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Abstract

Design and construction of a resonant ultrasonic system based on the con-
tinues wave method by Bolef et al. (D. I. Bolef and J. G. Miller, Physical
Acoustics Vol. VIII, 95 (1971)) is presented. The system is used for mea-
surements of critical behaviour and flux-line lattice (FLL) elasticity in High
temperature superconductors.

A theoretical background for the experimental method and the measure-
ments is presented. This includes calculations of elastic constants for crys-
tals of orthorhombic symmetry, theory of piezoelectric transducers, ther-
modynamic relations for elastic constants at a phase transition, the original
theory of the continues wave method, elastic theory of flux lines in type-
IT superconductors, and a short review on the critical behaviour near the
superconducting phase transition in High temperature superconductors.

Two ultrasonic measurement systems for measurements at low tem-
peratures in magnetic fields up to 5 T have been constructed. The main
system includes a two chamber cryostat inserted into a 5 T superconduct-
ing magnet, radio-frequency circuits, and computer programs controlling
the measurements. The continues wave method has been extended to mea-
surements on very small samples.

Single crystalline samples of Laq.g557015Cu0y4, Big 2511 8CaCus0,,
and Ndj g3Bay.97Cus0, have been characterized by magnetic susceptibility
and magneto-optical measurements, prior to the ultrasonic measurements.

Calculations of the resonant behavior of the ultrasonic Transducer-
Bond-Sample-Bond-Transducer composite including attenuation and bond-
ing are made. The calculations explain features not encountered in the
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original linear theory, with frequency pulling as the most apparent effect.

The apparatus is shown to have a frequency resolution less than Af/f ~
1078. The resolution of the actual experiments is lower than this due
to problems with crystal quality, and the bonding. For measurements on
Lay 855709.15Cu0y the resolution in the relative change of elastic moduli
with temperature was AC;;/Ci; ~ 107 — 1076, The absolute accuracy is
in the 1 — 3 % range.

Reflection measurements are shown to give detailed information of bond
breaks or similar causes of failure.

Two crystals of LajgsSrg.15Cu04 have been extensively studied. The
measurements of Csz, Cyy, Cs5, and Cgg are consistent with similar pub-
lished data measured on other Las_,Sr,CuQ4_y crystals. The crystals
have been detwinned by a uniaxial stress of approximately 4 MPa applied
along the tetragonal [110]-axis during the measurements. A distinct mini-
mum near T, is observed for the first time in measurements of Cyy and Css.
A minimum is also measured for Cgg as observed earlier. The observed
minimum is ascribed to critical fluctuations.

Critical scaling of the C'33 data has been done. Consistency with 3D-XY
critical exponents is shown.

The modulus C33 has been measured in the frequency range from 16 -
214 MHz. A signature of dynamic behavior near T, is found. This has not
been observed before and more investigations could give valuable informa-
tion about the physics of the phase transition.

For the low temperature behavior of C's3 in magnetic fields from 0 to
5 T parallel to the crystal c-axis, an elastic softening, linear in B-field, is
observed. The phenomenon is not related to the elasticity of the FLL. A
distinct explanation of the surprising effect was not yet found.

Attempts to measure the complete softening of the FLL shear modulus
cls at the melting transition were unsuccessful. It is argued that this is
impossible to measure in the crystals available up to now.

Measurements of the FLL tilt modulus c4q at temperatures near T, are
consistent with published data and theories found in the literature. At low
temperatures the measurements consistently show an extra stiffness, which
is unexplainable by the linear elastic theory of the FLL.
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This thesis is submitted to the Norwegian University of Science and Tech-
nology (NTNU) in partial fulfillment of the requirements for the Norwegian
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All the work has been carried out at the Department of Physics at
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Chapter 1

Introduction

The sensational discovery of superconductivity in a lanthanum based cop-
per oxide perovskite, Las_,Ba,CuOy4, by Bednorz and Miller [1], marked
the beginning of an exiting research area. The new materials were named
High temperature superconductors (HTSs), due to their high transition
temperatures. The materials were interesting not just because of their high
T.’s, but they were clearly a completely new class of superconductors with
great potential. The HTS materials all have characteristic copper oxide
planes which are found to dominate the superconducting properties. In
between the planes are ions like La, Y, Ba or Th which serve as charge
reservoirs. The materials are, with very few exceptions, hole doped antifer-
romagnetic insulators which become metallic upon doping. There are dif-
ferent structural families of HT'Ss. Among the most studied are the La-214
materials exemplified by Las_, Sr,CuO4 (LSCO), the 123 materials such as
Y BasCuzO7_, (YBCO), and the 2212 materials with BiaSroCaCu0s.
(BSCCO) as an example. The HTSs all have either a tetragonal or an
orthorhombic structure, often with structural transitions between the two.
The degree of layerednes are very different in the different families and the
anisotropy is doping dependent. Also the transition temperature changes
with doping, being maximum at some optimal doping.

The high temperature superconductors have always been very interest-



2 CHAPTER 1. INTRODUCTION

ing from a fundamental point of view. The work presented here is related
to one of the bigger research fields; ‘Vortex physics in high temperature
superconductors’. Extensive reviews can be found in [2, 3, 4]. There is at
present no accepted microscopic theory explaining high temperature super-
conductivity, but on the phenomenological level the anisotropic Ginsburg-
Landau (GL) model [5] gives a good description. The HT'Ss have a very rich
magnetic field versus temperature phase diagram compared to the classical
superconductors. Depending on the anisotropy and the amount of pinning
in the sample, many different phases have been suggested (see for exam-
ple [4]). Much of the debate in the field has been on which of these are
‘real’ phases and of which order the transitions are, or if the transitions are
just crossovers. Critical fluctuations in HT'S materials is another subject of
much debate, and likewise the melting of the flux-line lattice (FLL). These
developments have given our motivation for building a system for measure-
ments of elastic behavior of the FLL. A true determination of the physics
of melting requires measurement of elastic properties.

Many experimental methods have been, and are still, used in the inves-
tigations of HTS materials. The work presented here involves ultrasonic
measurements of elastic constants both for the superconductors and for the
FLL. Ultrasonic measurements were among the most important methods
used for the investigations of low temperature superconductors (LTS) and
were also significant for the development of the BCS theory (see [6] and
references therein). Ultrasonic measurements are interesting because they
probe both static and dynamic aspects of structural and electronic proper-
ties. For HTSs also measurements of FLL elasticity have been done. Much
work was put into ultrasonic investigations of HTSs in the late 80’s and
early 90’s, mainly on polycrystalline samples, and mainly concentrated on
structural phase transitions|7]. This was natural since the structure of the
materials are so characteristic.

We have chosen a resonant ultrasonic method developed by Bolef et
al. in the 1960’s [8]. Resonance methods have generally very high resolu-
tion, and this together with the simple relations between resonances, phase
velocities, and attenuation in the method made it seem like a good choice.

The outline of the thesis is as follows: In Chapter 2 we present the



relevant theoretical background for the discussions of the ultrasonic method
and for the experimental results presented later. Chapter 3 contain a rather
detailed presentation of the single crystals we have investigated and the
measurements systems we have built. In Chapter 4 experimental results
are presented together with a detailed discussion of the ultrasonic method
and our apparatus. We show measured results for the HTS crystals and
discuss among other things critical behavior near T, and elastic moduli for
the FLL. The conclusions are given in Chapter 5.
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Chapter 2

Theoretical background

For a deeper understanding of the measurements presented in the following
chapters, several different theoretical aspects need to be investigated. The
theories presented in this chapter should be understood as a reminder or a
rough presentation. The presentation represent our own understanding of
work done by others, nothing more. We have tried to use the same notation
all trough out the thesis, and symbols are mainly explained in this chapter
as they appear. Standard notations like Einstein’s summation convention
[9] will be used.

2.1 Elasticity and ultrasonics

2.1.1 Ultrasonics

Ultrasonics is the name given to the study and application of sound waves
of frequencies higher than those to which the human ear can respond (about
16kHz)!. One can divide ultrasonics into two categories; one dealing with
low amplitude vibrations, the other with high intencity. In the first cate-
gory are areas like non destructive testing (NDT), medical diagnostics, and

1With ‘sound’ is usually understood longitudinal acoustic waves. Also transverse
waves (in solids) are called ultrasound when they are in the same frequency range as
longitudinal ultrasonic waves.
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measurements of elastic constants. The first use of ultrasonics was made
around the beginning of the 20th century?. Most of the early techniques
were standing wave techniques. This changed after the developement of the
radar during World War II. Pulse techniques took completely over, open-
ing up many new areas. In NDT and elasticity measurements resonant
techniques have experienced a revival in recent years. This is mainly due
to the development of a technique called resonant ultrasound spectroscopy
(RUS)[10, 11]. In elasticity measurements variations over the pulse echo
technique, like the so called phase comparison method (PCM)[12, 13], have
been shown to be very useful.

In most low amplitude ultrasonic techniques one is really just measur-
ing the phase velocity, v, and/or the attenuation, ¢, in the medium under
consideration. These informations are measured and presented in many
different ways depending on what is interesting for the user. In a classical
pulse-echo experiment v is determined by the time between successive (re-
flected) pulses and a can be deduced from the decay of the pulse height. A
sketch of pulses as measured on an oscilloscope is shown in figure 2.1.

Figure 2.1: Sketch of pulses measured on an oscilloscope in a classical pulse-
echo experiment.

2Examples are Galton’s high-frequency whistle (1883) for testing the upper frequency
response of the human ear, and Langevin’s work on underwater soundings during World

War 1.
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2.1.2 Hook’s law and the elastic moduli

Under the assumption of small strains Hook’s law states that the applied
stress, 0;, on a material is proportional to the resulting strain, ¢;:

g; = CU €j 7,] =1..6 (21)

The proportionality is represented by the elastic matrix containing 36 con-
stants C;; which are called elastic stiffness constants or moduli of elasticity.
We will use the standard definitions for the numbers ¢ and j:

l=uaxx; 2=yy; 3=22; 4=yz; b=zr; 6=1ay (2.2)

The stress o4 (= 0y,) denotes a force applied in the y direction to a plane
whose normal lies in the z direction, and so on. The inverse relation of
equation 2.1 also exist and is often used. The proportionality constants are
then called the elastic compliances s;;.

For a crystal of orthorhombic symmetry (Like the HT'S crystals we have
studied) there are nine independent elastic moduli:

[ Ci1 Ci2 Ciz O

Cia C Co 0

Cortho — 013 023 033 0
0 0 0 Cu

0 0 0 0 Css O
0 0 0 0 0 Ces

0
0
0
0

o O OO

(2.3)

HTS materials are often considered as quasi tetragonal since the a- and
b-axis are of almost equal length. With x = y (or a = b) C11 = Caa,
Ch13 = Cas, and Cyqy = C55. Thereby reducing the nine elastic moduli to
six. For even higher symmetries this number is further reduced to five for
the hexagonal symmetry, three for the cubic and two for isotropic materials.

Here we will look at propagation of elastic waves in orthorhombic crys-
tals, extending a calculation given by Kittel [14] for the case of cubic sym-
metry. These calculations are the core of all elastic measurements using
ultrasonic techniques. We have not found these calculations carried out for
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tetragonal or orthorhombic symmetries in the literature, so we will there-
for give the detailed calculations here. The analysis treats infinitesimal
strains only, and no distinction is made between isothermal and adiabatic
deformations.

Imagine three orthonormal vectors &, ¢ and Z embedded in the un-
strained solid. After a uniform deformation of the solid the axes are dis-
torted in orientation and length. The new axes 7/, ' and Z’ may be written
in terms of the old axes as:

Tl= (14 Ep0)T + Exy§ + 222 ;
Y= Eyalt + (L4 Eyy)f + Eye2 s (2.4)
2l =€t + i+ (1+E,,)2

The coefficients €, define the deformation; they are dimensionless and have
values < 1. After such a uniform deformation a point (or atom) originally
at ¥ = x2 + yg§ + 22 will be at the position ¥/ = 2%’ + yi’ + 2Z’. The
displacement @ of the deformation is defined by

0 =7"—7 = (2Epa+yynt2Es0) T+ (0 0y +YEyy+2E2y ) U+ (00t Yy st2E.2)2
(2.5)

In a more general form the displacement is given by
w(r) = u(r)T 4+ v(M)y + w(r)z, (2.6)

defining u, v and w which we will use in the definitions and calculations in
the following. The symmetric strains are defined by

I ou. —x _ Ov. — = _ 0
5.73.73:5.77.77:(9_;, 5yy:€yy—a_Za 522252';:—3_1;- (27)

The non-symmetric strains are correspondingly defined by

Eoy =T § 2y + Eny = JE+ 525
ey =Y Z = iy + &y :%Jra—f;; (2.8)
EZ,TEEI'¥/:5 +€ —131;4_%7
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The equations of motion in the x, y and z directions read:
a T Tz
T p%}—a””—i— ay+aa
e gt = e By Do (2.9)
z: pop

p_:aar+80zy+

Under the assumption that the total torque on any unit volume must be
zero it follows that

Oyz = Osy; Oap = Ogzy Opy = Oyy (2.10)

Equations 2.9 combined with Hooks’ law (Eq. 2.1) in the case of orthorhom-
bic symmetry then reads

xZ /)(332 = Cll Exx + C Eyy + C 13 Ezz + 055 BZI 4 C (C)E»Cy

2 8 Y
y: /)%2 = (152 ,9” + O ggy + O g;; + Oy BZ =+ Cop 5t c. S (2.11)
z: pG# = Ciz% 85” + Cas af‘;y + O33%5= + Cuu S5 Eyz + Cy5 %= ‘95”

Using the definitions for the strains Eq. 2.7 and 2.8 gives us the final tree
relations:

2
pSH =y (951: b+ Coo 2t + C55T + (Ci2 + 066)3131, (Cis + 055)31,32
2
Pgtz Ces 5 ,9:[,2 + 0223 +CudH (92 + (C12 + Cee) 3‘1,5'1/ (Cos + Cus) 2 81/(92
952
pTH 8,2 = C55% 372 +CusY oz T Cs3 %;éj + (C13 + Cs5) 22 + (Cos + Cua) 5;5;
(2.12)
With piezoelectric transducers (discussed in section 2.1.3) one can send
longitudinal (L) or transverse (T) waves into the material. Plane wave prop-
agation along the crystal principal axes can be described mathematically
as follows below. We will use the notation

Lo: Kldlla; Tag: KB il (2.13)
Here k is the wave vector, 4 the displacement vector, and o, = x,¥, z

Using the [100]-plane as an example we get

Ly:u= uoei(lm’”t); Tyz : v = vpe' iz “’t) Ty s w = woetkz—wt)
(2.14)
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Similar expressions for [010] (y) and [001] (z) follow in a straightforward
manner.

Which elastic moduli that will be measured by which applied stress wave
is then found by combining the equations 2.12 with the ‘transducer equa-
tions’ 2.13. One example is given here, the rest are shown in table 2.2. Sub-
stituting w = wee'**~“!) into the last equation in 2.12 gives w?p = Cs3k?,
thus the velocity w/k of the longitudinal wave along the [001] direction is:

vg3 = (Cs3/p)"/? (2.15)

Similar simple relations (of the form wv; = (Ci;/p)*/?) can be found for
all the symmetric elastic moduli, as shown in table 2.2. To measure non-
symmetric elastic moduli (Cj; with i # j) waves have to be sent along
other axes like the [110]- or [111]-axis. This will in general not probe only
one elastic moduli, but a combination of two or more [14]. In solids phase
velocities are typically of the order of km/s and elastic moduli typically in
the GPa range. For a given solid material longitudinal phase velocities are
typically twice as high as the transverse ones.

2.1.3 Piezoelectricity and transducers

Acoustic waves are generated and received by a device called a transducer;
this converts energy from one form to another. There are various kinds of
transducers working in different frequency intervals. These include: Crys-
tal oscillators (utilizing the piezoelectric effect), Magnetostrictive oscilla-
tors, purely mechanical generators and receivers (like whistles and sirens),
electromagnetic transducers, electrostatic transducers, ultra high frequency
transducers and thermal, chemical and optical transducers. Here we will
take a short look at the piezoelectric effect and the LiNbO3 (lithium nio-
bate) transducers used in the experiments. For further information about
transducers we will refer to the literature [15, 16].

The piezoelectric effect® occurs in crystals having one or more polar
axes, or generally lacking a center of symmetry. A slab or disc of such a

3First discovered by the Curie brothers in 1880



2.1. ELASTICITY AND ULTRASONICS 11

crystal, cut with its parallel surfaces normal to a polar axis, will on subject-
ing it to a mechanical stress build up equal and opposite electrical charges
on the parallel surfaces. The converse effect is also present so piezoelec-
tric transducers are said to be reversible. Some materials which are not
piezoelectric in the paraelectric state can be made to act as piezoelectrics
by cooling them from above their Curie temperature in the presence of a
strong electric field. We will not distinguish between the two in the follow-
ing.

A transducer is made from a piezoelectric crystal by attaching electrodes
to the parallel surfaces. Because the piezoelectric effect can occur only
when opposite charges appear on the electrodes only odd harmonics can be
generated. See figure 2.2.

Fundatnental Cornpression
frequency
- - +
Comprezeion
2nd . _ + B
hartnonic ry
Expanszion
Cotrfprezeion Cotnptfeesion
3rd _ + - +
hartmonic + —_
Expatzion

Figure 2.2: The first three harmonics of a piezoelectric transducer. Oppo-
site charges appear on the electrodes only for odd harmonics.

