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Summary 

The issues in new antibiotic discovery are pressing, because the frequent re-discovery 

of antibiotic scaffolds leads to few novel antibiotics discovered, besides, with the 

widespread use of antibacterial agents, multi-resistant pathogens are emerging, which 

poses more huge challenge in antibiotic discovery. However, next generation 

sequencing technology and bioinformatics have revealed that many secondary 

metabolite biosynthesis gene clusters possess the potential of producing new bioactive 

secondary metabolites (BSMs), which were ignored previously. Among the 

microorganisms, actinomycetes species are the best sources for those gene clusters. 

Synthetic biology is the enabling technology to activate those silent gene clusters, 

which aims to engineer organisms for expected applications with combination of 

various biotechnologies.  

The project employs the reciprocal regulation system between jadomycin (Jd) and 

chloramphenicol (Cm) in S. venezuelae: JadR1 activates Jd synthesis while represses 

Cm synthesis with ethanol shock. This system can be used to rationally engineer S. 

venezuelaee for heterologous production of BSMs with re-factored gene clusters 

containing appropriate control elements: deletion of the jadR1 gene shall lead to 

down-regulation of Jd production, simultaneously induce overproduction of Cm due 

to the relieved repression of the Cm structural genes’ promoters. Besides, the cml 

gene cluster should be completely deleted to avoid interfering with the introduced 

gene cluster. The appropriate control element is an inducible promoter screened out 

with GUS assay among cmlFp, cmlIp, cmlXp, jadJp. The inducible promoter would 

be used to construct an inducible system for industrial scale production of BSMs, 

because constitutive heterologous expression of BSMs is harmful for producing hosts. 

The jadR1
-
 cml

-
 mutants were successfully generated with Gibson Assembly, 

transconjugation, double crossover and replica plating. The gene cluster MP112-09-

Lac was cloned with native promoter and ermE* respectively and transconjugated to 

jadR1
-
 cml

-
 mutant, however, cloing of MPS05-B41-Lin was hindered by wrong PCR 

amplification. The four promoters were tested with GUS assay, based on MYM 

medium and cmlF is speculated to be the most desirable inducible promoter. 
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EHF                               Expand high fidelity 
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1. Introduction 

1.1 Background 

1.1.1 What is Antibiotic? 

Antibiotics are secondary metabolites synthesized by bacteria, fungi, plants, and some 

animals. Most antibiotics belong to one of the three categories: (i) natural products 

produced by microorganisms, (ii) semi-synthetical products derived from natural 

products, (iii) chemically synthesized products based on the structure of the natural 

products. (Nikodinovic, Barrow et al. 2003) They are not essential for the host 

organisms, but can inhibit or even kill other competing species so as to utilise more 

surrounding nutrition. The mechanism of antibiotic action is complex. Briefly, the 

antibiotic molecules act on various cellular targets such as DNA replication, RNA 

synthesis, cell wall synthesis, protein synthesis via physical interaction that involves 

biochemical, molecular, and structural changes. (de Lima Procópio, da Silva et al. 

2012) 

 

In 1928, A. Fleming noticed that a Petri dish culture of Staphylococcus aureus was 

contaminated by a mould and the bacteria colonies surrounding the mould were 

dissolved. Later he figured out that it was a substance produced by the mould that 

killed the bacteria. The mould was identified as Penicillium notatum, and the 

substance was named penicillin that became the first antibiotic in human history. 

Penicilin was found to be a potent antibacterial compound and thus well used in 

medical treatment in 1940s. Enlightened by Fleming, researchers discovered 

thousands of more antibiotics in the natural products such as chloramphenicol and 

streptomycin. Among all the microbiological antibiotics, the most important ones 

include penicillins, cephalosporins, tetracyclines, aminoglycosides, chloramphenicol, 

macrolides, and some glycopeptides. (Demain 2009) Since they exhibit novel  

properties of antimicrobial, antitumor, and insecticidal activities, they have been 

playing significant role in medical treatment of infections, cancers, agriculture, etc. 

(Zotchev 2008; Demain and Sanchez 2009) 
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1.1.2 Antibiotic Biosynthesis  

In general, the antibiotic biosynthesis process can be divided into three steps. First, 

Building blocks (precursors) are obtained, which are typically from primary 

metabolites such as malonyl-CoA, amino acids, S-adenosyl methionine, formate, 

carbamoyl phosphate, nucleotides, however, some natural products often serve as 

building blocks as well. If not already activated, the building blocks are activated 

before assembly in ways of adenylation, phosphorylation, attachment of nucleotide 

moieties, etc. Second, antibiotic scaffolds are assembled from those active building 

blocks, which are catalyzed by specific enzymes. Those enzymes are modular 

polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). They 

bind different reaction sites of individual building blocks such as to make 

condensation and modification reactions, working in an assembly-line manner. 

(Hertweck 2009; Condurso and Bruner 2012) In the last step, the scaffolds are widely 

modified by tailoring enzymes, the process of which can be significantly different for 

different antibiotics. Those tailoring enzymes span from oxidoreductases, 

methyltransferases, halogenases, carbamoyltransferases, acyltransferases, 

glycosyltransferases. (Zotchev 2008; Weber 2014) 

 

1.1.3 Antibiotic Biosynthesis Gene Clusters 

1.1.3.1 Typical Antibiotic Biosynthesis Gene Cluster 

Biosynthesis of antibiotics is a complex metabolism and is strictly controlled so as not 

to put heavy burden on the host organisms. To produce antibiotics in a benign way to 

the synthesizing organisms, biosynthetic genes are clustered in the genomes of 

synthesizing organisms such that the corresponding enzymes are expressed in an 

orderly manner, which ensures coordinated enzymatic reactions in scaffold assembly 

and modification. (Zotchev 2008) 

With the significant advances in bioinformatics, analysis on the entire antibiotic 

biosynthetic pathways and genes is possible. Besides, genetic approaches such as 

mutational analysis, enzyme assays enable researchers to identify the function of 

those biosynthetic genes. Therefore, more and more antibiotic biosynthesis gene 

clusters are identified such as bioactive polyketides, antifungal polyene macrolides. 

(Aparicio, Caffrey et al. 2003) Figure 1.1A shows the typical organisation of an 
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antibiotic biosynthesis gene cluster. In the cluster, the genes responsible for the 

synthesis of scaffolds (PKS, NRPS, glycosyltransferase, etc.) are the nuclei. Close to 

the nuclei are the genes that encode modification enzymes, e.g. hydroxylases, 

methyltransferases, acyltransferases, halogenases, glycosyltransferases. Typically, 

pathway-specific regulatory genes exist in the cluster, regulating the enzyme 

expressions in a harmonious way. In addition, the cluster provides resistance to its 

own antibiotic, which is accomplished in two strategies: first, inactivate the 

intracellularly accumulated antibiotics or mask the antibiotic target. Particularly, 

antibiotic inactivation is performed mainly by three enzymes: β-lactamases, 

aminoglycoside-modifying enzymes, and chloramphenicol acetyltransferases; second, 

transport the antibiotic outside with efflux pumps encoded by the cluster, which can 

inhibit or kill the competing organisms by releasing antibiotics in outer surroundings. 

(Zotchev 2008; Giedraitienė, Vitkauskienė et al. 2011) 

 

A 

 

B 

 

C 

Figure 1.1 Antibiotic biosynthesis gene clusters. A: Typical organisation of an 

antibiotic biosynthesis gene cluster. Five primary functions are conferred by the 

cluster: transport, resistance (to avoid suicide), regulation, scaffold assembly, scaffold 
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modification. See text for details. (Zotchev 2008) B: Chloramphenicol (Cm) 

biosynthesis gene cluster. The Cm biosynthesis cluster is separated by pabAB. 

Disruption of cmlB/pabAB, cmlC, cmlH, cmlP or cmlJ blocks Cm production. cmlF is 

postulated to be responsible for Cm efflux. (He, Magarvey et al. 2001) C: Jadomycin 

gene cluster. Regulatory genes, structural genes, and two predicted promoters are 

presented. (Zheng, Wang et al. 2007) 

1.1.3.2 Chloramphenicol and Jadomycin Biosynthesis Gene 

Clusters 

Cm biosynthesis genes in S. venezuelae ISP5230 are clustered in separate regions 

flanking ADC (4-amino-4-deoxychorismate) synthase gene pabAB (cmlB) (Figure 

1.1B). Cm biosynthesis begins in a secondary metabolic branch of the shikimate 

pathway that produces PAPA (p-amino phenylalanine). Initially, the chorismic acid 

generated from shikimate pathway is catalyzed by ADC synthase encoded by pabAB 

(cmlB). Then the produced ADC is converted into amino deoxyprephenic acid, which 

is catalyzed by a monofunctional ADC mutase encoded by the gene cmlD. cmlE 

encodes DAHP (deoxy-arabino-heptulosonate-7-phosphate) synthase that initiates the 

shikimate pathway, leading to chorismic acid formation and subsequent chorismate 

branching reaction that forwards to Cm synthesis. The main function of cmlE is 

perhaps to regulate the shikimate pathway. The inactivation of genes pabAB and cmlC 

can cause significant decrease in Cm production, since the chorismic acid precursor 

from shikimate pathway cannot be utilized by the Cm biosynthesis. In comparison, 

the disruption of cmlF only slightly affects Cm production, thus cmlF is supposed to 

responsible for Cm efflux that transports Cm into extracellular environment and 

protects normal intracellular biosynthesis activities from inhibition. However, 

researchers discovered a discrete set of cml efflux genes located at least 30 kb from 

pabAB, far from Cm biosynthesis cluster. Similar to pabAB /cmlB, cmlC, disruption of 
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cmlH, cmlP, cmlJ can inhibit Cm biosynthesis as well. (Brown, Aidoo et al. 1996; He, 

Magarvey et al. 2001) 

 

Jadomycin (Jd) biosynthesis gene cluster (Figure 1.1C) stringently regulates the Jd 

production. The regulating genes are located at the left end of the cluster: jadW1, W2, 

W3, R2 and R1. JadR1 is a necessary positive regulator for Jd production, because 

disruption or deletion of jadR1disables S. venezuelaee to synthesis Jd. In contrast, 

jadR2 is negative regulator, which represses Jd production, since deletion of this 

genes leads to Jd production in the absence of environmental stress, and applied stress 

increases Jd yield. (Yang, Han et al. 1995; Yang, Han et al. 2001) Next to the left of 

jadR2 are jadW1, W2, and W3, though their definite regulating roles are not 

understood, but their involvement in the regulation of Jd synthesis is undoubted. jad 

W1 has sequence similarity with afsA, and is speculated to encode an enzyme that 

synthesizing γ-butyrolactone. Disruption of this gene makes S. venezuelaee unable to 

produce Jd and Cm as well as affecting  its morphology.(Wang and Vining 2003) The 

regulating roles of jadW2 and W3 can be indicated by the corresponding mutants, but 

not clearly figured out. To the right of jadR1, are the structural genes that are 

clustered in the same transcription direction with short intergenic spaces. This 

organization means the same promoter can control all the structural genes. Two 

promoters are identified: PJ and PT, upstream of jadJ and jadT respectively. PJ is 

speculated to control structural genes jadJ-S while PT to control jadT-V. (Zheng, 

Wang et al. 2007) 

 

1.1.4 Regulation of Antibiotic Biosynthesis  

Antibiotic biosynthesis is tightly controlled, as it competes for metabolites (building 
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blocks) with primary metabolism, posing a burden for the synthesizing organism itself. 

The regulating mechanism can be divided into local and global types. Antibiotic gene 

clusters contain some regulatory genes clustered with genes for biosynthesis, 

secretion and resistance to the antibiotics. These regulating genes are local and 

usually pathway-specific. In contrast, other regulatory genes are global pleiotropic 

regulators that control different metabolic pathways, not linked to specific 

biosynthetic gene clusters. Some researchers proposed that pleiotropic regulators 

activate the pathway-specific regulators located within gene clusters. (Horbal, Rebets 

et al. 2010) The global regulators are sensitive to many nutritional or environmental 

factors, e.g. emergence of competing organisms, nutrition shortage, the presence of 

chitin, cell wall damage, phage infection, pH stress, etc. In these cases, the antibiotic 

production is induced and is beneficial to producing species. (Martín and Liras 2010) 

But in other circumstances, excessive level of inorganic phosphate inhibits antibiotic 

production. (Bibb 2005)  

 

Some organisms are able to synthesis more than one antibiotics harbouring quite 

different properties, which means the competition for antibiotic precursors can occur 

among different antibiotic synthesizing pathways. In this case, the priority is given to 

the antibiotic that benefits the host organism most in the current environment. 

(Zotchev 2008) 

 

Besides, it is worthy of mentioning the regulation of antibiotic resistance by the 

producing organism. The primary mechanism is antibiotic efflux that relies on ATP 

energy. In addition, other mechanisms also confer producing organisms resistance, 

such as target modification, degradation/modification of endogenously accumulated 
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antibiotics. (Zotchev 2008) 

1.1.4.1 Regulation of Secondary Metabolite Biosynthesis in 

Stryptomyces 

In Stryptomyces species, there are two regulatory mechanisms that are best 

investigated. The first one is the pyramidal system responsible for the biosynthesis of 

streptomycin, tylosin and cephamycic/clavulanic acid. In this system, a butyrolactone 

receptor protein (Brp) exists in the top position of the regulatory cascade. External 

signals can activate the butyrolactone-Brp system that activates regulatory genes 

encoding SARP (Streptomyces antibiotic regulatory proteins). SARP serve as the final 

checkpoint in regulation of certain antibiotic biosynthesis, and most of them are 

positive regulators. (Horbal, Rebets et al. 2010) The second mechanism is the so-

called two-component systems (TCSs) or global regulators responding to external 

stresses. The best-known one in Streptomyces species is the PhoR–PhoP TCS, where 

PhoR is a standard membrane sensor kinase while PhoP is a DNA-binding response 

regulator. (Martín and Liras 2010) 

1.1.4.2 Cross-regulation of Jd and Cm Biosynthesis 

Streptomyces venezuelaee  ISP5230 produces two antibiotics, chloramphenicol and 

jadomycin B, in response to disparate conditions: the former is produced in situation 

of moderate nutrient limitation, by contrast, the latter is synthesized only in response 

to highly limited sources of carbon, nitrogen, etc. and additional stress of shock, 

phage infection or toxic concentrations of ethanol. (Yang, Han et al. 1995) The 

regulation of jadomycin and chloramphenicol is a cross-circuit involving a key 

component JadR2. JadR2 is a pseudo GBL (γ-butyrolactone) receptor, since unlike 
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the genuine GBL receptor binding specific ligand, JadR2 binds to both ligands of Jd 

and Cm that are chemically different. Specifically, the pseudo GBL receptor JadR2 

directly represses the transcription of JadR1 and subsequently repressed Jd synthesis, 

since JadR1 is a cluster-situated regulator initiating the Jd production by activating the 

expression of structural genes. Disruption of jadR2 leads JdB production without 

ethanol stress. Besides, JadR1 represses Cm production by direct binding to the cmlI-

cmlJ intergenic region (Figure 1.1B), which is necessary for Cm biosynthesis. JadR2 

also positively regulates Cm production at least in the absence of ethanol, which is 

supported by the unusual fact that the Cm biosynthetic gene cluster has no cluster-

situated regulators, meaning outside-cluster regulators are required. Jd and Cm could 

directly bind to JadR2, which dissociates JadR2 from the jadR1 promoter. Overall, Jd 

and Cm production is reciprocally regulated by JadR1, with Jd synthesis activated 

while Cm repressed (Figure 1.2). (Xu, Wang et al. 2010) 

 

Figure 1.2 Regulation between jadomycin and chloramphenicol. JadR1 activates 

Jd production while represses Cm production. JadR2 represses Jd production by 

inactivating JadR1 and activates Cm production at least in the absence of ethanol. 

Both Cm and Jd can dissociate JadR2 from jadR1 promoter. JadR1 is the low level 

regulator directly controlling Cm and Jd biosynthesis, whereas JadR2 is the higher 
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level signal coordinator that senses the metabolites signal and functions by regulating 

jadR1 expression. (Xu, Wang et al. 2010) 

1.1.5 Benefits and Issues from Antibiotics 

1.1.5.1 Benefits Generated by Antibiotics 

During the 20th century, antibiotics benefited human well-being dramatically, 

because of the versatile function in combating infections. They doubled our life span, 

released sufferings, and brought a revolution in medicine. In US, for example, the 

average life span was increased from 47 years to 74 and 80 years for men and women 

respectively during 1900 and 2000. (Lederberg 2000; Demain 2009) Moreover, 

antibiotics boosted worldwide economy significantly: antibiotics shared a worldwide 

market of $26 billion, $32 billion and $55 billion (including antiviral agents) in 1996, 

2001 and 2000 respectively. (Erdmann 1999; Projan and Youngman 2002) And 

amazingly, the market of Streptomyces antibiotics alone accounted for $25 billion in 

2001. (Hranueli, Cullum et al. 2005) 

 

1.1.5.2 The Urgent Need for New Antibiotics 

Despite the enormous benefits to human societies, some urgent issues have emerged 

from antibiotics. Initially, the “golden age” of antibiotic production began with 

penicillin in late 1940s and progressed till 1970s, after which it slowed down due to 

the increasing difficulty in discovering novel antibiotics. The primary reason is each 

antibiotics class share a common scaffold. The majority of current antibiotics were 

originated from scaffolds discovered between the mid-1930s and the early 1960s 

(Figure 1.3). For instance, during 1960s and 2000, all approved antibiotics were 
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derivatives of known scaffolds, with exemption of the introduction of carbapenems in 

1985. Besides, among all the new antibiotics filed between 1981 and 2005, only the 

scaffolds of cephalosporins, penicillins, quinolones, and macrolides—were 

responsible for 73%. (Newman and Cragg 2007) 

 

Figure 1.3 Discovery pace of new antibiotics. Antibiotic discovery experienced a 

“golden age” between 1940s and 1960s-1970s, since 1970s it has been difficult to 

identify new antibiotics, especially between 1962 and 2000, there was an innovation 

gap.  (Fischbach and Walsh 2009) 

 

Furthermore, due to the widely used antibacterial agents, pathogenic bacteria with 

antibiotic-resistance are becoming increasingly prevalent in both hospitals and the 

community. The emergence of multidrug resistant pathogens makes matters worse. 

(Fischbach and Walsh 2009; Giedraitienė, Vitkauskienė et al. 2011) There are mainly 

three types of antibiotic resistant pathogens posing threat to public health: (i) 

Staphylococcus aureus (MRSA); (ii) Acinetobacter baumannii, Escherichia coli, 

Klebsiella pneumoniae, Pseudomonas aeruginosa; (iii) Mycobacterium Tuberculosis. 

(Fischbach and Walsh 2009)  The antibiotic resistance of pathogens can be innate or 
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acquired. The latter is caused by either mutation in genes or gene transfer among 

different organisms by plasmids, transposon, integrons and bacteriophages. 

(Giedraitienė, Vitkauskienė et al. 2011) 

 

Besides these problems, the antibiotic field is being ignored by many large 

pharmaceutical companies due to profit concerns, hence small companies, and the 

research institutions are taking much responsibility in novel antibiotic discovery. 

(Demain 2009)  

 

Overall, discovery of new antibiotics is facing crisis, thus new sources for antibiotic 

discovery and novel enabling technologies are urgently needed to address the crisis. 

 

 

 

 

 

 

 

 

 

 

 



 

12 

 

1.2 New Hope for Novel Antibiotic Discovery 

1.2.1 Bacteria Provide Rich Resources for Novel Antibiotic 

Discovery 

In the crisis of novel antibiotic discovery (seen in 1.1.5.2), bacteria provide a 

promising solution,  because the microbial natural products and their derivatives 

provide rich sources for antibacterial discovery, despite its decline for some time, with 

more than 60% of the used drugs originating from natural products. (Molinari 2009) 

The discovery of platensimycin demonstrates that novel scaffolds are still available in 

microbial products if proper tools and technologies are applied.(Genilloud, Gonzalez 

et al. 2011) Among those natural products obtained so far, 45% are synthesized by 

actinomycetes, 38% by fungi, and 17% by eubacteria, which indicates that 

actinomycetes play the pivotal role in producing antibacterials. Besides, 

actinomycetes products are the sustained sources for novel antibiotics that combat the 

pathogens without harming the host tissues. (Mahajan and Balachandran 2012) 

Moreover, the advanced technology in next generation sequencing and bioinformatics 

unrevealed that microbes have novel potentials, previously unrecognized, to produce 

new bioactive products with antibiotic property, which is in the form of gene clusters. 

(Zotchev, Sekurova et al. 2012) These potentials could be fulfilled by an enabling 

tool—synthetic biology (seen in 1.3). 

In this project, the gene clusters analysed are MP112-09-cluster 6-Lactococcin972-

like (MP112-09-Lac) and MPS05-B41-cluster 28-Lincocin-M18-like (MPS05-B41-

Lin) (Figure 1.4). MP112-09-Lac from Nocardiopsis.sp MP112-09, is predicted by 

informatics technology to be able to synthesize lactococcin-972-like bacteriocin that 

might have similar antimicrobial activities with lactococcin 972: active on all 
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lactococci tested to date. (Martinez, Suárez et al. 1995) MPS05-B41-Lin from 

Streptomyces sp. MPS05-B41, is predicted to be able to synthesize bacteriocin 

Linocin M18 that is typically produced by Brevibacterium linens M18. This 

bacteriocin inhibits the growth of Listeria spp., several coryneform as well as other 

gram-positive bacteria. (Valdés-Stauber and Scherer 1994) 

 

 

Figure 1.4 MP112-09-Lac and MPS05-B41-Lin maps (made with Clone Manager 

version 6, selected genes are shown). A: MP112-09-Lac. The genes lact1-3 are 

responsible for lactococcin-972-like bacteriocin chain A-C respectively, impA 

encodes bacteriocin-associated integral membrane (putative immunity) protein, 

whereas abcC can synthesise putative bacteriocin exporter. The five genes seem 

associated with baceriocin biosynthesis and export, thus are perhaps controlled by one 

common promoter. The simplicity of one common promoter is the reason why this 

gene cluster was analysed with native promoter and ermE*/inducible promoter 
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replacing its naïve promoter in this project. B: MPS05-B41-Lin. The gene linA is 

expected to encode Linocin-M18 bacteriocin protein while ORF5-7 is responsible for 

diaminopimelate decarboxylase, Dyp-type peroxidase family, putative beta-lactamase 

or peptidase respectively. The four genes seem encode different kinds of proteins, 

therefore are perhaps controlled by different promoters. This gene cluster was 

designed to be analysed only with its native promoter due to the presumed complexity 

of different promoters. 

