at the mean-field level is given by

F =
as

2
M2

so +
a0

2
M2

0 −HM0

+
us

4
M4

so +
u0

4
M4

0 +
u0s

2
M2

soM
2
0 . (9)
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FIG. 8: (Color online) Specific heat anomaly as a function of
inverse temperature 1/T for the classical part of the general-
ized AT model Eqs. (1) and (2), with A = 1.0 and K3 = 0.2,
for various values of K4 = 0.0,−0.1,−0.25,−0.3,−0.5, and
various system sizes L = 32, 64, 128, 256.

Here, as changes sign when the temperature passes
through the zero-field critical temperature of the system,
where staggered orbital magnetic ordering sets in. We
have that as > 0, T > Tc, and as < 0, T < Tc. Close
to Tc, we have as(T ) = a0

s(T − Tc). Moreover, a0 > 0
for all T , since we will assume that the uniform mag-
netisation is zero in the absence of an external magnetic
field H , and on quite general grounds we may assume
that (us, u0, u0s) > 0. Now, minimising this free energy
with respect to Mso and M0 and solving for the uniform
magnetisation, we obtain

M0 =
H

a0 + u0sM2
so

. (10)

Furthermore, we have

Mso =

{

0 T > Tc

C|T − Tc|β T < Tc,
(11)

where the second equality holds when |T − Tc|/Tc ≪ 1.
Since Eq. 11 represents a non-analytic temperature de-
pendence, Eq. 10 will also feature a non-analyticity as
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FIG. 9: (Color online) Specific heat anomaly as a function of
inverse temperature 1/T for the classical part of the general-
ized AT model Eqs. (1) and (2), with A = 1.0 and K3 = 0.3,
for various values of K4 = 0.0,−0.1,−0.25,−0.3,−0.5, and
various system sizes L = 32, 64, 128, 256.

a function of temperature. This result is completely
generic to any system which features a zero-field stag-
gered order parameter, when a uniform external mag-
netic field is introduced. At the mean-field level, we have
β = 1/2. Including fluctuations, which are severe in 2D,
gives a result for Mso of identical form with a fluctuation
renormalized β which will be close to the non-universal
value obtained from the Ashkin–Teller model16. Hence,
we predict that a measurement of the uniform magneti-
sation of the system across the pseudogap line will result
in a non-analytic reduction of the uniform magnetisation

as one crosses the pseudogap line from high to low tem-
peratures given by the expression

H

M0

= A + B Θ(Tc − T )

∣

∣

∣

∣

1− T

Tc

∣

∣

∣

∣

2β

. (12)

Here, β is the staggered order-parameter exponent which
should be non-universal, Θ(x) is the Heaviside step func-
tion Θ(x) = 0, x < 0; Θ(x) = 1, x > 0. Moreover, A
and B are essentially temperature-independent inverse
uniform and staggered magnetic susceptibilities, respec-
tively. Non-universality in β due to the presence of the



8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.4  0.6  0.8  1  1.2  1.4

L=16

K4=0.00
K4=-0.10
K4=-0.25
K4=-0.30
K4=-0.50

 0

 1

 2

 3

 4

 5

 6

 7

 0.4  0.6  0.8  1  1.2  1.4

L=32

K4=0.00
K4=-0.10
K4=-0.25
K4=-0.30
K4=-0.50

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.4  0.6  0.8  1  1.2  1.4

L=64

K4=0.00
K4=-0.10
K4=-0.25
K4=-0.30
K4=-0.50

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.4  0.6  0.8  1  1.2  1.4

L=128

K4=0.00
K4=-0.10
K4=-0.25
K4=-0.30
K4=-0.50

FIG. 10: (Color online) Specific heat anomaly as a function of
inverse temperature 1/T for the classical part of the general-
ized AT model Eqs. (1) and (2), with A = 0.5 and K3 = 0.3,
for various values of K4 = 0.0,−0.1,−0.25,−0.3,−0.5, and
various system sizes L = 32, 64, 128, 256.