Piezoelectricity can be described by combining elasticity and electro-
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statics according to the Onsager relations[15]:

D; = dijpop, + € Ej;

2.16
€h = Sp0Ok + dip s (2.16)

Here E; and D; are the electric field and the electric displacement in the
i-direction, and ¢ and o are the strain and stress fields. Equations 2.16
define the following material parameters: The electric permittivity €;;, the
elastic compliance s;;, and the piezoelectric strain constants d;;, = dp;.
Eliminating the stress in the equations above, and dropping tensor notation
for convenience, gives:

D = Sd/s+ eE(1 —d*/es) = ec 4+ €E(1 — k?) (2.17)

Here e = d/s is called the piezoelectric stress constant. More important
is k. = d?/es the electro-mechanical coupling factor, which is a measure
of the efficiency of the transducer. If W,, is the mechanical energy stored
in the transducer when an applied force produces a strain and W, is the
electrical energy supplied to the transducer, then [15]:

Win/We = k2 (2.18)

In our experiments we have used so called 41° X-cut (Shear) and 36° Y-
cut (quasi longitudinal) LiNbO3 transducers from Valpey Fisher. All data
needed about the transducers are taken from Valpey Fisher’s home pages
on the Internet [17]. In table 2.1 some useful characteristics of LiNbO3
transducers are listed.

The transducer crystals have fundamental frequencies which are inversly
proportional to the thickness of the crystals. The proportionality constants
can be found in [17].

Calculations of transducer responce for a single transducer or as a part
of an ultrasonic system, is most conveniently done using equivalent circuits.
Two types are needed for the discussions in following sections. The simplest
equivalent circuit is a lumped circuit like the one shown in figure 2.3. This
is based on the equation of motion of a forced ‘spring’;

d?x dx 1
M— m— + — = F 2.1
a T te, (2:19)
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Table 2.1: Characteristics of LiNbO3 transducer crystals

Density (g/cm?): 4.64
crystal class: Rhombohedron
Orientation Wave type Wave speed Coupling factor
36 Y-cut Quasi-longitudinal 7340 m/s 0.485
Z Longitudinal 7316 m/s 0.162
41° X-cut Shear 4795 m/s 0.684
10° Y-cut Quasi-shear 4271 m/s 0.436
R=Ryn/cé
— L=htce
]l\.flr [ CC, T
C=CE Crp,
. T

Figure 2.3: Lumped circuit equivalent of a ultrasound transducer. Symbols
are explained in the text.
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or equivalently an RLC circuit as shown in the figure. Here M is the
oscillating mass equivalent to the induction L, R, the mechanical resistance
and Cj, the inverse of the spring constant. The capacitance Cy in figure 2.3
is due to the transducer itself acting as a plate capacitor. The constant ar
in figure 2.3 is termed the transformation factor and is given by the following
relation between the area, A, the thickness, [, and the piezoelectric stress
constant, e, of the transducer:

ar = Ae/l (2.20)

The lumped circuit is convenient in defining quantities like resonance fre-
quency and quality factor (also called Q, Q-factor or Q-value). The trans-
ducer has two different Q-factors, one mechanical and one electrical.

The other kind of equivalent circuit we will use is a transmission line
equivalent as shown in figure 2.4. The figure is shown here only for illus-
tration. Details of the circuit can be found in [16]. The transmission line

a_x‘

=)

&

hCoU é % v

hC, :1

e, L J

Figure 2.4: Transmission line equivalence circuit of a piezoelectric trans-
ducer. The transducer has one electrical and two mechanical ports. Details
can be found in [16].

equivalent is most useful for transient analysis of the transducer behav-
ior. Assuming a sinusoidal applied voltage the transducer crystal will, in
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the case of longitudinal waves, contract and expand sinusoidally. This is
equivalent to stating that elastic waves are traveling backward and forward
inside the disc, and hence the transducer acts like a mechanical transmission
line. We will return to transmission lines and this mechanical equivalent in
section 2.2.1 and 2.2.2.

2.1.4 Relations between heat capacity and elastic moduli

We have not come across a general theory for the relationships between the
heat capacity, the thermal expansion coefficients and the elastic moduli for
a material. What is known for sure is that the three are connected, and
also as we will show, that there exist relations between them under special
conditions. We are mainly concerned with the temperature dependences of
the three quantities and also how they change under a phase transition.

Depending on the approximation used and the physical situation, one
can split the change of elastic constants that takes place at a phase tran-
sitioninto two parts: Mean field contributions and fluctuations. We will in
section 2.3.3 argue that a mean field description is sufficient for describing
low temperature superconductors (LTS) whereas fluctuations are important
for describing HTS.

L. R. Testardi published in 1975 a general theory describing how thermal
expansion heat capacity and elastic moduli were related at a continuous
phase transition [18]. The key idea was to assume that the difference in
Gibbs free energy per mole between the high temperature phase and the
low temperature phase could be expressed as follows:

AG = GH(T) = GH(T) = Y. 6i(0) HlT/Telor), (2.21)

where the general function ¢ depended on the stress, and f;[T/T.] were
normalized so that f;(0) = 1 and f;(1) = 0. The value GH(T) is the

extrapolated value expected if the material had not gone trough the phase

transition?.

4E.g. still in the normal phase in the case of superconductors
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Using standard thermodynamic relations and assuming all ¢; to be equal
the difference in thermal expansion were calculated to be[18]:

~ dInT, dln¢ dInT,
Aa = — ( e > ACp + (7 — e ) AS (222)

Here C), is the specific heat at constant stress and S is the entropy. The
isothermal longitudinal and high-symmetry shear elastic compliances were:

Asp, = (dlfaTc>2TACp _ ATAS — @%) AG  (2.23)
with 2dInT. dIn ¢ dinT,\? 1 d?T,
A= [ do C do < do C> T, da;l (2.24)
and
Asg = — <Ti(§:;> TAS — <%%) AG (2.25)

We have measured elastic moduli and not elastic compliances. As explained
by Testardi and also used by Nohara et al.[19] the longitudinal elastic mod-
uli can similarly be expressed as follows:

Lo
¢ de?

dln TC>2 TAC,(T)

AC,;(T) =
C( ) < de; Vinol

— ATAS(T) + ( ) AF(T) (2.26)

where ¢ = 1,2, 3 and

2dInT.dl dinT.\? d?InT.
A:[ i nd’_( - >+ - 1 (2.27)

d&i dei dei d&%

Here AF = —¢(&;) f[T/Te(ei] is the Helmholtz type free energy difference
between the two phases. V,,, is the molar volume. For pure transverse
elastic moduli, labeled T;

1 d?T, 1 d?
ACH(T) = <T i ) TAS(T) + (55‘15) AF(T) (2.28)
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These relations are reduced to the Ehrenfest relations [19, 20] at 7.

Testardi’s theory does not exclude fluctuations. One might in place of
Te use a temperature Ty where the extrapolated high temperature value
splits of from the measured low temperature value, and let AC),, AS, and
AG contain the necessary description of the fluctuations[18].

For HT'Ss Millis and Rabe [21] made a theory very similar to the one by
Testardi, where a more detailed description of fluctuations were included.
By approximating the free energy by its most singular part;

Ai

«

Fy(T,e) =

22—«
RO,

T.(e)

the following expression was calculated for the change of high symmetry
longitudinal elastic moduli due to fluctuations:

ACH(T) = -A

dInT,2(2—a)1—a) [T -
LdInT.?(2 — a)( a){__l} i=1,2,3  (2.30)

de i (&7 Tc

In the two previous equations « is the critical exponent for the specific
heat, and A* is some amplitude above (+) and below (-) T.. Nohara et al.
extended these calculations to high symmetry shear elastic moduli [22]:

ACINT) x —AC,

2 _ -«
d“T. 2 oz[T } (2.31)

— — —1
da% « T.

We will use the expressions presented in this section, in the following
chapters, when discussing measured data.
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2.2 Continous wave resonant ultrasonics

2.2.1 Transmission line theory

A bit simplified Maxwell’s equations can be classified into three regions
when comparing the wave length of the electromagnetic waves with the
system sizes. If the wavelength is much smaller than the system we are in
the optical regime where geometrical optics apply. In the other extreme we
have the lumped circuit theory of Kirchhoff with frequencies from kHz to
zero (DC). In between wavelengths are comparable with the system sizes,
which means there are significant phase variations over the system. The
intermediate region can, as the two others, be further split into smaller
regions. Relevant here is the radio frequency (RF) region and parts of the
microwave region, with typical frequencies in the megahertz (MHz) range.

Lumped circuit theory can in general not be used when working with
high frequencies. Field analysis can in principal always be done, but is often
too difficult. Bridging this gap is a theory called transmission line theory.
A transmission line is a distributed parameter network, where voltages and
currents can vary in magnitude and phase over its length[23]. We will very
briefly look at a few relevant concepts for the further discussions.

The typical model for a transmission line (for TEM waves?) is a two wire
line of length Az as shown in figure 2.5a. The lumped-element equivalent
circuit, figure 2.5b, has a resistance R, induction L, conductance G and
capacitance C per unit length.

From Kirchhoff’s laws in the limit Az — 0 one can find the transmission
line equations[23] for the voltage v(z,t) and current i(z,):

Ov(z,t) , Di(z,t)
di(z,t) 0v(z,t)
5 —Gu(z,t) — C—Ot (2.32b)

For sinusoidal steady state conditions, with v(z,t) = V(2) sin(wt) etc., trav-

STEM waves = Transverse Electro Magnetic waves, as opposed to TM and TE waves
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i(=z,t) a)
+
_v(z,t]
Az “

b)

i[z,t)

— i(ztAz,t)

—1 YNy

t RAz LAz +
CAz CAz v(zthzt]
Az

Figure 2.5: Two typical models for a transmission line. a) Two wire model,

and b) lumped-element equivalence circuit.

eling wave solutions to equation 2.32a can be found as

V(z)=Vy e 7"+ V, e (2.33a)

I(z) = I e " + I, e (2.33b)

where the sign (4 or -) represent the propagation direction along z. The

propagation constant is

y=a+jk= /(R +jwL)(G + jwC)

(2.34)

Here « is the attenuation, k is the wave number, and j = /—1.
A central concept which we will use often in the coming chapters is the

characteristic impedance often donated by Zp and defined as

Vit Vg R+ jwL
o= -0 _ [~ J7~ 2.35
1 T, \G+jeC (2.35)
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In the case of lossless transmission lines the characteristic impedance be-
comes real

L
Zy = c (2.36)
A typical example® is the coaxial cables we have used, with Zy = 50 Q. We
will assume lossless lines in the following, but losses can be considered by
letting k& — 7.

If a transmission line with characteristic impedance Zj is connected to
another line with characteristic impedance Z; (or the line is terminated
in an arbitrary load Z1) the total voltage or current on the line will be a
sum of incident and reflected waves. The amplitude of the reflected voltage
normalized to the amplitude of the incident voltage is known as the voltage
reflection coefficient I" given by[23]:

Vo _ZiL—2

I=—=———
V0+ Zn 4+ Zy

(2.37)

One can also calculate the reflection coefficient at any distance [, where
| = —z, from the junction (or load):
Vo e 7 —2j81

where I'(0) is the I' in equation 2.37. Since the reflection coefficient varies
with distance from the junction this means that also the impedance will do

so. A very important expression for the input impedance, which we will
also use in the next section is the following:

V(=l) _ 1+4Te 2P
I(—=1)  “°1T—Tezm
(Zp + Zo)ejﬁl +(Z — Zo)e_ﬂﬂ
Y(ZL + Zo)edPl = (Z;, — Zg)e 37!
ZL —+ ]ZO tan ﬁ]
%0 + jZ1 tan Bl

(2.39)

Slossless in this case means just that losses are very small
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To avoid reflections on the line Zj, one needs to make Zj, look equal to Zg.
This is called impedance matching. A standard way of matching is to add
a component, called a matching network, with input impedance equal to
Zy between Zy and Zp. Matching networks works mainly at one frequency
(where I' = 0), but there will be some bandwidth around this frequency
where the reflection coefficient is small[23].

2.2.2 The original continous wave theory

During the 1960s Bolef et al.[24, 25, 26, 27, 28, 29] developed what they
called ‘High Frequency Continuous Wave Ultrasonics (CW)’ based on ideas
from the early days of ultrasonics. A review article was written by Bolef
and Miller in Physical Acoustics in 1971 [8] and we will in what follows give
the most important results and definitions from that article. As a start
up we will give their view of precision of the system. They write ‘...CW
spectrometer which are capable of measuring small changes in attenuation
(Aa ~ 107% em ™" or less) and in phase velocity (Av/v ~ 1077).". We will
discuss this further in later chapters.

The basic CW transmission spectrometer contains three parts, as shown
later in figure 3.12: 1) A signal generator 2) a composite resonator assembly
and 3) a receiver section. The different CW techniques discussed in [§]
relied all on the establishment of ultrasonic standing wave resonances in the
composite resonator. The n’th resonance peak is defined by its resonance
frequency f, and its Q-value. The Q-value is defined by the linewidth at
the half power points 6 f as:

Q= fn/of (2.40)

The measured resonance frequency, f,, would, if the thickness of the trans-
ducer was negligible compared to the thickness of the sample, lg, give the
phase velocity in the sample, v:

v ="2lgfn/n (2.41)
The attenuation « is related to the Q-value by

o= (mfu/0)Q"! (2.42)
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This relation is found under the assumption that the resonance peak can
be modeled by a series RLC-circuit.

Measurements of phase velocity as a function of some external param-
eter (temperature, magnetic field, ...) can be done by following the shift
of the resonance frequency as the external parameter changes. We will call
this ‘peak tracing’ in later chapters.

The theory describing the composite resonator is based on the trans-
mission line equivalence for a transducer by Mason [30, 31] (see also sec-
tion 2.1.3). The composite resonator is modeled as in figure 2.6. The two
transducers (77 and T») and the sample (S) are all characterized by a phase
velocity, v, a thickness, [, and a characteristic impedance, Z. Bonding ef-
fects are neglected. The characteristic impedance, per unit area, is given
by:

Z = pv (2.43)

where p is the density. Using equation 2.39 the impedances looking from

Ty g T,
Zry, b, Wi Zs. s, Vs Zra, b2, V2
— — —
7|z z,
Ty 5 Ty

Figure 2.6: Transmission line equivalence of the acoustic composite res-
onator discussed in the text. The two transducers (77 and T5) and the
sample (S) are all characterized by a phase velocity, v, a thickness, I, and
a characteristic impedance, Z = pwv.
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the planes 7777, SS and 1575 in the figure are given by:

Zs+ Zpy tanhi(key — i l
7' = Zpy Sl Tll an 7( T1 7.CVT1) 1 (2.44)
ZTl + ZS tanh Z(le — ZaTl)lTl
Z! Zgtanhi(kg —iag)l
Zs + Zhotanhi(kg —iag)ls
ZT2 ZT2 tanh7(kT2 - 7aT2)]T2 (246)

Under the assumption of lossless lines (oq = 0, I = 11,5,T%), the n’th
resonance of the composite fno occurs when the total impedance is zero.
Assuming identical transducers (77 = T = T') this then yields

Zstanksls 7
STANES'S 2T b an kply tan kgls = 0 (2.47)

2 2 = Y9
+ ZT tan ]{TTZT ZS

To solve this transcendental equation the tan-function is expanded in a
power series around the resonances of the transducers and sample

C _ T C _ ¢T
P s
it AU it N
I 73

Here f;? denotes the n’th resonance frequency of the sample etc. Introduc-
ing the parameter 17 defined by

tan kply = tan(w =X (2.48)

tan kglg = tan(mn=—"—-"") =~ n (2.49)

n = prir/psls (2.50)

equation 2.47 gives
(F5 = L)+ 20(f7 = 1) = 20 ) (EDP U = F)E7 = 1) =0 (2.51)
Neglecting terms of order n? and higher the following relations are obtained

fo =S+ oS = 1) (2.52)
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and
(fro = f3) = (fS0 — 1)1+ 2n) (2.53)

If the small parameter 7 is negligible the measured composite frequency

is the same as the sample’s resonance frequency. It is straightforward to

expand the analysis to also include higher harmonics of the transducers.
The two last equations can be combined with equation 2.41 to obtain

C C _
QZan +2n(f5 = /1)

n

vs = 2sAf5 = 2sAfC(1+2n) = (2.54)
Hhere AfS = [, — f7 and Af¢ = &, — f¢.

The equivalence circuit presented in this section is a purely mechanical
equivalence. The full equivalence should also contain the electrical port
as described for transducers in section 2.1.3. The strength of the model
presented is that it can easily be expanded or redused to more complicated
or simple configurations. One can reduce the transducer-sample-transducer
composite to a simpler transducer-sample system, with only one transducer.
In this case equation 2.54 will be almost the same, but with 2n — n. We
will discuss extentions of the model in section 4.1.2.
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2.3 Vortex physics in HTS

2.3.1 The flux-line lattice and its elasticity

The HTSs are type-II superconductors. A common feature of type-II su-
perconductors is that if a strong enough magnetic field is applied magnetic
flux will penetrate the sample in form of flux lines” each carrying a quan-
tum of magnetic flux ¢9 = h/2e. The tiny vortices will tend to arrange
them selves in a triangular flux-line lattice (FLL). The lattice vector of the
ideal FLL is[3]:

ap = (2¢0/V3B)Y? (2.55)

which is about 49 nm for B = 1 T and 22 nm for B = 5 T, two typical
examples for our measurements.

For isotropic superconductors in the London and continuum limit the
elastic moduli are [3]:

B? 1
RCy R — 55 2.
C11 C44 140 1+ k’2>\2 ( 56)
and
B
N —_— 2.57
665 ~ T6m 3200 (2.57)

where A is the magnetic penetration depth and k the wave vector. The
physical reason for the strong dispersion of ¢11 and cy4 is that since typically
A > aa the FLL is much softer for short wavelengths compressional and
tilt distortions than it is for uniform compression and tilt [3].