1.2.2 Actinomycetes and Streptomyces 

Actinomycetes are filamentous, Gram-positive bacteria. The most important genera 

include Streptomyces; Micromonospora actinoplanes; Streptosporangium, 

Dermatophilus, Thermoactinomyces, Microbispora, nocardia. (madurae type); 

Nocardia (type farcinica asteroides); Actinomyces (israeli type);  Actinomyces 

(bovis-type). They possess both fungal and bacterial properties. Specifically, 

actinomycetes form hyphae that have true branching, therefore their morphology is 

similar to filamentous fungi that have a vegetative thallus during part of their life 

cycle. Like fungi, actinomycetes can generate multi-hyphal strands forming upright 

coremia-like structures or linking adjacent colonies. Besides, actinomycetes have 

many bacterial features. Their hyphae have the diameter of 1 µ, which is the same 

with the bacterial order of magnitude. The cell walls of actinomycetes are chemically 

similar to those of Gram-positive bacteria, since their cell walls do not contain chitin 

or cellulose. (Avery and Blank 1954; Cummins and Harris 1956) Actinomycetes are 

susceptible to antibiutics that are effective against Gram-positive bacteria while are 

resistant to the strictly antifungal antibiotics (e.g. polyenes). This is probably due to 

the lack of sterols in actinomycetes/bacteria. (Lechevalier and Lechevalier 1967) 

Actiomycetes are capable of producing many secondary metabolites in response to 

some changes, such as slowing down of the primary metabolism at the end of growth, 

unusual growth phase caused by some reasons. Due to the useful products such as 

antibiotics and vitamins they produce, Actinomycetes have become extremely 

important, both commercially and scientifically. (Lechevalier and Lechevalier 1967) 
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Streptomyces is a genus of Actinomycetes, Gram-positive bacteria. It grows in diverse 

environments, with a filamentous morphology similar to fungi. A unique feature of 

this organism among Gram-positives bacteria is the morphological differentiation 

forming a layer of hyphae, which can differentiate into a chain of spores.  

Streptomyces have a complex multicellular development. When conditions of 

temperature, nutrients, and moisture are advantageous, spores would form germ tube, 

and the hyphae would develop, including the aerial hyphae. Then the continuous 

growth starts. Esporogenic cells may contain more than 50 copies of the chromosome 

in linear order, forming multinuclear aerial mycelium with septa at regular intervals. 

The septa divide an apical cell into a chain of uninucleated spores that would disperse 

when conditions are favorable (Figure 1.5). The most important characteristic of 

Streptomyces is the ability to synthesize bioactive secondary metabolites (BSMs) such 

as antifungals, antivirals, antitumoral, anti-hypertensives, immunosuppressives, and 

especially antibiotics. Most antibiotics are species specific, which are important for 

the producing streptomyces to compete with other organisms, even the same genre. 

(de Lima Procópio, da Silva et al. 2012)  
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Figure 1.5 Growth of Streptomyces. A: the phase-contrast image of Streptomyces 

mycelium growing out of a spore (Sp). Green colour indicates an apical protein 

complex for tip extension. B: Illustration of polarised growth in Streptomyces 

hyphae. The apical cell extends its cell wall only at the tip (green), and its division by 

a new hyphal-cross wall makes the subapical daughter cell unable to grow. But the 

subapical daughter cell eventually generates a lateral branch with a new extending tip. 

(Flärdh 2003) 

1.2.3 Jadomycin and Chloramphenicol 

Jadomycin (Jd) and chloramphenicol (Cm) (Figure 1.6) are synthesized by 

Streptomyces venezuelaee. The jadomycins are a unique family of angucycline-

derived antibiotics because of their pentacyclic 8H-benz[b]oxazolo[3,2-f]-

phenanthridine backbone that includes a dihydropyridine and an oxazolone ring.(Rix, 

Zheng et al. 2004) Jadomycins are considered to be a promising cancer treatment 

drugs and favorable antibiotic, because it has versatile properties such as antibacterial, 

antitumor, antifungal, enzyme inhibitory and cytotoxic properties to cancer cells. The 

jadomycin production requires three conditions: (i) exhaustion of carbon, nitrogen or 

phosphate in the growth medium, (ii) addition of amino acids, (iii) ethanol/heat shock 

or phage infection. (Doull, Singh et al. 1994) Under the three conditions, if the 

addition of amino acids is isoleucine, jadomycin B is the principal products. The 

replacement of isoleucine by other amino acids can lead to generation of novel 

analogues of jadomycin B. (Rix, Zheng et al. 2004) The cyclized product of 

jadomycin is synthesized by the presence of amino acids in the medium which has a 

biosynthetic aldehyde precursor that generates a reactive aldimine to form jadomycin. 

The mass of vegetative cells of Streptomyces venezuelaee inoculated into production 

media can affect the jadomycin yield. 
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Figure 1.6 Chemical structures of jadomycin B and chloramphenicol. (Marianne 

2012) 

Chloramphenicol is the only antibiotic produced by Streptomyces venezuelaee under 

normal growth conditions. (Rix, Zheng et al. 2004) This antibiotic is the first natural 

product that contains a nitro group and also the first natural product of a derivative of 

dichloroacetic acid, which makes it unique. Due to the relatively simple structure and 

great clinical applications, Cm was modified to generate a large number of analogues. 

But no analogue has proved superior to the natural antibiotic in terms of antibacterial 

activity. Primarily, Cm is a bacteriostatic agent that completely inhibits all the true 

bacteria and organisms quite closely related (rickettsias, blue green algae, spirochetes) 

at low concentrations from 1 to 10 ug per ml. Besides, some protozoa and animal cell 

lines appear to be also sensitive while fungi and plants are quite resistant to this 

antibiotic. This selectivity serves as the basis of chloramphenicol acting as a 

chemotherapeutic agent. (Brock 1961) 
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1.3 Synthetic Biology: the Novel Enabling 

Technology for Novel Antibiotic Discovery 

1.3.1 What is Synthetic Biology? 

The generation of synthetic biology was driven by studies on mathematical logic in 

gene regulation in the 1960s (e.g. the lac operon) and achievements in genetic 

engineering in the 1970s (e.g. recombinant DNA technology). This subject aims to 

engineer organisms for expected applications by modifying their behaviors. 

(Andrianantoandro, Basu et al. 2006) There are four important levels underlying 

synthetic biology: (i) parts-promoters, translation start sites, ORFs, terminators, 

regulatory elements, etc. These individual parts are assembled into a gene of specific 

functions in an ordered manner. (ii) devices-combination of parts designed for 

particular functions. A device stands for sets of biochemical reactions such as 

transcription, translation, protein phosphorylation, allosteric regulation, enzymatic 

reactions, etc. (iii) modules-compartments of functionally connected devices. A 

module can be specific pathways such as metabolic pathways or signal transduction 

pathways. (iv)chassis-engineered hosts where the introduced parts/devices are able to 

form expected pathways or give predictable responses. The chassis can be obtained 

with synthetic genomes generated from combining devices, modules or by deleting 

non-essential genes in the genome of natural organisms (e.g. E. coli). The ideal 

chassis are expected to only have designed pathways and are able to accommodate 

any desired devices for their optimal function. (Andrianantoandro, Basu et al. 2006; 

Ellis, Adie et al. 2011) 

 

The application of synthetic biology is promising in many areas. For example, in 

fermentation, it is required to monitor batch cultures and add inducers to induce gene 

expression. But engineered bacteria can avoid this time-consuming and expensive 

procedure because of designed coordination. (Farmer and Liao 2000; Chen and Weiss 

2005) Synthetic biology would revolutionise the engineering of biosystems, and its 

development could influence many other scientific and engineering fields, eventually 

our daily life. (Andrianantoandro, Basu et al. 2006) 

 



 

19 

 

1.3.2 Synthetic Biology Applied to Antibiotic Biosynthesis 

The advances in genome-sequencing have revealed thousands of uncharacterized 

secondary metabolite biosynthetic pathways, organized in the form of gene clusters, 

many of which are expected to produce novel antibiotics. The enabling tools of 

synthetic biology can be used to tune these valuable pathways, and the tuned clusters 

can be easily inserted into pre-engineered microbial hosts (chassis) and used in a 

plug-and-play fashion, in which the cellular machinery is optimized for 

overproduction of novel compounds such as antibiotics (Figure 1.7). Moreover, 

further engineering the biosynthetic pathways through intrinsic levels of cluster 

modularity can lead to the optimal production. (Medema, Breitling et al. 2011) 

 

 

Figure 1.7 Overview of plug-and-play expression of unknown secondary 

metabolite biosynthetic pathways. Selected gene clusters are redesigned for 

streamlined expression in pre-engineered screening hosts. These hosts are specifically 

optimized for overproduction of a certain class of secondary metabolites via timing of 

gene expression (signified by the clocks) and the spatial control that guides the 

metabolic fluxes towards the end compound. Each screening host has a counterpart of 
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a complementary production host on which further synthetic tuning would be applied 

for efficient production of new compounds. (Medema, Breitling et al. 2011) 

 

Initially, the silent gene clusters for new antibiotic biosynthesis can be activated for 

high titer production in some ways. One is based on regulatory genes that control the 

expression of structural biosynthetic genes. Manipulation on the pathway-specific 

regulators such as inactivation of a repressor, overexpression of a positive regulator 

can increase the production of cluster-specified antibiotics. Another strategy is the 

tandem amplification of a biosynthesis gene cluster, which was demonstrated in S. 

coelicolor that showed 20-fold increase in the actinorhodin yield via tandem 

amplification. (Murakami, Burian et al. 2011; Zotchev, Sekurova et al. 2012) 

 

Furthermore, synthetic biology enables us to engineering the antibiotic production in 

both temporal and spatial scales. In temporal scale, timing the expression of pathway 

components contributes to the optimal antibiotic biosynthesis. During the intense 

constitutive production, the continuous supply for production can collide with the 

need for cellular survival, thus dynamic regulation of antibiotic biosynthesis pathway 

in time usually benefits the efficient production. One example is timing enzyme 

expression. The synthesis of enzymes involved in antibiotic production is one of the 

most expensive processes, since it costs much energy and resources, especially when 

those enzymes become available before meeting their substrates, their production is 

kind of wasteful. (Wagner 2007) Hence, fine-tuning enzyme expression is important 

for the producing hosts to optimally channel flux towards to antibiotic precursors, 

which could be achieved through engineering the transcriptional units, promoters and 

ribosome-binding sites. Other methods of temporal engineering include allosteric 

control, population synchronization of metabolic programmes, etc. In spatial scale, the 

spatial engineering of metabolism in producing strains is critical for optimal cellular 

machinery redesign, because the rate of antibiotic production in a specific pathway is 

dominated by the local metabolite concentrations. (Conrado, Varner et al. 2008) One 

strategy is scaffolding of enzyme complexes. The synthetic protein scaffolds are 

employed to combine proteins into complexes such that local enzyme concentrations 

are increased and subsequently the metabolic flux towards a specific pathway. 

(Dueber, Wu et al. 2009) Other strategies include cellular compartmentalization, 

designing microbial consortia. (Medema, Breitling et al. 2011) 

 

However, there are also many challenges in antibiotic biosynthesis, such as challenges 

in efficient cloning of the gene clusters, the unpredictable outcomes originating from 

transplanting gene clusters to new producing hosts, etc. But with advanced techniques 
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in synthetic biology such as assembling small parts into genes, pathways and even the 

complete genomes and the synthetic genomes, etc. It is possible to build microbial 

systems specifically designed for novel antibiotic production, which can subsequently 

be upgraded for the large-scale production. (Medema, Breitling et al. 2011; Zotchev, 

Sekurova et al. 2012) 

 

1.3.3 Synthetic Biology in Streptomyces 

Streptomyces are producers of most clinically used antibiotics and several widely used 

drugs against common diseases, including cancer, being the main sources of bioactive 

compounds. Besides, genome sequencing has suggested that Streptomyces possess 

larger potentials for the production of novel secondary metabolites than previously 

perceived, which are organized in gene clusters. Synthetic biology is a desirable tool 

to utilize the treasure resources, which is promoted by the innate module of secondary 

metabolite biosynthetic pathways (e.g. modular polyketide synthases) as well as gene 

cassettes/operons and biosynthetic gene clusters. The molecular biology in 

Streptomyces has already engendered specific tools for exploiting the silent potentials 

in Streptomyces, ranging from cloning vectors to inducible promoters and 

translational control elements. (Medema, Breitling et al. 2011) 

 

There are some important engineering strategies and tool boxes for synthetic biology 

application in Streptomyces. First, iterative engineering of the secondary metabolite 

gene clusters is a promising strategy, because our knowledge about gene regulation in 

Streptomyces is not yet enough, thus insertion of a whole re-factored gene cluster at 

once can lead to problems that cannot easily be attributed to a particular gene. 

Therefore, it is reasonable to individually optimize the divided units of a whole gene 

cluster in an iterative way. Second, transcriptional engineering can be applied to avoid 

suicide in Streptomyces. For example, the removal of repression on actinorhodin 

transporter expression avoids suicide by reducing cellular toxicity. Streptomyces have 

different transcriptional control of gene expression from most organisms as well as 

the high genomic GC content, as a result, regarding transcriptional engineering, 

common tools and kits are not ready to use in Streptomyces. But some 

inducible/constitutive promoters and terminators have been available, such as 

tipA/ermE*and Fd respectively. (Bibb, Janssen et al. 1985; Ward, Janssen et al. 1986; 

Takano, White et al. 1995) Third, in the translational engineering, since RBS function 

is context-dependent, which means translational efficiency can be different form the 

wild-type if the wild-type RBSs are used, therefore, new synthetic RBSs are required 
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to restore the wild-type stoichiometry of the proteins. (Salis, Mirsky et al. 2009) The 

tool boxes in the translational level include RBSs from ribosomal proteins, antisense 

RNA, etc. (Takano, White et al. 1995) In terms of vectors, self-replicating plasmids 

are most commonly used. Besides, integrating vectors are particularly suitable for 

synthetic biology applications, since they are favorable for their stability, especially in 

terms of large inserts. (Medema, Breitling et al. 2011) 

 

In addition, there are also many difficulties in the synthetic application in 

Streptomyces. For instance, standardized parts for E.coli may not function optimally 

in Streptomyces; Streptomyces have diverse genus members, thus much metabolic 

difference exists among different species such as sigma factors and 16S rRNA 

sequences. This means optimal expression in one host may not succeed in another. 

However, Streptomyces with genetic manipulation are popular hosts for heterologous 

expression of secondary metabolites from foreign sources, and many strains have 

showed successful heterologous expression with improved titer of antibiotics, such as 

Streptomyces parvulus, S. coelicolor M145, Streptomyces avermitilis, etc. (Zotchev, 

Sekurova et al. 2012)  Therefore, synthetic biology application in Streptomyces for 

novel antibiotic production is still optimistic. 
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1.4 The Project 

1.4.1 How the Project Idea is Originated? 

In the crisis of novel antibiotic discovery (seen in 1.1.5.2), bacteria provide a 

promising solution (seen in 1.2), because the microbial natural products account for 

more than 60% of the used drugs. (Molinari 2009) Among those natural products 

obtained so far, Actinomycetes are the main antibacterial producer. Streptomyces, a 

genus of Actinomycetes, are favored in new antibiotic discovery due to three primary 

reasons: (1) the advanced technology in next generation sequencing and 

bioinformatics unrevealed that Streptymyces have novel potentials, previously 

unrecognized, to produce new bioactive products with antibiotic property, which is in 

the form of gene clusters. (Zotchev, Sekurova et al. 2012) (seen in 1.2.2) (2) 

Synthetic biology, an enabling tool to fulfill such potentials, is available (seen in 

1.3.3). (3) they are popular hosts for heterologous expression of secondary 

metabolites from foreign sources. For example, Streptomyces parvulus, S. coelicolor 

M145, Streptomyces avermitilis, etc., already showed some successful heterologous 

expression with improved titer of antibiotics. (Zotchev, Sekurova et al. 2012) 

Streptomyces venezuelaee ATCC 10712 (ISP5230) possess a distinctive property: the 

reciprocal regulation between jadomycin (Jd) and chloramphenicol (Cm) production 

with the condition of ethanol shock (seen in 1.1.4.2). The project is fundamentally 

based on the reciprocal regulation mechanism: take advantage of this regulation 

system to rationally engineer S. venezuelaee for heterologous production of BSMs by 

introducing re-factored secondary metabolite biosynthesis gene clusters containing 

appropriate control elements. The detailed hypothesis is presented below. 

1.4.2 Hypothesis and Strategies 

In Streptomyces venezuelae ATCC 10712 (ISP5230), Ja and Cm syntheses are 

reversely regulated by JadR1 that activates Jd synthesis while represses Cm synthesis 
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with ethanol shock (seen in 1.1.4.2). This system can be adopted to rationally 

engineer S. venezuelaee for heterologous production of BSMs by using re-factored 

gene clusters containing appropriate control elements: deletion of the jadR1 gene 

from the S. venezuelaee chromosome shall lead to down-regulation of Jd production, 

simultaneously induce overproduction of Cm due to the relieved repression of the Cm 

structural genes’ promoter. This and other promoters from the cml gene cluster could 

be tested for their efficiencies with gusA reporter, then the efficient promoters would 

be introduced upstream of an exogenous BSM gene cluster, which generates a re-

factored gene cluster that shall efficiently express in jadR1
-
 host. Besides, the cml 

gene cluster should be completely deleted in order avoid interfering with the 

expression of the exogenous gene cluster. 

Based on the above hypothesis, the project shall be conducted in the following 

procedures (simplified): 

1. Delete the jadR1 gene from the S. venezuelae chromosome using suicide vector and 

double-crossover to get jadR1
- 
mutant. 

2. Delete the entire cml gene cluster from the S. venezuelae genome using suicide 

vector and double-crossover to get jadR1
-
cml

-
 mutant. 

3. Assemble two BSM gene clusters with native/ermE*p in a specially designed 

vector, and transfer them to jadR1
-
cml

-
 mutant, then evaluate the BSM production. 

4. Test the expression of the reporter gene gusA under control of cmlFp, cmlIp, 

cmlXp, jadJp promoters in jadR1
-
cml

-
 mutant and find the best inducible promoter. 

This step can be conducted in parallel with step 3. 

5. Replace native/ermE*p in step 3 with the best inducible promoter in step 4, transfer 

the two BSM gene clusters with the new promoter to jadR1
-
cml

-
 mutant and re-check 

production of novel compounds. 
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1.4.3 Objective and Value 

Based on the hypothesis above, this project aims to establish an inducible system 

where novel BSMs are synthesized from re-factored gene clusters on industrial scale. 

The inducible promoter confirmed by GUS assay would be the switch of the inducible 

system. For industrial production of novel BSMs, the inducible system is necessary, 

since if the production is constitutive, the accumulation of BSMs from heterologous 

gene expression could kill hosts, as a result, no sufficient biomass is achieved and 

industrial scale production cannot be guaranteed. By comparison, the inducible 

system allows biomass accumulation at the early stage, then after the inducer (ethanol 

shock) is applied, the BSM production is initiated rapidly, leading to large scale 

production.  

Provided this objective is achieved, the silent BSM gene clusters would be exploited 

to produce novel BSMs at large scale, and hopefully, it would overcome the pressing 

issues of novel antibiotic discovery and benefit the wellbeing of society. 

1.4.4 Main Techniques 

1.4.4.1 Gibson Assembly 

The discovery of DNA ligase and restriction endonucleases engendered the 

recombinant DNA technology. Various methods for assembling DNA molecules 

through the use of restriction enzymes and PCR have been developed. (Yount, 

Denison et al. 2002; Shetty, Endy et al. 2008) Gibson assembly is novel in that it is 

capable of assembling and repairing overlapping DNA molecules in a single 

isothermal step. Besides, the joined DNA molecules can be as large as 583 kb and the 

resulted products as large as 300 kb can be clone in E. coli. The required reagents and 

enzymes are commercially available, which can be made into assembly mixture 

aliquots stored at –20 °C for more than one year. This method is significantly simple, 

since the assembly is completed by mixing the overlapping DNA molecules with one 

assembly aliquot and incubating the mixture at 50 °C for only 15min. Figure 1.8 

specifies the detailed process. Besides, it has other advantages: (1) exonucleases 

chewing back at 5’ end of  double-stranded DNA do not compete with polymerase 
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activity, which means all enzymes necessary for DNA assembly would be 

simultaneously active in the single isothermal reaction. (2) circular products are not 

processed by the three enzymes (T5 exonuclease, Phusion DNA polymerase, Taq 

DNA ligase) in the mixture. (Gibson, Young et al. 2009) 

       

Figure 1.8 One-step isothermal in vitro assembly. The T5 exonuclease at 50 °C 

chews back at the 5’ ends of double stranded DNA, exposing complementary single-

stranded DNA overhangs (black). After the DNA overhangs are annealed, phusion 

DNA polymerase fills the gaps and Taq DNA ligase seals the nicks. T5 exonuclease is 

sensitive to heat, inactivated in the 50 °C incubation. As a result, DNA molecules 

(magenta and green) sharing terminal overlaps (black) are combined into a covalently 

sealed molecule. (Gibson, Young et al. 2009) 

1.4.4.2 Transconjugation to Streptomyces venezuelae 

Streptomyces are desirable candidates for new antibiotic discovery. To exploit their 

new antibiotic potential, genetic manipulation is necessary and therefore it is 

imperative that DNA can be transferred into the host strain such as to inactivate or 

replace specific genes. Generally, methods (e.g. polyethylene glycol (PEG)-dependent 
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electroporation) for introducing DNA into Streptomyces species are inhibited by 

various factors, such as breakdown of foreign DNA recognized by methylation 

patterns, lack of efficient gene transfer systems, and unavailability of suitable cloning 

vectors. (Nikodinovic, Barrow et al. 2003) However, a method, circumventing these 

barriers, of intergeneric conjugation was developed (Mazodier, Petter et al. 1989), and 

subsequently was improved in many strains. This approach relies on introducing 

recombinant plasmids into a donor of methylation-deficient E.coli and subsequently 

transferring them to a recipient. One of such E.coli is E. coli ET12567 that carries 

pUZ8002 helper plasmid assisting transfer. (MacNeil, Occi et al. 1992) Most of the 

transferred plasmids carry the attP site, integrase gene of ϕC31 phage, RP4 oriT 

(origin of ssDNA transfer), oriR (replication origin) and a selectable marker. 

(Bierman, Logan et al. 1992) ϕC31 integrase mediates the site-specific recombination 

between the chromosomal attB site (34 pb) and plasmid attP site (39 pb) while RP4 

oriT is the site where helper plasmid functions in trans.  The DNA sequences of attB 

are proved to be highly conserved in various Streptomyces strains. (Sioud, Aigle et al. 

2009) Plasmids without the above features are either in autonomous replication or 

integrated into host genome through homologous recombination. (Bierman, Logan et 

al. 1992) 

In Streptomyces, transconjugation takes place during in the early growth phase when 

Streptomyces form mycelia on solid media containing MgCl2. The transconjugation 

mechanism in mycelial streptomycetes is different from that in unicellular Gram-

positive and Gram-negative bacteria in the way that the unprocessed double-stranded 

DNA molecule is translocated into the host by a plasmid-encoded septal DNA 

translocator TraB that non-covalently interacts with the DNA. (Reuther, Gekeler et al. 

