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Glossary

I Region of spheres centered around atomic sites in unit cell.

II Interstitial region in unit cell, covering everything except for region I spheres.

JIIµµ′ Integral involving initial and final wavefunctions of charge carrier. Taken over region
II in unit cell.

JIµµ′ Integral involving initial and final wavefunctions of charge carrier. Taken over region
I in unit cell.

Jµµ′ Integral involving initial and final wavefunctions of charge carrier.

L {l,m}. Compact notation for angular quantum number and magnetic quantum number.

N Number of bands participating in wannierization; number of lattice points in real-space
supercell.

Pmnn′(k,k′) Scattering probability per unit time from initial to final state for scattering
mechanism m.

Rβ Radius of sphere β.

U†nm(k) The conjugate-transpose of the unitary matrix that produces Maximally localized
Wannier functions.

Unm(R) Unitary matrix contribution from lattice point R, involved in Wannier interpo-
lation.

Unm(k) Unitary matrix involved in Wannier transformation. The matrix is picked such
that it maximally localized the Wannier functions according to a particular localiza-
tion criterion.

V Volume of unit cell.

Vβ Volume of region I sphere β.
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Glossary

YL(r̂β) Spherical harmonics function.

ΦβLσ(rβ , El) Basis function acquired in the Scalar relativistic approximation using Dirac’s
equation. May be split into a radial part and an angular part: ΦβLσ(rβ , El) =

uβlσ(rβ , El)YLr̂β .

K Reciprocal lattice vector, involved in conservation of momentum for a scattering pro-
cess.

R Bravais lattice vector.

Rβ Vector originating in global origin of unit cell, and terminating at atomic site β; the
local origin inside sphere β.

q Fourier component of perturbed potential.

r Global coordinate in the unit cell.

γ Compact notation for {n,σ,R}; band index, spin and lattice vector, respectively.

µ Compact notation for {n,σ,k}; band index, spin and wavevector, respectively.

ωγ(r) Wannier function used in the calculation of overlap factors.

ψµ(r) Wavefunction of carrier state undergoing scattering.

rβ Local coordinate inside sphere β of region I.

u.c Unit cell.

uµ(r) Cell-periodic part of carrier wavefunction in state µ.

x Integration constant given by Rβ |G2 −G1 +K| where G1, G2 and K are reciprocal
lattice vectors.

0R Reference lattice point.

σ Spin orientation of initial carrier state.

σ′ Spin orientation of final carrier state.

k Wavevector of initial carrier state.

k′ Wavevector of final carrier state.

u̇βlσ(rβ , E1,l) Radial component of basis function, uβlσ(rβ , E1,l), differentiated with re-
spect to energy: ≡ dul(rβ ,E1,l)

dE

∣∣
E1,l

.

aβγ,L Expansion coefficient for region I Wannier function, associated with ul(rβ , E1,l).

aβµ,L Expansion coefficient for region I in (L)APW(+lo) basis set, associated with ul(rβ , E1,l).

bβγ,L Expansion coefficient for region I Wannier basis function, associated with u̇l(rβ , E1,l).
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Glossary

bβµ,L Expansion coefficient for region I in (L)APW(+lo) basis set, associated with u̇l(rβ , E1,l).

Cmnn′(k,k′) Scattering interaction element for transition from initial to final state for scat-
tering mechanism m.

cβγ,L Expansion coefficient for region I Wannier function, associated with ul(rβ , E1,l).

Cβγ (G) Expansion coefficient for region II Wannier function, associated with eiG·r.

cβµ,L Expansion coefficient for region I in (L)APW(+lo) basis set, associated with ul(rβ , E1,l).

Cβµ (G) Expansion coefficient for region II in (L)APW(+lo) basis set, associated with
ei(k+G)·r.

Gµµ′ Wavefunction overlap factor for transition from state µ = {n,σ,k} to µ′ =
{n′,σ′,k′} for scattering mechanism m.

Gnn′(k,k′) Wavefunction overlap factor for transition from state {n,k} to {n′,k′} for
scattering mechanism m.

jl(x) Bessel function of the first kind.

l Angular momentum quantum number.

m Magnetic quantum number; scattering mechanism in Fermi’s Golden Rule.

Mm
nn′(k,k′) Matrix element for transition from state {n,k} to {n′,k′} for scattering

mechanism m.

n Band index of initial carrier state.

n′ Band index of final carrier state.

uβlσ(rβ , E1,l) Radial component of basis function acquired in the Scalar relativistic ap-
proximation.

uβlσ(rβ , E2,l) Radial component of basis function acquired in the Scalar relativistic ap-
proximation. Evaluated at a different energy E2,l than uβlσ(rβ , E1,l).

xσ Two-component spinor.
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Acronyms

(L)APW(+lo) (Linearized) Augmented plane-wave (+ local orbitals).

AMF Around mean-field.

APW Augmented plane-wave.

APW+lo Augmented plane-wave + local orbitals.

BTE Boltzmann transport equation.

BZ Brillouin-zone.

DFT Density functional theory.

FLL Fully localized limit.

GGAs Generalized gradient approximations.

KS Kohn-Sham.

L(S)DA Local (spin) density approximation.

LAPW Linearized augmented plane-wave.

LDA Local density approximation.