The high temperature superconductors are anisotropic materials with
tetragonal or orthorhombic structure, which is considered quasi tetragonal
in most theoretical investigations as the a- and b-axis are of almost equal
length. Within the anisotropic extension of London theory the HTSs are
charracterized by two magnetic penetration depths for the current in the ab-
plane, A4, and along the c-axis, A.. They are correspondingly characterized

"Flux lines are also called Abricosov vortices, vortex lines, flux tubes or fluxons
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by two coherence lengths &,;, and .. The anisotropy factor is then given
by

(2.58)

The GL parameter is defined as

K= ab (2.59)
ga,b

The HTSs have very high x values (~ 100) due to the low electron density
and high effective (electron) masses. The tetragonal structure with copper-
oxide planes also make the FLL dependent on the angle between the crystal
axes and the applied magnetic field. The notation we will choose for the
FLL was introduced by Sudbg and Brandt[32]. The | or L refer to the
compression, tilting or shear of the FLL being parallel or perpendicular to
the ab-planes. The applied magnetic field (and the FLL) will be considered
here only when it is parallel with the c-axis or the ab-planes. When the
FLL is parallel with the c-axis no || or L will be written (see table 2.2).

The tilt and compressional elastic moduli for anisotropic superconduc-
tors have been calculated in[32, 33, 34]. The expressions will not be given
here as the measurements considered will be in the long wavelength limit
(k ~ 0). Hence all the observable c¢17 and cgq will, at 7' = 0 K, be given
approximately by B?/puq.

The shear modulus is strongly dependent on the anisotropy, as first
pointed out by Kogan and Campbell[35] and also by Sudbg and Brandt[36].
With the names c§s (easy) and cfly (hard) for cee,| and ceg L respectively,
the three main shear moduli are given by:

By

o~ —1 2.60
o6 1677/\sz0 ( )
chs = ceel (2.61)
cés = co6/T° (2.62)

An explaining sketch is shown in figure 2.7. With high anisotropy factor the
hard shear modulus cfls can become quite big, while c§; will be extremely
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small. We will discuss this in more detail in section 4.4. Elastic moduli,
both for the orthorhombic crystal itself and the FLL, which in principle
could be measured with our ultrasonic system, are given in table 2.2. The
magnetic field is assumed to be parallel to one of the crystal axes and the
crystal is assumed to have planes cut perpendicular to the crystal axes.

a) b)

Cgg

i

Figure 2.7: A sketch of fluxlines and ab-planes in a high temperature su-
perconductor. The figure is not to scale. The share directions for the three
shear moduli &g, cls, and cgg are indicated.
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Table 2.2: Elastic moduli measured by different waves along the a, b or
c-axis in a crystal with orthorombic symetry.

Crystal moduli | Wave i, k Magnetic field | FLL moduli
011 LT U || k || a Ba || C C11
B, | a -
_ B | b C11,)|
Ca L, al kb B, | ¢ c11
B, |l a €11,
_ Ba, || b B
Cs3 L, alk|ec B, | ¢ —
By || a 1,1
_ Ba |lb C11,1
044 Tyz U || b, k || C Ba || C Cq4
B, | a Cé6
- Ba, || b 7
Cu Ty |W|c,k]b B, | ¢ —
B, | a ch6
_ Ba|lb Cq4,1
Css T, |t ak]ec B, | ¢ Ca4
B, | a -
_ B | b 6
Css T.., || ckl]a B, | ¢ -
By || a caa, |
_ Ba | b o
066 TTU iU || a, k || b Ba || C C66
B, | a -
_ B, | b Ca4.||
Ceg Tye |U] 0K a B, | ¢ c66
By |l a Cqq,|
B, | b -
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2.3.2 Pinning and TAFF

Research on HTS materials have shown how vortices can be pinned by a
number of different pinning sites. To mention but a few there are point pins
like oxygen vacancies or embedded particles, line pins like dislocations or
radiation tracks, and planar pinning sites like twin boundaries or intrinsic
(CuO-plane) pinning. There are several theories describing pinning and
how it works under different ‘initial conditions’. We will just briefly mention
theories which are relevant for our measurements and without going into
detail.

Point pins are important in the collective pinning theory by Larkin and
Ovchinnikov([37]. Relevant for us is the fact that a rigid (not elastic) vortex
lattice would mot be pinned by randomly distributed pinning cites. This
is because every configuration would have the same energy, and hence no
pinning force can arise.

If the flux lines are subject to some driving force (by for instance a
magnetic field, a sound field or an electric current) then, depending on
the strength of the pinning sites compared to the driving force, in a given
temperature range (for excample near T, or near T'= 0 K), different kinds
of flux flow or creep may occur.

A phenomenon called Thermally Assisted Flux Flow (TAFF)[38, 39]
explained the irreversibility line measured in magnetization or susceptibility
measurements and were also used by Pankert et al.[40, 41] to explain their
measurements of the elasticity of the FLL. TAFF occurs in superconductors
with an intrinsically low pinning barrier and at temperatures high enough to
overcome this barrier. Pankert showed that for a given sound mode probing
C11, €44 OT cgg Of the vortex lattice (see table 2.2) gave a contribution Acf
superimposed on the elastic moduli of the crystal:

wQ

Al =
¢ Taay (ciyk?)?

(2.63)
Here v is a phenomenological relaxation coefficient related to the depinning
energy[42], k is the wave number, w is the angular frequency, and i = 1,4, 6.
Further discussion of the theory is postponed to section 4.4.
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2.3.3 Flux lines, vortex loops and phase transitions

If we compare the cuprate (high temperature) superconductors with BCS
(low temperature) superconductors there are some striking differences which
make the magnetic field versus temperature (B-T) phase diagram very dif-
ferent in the two cases. The core of BCS theory is electron pairing, i.e.
electrons interacting via the lattice form Cooper pairs. In LTS typical
Cooper pair sizes are on the order of 1000 A. The electron density is very
high so the cooper pairs highly overlap. A mean field description is there-
fore expected to be valid, and BCS theory is shown to work perfectly. In
HTS the situation is quite different. The Cooper pairs are small (~ 3 — 10
A) and the electron density is low. With the high critical temperatures
and the ‘non overlapping’ Cooper pairs strong fluctuation effects are to be
expected and clearly observed.

One of the manifestations of fluctuation effects expected was the exis-
tence of a flux line liquid. Already 2-3 years after the discovery of HTS
the first ideas [43, 44, 45] of a molten phase in the vortex state were put
forward. At first depinning was a competing explanation [40], but presently
melting of the FLL in a first order phase transition is no longer in ques-
tion. During the last few years experimental evidence has accumulated
from measurements of resistivity [46, 47], magnetization [48], heat capacity
[49, 50], scanning hall probe microscopy [51] etc. The methods mentioned
above provide at best only indirect measurements with respect to the elas-
tic behavior of the FLL. The direct proof of a molten phase would come
from measuring a complete softening of the shear modulus cg¢. So far this
has been impossible to measure, due to the extreme smallness of cgg.

There are not many theories explaining FLL melting and other fluctua-
tion mediated effects in the HT'S. We will mainly look at the 3D-XY model.
There has been no evidence contradicting that the Ginsburg-Landau theory
for type-II superconductors also works for HT'S. One can do small modifica-
tions to incorporate the stratification of these materials (Lawrence-Doniach
model[52]) and usually the theory has to be simplified. One of these simpli-
fications is to assume that there are no fluctuations in the amplitude of the
wave function, leaving the phase as the only degree of freedom[53]. Making
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a lattice model with local phases having some direction in the xy-plane in
the three dimensional crystal yields the 3D-XY model. Extensive monte
Carlo simulations on the 3D-XY and similar models [53] reveal a funda-
mentally new picture from what was known before. In short what could
be called the vortex-loop-blowout theory [54, 55, 56] predicts that as the
temperature increases the FLL melts first to an incoherent vortex liquid
with a finite line tension and then, in a new phase transition [54], looses its
line tension before the crossover to the normal phase at B.y. The zero field
continuous phase transition at T, is governed by a blowout of thermally
induced vortex loops. The B.s-crossover represents the remanence of this
blowout and is in this picture not the superconducting to normal phase
transition as in LTS.

There have been many controversies about the 3D-XY model the last
few years. Alternatives to the 3D-XY model have been the decoupling
model [57] and the lowest-Landau-level (LLL) model [58]. Both these two
last models are expected to work better for very anisotropic materials like
BSCCO than for example YBCO. The LLL model is expected to describe
the situation in high magnetic fields whereas the 3D-XY model should only
work for lower fields. We will postpone the further discussion to Chapter 4
with emphasis on our measurements, comparing them to measurements of
heat capacity and thermal expansion.

Many other phase transitions and crossover lines than mentioned here
have been proposed for the magnetic phase diagram of the HTS. For a
resent review see [4].
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Chapter 3

Experimental

3.1 Single crystals

The crystals are the most important part of the experimental system. We
have mainly been working with two optimally doped LSCO crystals, but
have also done some few measurements on other materials. The four crys-
tals presented in Chapter 4 will be discussed here. Some characteristics
are listed in table 3.1. The transition temperatures as listed are on-set T.’s
defined from the susceptibility data in figure 3.1-3.4. The transition width
AT, is also estimated from the Susceptibility data for each crystal.

The data in figure 3.1 and 3.2 have been measured by Dr. N. Kikugawa

Table 3.1: Characteristics of HTS crystals used in the measurements

Sample Chemical formula T.(K) | AT.(K) | Crystal grown by
F40 Laq 8557015Cu0y4 37.8 0.8 Dr. N. Kikugawa
F60 La1,855r0.15CuO4 37.1 10 Dr. N. Kikugawa

NO970822 | Big25118CaCu0, | 83.3 3.5 Dr. K. Oka
WAX144-1 Ndl.ogBa1.97CU30m 92.5 2.3 Dr. T. Wolf

33
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Figure 3.1: Susceptibility data of the crystal F40 in a zero field cooled
measurement with a field of 2 mT parallel to the ab-planes.
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Figure 3.2: Susceptibility data of the crystal F60. The applied field of 2
mT is parallel to the ab-planes. The figure is made by Dr. N. Kikugawa.
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Figure 3.3: AC-Susceptibility data of the crystal NO970822
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Figure 3.4: AC-Susceptibility data of the crystal WAX144-1
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at the University of Hiroshima with a SQUID magnetometer!. The other
two measurements have been measured in our lab with an in-house built
AC-susceptibility system presented in section 3.2.

We will discuss details important for the measurements, for each of the
crystals.

La1,85Sr0.15CuO4, F40:

The sample was grown by a traveling-solvent-floating-zone (TSFZ) met-
hod [59]. The Sr concentration was measured to be 0.146 £0.02 by EPMA.
The crystal was annealed in oxygen for 50 hours at 450 °C, in order to
achieve good oxygen filling and thereby reduce the pinning by oxygen de-
ficiencies. The crystal orientation was determined by X-ray back-reflection
Laue technique. It was originally cut and polished to a final rectangu-
lar shape with planes parallel to the crystal axis. The dimensions were
Liioo) % Lio1g) X Loy = 1.4 x 3.4 x 2.0 mm?®. The reflection measurements
discussed in Chapter 4 were all done on the crystal when it had these di-
mensions. See also section 3.2.

LSCO undergoes a structural phase transition from a tetragonal (THT)
to an orthorhombic (OMT) phase? at a temperature Ty, which is doping
dependent. For F40 T, si about 180 K, and twin boundaries will be present
below this temperature. In the reflection measurements slow cooling of the
sample was performed before each measurement in order to introduce as
few defects as possible.

In an attempt to reduce the number of twin boundaries to an abso-
lute minimum the crystal was in later transmission experiments detwinned
during cooling. The crystal was cut and polished with two parallel planes
perpendicular to the [110]-axis. A uniaxial stress of approximately 4 MPa
was applied to the sample along the tetragonal [110] axis during the mea-
surements. See figure 3.5. The crystal [100]- and [010]-axes are shifted
45° in going from the THT to the OMT phase. An applied stress along

!Quantum Design, model MPMS
2The abbreviations are: THT = Tetragonal at High Temperatures, OMT = Or-
thorhombic at Middle Temperatures
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Figure 3.5: A photo of the samples F40 (left) and F60 (right) with trans-
ducers, 1.5 mm in diameter, mounted. The two arrows show the direction
of the applied pressure in the detwinning of F40. The black lines at the
bottom of the picture are 1 mm apart.
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the tetragonal [110]-axis will make this the [100]-axis® in the orthorhombic
phase below Ty [60, 61, 62]. Nakayama et al.[61] reported that a uniax-
ial stress of 1.5 MPa was enough to get 85-90% of the volume with the
[100]-axis parallel to the direction of the stress, for a near optimally doped
LSCO crystal (x=0.14). Even though the detwinning might not be 100%
in our measurements we have assumed this in the measurements discussed
in Chapter 4.

The crystal was characterized also by magneto optical (MO) measure-
ments. Measurements were done with our in-house built system discussed
in section 3.2. A series of six pictures for F40 measured at 30 K is shown
in figure 3.10. Other MO measurements for F40 and F60 will be discussed
in section 4.4.

An estimate of the anisotropy factor, I was found from resistivity data*
as [63]:

I? = pc(50K)/f)ab(50K) (31)

We found I'? = 617, consistent with the data shown in table 1 in [63].

La1,85Sr0_15Cu04, F60:

The crystal was grown by the TSFZ method as for F40 discussed above.
The growth velocity was very similar in the two cases, but the growth tem-
perature was slightly higher for F60. The Sr concentration of F60 was
measured to be 0.145 £ 0.02 by EPMA. The crystal was cut and polished
to a rectangular shape with axes along the tetragonal [110], [110], and [001]
directions. The dimensions were Liy10) X Li1i0) X Lj100) = 1.4 % 3.4 % 2.0 mm?.
A picture of the crystal is shown in figure 3.5. The depinning procedure
was the same for F60 as for F40. Susceptibility data are shown in figure 3.2.
T. and AT, can be found in table 3.1. We will dicuss the wide transition
related to the ultrasonic measurements in Chapter 4. The information we
have from the crystal grower does not explain the difference in transition

3The [100]-axis and not the [010]-axis since the [100]-axis is shorter.

4The resistivity measurements were by Dr. N. Kikugawa. The measurements were
done on a different part of the crystal F40 than the one we have used for ultrasonic
measurements
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widths between F40 and F60.

Nd1,03Ba1.97Cu30x, WAX144-1:

We had three parts of the original crystal each with mm dimensions
in each direction. Details of the crystal growth method can be found in
[64, 65]. Big crystals of Ndjy,Ba2 — yCusO, (NBCO) often have long
cracks along the ab-planes. Also WAX144-1 had this features, which could
be observed both by a light-microscope and acoustically. The crystals were
heavily twinned, which could be observed directly by a polarization mi-
croscope. We found T.= 92.5 K and AT, = 2.3 K from the susceptibility

measurements, figure 3.4.

Big.QSI']_.SCaCUQ 08—|—xa NO970822:

The sample was originally about 1 mm thick along the [001]-axis and
about 7 mm and 4 mm in the directions along the [100]- and [010]-axis
respectively. The original shape was like a slightly coned half cylinder.
The orientation of the crystal was checked by Laue back-scattering mea-
surements. We found a Bi-deficient superstructure along the [100]-axis as
described in [66]. The crystal was grown by the TSFZ method, further
details can be found in [67]. We cut off one small part intended for mea-
surements of cfl, and used the bigger part for other measurements. The
sample was extremely brittle so small pieces of each part broke off. Later
inspections showed that the ‘crystal’ was really at least three crystals grown
into each other. The extreme flakyness also prevented us from polishing
the sample. It therefore had a somewhat irregular shape® when we did the
ultrasonic measurements shown in section 4.3. We found T.= 83.3 K and
AT, = 3.5 K from the susceptibility measurements, figure 3.3.

Other crystals:

We have also had in hand some other crystals, which we will briefly
discuss:

5One of the two parallel surfaces used in the measurements was a cleavage plane, the
other was cut with a diamond saw.
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Two YBCO crystals, AE258G and AE493, grown by Dr. A. Erb with
T.’s of 91.1 K and 85.5 K respectively, had very sharp transitions (0.2 and
0.5 K) but showed to be much too thin for our ultrasonic measurements.
The thickness along the [001]-axis were 0.15 mm for AE258G and 0.27 mm
for AE493.

A LSCO sample, F73, with Sr concentration x = 0.10 were grown by
Dr. N. Kigugawa. This crystal showed a transition width of about 10 K.
No measurement have been done on the crystal, in some extent due to the
wide transition, but also due to the small size.

One YBCO crystal, TWOX321-1, and one NBCO crystal, WAX191-1
(with 7,=95.5 K and AT, = 0.9K), were grown by Dr. T. Wolf. We had two
parts of TWOX 321-1 with thickness 0.5 and 0.6 mm, also these turned out
to be too thin to measure by ultrasonics. The two parts of WAX191-1 had
big cracks which made ultrasonic measurements impossible. See figure 3.11.
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3.2 Cryostats

The purpose of the measurements has been to investigate elastic properties
of the HTS samples in relatively high magnetic fields. We chose to use
an old 5 T NMR magnet in our laboratory for the measurementsS. The
system was made by Oxford instruments’ in 1984 and contained, in addition
to the stainless steal dewar with the NbT% solenoid, an analog current
source, a LHe-meter, a sample holder, and some equipment intended for
NMR measurements. The advantage of choosing an NMR-magnet is the
high homogeneity needed in those systems. The current source used for
magnetizing the solenoids were connected to an analog amperemeter. The
magnetic H-field was calculated from the applied current. We have used
the symbol B, for the applied magnetic field, measured in Tesla, where
By = poH. The applied current,,, measured with an accuracy of + 0.25
A, was related to the magnetic field as:

Bo = 0.07271, (3.2)

The top-loaded sample holder, or cryostat, was rebuilt for the ultra-
sound measurements. All coils and plugs were changed and a new sample
cell was made. A sketch of the magnet, with the original inner vacuum
chambers and the sample holder, is shown in figure 3.6. The figure is
explained in the figure caption. A serious disadvantage with the original
cryostat was that it was very thin, and therefor gave very little place for
mounting of the sample. Space was needed because the transducers were
held in place by spring loaded gold contacts about 10 mm long®. With an
available space of 2.2 c¢m in diameter we chose to do reflection measure-
ments, reducing the number of transducers from two to one. This made
the mounting of the sample and the transducer much simpler. Especially
for shear transducers which needed to be mounted with the polarization

5The two other magnets in the laboratory were also considered, but the 6 T magnet
had a leak and the 10 T magnet had shown to be too LHe-consuming and difficult to
handle for one person.