2006)  

In the project, E. coli ET12567 (pUZ8002) was used to transfer recombinant plasmids 

to Streptomyces venezuelae. The recombinant plasmids p-jad-D/p-cml-D (pSOK 201 

derived) were integrated to chromosome via homologous recombination, due to lack 

of attP and int in pSOK201, while pLacNat/pLacNP (pSOK 804/pSOK 806 derived) 

and gusA plasmids (pSOK 808 derived) were integrated by site-specific 

recombination, due to the presence of attP and int (refer to 2.1.4). 
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1.4.4.3 Double-crossover for Deletion Mutants 

Traditionally, gene-deleted mutants are generated based on the homologous 

recombination carried out by double-crossover at one step. If the two flanking 

fragments are large enough, this method can be efficient, however, this method as 

well as the others often introduces a selectable marker into the genome that remains in 

the chromosome permanently. (Kieser 2000) This is not favourable due to some 

disadvantages: the resistance marker remained in the chromosome can execute polar 

effects on the expression of nearby genes; the expression of selectable markers may 

influence bacterial metabolism as well; in terms of actinomycete genomes, the 

resistance markers are limited, which means multiple gene deletions in the same 

genetic background are also restricted. (Siegl and Luzhetskyy 2012)  

 

Figure 1.9 Double crossover processes for deletion mutants. Two flanking 

fragments A (green) and B (red) of the gene for deletion were assembled in a plasmid 

containing a resistance marker. The first crossover resulted in the integration of the 

assembled plasmid into the genome DNA. The resulted genome was selected through 

resistance marker and verified by PCR. The second crossover resulted in looped out 
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plasmids and simultaneously generated wild type genome and deletion genome. The 

deletion genome was identified by PCR.  

To circumvent such demerits, in this project, the double-crossover was carried out in 

two steps, leaving no selectable marker in the deletion mutant. The plasmid with 

apramycin (Am) resistance was integrated into genomic DNA through the first 

homologous recombination (first-crossover), and the first cross-over mutants would 

be selected against Am, subsequently verified by PCR.  Then among the genuine first-

crossover mutants, those losing Am resistance were assumed to be the deletion 

mutants or wild type, generated through the second homologous recombination 

(second-crossover), and the deletion mutants could be identified by PCR. Figure 1.9 

represents the detailed process. 

1.4.4.4 Replica Plating  

In microbiology, a frequent chore is the transferring isolates from one substrate to 

other selective or indicator agar media. In place of an inoculating needle, Lederberg & 

Lederberg (1952) devised the replica plating technique that employed a velveteen pad 

to replicate randomly distributed colonies rapidly from initial plates and print the 

replica onto other media. This technique is useful for routine tests requiring repetitive 

inoculations of many isolates on different media. (Lederberg and Lederberg 1952) 

There are mainly two applications of replica plating. The first one is about gene 

recombination that exploits nutritional requirements as genetic characters, whereas the 

second one is the isolation of mutants. It has been successfully applied to bacteria, 

actinomycetes and unicellular algae. (Roberts 1959) 

Replica plating consists of three steps: (1) spreading a suspension of organisms on a 

solid medium so that the organisms on the initial plate can form single colonies after 

incubation. (2) using a pad of sterile velveteen or filter-paper to make replica 

inoculations from the initial plate onto a series of plates with different media. (3) 

comparing the responses of individual colonies to different media (the series of 

replica plates) or comparing the replica plates with the initial plates to find mutants. 

One important factor affecting the efficiency of the technique is the colony density, 

therefore,  when preparing initial plates it is reasonable to strike a balance between the 
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number of colonies on each plate and the fact that more dense the colonies, more 

mutants that will not be detected because of mixed growth. In order to well control the 

colony density, initial plates are prepared by spreading a dilute spore suspension to 

yield 100-200 discrete colonies on each plate that is incubated until good sporulation 

appears. (Roberts 1959) 
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Figure 1.10 Replica plating process (Pearson Benjamin Cummings, 2006) Am: 

apramycin. First, discrete spores formed on initial ISP4 plate. Then, a piece of 

sterilised velvet was pressed on initial plate such that spores from each colony were 

replicated on the velvet surface. The velvet with spores was pressed on ISP4 plate 

with Am 50 l/ml, incubated at 30C overnight. Colonies present on initial plate 

while missing on replica plate were candidate mutants and subjected to PCR 

verification. (StudyBlue 2014) 

In this project, velvet was used and the spores were diluted from 10
-1

 to 10
-6

 (or 10
-7

) 

to ensure 100-200 discrete colonies per plate. Figure 1.10 illustrates the process. 

1.4.4.5 β-Glucuronidase (GUS): A Sensitive and Versatile Reporter 

The clinically important secondary metabolites produced by Actinomycetes is tightly 

controlled by various regulatory proteins, therefore, understanding the cryptic 

regulatory cascades should benefit the generation of antibiotic overproducers and 

clarification the roles of the natural products in the producing bacteria. (Baltz 2001; 

Bibb 2005) Reporter genes are important for the investigation on the gene expression 

regulation, as after fused with regulatory elements and introduced into the biological 

system, they enable the quantification of biochemical process by providing visual 

signals.(Casadaban, Chou et al. 1980; Shuman and Silhavy 2003)  

Among the reporter genes used in actinomycete species, the most popular ones are 

GFP and luciferase. GFP from jellyfish is a common reporter used to monitor the 

trafficking and subcellular localization of proteins living organisms, because of its 

ability to tolerate N- and C-terminal translational fusions. (Kain, Adams et al. 1995) 

In gene expression research, however, GFP is inferior due to some reasons. First, GFP 

is less sensitive owing to much background fluorescence and no enzymatic signal 

amplification. Second, UV-induced toxicity in GFP assay limits the period of 

observation and analysis. Moreover, actinomycetes often exhibit high levels of auto-
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fluorescence, making the analysis more complicated. (Kieser, Bibb et al.) Luciferase 

assays are advantageous in monitoring the dynamics of gene transcription due to the 

rapid turnover of luciferases. Nonetheless, the dependence on multiple reagents 

(FMNH2, O2, ATP, Mg2O2) in enzymatic reactions make luciferase inferior. Besides, 

in actinomycetes, the lack of auto-luminescence causes a high signal-to-noise ratio in 

luciferase assays. (Jefferson, Kavanagh et al. 1987; Craney, Hohenauer et al. 2007) 

By comparison, β-glucuronidase (GUS) encoded by gene gusA is a sensitive and 

versatile reporter in actinomycetes. Initially, GUS can hydrolyze various β-

glucuronides, allowing assays in various types in cheap and simple ways (e.g. 

spectrophotometric: p-nitrophenyl-β-D-glucuronide and phenolphthalein-β-D-

glucuronide, chemiluminescent: 1, 2-dioxetane-β-D-glucuronide). (Jefferson, 

Kavanagh et al. 1987) In addition, GUS exhibits high specific enzymatic activity as 

well as stability, thus offers an unparalleled sensitivity. Moreover, this enzyme 

tolerates the most commonly used chemicals and assay conditions (e.g., pH and 

temperature) and large N- and C-terminal translational fusions. (Jefferson 1989; Hull 

and Devic 1996) In terms of streptomycetes, most species do not possess any 

endogenous GUS activity. The GUS system has been successfully employed in gene 

expression studies at the levels of transcription and translation, and would have more 

application areas. (Jefferson, Kavanagh et al. 1987)  

The promoter of the erythromycin resistance gene (ermE) is known to be constitutive 

and partially inducible in its native context. Its variant ermE*p with one base pair 

mutation acquires enhanced promoter activity and thus has been frequently utilised in 

in Streptomyces and related bacteria as a strong constitutive promoter for both native 

and heterologous gene expression. (Wilkinson, Hughes-Thomas et al. 2002; Medema, 
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Breitling et al. 2011) Thus, gusA under control of ermE*p can be used as positive 

control. 

 

In this project, GUS/p-nitrophenyl-β-D-glucuronide system was used. Specifically, 

the gusA was fused with ermE*p or cml/jad promoters and integrated into jadR1
-
cml

-
 

mutant, respectively. The promoter efficiencies were expressed in Miller units of 

glucuronidase per mg of total protein and compared to find the best promoter. The 

total protein concentrations were measured with Bradford assay.  

1.4.4.6 Bradford Assay 

A fast and accurate measurement of protein concentration is necessary in many 

biological researches. Many methods for estimating protein concentrations have been 

developed, some of which are not protein specific, such as Kjeldahl or elemental 

analysis. By contrast, other methods are available with greater specificity for protein, 

which are based on reduction, such as Lowry method of copper reduction, 

bicinchoninic acid, silver binding, ultraviolet, biuret. The main drawback of these 

approaches is the interference of compounds (e.g. phenolics) causing oxidoreduction. 

Besides, methods relying on protein precipitation (TCA, amido black) or hydrolysis 

(ninhydfin, OPA) have been developed as well, but they are inferior due to the time-

consuming steps and some other limitations. (Jones, Hare et al. 1989) 

A method described by Bradford has been favored in quantifying protein in many 

research areas, because this approach is faster, simpler, more sensitive and cheaper 

than most other methods. For example, compared with Lowry method, Bradford is 

more sensitive and less susceptible to the interference of common reagent and non-

protein molecules. (Kruger 1994) This technique exploits Coomassie brilliant blue G-

250 dye that exists in three forms: cationic, neutral, and anionic.  Only the anion can 

bind to protein to produce a complex with absorbance at 595 nm. Anion is not 

available at the dye reagent pH while available in the presence of proteins. The dye 

has specific binding requirements for macromolecules, which primarily are arginine 
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and basic and aromatic amino acid residues. Moreover, the dye does not react with 

free amino acids, low-molecular-weight polypeptides, or many other nitrogen-

containing or protein-like molecules. (Compton and Jones 1985; Jones, Hare et al. 

1989) However, some chemical-protein and chemical-dye interaction can interfere 

with the assay. For instance, non-protein compounds can interfere by shifting the 

equilibrium of the dye among the three species; some detergents, flavonoids, and 

basic protein buffers, can stabilise the neutral dye species by direct binding. (Bio-Rad 

2014) 

The Bradford method generates relative measurements with spectrophotometer, 

because it is common to use a purified protein standard. With the absence of purified 

protein being assayed as ideal standard, BSA serves as the most common protein 

standard for protein assays. In this project, the standard curve was made from BAS 50 

µg/ml, 100 µg/ml, 150 µg/ml, 200 µg/ml, 250 µg/ml, 300 µg/ml, and the samples 

were 20× diluted. By doing this, the samples were positioned in the linear range (for 

most spectrophotometers is 0.2 - 0.8 O.D. units) of the standard curve, which made 

the measurement more accurate than otherwise. 
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2. Materials and Methods 

In this section, chemicals, strains and instruments are presented first, then the 

protocols are exhibited. The all plasmids maps and media recipes are given in 

Appendix B (Page 116-118) and Appendix C (Page 119-122), respectively. 

2.1 Chemicals, Strains and Instruments 

2.1.1 Chemicals 

The main chemicals/reagents used in this project are presented below in table 2.1. 

Table 2.1 Chemicals/reagents/enzymes used in the project  

Chemicals/Reagents Manufacturer 

Agar bacteriological  OXOID LTD 

BSA  New England Biolabs Inc. 

Difco ISP Medium 4  Becton, Dickinson and Company 

DMSO  Sigma-Aldrich 

dNTP’s Promega 

EDTA (0.5 M) Merck 

Ethanol (96 %) VWR 

Expand High Fidelity (EHF) DNA polymerase  Roche 

GelGreen Nucleic Acid Stain (10 000x) (Cat: 

41005)  

Biotium 

GeneRuler 1 kb DNA Ladder Thermo Fisher Scientific Inc. 

Glycerol bidistillied (99.5 %)  AnalaR NORMAPUR, VWR Prolab 
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MasterAmp™ Extra-Long DNA Polymerase 

Mix (2.5 U/μl) 

Epicentre 

High Fidelity 2x Long PCR premixes (1-9)  Epicentre 

Phusion High-Fidelity DNA Polymerase (2 

U/µL) 

Thermo Fisher Scientific Inc. 

Isopropanol  Arcus 

Kanamycin  AppliChem 

Nalidixic acid sodium salt  Sigma-Aldrich 

Apramycin Sigma-Aldrich 

Chloramphenicol  AppliChem 

Ampicillin sodium salt  BioChemica, AppliChem 

Lysozyme (> 30 000 FIP U/mg)  Merck 

Malt extract  Sigma-Aldrich 

Maltose (Lot 109H1049)  Sigma-Aldrich 

MgCl2 (25mM)  Roche 

MOPS sodium salt (99 %)  AppliChem 

NaCl  VWR 

Na2HPO4-2H2O (99.5 %)  Merck 

NaH2PO4-H2O (99.0 %)  Merck 

D-galactose SIGMA 

L-isoleucine SIGMA 

KH2PO4 ACROS ORGANICS 



 

37 

 

K2HPO4 Merck 

NaOH (99 %)  Merck 

MgSO4-7H2O VWR International AS 

CaCl2-2H2O VWR International AS 

FeSO4-7H2O Merck 

NEB buffers New England Biolabs Inc. 

p-nitrophenyl-β-D-glucuronide (PNDG) 

(99.4 %)  

CalbioChem 

Primers (attachment )  SIGMA-ALORICH 

PstI, SacI, BmrI, AgeI, NotI, BamHI, KasI, 

NarI, ApoI, DpnI 

New England Biolabs Inc. 

CutSmart 10× New England Biolabs Inc. 

T5 exonuclease (10 U/μl)  New England Biolabs Inc. 

Taq DNA ligase (40 000 U/ml)  New England Biolabs Inc. 

Triton X-100 SigmaUltra  Sigma-Aldrich 

Tryptone  OXOID LTD 

Tryptone soya broth (TSB)  OXOID LTD 

Yeast extract  OXOID LTD 

Wizard Genomic DNA Purification Kit  Promega 

QIAquick PCR Purification Kit QIAGEN 

QIAquick® Gel Extraction Kit QIAGEN 

QIAGEN DNeasy
®

 Blood & Tissue kit QIAGEN 
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2.1.2 Instruments 

The main instruments used this project are listed in Table 2.2. 

Table 2.2 Instruments used in the project. 

Equipment  Specification Manufacturer 

Autoclave  SX-500E Tomy 

DNA gel electrophoresis 

power source  

Power PAC Bio-Rad 

Laminar hood S-2020 1.2  Heto-Holten 

DNA gel electrophoresis 

systems  

Owl Easycast B1A Mini Thermo scientific 

Freezer (- 20 °C)   Electrolux 

Freezer (- 80 °C)  C66085 New Brunswick 

Scientific 

Eppendorf tubes  1.5 ml Sarstedt 

ChemiDoc
TM

 XRS+ Imaging 

System with Image Lab
TM

 

Software 

Universal HoodII Bio-Rad 

Microcentrifuge  5415 R  Eppendorf AG 

PCR machine  5331 46612 Eppendorf 
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Petri plates  90×16.2mm Gosselin  

pH-meter  PHM92 Unigen 

Pipettes  10 μl, 200 μl, 1000 μl Eppendorf 

Pipette tips  200 μl, 1 ml Fisher Scientific 

Pipette tips  10 μl Molecular BioProducts 

Pyrex
R
 baffled Erlenmeyer 

flask  

125 ml Sigma-Aldrich 

NanoDrop ND-1000 Saveen Werner 

Incubators (30 °C, 37 °C)  474 ASSAB 

Shaking incubators (30 °C, 

37 °C)  

28573 Infors HT multitron 

Spectrophotometer  TECAN INFINITE TE 

200 PRO 

Noax Lab AS 

24-well Cell Culture Plate 1.9cm
2
 /well Fisher Scientific 

96-well Cell Culture Plate 0.32cm
2
/well Fisher Scientific 

 

2.1.3 Strains/Plasmids 

The strains/plasmids used in this project are listed in Table 2.3. Plasmid maps are 

presented in Appendix B (Page 116-118). 

Table 2.3 Strains and plasmids used in the project.  

For visual convenience, they are marked with different colours by different categories.  

javascript:GoToItemDisplay('2873285','0','&hasPromo=0')
javascript:GoToItemDisplay('2886656','0','&hasPromo=0')
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Bacterial strains Genotype/ Phenotype Source/Reference 

Escherichia coli 

DH5α 

 

Competent cloning strain, heat-shock 

transformed. 

Genotype: LuxS supE44 ΔlacU169, 

(ϕ80 lacZΔM15) hsdR17, recA1, 

endA1, gyrA96, thi-1, relA1 

(Wood, Barrios et 

al. 2006) 

Escherichia coli 

ET125671 

(pUZ8002) 

Methylation deficient (dam
-
, dcm

-
, 

hsdM
-
).  

Mediates conjugative DNA transfer 

from RP4 oriT with helper plasmid 

pUZ8002 (Kan
R
, Cm

R
). 

(MacNeil, Occi et 

al. 1992) 

Streptomyces 

venezuelaee 

ATCC10712 

(ISP5230) 

Wild type, GC-rich, linear 

chromosomes, chloramphenicol and 

jadomycin B producer (in response to 

disparate conditions) (refer to 1.2.2). 

Sergey B. Zotchev 

/Olga N. Sekurova 

(Yang, Han et al. 

1995) 

Nocardiopsis.sp 

MP112-09 
High GC. Colonies are slow growing, 

aerobic, Gram-positive, nonacid-fast, 

coarsely wrinkled to folded, and white 

or pink to red in color.  

(Meyer 1976) 

Streptomyces sp. 

MPS05-B41 
High GC, Gram+, aerobic. The 

threadlike mycelia bear chains of 

spores at maturity (refer to 1.2.2). 

(Britannica 2014) 

S. venezuelae- p201-

jad-D 
Wild type genome integrated with 

p201-jad-D (first crossover).  

The project 

jadR1
-
 mutant of S. 

venezuelae 
jadR1 deleted from wild type genome The project 
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(second crossover).  

jadR1
-
 mutant of S. 

venezuelae-p201-

cml-D 

jadR1
-
 mutant genome integrated with 

p201-cml-D (first crossover) 

The project 

jadR1
-
cml

- 
mutant of 

S. venezuelae 
cml deleted from jadR1

-
 mutant 

genome (second crossover). 

The project 

Wild type S. 

venezuelae-

pSOK808-cmlFp 

Wild type genome integrated with 

pSOK808-cmlF. 

The project 

Wild type S. 

venezuelae-

pSOK808-cmlIp 

Wild type genome integrated with 

pSOK808-cmlI. 

The project 

Wild type S. 

venezuelae-

pSOK808-cmlXp 

Wild type genome integrated with 

pSOK808-cmlX. 

The project 

Wild type S. 

venezuelae-

pSOK808- jadJp 

Wild type genome integrated with 

pSOK808- jadJp. 

The project 

Wild type S. 

venezuelae-

pSOK808 

Wild type genome integrated with 

pSOK808. 

The project 

jadR1
-
cml

- 
mutant of 

S. venezuelae- 

pSOK808-cmlFp 

jadR1
-
cml

- 
mutant genome integrated 

with pSOK808-cmlFp. 

The project 

jadR1
-
cml

- 
mutant of 

S. venezuelae- 

pSOK808-cmlIp 

jadR1
-
cml

- 
mutant genome integrated 

with pSOK808-cmlIp. 

The project 

jadR1
-
cml

- 
mutant of 

S. venezuelae- 

pSOK808-cmlXp 

jadR1
-
cml

- 
mutant genome integrated 

with pSOK808-cmlXp. 

The project 
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jadR1
-
cml

- 
mutant of 

S. venezuelae- 

pSOK808- jadJp 

jadR1
-
cml

- 
mutant genome integrated 

with pSOK808- jadJp. 

The project 

Wild S. venezuelae- 

pSOK808 
Wild S. venezuelae genome integrated 

with pSOK808. 

The project 

jadR1
-
cml

- 
mutant of 

S. venezuelae- 

pSOK808 

jadR1
-
cml

- 
mutant genome integrated 

with pSOK808. 

The project 

jadR1
-
cml

- 
mutant of 

S. venezuelae- 

pSOK804-lacNat 

jadR1
-
cml

- 
mutant genome integrated 

with pSOK804-lacNat. 

The project 

jadR1
-
cml

- 
mutant of 

S. venezuelae- 

pSOK804-NP 

jadR1
-
cml

- 
mutant genome integrated 

with pSOK804-NP. 

The project 

Plasmid Genotype Source 

pSOK 201 Replication initiator protein gene, 

Am
R
, RP4 oriT, ColEI replication 

origin.  

Sergey B. Zotchev 

/Olga N. Sekurova 

pSOK 804 ColEI replication origin, Am
R
, RP4 

oriT, attP, int. 

Sergey B. Zotchev 

/Olga N. Sekurova 

pSOK 806 ColEI replication origin, Am
R
, RP4 

oriT, attP, int, ermE 

Sergey B. Zotchev 

/Olga N. Sekurova 

pSOK 808 ColEI replication origin, Am
R
, RP4 

oriT, attP, int, ermE, gusA. 

Sergey B. Zotchev 

/Olga N. Sekurova 

pSOK201-jad-D Two jadR1 flanks, RP4 oriT, Am
R
 This project 
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gene. 

pSOK201-cml-D Two cml flanks, RP4 oriT, Am
R
 gene, 

hbs’ (truncate globin protein). 

This project 

pSOK808-cmlFp ColEI replication origin, Am
R
, RP4 

oriT, attP, int, gusA, cmlFp. 

This project 

pSOK808-cmlIp ColEI replication origin, Am
R
, RP4 

oriT, attP, int, gusA, cmlIp. 

This project 

pSOK808-cmlXp ColEI replication origin, Am
R
, RP4 

oriT, attP, int, gusA, cmlXp. 

This project 

pSOK808-jadJp ColEI replication origin, Am
R
, RP4 

oriT, attP, int, gusA, jadJp. 

This project 

pSOK804-lacNat 

 

ColEI replication origin, Am
R
, RP4 

oriT, attP, int, a gene cluster of 

MP112-09-cluster 6-Lactococcin972-

like. 

This project 

pSOK806-NP ColEI replication origin, Am
R
, RP4 

oriT, attP, int, a gene cluster of 

MPS05-B41-cluster 28-Lincocin-M18-

like. 

This project 
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2.2 Protocols  

2.2.1 PCR Reaction  

The generalized PCR reaction recipes and programmes are presented in Table 2.3and 

2.4, Table 2.6 respectively. Table 2.5 shows the fragments and templates for each 

assembled plasmid, which are used to specify a particular PCR reaction. Primers are 

listed in Appendix A (Page 114-115). 

Table 2.3 PCR reaction mixture I (based on Expand High Fidelity PCR system) 

Components Amount [µl] 

Buffer (vial 2, 10 × MgCl2) 5  

DMSO 3.5 

BSA (1 mg/ml) 4  

dNTPs (2.5 mM) 1  

Forward and reverse primer (each 10 µM, 

diluted with Buffer EB) 

1 (each) 

Template (100ng) 1  

DNA polymerase (Expand High Fidelity) 0.8 

sd H2O 32.7  

Total: 50 µl. Prepare on ice. 

 

Table 2.4 PCR reaction mixture I I (based on MasterAmp™ Extra-Long PCR 

Kit)  

Premix 9: pDNA template. Premix 8: linear DNA template. DNA polymerase Expand 

High Fidelity or Phusion High-Fidelity was used for amplifying DNA size less than 

7kb. MasterAmp™ Extra-Long DNA Polymerase was used for amplifying DNA size 

longer than 7kb. The mixture was prepared on ice. 