MC Monte Carlo.

MLWFs Maximally localized Wannier functions.
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Acronyms

SCF Self-consistent field.

SOC Spin-orbit coupling.

SRA Scalar relativistic approximation.

WFs Wavefunctions.
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Abstract

In the work with this Master thesis, expressions for the wavefunction overlap factor be-
tween eigenfunctions are obtained. These expressions should be suitable for numeric inte-
gration over the Brillouin zone, and are derived in the Linearized Augmented plane-wave
(+local orbitals) ((L)APW(+lo)) and Maximally localized Wannier functions (MLWFs)
bases. The expression obtained for both bases is found to be suitable for numeric inte-
gration over the Brillouin zone. A routine computing the (L)APW(+lo) overlap has been
implemented for normal scattering processes. Based on a Wien2k-simulation for GaAs,
the bandstructure of GaAs is discussed. Furthermore, the implemented routine is used
to plot the norm of near-band edge states. As expected, values very close to 1 are ob-
tained. The distribution of the wavefunction between the two regions of the Augmented
plane-wave method is also discussed for the near-band edge electron states.

I arbeidet med denne masteroppgaven har uttrykk for overlappintegralet mellom egen-
funksjoner blitt beregnet. Uttrykkene skal være passende for numerisk integrasjon over
Brillouinsonen, og er bergenet i de respektive basisene som på engelsk heter Linearized
Augmented plane-wave (+local orbitals) ((L)APW(+lo)) og Maximally localized Wannier
functions (MLWFs). De beregnede uttrykkene er vurdert til å passe for numerisk inte-
grasjon over Brillouinsonen, og for (L)APW(+lo) er overlappet implementert for normale
spredningsprosesser. Med utgangspunkt i en Wien2k-simulering på GaAs er båndstrukturen
og normen til egenfunksjoner presentert. For bånd nær båndgapet er i tillegg fordelingen
av bølgefunksjonen mellom de to regionene i Augmented plane-wave-metoden diskutert.
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Chapter 1
Introduction

Computational electronics is increasingly playing an important role in explaining phys-
ical phenomena in semiconductor devices. As the size of electronic components enters
the nanometer regime, the behavior of these components becomes ever more complex.
At the nanometer scale, new physical phenomena, only occurring at the shortest scales,
must be accounted for. The processes involved in manufacturing electronic components
in the nanometer regime are usually too complex and time-consuming for a trial-and-error
approach. Computational electronics offers the electronic engineer insight into compo-
nent behavior at a significantly lower cost. Another exciting application of computational
electronics is the investigation of hypothetical devices: electronic components that are cur-
rently not technologically feasible to manufacture may be modeled through computational
simulations. Last, device simulations permits the engineer to observe aspects of device
behavior that are impossible to observe in the laboratory, either due to the laws of quan-
tum mechanics or limitations on sensors. Electronic device simulations should not only
provide a sufficiently sophisticated model, but preferably do so at minimal computational
cost [1, 2].

This thesis deals with the calculation of scattering matrix elements based on first princi-
ples generated eigenfunctions and band structures from Density functional theory (DFT)
software Wien2k [3]. The work done here is part of a larger project aiming at providing a
general purpose Monte Carlo (MC) particle simulator to be used in the fields of materials
technology and semiconductor optoelectronic devices [4]. The program should be general
purpose in the sense that it simulates various materials or devices equally well, with little
effort needed switching from one material to another. As no transport simulations from
the MC program are presented here, the MC method will only be discussed in light of
the scattering matrix elements it takes as input. For more detail on the MC method, the
reader is referred to The Monte Carlo Method for Semiconductor Device Simulation by C.
Jacoboni and P. Lugli[5].
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Chapter 1. Introduction

The Monte Carlo program accepts analytical as well as tabulated band structures as in-
put. The analytical band model has a well-defined mathematical representation; the tab-
ulated model is a discrete representation of the band structure over the Brillouin-zone,
obtained from first principles calculations. In previous work by Karlsen, Selvåg and
Bergslid, Monte Carlo simulations are presented, using scattering rates calculated from
the k · p method as well as full-band data acquired from ab-initio pseudopotential soft-
ware ABINIT [6, 7, 8, 9]. In the case of ab-initio software ABINIT, the scattering rates
are based on first principles tabulated band structures, but the carrier state wavefunctions
involved are calculated from the 14 × 14 k · p [10]. The k · p method requires empiri-
cal input to determine the hamiltonian matrix. Furthermore, the method is not expected
to give an accurate description of the wavefunction near the Brillouin-zone edges as only
first-order perturbation terms are accounted for. Although the band data is ab-initio, the
wavefunctions are not. The chief achievement of the current scheme, then, is the step from
a semi-experimental, pertubative approach, used to describe the carrier state wavefunc-
tions to a description based solely on first principles electronic structure codes, valid over
the entire Brillouin-zone.

The scattering matrix elements arrived upon must be applicable for the MC program. In
the current MC simulator, carrier movement is treated classically, while scattering events
are treated quantum mechanically. To determine the probability distribution of the free
flights duration, i.e the time interval between two scattering events, one must integrate the
scattering matrix elements over the Brillouin-zone. In addition, the MC program assumes
a decomposition of the matrix elements into two parts: the first part is an interaction matrix
element which depends on the particular scattering mechanism that the carrier undergoes.
The second is an overlap integral between initial and final wavefunction state, referred to as
the wavefunction overlap factor. It is the wavefunction overlap factor that we are interested
in. The details of this decomposition are shown in Chapter 2.1. Since the wavefunction
overlap elements are tabulated, we demand that they be suitable for numeric integration
over the Brillouin-zone.