"Oxford Instruments: Solenoid S/5/50/.002, Project number B26723

8They were originally 22 mm long, but we cut them as much as we could.
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Figure 3.6: A sketch of the original NMR magnet system. The parts in-
dicated on the figure are in alphabetic order: The inner sample chamber
(a) into which the cryostat were inserted, the LNy chamber (b), the LHe
chamber (c), The inner vacuum chamber (d), and the NbT' solenoid (e).
The top-loaded cryostat (f) is shown on the right with the sample cell (g)
indicated.
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along the crystal axis. We will discuss details of the cell design below, but
for a different cryostat.

Cooling of the sample was in the original system done by introducing
cold helium gas from the bottom of the sample chamber. A needle valve
connecting the outer liquid helium bath to the inner parts of the system
was used. This had to be done manually. In NMR measurements relaxation
times are in the order of fractions of a second, the need for stable temper-
atures over long time were therefor much less than in our measurements.
The introduction of cold gas as the coolant became extremely difficult to
control with the accuracy we wanted, often resulting in too high pressure in
the sample chamber and measurements under very varying conditions. The
preliminary solution we found to the problem was to reduce the vacuum be-
tween the helium bath and the sample chamber (the unit ‘d’ in figure 3.6).
With this procedure temperature control could be done satisfactory, but
the helium boil-off was extremely high (from 3.5 to 7 liter per hour!).

We finally came to the conclusion that a new system had to be built
allowing much better experimental conditions. We will name the original
cryostat system ‘The reflection cryostat’ in the following. Though almost
impossible to use with LHe as a coolant, it was quite easy to use with
LNs. Many tests of the measurement method and parts of the system were
successfully done with this cryostat.

The ‘new cryostat’ we build was a traditional two-chamber cryostat,
which fit into the NbT% solenoid. The outer dimensions of the cryostat
were largely the same as those of the original inner vacuum chamber, shown
in figure 3.6. A difference with the new cryostat was that there was left
more space for liquid helium in the dewar. A drawing of the cryostat is
shown in figure 3.7. Two different mounting configurations were needed in
the measurements; one with the propagation direction of the ultrasound
parallel to B,, the other perpendicular to it. Closeups of the sample cell
for each of these two setups are shown in figure 3.8 and figure 3.9.

On the top A in figure 3.7 vacuum tight electrical feedthroughs were

9The system had to be almost constantly watched resulting in work shifts of about 20
hours or so with less than 4 hour sleep in between.
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A——» 5

Figure 3.7: The ‘new cryostat’ used in most of our measurements. Vacuum
tight electrical feedthroughs is mounted at the top A. Pumping of the inner
chamber D is also done there. The outer vacuum chamber C has a separate
pumping line B.
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Figure 3.8: The sample cell used when the propagation direction of the
acoustic waves was parallel to the magnetic field. Shown in the figure are:
The sample holder A, a sample B, the spring used for detwinning C, Spring
loaded gold contacts D, The heating vire E, coaxial cables F, and the area
used for thermal anchoring of coils G.
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Figure 3.9: Details of the sample cell used when the propagation direction of
the acoustic waves was perpendicular to the magnetic field. The spring used
in the detwinning of the crystal (A) and the gold contacts (B), discussed
in the text, are indicated.
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connecting the outer circuit to the coils inside the cryostat. Pumping of
the inner chamber D was also done there. The outer chamber C had a
separate vacuum line B. There were two coaxial coils'® connected to the
outer BNC plugs by a SMC-BNC connection. For each of the thermometers
there were four 0.08 mm thick Cu-coils and for the heating wire two 0.25
mm thick Cu-coils. The Cu-coils were twisted in pairs. The inner chamber
D was filled with about 1 atm He-gas at room temperature, resulting in
a lower pressure at low temperatures''. The exchange gas was needed for
the temperature control as discussed below. The outer chamber C was
evacuated to a pressure of ~ 107% mbar, and continously pumped during
the measurements.

The sample cell drawn in figure 3.8 was used in the measurements where
the applied field was parallel to the propagation direction of the acoustic
waves. The sample holder A is shown with a sample B and a spring C
used for detwinning the sample. Spring loaded gold contacts'? D were con-
necting the coaxial cables F' to the transducers. The contacts were spring
loaded in order to keep the transducers in place on the sample. The trans-
ducers had a coaxial electrode configuration as shown in figure 3.5. Ideally,
the spring loaded contacts should also have been coaxial, but we could not
get hold of short enough coaxial contacts and were therefore forced to use
others. We have tested coaxial contacts in other measurement setups dis-
cussed below. No measurable difference was seen, probably due to the short
length of the contacts. A crucial and practically difficult step was to line
up the small sample, the polarization direction of each of the two trans-
ducers, and the magnetic field. We used a microscope when mounting the
sample. We estimate typical alignment errors to be less than +2°. We used
mainly a Carbon-Glass (CGR) thermometer!? for the LHe-measurements,
and a platinum (Pt) resistance thermometer for measurements at higher

10Suhner RG-178

1A reasonable estimate of the pressure for a given temperature can be found by the
ideal gas law.

12Produced by Ingun UK Ltd. [68].

3Lake Shore Carbon-Glass Resistor Model: CGR-1-2000, Calibrated by Lake Shore
from 4.0 to 325 K.
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temperatures. The thermometers were placed close to the sample. They
are not shown in the figure. The heating wire E was used to control the
temperature in the cell, by a temperature controller as discussed in sec-
tion 3.3. The heating wire were wound half way clockwise the other half
counter clockwise in order to avoid inducing a (small) magnetic field during
the temperature control. The helium exchange gas mentioned above was
needed to create a uniform temperature in the whole cell. This was neces-
sary because the thermometers were much bigger than the sample. During
control of the temperature the measured temperature was kept constant
during minutes for each point measured. We will discuss this in further
detail in section 3.3. All cables/coils were thermally anchored at the ‘top’
of the sample cell as indicated schematically in the figure (area G).

The sample cell in figure 3.9 shows only that part of the cell which is
different from figure 3.8. The spring used for detwinning A, and the gold
contacts B, are also indicated in the figure. This cell was used when the
magnetic field was perpendicular to the direction of the acoustic waves. All
the different parts in figure 3.8 and 3.9 were made of copper.

We have, in addition to the two cryostats discussed above, also used
three other ultrasonic measurement systems. Two of the systems have not
been cryostats at all, but table-models for work in air at room tempera-
ture. With these we could do many systematic checks of the method. The
third system was a cryostat made for measurements in zero magnetic field
with LNy as a coolant. The measurements done on the sample WAX144-1
presented in section 4.3 were measured with this cryostat. The design was
to a large extent the same as for the cryostat discussed above. Due to a
bigger space for the mounting of samples we were able to use spring loaded
50 Q coaxial gold contacts'® for connection to the transducers.

An in-house built AC-susceptibility system was used for sample char-
acterization as mentioned in section 3.1. In short, the principle behind the
measurements is as follows: An AC-current, at 300 Hz, is inducing a mag-
netic field in a solenoid. Inside the solenoid is another solenoid around the
sample under investigation. The sample, being the core of the inner coil will,

Produced by Ingun UK Ltd.[68].
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due to its diamagnetic behavior, lead to a phase shift of the field induced
in the inner coil when the sample becomes superconducting. The voltage
over the inner solenoid is compared with the original signal by means of
a lock-in amplifier. The in-phase component of the resulting signal being
proportional to the real part, x’, and the out-of-phase part proportional to
the imaginary part, x”,of the complex susceptibility. Our measurements
were done by slowly cooling or heating the sample. We made a program for
taking data at every 0.1 K. The temperature was read by a Pt-thermometer
located close to the sample.

We have also built a magneto optical system for sample characteriza-
tion. The cryostat is a flow cryostat where cold helium gas is used for
cooling. The sample is glued to a ‘cold finger’ which is in contact with the
cooling gas. On top of the sample we put a film of bismuth doped Yttrium
Iron Garnet (Bi:YIG) which utilize the Faraday effect. A polarization mi-
croscope and digital camera is then used in recording the amount of flux
inside the sample. The temperature of the sample was read with a CGR-
thermometer, and the temperature was controlled via the gas flow. A series
of six pictures measured for the sample F40 at 30 K shown in figure 3.10 is
shown here as an example of typical MO measurements with our apparatus.
Reading from left to right in the figure the applied fields are 10, 20, 30, 35,
40, and 50 mT. The maximum field we could use with our system was 50
mT. The inner black region in the pictures shows no flux penetration. This
part of the sample is therefore still in the Meissner phase. In the gray outer
region flux penetrates as described by the critical state model [69, 70]. The
MO technique is mainly used to investigate the flux penetration, pinning
or similar for the sample [69, 70]. We have found it to be a good tool also
for investigating cracks in the sample, not necessarily observable from the
outside. Two examples are shown in figure 3.11 for the samples WAX144-1
and WAX191-1. The cracks are apparent as the flux penetrates the sam-
ple from the edges, along the cracks. This kind of investigations is well
established [69]. We will discuss other MO data in section 4.4.
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Figure 3.10: MO measurements of the sample F40 at 30K. The applied
fields parallel to the c-axis of the crystal are, reading from left to right, 10,
20, 30, 35, 40, and 50 mT. The real shape of the sample is clearly seen in
the upper left picture where full screening still exists.
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Figure 3.11: Two examples of MO measurements revealing cracks in a
sample. The left figure shows the sample WAX144-1. The right picture
shows the sample WAX191-1. Both recordings were done at about 80 K.
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3.3 Circuits and computer programs

The first circuit, hereafter named ‘Circuit 1’, to be discussed is shown
in figure 3.12. It consists of a signal generator, an ultrasonic composite

Sign. Gen.

Amp.

DMM Detector

Figure 3.12: Circuit 1 used for frequency sweeps. The circuit contain a
signal generator, an ultrasonic composite resonator (Transducer-Sample-
Transducer), a RF amplifier, a diode detector, and a digital multimeter
(DMM). The apparatus are connected via 50 € coaxial cables (black lines).

resonator (Transducer-Sample-Transducer), an amplifier, a diode detector,
and a digital multimeter (DMM). The different elements in the circuit are
connected via standard 50 €2 coaxial cables. The equipment we have used
is shown in table 3.2, also for the circuits discussed below. Circuit 1 is used
for screening the resonance frequencies of the ultrasonic composite.

All measurements were done automatically using a PC with a general
purpose instrumentation bus (GPIB)'®. Programs were written in Quick
Basic 4.5. The screening, or frequency sweep, was done with a computer

15We used a PC2A-card from National Instruments Corporation.
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Table 3.2: Equipment used in the measurements

Unit Full name

Sign. Gen. HP 8643A Synthesized Signal Generator

Amp. HP 8447D Amplifier

Detector HP 8471D Detector

DMM Keithley 196 system DMM

Lock-in Amp. | EG&G 5302 Lock-in Amplifier

OSC. Tektronix 2230 Digital Storage Oscilloscope
Temp. Cont. | Linear Research LR-~130 Temperature Controller
DC Anzac H-9 Hybrid Junction

program called ‘FSWEEP’ in the following. A flow diagram is shown in
figure 3.13. The user sets the start frequency, fsiut, the end frequency,
fend, the size of the frequency steps, fsiep, between each point measured,
and the input amplitude of the RF-signal. The RF signal is generated by the
signal generator and sent to the first transducer, one frequency at a time.
Out of the second transducer comes a signal with the same frequency, but
with a much lower amplitude. This is then amplified and rectified by the
amplifier and detector before it is measured as a DC voltage by the DMM.
The frequency and the output amplitude are recorded by the program.
Data are plotted on the screen and saved in a data file. An example of a
frequency sweep is shown in figure 3.14. This measurement is done at room
temperature on a 1 mm glass sample with longitudinal transducers, having
fundamental frequencies of about 30 MHz. These and other data will be
further discussed in Chapter 4.

The second circuit, Circuit 2, is shown in figure 3.15. In this circuit the
output signal is measured by a lock-in amplifier instead of the multimeter.
The RF signal from the signal generator is frequency modulated (FM)
and the audio signal used for modulation is used by the lock-in amplifier
as a reference. The principle behind the frequency modulation method
is illustrated in figure 3.16. The FM signal is slowly swept trough the
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Figure 3.13: Flow diagram for the program FSWEEP discussed in the text.

mechanical resonance, resulting in an amplitude modulated (AM) output
signal proportional to the first derivative of the resonance. At resonance
there will be no amplitude modulation of the carrier frequency, although
some modulation at 2nd and higher harmonics is present. This can be
observed also on an oscilloscope. The phase sensitive detector (PSD) in the
lock-in amplifier rejects all signals different from the reference frequency,
thus indicating a null reading (X = 0) when the carrier frequency is at
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Figure 3.14: Frequency sweep showing standing wave resonances in a 1 mm
thick glass plate

resonance[27]. A simple program called XSWEEP record the derivative of
the resonances using this principle. The program is essentially the same as
FSWEEP presented above. An example comparing the use of FSWEEP
and XSWEEP is shown in figure 3.17. The measurement principle and the
settings of the apparatus will be further discussed below.

Since measurements have been done at low temperatures (from 4.2 to
160 K), temperature control was an important part of the measurements.
The temperature was read by a CGR- or Pt-thermometer as discussed in
section 3.2. The difference between the measured and the desired temper-
ature was transformed to a voltage in the computer program and sent via
a digital-to-analog converter (DAC) to an analog temperature controller.
The temperature controller uses standard PID-control with control param-
eters manually set by the user. The temperature controller regulated the
temperature by controlling the voltage over the heating wire in the sample
cell. Typical temperature control accuracy was 107° K close to 4 K and
about 10™* K near 77 K. The temperature control in relation to accuracy
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Sign. Gen.

Lock-In Amp. Amp.
?
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Figure 3.15: Circuit 2 used for frequency sweeps and peak tracing.
The circuit contain a signal generator, an ultrasonic composite resonator
(Transducer-Sample-Transducer), a RF amplifier, a diode detector, a os-
cilloscope and a lock-in amplifier. The apparatus are connected via 50 (2
coaxial cables (black lines).
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Figure 3.16: The principle behind the measurement method using frequency
modulation and lock-in detection. For details see the text.
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Figure 3.17: Example of frequency sweeps done with the programs

FSWEEP (full line) and XSWEEP (dashed line)
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of the measurements is further discussed below and also in Chapter 4. The
programs FSWEEP and XSWEEP were extended to also include tempera-
ture control, allowing sweeps to be measured at arbitrary temperatures set
by the user.

Measurements of the relative changes of phase velocity have been done
as shown in the flow diagram in figure 3.18. The program used will be
named USV here (Ultrasonic (phase) velocity). The main part of the pro-
gram is a double regulation routine with temperature control on one hand
and frequency tuning on the other. Finding the resonance frequency (at
a given temperature) with high accuracy also demands a high accuracy of
the temperature control. Since the GPIB can only handle communication
with one unit at a time parallel processing could not be done. Frequency
tuning and temperature control were therefore done in an alternating se-
quence. In addition to the criterium X = 0 at resonance the signal from
the PSD should have a negative gradient as shown in figure 3.17. If the
gradient is positive a null reading is just indicating a frequency between
two resonances. The main loop of the program is going from one temper-
ature to another in steps set by the user. One example of a measurement
is shown in figure 3.19. Two different temperature steps are shown here as
an example.

There are many parameters in the USV program and settings for the
different apparatus which have to be optimized in order for the measure-
ments to be the best possible. We cannot here go into detailed discussion of
them all. However, a few important parameters will though be mentioned:
The audio signal, used to modulate the RF carrier has both an amplitude
and a frequency which are important in the experiments. The amplitude
essentially determins the frequency interval over which the FM signal is
varying, called the FM level. This is shown as Afy4 in figure 3.16. The au-
dio frequency (f4) on the other hand is related to the discretization of the
frequency spectrum. If the audio frequency is much lower than the FM level
the frequency spectrum of the modulated carrier will be approximately flat
and continuous[8]. We used typically an audio frequency of 120 Hz and FM
level in the range from 20 to 200 kHz. Our experience is that an FM level
about half of the half-power band width, 6 f, is ideal in the peak tracing
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Figure 3.18: Flow diagram for the program USV.
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Figure 3.19: Example of peak tracing. The USV program find the resonance
frequency for temperatures pre-decided by the user.

measurements. In this case most of the wobbling or other kinds of noise in
the resonances were smeared out and at the same time smaller changes in
frequency could be found. If the FM level was too big the whole resonance
could be smeared out. If the FM level was too low, on the other hand, noise
in the resonances could easily ruin the measurements by making ‘jumps’ in
the curves. If the quality of the resonances were too poor these jumps were
almost inevitable (see also section 4.3). To better be able to quality-check
the measurements afterwords, ‘log files’ were recorded. The two examples
in figure 3.20 and 3.21 are taken from the same measurement shown in
figure 3.19.