Components Amount [µl] 

sd H2O 16 

MasterAmp™ Extra-Long PCR 2× 

Premix 

20 
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Template 1 

Forward and reverse primer (each 10 

µM, diluted with Buffer EB) 

1+1 

DNA polymerase 1 

Total 40 

 

Table 2.5 Fragments (with size) and templates for assembled pDNA.  

The pSOK201 and pSOK808 were initially provided by researcher Olga Sekurova 

and then were cloned in E.coli DH5α. 

Assembled 

pDNA in the 

project 

Assembled fragment Template 

pSOK201-jad-D 

p201 vector fragment (Am
R
) (3.1kb) pSOK 201 

jadR1-FlankA (2.1kb) and jadR1-

FlankB (2.2kb) 

gDNA of wild type 

Streptomyces 

venezuelaee ATCC 

10712 

pSOK201-cml-D 

p201 vector fragment (Am
R
) (3.1kb) pSOK 201 

cml-FlankA (2.2kb) and cml-FlankB 

(2.3) 

gDNA of wild type 

Streptomyces 

venezuelaee ATCC 

10712 

pSOK808-cmlFp, 

pSOK808-cmlIp, 

pSOK808-cmlXp, 

pSOK808-jadJp 

cmlFp(314bp), cmlIp(233bp), 

cmlXp(233bp), jadJp(331bp). 

gDNA of wild type 

Streptomyces 

venezuelaee ATCC 

10712 

P808 vector fragment (Am
R
) (7.6kb 

(cmlFp), 7.5kb (cmlIp), 7.5kb 

(cmlXp), 7.6kb (jadJp)) 

pSOK808 

pSOK804-lacNat MP112-09-Lac fragment (4.7kb) 

gDNA of  

Nocardiopsis.sp 

MP112-09 
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P804 vector fragment (Am
R
) (5.4kb) pSOK804 

pSOK806-NP 
MP112-09-Lac fragment (4.7kb) 

gDNA of  

Nocardiopsis.sp 

MP112-09 

P804 vector fragment (Am
R
) (5.0kb) pSOK804 

pSOK804-Lin 

plasmid. 

MPS05-B41-Lin (5.8kb) 
gDNA of  Streptomyces 

sp. MPS05-B41 

P804 vector fragment (Am
R
)  (5.4kb) pSOK804 

 

Table 2.6 PCR programmes (apply to PCR reaction mixture I and II).  

The elongation time was set 2 min longer than theoretical time that was calculated 

based on the approximate amplification speed 1kb/min. For example: 6min elongation 

for amplifying 4kb DNA (theoretical elongation is 4min). The fragment sizes are 

available in table 2.6. 

Step Temperature (°C) Time (min) 

1. First denaturation 95 5 

2. Denaturation 95 1 

3. Annealing 56 1 

4. Elongation 68 2 min + theoretical time 

5.Continued elongation 68 7 

6. Repeat 2-4 for 25 cycles   

7. Hold 4 ∞ 

PCR verification of assembled pDNA after restriction enzyme check: the candidates 

passing enzyme digestion were used as templates to amplify the fragments used for 

assembling the same pDNA, then the products were compared with their purified 

counterparts (2.3.1.1) for assembly on gel. This measurement was taken to avoid the 

wrong plasmids resulted from byproducts in assembled fragments, since though the 

fragments were checked before ligation on gel (to decide volume ratio in ligation), the 

misprimed fragments, if not fully eliminated in purification, might be too less to 

observe, consequently, wrong assembled plasmids could be engendered (seen in 

3.1.1.1). Plasmids generated from p-cml-D onward were subjected to both restriction 
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enzyme check and PCR verification (double check), because a wrong p-cml-D 

passing digestion check led to no double mutant generated, and finally was identified 

by PCR verification.  

PCR verification of first crossover and double crossover: the primer pair of FlankA 

forward and FlankB reverse were used, since this primer pair could amplify the 

fragment FlankA+FlankB that characterises the real mutants. Right mutants were 

determined by the right band on gel (jadR1 deletion: 4.3kb; cml deletion: 4.5kb), with 

WT and p-jad-D/p-cml-D as negative and positive control respectively.  

 

2.2.2 Gel Electrophoresis 

Gel electrophoresis is used to separate charged biological macromolecules with 

different sizes, such as nucleic acids and proteins (SDS-PAGE). Negatively charged 

DNAs are separated in gel with electrical field, with smaller fragments moving faster.  

(Slater and Noolandi 1986) In this project, this technique was used to check PCR 

products and restriction enzyme digestion patterns. 

 

Materials: 

 

0.8 % Agarose gel. 1 × TAE-buffer. Casting tray. Gel Doc 2000. Loading dye. DNA 

ruler. Power supply. 

 

Procedures: 

 

1.  The 0.8 % agarose solution was poured into a casting tray (without bubbles) 

with a comb placed to make wells, cooled down for 20 min. 

2. Samples were mixed with loading dye (1 volume of loading dye to 5 volumes 

of purified DNA). Samples and DNA ladder (0.8 μl) were applied to separate 



 

48 

 

wells. Usually, 2-5 μl sample of PCR products was used, depending on the 

DNA concentration. If isolating DNA of a specific size, or analyze digested 

pDNA, all samples were applied. 

3. The power supply was turned on to run gel. For large tray (12×14 cm): 75V, 

270 min (get results on the same day) or 20V, overnight. For small tray (8×8 

cm), 60V, 120min. 

4. DNA bands were visualised with imaging device. Bands with a particular size 

could be cut off under UV light in the imaging device (need to wear goggles). 

(Aaij and Borst 1972) 

2.2.3 PCR Product Purification  

The PCR product needs to be purified for assembly or digestion. The purification was 

conducted according to instruction from QIAquick PCR Purification Kit. 

Materials: 

QIAquick PCR Purification Kit. Microcentrifuge. 

Notes before starting: 

Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume).  

All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a conventional 

table-top microcentrifuge at room temperature.  

Add 1:250 volume pH indicator I to Buffer PB. The yellow color of Buffer PB with  

pH indicator I indicates a pH of ≤7.5. If the purified PCR product is to be used in 

sensitive microarray applications, it may be beneficial to use Buffer PB without the 

addition of pH indicator I. Do not add pH indicator I to buffer aliquots.  
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Procedures: 

1. Five volumes Buffer PBI was added to 1 volume of the PCR reaction and 

mixed. If the color of the mixture was orange or violet, 10 μl 3 M sodium 

acetate, pH 5.0 would be added, and mixed. The color of the mixture would 

turn yellow.  

2. A QIAquick column was placed in a provided 2 ml collection tube or into a 

vacuum manifold (Details on how to set up a vacuum manifold seen in the 

QIAquick Spin Handbook). 

3. To bind DNA, the sample was applied to the QIAquick column and 

centrifuged for 30–60 s or a vacuum was applied to the manifold until all the 

samples had passed through the column. The flow-through was discarded and 

the QIAquick column was placed back in the same tube.  

4.  To wash, 0.75 ml Buffer PE was added to the QIAquick column, centrifuged 

for 30–60s or vacuum applied. The flow-through was discarded and the 

QIAquick column was placed back in the same tube.  

5. The QIAquick column was centrifuged once more in the provided 2 ml 

collection tube for 1 min to remove residual wash buffer.  

6.  Each QIAquick column was placed in a clean 1.5 ml microcentrifuge tube.  

7. To elute DNA, 50 μl Buffer EB (10 mM Tris·Cl, pH 8.5) or water (pH 7.0–

8.5) was added to the center of the QIAquick membrane, centrifuged for 1 

min. For increased DNA concentration, 30 μl elution buffer was added to the 

center of the QIAquick membrane, after standing for 1 min, the column was 

centrifuged.  

8. If the purified DNA was to be analyzed on a gel, 1 volume of Loading Dye 

was added to 5 volumes of purified DNA. The solution was mixed by 
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pipetting up and down before loaded on the gel.  

 

2.2.4 Purify PCR Products Exercised from Gel                

If byproducts are amplified, the total PCR products should be subjected to gel 

electrophoresis so as to isolate the right products by excising the right band. If the 

template in PCR reaction is pDNA, the product should be isolated from contaminating 

template in the same way. The excised PCR product from gel was purified according 

to instruction from QIAquick® Gel Extraction Kit. 

Materials: 

QIAquick® Gel Extraction Kit. Microcentrifuge. 

Notes before starting:  

The yellow color of Buffer QG indicates a pH ≤7.5.  

Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume).  

Isopropanol (100%) and a heating block or water bath at 50°C are required.  

All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a conventional 

table-top microcentrifuge.  

 

 Procedures:  

1. The DNA fragment was excised from gel with a clean, sharp scalpel.  

2. After weighed the gel slice in a colorless tube, 3 volumes Buffer QG was 

added to 1 volume gel (100 mg ~ 100 μl). For >2% agarose gels, 6 volumes 

Buffer QG was added. 

3.  The tube was incubated at 50°C for 10 min (or until the gel slice was 

completely dissolved), vortexed every 2–3 min to help dissolve gel.  
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4. After the gel slice was dissolved completely, check that the color of the 

mixture should be checked whether it was yellow (similar to Buffer QG 

without dissolved agarose). If the color of the mixture was orange or violet, 10 

μl 3 M sodium acetate, pH 5.0 was added and mixed. The color of the mixture 

would turn yellow.  

5. One gel volume of isopropanol was added to the sample, mixed.  

6.  A QIAquick spin column was placed in a provided 2 ml collection tube or 

into a vacuum manifold.  

7. To bind DNA, the sample was applied to the QIAquick column and 

centrifuged for 1 min or the manifold was applied with vacuum until all the 

samples had passed through the column. The flow-through was discarded and 

the QIAquick column was placed back into the same tube. For sample 

volumes of >800 μl, the steps were repeated. 

8.  If the DNA would subsequently be used for sequencing, in vitro transcription, 

or microinjection, 0.5 ml Buffer QG was added to the QIAquick column and 

centrifuged for 1 min or vacuum applied. The flow-through was discarded and 

the QIAquick column was placed back into the same tube.  

9.  To wash, 0.75 ml Buffer PE was added to QIAquick column and centrifuged 

for 1 min or vacuum applied. The flow-through was discarded and the 

QIAquick column was placed back into the same tube.  

10. The QIAquick column was centrifuged once more in the provided 2 ml 

collection tube for 1 min at 13,000 rpm to remove residual wash buffer.  

11.  The QIAquick column was placed into a clean 1.5 ml microcentrifuge tube.  

12.  To elute DNA, 50 μl Buffer EB (10 mM Tris·Cl, pH 8.5) or water was added 

to the center of the QIAquick membrane and centrifuged for 1 min. For 
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increased DNA concentration, 30 μl Buffer EB was added to the center of the 

QIAquick membrane, after standing for 1 min, the column was centrifuged for 

1 min. After the addition of Buffer EB to the QIAquick membrane, the yield 

of purified DNA could be increased by increasing the incubation time to up to 

4 min.  

13.  If the purified DNA was to be analyzed on a gel, 1 volume of Loading Dye 

would be added to 5 volumes of purified DNA. The solution was mixed by 

pipetting up and down before loaded on the gel.  

2.2.5 DpnI digestion 

Vector DNAs amplified from pDNAs that are purified from a dam
+
 strain shall be 

subjected to DpnI digestion, because the template pDNAs are contamination in 

Gibson Assembly mixture. DpnI cleaves only when its recognition site is methylated, 

thus it only cleaves pDNA from a dam+ strain, leaving the vector DNAs intact. 

(BioLabs 2014) Specifically, the total vector DNA product was applied on gel and 

excised from contaminating template band, after purified, it was subjected to DpnI 

digestion (37 °C, 3 h) to eliminate the remaining template.  

Table 2.7 DpnI digestion.  

The mixture was incubated at 37 °C, 3h. DpnI was inactivated at 80 °C, 20 min, then 

the mixture was held at 4 °C. 

Components  Amount 

Vector DNA fragment  29.5 µl 

CutSmart (or NE Bufer 4) 3.5 µl 

DpnI  2 µl 
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2.2.6 Gibson Assembly 

Gibson Assembly was used to assemble plasmids in this project, due to its novelty in 

assembling DNA fragments in a single isothermal step (seen in 1.4.4.1). (Gibson, 

Young et al. 2009) The recipes used in this project are listed below. 

Table 2.8 Gibson 5× isothermal reaction buffer 

Ingredients Amount 

Tris-HCl (1 M)  3 ml 

MgCl2 (2 M)  150 μl 

dGTP, dATP, dCTP, dTTP (each100 mM) Each 60 μl 

DTT (1 M)  300 μl 

Polyethyleneglycol (PEG-8000)  1.5 g 

NAD (100 mM)  300 μl 

 

Table 2.9 Gibson Assembly Master Mix.  

The 0.64 µl of T5 exonuclease was 10 × diluted (9 µl 1×T5 exonuclease buffer + 1 µl 

T5 exonuclease) so as to avoid variance from adding 0.064 µl (too small volume) 

1×T5 exonuclease. The 1×T5 exonuclease buffer was made by adding 1 µl 10×T5 

exonuclease buffer to 9 µl sd H2O. 

Ingredients Amount 

5× isothermal reaction buffer 32 µl 

Phusion DNA polymerase 2 µl 

Taq DNA ligase 16 µl 

T5 exonuclease 0.64 µl 

sd H2O 69.36 µl 

Total: 120 µl, divided into aliquots of 15 µl, stored at -20 °C. 

 

Table 2.10 Gibson Assembly Reaction Mix  

p-jad-D/p-cml-D gusA plasmid 

One Master Mix aliquot (15 µl) + 5 µl 

purified DNA fragments based amount 

One Master Mix aliquot (15 µl) + 5 µl 

purified DNA fragments based amount 
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ratio of p201 vector fragment: flankA: 

flankB = 1: 2: 2, estimated from bands 

density on gel image (e.g. if three bands 

densities are same, 1µl vector, 2µl flank 

A, 2µl flank B). 

ratio of p808 vector fragment: promoter 

fragment = 2: 3, estimated from bands 

density on gel image (e.g. if three bands 

densities are same, 1µl vector, 2µl flank 

A, 2µl flank B). 

Control: One aliquot (15 µl) + 1µl 

vector + 4 µl sd H2O. 

Control: One aliquot (15 µl) + 2µl 

vector + 3 µl sd H2O. 

Total: 20 µl. 50 °C, 1h. 

 

2.2.7 Prepare Competent E. coli DH5α and E. coli ET12567 

E. coli DH5α is competent for intracellular plasmid cloning, and E. coli ET12567 is 

competent for conjugative DNA transfer into S. venezuelae (seen in 1.4.4.2). Both 

competent cells are highly capable of accepting plasmids. Their stocks need to be 

prepared for frequent use.  

Materials: 

Glycerol stock of E. coli cells from the -80 °C freezer: E. coli DH5α, E. coli ET12567. 

LB medium. TSS-buffer. Ice. Cold centrifuge 

 

Procedures: 

1. E. coli DH5α or E. coli ET12567 cells from a glycerol stock were inoculated 

in LB 2 ml medium. The E. coli ET12567 cells were incubated with Cm (30 

mg/ml) and Kan (40 mg/ml) to select the helper plasmid. Cultures were 

incubated at 37 °C, 225 rpm overnight. 

2.  Overnight culture 0.4 ml was inoculated in 40 ml LB medium, incubated for 

approximately 2 h at 37 °C, 225 rpm.  For E. coli ET12567, Cm (30 mg/ml) 
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and Kan (40 mg/ml) were added. Before 2h, sample was taken to measure 

OD600 till OD600 reached between 0.4– 0.6. 

3.  Cell suspension was spun down at 4500 rpm, 4 °C, 5 min, supernatant 

discarded, and the pellet was placed on ice. Cells were re-suspended in 4 ml 

TSS- buffer (pre-cooled to 4°C). 

4.  The cell suspension was kept on ice for 1 hour, then aliquots of 100 µl/sterile 

Eppendorf tube were made (conducted on ice). Cells were ready for 

transformation in 1 hour. Aliquots were stored in -80 °C. (Inoue, Nojima et al. 

1990) 

2.2.8 Transformation of E.coli  

In this project, E.coli DH5α and E. coli ET12567 (pUZ8002) were transformed with 

heat shock for purpose of cloning assembled pDNA and transconjugation respectively.  

Materials:  

Competent E.coli cells. Microcentrifuge. LB medium. LA plate with antibiotic(s). 

Inoculation loop. 

Note: Before transformation, cells were always carried on ice. 

Procedures: 

1. Competent E.coli cells (stocks) were taken from –80 °C freezer, and melt on 

ice (5 min). For transforming a DNA construct, 50 µl of competent cells were 

used. For transforming a ligation, 100 µl of competent cells were used. The 

cell amount was decided by how competent they were.  

2. Five µl ligation mixture was added into E.coli cells, mixed and incubated on 

ice for 15 min. For transforming a DNA construct, 1-2 µl (50 ng) circularised 

DNA was used. 
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3. Heat shock: ligation mixture/circularized DNA and E.coli (in tubes) were put 

into water bath at 42°C for 45 seconds.  

4. Tubes were kept on ice to reduce damage to the E.coli cells, 5-10 min. 

5. The LB medium 800 µl was added. 

6. Tubes were incubated for 1 hour at 37°C. 

7. The resulting culture 100 µl was spread on LA plates (with appropriate 

antibiotic added – in this project Am 100 µg/ml). The rest of the culture was 

spun down at 2 min 13,000 rpm. The supernatant was discarded and cells were 

re-suspended in residual liquid. All of the suspension was spread on a second 

LA plate (same as the first one). Both plates were incubated at 37°C overnight. 

Same procedure was applied with controls, in which ligation 

mixture/circularized DNA was replaced with the same volume of sd water. 

8.  Surviving colonies were picked up on the following day. (Inoue, Nojima et al. 

1990) 

2.2.9 Isolate pDNA from E. coli 

After cloned in E.coli, the pDNA needs to be isolated. In this project, the pDNA 

isolation from E.coli was performed according to instruction of Wizard
®
 Plus SV 

Minipreps DNA Purification System of Promega. 

Materials: Wizard
®
 Plus SV Minipreps DNA Purification kit from Promega. 

Microcentrifuge. Sterile Eppendorf tubes 1.5 ml. 

 

Note: All centrifugation steps were carried out at 17,900 x g (13,000 rpm) in a 

conventional table-top microcentrifuge.  

 

Procedures 
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Production of Cleared Lysate 

 

1. Overnight culture was transferred into sterile Eppendorf tubes, 1.5 ml/tube, 

pelleted for 5 minutes. 

2. Pellet was thoroughly resuspended with 250µl of Cell Resuspension Solution. 

In order to protect the pDNA integrity, the suspension should not be vortexed 

after step 2. 

3. Cell Lysis Solution 250µl was added to each sample, inverted 4 times to mix, 

and incubated 5 minutes at room temperature. 

4. Neutralization Solution 350µl was added, inverted 4 times to mix. 

5.  The lysate solution was centrifuged at top speed for 10 minutes at room 

temperature.  

 

Binding of Plasmid DNA 

 

6. Spin Column was inserted into Collection Tube. 

7. Cleared lysate was decanted into Spin Column. 

8. Spin Column was centrifuged at top speed for 1 minute at room temperature. 

Flowthrough was discarded, and Column was reinserted into Collection Tube.  

 

Washing 

 

9. Wash Solution (ethanol added) 750µl was added, centrifuged at top speed for 

1 minute. Flowthrough was discarded, and Column was reinserted into 

Collection Tube. 

10. Step 10 was repeated with 250µl of Wash Solution. 
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11. Collection Tube with Column was centrifuged at top speed for 2 minutes at 

room temperature. 

 

Elution 

 

12. Spin Column was transferred to a sterile 1.5ml microcentrifuge tube, without 

any of the Column Wash Solution in the Spin Column. If some Column Wash 

Solution was left in Spin Column, the Column would be centrifuged again for 

1 minute at top speed, then transferred to a new, sterile 1.5ml microcentrifuge 

tube. 

13. Nuclease-Free Water 100µl was added to the Spin Column, centrifuged at top 

speed for 1 minute at room temperature. 

14. Column was discarded, and plasmid was stored at –20°C or below. 

 

2.2.10 Digest pDNA with Restriction Enzymes 

After isolated from E. coli, the pDNAs were subjected to restriction enzyme digestion 

for checking the rightness. The digestion mixture was separated by gel 

electrophoresis. The right pDNA was determined by comparing the resulted band 

pattern with DNA ladder. The digestion recipe is illustrated below.  

Table 2.11 Digestion recipe.  

The mixture was incubated 2 h. Incubation temperature was enzyme-specific and 

could be found in ‘Performance Chart for NEB Restriction Enzymes (BioLabs
®
). If 

inactivation was required, the mixture could be incubated 20 min at the given 

temperature from manufacturer. CutSmart could be replaced with NEBuffers 

specified by the manufacturer. (BioLabs 2014) 

Components Amount 

sd H2O 13.5 µl 
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CutSmart (NEBuffer) 2 µl 

BSA 0.5 µl 

pDNA 3 µl 

restriction enzyme 1 µl 

Total  20 µl 

 

Table 2.12 Digestion enzyme, temperature and time for each plasmid. 

Plasmid 
Restriction 

enzyme 

Incubation 

temperature [°C] 

Incubation time 

[h] 

pSOK201-jad-D SacI 37 2 

pSOK201-cml-D AgeI 37 2 

pSOK808-cmlFp BamHI 37 2 

pSOK808-cmlIp BamHI 37 2 

pSOK808-cmlXp BamHI 37 2 

pSOK808-jadJp KasI 37 3 

pSOK804-lacNat AgeI 37 2 

pSOK806-NP NotI 37 2 

pSOK804-Lin NotI 37 2 

 

2.2.11 Transfer Recombinant pDNA to S. venezuelae 

The E. coli ET12567 (pUZ8002) (ET) strain is competent in transferring pDNA to S. 

venezuelae (seen in 1.4.4.2). It is a non-methylating host (dam
-
, dcm

-
) carrying 
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pUZ8002 helper plasmid that provides transfer functions from RP4 oriT. The strain is 

resistant to both Cm (30 g/ml) and Kan (40 g/ml). (Flett, Mersinias et al. 1997) 

ET cells was transformed with the verified recombinant pDNA (seen in 2.2.8), and 

spread on LA plate 1 (100 µg/ml Am), incubated at 37 °C, overnight (in this project 

all the assembled plasmids possessed the Am
R
 marker). The well-growing colonies 

were inoculated on to LA plate 2 (100 µg/ml Am, 25 µg/ml Cm, 20 µg/ml Kan), 

incubated at 37 °C, overnight. The difference between transconjugation of p-jad-d/p-

cml-D and gusA plasmids was that the former plasmids were integrated to 

chromosome via homologous recombination (finally verified by PCR) while the latter 

via site specific integration (finally verified by Am
R
) (refer to 1.4.4.2, 1.4.4.3 and 

Appendix B, Page 116-118).  