In a specialization project by this author, a Local density approximation (LDA) based DFT
approach was shown to underestimate the band gap in the alloy HgCdTe [2]. Generally,
the LDA+DFT approach is known to systematically underestimate the band gap by about
40% [11]. LDA by itself overestimates the energy level of deep-lying d states; a Hubbard
model U will better account for the strongly correlated d states, and was in the mentioned
specialization project shown to increase the band gap of HgCdTe. To tackle the system-
atic band gap underestimation, a modified Becke-Johnson potential should be used [12].
Finally, with respect to alloy semiconductors, it is possible to use a backfolding approach:
One conducts supercell calculations, yielding a smaller supercell band structure as com-
pared with that of a normal unit cell calculation. The supercell band structures must then in
a second step be folded back to the larger unit cell band structure. This may be done using
a spectral weight approach [13]. In summary, the band structures and eigenfunctions, to be
used in the MC program, should be obtained using a DFT+U+mBJ+backfolding approach.

In addition to simulating carrier transport using the Wien2k augmented plane-wave repre-
sentation, it is possible to use a real-space basis known as the Maximally localized Wannier
functions (MLWFs). There are a number of advantages associated with the use of a ML-
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WFs representation compared to the original (L)APW(+lo). First of all, the current Monte
Carlo program uses band structures and potentially eigenfunctions from external ab-initio
programs. Various ab-initio programs will generally be based on different bases, respec-
tively. A standardization, where one does not need to worry about the basis in which input
parameters are represented, will obviously make the transport program more attractive.
One simply converts a specific ab-initio representation into a standardized representation
used for the Monte Carlo program. In order to implement such a standardization, one
needs a general algorithm able to change the representation found in most ab-initio pro-
grams to the standardized functions used. Indeed, such an algorithm has been developed
by Nicola Marzari, Ivo Souza and David Vanderbilt, that iteratively transforms a set of
Bloch orbitals obtained from a first principles calculation into a set of MLWFs. This algo-
rithm works without regard to the particular first principles calculation technique adopted
or the basis set, and therefore satisfies the requirements needed for a standardization of the
Monte Carlo program [14]. Second, the Wannier representation is well-suited for quantum
transport. MLWFs offer a compact representation, yielding much simplified tight-binding
like operations related to band structure and transport calculations. Currently, band struc-
ture and transport are done in series, but in simulation of very small devices, band struc-
tures must be recalculated in parallel with the transport simulation to account for internal
redistribution of charge [1]. This represents a formidable computational task and is done
at a lower computational cost in a tight-binding-like representation. A final advantage of
the Wannier representation is linear scaling. Linear scaling methods are electronic struc-
ture calculation methods where the computational cost increases linearly with the size of
the system. One uses results from electronic-structure calculations on smaller systems
to model larger ones. Due to the above reasons, it may be expedient to post-process the
Wien2k data using the Wien2k-interface software Wien2Wannier and the program Wan-
nier90, carrying eigenfunctions in the (L)APW(+lo) representation over to a MLWFs basis
[15, 16]. It should be emphasized that Wannier functions are to be used only when they
are beneficial in their own right for the particular problem at hand. Possibly, both the
(L)APW(+lo) method and Wannier representation will be available in the Monte Carlo
simulations.

Electronic transport in semiconductors is governed by the Boltzmann transport equation
(BTE), which is commonly solved either analytically or by MC simulation. With respect to
the (L)APW(+lo) and Wannier bases, two interesting schemes, based on solving the Boltz-
mann transport equations (BTEs) in the relaxation time approximation are available. The
relaxation time τ represents the overall contribution to transport from scattering mecha-
nisms; there is indeed a formal connection [10]. The first scheme is presented by Madsen et
al. (2006), a software named BoltzTraP [17]. BoltzTraP is a code for calculating transport
quantities such as the semi-classic Seebeck and Hall coefficients using the (L)APW(+lo)
basis. Band structures are Fourier expanded and interpolated to obtain an analytical band
structure. The analytical expression readily permits the computation of transport quantities
such as first and second derivatives of the band structure. Once analytical band structure
expressions are obtained, the Botzmann transport equations (BTEs) are solved in the re-
laxation time approximation. In its early days, the code assumed constant relaxation time,
but since recently accepts an energy-dependent model, i.e where τ = τ(ε). The second
scheme, BoltzWann, is presented by G. Pizzi et al. (2014) [18]. Also based on BTEs
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Chapter 1. Introduction