The log files contain only data measured for temperatures within a small
deviation from the desired temperature. For temperatures outside this
interval no frequency tuning is done. Only the last part of the temperature
control sequence is therefore recorded in the log file. As seen in figure 3.20
there are different sizes of the frequency ‘jumps’ (called fjymp in figure 3.18)
as the resonance is approached. The user sets the size of these before
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Figure 3.20: Log file plot showing how the program approach the resonance
frequency decided by X=0.

each measurement, depending on the Q-value of the resonance, the FM
level and the desired frequency resolution. The frequency resolution was
also dependent on the time constant and the sensitivity of the PSD in the
lock-in amplifier. The output, X, of the PSD could be measured down to
0.01% of the sensitivity (measured in mV). We usually accepted an error of
+0.02% in the measurements, giving frequency resolution as high as +1 Hz,
as shown later in figure 4.6. The temperature was kept constant, within
an accepted variation, during a few minutes at each measured point in the
measurements using the USV program. Due to the discrete and manual
setting of the PID parameters some temperature intervals were measured
under better conditions than others. The log files as presented here do
not demonstrate this aspect. Often measurements were done during the
night without observer attendence. In most of these measurements the PID
parameters were chosen such that the temperature interval between about
15 and 40 K had the best temperature control. Qutside this interval the
temperature would fluctuate more if the PID parameters were not changed.
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Figure 3.21: Log file plot showing how the temperature is stabilized as the
program approach the resonance frequency.

This can be seen in some of the measurements shown in Chapter 4.

As explained in section 3.2 we have also done reflection measurements
in addition to transmission experiments discussed so far in this section.
The only differences between the two kinds of measurements are the use
of a directional coupler and a simpler ultrasonic composite containing the
sample and only one transducer. Figure 3.22 shows Circuit 3, which is
a variant of Circuit 1. A similar change was done with Circuit 2. All
computer programs have been the same in these measurements. A crucial
point in the reflection measurements was the impedance matching (IM)
of the fourth or ‘Isolated’ port of the directional coupler. The directional
coupler we have used is a socalled 180° hybrid junction!6. The other three
ports are called Input, Through and Coupled [23]. If the Isolated port is
terminated in a 50  termination, then ‘all’'” the power from the Input

16This kind of directional coupler is often called ‘a magic T’ due to the symmetry of
the ports.
17 All minus the 3 dB reduction of power between neighbouring ports of the coupler.
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Figure 3.22: Circuit 3 used for frequency sweeps. The circuit contain a
signal generator, an ultrasonic composite resonator (Transducer-Sample),
a directional coupler (DC), a RF amplifier, a diode detector, and a digital
multimeter (DMM). The apparatus are connected via 50 2 coaxial cables.
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reflected at the transducer will exit the Through port. In this case the
resonance pattern measured will in principle be inverted with minima for
each mechanical resonance. Two complications make the need for a different
termination of the Isolated port. First of all standing wave resonances in the
coaxial cables will also be measured in this setup as a frequency dependent
background. When the sample is cooled, so is also the cable going down to
the transducer, and its impedance will change. This makes the background
impossible to control in the measurement. The second reason is that the
power reflected is often many times higher than what is transmitted at
resonance, the signal to noise ratio will therefore often be rather bad. The
solution we found, from mainly empirical investigations, was to use another
cable with the same length as the one going down to the transducers as an
impedance match. This matching cable had to be cooled the same way
as the signal cable in order to work at any temperature. The idea is to
subtract the contributions from the coaxial cables and thereby measuring
only the acoustic composite. As shown in section 4.1.1 in two examples and
also in section 4.4 this way of matching worked when done properly. It is
not as trivial as it might seem though, and we were not able to repeat the
success when we build the new cryostat. Another problem with this setup
is to find a theoretical explanation of how this matching really works. It
is complicated because there will be multiple reflections when two of the
ports are not matched to 50 € [23]. We have not been able to really come
to a fully satisfactory solution of these problems.

Ultrasonic transducers for pulse-echo experiments are matched to the
electric circuit and have often a heavy ‘backing’. The impedance matching
will prevent the TEM waves from being reflected, so all the reflected sig-
nal comes from the acoustic part of the circuit. The backing prevents the
transducer from ‘ringing’ after an ultrasonic pulse has been sent out. In our
circuit there is no impedance matching of the transducers, and therefore a
big portion of the output power from the signal generator will be shorted
to ground over the capacitance Cy shown in figure 2.3 and 2.4. This was
no problem in our case because we used much lower power than the signal
generator could give. Complete impedance matching is in reality almost
impossible to achieve in this kind of measurement since we vary the fre-
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quency over a wide range. The matching would have to be done for each
resonance peak to be traced. Another difficulty with matching is that the
impedance is changing very much near a resonance peak. In the trans-
mission experiments impedance matching has not been necessary, and in
the reflection measurements we did some different attempts as discussed.
The transducers should in principal be negligible compared to the sample.
When this is the case air-backed transducers, as we have used, will be the
optimal case. We see advantages with backing also for the CW-method, but
will not discuss these here. Commercially sold transducers with backing!®
are too big for our crystals and they are not made for low temperature
measurements.

18For example from Panametrics Inc.: http://www.panametrics.com/
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Chapter 4

Results and discussion

4.1 The apparatus and the method

4.1.1 Experimental experiences

The maybe most critical factor from an experimental point of view in doing
research on HT'S materials is to get hold of good crystals. Different methods
have different requirements and different physical phenomena sets different
limits. We will discuss our measurements on HT'S materials in the following
sections. Here we will take a practical view of the CW-method, but focus
the discussion on the requirements given by working with HTSs.

The practical demands were dictated by the following facts: 1) Ex-
tremely small, often brittle and ‘flaky’, samples. 2) Small physical effects,
which required very high resolution measurements, with coresponding di-
mands on the apparatus. 3) Good reproducibility. 4) A wide temperature
range in high applied magnetic fields. 5) Samples and transducer polariza-
tion to be linearized to a high degree. 6) Bonding effects should ideally be
negligible.

The size of a sample became a critical issue in the ultrasonic experi-
ments. The main practical reason for this was the limitation given by the
physical size of the transducers. The smallest LiNbOs-transducers com-
mercially available are 0.5 mm in diameter [17]. With coaxial electrodes

67
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the practical minimum size will be closer to 1.5 mm. As mentioned in
section 2.1.3 the fundamental frequencies of the transducer crystals are
inversely proportional to the thickness of the crystals. Fundamental fre-
quencies higher than about 40 MHz would not be useful as the transducer
crystals would be too brittle!. Ideally the size of the sample should be big
enough for the contribution from the transducers to be neglected. We will
later discuss the implications of this requirement.

We have used transducer crystals of 3.2, 2.5, and 1.5 mm diameter with
fundamental frequencies from about 10 to 30 MHz. We have measured
the first odd harmonic resonances for a few unloaded transducers. This
was both done as a check of the measurement system and of the theoretical
modeling of transducers. One example is shown in figure 4.1 where we have
plotted the first and third harmonic resonance of the same longitudinal 1.5
mm diameter transducer. The first harmonic resonance is double peaked,
and this was seen for all the seven 1.5 mm longitudinal transducers we
inspected. We have also measured the unloaded resonance of two 3.2 mm
diameter longitudinal transducers without seeing the double peak. These
measurements were done with our apparatus in a reflection measurement,
but the very same characteristics were also found using a network analyzer?.

The Q-factors for the unloaded transducers are much higher than the
envelope Q-factors seen in frequency sweeps like figure 3.14. This is also
seen in the theoretical analysis (section 4.1.2). The more loaded the trans-
ducer is the wider the envelope. As with the transducers the samples will
have normal modes more and more widely separated along the frequency
axis as the thickness decrease (Af o< 1/21). If the crystals are too thin,
there may be no resonances within the frequency range where the trans-
ducer is active. If the crystal is thick enough frequency sweeps can be done
for several higher harmonic resonances of the transducer. In figure 4.2 is
shown resonance patterns at about 78 K for the LSCO single crystal F40
discussed in section 4.2 and 4.4.

For the moment we will just comment that the double peak seen for

'The price also increase dramatically above these frequencies

2Hewlet-Packard HP8753A Network Analyzer
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Figure 4.1: Frequency sweep around the 1st(left figure) and 3rd(right figure)
harmonic of an unloaded 1.5 mm diameter longitudinal transducer. The
shapes of the resonances are somewhat influenced by the frequency step
size.

the unloaded transducers (figure 4.1.1) seems to be present also in the first
plot, having a double peaked envelope. The transducers used for the sweep
in figure 3.14, which has no such feature, showed no double peak when
measured unloaded.

The transducer crystals are acoustically bonded to the sample, by a ma-
terial which allows acoustic wave propagation between the transducer and
the sample, and hence also prevents the acoustic waves from being totally
reflected at the surface of the transducer crystal. Even though longitudi-
nal waves can travel through air the acoustic impedance difference between
air and a solid would be too big for significant sinal transmission. Trans-
verse waves are even more demanding to transmit since liquids lack a shear
modulus. Still, with a ‘thick’ liquid in a thin bond shear waves can be
supported. There are numerous bonding agents which work at room tem-
perature. Some are better than others but in reality there is no certain rule
for what is useful. We have used oil, grease, honey, varnish, paper glue,
glycerol and other liquid like substanses with success at room temperature.
Cryogenic temperatures are a completely different story. As the tempera-
ture is lowered towards LHe-temperatures all substanses, except of course
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Figure 4.2: Frequency sweep around the 1st to 11th harmonic of the trans-
ducers. The longitudinal transducers are mounted on a LSCO single crystal
for measurement of Css, as discussed in section 4.2
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helium, will finally solidify. From a wave propagation point of view this is
advantageous since there will be less difference in acoustic impedance after
the bond is frozen and since a frozen bond supports shear waves. However,
bond break is a serious and frequently occuring problem which very often
ruins the measurement. In our experiences bond breaks fall in two cate-
gories. Either the bond cracks, or the bonding substance looses contact
with the sample and/or the transducer. In either case measurements are
interrupted. The bonds are cooled under a changing pressure, since the
transducer and the sample have different thermal expansion (contraction)?
and since the force from the spring loaded gold contacts, discussed in Chap-
ter 3, change as the temperature is lowered. The bond may also change
dramatically when it solidifies, and it can have structural changes during
further cooling. Of the fifteen different bonding agents we have tested only
one turned out to work at low temperatures. Even this one is also quite
far from perfect as will be discussed below. Two examples of high and
low temperature frequency sweeps are shown in figure 4.3 to illustrate the
problem of bond breaks. The bond break seen in the lower right corner of
the figure is of the kind were the frozen bond cracks.

When one of the transducers loose contact with the sample no power is
transmitted trough the composite. The multimeter will therefor measure at
most the threshold voltage for the diode in the detector. What we observe
then is a flat signal in the order of 0.01-0.02 mV independent of input power.
An electric open circuit would also give the same kind of output, but the
reflection measurements can be used to tell the two cases apart. There is
really no universal solution to the bond break problem. In the case of ‘bond
crack’ our experience is that it is better to change to a different bonding
agent than experimenting with different cooling rates etc. For the ‘bond
slip’ we found that ‘roughening’ the sample surface a bit gave good results?.
We will in the end of this section discuss how the reflection method can

3which may also change dramatically during the cooling process due to structural
phase transitions or similar phenomena

4We typically scratched the sample very little with a 1200 SiC paper. Just enough
for the surfaces to be a bit mate, but not so much that the extreme parallelism of the
surfaces were broken.
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Figure 4.3: Two examples of room temperature frequency sweeps (top left
and right) and success (lower left) or failure due to bond break (lower
right) at LNa-temperature. The measurements were done with the same
transducers on the same aluminum sample.
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give valuable information about the ‘origin’ of a bond break.

For a given sample the normal modes are the same from measurement
to measurement. What is measured on with the CW-method is a composite
resonator including also transducers and bonding. Therefore the resonance
pattern will not be a ‘fingerprint’ unique for the given sample. Even taking
the same transducers with the same bonding agent on the same sample will
give different resonance patters from mounting to mounting. We have put
some examples in Figure 4.4. Here the differences are quite big, and show

— Mounting 1
ol T Mounting 2
- Mounting 3

100

U (mV)

50

13.0 13.5 14.0 14.5 15.0 15.5
f (MHz)

Figure 4.4: Three examples of frequency sweeps where the transducers have
been re-mounted between sweeps. The measurements were conducted at
room temperature.

clearly why the bond is a weak point in the measurements.

The resonances in figure 4.2 also show some effects due to the transduc-
ers and the bonding. The left side of the resonance patterns are all very
beautiful with clear resonances. The right side, on the contrary, is getting
worse for higher frequencies. Our experience is that this effect is connected
to the bonding and the mounting of the transducers, without being able
to specify really what the problem is. The reason for the extra noise in



74 CHAPTER 4. RESULTS AND DISCUSSION

the first harmonic also remains unexplained. This noise is also seen for the
aluminum sample in figure 4.3(lower left).

Another interesting feature with the CW-method which we have seen
experimentally and also found theoretically is a frequency pulling effect.
This effect is only mentioned with one sentence in the original works [§],
while we have studied it both theoretically and experimentally. We have
found that the origin of the effect is in the coupling between resonances in
the sample and the transducers. As will be discussed in the following section
the amount of pulling changes with many factors, but more important is
that it can be such a strong effect that the linear theory completely breaks
down. One clear example of frequency pulling is shown in figure 4.5. The
measurement is done on a 1 mm thick glass sample. The distance between
succeeding resonance peeks is shown on the top of the figure.
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Figure 4.5: Frequency sweep on a 1 mm glass plate showing the frequency
pulling effect discussed in the text. The separation between neighbouring
peaks are shown on the top of the figure.

As explained in section 3.3, to measure the phase velocity (or elastic
moduli) as a function of temperature we trace one resonance frequency.



4.1. THE APPARATUS AND THE METHOD 75

Using the frequency modulation technique ables us to do this with a very
high resolution. What is quite inevitable, based on experiences discussed
above, is that the CW-method is not very accurate on the absolute scale.
Using several resonances we are able to get an absolute accuracy of the
phase velocity within +1%. The ‘recipe’ is discussed in section 4.1.2. The
extreme sensitivity in the peak tracing is due to the very powerful lock-in
amplifier, but also due to the fact that the signal generator has a very high
frequency resolution. The limiting factors are the sample itself and also
here the bonding to the transducers.

Let us substantiate the discussion with a few graphs. In figure 4.6
is shown a frequency sweep, measured with the program XSWEEP, very
close to a resonance. The lines at +0.02% show typical bounds for the
lock-in amplifier used in the USV programs discussed in section 3.3. For
the example given a resolution in frequency of the order of 1078 (!) could
be expected, as shown in the figure.
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Figure 4.6: Frequency sweep close to a resonance, indicating the frequency
resolution in the measurements.

Uncertainty in the temperature control adds new possible errors to the
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experiments, but as seen in figure 4.7 when the system works well the noise
is very low even for temperature steps as small as 10 mK.
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Figure 4.7: Example of peak tracing with temperature jumps down to
10 mK. The measurements are further discussed in section 4.2.

Another example is shown in figure 4.8. The two first curves, labeled
(1), were measured in consecutive runs. The third measurement (2) was
done later, after many temperature cycles’. Even though the temperature
steps are very different in all three curves the noise within each curve is
much smaller than the separation between them. We have also observed
these effects in other measurements at different temperatures and for dif-
ferent samples. The effects are stronger for shear waves than longitudinal
waves. Most likely the phenomena have to do with changes in the sample
like structural creep, and maybe also the bonding. In the best cases the
reproducibility has been on the 107° scale, but often 10-100 times worse.
We will discuss this a bit further in section 4.4.

5These experiments are further discussed in section 4.2. All the data in different
magnetic fields shown in figure 4.22 are measured after the second and before the third
curve in figure 4.8.
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Figure 4.8: Examples of reproducibility of the measurements. Three curves
shown with different temperature steps. The upper two curves are labeled
(1). They were measured on heating directly followed by cooling. The third
curve labeled (2) was measured much later (see the text for details).

A preliminary conclusion of the discussion so far is the following: The
resolution of the apparatus in the electric part of the circuit are many orders
of magnitude higher than the quality of the samples allow to be measured.
The relative change of a resonance can be measured with much higher
accuracy than the absolute accuracy of the phase velocity. The acoustic
bonding adds extra noise which especially affects the reproducibility of the
measurements.

Already from the presentation in section 2.2.2 it was clear that reducing
the number of transducers from two to one would be preferable from the
acoustic point of view. The bonding problem would be smaller and the
mounting situation much easier. Especially in the mounting of transducers
for shear waves the advantages of reflection measurements seems clear. Our
first cryostat presented in section 3.2 also mainly utilized the reflection
technique. The reasons for changing back to a transmission system was
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explained in Chapter 3.

Here we want to present some of the experience we gathered from work-
ing with the reflection technique. In figure 4.9 we show a peak tracing
measurement similar to those presented in section 4.2. The data should be
compared to those in figure 4.21 presented later.
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Figure 4.9: Reflection measurements of the elastic module C33 for the crys-

tal F40

In figure 4.10 we show a frequency sweep on a 1 mm glass plate. Com-
paring this to figure 3.14 shows that the resonances have higher Q-values
in the reflection measurements, but they are also more asymmetric.

The problems with our reflection cryostat which made us change to
transmission measurements were discussed in Chapter 3, but we wanted
to emphesize with these examples that the acoustic part of the reflection
measurements worked satisfactory. We will show more examples of mea-
surements with this system in section 4.2 and 4.4.

The reflection method can be used in the case of a bond break or other
causes of failure to clarify the problem. If there is a bond break in only one
of the two bonds in a transmission measurements both of the transducers
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Figure 4.10: Example of frequency sweep using reflection in stead of trans-
mission

would normally be re-mounted, since the user can not tell which one has
a break. Using the reflection method one can ‘observe’ each of the bonds,
typically doing a frequency sweep. If the bond is good one would typically
observe nice resonances like in figure 4.10, if on the other hand there is
a bond break of some kind the measurement would show this in distinct
ways. If the bond has cracked the reflection measurements will give the
same picture as the transmission measurements. If there is a bond slip the
reflection measurement measures only the transducer giving data similar to
figure 4.1. Also other obstacles like an electric open circuit can be seen by
the reflection method. In this case the output will be flat the same way a
bond slip would show up in a transmission measurement. A short circuit
is easier found with a multimeter.