Materials: 

 E. coli ET12567 (pUZ8002) cells transformed with specific constructs on a fresh LA 

plate with Am, Cm and Kan. ISP4 plate with S. venezuelae ATCC 10712 

spores/glycerol stock of S. venezuelae ATCC 10712 spores. ISP4 plates + MgCl2 

(0.01M, added after autoclave). LB medium. 2×YT medium. Sterile syringes (5ml) 

with cotton wool filter. Inoculation loop. 

 

Procedures: 

1. Spore suspension of S. venezuelae was collected in sd water by washing off 

spores from ISP4 plates with 5.0 ml sd water and filtered through the sterile 

cotton wool in syringe to remove mycelia. 

2. Filtered spore suspension/frozen spore suspension 50 µl was added to 500 µl 

2×YT medium, mixed and incubated for 5 min at 50 °C (germination 
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induced). The heat-shocked spore suspension was cooled down at room 

temperature (15-20 min). 

3. ET cell suspension was prepared by sampling cells from LA plate 2 and 

suspending them in 500 µl 2×YT medium. 

4. Heat-shocked spore suspension (550 µl) was mixed with 100 µl ET cell 

suspension by pipetting.  

5. The mixture was spun down at a table centrifuge for 1 min, and 550 µl of the 

supernatant was removed. The pellet was re-suspended in the residual medium 

(100 µl) and spread on ISP4 + MgCl2 (MgCl2 was used to increase the 

conjugation efficiency). The pletes were incubated at room temperature on the 

laboratory bench for 14-23 h until a thin mycelium layer was present (less 

time for fresh spores than glycerol stock). 

6. Antibiotic solution was made for selecting transconjugants by mixing nalidixic 

acid (Nal) and apramycin (Am) in sterile distilled water (add nalidixic acid 

first to avoid precipitation). The medium volume per plate was assumed to be 

30 ml, thus for each plate 30 µl Nal and 15 µl Am were added in 1ml sterile 

distilled water to create final concentration of Nal 30 µg/ml and Am 50 µg/ml 

in the medium. The total antibiotic solution volume was calculated according 

to this assumption. Nal was used to select against contaminating E. coli, since 

Streptomycetes were naturally resistant to Nal, while E. coli was sensitive to it. 

The Am was used to select transconjugants, since the transferred plasmid was 

Am
R
. 

7. Antibiotic mixture was spread by 1 ml per ISP4 + MgCl2 plate with 

conjugation mix (first selection). After drying out, the plates were incubated 
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at 30°C for further growth. The control was performed with untransformed 

ET. 

8. After 3-4 days incubation, the surviving colonies were inoculated onto ISP4 

plates with Nal (30 µg/ml) and Am (50 µg/ml) (second selection), and 

incubated at 30 °C. Eventually, the PCR verification was exploited to 

determine the genuine transconjugants (third selection). (Flett, Mersinias et 

al. 1997)  

 

2.2.12 Isolate gDNA from S. venezuelae  

The gDNA of wild S. venezuelae were required for amplify jad/cml flanking 

fragments and jad/cml promoters while gDNAs of S. venezuelae first and second 

crossover candidates were required to verify the real mutants. The gDNA isolation of 

S. venezuelae was performed according to instruction of QIAGEN DNeasy
®
 Blood & 

Tissue kit. The following protocol was optimized for actinomtcetes. 

Materials: 

QIAGEN DNeasy® Blood & Tissue kit. Table-top microcentrifuge. Water bath. 

Heating block. Enzymatic lysis buffer. TSB medium. 

 

Procedures: 

1. Overnight culture 1 ml plus 500 µl sdH2O (8,000 rpm, 3 min) was spun down 

in one 1.5 ml Eppendorf tube. 

2. Pellet was re-suspended in 180 µl enzymatic lysis buffer (prepared 

immediately before use) containing 20 mg/ml lysozyme, incubated at 37 °C 

for 15 min and vortexed every 5 min. 



 

63 

 

3. Proteinase K 25 µl (kit) was added, mixed by pipetting, then 200 µl buffer AL 

(kit) was added, incubated at 55 °C for 30 min. (proteinase K should not be 

added directly to Buffer AL.) 

4. EtOH 96% 200 µl was added and mixed by pipetting. Solution was applied on 

the DNeasy Mini spin column (kit) and spun at 13,000 rpm for 5 min. (It was 

important that the sample and the ethanol were mixed thoroughly to yield a 

homogeneous solution. A white precipitate was formed on addition of ethanol. 

It was essential to apply all of the precipitate to the DNeasy Mini spin column. 

The procedure was not interfered with by the precipitate.) 

5. The column was washed with 500 µl buffer AW1 (8,000 rpm, 1 min). 

6. The column was washed with 500 µl buffer AW2 (13,000 rpm, 3 min). (It was 

important to dry the membrane of the column, since subsequent reactions 

might be interfered with by residual ethanol. The centrifugation step was taken 

to ensure that no residual ethanol would be carried over during the following 

elution) 

7. Column was placed in a sterile 1.5ml Eppendorf tube. DNA was eluted with 

125 µl buffer AE (preheated to 50 °C), incubated at room temperature, 15 min. 

8. DNA was spun down at max speed (14,000 rpm) for 1 min.  

9. The gDNA concentration was measured with NanoDrop. Concentration 

usually ranged from 10-100 ng/µl. 

2.2.13 Make Glycerol Stock 

Bacterial strains that might be used in later works should be stored at -80 °C in a 

glycerol solution. The E. coli ET12567 (pUZ8002) transformed with assembled 

plasmids and the first and second crossover mutants of S. venezuelae were made into 

glycerol stocks at -80 °C. 
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Materials: 

Overnight culture of E. coli/ISP4 plate with S. venezuelae. Sterile 20 % Glycerol 

solution. Sterile cryo vials. Sterile syringes (5ml) with cotton wool filter. 

Microcentrifuge. 

Protocol for E. coli glycerol stock: 

1. Overnight culture 1.5 ml was transferred to an sterile Eppendorf tube. 

2. The culture was spun down at 13 000 rpm, 4 min, then the supernatant was 

discarded. 

3. The pellets were re-suspended in 20 % Glycerol (1.5 ml) and cell suspension 

was transferred to a cryo vial, stored at -80 °C. (Lab of Charles R. Sanders 2011) 

Protocol for S. venezuelae glycerol stock: 

1. The sterile glycerol solution (20 %, 5 ml) was applied onto an ISP4 plate with 

fresh S. venezuelae spores and the spores were detached with a pipette tip. 

2. The spore suspension was collected and filtered through a sterile cotton wool 

filter, which was used to remove the mycelia. The filtrate was transferred to a 

cryo vial, stored at -80 °C. (Lab of Charles R. Sanders 2011) 

2.2.14 Replica Plating 

In this project, replica plating was used for selecting jadR1
- 
and jadR1

- 
cml

- 
mutants, 

since this technique is a favorable technique for selecting mutants (seen in 1.4.4.4). 

Materials: 

Velvets. Wood block. Sterile distilled water. Microcentrifuge tubes. Pure ISP4 plates. 

ISP4 plates with Am (50 µl/ml). 

Procedures: 

1. Spore suspension was made by collecting spores from ISP4 plates in sd H2O. 
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2. The 10-fold series dilution from 10
-1

 to 10
-6

 (or 10
-7

) was prepared: 200 µl 

spore suspension was added to 1800 µl sd H2O (total 2ml) and mixed well. 

(The dilution was used to ensure 100-200 discrete colonies per plate.) 

3. The 10
-6

 (or 10
-7

) dilution 100 µl was evenly distributed on each of 20 pure 

ISP4 plates, incubated at 30 °C for 2-3 days. 

4.  When small colonies were present (not connected with one another), sterile 

velvets and wood block were used to print colonies from the 20 pure ISP4 

plates onto another 20 ISP4 plates with Am 50 µl/ml, respectively, incubated 

at 30°C for one day. (One piece of velvet was used for one plate. The plate 

should not be rotated when printing and markers were left on each plate for 

later comparison.) 

5. Colonies on each pure ISP4 plate were compared with ISP4 plates with Am 

according to the markers. Colonies present on the former plate but absent on 

the later plate were candidate mutants, then would be subjected to PCR 

verification. (Lederberg and Lederberg 1952) 

 

2.2.15 GUS Assay 

In this project, GUS assay was used to compare promoter efficiencies through gusA, 

because this method is relatively cheap, simple and sensitive compared with other 

methods such as GFP, luciferase, etc. (seen in 1.4.4.5). The raw data in this project are 

listed in Appendix D (Page 122-129). 

Materials: 

24-well plates (Corning
®
 Costar

®
). β-Glucuronidase (GUS). Lysozyme. Heating block. 

Spectrophotometer. Stopwatch. 

Procedures: 

Prepare Strain Cultures 

Twelve strains were cultured: ten transconjugants from 3.1.4.2, one wild S. 

venezuelae and one double deletion as negative controls.   



 

66 

 

1. For each strain, 10 µl spore suspension was added to 2 ml liquid TSB in a 13 

ml sterile plastic tube, incubated  at 30 C, 225 rpm overnight. 

2. For each strain, three biological replicates were prepared by inoculating 3×200 

µl overnight culture into 3×125 ml flasks (10 ml liquid MYM (or GI) /flask) 

respectively, incubated at 30 C for 24 hours without ethanol shock. The steps 

were repeated with 600 µl ethanol added to each flask after 10 h incubation. 

3. For each strain (three flasks), 4×1 ml mycelia were harvested in 4 

microcentrifuge tubes per flask (12×1 ml mycelia/strain). Three tubes could be 

used in three independent tests if the test needed to be repeated while the 

fourth tube (not centrifuged as bellow) was used for measuring Cm production. 

Total harvest: 6 (strains in WT or DD) × 3 (replicates/strain) × 4 

(harvest/replicate) × 2 (ethanol-/+) × 2 (WT and DD) = 288 tubes. (Figure 

2.1A) 

4. The mycelia were centrifuged at 13000 rpm, 3 min, supernatant removed, and 

cells re-suspended in 1 ml distilled water by vortexing.  

5. The suspension was re-centrifuged at 13000 rpm, 3 min and supernatant was 

removed. Pellets could be stored at -80 C or used in GUS assays immediately.  
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Figure 2.1 A: Culture preparation for each strain. Three biological replicates were 

prepared by inoculating 3×200 µl overnight culture into 3×125 ml flasks (10 ml liquid 

MYM (or GI) /flask) respectively, incubated at 30 C for 24 hours without ethanol 

shock. Mycelia 4×1 ml were harvested in 4 microcentrifuge tubes per flask. The steps 

were repeated with 600 µl ethanol added to each flask after 10 h incubation. B: 

Layout of GUS assay in 24-well plate. WT: wild type S. venezuelae. DD: jadR1
-
cml

-
 

double deletion mutant. F, I, X, J, 8 represent WT/DD integrated with pSOK808-

cmlF, pSOK808-cmlIp, pSOK808-cmlXp, pSOK808-jadJp, pSOK 808 respectively. 

Each strain had three replicates. 

GUS Test 

6. Three replicates (pellet from 1 ml culture) without ethanol shock and three 

replicates with ethanol shock were used for each strain. Pellet from 1 ml 

culture was resuspended in 1 ml lysis buffer containing 4 mg/ml lysozyme 

(prepared just before the experiment). 

7. The suspension was incubated for 30 min at 37 C, gently flipped every 10 

min, then centrifuged for 5 min at 13000 rpm. 

8. Lysate 0.5 ml was mixed with 0.5 ml Z-buffer in 24-well plates (Figure 2.1B). 

But if reaction proceeded too quickly, i.e. if promoter was particularly strong, 

0.1 ml lysate would be used with 0.9 ml Z-buffer. 
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9. The 24-well plate with mixtures was incubated at 37 C for 5 min. 

10. The reaction was initiated by adding 0.2 ml 4 mg/ml p-nitrophenyl-β-D-

glucuronide (PNDG) (in Z-buffer), incubated at 37C, and stopwatch was 

started (PNDG is unstable so make fresh solution before use). 

11. When the first yellow colour was observed in a certain reaction mixture, the 

optical density (OD) was measured at both 420nm and 550nm. Ideally the 

reading should be 0.6-0.9. The OD550 was used to correct light scattering, but 

this reading should be low, as the lysate was spun to remove cell debris. 

12. The measuring was repeated at different times, with the time recorded, 

according to the yellow colour development. This was critical to avoid 

measuring data after enzymatic reaction plateau, since the Miller units would 

be smaller than real value if data were measured after plateau according 

formula in step 14. After the intense yellow colour was developed, the reaction 

could be stopped by adding 0.5 ml of a 1M Na2CO3 solution (The reaction 

could take 1-4 hours, but if yellow colour was not developed during this time, 

samples could be wrapped in aluminium foil and left overnight. In this case, a 

control of 1ml Z-buffer with 5ul 0.2M p-nitrophenyl-β-D-glucuronide but no 

cell extract was required). 

13. The remaining lysate was used to calculate amount of total protein released 

from mycelium in a Bradford assay. 

14. Miller units of glucuronidase was calculated: [1000 x (OD420 – 1.75 x OD550)] 

/[time of reaction x volume of culture assayed] and expressed as Miller units 

per mg of total protein. (Prof Mervyn Bibb, John Innes Centre, UK) 

 

2.2.16 Bradford assay 

The Bradford method has been favored in quantifying protein in many research areas, 

because this approach is faster, simpler, more sensitive and cheaper than most other 

methods (seen in 1.4.4.6). This approach generates relative measurements with 
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spectrophotometer. In this project, the most commonly used standard BSA was used. 

The raw data are listed in Appendix D (Page 122-129). 

Materials: 

96-well plate (Corning
®
 Costar

®
). BSA 1 mg/ml. Spectrophotometer. Bradford 

Reagent (BioRad). sd water. 

Procedures: 

1. Bradford Reagent (BioRad) was diluted by 5x with sd water. 

2.  The spectrophotometer machine was turned on to allow bulb warm up 

(approx. 10 min before use). 

3. Standards were prepared by diluting BSA 1 mg/ml into BSA 50 µg/ml, 100 

µg/ml, 150 µg/ml, 200 µg/ml, 250 µg/ml, 300 µg/ml. 

4. The samples (remaining lysate) was diluted (e.g. by 20×) with sd water such 

that sample OD values would be positioned in linear range (for most 

spectrophotometers is 0.2 - 0.8 O.D. units) of standards. (If the concentration 

of protein could not be estimated, make several dilutions.) 

5. Standards were placed in triplicate (10 ul per well) from in column 2 in 96-

well plate. Column 1 was left as blank. 

6. Samples were placed in triplicate (10 ul per well).  

7. Diluted Bradford reagent 200 µl was added to each well, left standing 5 min. 

8. OD was measured at 595 nm.  

9. The results were used to graph the standard curve (Axes are commonly labeled 

as y=A, 600nm and x=mg/mL). The curve and data from Bradford were used 

to calculate lysate protein concentrations with Microsoft Excel. (lab 2014 ) 

 

 

 



 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

71 

 

3. Results  
 

In this chapter, the overall strategies are displayed first so as to create understanding 

convenience for results in the following section: generate jadR1
-
 mutant, generate 

jadR1
-
cml

- 
mutant, cloning gene clusters in jadR1

-
cml

- 
mutant, test promoters with 

GUS, replace the native promoter in gene clusters, which are presented in order of the 

procedures. 

 

Figure 3.1 Schematic overview of the procedures. The project relies on the 

reciprocal regulation of Jd and Cm biosynthesis (seen in 1.4) and can be divided into 



 

72 

 

five steps. Part 3 and 5, 4 and 6 are presented as one part respectively below, and they 

can be conducted in parallel. 

3.1 Overall strategies 

The project consists of five steps. Figure 3.1 is the sketch representation of the 

general strategies. 

 

3.1.1 Delete jadR1 from the S. venezuelaee Chromosome 

Using Suicide Vector and Double-crossover 

Traditionally, gene deletion could be carried out by double-crossover (homologous 

recombination) at one step. However, this and other methods often introduce a 

selectable marker into the genome, (Kieser 2000) which engenders some 

disadvantages (seen in 1.4.4.3). (Siegl and Luzhetskyy 2012) In this project, to avoid 

the drawbacks, the double-crossover was carried out in two steps, no selectable 

marker introduced. The deletion plasmid p-jad-D was made and integrated to S. 

venezuelae chromosome thorough first crossover, then the jadR1
-
 mutant was 

generated by second crossover (double crossover). 

3.1.1.1 Assemble jadR1 Deletion Plasmid 

PCR amplification 

The web-based software tool j5 (Hillson, Rosengarten et al. 2011) was used to design 

primers (seen in Appendix A, Page 116-118). Three DNA fragments for constructing 

jadR1 deletion plasmid (p-jad-D) were amplified by PCR (seen in 2.2.1): the p201 

vector fragment (Am
R
), jadR1-FlankA and jadR1-FlankB. 

Digestion and purification 

The PCR products were visualized by gel electrophoresis to check byproducts (seen in 

2.2.2), if byproducts of a certain fragment were detected, then the total amount of this 

fragment would be applied on gel, excised from byproducts and purified (seen in 
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2.2.4). The p201 vector product was subjected to DpnI digestion (37 °C, 3 h) to 

eliminate the contaminating template, because DpnI only cleaves pDNA from a dam+ 

strain, leaving the vector fragment intact (seen in 2.2.5). (BioLabs 2014) The 

digestion mixture and the two flanking fragments were purified (seen in 2.2.3). 

Gibson assembly 

The three purified fragments were assembled through Gibson Assembly (seen in 

2.2.6).  

3.1.1.2 Clone and Verify p201-jad-D  

Transform E.coli DH5α with p201-jad-D 

The E.coli DH5α competent cells were prepared as 2.2.7. The E.coli DH5α (stock) 

was transformed with Gibson Assembly mixture, including control (transformation 

with control assembly mixture) and spread on LA plate (100 µg/ml Am) to select 

right transformants (seen in 2.2.8). 

Verify p201-jad-D 

The survival colonies were picked up individually into 2 ml LB (100 µg/ml Am), 

incubated at 37 °C, overnight. pDNAs were individually isolated from the overnight 

cultures and digested with SacI, 37 °C 2h (seen in 2.2.10). The digestion patterns 

were visualised through gel electrophoresis to find the right p-jad-D displaying right 

pattern (seen in 2.2.2). 

3.1.1.3 Transfer p-jad-D from E. coli ET12567 (pUZ8002) to S. 

venezuelae 

The transconjugation of S. venezuelae through E. coli ET12567 (pUZ8002) is proved 

as an efficient way, due to the int, attp, RP4 oriT, attB system between helper plasmid 

and host strain. (Bierman, Logan et al. 1992) Thereofore, it was exploited in this 

project. 

Transform E. coli ET12567 (pUZ8002) (ET) with p-jad-D 
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The ET competent cells were prepared as 2.2.7. ET cells was transformed with the 

right p-jad-D, and spread on LA plate 1 (100 µg/ml Am), incubated at 37 °C, 

overnight (seen in 2.2.8). The well-rowing colonies were inoculated on to LA plate 2 

(100 µg/ml Am, 25 µg/ml Cm, 20 µg/ml Kan), incubated at 37 °C, overnight. The 

glycerol stock was made for ET on LA plate 2 (seen in 2.2.13). 

 

Transfer p-jad-D to S. venezuelae 

The transconjugation was made between ET from LA plate 2 and S. venezuelae (seen 

in 2.2.11). After 3-4 days incubation, p-jad-D was expected to be integrated into 

chromosome through homologous recombination (first crossover) due to lack of int, 

attP (seen in Appendix B, Page 113-115). The surviving colonies were inoculated 

onto ISP4 plate with Nal (30 l/ml) and Am (50 l/ml), incubated at 30C for two 

days. The surviving colonies were inoculate into 2 ml TSB (Am 50 l/ml), with WT 

as control, incubated at 30C overnight. Genome DNAs of all overnight cultures were 

isolated and DNA concentrations were measured with NanoDrop so as to add the 

right amount of templates in PCR reaction later. PCR verification was made to 

identify the right transconjugants (with 4.3kb band) (seen in 2.2.1). The glycerol stock 

of right transconjugants was made (seen in 2.2.13). 

3.1.1.4 Generate jadR1
-
 Mutant 

Three Rounds of Sporulation 

The right transconjugant was inoculated onto an ISP4 plate, incubated at 30C for 

four days, which was repeated for another two times by inoculating spores from the 

former plate. The first two rounds could be replaced in the following way: 0.5 ml 

overnight TSB culture of right transconjugants was inoculated into 10 ml TSB in a 

125ml flask, incubated at 30C overnight, which was repeated once by inoculating 0.5 

ml overnight culture from the former flask. Then 100 µl liquid culture was inoculated 

onto an ISP4 plate for making glycerol stock (seen in 2.2.13).  

After the three-round sporulation, the second crossover was expected to have occurred 

in the transconjugants chromosome through homologous recombination, yielding 

double mutant or wild S. venezuelae (refer to 1.4.4.3) 
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Replica Plating 

This technique was employed to select the candidates of double crossover mutant 

(jadR1
-
) as described in 2.2.14. 

Verify jadR1
-
 Mutant 

The gDNAs of jadR1
-
 candidates was isolated, and PCR verification was made to 

identify the right mutants (seen in 2.2.1). The controls were wild gDNA of S. 

venezuelae (negaive) and p-jad-D (positive). 

3.1.2 Delete the Entire cml Gene Cluster from the jadR1
-
 

Mutant Genome Using Suicide Vector and Double-crossover 

to Get the jadR1
-
cml

-
 Mutant 

The cml gene deletion was conducted with the same procedures as jadR1 deletion 

with the difference specified as below: two cml flanks were amplified in the 

beginning; p-cml-D candidates were treated with AgeI digestion and PCR verification 

(seen in 2.2.1); jadR1
-
 mutant was used as recipient in transconjugation. 

3.1.3 Transfer Gene Clusters to the jadR1
-
cml

-
 Mutant and 

Check Novel Compounds Production 

The heterologous expression of BSMs might be harmful for producing host, 

especially for S. venezuelae. Thus it is reasonable to know how the expression of 

introduced gene clusters affects jadR1
-
cml

-
 mutant. To answer this question, the re-

factored gene clusters under control of native/ermE* promoters were introduced to 

jadR1
-
cml

-
 mutant and the results was being evaluated, besides, the results could also 

be used as control at later stage when the inducible promoter (from 3.1.4) would 

replace native/ermE* promoters. The stages of 3.1.3 and 3.1.4 were conducted in 

parallel. The brief steps in 3.1.3 are shown below. 

Two gene clusters were chosen to analyse, due to their simplicity and predicted 

potential for novel BSMs by bioinformatics methods. The gene cluster MP112-09-

cluster 6-Lactococcin972-like (MP112-09-Lac) was assembled with two vectors to 
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generate two plasmids: (1) pSOK804-lacNat: MP112-09-Lac with its native promoter 

with a pSOK804 fragment. (2) pSOK804-NP: MP112-09-Lac with a pSOK806 

fragment with ermE*p replacing its native promoter. Because the bacteriocin genes 

are perhaps controlled by the same promoter, which is easy to manipulate (Figure 

1.4A). The gene cluster MPS05-B41-cluster 28-Lincocin-M18-like (MPS05-B41-Lin) 

was assembled with its native promoter with a pSOK804 fragment to get pSOK804-

Lin plasmid. Since the genes in this cluster are probably controlled by different 

promoters, not easy to manipulate (Figure 1.4B). The assembly was carried out 

through Gibson Assembly (seen in 2.2.6).  