within the relaxation time approximation, BoltzWann calculates band structure dependent
quantities using the Wannier representation. Analytical band structures are obtained us-
ing Wannier interpolation, making band structure-dependent quantities easily accessible.
While BoltzTrap accounts for an energy-dependent relaxation time model, BoltzWann is
able to use any model for the relaxation time, even those based on first principles calcu-
lations. Although the above methods differ fundamentally from MC in that the BTEs are
solved in the relaxation time approximation, rather than using pseudorandom numbers to
simulate transport, we may capitalize on the interpolation schemes presented in BoltzWann
and BoltzTrap in the MC scheme. Fourier and Wannier interpolation offer a way of saving
data on a coarse mesh and then interpolate without significant loss of precision. In par-
ticular, one should consider two possible applications for the MC program: First, when
dealing with the wavefunction overlap factor between states of differing wavenumber k
and k′. The amount of data needed to tabulate the wavefunction overlap factors on a fine
mesh is impractical, and Fourier or Wannier interpolation permits a coarser grid without
significant loss of detail. Second, Bergslid (2013) reported in his work on the current
MC program a so-called ripple effect from the Brillouin-zone-integration. Currently, the
Gilat-Raubenheimer method is employed for Brillouin-zone-integration, and for finer grid
the bands are interpolated using a method by Fischetti & Laux [19, 20]. To prevent the
ripple effect reported by Bergslid, a band interpolation scheme developed by E. Pickett et
al. (1988), on which the BoltzTrap interpolation scheme is based, may be of interest [21].

With regard to the wavefunction overlap factors to be calculated in this thesis, packages
exist which calculate optical matrix elements in the (L)APW(+lo) and Wannier bases, re-
spectively, based on first principles code Wien2k. Ambrosch-Draxl et al. (2006) presents
a scheme, implemented in Wien2k as Optic, for calculating optical properties within
the random-phase approximation using the full-potential LAPW method [22, 23]. Since
Ambrosch-Draxl et al. are interested in the dielectric constant, they develop an expres-
sion involving momentum matrix elements in the LAPW basis. Another package, Woptic,
developed by Assmann et al. (2015), calculates the optical conductivity in a basis of Maxi-
mally localized Wannier functions. Within the framework of dynamical-mean-field-theory,
a method to determine the electronic structure of strongly correlated materials, the optical
conductivity is given as a Brillouin-zone sum involving dipole matrix elements expressed
in terms of Wannier functions [24, 25, 26]. Once a Wien2k-simulation has been run, opti-
cal matrix elements may be extracted, either from the program Optic or Woptic, according
to what basis is used: (L)APW(+lo) or Wannier. These dipole matrix elements are then fed
into the MC program. As mentioned above, the MC program assumes a decomposition of
the scattering matrix element in Fermi’s Golden Rule, meaning both the interaction matrix
element and the wavefunction overlap factor are required. In the case of matrix elements
from Optic and Woptic, no such decomposition is made. The appropriate way to employ
these dipole matrix elements is therefore to input them as the interaction element while
the wavefunction overlap factor between initial and final scattering states is set to identity.
Finally, Fabien Tran has developed a routine computing the wavefunction overlap factor
between (L)APW(+lo) functions. Although this is exactly the kind of operator matrix el-
ements needed for the MC program, the routine applies only to identical initial and final
wavevectors; if initial wavevector differs from final wavevector, some phase factors will
be missing from the wavefunction overlap factor [27].
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The discussion above on Wannier functions, the packages Boltztrap, Boltzwann, Optic and
Woptic is based on a similar discussion presented in a specialization project by this author
[2].

This thesis is organized as follows: In Chapter 2, relevant theory for the calculation of
scattering matrix elements is presented. This includes topics such as Scattering rates &
Fermi’s Golden Rule, Density Functional theory, the Full-potential Augmented plane-
wave method, Wannier functions and Gaunt numbers. In Chapter 3, we first calculate
scattering rates in the (L)APW(+lo) basis set and Wannier basis, respectively. In Chapter
4, we consider the computation of scattering rates as well as numeric suitability of the
scattering rates. Finally, in Chapter 5, we apply the scheme developed to investigate the
electron states og GaAs near the band edge.
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Chapter 2
Theory

In this chapter, theory relevant for the calculation and computation of scattering operator
matrix elements used in MC simulation of electron transport is discussed. Some of the
theory is built on that of a specialization project written by this author [2]. Chapters 2.1
and 2.4 have merely been improved with tidier notation, while all other sections involve
more comprehensive changes. The discussions on APW, LAPW and local orbitals have
been rewritten entirely. New sections have been added on the following topics: the secular
equation, the scalar relativistic approximation, the inclusion of spin-orbit effects as a sec-
ond variational step, inversion symmetries, the kinetic energy operator, and finally Gaunt
numbers. In summary, except for the section on scattering rates and Wannier functions, all
material in this chapter is either new or it has been changed significantly.

