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Abstract. Landslides of the debris flow type pose a serious natural hazard. These land-
slides are often triggered by hydro-meteorological processes during extreme precipitation
events. Debris flows usually form a dense flow composed of water and poorly graded soil
particles. The propagation of these landslides greatly influences the consequences they
have. The run-out of debris flows is usually simulated with depth-averaged models. These
are fast to simulate due to the integration over the flow height, which reduces the problem
from three to two dimensions. For the design of countermeasures resisting the pressure
from the flow, it can be advantageous to use more advanced 3D numerical methods, such
as computational fluid dynamics (CFD). The particle phase of debris flows has here been
considered as a granular flow, and implemented as a non-Newtonian viscoplastic rheology
in the open-source CFD code REEF3D. In the numerical model, the Reynolds-Averaged
Navier-Stokes (RANS) equations are discretized with the fifth-order accurate Weighted
Essentially Non-Oscillatory (WENO) scheme in space and with a third-order Runge-Kutta
based fractional step scheme in time. The level set method used for representing the free
surface handles the complex air-granular flow interface topology. The pressure gradient
is modelled with Chorin’s projection method for incompressible flow. The granular flow
rheology includes a Coulomb frictional yield stress, increasing with the normal stress, and
a viscous term that is non-linear dependent on the shear rate. The implementation has
been validated using results from laboratory dam break experiments with dry sands.

1 INTRODUCTION

Debris flows and debris avalanches are landslide phenomena that can potentially cause
large damages and pose a serious natural hazard [1]. A debris flow is a mix of water
and poorly graded soil particles, forming a dense flow [2]. This type of landslides is often
triggered by hydro-meteorological processes during extreme precipitation events, see Fig.



Petter Fornes, Hans Bihs and Steinar Nordal

Figure 1: Debris flow in Hunnedalen, Norway, June 2016. [Photo: NPRA]

1. The expected increase in precipitation due to climate changes may lead to higher
frequency of Norwegian debris flow events in the future. This provides the motivation for
studying debris flows in the Norwegian SFI project KLIMA2050 [3], which this work is a
part of.

The debris flow propagation determines a large portion of the consequences and the
risk associated with the landslides. Run-out parameters include the maximum distance
reached, flow velocities, thickness and distribution of deposits, as well as the interaction
behavior with obstacles in the flow path [4, 5, 6]. To predict the run-out distance and to
design countermeasures for reducing the consequences, a solid understanding and descrip-
tion of the debris flow mechanism is necessary. In engineering practice, the propagation
of debris flows is usually simulated with depth-averaged models considering the debris
flow as a single-phase material. These models are fast to run simulations with due to the
integration over the flow height, which reduces the problem from three to two dimensions.
Although neglecting variation in the velocity profile over the height reduces the accuracy
of the models, they can produce sufficiently good run-out distance results. However, the
complete velocity profile may be more important for interactions between the flow and
structures.

For the design of countermeasures resisting the pressure from the flow, it may be
necessary to use more advanced three dimensional numerical methods. With the recent
increases in computer power, it is now feasible to consider methods such as Computa-
tional Fluid Dynamics (CFD). The debris flow material can also here be represented as
a single-phase material, although a multiphase approach is more appropriate [7]. For the
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interstitial fluid phase, consisting of water with fine particles in suspension, a viscoplastic
non-Newtonian rheology may be sufficient [8]. The particle phase of debris flows can be
assumed to have a non-Newtonian rheology appropriate for granular flows. In this pa-
per, the viscoplastic Herschel-Bulkley rheology is modified to include Coulomb friction
for granular flow.

2 NUMERICAL MODEL
2.1 Navier-Stokes equations

The open-source CFD code REEF3D [9] is used in this work. In REEF3D, the three-
dimensional Navier-Stokes equations, which govern the behavior of viscous and incom-
pressible fluids, are solved numerically with the finite difference method. For the conser-

vation of mass and momentum, the code considers the continuity and Reynolds Averaged
Navier-Stokes (RANS) equations:
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where u is the velocity, p is the fluid density, p is the pressure, v is the kinematic viscosity,
vy is the eddy viscosity and ¢ is the gravitational acceleration. On the left hand side of
the RANS equations are the transient and convective velocity terms. On the right hand
side are the surface and volume forces, the viscous and pressure terms, and the gravity,
respectively. The Reynold stress term capturing the turbulence is modelled separately in
REEF3D. However, in this paper laminar flow is considered and the eddy viscosity is set
to zero.

The RANS equations are discretized in the numerical model with the fifth-order ac-
curate Weighted Essentially Non-Oscillatory (WENO) scheme in space [10] and with a
third-order Runge-Kutta based fractional step scheme in time [11].