The three recombinant plasmids (maps seen in Appendix B, Page 113-115) above 

would be transferred to S. venezuelaee jadR1
-
cml

- 
mutant (seen in 2.2.11), followed 

by effects evaluation. 

3.1.4 Test the Expression of the Reporter Gene gusA under 

Control of Selected Promoters in the jadR1
-
cml

-
 Mutant and 

Wilde Type 

In this stage, four promoters cmlFp, cmlIp, cmlXp, jadJp were chosen to test, because 

cmlIp, cmlXp were known to control the essential genes in Cm biosynthesis, besides, 

according to the project hypothesis, overproduction of Cm was expected in jadR1
- 

mutant, which meant cmlIp, cmlXp shall be active promoters in jadR1
- 
mutant and 

thus could be used to drive expression of exogenous gene clusters. Before assembling 

with exogenous gene clusters, it was necessary to test whether cmlIp, cmlXp were 

genuine efficient promoters. The cmlFp is responsible for Cm transport to 

extracellular environment, which means it might be active under stress conditions 

(ethanol shock), hence it was chosen to test as well. The jadJp is speculated to be 

necessary for Jd production, thus was also chosen to test (seen in 1.1.3.2). (He, 

Magarvey et al. 2001) (Zheng, Wang et al. 2007) 

GUS (encoded by gusA) is shown to be a versatile reporter in actinomycetes 

compared to other methods, such as eGFP, luciferase, because this method is 

relatively sensitive, simple and cheap (seen in 1.4.4.5). Therefore, gusA reporter was 

employed in this project.  
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3.1.4.1 Assembly gusA Plasmids 

Four promoters of cmlFp, cmlIp, cmlXp, jadJp were independently amplified from 

wild S. venezuelae, with corresponding vector fragments amplified from pSOK 808. 

Each vector (Am
R
) contained gusA gene without a promoter, thus each of the four 

promoters was placed upstream the gusA gene via Gibson Assembly (seen in 2.2.6). 

Four gusA plasmids were generated: pSOK808-cmlFp, pSOK808-cmlIp, pSOK808-

cmlXp, pSOK808-jadJp. 

3.1.4.2 Transfer gusA Plasmids to jadR1
-
cml

-
 Mutant and Wild S. 

venezuelae 

The verified gusA plasmids were transferred to jadR1
-
cml

-
 mutant and WT (controls) 

(seen in 2.2.11), and integrated to chromosome through site-specific integration due to 

int, attP (maps seen in Appendix B, Page 113-115). Ten transcojugants were 

generated: four wild S. venezuelaes integrated with one of the four gusA plasmids 

respectively; four jadR1
-
cml

-
 mutants integrated with one of the four gusA plasmids 

respectively; one wild S. venezuelae and one jadR1
-
cml

-
 mutant integrated with 

pSOK808 respectively (used as positive controls). In pSOK808, gusA was under 

control of ermE*p, hence it could be used as positive control. 

3.1.4.3 Compare Promoter Efficiencies through GUS Test 

This test was first conducted based on the growth medium of MYM, if results would 

not be desirable, the producing medium of GI would be exploited later. Because in the 

industrial scale production, the inoculation from growth medium to producing 

medium is both time consuming and susceptible to contamination, if the growth 

medium shows good results, then large scale production could be focused on MYM 

rather than GI. 
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Prepare Strain Cultures 

Twelve strains were cultured and harvested (seen in 2.2.15): ten transconjugants from 

3.1.4.2, one wild S. venezuelae and one double deletion as negative controls. Total 

harvest: 288 tubes. 

GUS Test 

Three replicates (pellet from 1 ml culture) without ethanol shock and three replicates 

with ethanol shock were used for each strain. Miller units of glucuronidase were 

calculated as: [1000 x (OD420 – 1.75 x OD550)] / [time of reaction x volume of 

culture assayed] (seen in 2.2.15). The remaining lysate was used to calculate amount 

of total protein released from mycelium in a Bradford assay (seen in 2.2.16). Miller 

units were expressed as per mg of total protein, which was used to decide the best 

inducible promoter. 

3.1.5 Clone Gene Clusters with the Inducible Promoter 

Provided no significant negative effects was detected in 3.1.3, the native promoters 

would be replaced with the best inducible promoter from 3.1.4.3 through Gibson 

Assembly, and subsequently the plasmids with new promoters would be transferred to 

the S. venezuelaee jadR1
-
cml

- 
mutant, followed by re-checking BSM production. 

3.2 Experiment Results 

The experiment results below are presented with the order in the overall strategies. 

 

3.2.1 Generate jadR1
-
 Mutant 

The jadR1
-
 mutant was obtained through suicide vector and double crossover. Results 

in this step are presented in three parts: assemble p-jad-Del, select first crossover 

mutant, select double crossover mutant. 
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3.2.1.1 Assemble p-jad-Del 

As stated in section 3.1.1, to avoid the drawbacks of introduced selectable marker in 

traditional method (seen), the double-crossover was carried out in two steps, no 

selectable marker introduced.  

At the beginning, the suicide vector p201-jad-Del (p-jad-D) was assembled. 

Unexpectedly, when checking byproducts in two flanking fragments, two bands were 

present in flank A, with sizes right above 2 kb and right below 1.5kb respectively 

(estimated from ladder). Since the real size of flankA is 2.1kb, hence the band with 

larger size was isolated and purified. The two fragment and DpnI-treated pSOK 201 

fragment were visualised on gel to compare their relative density based on band 

intensities (Figure 3.2 A), which was used to set amounts ratio of pSOK 201 

fragment: jadR1-FlankA: jadR1-FlankB =1: 2: 2 in Gibson Assembly. According to 

Figure 3.2 A, 1 µl 201 fragment, 3 µl jadR1-FlankA, and 1µl jadR1-FlankB were 

added in Gibson Assembly. Two colonies survived on the LA plate (Am 100µg/ml) 

and their pDNAs were treated with SacI digestion after isolation. The digestion 

pattern of candidate 2 was right (Figure 3.2 B), then p-jad-D2 was used in following 

procedures. But candidate 1 was perhaps right as well, because its 2 kb band was 

much wider than more intense than its counterpart in candidate 2. This could be 

explained by incomplete digestion.  

 

Figure 3.2 A: Relative densities of overlapping fragments of p-jad-D. Based the 

intensities, 1 µl 201 fragment, 3 µl jadR1-FlankA, and 1µl jadR1-FlankB were added 

in Gibson Assembly. B: Digestion patterns of p-jad-D candidates. Two p-jad-D 

candidates were treated with SacI digestion. Candidate 2 (lane 3) was right, because 
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of its expected digestion pattern: 4.6+2.1+0.75kb, whereas candidate 1 was perhaps 

right as well, because its 2 kb band was much wider than more intense than its 

counterpart in candidate 2, which was perhaps caused by incomplete digestion. 

3.2.1.2 Select First Crossover Mutant 

In this stage, E. coli ET12567 (pUZ8002) (ET) transconjugating-system was 

exploited, because this system is proved to be efficient in Streptomyces (seen in 

1.4.4.2). First, p-jad-D was transconjugated from ET (Am
R
, Cm

R
, Kan

R
) to 

Streptomyces venezuelae ATCC 10712 (ISP5230) (WT), and shall be integrated into 

S. venezuela chromosome via homologous recombination (first crossover, seen in 

1.4.4.3) Next, transconjugants were selected against Am, which were subsequently 

verified by PCR. 

In PCR verification, the primer pair jadR1-FlankA forward and jadR1-FlankB reverse 

were used. Theoretically, three fragments would be amplified: jadR1-FlankA+jadR1-

FlankB (4.3kb), jadR1-FlankA+ jadR1+jadR1-FlankB (5.1kb), p201-jad-Del 

2+jadR1+jadR1-FlankB (10.4kb) (refer to 1.4.4.3), but only the 4.3kb was observed 

(Figure 3.3A). The absence of the other two fragments could be ascribed to the 

inefficiency of EHD DNA polymerase and non-optimal condition for 5.1 kb and 10.4 

kb amplification. However, as long as a certain candidate was Am
R
 and the 4.3 kb 

product was obtained, it was confident to conclude it was the first crossover mutant. 

This reasoning was backed up by the fact that the 4.3kb fragment was absent in 

negative control using WT gDNA as template and present in positive control using p-

jad-D2 as template. Therefore, three candidates (lane 2, 6 and 8) were confirmed as 

genuine first crossover mutants. The only problem was that the 5.1kb fragment was 

absent in WT (lane 9). Then PCR reaction was repeated with WT and one genuine 

mutant-candidate 6 (lane 8). Figure 3.3B indicates the 5.1kb and 4.3kb fragment was 
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achieved in WT and candidate 6 respectively. Eventually, candidate 6 (lane 8) was 

adopted in the following steps for double crossover.  

The absence of 4.3kb fragment in the rest candidates (lane 3-5) could be explained by 

a deletion eliminating part or all 4.3kb fragment because of the unstability in genome. 

Alternatively, it was probably caused by errors in PCR reaction, which could be 

enlightened by the fact that the 5.1kb band in WT was absent in the same batch of 

PCR reaction and present in new amplification (Figure 3.3B). 

 

Figure 3.3 PCR verification of the first crossover mutant for jadR1 deletion. A: 

Six candidates (lane 2-6 and 8) were analysed. Lane 9 and 10 was negative control 

(WT gDNA as template) and positive control (p-jad-D2 as template) respectively. The 

primer pair jadR1-FlankA forward and jadR1-FlankB reverse were used in PCR 

reaction, but only 4.3kb rather than 5.1kb and 10.4 kb was observed in three 

candidates (lane 2, 6 and 8, red circles). The three candidates were identified as 

genuine first crossover mutants, because they were Am
R
, and the 4.3kb fragment was 

absent in negative control, present in positive control (red circle in lane 10). The low 
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intensity of bands was caused by insufficient samples applied. B: the 5.1kb (lane 3) 

and 4.3kb (lane 2) fragment was achieved in WT and candidate 6 respectively. 

3.2.1.3 Select jadR1
-
 Mutant 

The candidate 6 of genuine first crossover mutant for jadR1 deletion (C6GFJD) was 

treated with three-round sporulation (ISP4 plate based) to create condition for 

occurrence of double crossover. After replica plating selection and Am
S
 test in TSB 

(overnight culture), three candidates were screened out. In order to identify the jadR1
-
 

mutant and exclude reverted wild type S. venezuelae. PCR verification was performed. 

 

Figure 3.4 PCR verification of jadR1
-
 mutant. The candidate 2 (lane 3) had the 

same band (5.1kb, blue circle) with negative control (lane 4, WT gNDA as template), 

whereas candidate 1 (lane 2) and 3 (lane 7) had the same band (4.3kb, red circle) with 

positive control 1 (lane 5, C6GFJD gDNA as template) and 2 (lane 6, p201-jad-Del2 

as template). Candidate 2 (lane 3) shall be reverted WT while candidate 1 (lane 2) and 

3 (lane 7) shall be real jadR1
-
 mutant. The bands in candidate 2 (lane 3) and negative 

control (lane 4) should be 5.1kb and bands in lane 2, 5-7 should be 4.3kb. 

Figure 3.4 shows that candidate 1 (lane 2) and 3 (lane 7) were real jadR1
-
 mutants 

while candidate 2 (lane 3) was reverted wild type, because: first, their Am
S
 property 

suggested they lost Am
R
 gene by double crossover; second, candidate 2 (lane 3) had 
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the same band (5.1kb) with negative control (lane 4, WT gNDA as template), whereas 

candidate 1 (lane 2) and 3 (lane 7) had the same band (4.3kb) with positive control 1 

(lane 5, C6GFJD gDNA as template) and 2 (lane 6, p-jad-D2 as template). Bands 

5.1kb and 4.3 kb did not align well with the corresponding bands in ladder lane, but 

this variance is acceptable, since gel electrophoresis is a rough method to identify 

DNA sizes. In this project the well aligned bands between candidate 1 (lane 2), 3 

(lane 7) and positive control 1, 2 was sound proof of genuine jadR1
-
 mutant. 

Therefore, candidates 1 and 3 are real jadR1
-
 mutant, and candidate 3 was used in the 

following steps. 

3.2.2 Generate jadR1
-
cml

-
Mutant 

The jadR1
-
cml

-
 mutant was generated with the same methods as jadR1

-
 mutant. 

Similarly, three bands should be amplified in theory: cml-FlankA+cml-FlankB 

(4.5kb), cml-FlankA+cml+cml-FlankB (19.1kb), p201-cml-Del+cml+cml-FlankB 

(24.5kb), but only the 4.5kb was obtained in practice. The real double mutant was 

obtained in the third attempt. In the first two attempts, only reverted WTs were 

generated, but the undesirable results gave valuable lessons for improving the method: 

executing double check on deletion plasmids and limiting PCR cycles, which is 

presented below. 

3.2.2.1 Reverted Wild Type 

In the first attempt, the first crossover mutant for cml deletion was confirmed by both 

Am
R
 and PCR verification, however, all the double crossover mutants were reverted 

WT, judged from Am
S
 property and PCR verification. Then the problems were 

checked from analysing pSOK201-cml-Del (p-cml-D) by amplifying two flanks of 

cml (cml-FlankA cml-FlankB) and pSOK201 fragment with p-cml-D as template. 

Figure 3.5A presents that cml-FlankB was wrong because its size 0.5kb in gel was 
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much smaller than the real size 2.3kb, whereas cml-FlankA (2.2kb) and 201 fragment 

(3.1kb) were right. Figure 3.5B further proves p-cml-D was wrong, as the digestion 

pattern in gel was 4kb+2.5kb, which was different from expectation: 3.8+2.8+1.0 kb. 

This could be the reason why no jadR1
-
cml

-
 mutant was obtained, because the 

deletion mutant and reverted WT is achieved when homologous recombination 

happens in FlankB and FlankA respectively (refer to 2.2.3).  The wrong FlankB might 

be caused by mispriming (primer annealing to the wrong DNA sequence). 

Figure 3.5 Analysis on p-cml-D. A: cml-FlankA, cml-FlankB and the pSOK201 

fragment amplified from p-cml-D. cml-FlankB (lane 3, red circle) was wrong because 

its size 0.5kb in gel was much smaller than the real size 2.3kb. B: BmrI digestion 

pattern of p-cml-D. The digestion pattern in gel was 4kb+2.5kb, different from right 

pattern: 3.8+2.8+1.0 kb. 

The error in p-cml-D suggests that only restriction enzyme digestion is not enough to 

check the rightness of plasmids, therefore, in the following procedures, 

recombinant plasmids were double checked by both enzyme digestion and PCR 

verification. 
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In the second attempt, p-cml-D was re-assembled with the same purified fragments as 

the first attempt. The adopted p-cml-D was screened out by double check (enzyme 

digestion and PCR verification). The first crossover mutant was confirmed as well. 

After three-round sporulation, the jadR1
-
cml

-
 mutant still could not be obtained, since 

the replica plating was performed three times, and generated totally 14 candidates 

(first time: 7, second time: 2, third time: 5). Five of the 14 candidates were Am
S
, but 

could not past PCR verification, no 4.5 kb band of cml-FlankA+cml-FlankB observed, 

hence they should be reverted WT. For comparison convenience, the five candidates 

were collected on the same gel in Figure 3.6, where the 4.5kb band (red circles) was 

present in positive control while absent in the negative controls and five Am
S 

candidates. Since the occurrence probability of jadR1
-
cml

-
 mutant and reverted WT 

shall be 50% (refer to 1.4.4.3) respectively, meaning at least one should be the double 

mutant among the five Am
S
 candidates, thus no double deletion mutant suggests the 

possible DNA sequence mutation in cml-FlankB, which hindered homologous 

recombination. This mutation could be caused by excessive cycles (35) in PCR 

reaction of cml-FlankB at the beginning. Then in the third attempt, PCR cycle was 

reduced from 35 to 25. 
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Figure 3.6 Reverted wild type in the second attempt. The positive control used p-

cml-D that passed double check as template (lane 4 and 8 were same). In the figure it 

was clear that 4.5kb band (red circles) was present in positive control while absent in 

the negative controls and five Am
S 

candidates. Thus the five candidates were 

speculated to be reverted wild type. The other bands were possibly resulted from 

mispriming.  

3.2.2.2 Genuine jadR1
-
cml

-
 Mutant 

In the third attempt, three p-cml-D candidates were obtained, and their AgeI-digestion 

patterns (5.8kb+1.6kb+0.2kb) seemed right (Figure 3.7A). Since the 0.2kb bands 

were shaded by heavy dye, then the digestion mixture of candidate 1 (lane 2 in Figure 

3.6A) was re-analysed on gel (Figure 3.7B), where the 0.2kb band was visible. After 

that, PCR verification was conducted, in which cml-FlankA, cml-FlankB and p201 

fragment were amplified from candidate 1 and compared with their purified 
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counterparts for Gibson assembly (Figure 3.7C). Candidate 1 (p-cml-D1) passed 

double check, and was adopted in the following procedures. 

 

Figure 3.7 pSOK201-cml-D verification. A: three p-cml-D candidates were 

subjected to AgeI-digestion that should give pattern of 5.8kb+1.6kb+0.2kb. Their 

patterns were right except that the 0.2kb bands were shaded by heavy dye (red circle). 

B: digestion mixture of candidate 1 (lane 2 in Figure 3.7A) were re-analysed on gel, 

where the 0.2kb was visible (red circle). C: the PCR verification was performed on 

candidate 1, in which cml-FlankA, cml-FlankB and p201 fragment were amplified 

from candidate 1 and compared with their purified counterparts for Gibson assembly. 
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The three pairs of fragments aligned well. Therefore, candidate 1 was confirmed as 

real p-cml-D. 

The p-cml-D1 was transconjugated to jadR1
-
 mutant and five Am

R 
candidates of first 

crossover mutant for cml deletion (CFCD) were chosen. Figure 3.8A shows the PCR 

verification, in which all candidates had the 4.5kb bands, same as positive control 

(lane 5), and no 4.5kb bands were detected in negative controls (lane 7, 8). Candidate 

1 (lane 2 in Figure 3.8A) was treated with three round sporulation (TSB-based, time-

saving). Four Am
S
 jadR1

- 
cml

- 
candidates were chosen after replica plating, and their 

PCR verification is shown in Figure 3.8B, where candidates 3 (land 4) and 4 (lane 5) 

had the 4.5kb bands, same as positive control (lane 7), and no 4.5kb bands appeared 

in negative controls (lane 8 and 9). Therefore, candidates 3 and 4 were right jadR1
- 

cml
-
 mutant, and candidate 4 was used in the following stages. 

 

Figure 3.8 PCR verification of first and second crossover mutants for cml 

deletion. A: five Am
R
 candidates (lane 2, 3, 4, 9, 10) had the 4.5kb bands (red circle), 

which were same as positive control (lane 5), and no 4.5kb bands was observed in 

negative controls (lane 7, 8). B: two Am
S
 candidates (lane 4, 5) had the 4.5kb bands 

(red circle), which were same as positive control (lane 7), and no 4.5kb bands was 

present in negative controls (lane 8 and 9), therefore candidates in lane 4, 5 were 
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genuine jadR1
- 
cml

- 
mutant. The other two Am

S
 candidates (lane 2, 3) had no 4.5kb 

bands, and thus were considered as reverted jadR1
-
 mutant. The other bands outside 

red cycles were probably caused by mispriming. 

3.2.3 Test Gene Clusters in the jadR1
-
cml

-
 Mutant 

Two gene clusters, MPS05-B41-Lin and MP112-09-Lac, that were predicted to have 

potentials to produce BSMs were cloned to generate three plasmids: pSOK804-lacNat 

(pLacNat), pSOK806-NP (pLacNP), pSOK804-Lin (pLin). In pLacNat, a pSOK804 

fragment was assembled with MP112-09-Lac, with native promoter included, by 

contrast, due to the possible presence of single promoter (Figure 1.4A), in pLacNP a 

pSOK806 fragment was assembled with MP112-09-Lac, with the native promoter 

replaced by a strong constitutive promoter ermE* (seen in 1.4.4.5). Because of the 

possible presence of different promoters (Figure 1.4B), in pLin, a pSOK804 fragment 

was assembled with MPS05-B41-Lin, only with native promoter (refer to 3.1.3). 

Gibson Assembly method was employed to construct the three plasmids. For pLacNat, 

one out of 15 candidates was proved to be genuine by double check (Figure 3.9A, C), 

by contrast, for pLacNP, four out of ten candidates were proved to be genuine (Figure 

3.9B, C). The pLacNat (lane 3 in Figure 3.9 A) and pLacNP (lane 2 in Figure 3.9 B) 

were, in later stage, tranconjugated to jadR1
- 

cml
- 

mutant via site-specific 

recombination (refer to 1.4.4.2), and the results evaluation is in progress. pLacNat 

pLacNP 

However, the pLin could not be obtained. At first, the product of MPS05-B41-Lin did 

not show right size on gel, after increasing the annealing temperature from 56 °C to 

65 °C, the product with right size was obtained. Afterwards, though 30 colonies were 

checked successively, no right pLin was revealed. Then the error-finding action was 

carried out with restriction enzyme digestion (EcoRV, StuI) of PCR product and no 

right digestion pattern was detected. The reason could be mispriming of MPS05-B41-

Lin in PCR, or the special DNA structure at MPS05-B41-Lin, which inhibited primer 

annealing at the right place. 
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Figure 3.9 Double check of pLacNat and pLacNP. A: AgeI digestion of pLacNat. 

Totally, 15 colonies were analysed in three times. In the first two times, three colonies 

showed partially right pattern could be attributed to incomplete digestion, thus they 

were re-digested (lane 9, 11, 12) with another six colonies (lane 2-7) in the third time. 

Only one candidate had the right pattern: 6.0+2.7+1.4kb (lane 3, red circle). B: NotI 

digestion of pLacNP. Totally, 10 colonies were analysed. Lane 2, 3, 10, 11 showed 

right digestion pattern: 6.5+3.3kb (red circles). Lane 2, 5, 7 in A and lane 4-7, 9, 12 in 

B showed one band, and thus could be contaminating pSOK804 and pSOK806, 

respectively, according to clone manager. The contamination might be introduced by 

insufficient DpnI digestion. Lane 4 and 11 in A might be right pLacNat, because the 
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small bands around 1.5kb were much intense and perhaps were caused by incomplete 

digestion, whereas lane 6, 12 in A could be unknown contamination, because the 

patterns could not be explained by known plasmids. C: PCR confirmation of 

pLacNat and pLacNP. The gene cluster fragments and vector fragments were 

amplified from pLacNat (lane 3 in A) and pLacNP (lane 2 in B) respectively, and 

compared with their counterparts for Gibson Assembly. Good size alignment was 

observed (red circles), therefore pLacNat (lane 3 in A) and pLacNP (lane 2 in B) 

passed double check and were used in the following steps. 