parameter K4 in the problem means that β in principle
should vary slightly as we cross the pseudogap line ver-
tically in the (x, T )-phase diagram of high-Tc cuprates
as the doping is varied. This is clearly seen from Fig.
11. We also note from Fig. 4 that introduction of K3

does not change the universality class of the transition
when K4 = 0. We may therefore quite reasonably as-
sume that the presence of K3, which does not change
the Ising symmetry of the problem, does not change the
Ashkin–Teller universality class of the phase transition
when K4 is present. We may then deduce that for neg-
ative K4, we will have −2 < α < 0, 1/8 < β < 1/4,
and 7/4 < γ < 7/2. A strong suppression of the specific
heat anomaly as seen for the case K4 = −0.5, puts us
at α ≈ −1.3, β ≈ 0.2, and γ ≈ 2.923. The weak vari-
ation in the exponent β from the Ising value 1/8 is due
to the near-cancellation of the rather large, but oppo-
site, variations in the specific-heat exponent α and the
susceptibility-exponent exponent γ, consistent with the
scaling law α + 2β + γ = 2. It is precisely the large vari-
ation in α that wipes out the specific-heat anomaly that
also produces a large enhancement of the susceptibility
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FIG. 11: (Color online) The staggered order parameter, Eq.
4, as a function of inverse temperature 1/T for the classical
part of the generalized AT model Eqs. 1 and 2, with A = 1.0
and K3 = 0.0, for various values of K4 = 0.0,−0.25,−0.5,
and various system sizes L = 32, 64, 128, 256.

of the staggered orbital magnetisation.

III. SUMMARY

In summary, we have studied the evolution of a spe-
cific heat anomaly in an effective theory of fluctuating or-
bital currents in high-Tc cuprates. The motivation for the
work has been to see if the finite-temperature break-up of
a proposed Ising-ordering associated with an ordered cir-
culating current pattern would be a viable mechanism for
explaining the pseudogap-line of high-Tc cuprates on the
underdoped side. This is a first step towards investigat-
ing whether or not the quantum break-up of such order
could give rise to quantum critical fluctuations that could
possibly explain the anomalous transport properties in
the normal state of these compounds. A necessary re-
quirement is then that the proposed Ising-ordering is de-
stroyed at finite temperature in the underdoped side via
a second order phase-transition which does not exhibit an
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FIG. 12: (Color online) The susceptibility of the staggered
magnetisation within each unit cell, Eq. 5 , as a function of
inverse temperature 1/T for the classical part of the general-
ized AT model Eqs. 1 and 2, with A = 1.0 and K3 = 0.0, for
various values of K4 = 0.0,−0.25,−0.5, and various system
sizes L = 32, 64, 128, 256. Note that the susceptibility retains
the non-analytical features of the Ising-case even for parame-
ters where the specific heat anomaly is completely suppressed.

easily detectable logarithmic singularity. In this paper,
we have shown that the effective field theory of a par-
ticular proposed hidden order in the form of long-range
correlation between orbital currents within a CuO2-plane
passes this test by destroying the Ising-order while ex-
hibiting no singularity in the specific heat, only weak
anomalies that do not scale with system size. More-
over, we predict that a field-induced uniform magneti-
sation will feature a non-analytic behavior as a function

of temperature as the phase transition is crossed. This is
a consequence of the non-analytic behavior of the stag-
gered magnetisation across the transition, which couples
to the uniform magnetisation via a fourth order term.
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FIG. 13: (Color online) The staggered order parameter, Eq.
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21 J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nel-

son, Phys. Rev. B 16, 1217 (1977).
22 L. P. Kadanoff and A. C. Brown, Ann. og Phys., 121, 318

(1979).
23 In spin-polarised neutron scattering experiments, Ref. 12

reports a non-analytic change in the scattering intensity
at the pseudogap temperature (Tc in our notation) of the
form I = I0 + I1|1 − T/Tc|

2β , with a 2β = 0.37 ± 0.12.
This is within the rather narrow upper and lower bound
on β imposed by the generalised Ashkin–Teller model Eqs.
1 and 2.


	Front
	Abstract
	Preface
	List of papers
	My contributions
	Introduction
	General concepts
	Second quantization
	Tunneling formalism

	Green's functions
	Matsubara-Green functions
	Linear response theory and the Kubo formula

	BTK formalism
	Statistical physics
	Broken symmetries and phase transitions

	Mean field approximation
	Monte Carlo simulations
	Critical slowing down
	Critical exponents and finite size scaling


	Building blocks
	Ferromagnetism
	Superconductivity
	Type-I and type-II superconductors
	Theory of type-I superconductivity
	Pairing symmetry
	High-temperature superconductors
	Josephson effect

	Spin-orbit coupling
	Coexistence

	Quantum transport in systems with multiple broken symmetries
	Josephson effect in ferromagnetic superconductors
	Tunneling currents in ferromagnets with spin-orbit coupling
	Conductance spectra

	High-Tc cuprates
	Acknowledgments
	Bibliography
	Index
	Paper I
	Paper II
	Paper III
	Paper IV