2.2 Pressure

The pressure gradient is modelled with Chorin’s projection method [12] for incom-
pressible flow. A staggered grid is used to avoid decoupling of velocity and pressure. The
momentum equation with the pressure gradient removed is solved for an intermediate ve-
locity field u}. The pressure for the new time step p"*! is determined and used to correct
the velocity field. In order to create divergence free flow field, the pressure needs to fulfil
the following equation:
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2.3 Level set method

The level set method proposed by Osher and Sethian [13] is employed for locating the
free surface. Air is modelled as a second fluid in this approach. This approach can handle
the complex air-debris flow interface topology. To define the interface I' between the two
fluids, the following continuous signed distance function is used:

>0 if ¥ € phase 1
H(E, ) =0 fFel (4)
<0 if ¥ € phase 2

The level set function ¢(Z,t) is coupled to the velocity field u; with a convection
equation, and the spatial discretization is determined with the Hamilton-Jacobi WENO
scheme version [14]:
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3 NON-NEWTONIAN RHEOLOGY
3.1 Herschel-Bulkley rheology

The non-Newtonian Herschel-Bulkley rheology has been implemented in the REEF3D
CFEFD code [15], for the purpose of modelling the interstitial fluid phase of debris flows.
The interstitial fluid consists of water with fine particles in suspension, for which the
viscoplastic Herschel-Bulkley rheology can be considered appropriate [16, 17, 18].

The Herschel-Bulkley rheology has a non-linear stress relationship with the shear rate
v and features a yield stress 7,. In order to have shear deformation of the material,
the shear stress acting on it must exceed this yield stress. For shear stresses lower than
the yield stress, the shear rate is zero. The Herschel-Bulkley rheology is defined by the
following shear stress and shear rate relation:

(%) =7 + KA" (6)

and

3=

;Y:{(l 0 iftr <, (7)

E(T — Ty)) if 7> 7,

where 7 is the shear stress, 7 is the shear rate, 7, is the yield stress, K is the consistency
parameter, n is the Herschel-Bulkley exponent. If n > 1 shear-thickening behavior is
defined, and n < 1 defines shear-thinning behavior. If n = 1 it becomes the Bingham
rheology, and if additionally 7, = 0, it becomes the Newtonian rheology.

The Herschel-Bulkley rheology is implemented in the REEF3D code as a generalized
Newtonian fluid, with a non-linear shear rate dependent viscosity. The kinematic viscosity

4
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v(%) is determined as the non-linear shear stress 7(7) in Eq. 6 divided by the shear rate
4 (and the density p). To prevent numerical issues related to the kinematic viscosity
approaching infinity as the shear rate goes to zero, a maximum kinematic viscosity 1y is
used for low shear rates:

. . Vo
V(fy) = 1nin (;_y + K,yn—l)

where v is the kinematic viscosity included in Eq. 2, 1y is the maximum kinematic
viscosity and p is the density. The kinematic viscosity v is determined locally for each
cell in every time step since it varies spatially and temporally, and it is considered as an
isotropic property. The scalar shear rate 7 used to calculate the viscosity is determined
as the magnitude of the three-dimensional shear rate tensor D:

3 3
5 =Dl =[5 3 4wt ©
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(8)
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The implementation of the viscosity (Eq. 8) makes the rheology bi-viscous. It results
in a material that can not come to rest at a sloped angle when the flow finally slows down.
Even though the viscosity is very high for low shear rates, the material will continue to
flow slowly until leveling off horizontally. This is unlike depositions of landslides composed
by materials with yield strength, which can support an inclined slope surface. Therefore,
the flowing material will be considered as having stopped when the magnitude of velocity
is several orders of magnitude lower than while propagating.

An alternative implementation to avoid infinite viscosity could be to employ a regular-
ization parameter [19]. If so, an exponential function will be included in the yield stress
term in Eq. 6, reducing it to zero for very small shear rates. This will make the shear rate
dependendent viscosity function continuous, which may improve the stability. However,
it will not prevent the slow deformation after depostion, and has not been considered
necessary.

3.2 Granular flow rheology

Granular materials have a frictional resistance to shearing that increases with increased
contact pressure between the individual particles, normally given by the Mohr-Coulomb
failure criterion (Eq. 10). When granular soils are yielding, the shear stress is proportional
to the effective normal stresses, which is the contact pressure between the soil grains. The
internal frictional angle ¢ thus provides a frictional coefficient ;1 = tan ¢ which determines
how much shear stress the material can sustain without deforming for a given pressure.
This determines for example how steep the slope angle of a pile of dry sand can be
naturally.

T, = 0, -tany + ¢ (10)
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where 7, is the yield shear strength, o/, is the effective normal stress, ¢ is the friction
angle and c¢ is the cohesion (low for dry granular soils).