3.2.4 Test reporter gusA with cmlFp, cmlIp, cmlXp, jadJp in 

the jadR1
-
cml

-
 mutant and Wild Type 

In this stage, four promoters cmlFp, cmlIp, cmlXp, jadJp were chosen to test, because 

cmlIp, cmlXp control the essential genes in Cm biosynthesis, thus they might be active 

in jadR1
- 
mutant where Cm production could be initiated. The cmlFp is responsible 

for Cm transport to extracellular environment, thus it might be activated under stress 

conditions (ethanol shock). The jadJp is speculated to be necessary for Jd production, 

thus was also chosen to test (seen in 3.1.4). (He, Magarvey et al. 2001) (Zheng, Wang 

et al. 2007) GUS assay was employed in this project, because it is shown to be a 

versatile reporter in actinomycetes compared to other methods, such as eGFP, 

luciferase (seen in 1.4.4.5). 

3.2.4.1 Assemble gusA plasmids 

The gusA plasmids were made by assembling each of cmlFp, cmlIp, cmlXp, jadJp 

with gusA gene (in a pSOK 808 fragment) (seen in 3.1.4.1). The resulted plasmids 

were: pSOK808-cmlFp (pFgusA), pSOK808-cmlIp (pIgusA), pSOK808-cmlXp 

(pXgusA), pSOK808-jadJp (pJgusA). In the first attempt, the mutated gusA from 

pSOK805 was introduced in the resulted plasmids, then the assembly was repeated 

with the repaired gusA in pSOK808. Four pFgusA and four pXgusA candidates were 

checked by BamHI digestion, and two of each showed right digestion pattern (Figure 

3.10A). Five pJgusA candidates were checked by KasI digestion first, but the 

incomplete digestion was obvious, then ApoI and NarI digestions were applied later, 

which confirmed four candidates (Figure 3.10B). Two out of three pIgusA candidates 
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were confirmed by BamHI digestion (Figure 3.10C). Then PCR verification was 

carried out on candidate 1 of each gusA plasmids (Figure 3.10D-E). 
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Figure 3.10 Double check of four gusA plasmids. A: restriction digestion of 

pFgusA and pXgusA. Both were treated with BamHI digestion, and two candidates 

of each gusA plasmids showed right pattern-pFgusA: 3.8+2.8+1.0kb (lane 2, 4), 

pXgusA: 3.8+2.7+1.0kb (lane 7, 10). B: restriction digestion of pJgusA. The KasI 

digestion was applied on five pJgusA candidates firstly, but the right candidates could 

not be picked up, due to the incomplete digestion (not shown), then NarI and ApoI 

digestions were applied simultaneously, which implied right pattern 4.3+2.7+0.6kb 

and 5.6+2.0kb respectively. Four candidates (lane 2-5/8-11) were right (Figure 3.9B). 

C: restriction digestion of pIgusA. Two out of three candidates showed right 

BamHI-digestion pettern: 3.8+2.7+1.0kb (lane 2, 4). The candidate in lane 3 might be 

genuine as well, because the variance of pattern could be accounted for less sample 

applied (judged by less band intensity compared with lane 2 and 4). D: PCR 

confirmation of pXgusA. The vector p808X (7.3kb) and cmlXp (233bp) were 

amplified from candidate 1 (lane 7 in A) and compared with their counterparts for 

Gibson Assembly. Good size-alignment was shown in D. E: PCR confirmation of 

pFgusA, pIgusA and pJgusA. The vector p808F (7.3kb) and cmlFp (314bp) were 

amplified from candidate 1 (lane 2 in A) and compared with their counterparts for 

Gibson Assembly (lane 2-5). The same comparison was carried out on pIgusA (lane 7-
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10, p808I: 7.3kb, cmlIp: 233bp) and pJgusA (lane 12-13, 15-16, p808J: 7.3kb, cmlJp: 

331bp), where pIgusA and pJgusA candidate 1 was lane 2 in C and lane 2/8 in B. All 

the three comparisons showed good alignment, therefore, genuine gusA plasmids were 

confirmed. 

3.2.4.2 GUS Test 

As plan, the promoters shall be first tested with culture from growth medium MYM, if 

results are not desirable then turn to the production medium GI, because if the culture 

medium is good to use, much industrial costs and procedures could be saved without 

inoculation to production medium. By now the GUS test has been conducted with 

MYM medium. The candidate 1 of each gusA plasmids that passed double check was 

transconjugated to jadR1
- 
cml

- 
mutant (double deletion/DD) (refer to 1.4.4.2), then 

the promoter efficiencies were tested by GUS and Bradford assay (seen in 2.2.15; 

2.4.16), with the results shown in Figure 3.11. The Miller unites of GUS were 

measured at different times (30 min and 67 min) depending on the yellow color 

development to ensure appropriate data were taken, since data measured at reaction 

reaching beyond plateau point would generate biased smaller results (refer to formula 

in 2.2.15). 

No GUS was detected in WT/DD (negative control) and GUS level was too high to 

measure in WT/DD(ermE*p::gusA) (positive control). In WT/DD(cmlFp::gusA) , the 

inducing effect of ES+ in DD was interesting: the measured GUS level in DD ES+ 

was 5.1 and 4.4 times as high as DD ES- at 30min and 67min respectively. This effect 

was obvious compared with WT: the measured GUS level of WT ES+ was 1.7 times 

as high as WT ES- at 30min. Moreover, in DD(cmlFp::gusA)  the Miller units of 

GUS/mg total protein from 30min (DDES-: 1.5, DDES+:7.6) to 67min (DDES-: 1.7, 

DDES+:7.4) was almost constant. Besides, GUS level in WT(cmlFp::gusA) ES- was 

6.3 and 4.6 times as high as in DD(cmlFp::gusA) ES- at 30 min and 67 min 

respectively. The decreased values in WT(cmlFp::gusA) ES- and ES+ at 67 min might 

be explained by reaction reached plateau before 67 min. It is important that the error 

bars in DD(cmlFp::gusA)  both at 30 min and 67 min are not overlapping, thus the 

5.1/4.4 folds inducing effect of ES+ is meaningful.  
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In WT/DD(cmlIp::gusA) and WT/DD(cmlXp::gusA) at 30 min and 67min, the 

measured GUS level in DD ES- was higher than in WT ES-, most probably because 

deletion of jadR1 in DD leads to cmlI and X unrepressed (seen in 1.1.4.2).  

In WT/DD(jadJ::gusA) , no GUS expression was detected in DD ES- and ES+ while 

it was detected in WT ES- and ES+ though at low levels, and WT ES+ was higher 

than WT ES-, this might be explained by that jadJ initiation requires JadR1, which 

can be enhanced by ethanol shock (seen in 1.1.4.2 and 1.2.3).   

Therefore, the cmlF was the best inducible promoter for designing the inducible 

system (refer to 1.4.3), according to the current data. 
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Figure 3.11 GUS test of promoter efficiencies. The GUS expression level was 

measured as OD first, then for comparison convenience, it was calculated as unified 

format-Miller units of GUS/mg total protein that is shown in B1 (at reaction time 

about 30 min) and B2 (at reaction time about 67 min). The values of 

WT/DD(ermE*p::gusA) were out of measurement, due to the strong promoter ermE*. 

Error bards in B1 and B2: means±1 S.D. generated from three independent replicates. 

WT: wild type, DD: double deletion, ES-: no ethanol shock, ES+: ethanol shock. A1: 

BSA standard curve for WT strains. The standard curve was made from BSA and 

was used to measure protein concentrations of WT and WT strains introduced 

pFgusA, pIgusA, pXgusA, pJgusA, pSOK808 respectively. Each sample (BSA and 

strain lysate) had three replicates in measurement. A2: BSA standard curve for DD 

strains. The standard curve was made in the same way as A1, and was used to 

measure protein concentrations of DD and DD strains introduced pFgusA, pIgusA, 

pXgusA, pJgusA, pSOK808 respectively. B1: Miller units of GUS per mg total 

protein at ‘30min’. The small plus values in WT/DD(cmlIp::gusA) and 
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WT/DD(jadJ::gusA)  suggested low expression. The values in WT/DD(cmlIp::gusA) 

were almost same (about 1.6). In WT/DD(cmlFp::gusA) , the measured GUS level of 

ES+ was 1.7 and 5.1 times as high as WT ES- and DD ES- respectively. B2: Miller 

units of GUS per mg total protein at ‘67min’. Compared to 30min, the measured 

GUS levels were generally higher in WT/DD + (cmlIp::gusA)/(cmlXp::gusA)/ 

(jadJ::gusA), lower in WT(cmlFp::gusA) of both ES- and ES+, and higher and  stable 

in DD(cmlFp::gusA) of ES- and ES+ respectively, but the measured GUS level in 

DD(cmlFp::gusA) ES+ was equal to 4.4 times DD(cmlFp::gusA) ES-. At both 30 min 

and 67 min, the small minus values in WT/DD indicated no GUS expression while the 

values from positive control WT/DD(ermE*p::gusA) were too high to measure. 

3.2.5 Replace Native Promoters with the Inducible Promoter 

This step has not been initiated. 
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4. Discussion 

4.1 Generate Double Mutant 

4.1.1 Recombinant Plasmids 

The Gibson Assembly technique is a favorable method for recombinant plasmids, 

because it combines the digestion of overlapping ends and ligation in one step, which 

is time saving and simple. (Gibson, Young et al. 2009) However, problems arising 

from mispriming (primer annealing to the wrong DNA sequence) of PRC products 

and mutation in PCR reaction weaken this technique. Specifically, as shown in Figure 

3.5, the wrong p-cml-D might be caused by the introduced wrong cml-FlankB that 

resulted from mispriming in PCR (similar to wrong MPS05-B41-Lin in 3.2.3), 

therefore, the primer quality shall be emphasized so as to avoid such problems. 

Though the fragments are checked before ligation on gel (to decide volume ratio in 

ligation), the misprimed fragments, if not fully eliminated in purification, might be 

too less to observe on gel, consequently, they could engender wrong assembled 

plasmids. Therefore, double check (restriction enzyme digestion and PCR 

verification) on recombinant plasmids is recommended to discover such problems. 

Besides, the PCR cycles should be limited when amplifying DNA for ligation, 

because, as shown in 3.2.2.1, excessive cycles can give rise to mutation in DNA 

products, which could lead to failed homologous recombination (failed double 

crossover in cml deletion in this project) or wrong gene products in other cases. In this 

project, after the ‘PCR mutation’ problem was inferred, the PCR cycles were reduced 

from 35 to 25 to reduce mutation probability, and right double mutant was generated.  

In addition, DpnI digestion is indispensable for vector DNA amplified from pDNAs 

originating from dam
+
 strains, because it cleaves only at the methylated recognition 

site, thus the contaminating pDNAs are eliminated, with vectors intact. (BioLabs 

2014) Also, enzyme digestion in checking pDNAs should be sufficient, otherwise, the 

incomplete digestion pattern on gel makes it hard to identify the right candidates, 

leading to additional jobs. 
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4.1.2 Double Crossover Mutants 

In the transconjugation of S. venezuelae through E. coli ET12567 (pUZ8002) (seen in 

1.4.4.2), no problems occurred, thus this technique was further proved as efficient. It 

is important to pick up the surviving colonies at appropriate time after overlying Nal 

and Am, because early time can reduce the occurrence of right transconjugants while 

later time can give rise to more false positive candidates. 

The double crossover approach to delete genes in S. venezuelae is advantaged in that 

no selectable marker is introduced. However, besides the drawback from ‘mutation in 

flank’ in 4.1.1, it is necessary to distinguish between the reverted WT and genuine 

deletion mutant. 

The replica plating technique has merits in isolation of mutants and has been 

successfully applied to bacteria, actinomycetes and unicellular algae. (Roberts 1959) 

When perform this experiment, it is critical to make sure the density of 100-200 

discrete colonies per plate, otherwise co-growth between colonies makes it difficult to 

identify real mutants. In this project, the three-round sporulation before replica plating 

can be performed on plates or liquid medium. The former is time-consuming (three-

four days/each round) but is convenient to discover contamination by checking the 

colony morphology, whereas the latter is time saving (overnight/each round) but is 

difficult to discover contamination if it happens. 

In the PCR verification of first crossover mutants, the primer pairs of FlankA forward 

and FlankB reverse were used, and three fragment should be obtained theoretically: 

FlankA+FlankB, FlankA+ gene for deletion + FlankB, p201-Del + gene for deletion + 

FlankB (refer to 1.4.4.3), but only the smallest fragment was detected. This could be 

explained by inefficient DNA polymerase or non-optimal PCR reaction condition for 

large fragments, because the EHD DNA polymerase can only amplify DNA fragment 

smaller than 8kb. In order to get the other two larger fragments, more efficient 

polymerase and exploration of optimal reaction conditions could be exploited. But the 

genuine first crossover mutants could be identified as long as they are Am
R
 and the 

smallest fragments are detected. In terms of the double crossover mutants, as long as 

they are Am
S
 and the smallest fragments are detected, they are genuine (refer to 

1.4.4.3), because second crossover deletes Am
R
 gene and leaves FlankA and FlankB 
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connected in the real double crossover mutants, which makes them distinctive from 

reverted WT. 

Bands on gel may not align well with the corresponding bands in ladder lane, but the 

small variance is acceptable, since gel electrophoresis is a rough method to identify 

DNA sizes, which can be affected by sample density, GC content in DNA, buffer, gel 

quality (e.g. bubbles, homogeneity), etc. Therefore, it is reasonable to include positive 

controls with which right bands can be compared if variance with ladder is too much. 

4.2 Clone Gene Clusters 

The gene cluster MP112-09-Lac was successfully cloned in pLacNat and pLacNP, but 

the ratio of right plasmids to total candidates (Figure 3.9) was smaller than gusA 

plasmids (Figure 3.10), which might be concluded as the smaller fragments the easier 

to assembly in Gibson Assembly.  

The gene cluster MPS05-B41-Lin could not be amplified, because though the product 

size on gel was right, it did not show right digestion pattern. The reason could be 

mispriming of MPS05-B41-Lin in PCR, improper PCR condition, or the inhibition of 

primer annealing at the right place by special DNA structure at gene cluster MPS05-

B41-Lin.  

The product with right size on gel was obtained by increasing the annealing 

temperature from 56 °C to 65 °C after failures with 56 °C. Though this product was 

proved pseudo by enzyme digestion, it revealed that the annealing temperature is 

critical for amplifying specific products. 

4.3 Test Promoters with GUS Assay 

4.3.1 GUS Assay 

GUS is a sensitive and versatile reporter because of its wide substrates, high specific 

enzymatic activity and stability, tolerance to the most commonly used chemicals and 

assay conditions. In streptomycetes, most species do not possess any endogenous 
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GUS activity (refer to 1.4.4.5). The project benefits from such merits, but the problem 

came from the strong promoters that made the yellow colour development too rapid to 

measure. In other words, expression of gusA gene under strong promoters provided 

large amounts of GUS, which converted substrate to a yellow product too fast to 

ensure accurate measurements. Therefore, pre-experiments are required to decide the 

optimal lysate amount used in GUS reaction. Besides, it is also critical to measure 

data at different times such that data before reaction plateau point are taken, since the 

Miller unites of GUS is calculated according to [1000 x (OD420 – 1.75 x OD550)] / 

[time of reaction x volume of culture assayed], if measurement is after the enzymatic 

reaction plateau, the Miller unites would be smaller than real value. The first 

measurement should be executed on first appearance of yellow colour, then 

subsequent measurements shall be carried out depending how rapid the colour 

develops.  

4.3.2 The Inducible Promoter  

As planned, the promoters are first tested with culture from growth medium MYM, if 

results are not desirable then turn to the production medium GI (seen in 1.4.3). 

According to MYM data (Figure 3.11), in WT/DD no GUS was detected and in 

WT/DD(ermE*p::gusA) GUS level was too high to measure, which contributed to the 

reliability of results in other samples by serving as desirable negative or positive 

controls. 

In WT/DD(cmlFp::gusA) , ES+ caused 5.1 and 4.4 times inducing effect in DD at 

30min and 67min respectively, whereas this effect was 1.7 times in WT at 30min. 

Thus, cmlF could be recognized as the inducible promoter. Besides, GUS level in 

WT(cmlFp::gusA) ES- was five to six times as high as in DD(cmlFp::gusA) ES-. The 

decreased values in WT(cmlFp::gusA) ES- and ES+ at 67 min might be explained by 

reaction had reached plateau before 67 min. Based on those data and the existing 

knowledge (refer to 1.1.4.2), the relationship between ES, JadR2, JadR1, cmlF is 

proposed in Figure 4.1. Specifically, JadR1 induces Jd but represses Cm biosynthesis, 

simultaneously repressing cmlF that is responsible for Cm transport to extracellular 

environment. JadR1 and JadR2 mutually repress and the inhibition of JadR2 on cmlF 

is stronger than JadR1 on cmlF, because deletion of jadR1 led to down regulation of 
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cmlF (Figure 3.11). The ES inhibits JadR2 in an unknown way, because ES+ 

engendered 5.1 and 4.4 folds inducing effect in DD(cmlFp::gusA) at 30min and 67min 

respectively (Figure 3.11).  

 

Figure 4.1 Speculated relationship between ES, JadR2, JadR1, cmlF. JadR1 and 

JadR2 are encoded by jadR1 and jadR2 respectively. Ethanol shock inhibits JadR2 in 

an unknown way. JadR2 and JadR1 inhibit each other, and both can repress cmlF, but 

JadR2 represses cmlF more intensively than JadR1. 

Additionally, in DD(cmlFp::gusA) the Miller units of GUS/mg total protein from 

30min to 67min were almost stable (Figure 3.11). This at least means the result at 

30min was before reaction plateau, because the productivity-time relationship in 

enzymatic reaction is relative linear before plateau (Chaplin 2012), if plateau was at 

30min or before, the result at 67min would be half or less than half of 30min, 

according to the formula in 4.3.1. Therefore, the 5.1 time ES+ inducing effect in 

DD(cmlFp::gusA) should be reliable. 

In WT/DD(cmlIp::gusA) and WT/DD(cmlXp::gusA) at 30 and 67min, the measured 

GUS level in DD ES- was higher than in WT ES- (Figure 3.11), which could be 

explained by deletion of jadR1, thus this results was consistent with current 

knowledge-JadR1 represses cmlI and X (seen in 1.1.4.2) and the project hypothesis-

deletion of jadR1 shall cause up-regulation of Cm production that relies on cmlI and 

cmlX (seen in 1.4.2). In WT/DD(jadJ::gusA), GUS expression was absent and present 

(though at low levels) in DD (ES-, ES+) and WT (ES-, ES+) respectively, and it was 

higher in WT ES+ than WT ES- (Figure 3.11), this was in accordance with existing 

knowledge as well: jadJ initiation requires JadR1, which can be enhanced by ethanol 

shock (seen in 1.1.4.2 and 1.2.3).  

In summary, cmlFp, as the best inducible promoter, is possible to meet the project 

objective for designing the inducible system (refer to 1.4.3), according to the current 
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data. The relatively long error bars in Figure 3.11 mar the results, but it is worth 

mentioning that the error bars in DD(cmlFp::gusA) both at 30 min and 67 min are far 

from overlapping, thus the 5.1/4.4 folds inducing effect of ES+ is meaningful.  

4.4 Future Works 

In the following jobs, MYM based GUS assay would be repeated so as to reduce the 

error bars and further corroborate the conclusion. Besides, the GI-based GUS assay 

might also be performed, since though 5.1/4.4 folds inducing effects in cmlF is 

valuable, more significant inducing effects might be exposed in cmlF itself or other 

promoters in GI-based results. Besides, the PCR condition should be optimized for 

MPS05-B41-Lin amplification so as to get this fragment. Alternatively, choose other 

gene clusters to test. Then after decided the most desirable inducible promoter, the 

gene clusters MPS05-B41-Lin and MP112-09-Lac would be assembled under control 

of this promoter respectively and transconjugated to jadR1
-
cml

-
 mutant, followed by 

BSM measurement. 