So far we have concentrated the discussion on measurements of phase
velocity. From the original works of Bolef et al., presented in section 2.2.2,
also measurements of attenuation seems promising. The attenuation is
related to the Q-value via equation 2.42. In [8] is mentioned a Q-meter



80 CHAPTER 4. RESULTS AND DISCUSSION

which could be used to measure the Q-value as a function of some external
parameter like the temperature. We have not made a Q-meter like Bolef
et al., but tried to measure Q(T") in two different ways. The first attempt
was based on an analogy with a series RLC-circuits where the Q-value is
proportional to the height of the resonance peak. From any frequency sweep
we can immediately see that this can not be correct on an absolute scale (the
peak height follows the bell shaped curve around the transducer resonance),
but possibly we should detect changes on a relative scale for a given peak.
Our attempts on LSCO have not been successful. The measured data did
not consistently indicate the expected changes of attenuation near T.. The
measured Q-value varied so much from measurement to measurement that
we had to discard the data. The measurements were done using the simple
circuit 1 in figure 3.12. The poor quality of the resonances may have been
a major reason for the failure of these measurements®. The shape of the
resonance changed, not much, but still more than the change of the height.
We therefore mainly measured noise in the resonance peak. The second
attempt was to use the standard definition of the Q-value Q = f,,/6 f as we
mentioned in section 2.2.2. In these measurements we used the frequency
modulation procedure analogous to the measurements of phase velocity.
These attempts were not successful either, mainly related to the difficulty
of determining the half power width 6f. The resonance peak is at its
steepest near the frequencies determining § f. The data were too noisy and
had to be discarded. The Q-factor for a given resonance peak is clearly not
determined solely by the attenuation and phase velocity of the sample, but
will change with the attenuation of the transducers and the bonding. We
will discuss this furter in the next section.

5We have not included any plot which really shows the quality of the resonances, but
figure 4.4 can be used as an example. Zooming in the resonance peaks revile that all
peaks are a bit wobbly. Accurate measurements with circuit 1 is very sensitive to these
wobbles, and especially that they change in different fashion when the temperature is
changed.
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4.1.2 Theoretical considerations of the experimental method

We have based our work on the original theory for the CW-method, which
was presented in section 2.2.2. We made no attempts to model the system in
a considerably different way. The main difference between our analysis and
the one by Bolef et al.[8] is our use of computers. We will show how the full
model, not linearized as in section 2.2.2, can explain many of the surprising
phenomena encountered in the experiments. We have also been able to
incorporate bonding as a part of the model. We have done systematic
measurements on materials like glass to check the theoretical predictions.
Our data show good consistency. The following presentation will be given
with focus on the teoretical calculations, in order to be perspicuous.

Figure 4.11 shows a typical frequency sweep calculated by the use of
equations 2.44 - 2.46. For simplicity we will refer to this configuration
as TST (Transducer-Sample-Transducer). We have plotted the absolute
value of the admittance as a function of frequency, giving maxima where
the impedance goes to zero. We will discuss the validity of this criterion
in the end of this section. Two curves are shown in figure 4.11, one for
the phase velocity of the sample vg = 6000 m/s and one with vg = 3000
m/s. All other variables in the model are kept constant. It is apparent
from the figure that increasing the phase velocity increases the distance A f
between successive resonances, as expected (vg o 2[gAf). Other features
include the difference in amplitude of the two curves, the change in Af
due to the change of velocity not being linear, and changes of both Af
and the shape of the resonances with frequency. In the model plots the
calculated curves have been normalized by the maximum value for the
admittance of the two curves. A similar plot is seen in figure 4.12 where
the thickness of the sample [g has been varied. The TST model has a whole
zoo of variables which need to be inspected. Each element (T or S) has its
phase velocity, attenuation, thickness, and density. From them we calculate
the characteristic impedances and Q-values which are used in the model
instead of density and attenuation (using equation 2.43 and equation 2.42).
For the transducers also the resonance frequency is needed as an input
parameter. Except for the density all parameters will be different in the



82 CHAPTER 4. RESULTS AND DISCUSSION

o
o
T

Admittance (normalised)
o o
IS o
T T

o
w

o
N
e m—

o
[

2
Frequency (MHz)

Figure 4.11: Calculated frequency sweeps with two different phase velocities
vg as input parameters
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Figure 4.12: Calculated frequency sweeps for two different sample thick-
nesses
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Table 4.1: Parameters for simulations on the Transducer-Sample-
Transducer system

Element Thickness(l) | velocity(v) | Impedance(Z) | Q-factor
[mm] [m/s] [M Rayl] (-]

Transducer(L) | 0.10 — 0.70 7340 34.1 10% — 10%

Transducer(T) | 0.07 —0.45 4795 22.2 102 — 10*

Sample 0.2 —20 1500 — 6000 1 —40 102 — 104

case of longitudinal and transverse waves. In table 4.1 we have listed most
of the relevant parameters in the simulations. For some of the parameters
(e.g. vp) only one value is shown. In these cases only this value was used
since we have intended to model the experimental situation in the case
of LiNbO3 transducers. For other parameters (e.g. Qg) an interval is
indicated to illustrate that the parameter was varied in the simulations to
fit measured data or that the values were different for different crystals.
The frequency pulling effect mentioned in the previous section can be
explained by the model as exemplified in figure 4.13. We see how a change
of the characteristic impedance Z = puv alter the resonance pattern. The
essential point is that when the difference between acoustic impedance in
the sample and the transducer is increased then the frequency pulling gets
stronger. However, the frequency pulling will also change with other pa-
rameters than the characteristic impedance. The parameter n which was
introduced in section 2.2.2 is a good indicator for the situation. It also
includes the lengths and phase velocity of the sample and the transducer:

prle _ Zrlrvs
psls  Zslgvr

U (4.1)
If n is small, for a given impedance ratio, then the frequency pulling will
be weaker. Conversely when 7 is ‘big’ the pulling effect will be stronger.
This is typically the case when the thickness of the sample is approaching
the thickness of the transducers. In the cases modeled in figure 4.13 and
for materials like glass the impedance of the sample is smaller than the
impedance of the transducer. In the case of LSCO the situation is opposite.
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Figure 4.13: Calculated frequency sweeps showing the frequency pulling
effect discussed in the text.

The TST model does not seem to give physically correct results if the sample
has a higher value for pv than the transducer. We show this in figure 4.14
where we also have shown a plot for the extended model TBSBT which
includes the bond, B. All other parameters are the same in the calculation.

We have included the bonding in the model as a transmission line with
the same variables as for transducer and sample. The challenge in do-
ing this is not mathematical, but related to the knowledge of the physical
parameters. Phase velocity, Q-factor, and density can be reasonably esti-
mated or even measured. The thickness I on the other hand is much more
uncertain. It is surely in the micrometer range, but may vary considerably
from time to time in the experiments. In figure 4.15 we have calculated
two frequency sweeps with bonding thickness 10 pm and 20 pm. What is
interesting is that not only is the amplitude affected, but the resonances
are shifted and the distance between them is also clearly changed. In most
of our calculations the two bonds in the composite resonator were assumed



4.1. THE APPARATUS AND THE METHOD 85

—— no bonding
— — with bonding

Admittance (normalised)
o o
IS 2

031

12 14 16 18
Frequency (MHz)

Figure 4.14: Calculated frequency sweeps showing where the characteristic
impedance of the sample is bigger than of the transducer. The bonding is
included in the calculation to get a physically realistic resonance pattern.
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Figure 4.15: Calculated frequency sweeps where the bonding thickness have
been varied

to be equal. We have also done a few calculations, not shown here, with
different bond thickness. These results give reason for serious concern since
they show that the calculated sweeps are extremely sensitive to variations
in the bonds. As a final example of calculations with the TBSBT model we
show some additional effects which appear when the Q-value of the sample
is changed. This is shown in figure 4.16: The Q-values of the resonances
are, as an overall feature, changed according to the input value. The cen-
ter of the envelope is changed a bit, but the resonances are not shifted in
this example. A more important point is that the resulting Q-values vary
considerably with frequency, with the highest values seen near the center
of the sweep.

We mentioned in the previous section that our attempts to measure
Q-values as a function of temperature had failed. From the analysis of
the model we see new problems in using the Q-value as a measure for
the attenuation. This does not really give an input to alter the theoretical
modeling since the Q-values there can be looked upon as just a different way
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Figure 4.16: Calculated frequency sweeps for two different Q-values of the
sample as input parameters

of writing the attenuation. The Q-values determined from the model plots
are difficult to relate to the input Q-values both because they change within
each frequency sweep as previously described, but also because the resulting
Q-values change with most of the other parameters in the model. Here we
actually point to the weakest aspect of the whole concept of CW ultrasonics:
The strong coupling of all the parameters for all the different parts of the
composite resonator makes the determination of physical properties of the
sample very inaccurate in absolute magnitude. This does not mean that
the CW-method is useless, but that we need to show sobriety in reading
our data.

As a final point we will further review the linearized theory discussed in
section 2.2.2, and discuss how we in practice have calculated elastic moduli
from measured data. The approximations made to obtain equation 2.54
soon fail as (f¢ — fT) is getting large. Only the centrally located two
or three peaks can be expected to follow the linearized equations when
the samples are small. To avoid linearization one would have to solve
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equation 2.47, but this can not be done analytically. A graphical solution
can be found rewriting it as

2 tant
an (4.2)

where z = Zyp/Zg, s = kglg, and t = kplp. However, this still gives us less
information than the TST calculations we have presented above. Including
bond and attenuation into the model the situation is getting even more
complicated. Therefor the full TBSBT calculations as discussed previously
is the only realistic alternative. In our calculations we generalized the zero
impedance criterion in the lossless case to require impedance minima at
resonance. Thus we plotted the admittance |Y| = 1/|Z’| as a function
of frequency in figures 4.11-4.16. As mentioned in section 2.2.2 we are
working with a mechanical equivalence of the whole system. Neglecting the
coupling to the electrical circuit we can not expect precise results, but our
experiences show that most of the features seen in the experiments can be
explained by the model. Probably the most striking difference between the
model and the exact system is that in the mechanical analogy also even
harmonics of the transducer will contribute. The model is one dimensional,
ignoring three dimensional effects which will be more and more important
as the size of the sample approaches the size of the transducers. Three
dimensional effects are to some extend discussed in [§].

The TBSBT-model as presented can be used to calculate frequency
sweeps. In a measurement we are really pursuing the inverse problem; cal-
culating phase velocity etc. from measured data. It is in principal possible
to fit measured data to the theory, but this will soon be very time con-
suming and inaccurate due to the big number of input parameters. For
peak tracing measurements the model calculations will therefore not be
very useful.

Since LSCO and LiNbOj3 have quite similar characteristic impedances
we have assumed that the frequency pulling effects can be neglected and we
have used the linear theory presented in section 2.2.2 for the measurements
on LSCO. To calculate the phase velocity from the measured data f<(T)
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we have used equation 2.54, rewritten here for simplicity:

i +2n(f = fin)
n

vg = 2lg (4.3)
Here we have also included the possibility of measuring near any m’th har-
monics of the transducer(fL). The parameter 7 is calculated for the given
sample and transducers using equation 2.50. The transducer frequency can
be found from the unloaded measurements mentioned in the beginning of
section 4.1.1 or, as we often did, be estimated from higher harmonic fre-
quency sweeps. The peak number n is the most crucial parameter in the
calculations. There will be a large uncertainty in the absolute value of vg
even for small changes in n. The number n has to be an integer, and will
in practice be rounded to the nearest integer found from measured data.
Some peaks have more noise than others, we therefore developed a proce-
dure for finding the number n based on peaks from several higher harmonic
frequency sweeps. Using the central two-three peaks in up to six sweeps,
like those in figure 4.2, we could find the peak distance A f and from this
the integers n to a satisfactory accuracy. Using this procedure we could find
the longitudinal phase velocity to an accuracy of +1% and the shear ve-
locity to £3%. The elastic moduli were calculated from the phase velocity
using vy = (C’ii/p)l/2 as explained in section 2.1.2.
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4.2 Elastic moduli in LSCO

One of our goals has been to investigate parts of the magnetic phase dia-
gram for HTS by means of elastic measurements. Zero-field measurements
have been done both as a check of the method and as background for the
measurements in an applied field. As discussed in the previous sections the
CW-method has some weak points. Both method related difficulties and
practical problems appear when the crystals are small. Measurements done
earlier on LSCO by other groups, on much bigger crystals and with other
ultrasonic methods, will therefor be a natural comparison.

Before presenting and discussing our data we want to emphasize a small
difference in notation by different groups. In the early 90’s much work
was done to investigate the structural phase transitions in different HTS.
Among these were ultrasonic investigations[7, 71, 72]. The natural way
of naming the measured elastic moduli was to use the room temperature
structure symbols even below the structural phase transition temperature.
As explained in section 3.1 we have mainly used the low temperature or-
thorhombic symmetry in naming elastic constants. Our crystals were also
mounted under a pressure applied for detwinning. When necessary we will
emphasize the differences in notation to avoid confusions. Cutting the crys-
tals has put seviere restrictions on which elastic moduli that could be mea-
sured. With the limited amount of crystals avaiable we have concentrated
on just a few moduli as discussed below.

4.2.1 Critical fluctuations

The data given in figure 4.17 show the crystal modulus Cgg measured for
the crystal F60. Here the wave vector is parallel to the b-axis and the wave
polarization is along the a-axis (See table 2.2). This mode would be named
C11 — (12 in the THT-phase. Our data can be compared with the zero
field data in [22] and they have obvious similarities. The elastic constant is
increasing as the temperature is lowered. The value increase about 1% in
the temperature interval from 80 to 0 K. A minimum is seen near T,. We
will discuss the origin of this minimum below.



4.2. ELASTIC MODULI IN LSCO 91

104.6

—=— La, Sr,,sCu0, (F60
104.4 |- 18557015CU0, (F60)

104.2

CGG(GPa)

.
104.0 |
"

103.8

103.6 N 1 N 1 N 1 N
0 20 40 60 80

T(K)

Figure 4.17: Measurement of the elastic modulus Cgg for the LSCO crystal
F60

The data in figure 4.18 show the crystal modulus C55 measured for the
same crystal F60. Here the wave vector is parallel to the c-axis and the
polarization is along the b-axis. In the next figure (Figure 4.19) almost the
same measurement have been done for F40, but here with the polarization
along the a-axis, resulting in a measurement of Cyy. Since the a- and b-
axes are almost equal, Cy4(T") and Cs5(7T") should look almost the same.
The main differences between the two curves are therefore expected to be
due to differences between the two crystals.  All three curves shown so
far are a bit ‘wabbly’ in shape. We can not explain this in detail, but
belive that changes inside the sample and variations in the temperature
control are the main reasons. These details of the curves should therefore
be disregarded. We will focus the discussion on the distinct minimum near
T, for the last two curves. This has not been observed earlier in similar
published measurements. In [19] and [42] measurements of Cy4, referred to
the tetragonal phase, can be seen. No detwinning had been done in those
measurements and the modulus measured had polarization along an axis at
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Figure 4.18: Measurement of the elastic modulus Cs5 for the LSCO crystal

T(K)

30 40

F60. A closeup near T, is shown in the lower left corner.
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Figure 4.19: Measurement of the elastic modulus Cyy for the LSCO crystal
F40. A closeup near T, is shown in the lower left corner.
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45° to the one we have measured. In an early attempt we measured C1 17

using the reflection cryostat. The result shown in figure 4.20 is more similar
to the data in [19] and [42], but one can still discern a softening near 7.
We would like to emphesize that the measurements shown in figure 4.20
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Figure 4.20: Reflection measurement of C7;#7" for the crystal F40

were not made with the optimised settings of the apparatus as in the rest
of the figures in this section. In any case it appears reasonabble to expect
that the sharp minimum near T, will be weaker when the crystals have a
higher degree of twinning.

A mean field analysis of the data can be done using Testardi’s theory
which we outlined in section 2.1.4. This kind of analysis shows good core-
spondance with the data except for the temperature interval near T.[19].
Only the data shown in figure 4.17 could fit into a pure mean field analysis
as discussed in [19] and [22]. For the Cy4- and Css-data the minimum near
Te is too sharp and deep.

Using equation 2.31 Nohara et al. [22] also considered fluctuations as
an explanation for the minimum near 7; seen in their data. Using a small
but positive critical exponent a equation 2.31 predicts a hardening instead
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of the observed softening and naturally the conclusion did not favour the
fluctuation model. In the 3D-XY model the heat capacity exponent is small
but negative[73, 74], and this gives the expected softening. The shape of
the fluctuation peak deduced from the equation is expected to be almost
linear in T, which is essentially what we see in our measurement on F40
(figure 4.19). The minimum measured in the crystal F60 is somewhat dif-
ferent from that measured in F40. The difference can to some extent be
understood from the susceptibility data shown in figures 3.1 and 3.2. The
superconducting transition in F40 is about 0.8 K wide, while in F60 it is
almost 10 K. The ultrasonic measurements near T, should show this dif-
ference. What is somewhat surprising and unexpected is that we see a
minimum at all for F60 with such a wide transition. The data will be
discussed furter in section 4.4 where we study the crystals in an applied
magnetic field. As discussed in the two previous sections we need to look
carefully at our measurements in order to be sure that we investigate the
physics we are really after. Our data discussed so far look almost the same
as what was seen by other groups, therefore the overall picture looks rea-
sonable. We do not wish to speculate on why earlier measurements did not
show a minimum near T, as seen here. There are methodical differences,
differences in size and quality of crystals etc. which would have to be con-
sidered if we wanted to make a detailed comparison. We will instead inspect
our measurement system for causes of error. Longitudinal modes, like C'33
discussed below, are expected to have a minimum also in the mean-field
case[19]. One could ask if the measurement somehow included a longi-
tudinal contribution. We belive that possibly the opposite could be the
case (that a longitudinal measurement could get contributions from shear
modes) since the longitudinal transducers used are quasi-longitudinal (see
table 2.1). The shear transducers on the other hand generate no longi-
tudinal modes. The frequency sweeps should also show clear indications
of longitudinal modes if they were present. Since the phase velocities for
longitudinal and shear waves are quite different this should have shown up
in the peak separation in the sweeps.