2.1 Scattering rates & Fermi’s golden rule

A number of different scattering mechanisms contribute to the transport of electrons, some
of them being

• Acoustic deformation potential phonon scattering

• Acoustic piezoelectric phonon scattering

• Polar optical phonon scattering

• Nonpolar optical phonon scattering

• Ionized impurity scattering

• Neutral impurity scattering

• Carrier-carrier scattering

7



Chapter 2. Theory

• Alloy scattering

Depending on material, temperature and carrier concentration, some of the mechanisms
play a negligible role in carrier transport and may be omitted. The scattering rates are
in the Monte Carlo program given in first-order time-dependent perturbation theory. The
probability of transition per unit time from one energy eigenstate to another for a particular
scattering mechanism is according to Fermi’s Golden Rule given as

Pmnn′(k,k′) =
2π

~
∣∣Mm

nn′(k,k′)
∣∣2δ(En(k) + ∆Em(k,k′)− En′(k′)

)
(2.1)

where the initial state is labeled by band index n and wavevector k and the final state
labeled by {n′,k′}. Mm

nn′(k,k′) represents the matrix element for the transition, depend-
ing on the initial and final state as well as the perturbed potential; m denotes the particular
scattering mechanism at play. ∆Em(k,k′) is the energy difference between initial and
final carrier undergoing scattering. Finally, En(k) is the dispersion relation for band n.
While the δ-function ensures energy conservation, the interaction matrix element ensures
momentum conservation. In the context of Bloch states, the momentum conservation holds
only up to a reciprocal lattice vector: k − k′ + q = K. Here, q denotes a Fourier com-
ponent of the perturbed potential. In the case of carrier-phonon scattering, it is interpreted
as ± the phonon momentum, depending on whether the phonon is absorbed or emitted,
respectively. K represents a reciprocal lattice vector. If K is nonzero, the scattering pro-
cess is referred to as an Umklapp process. If zero, it is referred to as a normal scattering
process.

It is often convenient to decompose the matrix element into a part involving the scattering
interaction and another the overlap between initial and final scattering states, referred to
as the wavefunction overlap factor

∣∣∣Mm
nn′(k,k′)

∣∣2 =
∣∣Cmnn′(k,k′)

∣∣2Gnn′(k,k′) (2.2)

While Cmnn′(k,k′) represents the scattering interaction element, generally depending on
the particular interaction as well as initial and final carrier states, Gnn′(k,k′) involves
only the wavefunctions. The latter is an integral taken over the unit cell and only involves
the cell-periodic part of the initial and final Bloch wave. The decomposition in (2.2) is
strictly speaking formal, i.e

∣∣Cmnn′(k,k′)
∣∣2 =

∣∣Mm
nn′(k,k′)

∣∣2
Gnn′(k,k′)

(2.3)

In practicality though, one often approximates this relation by assuming the interaction to
be constant over the unit cell. See for example Chapter 6.5 of J. Singh, Electronic and
optoelectronic properties of semiconductor structures [10, 28]. In MC transport simu-
lations, we are often not interested in the spin orientation of initial and final states. To
appropriately deal with this, one averages over initial spin states and sums over final ones
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2.2 Density functional theory

Gnn′(k,k′) =
1

2

∑
σ

∑
σ′

Gµµ′ (2.4)

whereGµµ′ is the wavefunction overlap factor between initial state µ with spin σ and final
state µ′ with spin σ. µ by itself already includes the spin orientation, used as a compact
notation for {n,σ,k}; namely band index, spin and wavenumber, respectively. Gµµ′ is
given by

Gµµ′ =
∣∣∣ ∫

u.c
d3ru∗µ′(r)uµ(r)eiK·r

∣∣∣2 (2.5)

where K is again a reciprocal lattice vector and uµ(r) is the cell-periodic part of the
Bloch state. The integral in (2.5) runs over the unit cell. If the scattering interaction∣∣Cmnn′(k,k′)

∣∣2 for a particular scattering mechanism is known, then only Gnn′(k,k′) is
needed to determine the scattering rate. The interaction matrix element

∣∣Cmnn′(k,k′)
∣∣2

may be found for a number of scattering mechanisms from Brudevoll et al. (1990) and
Ridley B. K, Quantum Processes in Semiconductors [29, 30].

2.2 Density functional theory

To calculate scattering rates with Fermi’s golden rule, the energy bands and wavefunctions
of initial and final states must be available. This information may be obtained using Den-
sity functional theory (DFT). DFT is a computational quantum-mechanical method used in
the investigation of many-body systems. The essence of the method is to treat the electron
density of the many-body system as a functional; namely a function of functions. First, the
Hohenberg-Kohn theorem and Kohn-Sham equations are presented, before the exchange-
correlation potential is investigated. At the end, the self-consistent solution method and
the secular equation are discussed.

2.2.1 Kohn - Sham equations

The Hohenberg-Kohn theorem states that for a given system, the total energy may be
given as a functional of the ground state electron density. Furthermore, this ground state
electron density minimizes the total energy functional. Both electron interactions and
external potentials are taken into account in the total energy functional. For our purposes,
a given system denotes the crystal of interest and the external potential is the Coulomb
potential from the nuclei crystal. While the original theorems applied to non-magnetic
systems, it has later been generalized to take spin-polarization into account.

Starting with the non-magnetic version, the energy functional reads

9



Chapter 2. Theory

E = E[ρ] (2.6)

Even though the Hohenberg-Kohn theorem guarantees that an energy functional exists, it
does not provide any model for the energy functional itself. For density functional theory
to be useful, it is vital that the model used for the functional is sufficiently accurate. The
functional may be decomposed into a set of terms corresponding to different kinds of
energy contributions

E[ρ] = Ts[ρ] + Eei[ρ] + EH [ρ] + Eii[ρ] + Exc[ρ] (2.7)

Ts is the single particle kinetic energy, Eei is the energy due to the Coulomb interac-
tion between electrons and nuclei, and Eii comes from nucleon-nuclei interactions. The
electron-electron interaction is decomposed into EH and Exc. These are given by

EH [ρ] =
e2

2

∫
d3rd3r′

ρ(r)ρ(r′)

|r − r′|
(2.8)

Exc[ρ] =

∫
d3rρ(r)εxc(ρ(r)) (2.9)

The Hartree energy originates from the Coulomb repulsion between electrons, and its an-
alytical expression is given exactly. On the other hand, the exchange-correlation term is
not known; it must be approximated by defining EH [ρ] appropriately. The expression in
(2.9) corresponds to a Local density approximation (LDA) since εxc is a function local in
the density. Another common model, the Generalized gradient approximations (GGAs),
includes the local density as well as the local gradient.