 

 

 

 

 

 

 

 

 

 

 

 



 

105 

 

5. Conclusion  

 

The jadR1
-
 and jadR1

-
 cml

-
 mutants were successfully generated with Gibson 

Assembly, transconjugation, double crossover and replica plating. The gene cluster 

MP112-09-Lac was cloned with the native promoter and ermE* respectively and 

successfully transconjugated to jadR1
-
 cml

-
 mutant, however, cloning of MPS05-B41-

Lin was hindered by wrong PCR amplification. The four gusA plasmids were 

successfully obtained by assembling each of cmlFp, cmlIp, cmlXp, jadJp with gusA 

gene (in a pSOK 808 fragment) and transconjugated to jadR1
-
 cml

-
 mutant. The four 

promoters were tested with GUS assay, based on MYM medium. The cmlF promoter 

is speculated to be the most desirable inducible promoter and hopefully it could meet 

the project objective. 
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Appendix 

A: Primers 

All the following primers were designed by J5. (Hillson, Rosengarten et al. 2011) 

 

Assembly of deletion plasmids 

p-jad-D 

SOK201jr1_F CGACATCAAGGACTGCGTAATCATGTCATAGCTGTTTCC 

SOK201jr1_reverse GAGTCCGTGGTACAGGTCGACGGATCTTTTCC  

JR1del1_forward GATCCGTCGACCTGTACCACGGACTCCTCGACC  

JR1del1_reverse GGATGGTGATCACCACTTCTACGGACGTCAGGC  

JR1del2_forward GTCCGTAGAAGTGGTGATCACCATCCGAGGC  

JR1del2_R CTATGACATGATTACGCAGTCCTTGATGTCGCAGATGG 

 

p-cml-D 

p201cmlD-F CGACGAACTGCTGCGTAATCATGTCATAGCTGTTTCC 

p201cmlD-R CCTCTCAACATAGCAACAGGTCGACGGATCTTTTCCGCTGC 

cmlD1-F GATCCGTCGACCTGTTGCTATGTTGAGAGGTATGTCGAGTCC 

cmlD1-R GTACTGCTCGTAGCACGAGTTGCTGCTGCTGCCG 

cmlD2-F GCAGCAACTCGTGCTACGAGCAGTACCACCAGTTCCTCG 

cmlD2-R GCTATGACATGATTACGCAGCAGTTCGTCGTCCGGC 

 

Assembly of gusA plasmids 

pSOK808::cmlFp 

cmlFp_forward CTTCGCACTTCGTGGTCGTCATGAACACTCCTTCTCCGCG  

cmlFp_reverse CCTTCGATCGATGGCTCCAACTACATCGCAGAAAGGGG  

808NP-F ATGTAGTTGGAGCCATCGATCGAAGGAGAGTTCACCATGCTGA 

808NP_R TGTTCATGACGACCACGAAGTGCGAAGTTCACCGAAGAGC  

 

pSOK808::cmlIp 

cmlIp_forward CTTCGCACTTCGTGCTCCGTCACCTTAAGGCCTCCG   

cmlIp_reverse CCTTCGATCGATGGTCTCGAAGTCTGTGGATATCGGTCGCG  

808NP_F CCACAGACTTCGAGACCATCGATCGAAGGAGAGTTCACCAT 

                GCTGA 

808NP_R CCTTAAGGTGACGGAGCACGAAGTGCGAAGTTCACCGAAGAGC 

 

pSOK808::cmlXp 

cmlXp_F GGTGAACTTCGCACTTCGTGGTCTCGAAGTCTGTGGATATCGG 
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               TCGCG 

cmlXp_R CCTTCGATCGATGCTCCGTCACCTTAAGGCCTCCG   

808NP_F TAAGGTGACGGAGCATCGATCGAAGGAGAGTTCACCATGCTGA 

808gusNP_R ACAGACTTCGAGACCACGAAGTGCGAAGTTCACCGAAGAGC 

 

pSOK808::jadJp 

jadJp_forward CTTCGCACTTCGTGGACGCTGTCCGAGCGGACACC   

jadJp_reverse CCTTCGATCGATGGACTCGCCTTCTCCGTACCCG   

808NP_F GGAGAAGGCGAGTCCATCGATCGAAGGAGAGTTCACCATG 

                CTGA 

808NP_R GCTCGGACAGCGTCCACGAAGTGCGAAGTTCACCGAAGAGC 

 

Assembly of gene cluster plasmids 

pSOK804_05-41_lin 

SOK804_forward ATCTCGGCCGCTTCTGCAGGTCGACTCTAGAGGATCCGC 

SOK804_reverse ACCATGATGAAGGCGAAGTTCACCGAAGAGCGCATTTTCG 

S05-41_lin_forward TCGGTGAACTTCGCCTTCATCATGGTGGCCTTCAGGTGC 

S05-41_lin_reverse AGTCGACCTGCAGAAGCGGCCGAGATGGACATCG 

 

pSOK804_112-09_lac 

SOK804_forward TCTGCGCAACATCCTGCAGGTCGACTCTAGAGGATCCGC  

SOK804_reverse GCTGCGGATGCGAAGTTCACCGAAGAGCGCATTTTCG  

112-09_Lact_F AATGCGCTCTTCGGTGAACTTCGCATCCGCAGCATCTTC 

                          GGCAAGC 

112-09_Lact_R AGTCGACCTGCAGGATGTTGCGCAGATCCAGGTCC  

 

pSOK806_112-09_lacNP 

SOK806_forward TGTAGCATCTGAGCTGCAGGTCGACTCTAGAGGATCCG  

SOK806_reverse CGAGGTGCGCTTCGATCCTACCAACCGGCACGATTGTCC  

112-09_lacNP_forward GGTTGGTAGGATCGAAGCGCACCTCGCGCCAGC  

112-09_lacNP_reverseCCTCTAGAGTCGACCTGCAGCTCAGATGCTACAG 

                                     CTCTGACGCGG 

 

B: Plasmid Maps 

In this project, eight plasmids were successfully generated from pSOK201, pSOK808, 

pSOK804, and pSOK806. pSOK201-jad-D and pSOK201-cml-D were assembled 

with two flanks of jadR1 or cml and a pSOK201 fragment. pSOK808-cmlFp, 

pSOK808-cmlIp, pSOK808-cmlXp, pSOK808-jadJp were assembled with one 
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promoter of cmlFp, cmlI, cmlXp, jadJp and a corresponding pSOK808 fragment. 

pSOK804-MPS05-Lin was designed to be assembled with the gene cluster of MPS05-

B41-cluster 28-Lincocin-M18-like (including native promoter) and a pSOK804 

fragment. pSOK804-MP112-Lac was assembled with the gene cluster of MP112-09-

cluster 6-Lactococcin972-like (including native promoter) and a pSOK804 fragment. 

pSOK806-MP112-LacNP was assembled with the gene cluster of MP112-09-cluster 

6-Lactococcin972-like with a pSOK806 fragment, in which the ermE* promoter 

replaced the native promoter. Figure B1  represents the details. 
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Figure B1 Schematic representation (made with Clone Manager version 6) of 

plasmids involved in the project. A: pSOK201. The oriR is replication origin while 

RP4 oriT is the origin of ssDNA transfer, where helper plasmid functions in trans. 

Besides, there is also an Am
R 

gene (selection marker) and a gene encoding replication 

initiator protein. B: pSOK201-jadR1-D. The green and red regions are two flanking 

fragments of jadR1and the blue is amplified from pSOK201. This plasmid contains a 

RP4 oriT but no oriR, because it was designed to be transferred to S. venezuelae and 

integrated to chromosome through homologous recombination without autonomous 

replication (suicide vector). C: pSOK201-cml-D. It is the same with pSOK201-jad-D 

except that the red and green are two cml flanks. D: pSOK808. The gusA is under 

control of ermE*, and the int encodes an integrase that mediates site specific 

recombination between attP and attB in bacterial chromosome (seen in 1.4.4.2). 

Besides this plasmid harbours oriR, RP4 oriT, and an Am
R 

gene as well. E-H: 

plasmids constructed by replacing ermE* with one of cmlFp, cmlI, cmlXp, jadJp, 

respectively. The four plasmids were integrated to host chromosome through site-
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specific instead of homologous recombination and used in GUS assays. I: pSOK804 

(a variant of pSOK808). This plasmid lacks ermE* and gusA compared to pSOK808. 

J: pSOK804 (a variant of pSOK808). This plasmid lacks gusA compared to pSOK808. 

K: pSOK804-MPS05-Lin. The blue part is the gene cluster of MPS05-B41-cluster 28-

Lincocin-M18-like that includes the native promoter while the red part is a pSOK804 

fragment that includes the oriR, Am
R
 gene, RP4 oriT, attP, and int without ermE*. 

Thus this plasmid could be integrated to host chromosome thorough site-specific 

recombination and the gene cluster was under control of its native promoter. O: 

pSOK804-MP112-Lac. This plasmid is same with K except that the gene cluster is 

MP112-09-cluster 6-Lactococcin972-like under control of its native promoter. P: 

pSOK806- MP112-LacNP. This plasmid is the same with O except that the native 

promoter was replaced with ermE*. 

C: Media Recipes 

Table C1 TAE buffer (50 ×).  

Diluted to 1× TAE buffer for DNA gel electrophoresis. Prepared by technicians. 

(BioinformationWeb 2013) 

Ingredients Amount/L sd H2O 

Tris-base 242.0 g 

Acetic acid (100 %) 57.1 ml 

EDTA (0.5 M) pH 8 100 ml 

 

Table C2 Agarose (0.8 %)  

The ingredients were melted in a microwave machine. The solution was stored at 60 

°C. Prepared by technician. (BioinformationWeb 2013) 

Ingredients Amount 

SeaKem LE Agarose 2.4 g 

1×TAE buffer 300 ml 

GelGreen Nucleic Acid Stain (10 000×) 30 μl 

 

Table C3 TSS-buffer.   

The pH was adjusted to 6.5, autoclaved (121 °C, 20min), then 5 % DMSO 

(volume/volume) was added. (LabLife 2011) 

Ingredients Concentration 

LB-media 85 % (volume/volume) 
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PEG6000 10 % (weight/volume) 

MgCl2 50 mM 

 

Table C4 LB/LA medium.  

Ingredients were dissolved in distilled water, and autoclaved at 121 °C for 20 min. 

For LA medium, different antibiotic(s) could be added when it had cooled down to 

50-60 °C. (Inoue, Nojima et al. 1990) 

Ingredients Concentration 

Tryptone 10 g/L 

Yeast extract 5 g/L 

NaCl 5 g/L 

Agar (only for LA medium) 15 g/L 

 

Table C5 2×YT medium.  

The ingredients were dissolved in distilled water. The pH was adjusted to 7.0, 

autoclaved at 121 °C for 20 min. (theLabRat 2005) 

Ingredients Concentration[g/L] 

Bacto Tryptone 16 

Bacto Yeast extract 10 

NaCl 5 

 

Table C6 Antibiotics. All were stored at - 20 °C after sterile filtered. 

Name Concentration of stock solution 

(mg/ml) 

Concentration in use (µg/ml) 

Ampicillin 100 in sdH2O 100 

Chlorampheni

col 

25 in 50%-100% EtOH 25 

Kanamycin 40 in sdH2O 20 

Nalidixic 30 in 0.1 M NaOH 30 

Apramycin 100 in  sdH20 100 for E.coli. 50 for S. 

venezuelae. 
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Table C7 Enzymatic lysis buffer.  

This buffer was used for isolating gDNA from S. venezuelae, made according to 

instruction of QIAGEN DNeasy
®

 Blood & Tissue kit. 

Components  Concentration 

Tris•HCl, pH 8.0 20 mM 

sodium EDTA 2 mM 

Triton
® 

X-100 (volume/volume) 1.2% 

 

Table C8 MYM medium.  

Ingredients were dissolved in distilled water before autoclaved at 121 °C for 20 min. 

(Doull, Singh et al. 1994) 

Ingredients Concentration [g/L] 

Maltose  4 

Yeast extract  4 

Malt extract  10 

 

Table C9 Lysis buffer.  

This buffer was vacuum filtered and kept in room temperature, used for GUS assay. 

(Prof Mervyn Bibb, John Innes Centre, UK) 

Components Concentration 

Na2HPO4 7H2O  8 g/L 

NaH2PO4 H2O 2.35 g/L 

triton X-100  0.1% (volume/volume) 

 

Table C10 Z-buffer.  

The pH was adjusted to 7, vacuum filtered and kept in room temperature, used for 

GUS assay. (Prof Mervyn Bibb, John Innes Centre, UK) 

Components Concentration [g/L] 

Na2HPO4 7H2O    16.1  

NaH2PO4 H2O         5.5 

KCl                            0.75 

MgSO4 7H2O          0.246 

 

Table C11 D-galactose-L-isoleucine (GI) medium.  
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This medium was used for jadomycin production. The ingredients were dissolved in 

sd H2O, with pH adjusted to 7.5, then autoclaved at 121 C, 20 min. (Doull, Singh et 

al. 1994)  

Components Concentration [g/L] 

D-galactose 18.2 

L-isoleucine 3.94 

KH2PO4 0.95 

K2HPO4 0.52 

MgSO4-7H2O 0.2 

CaCl2-2H2O 0.09 

NaCl 0.09 

FeSO4-7H2O 0.009 

Trace mineral solution 4.5 ml 

 

TSB (Tryptone Soya Broth) medium 

30 g powder TSB/L distilled water, autoclaved at 121 °C for 20 min. 

ISP4 medium  

37 g powder media/L distilled water.  

Autoclaved at 121 °C for 20 min. In this project three kinds ISP4 media plates were 

prepared: pure ISP4; ISP4 + MgCl2 (0.01M, added after autoclave); ISP4 + 

antibiotic(s) (added to the medium when it had cooled down to 50-60 °C). 

D: Raw Data in GUS Assay 

Table D1 BSA standard for WT and DD. 

 

WT DD 

BSA µg/ml Triplicate Blank Triplicate Blank 

0 0,326 0,328 0,328 0,327 0,325 0,327 0,331 0,323 

50 0,483 0,482 0,494 0,347 0,496 0,496 0,491 0,328 

100 0,596 0,636 0,610 0,339 0,628 0,593 0,629 0,339 
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150 0,711 0,734 0,736 0,340 0,673 0,715 0,696 0,345 

200 0,774 0,814 0,815 0,334 0,727 0,767 0,747 0,331 

250 0,866 0,879 0,947 0,346 0,836 0,840 0,854 0,332 

300 0,929 0,920 0,942 0,332 0,975 0,924 0,711 0,317 

 

Table D2 OD595 of WT ES- lysate (20×) in Bradford assay.  

Each biological replicate from flask culture had one triplicate. 

 Triplicate of biological 

replicate 1, ES- 

Triplicate of biological 

replicate 2,  ES- 

Triplicate of biological 

replicate 3,  ES- 

WT 0,516 0,502 0,530 0,573 0,536 0,528 0,463 0,500 0,495 

WT + 

pFgusA 

0,463 0,477 0,468 0,518 0,544 0,539 0,446 0,455 0,466 

WT + 

pIgusA 

0,489 0,511 0,496 0,521 0,533 0,543 0,456 0,466 0,471 

WT + 

pXgusA 

0,534 0,548 0,540 0,456 0,478 0,468 0,537 0,524 0,506 

WT + 

pJgusA 

0,576 0,597 0,588 0,527 0,548 0,557 0,625 0,628 0,641 

WT + 

p8gusA 

0,504 0,516 0,510 0,585 0,571 0,570 0,484 0,516 0,516 

 

Table D3 OD595 of WT ES+ lysate (20×) in Bradford assay. 

 Each biological replicate from flask culture had one triplicate. 

 Triplicate of biological 

replicate 1, ES+ 

Triplicate of biological 

replicate 2,  ES+ 

Triplicate of biological 

replicate 3,  ES+ 

WT 0,527 0,541 0,536 0,471 0,461 0,465 0,501 0,508 0,501 
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WT + 

pFgusA 

0,500 0,495 0,482 0,451 0,451 0,440 0,512 0,531 0,521 

WT + 

pIgusA 

0,426 0,432 0,425 0,535 0,546 0,528 0,468 0,503 0,503 

WT + 

pXgus

A 

0,435 0,424 0,434 0,489 0,505 0,502 0,476 0,450 0,492 

WT + 

pJgusA 

0,557 0,572 0,578 0,517 0,546 0,558 0,561 0,607 0,576 

WT + 

p8gusA 

0,508 0,502 0,512 0,477 0,484 0,481 0,451 0,456 0,463 

 

 

 

Table D4 OD595 of DD ES- lysate (20×) in Bradford assay.  

Each biological replicate from flask culture had one triplicate. 

 Triplicate of biological 

replicate 1, ES- 

Triplicate of biological 

replicate 2,  ES- 

Triplicate of biological 

replicate 3,  ES- 

DD 0,519 0,516 0,492 0,517 0,552 0,516 0,498 0,484 0,479 

DD + 

pFgusA 

0,507 0,540 0,517 0,446 0,456 0,446 0,530 0,531 0,525 

DD + 

pIgusA 

0,530 0,502 0,524 0,520 0,526 0,583 0,518 0,554 0,546 

DD + 

pXgus

A 

0,526 0,562 0,553 0,493 0,493 0,488 0,470 0,451 0,464 

DD + 

pJgusA 

0,558 0,564 0,544 0,484 0,509 0,485 0,541 0,524 0,539 

DD + 0,445 0,449 0,453 0,459 0,473 0,461 0,510 0,502 0,525 
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p8gusA 

 

Table D5 OD595 of DD ES+ lysate (20×) in Bradford assay.  

Each biological replicate from flask culture (each member in triplicate of GUA assay) 

had one triplicate. 

 Triplicate of biological 

replicate 1, ES+ 

Triplicate of 

biological replicate 2, 

ES+ 

Triplicate of 

biological replicate 3, 

ES+ 

DD 0,453 0,471 0,466 0,431 0,426 0,427 0,428 0,437 0,432 

DD + 

pFgusA 

0,558 0,549 0,560 0,462 0,469 0,470 0,454 0,470 0,456 

DD + 

pIgusA 

0,492 0,481 0,492 0,486 0,479 0,492 0,389 0,407 0,384 

DD + 

pXgusA 

0,523 0,541 0,558 0,463 0,498 0,494 0,419 0,426 0,425 

DD + 

pJgusA 

0,510 0,516 0,534 0,558 0,581 0,585 0,538 0,631 0,647 

DD + 

p8gusA 

0,515 0,562 0,542 0,525 0,547 0,524 0,545 0,563 0,545 

 

Table D6 OD420 and OD550 of WT ES-/+ in GUS assay at ‘30min’. 

 ‘OVER’ means the OD value exceeded the measurement limitation, and was not 

calculated for the final results. 

  

OD420 OD550 

0.1 ml 

lysate 

WT 
0,047

7 

0,061

2 

0,089

8 

0,037

8 

0,067

7 

0,086

4 

WT + 

pFgusA 

1,967

4 

1,928

6 

1,874

2 

0,080

4 

0,080

2 

0,080

5 
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WT + 

pIgusA 

0,135

1 

0,114

2 

0,044

3 

0,063

3 

0,061

2 

0,038

5 

WT + 

pXgusA 

0,371

3 

0,371

1 

0,369

0 

0,069

7 

0,060

3 

0,038

1 

WT + 

p8gusA 

OVE

R 

OVE

R 

OVE

R 

0,086

8 

0,086

9 

0,088

4 

0.5 ml 

lysate 

WT + 

pJgusA 

0,342

6 

0,450

9 

0,583

1 

0,041

3 

0,077

8 

0,106

6 

0.1 ml 

lysate 

WT 
0,056

5 

0,066

1 

0,099

8 

0,043

7 

0,073

3 

0,092

7 

WT + 

pFgusA 

3,093

0 

3,665

7 

3,208

1 

0,083

8 

0,084

5 

0,082

2 

WT + 

pIgusA 

0,148

0 

0,168

5 

0,250

3 

0,071

1 

0,072

8 

0,076

8 

WT + 

pXgusA 

0,597

9 

0,415

0 

0,440

6 

0,073

6 

0,062

9 

0,040

6 

WT + 

p8gusA 

OVE

R 

OVE

R 

OVE

R 

0,088

9 

0,086

2 

0,090

9 

0.5 ml 

lysate 

WT + 

pJgusA 

0,300

8 

1,107

8 

0,546

9 

0,043

5 

0,063

5 

0,109

3 

 

Table D7 OD420 and OD550 of DD ES-/+ in GUS assay at ‘30min’. 

‘OVER’ means the OD value exceeded the measurement limitation, and was not 

calculated for the final results. 

   

OD420 OD550 

30min, 17sec, 

ES- 

0.1 ml 

lysate 
DD 

0,05

51 

0,06

33 

0,09

52 

0,04

42 

0,07

33 

0,09

09 
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DD + 

pFgusA 

0,60

94 

OVE

R 

0,96

17 

0,08

6 

0,08

38 

0,08

69 

31min, 49 sec, 

ES- 

0.1 ml 

lysate 

DD + 

pIgusA 

0,07

84 

0,11

85 

0,25

92 

0,03

98 

0,06

51 

0,09

65 

DD + 

pXgusA 

0,24

75 

0,44

35 

0,59

83 

0,08

64 

0,08

77 

0,09

08 

DD + 

p8gusA 

OVE

R 

OVE

R 

OVE

R 

0,07

52 

0,06

75 

0,03

95 

0.5 ml 

lysate 

DD + 

pJgusA 

0,15

11 

0,16

58 

0,13

15 

0,08

96 

0,10

04 

0,09

23 

33min, 20sec, 

ES+ 

0.1 ml 

lysate 

DD 
0,04

79 

0,06

23 

0,09

29 

0,03

82 

0,06

83 

0,09

14 

DD + 

pFgusA 

1,91

75 

1,81

4 

2,11

4 

0,08

79 

0,08

62 

0,08

71 

DD + 

pIgusA 

0,10

49 

0,10

56 

0,12

79 

0,07

05 

0,06

88 

0,07

19 

DD + 

pXgusA 

0,44

42 

0,53

27 

0,43

46 

0,07

53 

0,06

17 

0,03

83 

DD + 

p8gusA 

0,06

67 

0,10

61 

0,14

11 

0,04

25 

0,07

97 

0,11

72 

0.5 ml 

lysate 

DD + 

pJgusA 

OVE

R 

OVE

R 

OVE

R 

0,08

99 

0,09

24 

0,09

98 

Table D8 OD420 and OD550 of WT ES-/+ in GUS assay at ‘67min’.  

‘OVER’ means the OD value exceeded the measurement limitation, and was not 

calculated for the final results. 

   

OD420 OD550 

66min, 

ES- 

0.1 ml 

lysate 
WT 

0,047

3 

0,061

7 

0,088

9 

0,038

2 
0,072 

0,086

2 
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WT + 

pFgusA 

3,382

4 

3,300

6 
3,243 

0,077

4 

0,076

5 

0,078

7 

WT + 

pIgusA 

0,192

9 

0,156

5 

0,044

6 
0,064 

0,062

7 

0,038

6 

WT + 

pXgusA 

0,632

4 

0,635

2 

0,661

1 

0,066

9 

0,060

7 

0,037

8 

WT + 

p8gusA 

OVE

R 

OVE

R 

OVE

R 

0,088

5 

0,087

8 

0,089

9 

0.5 ml 

lysate 

WT + 

pJgusA 

0,597

4 

0,772

2 

0,987

5 

0,041

4 

0,080

9 

0,106

9 

66min, 

ES+ 

0.1 ml 

lysate 

WT 
0,057

4 

0,072

1 

0,100

4 

0,043

5 

0,081

2 

0,092

8 

WT + 

pFgusA 
3,867 

3,938

9 

OVE

R 

0,082

1 

0,084

9 

0,082

3 

WT + 

pIgusA 
0,232 

0,273

4 

0,450

8 

0,074

4 

0,075

9 

0,075

6 

WT + 

pXgusA 

1,205

3 

0,825

1 

0,913

4 

0,071

4 

0,065

3 

0,040

4 

71min, 

ES+ 

0.1 ml 

lysate 

WT + 

p8gusA 

OVE

R 

OVE

R 

OVE

R 

0,086

7 

0,088

9 

0,090

7 

0.5 ml 

lysate 

WT + 

pJgusA 

0,605

4 

2,292

6 

1,049

4 

0,041

6 

0,076

3 

0,107

8 

 

Table D9 OD420 and OD550 of DD ES-/+ in GUS assay at ‘67min’.  

‘OVER’ means the OD value exceeded the measurement limitation, and was not 

calculated for the final results. 

   

OD420 OD550 

67min, 

ES- 

0.1 ml 

lysate 
DD 

0,05

82 

0,06

6 

0,09

6 

0,04

86 

0,07

5 

0,09

12 
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DD + 

pFgusA 

1,35

66 

OV

ER 

2,16

39 

0,08

75 

0,08

68 

0,08

88 

68min, 

ES- 

0.1 ml 

lysate 

DD + 

pIgusA 

0,11

57 

0,19

36 

0,48

13 

0,04

05 

0,07

01 

0,09

67 

DD + 

pXgusA 

0,47

08 

0,93

64 

1,28

69 

0,08

67 

0,09

18 

0,09

14 

DD + 

p8gusA 

OV

ER 

OV

ER 

OV

ER 

0,08

64 

0,09

69 

0,09

07 

0.5 ml 

lysate 

DD + 

pJgusA 

0,21

29 
0,23 

0,16

69 

0,08

94 

0,07

32 

0,03

93 

67min, 

ES+ 

0.1 ml 

lysate 

DD 
0,04

8 

0,06

13 

0,09

65 

0,03

83 

0,06

82 

0,09

28 

DD + 

pFgusA 

3,56

88 

3,48

66 

3,86

16 

0,08

64 

0,08

46 

0,08

5 

DD + 

pIgusA 

0,14

17 

0,14

4 

0,19

21 

0,07

16 

0,07

12 

0,07

46 

DD + 

pXgusA 

0,87

61 

1,08

49 

0,90

31 

0,07

82 

0,06

18 
0,04 

DD + 

p8gusA 

OV

ER 

OV

ER 

3,90

4 

0,08

76 

0,09

04 

0,09

7 

0.5 ml 

lysate 

DD + 

pJgusA 

0,08

54 

0,12

87 

0,15

71 

0,04

42 

0,07

92 

0,11

31 

 

 