The last possibility we can see, other than critical fluctuations, seems
to be an effect which we presented in section 2.1.4: The thermal expansion
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also has a sharp change near T,. Under normal circumstances the sample
length shrinks as the temperature decreases. This means that the length
of the sample, as used for example in equation 2.54, is slightly changed
during the measurement. Usually this effect is about two to three orders
of magnitude smaller than the changes in elastic modili[75] and is therefore
normally neglected[71]. The minimum near 7, in our data is rather small,
and the thermal expansion coefficient have a sharp change, proportional to
the change in specific heat, in the same temperature interval[75, 76]. See
also equation 2.22. A peak in thermal expansion data does not,however,
imply that the sample both shrinks and expands. The linear thermal ex-
pansion is proportional to the temperature derivative of the length L; along
the i-axis (i = a, b, c) [76]:

. 1 dL;

a; = P (4.4)
meening that the sample rather shrinks at a slower and faster rate in the
temperature intervall near 7.

We will therefore claim that critical fluctuations are the most likely
origin of the minimum near 7T, in the measurements considered so far.



96 CHAPTER 4. RESULTS AND DISCUSSION

4.2.2 Ceritical scaling

The longitudinal mode C33 has been measured earlier by Nohara et al.
[19, 77, 78]. Our data for the crystal F40, shown in figure 4.21, have the
same features as seen earlier, but the minimum is a bit sharper and deeper
in our data. Similar data were also shown in figure 4.9.

2545 - La, g557015CU0,

254.0

C43(GPa)

2535 |254.30

[254.25

253.0

254.20

34 35 36 37 38

T(K)

Figure 4.21: (43 data for the crystal F40. A closeup near T, is shown in
the lower left corner

We could not measure the modulus C1; because the applied pressure
along the a-axis (in the orthorhombic phase) prevented attachment of the
transducers. The modulus C9 could have been measured for the crystal
F60, but we have not done this due to other priorities. For measurements
of CHAT we would like to refer to [19]. We showed in section 2.1.4 that the
deep minimum in the C33-data is mainly proportional to the heat capac-
ity peak, with small contributions from entropy and free energy. It seems
therefore likely that we can analyze our data for contributions from critical
fluctuations as if we had measured the specific heat. Pasler et al. chose
a similar strategy when they concluded from thermal expansion measure-
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ments that their YBCO crystals had a normal to superconducting transition
in the 3D-XY universality class [76].

To investigate the critical fluctuations at the superconducting transi-
tion the normal-state background has to be removed. One way of doing
this , which is often done with heat capacity data[79], is to subtract data
measured in a high magnetic field. Preferably the field should exceed the
upper critical field, Beo, in order to keep the sample in the normal state
during the entire measurement. With our available magnet of only 5 T a
modified strategy is needed. In figure 4.22 is shown measurements of C'3
in different magnetic fields applied along the c-axis of the F40 crystal. The
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Figure 4.22: Measurements of Cs3 for F40 in applied magnetic fields from
0 to 5 T applied parallel to the c-axis of the crystal

minimum near 7T, is becoming smaller and is shifted to lower temperatures
as the applied field is increased. At temperatures well below T, the elastic
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modulus seems to soften almost linearly with the magnetic field. Following
Nohara et al.[19] we will subtract a background of the form

Cy=Cy+ CQT2 + C4T4 (4.5)

where Cy, Cy, and Cy are constants. The T* dependence is ascribed to the
phonon contribution and the T2 dependence from (normal state) electrons.
We have done an estimate of the background as shown in figure 4.23. There
is clearly considerale uncertainty in this choice, but this should not be a very
critical factor in the following analysis. Subtraction of the background has
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Figure 4.23: Estimated normal state background together with some of the
C33(Bg)-curves shown in figure 4.22

been done in figure 4.24 (right). Also shown in the figure (left) is a closeup
of the data near T, before the subtraction. The B.g-crossover line can be
determined from the data, plotting the peak temperature as a function of
the applied field. Before the background subtraction a clear minimum in
the curves can only be found up to about 3 T. The background subtraction
changes this situation: Each curve now shows a distinct minimum. The
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Figure 4.24: Closeup of the C33 data shown in figure 4.22, before (left) and
after (right) subtraction of the estimated normal-state background
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minima are shifted to lower temperatures in the subtraction procedure and
this shift is increasing with the value of the applied field. From the 3D-XY
model the Bep-line is given by[53, 79]:

Bc2 (Tc - T)2V> (46)

with the critical exponent v given by the hyper scaling relation 2 —a = vd.
Since « is almost zero, and the dimension d = 3, 2v will be close to 4/3.
In figure 4.25 we have plotted the B.y data taken from figure 4.24(right)
together with a least squares fit of the data to the form

By =a(T, - T)°. (4.7)

The numerical values of the constants a and b were found to be a = 0.48 +
0.01 and b = 1.50+0.02 respectively. Also included in the plot is a fit to the
3D-XY model (equation 4.6, with v ~ 2/3). It is clear from the previous

—a— Data (Bcz(T))
Fit to data
Fit to 3D-XY model

B(T)

32 33 34 35 36 37
T(K)

Figure 4.25: B.-line from the C33 data. Also shown is a best fit to the
data using equation 4.7 (dotted) and a 3D-XY curve following equation 4.6
(dashed)
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discussion that for lower fields the background subtraction is affecting the
B data much less than at higher fields. For example a fit for the data below
2.5 T gives the b-value 1.43 compared to 1.50 for the entire range. From
figure 4.25 one can see that our 3D-XY fit shows the best correspondence
with data at low applied fields. We will argue that our data are consistent
with 3D-XY scaling in the lower field range, but we do not exclude at this
point that the data also might be consistent with other models. Gaussian
fluctuations would show a linear dependence (b = 1 in equation 4.7)[79],
which is clearly further away from the observations. A different procedure
for finding the exponent v is to rescale the axes of the graphs in order
to collapse the data onto one curve. This has been done for specific heat
data, mainly on YBCO, by many groups[80, 81, 82, 83, 84], from the very
beginning of the HTS era. The main discussions have been on 3D-XY
versus 3D-LLL scaling. There seems to be no clear consensus even though
data and the theoretical approach in treating them have been much of the
same. Scaling procedures found in the literature is applicable for specific
heat and magnetization measurements. It is not straightforward to extend
this approach to our C33-data even though the elastic modulus is roughly
proportional to the specific heat near T,. We will make an attempt, but
disregard the magnetic field dependence and focus instead on the data
measured in zero field.

The specific heat, for a sample in a continuous phase transition, has a
singular part of the form[74, 76, 85]:

Cy(t) ~ AZJt] (48)

with  being the reduced temperature t = (T'/T, —1) and A* the amplitude
above (+) and below (-) 7. In principle a and A% could be determined di-
rectly by plotting the data on a log-log scale. This would require a very high
accuracy near Tg, but since the transition is broadened by inhomogeneities
in the sample this approach fails[85]. To extract the critical behavior de-
spite the broadening, we ignore the rounded part of the cusp near T, and

" Alternative forms are Cp/T ~ AE[t|™*, or Cp(t) ~ %M_o‘ with similar singular

behavier [85, 76]
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use the tails of the peak to extract the critical exponent a. Mathematically
this can be achieved by expanding equation 4.8 in a power series of In |t:

Cy(t) ~ A7 = AT exp(—aln [t]) ~ AF(1 —alnt]), (4.9)

a procedure which should be reliable as long as (—a/In|t|) < 1 and t is not
too close to zero. From this it is apparent that plotting C)(t), or a quantity
proportional to C), on a semilog scale, ignoring values with t close to zero,
one should find two straight lines. The lines should have slopes —aA*a
and separation A = a(A" — A7) where a is a constant. Taking the ratio of
the slope and the separation defines the universal number

_ AT
J=a 1(1—A> (4.10)

A practical problem in this kind of analysis, when the transition is broad-
ened, is to find the correct T,. Common practice [76, 85] is to adjust T
until the branches are as straight as possible, keeping 7. higher than the
peak temperature 7;,. We would like to emphasize that this procedure will
affect the value of J, and we have therefore plotted three curves, figure 4.26
- 4.28, with T¢ from 36.95 K (7},) to 37.75 K (Tt in the susceptibility mea-
surements). We have indicated the two straight lines used in the scaling,
together with a dashed line corresponding to the value J = 4 found for
“He [74, 76, 79]. The vertical axes show AC33/T in arbitrary units. We
have subtracted the background as shown above and divided by T' to have
data proportional to C), 8. Before we analyze the critical exponents found
from the semi-log plots, we would like to comment on some other details
in the figures. The upper branch in the plot, which is most rounded, be-
longs to data below T.. The branches meet, outside the plots, in Tj,. The
specific heat data shown in [74] for He and in [85] for YBCO have the low
temperature branch as the most linear one. The thermal expansion data

8The data have also been multiplied with constant values found in [19] for the molar
volume and the strain derivative of 7. in order to get the data in correct units for C,.
Since this is no essential point and since it does not alter the values of J, AT or a we
have not focused on this here.
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Figure 4.26: Semi-log plot for the background-subtracted Csz-data dis-
cussed in the text. T, is chosen to be 36.95 K
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Figure 4.27: Semi-log plot with 7,=37.30 K
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Figure 4.28: Semi-log plot with T,=37.75 K

for YBCO in [76] are, on the other hand, more similar to our data. The
downward rounding in the critical regime can be attributed to mean field
contributions[76]. According to equation 2.26 these contributions can be
expected to be caused by changes in entropy and free energy.

In the semi-log plots we expect the analysis to be valid roughly for
04K < |T—-T.| < 4K, corresponding to —4.5 < Int < —2.2. The transition
is rounded over 0.8 K giving £ 0.4 K as the lower limit. The critical
fluctuations should be observable to ~ +10% of T, which is about 4 K for
the crystal F40.

A best fit to our data would give J ~ 5 - 6, which is 20-30% higher than
the value obtained for *He. Pasler et al. found J = 6 from their thermal
expansion data on YBCO[76]. Junod et al. [79] discuss specific heat mea-
surements for 16 crystals of YBCO, FuBasCuszOy (EBCO), DyBasCuszOx
(DBCO) and BSCCO, focusing on the values obtained for J. They conclude
that only optimally doped YBCO has J = 4 and represent an exception
belonging to the 3D-XY universality class. We will agree with Junod et al.
that the values obtained for BSCCO, J ~ 0.2-0.8, gives critical exponents
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not consistent with 3D-XY scaling. However, we will argue that for exam-
ple J = 6 gives consistent values, and that J = 4 should not be used as
such a sharp criteria for 3D-XY behavier.

For the above analysis we do not have enough equations to determine
all the unknowns J, A*, and o. Common practice is therefore to assume
3D-XY values? for either AT/A~ or a and from the measured J-value
calculate the last unknown using equation 4.10. With J for example in
the range 2 to 6 we get —0.027 < a < —0.009 when AT/A~=1.054, and
1.0257 < (At/A7) < 1.0771 when a = —0.01285. All these values are
close enough to conclude that they are consistent with 3D-XY behavior!?.
There are only minor differences from the ideal case, and we cannot hope
to do much better under the given experimental conditions. Other models
discussed in [79] include 2D- and 3D-Gaussian fluctuations and 3D Bose-
Einstein condensation for the charged boson gas. All these other models
have values for a and AT /A~ which are far away from the values discussed
here, and therefore represent no real alternative to the 3D-XY model in
this context. We stress again that BSCCO seems to be very different than
YBCO or LSCO and agree with Junod et al. that the conclusion might
be different for BSCCO!'. We will mention one more model with critical
exponents not too far away from the 3D-XY model. What we have in mind
is the 3D-Heisenberg model with a = —0.115(9) and v = 0.705(3) [73].
Why this model should be more appropriate than the 3D-XY model must
be argued on theoretical grounds'?. We cannot see that any model fits our
data better than the 3D-XY model and must therefore conclude that it
seems like the most reasonable model for explaining our data.

9We will use AT/A~=1.054 and a = —0.01285 measured by Lipa et al. in *He [74].

OFven J = 11 is consistent with 3D-XY scaling. This value gives @ = —0.005 which
could be compared to the RG calculations in [73] giving o = —0.007(6)

1 One difference with BSCCO compared to LSCO and YBCO is that for BSCCO is
the coherence length, &., smaller than the layer distance, s. A more 2D like behavier will
therefore be expected|[3].

12 A discussion on amplitude fluctuations in the order parameter which could be relevant
to this is found in [86].
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4.2.3 Critical dynamics

As discussed in section 2.2.2 the CW-method should in principle give the
speed of sound independent of which resonance one is tracing. Working
at different frequencies will on the other hand give some additional infor-
mation if some other length scale is of relevance. An example would be a
polycrystal with grains, say, on the micrometer scale. For low frequencies
(long wave length) the crystal would look isotropic and homogenous to the
measurement. With wave lengths on the order of the size of the grains this
would definitively not be so. The resonance frequencies is not just inversely
related to sample length, but also represent a time scale for probing of sam-
ple dynamics. Dynamics at some time scale, like a relaxation time, could
therefore also be investigated by measuring at higher or lower frequencies,
corresponding to shorter or longer time scales respectively. We have mea-
sured (33 for different frequencies following one resonance peak within each
of the six odd harmonics (1st - 11th) for the transducers. The correspond-
ing frequency sweeps are shown in figure 4.2. We have printed the six curves
in figure 4.29. We have shifted the data by a constant amount in order to
separate the curves. The resonances in the 1st and the 11th harmonics had
a much higher noise-level than the others. Near T, the following features
are still clearly seen in figure 4.29: i) All the curves have the same minimum
Tp. ii) The lower the frequency the sharper and deeper is the minimum.
Discussions of our data have so far been focused on critical fluctuations, and
it is tempting to do this again. The reduction of ‘peak height’ with increas-
ing frequency is a very interesting feature, revieling the presence of critical
dynamics near T.. This is particularly interesting, since sound velocity is
usually frequency independent at these frequencies. Critical fluctuations
are characterized by both a diverging length and time scale on approaching
the phase transition temperature. Thermodynamic equilibrium is needed
to observe this. Qualitatively one can argue that the lower the frequency
in our experimentes the more we should expect to see of critical fluctua-
tions and the deeper and sharper the softening will be. Conversely, the
higher the probing frequency the less of the long time and long wavelength
fluctuations are beeing felt by the soundwave. A similar kind of critical
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Figure 4.29: Measurements of Cs3 for frequencies in the range 16 to
214 MHz. The curves have been shifted by a constant to make the plot

more clear. The scale on the C33-axis follow the 95 MHz curve.
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dynamics has previously been observed at structural phase transitions [87].
The physics here is similar in a broad sence, involving probing of fluctua-
tions in the order paramater by acoustic waves. On a more detailed level we
would need to consider a particular model. The 3D-XY model is one such
choice with vortex loops as the relevant fluctuations[54, 55, 56]. This is a
dynamic system with loops of different sizes blowing up at 7. in zero field,
and at a phase boundary in the vortex liquid state in finite field. Without
a theory of how ultrasonic waves would interact with these loops, we would
in any case expect higher frequencies to be less effective than lower ones in
probing the dynamics.
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4.2.4 Low temperature behavier

We are left with one clear feature seen in figure 4.22 not discussed so far.
For temperatures below the critical region, the elastic constant appears to
have a linear dependence of the applied magnetic field. We show this in
figure 4.30 where the zero-field data have been subtracted from the data in
a magnetic field. The zero-line in the graph corresponds to the zero field
data. The linear dependence of field is apparent over a wide temperature
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Figure 4.30: The Cs3(B,)-data subtracted from the zero field curve.

range, but for clarity we have plotted the average separation in the low
temperature region as a function of applied field in figure 4.31. We would
like to stress that from a theoretical point of view the measurements does
not probe any elastic moduli of the FLL since the flux lines are compressed
and stretched in the field direction. In a finite crystal with pinning one
could maybe expect small contributions from cy4, but the measured change
in C33 is negative and can therefor not be explained by a stiffness of the
FLL. Since this behavior is characteristic for the low temperature region
mean field analysis can be used. The thermodynamic relations presented
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Figure 4.31: Average separation of the low temperature part of the curves
shown in figure 4.30, a linear fit (full line) indicates the linear dependence
of the applied field.
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in section 2.1.4 will be our first approach. The behavior seen in figure 4.30
seems to act unchanged down to T' = 0 K. Using equation 2.26 with 7' — 0
we are left with only the last term proportional to the difference in free
energy:

ACs3(0) = <1d2—¢> AF(T) (4.11)
¢ dek '
We have no analytical expression for the free energy and do not know
which field dependence the prefactor might have. We will therefore give a
simple arguments based on the Gibbs free energy!'>.
The difference in Gibbs free energy between the normal state and the

superconducting state can be defined by the following relation:

Hea
AG(T =0,H)=GN(0,H) —G°(0,H) = — MdH (4.12)
Jo
The magnetic fields we are discussing here are much higher than H. and
lower than Hgo. In this field range the magnetization is almost constant,
since Hqo > H.1. Therefore

AGg(0,H2) — AGg(0,H1) = Gs(0,H2) — Gs(0, H1)
-H?2
= — | MdH
JH1

~ const-(H2— H1) (4.13)

Where H1 and H2 are magnetic fields in the range we have measured. The
magnetization is very small in HTS, making the internal field B almost
equal to the applied field B,. The Helmholtz free energy should therefore
approximately behave in a similar manner to the Gibbs energy.

From this and previous discussions it seems likely that at low tem-
peratures (up to 20-30 K) contributions from the free energy is mainly

3The Gibbs energy because it is related to the H-field (B,) and the stress (o) controlled
in the experiment.