In order to determine the ground state energy and ground state density, the total density is
expressed in terms of single particle densities

ρ(r) =

N∑
i

φ∗i (r)φi(r) (2.10)

Here, i runs over the N electrons present in the crystal structure, and φi(r) is the single
particle wavefunction for electron i. Next, the variational principle is invoked to find the
ground state energy with respect to ρ(r). Doing so yields the Kohn-Sham (KS) equations
as shown by W. Kohn and L. J. Sham in 1965 [31]

V KSφi(r) =
(
T + Vei(r) + VH(r) + Vxc(r)

)
φi(r) = εiφi(r) (2.11)

ρ(r) =

N∑
i

φi(r)φ∗i (r) (2.12)

10



2.2 Density functional theory

where V KS is the KS potential. T is the single particle kinetic energy operator, Vei denotes
the Coulomb potential operator due to electron-nuclei interactions for orbital φi(r), VH
represents the Coulomb interaction between electrons, and Vxc stands for the exchange-
correlation potential. Finally, εi is the KS eigenvalue corresponding to the KS orbital
φi(r). VH(r) and Vxc(r) are explicitly given by

VH(r) = e2

∫
d3r′

ρ(r′)

|r − r′|
(2.13)

Vxc(r) =
δExc[ρ]

δρ(r)
(2.14)

In (2.12), the sum again runs over the N electrons in the crystal. The total energy is related
to the KS eigenvalues through

E =

N∑
i

εi − EH [ρ] + Exc[ρ−
∫
δExc[ρ]

δρ
ρ(r)dr (2.15)

2.2.2 Spin-polarized systems

If an external magnetic field is applied to an electronic system, this will modify the charge
density will be modified due to the electron and its spin interacting with the external mag-
netic field. This generally gives rise to a preferred spin orientation for the electrons, so
such a system is referred to as a spin-polarized system. While the magnetization may gen-
erally vary in magnitude and direction from one point in space to another, it is reduced to
a scalar field in the case of collinear magnetization. Then, the magnetization varies only
along one direction. The two relevant scalar fields read

ρ(r) = ρ↑(r) + ρ↓(r) (2.16)

m(r) = ρ↑(r)− ρ↓(r) (2.17)

where ρ↑(r) and ρ↓(r) denote spin-up and spin-down electron densities, respectively. It
is in this magnetic case the generalized Hohenberg-Kohn theorem that postulates a ground
state energy. This energy is acquired by invoking the variational principle on an energy
functional which now depends on the spin densities in (2.16) and (2.17) [32]

E = E[ρ↑, ρ↓] (2.18)

The energy functional is segmented into different energy contributions, analogous to the
decomposition made in (2.7), and invoke the variational principle to obtain the Kohn-Sham
orbitals for the spin-polarized case

11
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V KSφiσ(r) =
[
T + Vei(r) + VH(r) + Vxc,σ(r)

]
φiσ(r) = εiσφiσ(r) (2.19)

ρσ(r) =

N∑
i

φiσ(r)φ∗iσ(r) (2.20)

A new indexσ corresponding to spin ↑ and ↓ has been introduced. Except for the exchange-
correlation potential, given by

Vxc,σ(r) =
δExc[ρ↑, ρ↓]

δρσ(r)
(2.21)

all other energy terms remain as in (2.11). As seen from above, in the spin-polarized
case there are two spin electron densities instead of one, yielding two sets of Kohn-Sham
equations.

2.2.3 L(S)DA+U

Since Local (spin) density approximation (L(S)DA) assumes local exchange-correlation, it
does not properly capture the contribution from strongly correlated electron states. L(S)DA+U
is an attempt to better model these strongly correlated states, typically f and d orbitals,
using the Hubbard model [33, 34]. The modified energy functional in L(S)DA+U is given
by

ELDA+U [ρ(r)] = ELDA[ρ(r)] + EHub − Edc (2.22)

ELDA is the original energy functional from (2.7) and Ehub is the contribution to the
energy functional from strongly correlated electron states through the Hubbard model.
Since ELDA already takes the local exchange-correlation into account, a third term Edc is
added to correct for the double counting. EHub is given by

EHub[{nIσm , nIσ
′

m′ }] =
U I

2

∑
m,σ 6=m′σ′

nIσm nIσ
′

m′ (2.23)

where nIσm represents the occupation number characterized by atomic site I , spin σ and
z-component angular quantum number m, the latter corresponding to eigenvalues of op-
erator L̂z for a given orbital angular momentum number l. Edc is not uniquely defined as
there are more ways of making the double-counting correction. Of the different schemes
available, the two most popular choices are the Around mean-field (AMF) and Fully local-
ized limit (FLL) [35, 36].
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The L(S)DA is an approximate model for the true exchange-correlation potential. Since
the energy functional is only approximately modeled, the ground state energy and its cor-
responding orbitals will not be the true ground state of our system. The KS ground state
energy of this approximate energy functional may be higher or lower than the real sys-
tem, but a sufficiently good approximation for the energy functional yields a ground state
closely resembling the true ground state.