For Eularian description of dry granular flows (or the particle phase of debris flows),
modelling the granular material as a single-phase continuum, including Coulomb friction
in a visco-plastic rheology can be considered. Johnson [20] proposed a Coulomb-viscous
rheology for debris flows, adding the Mohr-Coulomb failure criterion (Eq. 10) as the
yield strength to the Bingham rheology (Eq. 6, n = 1). Savage and Hutter [21] included
Coulomb criterion in a depth-averaged model for dry granular flows. In the p(7) rheology
for dense granular flow by Jop et al. [22], the frictional coefficient y is a non-linear function
of the intertial number I, which is a number that depends on the shear rate and pressure.
Moriguchi et al. [23] used a Coulomb-viscous rheology (Bingham with Coulomb friction
for the yield strength) to back-calculate laboratory tests of dry sand dam breaks in a
slope. A maximum value for the generalized viscosity was used, like in Eq. 8. Domnik
et al. [24] proposed a similar Coulomb-viscoplastic model for a granular material, with a
regularizition parameter included as in [25] instead of a biviscous implementation.

Here, the Herschel-Bulkley rheology (Eq. 6) is modified by including the Coulomb
friction relation in Eq. 10 as the yield stress. This makes it similar to the Coulomb-
viscous rheology in Moriguchi et al. [23], but also including Herschel-Bulkley exponent n
makes it possible for a non-linear dependency on the shear rate. In this paper, the flowing
material is assumed to be a single-phase dry sand with constant density. The effective
normal stress o/, in the Mohr-Coulomb criterion can then be equated to the fluid pressure
p (which is determined in Eq. 3 with the dry granular density). Thus, the following
Coulomb Herschel-Bulkley rheology is considered:

7(¥,p) = ptangp + c + KA4" (11)

where 7 is the shear stress, 7 is the shear rate, p is the fluid pressure, ¢ is the dynamic
friction angle of the granular material, ¢ is cohesion, K is the consistency parameter and
n is the Herschel-Bulkley exponent. This rheology is implemented in the REEF3D code
like this:

0]
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where v, p and + are variables, determined locally in each time step, while vy, ¢, ¢, p, K
and n are material constants, given as input parameters at the start of the calculation. A
max-criterion is included to ensure that the expression for the yield stress is never lower
than zero, which could make the viscosity negative. That is unphysical and would also
cause severe convergence problems.

For a dry sand with only compressible air in the pore spaces, the assumption o/, = p
is considered acceptable. For a debris flow however, the presence of interstitial pore
water fluid, may complicate the situation. If considering both the water fluid phase and
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the granular particle phase, an Eularian multiphase (mixture theory) approach might
be suitable [26, 27]. It has been observed that interstitial pore water fluid pressure can
build up during deformation, which reduces the contact stress between the particles and
consequently reduces the frictional resistance of the flowing mass [28]. When there is
water present, the effective normal stress can be determined as the total normal stress
(pressure) minus the interstitial pore fluid pressure. The build up of so-called excess pore
pressure should be considered in the rheology.

4 EXPERIMENTS

To validate the REEF3D Coulomb frictional yield stress implementation, a laboratory
dam break test with dry sand by Moriguchi et al. [23] is considered here. 50kg of the
material was placed in a box 50x30x30cm. It was released and driven only by gravity
down a 180cm long, 30cm wide flume, with slope angles # = 45, 50, 55, 60, 65°. At the end
of the slope, a plate with a pressure sensor measured the impact force.

300 cm
g
; 91
100 cm S
Wall
30 ch I Sand I 30 cm
" 70em 180 cm " 50cm

Figure 2: Model experiment dimensions

Simulation of this experiment has been done with a 2D REEF3D model (1 cell out of
the plane), see Fig. 2. The calculation domain had dimensions 300x100cm and cell length
was 0.25c¢m. This resulted in a mesh with 480000 cells. A 30cm tall, 5em wide obstacle was
placed 180cm from the 50x30cm starting sand body, representing the pressure plate. The
rest of the domain was filled with air, with density 1.205kg/m? and kinematic viscosity
1.41 - 1075m?/s. The experiment simulated here was done with a slope angle 6 of 45°.
In the numerical model, this was modelled by giving the gravitational acceleration as
g = ¢g-sinf and g, = g - cos .

The material properties in the numerical simulation are presenteted in Table 1. These
base case values were based on the values used by Moriguchi et al. [23]. A parametric
study was done to check the senstivity of the material properties included in Coulomb
Herschel-Bulkley rheology; friction angle ¢, cohesion ¢, consistency parameter K and
the Herschel-Bulkley exponent n. The parameters were varied individually, values are
presented in Table 2. One case was added where the friction angle was set to zero, which
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means that the yield strength is equal to the cohesion. This makes it essentially the
Herschel-Bulkley or Bingham (n = 1) rheology, without the Coulomb friction.