112 CHAPTER 4. RESULTS AND DISCUSSION

determining the behavior of our data. Near T, the specific heat is most
important, while the contribution from entropy have a maximum in the
intermediate region.

A more physical picture is necessary in order to get a deeper understand.
We have roughly explained the linear behavior but not really why the crys-
tal softens with increasing amount of flux lines. If we look at the stiffness in
the FLL, the line tension in each flux line or the energy associated with con-
tracting and elongating flux lines we will get positive contributions which
should show up as a stiffness in the experiments. More flux lines on the
other hand means that a bigger volume fraction of the crystal is in the
normal phase. It therefore seems likely that the appearance of supercon-
ductivity favor the Cu-O planes to keep their distance more rigidly. In other
words; changing the interlayer distance is unfavorable to superconductivity.
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4.3 Elastic moduli in other HTS compounds

We have made some attempts to measure elastic moduli in other single crys-
tals than the two LSCO crystals discussed in the last section. Susceptibility-
data and other characteristics were shown in section 3.1. From a supercon-
ductivity point of view all crystals seem interesting for these measurements.
They have different anisotropies, transition temperatures, amount of pin-
ning, size etc. Except for LSCO the literature is also almost void of data
when it comes to ultrasonic measurements on single crystalline high tem-
perature superconductors!?. Our attempts have been seaverely limited by
lack of adequate crystal quality. This is a universal problem in HTS re-
search when crystals of some size (a few mm?) is needed. We have used the
LSCO measurements as a comparison. Therefore, even though we could
possibly have measured ‘something’, and clearly even better than what has
been done before, we have not gone much further with crystals for which we
could not have gained much insight on the problems we have been interested
in.

For the small YBCO crystals of good quality availble to us on the world
scene we have managed to measure only one resonance, and only at room
temperature. At low temperatures the peaks disappeared or we clearly had
a bond break. The main problem was that the crystals were of the same
size or smaller than the transducers. The normal mode resonances in the
samples were too separated, and we measured mainly the transducers.

We have done a few measurements on the BSCCO sample NO970822.
The best frequency sweep and the best peak trace is shown in figure 4.32.
Only raw-data is shown.

If we compare our data to the measurements by Wu et al.[88] we see that
the noise level in our measurements are many times lower. The data seems
also reasonable if we compare them to the LSCO data. There is no clear
minimum near 7,, but this may be understandable, since the peak in specific
heat for BSCCO is known to be much smaller than for LSCO or YBCO[79].
The peak is also much more rounded. The sample NO970822 has a T, of

14We have found only three(!), though there might be a few more
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Figure 4.32: Frequency sweep (upper) and peak trace (lower) for the

BSCCO sample NO970822.
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about 83 K, which is near the left end of the graph. The measurements
were made with liquid nitrogen as a coolant, but due to technical problems
we could not lower the temperature by pumping. Later inspections showed
that the ‘crystal’ really consisted of three pieces grown together; very un-
favorable to ultrasonic measurements. It was also extremely brittle, and
later attempts to measure on it were not successful.

The next and last data we will present in this section have been mea-
sured on one of the NBCO samples (WAX 144-1). Also here raw-data is
shown, but for a sweep only. The data is shown in figur 4.33. The mode
measured is a quasi (C11,C92)-mode. The crystal is heavily twined and
have no clear a or b axis. What we measure is a Longitudinal sound mode
parallel to the ab-planes. A peak trace was made but due to ‘jumps’ in the
curve, which did not represent any real physics, data were disregarded. The

jumps reflected only the poor resonance and how the measurement criteria
(X=0) depended on this.

50
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Figure 4.33: Frequency sweep for the NBCO sample WAX144-1.
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4.4 Elasticity of the flux-line lattice

In section 2.3.3 we made a short review of the last few years exploration
of the physics of the vortex liquid. As mentioned, the real proof of the
existence of a melting transition would be to measure a total softening of
the shear modulus. The original motivation for this project was to reveal
this fundamentally important process. Based on equation 2.60 and 2.61 we
can estimate numbers for the magnitude of the shear modulus. We rewrite
the two equations here as a reminder:

B
Ce6 ~ —¢20 (4.14)
167 A2 1o
s = ceel’ (4.15)

In choosing a sample, based on the underlying physics of these equations
one is looking for a material with short penetration depth, A, and a high
anisotropy, I'. One problem is to obtain correct values for a given sample.
Values for both A, and I' vary a lot in the literature, even for a given
material with a given doping. As for all measurements on HTS the varia-
tions are due to differences in sample composition, quality and experimental
methods.

The material with the highest anisotropy to which we have had access
is BSCCO. An estimate based on the values Ay ~ 2000 A [89] and a field
of 5 T gives: cgg ~ 4.1 kPa. With T' ~ 150 [90] we get cls ~ 0.6 MPa.

As the previous discussions have shown, we have not been able to mea-
sure elastic moduli in other materials than LSCO. A first estimate with
Aab ~ 800 A [89] and a field of 5 T gives: cgg ~ 25.6 kPa. Which is even
bigger than the value for BSCCO. Later we have found that 800 A prob-
ably is an underestimate for A\g. For optimally doped LSCO the value is
measured to be about 2400 A (See [91]). The anisotropy I' of LSCO is
strongly doping dependant, but always lower than values for BSCCO. A
reasonable estimate for optimally doped LSCO is I ~ 20-30 [63]. We found
I'? = 617 for the crystal F40 as explained in section 3.1. Therefore we
expect cfl; to be of the order 0.1 M Pa for the crystals F40 and F60. As
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pointed out by Pankert [40] there are at least two very good reasons for
using ultrasonics for these kind of investigations. First, ultrasonic measure-
ments are real bulk measurements which means that surface effects, and
grain-boundary effects in the case of poly crystals, are of minor importance.
The other reason is that the ultrasonic waves will move the flux lines away
from their equilibrium positions by at most 10 nm (typical sound ampli-
tudes). Choosing ultrasonic measurements as the tool for measuring cf,
the number 0.1 M Pa, which we calculated, needs to be compared to the
size of the elastic moduli of the crystal itself. From table 2.2 we see that
this means comparing to Cy4 or Cs5. In section 4.2 we found these to be of
the order of ~ 70 GPa. We therefore need to be able to measure a relative
change AC;;/Cy; ~ 1-1079 by the ultrasonic method. We made an attempt
to measure cgﬁ very early in the project, as shown in figure 4.34. The main
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Figure 4.34: Attempt to measure the FLL modulus cg'()- superimposed on
the modulus CFAT of the crystal. For details see the text.

figure shows a closeup near T, the whole curve is shown in the lower left
corner. The typical separation of the two curves measured in zero field and
in an applied field of 5 T is in the range of 0.1-0.5 MPa. Looking at the
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graph it is apparent that the noise is of the same size.

The tilt and compression moduli, c44 and cq1 respectively, are orders
of magnitude bigger than the shear modulus (about 20 MPa for B=5 T)
We therefore wanted to measure c4q4 as a check. Measurements had been
done in the past[42] which were consistent with the theory discussed in
section 2.3.2. One of our first measurement series can be seen in figure 4.35.
In contradiction to the data by Fukase et al.[42], the curves here show two
steps instead of one. By subtracting the zero field curve to obtain c4q we
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Figure 4.35: Reflection measurement of the modulus CZ1T for the crystal

F40 in different applied fields. The configuration is such that the FLL
modulus cy44 should be measured. The details are discussed in the text.

found what is shown in figure 4.36. Only data measured in 3 T and 5 T
are shown. From the discussion in section 2.1.4 and 4.2 it appears that this
kind of subtraction is not necessarily correct. Superconductivity itself will
contribute in addition to the flux-line lattice on top of the normal state
background. For measurements in the past[19, 40, 42] the contribution
from superconductivity seemed to be absent or extremely small for CZ;LH T

As we discussed in section 4.2 we observe both mean-field contributions
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Figure 4.36: The 3 and 5 T curves shown in figure 4.35 with the zero field
curve subtracted as a background. The dashed and dotted lines indicate

the zero temperature value B2 /o for the tilt modulus cyy
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and critical fluctuations in our data. For the present discussion we will
regard figure 4.36 as mainly showing c¢44(7"). The two straigt lines, hatched
and dottet, in the figure represent the theoretical zero temperature value of
B? /o for the two curves. The lower plateu, just below the lines, seems to
represent mainly the elasticity of the fluxline-lattice'®. Using equation 2.63
we could have fitted the data in the interval from the lower plateu to T, to
obtain the depinning energy, as was done in[42]. The low temperature part
of the curves on the other hand lack an explanation. The measurements
presented so far in this section have all been taken with the ‘reflection
system’ discussed in section 3.2. There were serious practical problems with
this setup which is also reflected in the fact that so few of the measurements
shown in figure 4.35 were completed. We made a much better system
(section 3.2) and measured the tilt modulus again, this time also with the
crystal detwinned. Our data is shown in figure 4.37. New quetions arise
when looking at the zero-field and 1 T curves, while the other curves show
the same behavier as earlier. To begin with, we show in figure 4.38 only
the data with B, from 2 to 5 T for temperatures between 5 and 30 K. The
two-plateau nature of the data is apparent. For this crystal at least this
kind of behavior seems to be manifest. The zero-field and 1 T curves on
the other hand are troublesome. They seem inconsistent with the other
curves, especially below 15 K. We suspect creep in the material to be at
least partly responsible for this. The zero-field and 1 T curves were the two
last measured in this measurement series. Inaccuracy in the temperature
control, due to not optimal PID settings at low temperatures (discussed in
section 3.3), could also be important. The zero field curve can definitely
not be subtracted as a background the way we did to obtain figure 4.36.
To gain more insight we did essentially the same measurements on the
crystal F60. The results raised even more questions. The data are shown
in figure 4.39. The data appear to be much more similar to the data in
for example[42]. Does this indicate that the F40-data are non-physical? A
closer look at figure 4.39 show that the difference between the 5 T curve and

15 Also the data for the other applied fields (1, 2 and 4 T) are consistent for the lower
plateu.
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Figure 4.37: Transmission measurements of Cy4 in applied magnetic fields
from 0 to 5 T applied along the c-axis of the crystal. Details are discussed
in the text.
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Figure 4.38: The lower temperature region for the data in figure 4.37 with
B, ranging from 2 to 5 T

the zero-field curve is of the order of 50 MPa as T' — 0. Under the clearly
questionable assumtion that this represents c44, what we just calculated is
at least twice as much as the theoretical value. We belive the data for F60
are more similar to the F40-data than it seems at first. It appears that the
essential difference between figure 4.39 and 4.37 is that the first plateus,
seen for F40, have been smeard out in the F60 data. The susceptibility
data shown in section 3.1 indicate that this is not unlikely to happen. The
pinning situation in the two crystals is also quite different.

We showed a series of magneto optical images for the crystal F40 in
section 3.2. These measurements were taken at 30 K. As a comparison,
figure 4.40 shows the same crystal measured at the maximum field 50 mT
at 18 K (left) and at 35 K (right). The field is parallel to the c-axis of the
crystal. At 18 K almost no flux penetrate the sample at all. At 35 K, on
the other hand, we observe full penetration at this field.

The crystal F60 shows a quite different behavier than F40. In figure 4.41
is shown images at 18 K in a field of 20 mT (left) and 30 mT (right) parallel
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Figure 4.39: Measurements of C55 in magnetic fields from 0 to 5 T, parallel
to the c-axis for the crystal F60. Apart from this the configuration is as in

figure 4.37.

Figure 4.40: Magneto optical images of the crystal F40 with an applied
field of 50 mT along the c-axis. The images have been taken at 18 K (left)

and 35 K (right) respectively.
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to the c-axis. Here the flux completely penetrates the sample already at 30

Figure 4.41: Magneto optical images of the crystal F60 measured at 18 K.
The applied fields along the c-axis are 20 mT (left) and 30 mT (right).

mT at this low temperature. As a comparison we measured the F60 crystal
with the field parallel to the ab-planes. This is shown in figure 4.42 for the
same fields and temperature as in figure 4.41. The c-axis goes vertically in
the figure. The fields are not directly comparable in the last figures because
of the anisotropy, but the sample characteristics are consistent. We are
not able to really extract quantitative information about the differences
between the two samples from this, but more emphazise that there are
clearly differences. The MO-data have been taken at much lower fields,
than the ultrasonic measurements, and with zero-field cooled samples. No
detwinning were done in the susceptibility measurements nor in the MO-
measurements.

From our experiences with the CW-method, our cryostat system and
different crystals we feel that one should not take too much notice of all
the features seen in the data. There were even cases when variations were
bigger than the physical effects we are trying to measure. Reproducible
behavier on the other hand should be considered ‘real’. In some way our
resonant ultrasonic technique picks up some field dependent feature not seen
in earliere measurements. What the effects could be due to may perhaps
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Figure 4.42: Magneto optical images of the crystal F60 measured at 18 K.
The applied fields along the ab-planes are 20 mT (left) and 30 mT (right).

be seen in the theoretical work by Dominguez et al. [92, 93]. At low
temperatures the Magnus force acting on vortices leads to a phenomenon
called ‘acoustic Faraday effect’. For standing wave resonances Dominguez
et al. predict a splitting of resonaces of the order of 10 kHz for a field
of 5 T, as T — 0. Other than this it appears to us that the predictions
are very much the same as those by Pankert[40, 41]. We have observed
a frequency shift typically of the order of 5 kHz, but we have no other
indications which could link the data to these theories. There has been
some controversy over the size of the acoustic Faraday effect[94], but no
other evidence was presented. We will not speculate further on this point.

We had planned to finish this work by trying to measure Cg(s for the
crystal F60. Due to the cutting, the crystal F40 could not be used. Techni-
cal problems made the attempt impossible, but we are not really convinced
we could have been successful anyway. We have used long time to optimize
the measurement system in order to get the needed resolution, but the real
challange in measuring the shear modulus is acoustic of nature. With small
crystals of too poor acoustic quality the measurements are impossible to
do. We can not use the high resolution in frequency we have gained, be-
cause the reproducibility is not good enough. Measurements of cls are also
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difficult because we need to subtract a background which is most proba-
bly different from the corresponding zero-field curve. Another dilemma is
related to pinning. In order to have a strong coupling of the sound waves
to the FLL the vortices need to be pinned. In order to measure a sharp
change at the melting transition on the other hand, pinning should be more
or less absent. The strong depandence of pinning can be seen in the data by
Fukase et al. [42], and from figure 4.43 (compared to figure 4.39) . When
the pinning is small as in figure 4.43 the thermally assisted flux flow will
smear ot the data in a large temperature range. When the pinning is strong
the situation is opposite (see [42] figure 1).
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Figure 4.43: Measurement with configuration Cgs + c44 for the crystal

F60. The magnetic field is parallel to the b-axis of the crystal, k | b, and
i | a.



Chapter 5

Conclusions

We will first look at the conclusions we can draw from the work on the
method and our measurement system. After this we will sum up the mea-
surements on LSCO.

We have built an ultrasonic measurement system for measurements at
low temperatures in magnetic fields up to 5 T. We have used the continuous
wave method developed by Bolef et al. [8], extending it to measurements
on very small samples. We have calculated the resonant behavior of the
ultrasonic composite also including attenuation (Q-value) and bonding in
the model. Our TBSBT (Transducer-Bond-Sample-Bond-Transducer) cal-
culations explain features not encountered by the linearized theory, with
frequency pulling as the most apparent effect. The TBSBT theory can not
easily be used for converting data from peak traces to elastic moduli due
to the many parameters in the model and the coupling between them.

The apparatus we have build works very well, and has a frequency
resolution of at least Af/f ~ 1078, The resolution of the experiment
is lower than this due to the crystal quality and the bonding. For our
measurements on Laj g557r915Cu0, the resolution in the relative change
of elastic moduli with temperature were ACy;/Cj ~ 107* — 1075. The
absolute accuracy is in the 1 — 3 % range.

We have not been successful in doing measurements of attenuation, but
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have forseen many of the dangers with the method in doing so.
We have shown how the reflection method can be used in the case of a
bond break or other causes of failure to clarify the problem.

Most of the samples we have had have either been too small or of too low
acoustic quality for the measurements. The literature is also almost void
of ultrasonic measurements on single crystalline high temperature super-
conductors. We have been able to investigate two optimally doped crystals
of LSCO. The measurements of Cs3, Cy4, C55, and Cgg are consistent with
similar published data measured on other LSCO crystals. Our crystals
have been detwinned by a uniaxial stress of approximately 4 MPa applied
along the tetragonal [110]-axis during the measurements. A distinct mini-
mum near T, is observed for the first time in our measurements of C'y4 and
C55. A minimum is also measured for Cgg as observed earlier by Nohara et
al.[22]. We ascribe the observed minimum to critical fluctuations.

We have done critical scaling of the C33 data and found consistency
with 3D-XY critical exponents. The measured J-values are higher than
what is measured for *He, and change with T,.. The variation is still within
the range encountered by the 3D-XY model.

We have measured the modulus Cs3 in the frequency range from 16 - 214
MHz and found a signature of dynamic behavior near T,. This behaviour
has not been observed before and we belive more investigations could give
valuable information about the physics of the phase transition.

For the low temperature behavior of Cs3 in field from 0 to 5 T we have
observed an elastic softening, linear in the B-field. The phenomenon is not
related to the elasticity of the FLL but might relate to the appearance of
superconductivity. No distinct explanation of the effect have been found.

Attempts to measure the complete softening of the shear modulus cfly at
the melting transition were unsuccessful. It is argued that this is impossible
to measure in the crystals available up to now. Our measurements of the
tilt modulus c44 are at temperatures near T, consistent with published data
and theories found in the literature. At low temperature the measurements
consistently show an extra stiffness, but this is unexplainable by the linear
elastic theory of the FLL. We have not been able to explain this feature.
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