2.2.4 Self-consistent cycle & the secular equation

While (2.19) and (2.20) provide a recipe for the ground state density and thereby the total
ground state energy of the system, the KS equations form a self-consistent set of equations:
In order to compute the KS potential in (2.19), the electron density is needed as input for
the Hartree and exchange-correlation potentials. At the same time, (2.19) are solved for the
orbitals on the RHS of (2.20). The KS equations are solved in a Self-consistent field (SCF)
cycle by making an initial guess for the density, and then solve the KS equations for a new
electron density repeatedly until convergence. To capitalize on information from previous
iterations in order to accelerate the convergence, it is possible to use a mixing scheme for
ρout and ρin. The perhaps simplest mixing scheme is ρi+1

in = (1 − α)ρiin + αρiout for
α between 0 and 1. A commonly used mixing scheme in self-consistent calculations is
called Broyden’s method [37]. Figure 2.1 illustrates the self-consistent cycle.

Let the wavefunction be expressed in terms of a basis set

φµ(r) =
∑
α

cµαφα(r) (2.24)

Again, µ = {n,σ,k} for band index, spin and wavevector, respectively. cµα are the ex-
pansion coefficients, and φα(r) are the basis functions. Also let 〈φα|φβ〉 = Sαβ . Inserting
(2.24) into (2.20) and moving everything to the LHS yields an equation

∑
α

[V KS |φα(r)〉 − εn |φα(r)〉]cµα = 0 (2.25)

Operating with 〈φα(r)| from the left yields

∑
α

[〈φβ(r)|V KS |φα(r)〉 − εn 〈φβ(r)|φα(r)〉]cµα = 0 (2.26)

Now let V KSαβ = 〈φβ(r)|V KS |φα(r)〉. This yields the so-called secular equation

[V KS − εnS]cµ = 0 (2.27)
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Figure 2.1: Schematic chart for density functional theory calculations. An initial guess for ρin is
used to compute the Kohn-Sham potential V KS . Once the new orbitals have been solved for, the
Fermi energy is determined to identify occupied orbitals. These make up ρout. A mixture of ρout and
ρin is finally used as the new electron density in the next iteration. This process is repeated until the
electron density ρout converges. This figure is largely based on one presented in Singh (2006) [38].

where V KS and S are matrices of rank equal to nb, nb denoting the number of basis
functions. (2.27) is solved at each k-point using standard linear algebra routines for every
iteration in the self-consistent loop [39].

By cutting off the basis set at a finite number, we risk not being able to fully express
the true KS orbitals. Minimizing {cµα} with respect to the energy functional yields the
exact KS ground state orbitals only when the basis set is capable of expressing the KS
orbitals exactly. In practicality, a finite basis set, only approximately expressing the true
KS orbitals, is sufficient.
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2.3 Full potential Augmented plane-wave method

2.3 Full potential Augmented plane-wave method

The Full potential Augmented plane-wave method is a popular method in the context of
electronic structure calculations of crystals. The method is a procedure for solving the
Kohn-Sham equations for the total energy, ground state density, eigenfunctions and eigen-
values of a many-electron system. Solving the Kohn-Sham equations is the main computa-
tional task in density functional theory [40]. The APW basis has been adapted specifically
for electronic structure calculations in the context of crystals.

Starting with the original method to convey the basic idea behind the Augmented plane-
wave method, the Linearized augmented plane-wave and Augmented plane-wave + local
orbitals methods are presented. Finally, aspects of the APW method, relevant for the
wavefunction overlap factor, are discussed.

2.3.1 The original APW method

All Augmented plane-wave (APW) methods are based on partitioning the unit cell into
two regions: in region I, inside spheres centered around each basis atom, solutions to
the spherically symmetric Schrödinger equation are employed. Since region I is near the
nuclei, the potential is expected to resemble a spherically symmetric potential. In the
interstitial region, region II, plane-waves are used. These solve Schrödinger’s equation in
a constant potential. See figure 3.4 for the partitioning of the unit cell. Region I is given in
grey; region II is given in red.

In the APW method, the basis set is defined as

ψAPWµG (r) =


∑
L a

β
µ,L,Gul(rβ , E)YL(r̂β) region I, β

1√
V
ei(k+G)·r region II

(2.28)

where µ = {n,σ,k}. L = {l,m}, standing for angular momentum quantum number
and magnetic quantum number, respectively. YL(r̂) denote the Spherical harmonics and
ul(r, El), if multiplied by the radius r, represent the radial solutions to Schrödinger’s
equation in a spherical potential. V is the unit cell volume. At the boundary between the
two regions, the plane-wave is re-expressed using Bessel functions. This determines the
coefficients

aβµ,L,G = 4πilY ∗L (k̂G)
jl(|k +G|Rβ)

ul(Rβ , E)
(2.29)

where kG = k +G, jl is the Bessel function and Rβ is the radius of region I sphere β.
The total wavefunction is then expanded in this basis set
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Figure 2.2: Partitioning of the unit cell into two regions: atomic spheres centered around atomic
sites at Rβ in region I, and an interstitial region referred to as region II. The global origin is given
as a red dot in region II. There may generally be several spheres making up region I, each sphere
corresponding to an atom in the unit cell. Centered inside each sphere, a local origin is shown in
red, and defines a new coordinate rβ . The radius of sphere β is denoted Rβ . The global origin is
related to rβ through rβ = r −Rβ .