Table 1: Base case material properties

Material property Unit Base case
Density p [kg/m3  1379.0
Maximum kinematic viscosity vy [m?/s]  1000000.0
Friction angle ¢ [°] 30.0
Cohesion ¢ [Pal 1.0*
Consistency parameter K [Pa - s" 1.0
Herschel-Bulkley exponent n [—] 1.0

*Small value assumed to avoid numerical issues

Table 2: Parametric study of material properties, parameters sets (PS)

Parameter =~ Unit  PS-BC PS-p PS-¢c PS-K PS-n  PS-7,

%) [°] 30.0 45.0 30.0 30.0  30.0 0.0
c [Pa] 1.0 1.0 10000 1.0 1.0 1000.0
K Pa-s"] 10 10 10 100 10 10
n -] 1.0 1.0 1.0 1.0 0.35 1.0
5 RESULTS
o Time t [s]
0.80 0.0
— 04
. 0.60 - 08
= 1.2
N .40 ] L6
0.00 ﬂ I’\’\WJ/M
' \ TN Tt
000 020 040 060 080 100 120 1.4)(() [ ml].oo 180 200 220 240 260 280 3.0

Figure 3: Base case, free surface elevation with time t [s]
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Figure 4: Base case, kinematic viscosity v at time t = 0.0,0.4,0.8,1.2,1.6s
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Figure 5: Base case, pressure p at time ¢t = 0.0,0.4,0.8,1.2, 1.6s

The results from the numerical simulations of the dam break experiments are presented
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here. Fig. 3 shows the evolution of the free surface with time for the base case material
properties given in Table 1. After around 0.8s the sand starts to flow over the wall, which
was not included in the physical experiment. Compared to the experimental results in
23], the main flow behaviors observed in the laboratory was captured in the numerical
simulation.

Fig. 4 shows contours of the kinematic viscosity v, which depends on the local shear
rate 7 and the local cell pressure p. The pressure is shown in Fig. 5. Shear bands can
be observed where the viscosity is low due to the locally high shear rates. Because of the
coupling between pressure and velocity, this affects the pressure contours.

The pressure acting on the wall obstructing the flow is integrated, and the total hor-
izontal forces with time is presented in Fig. 6. The figure also shows the results from
the sensitivity study of the different material properties. For both cases with increased
cohesion, there are large oscillations after the impact. There seems to be less spikes in
the force at impact and more gradual increase when either friction angle or consistency
parameter is increased. The final forces reached in all the cases have similar values as in

500 —

E 400 — | Parameter set
) 7 PS-BC
s 300 —
S — PS-c
s 1| — PS¢
g% | —— sk
= N PS-n
o
= 100 — | PS-T},
0
\ \ \
R

0.00 020 040 060 080 1.00 120 140 160 180  2.00
Time t [s]

Figure 6: Horizontal forces acting on wall with time (spikes cropped at 500 N)
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Figure 7: Parametric study, free surface elevation at time ¢ = 0.8s
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the original experiment, almost 200N. There, the same extent of oscillations and spikes
were not, observed, however.

The effect of the individual material properties is also shown in Fig. 7, plotting the free
surfaces at time ¢ = 0.8s. There is little effect observed of varying the Herschel-Bulkley
exponent n from 1.0 to 0.35. The latter value is appropriate for fine grain suspensions
[8]. Increasing consistency parameter K increases the viscous shear stress, and increasing
the friction angle ¢ increases the contribution from the Coulomb friction to the yield
strength. For both cases, the flow is slowed slightly down, and impacts the wall later.
Increasing the cohesion ¢ also increases yield strength, but does not affect the results at
0.8s much. Only using increased ¢, with zero friction angle, makes the flow quite more
mobile. Back-calculation has not been done to obtain a parameter set with better match
to the experimental results. To improve the match, a higher friction angle and consistency
parameter should be considered.

6 CONCLUSIONS

- A non-Newtonian granular flow rheology is implemented in the REEF3D open-
source CFD code. Coulomb frictional yield stress is included in the viscoplastic
Herschel-Bulkley rheology. It has been validated for laboratory dam break experi-
ments on dry granular sand.

- The yield stress is modelled as a very high viscosity at low shear rates with the
generalized Newtonian implementation. This means that even if a flowing material
slows down and is practically depositioned, the deformation will never stop until
resting with a horizontally levelled surface. This can be considered sufficent as long
as the velocity becomes very small. To allow for deposition with a sloped surface the
yield stress should be accounted for more realistically, potentially with a coupled
elastoplastic and viscoplastic model.

- The implemented rheology can be appropriate for the particle phase of debris flows.
However, full debris flow behavior, including the collisions between the larger sized
grains, the buildup of excess pore pressure, temporal and spatial rheological changes,
cannot realistically be captured with a single-phase continuum material. An Eular-
ian multiphase CFD model may be suitable for this purpose.
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