ψAPWµ (r) =
∑
G

Cµ(G)ψAPWµG (r) (2.30)

Since the radial functions of region I depend on energy, they must be picked inside a small
energy window of interest in order to describe the wavefunction effectively. A new set of
radial functions must be used in another energy window. This makes the APW method
a very time-consuming method as a new basis function set must be constructed for each
small energy window of interest.

It is also possible to carry out the summation over reciprocal lattice vectors in region I to
obtain a new set of coefficients

Aβµ,L =
∑
G

aβµ,L,G (2.31)

in which case the wavefunction reads
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ψAPWµ (r) =


∑
LA

β
µ,Lul(rβ , E)YL(r̂β) region I, β

1√
V

∑
G Cµ(G)ei(k+G)·r region II

(2.32)

2.3.2 LAPW

To overcome the issue of the basis functions being energy-dependent, a linearization en-
ergy El is introduced. This linearization energy is typically in the middle of the energy
domain of interest. Having restricted the basis set dramatically, an additional term propor-
tional to u̇l(r, El) is included in this new basis set to add extra flexibility.

ψLAPWµG (r) =


∑
LR

LAPW,β
L,µ,G (rβ)YL(r̂β) region I, β

1√
V
ei(k+G)·r region II

(2.33)

where RLAPW,βL,µ,G (rβ) = aβL,µ,Gul(rβ , El) + bβL,µ,Gu̇l(rβ , El). The expansion coefficients
aβL,G,µ and bβL,G,µ are continuously differentiable at the sphere boundary. The wavefunc-
tion is given by

ψLAPWµ (r) =
∑
G

Cµ(G)ψLAPWµG (r) (2.34)

Although the introduction of a linearized energy greatly simplifies the basis construction,
it has a disadvantage, revealed in the case of localized states for which u̇l

ul

∣∣
Rβ

is gener-
ally very large. Due to the constraint of continuous differentiability, the region II basis-
function must be matched with u̇l

ul

∣∣
Rβ

. For a linear combination of plane-waves, the max-
imum value of this fraction is |Gmax|, max denoting the cut-off reciprocal lattice vector.
Whereas the LAPW method simplifies the evaluation of different energies, it requires a
larger number of plane-waves to satisfy continuous differentiability on sphere boundaries.

As with the APW method, a slightly alternative representation is given by carrying out the
summation over reciprocal lattice vectors

∑
G

aβL,µ,G ≡ A
β
L,µ∑

G

bβL,µ,G ≡ B
β
L,µ

(2.35)

where in the above, the summation has been carried out over region I. The wavefunction
is then expressed as
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ψLAPWµ (r) =


∑
L[AβL,µul(rβ , El) +BβL,µu̇l(rβ , El)]YL(r̂β) region I, β

1√
V

∑
G Cµ(G)ei(k+G)·r region II

(2.36)

2.3.3 APW+lo

Sjöstedt et al. introduces a third APW method [41]. This method has an energy-independent
basis set, but it at the same time overcomes the high cut-off issue in LAPW. Starting with
the original APW method, one adds local orbitals for l ≤ 3. The orbitals are local in
the sense that they are confined to the region I spheres, hence not affecting the number of
plane-waves in the interstitial region. The local orbitals are given by

φloL,n,σ(r) =

 Rlo,βL,n,σ(rβ)YL(r̂β) region I, β

0 region II
(2.37)

with Rlo,βL,n,σ(rβ) = alo,βL,nσul(rβ , El) + blo,βL,nσu̇l(rβ , El).

The crucial difference between LAPW and APW+lo are boundary conditions. Whereas
continuous differentiable basis functions are demanded in LAPW, the APW+lo basis func-
tions are allowed to be discontinuous differentiable at the sphere boundary. The relaxation
of this condition in the APW+lo method permits a plane-wave cut-off |Gmax| independent
of the local orbitals in region I. Since the local orbitals are confined to region I, one sets
alo,βL,nσ = 1 and determines blo,βL,nσ by demanding the local orbital to disappear at the sphere
boundary: φloL,n,σ(Rβ) = 0.

APW+lo basis functions are set up faster than in LAPW. A majority of the basis functions
include only terms proportional to ul(r); in LAPW, both ul(r) and u̇l(r) terms are in-
cluded for all basis functions. In fact, Madsen et al. (2001) have shown that compared to
the LAPW method, the APW+lo scheme converges at a much lower cost to essentially the
same results [42].

2.3.4 Kinetic energy operator

Having introduced the possibility of kinks on the basis functions at the sphere boundary,
the kinetic energy operator must be treated carefully. There are two expressions for the ki-
netic energy operator:

∫
V
χ∗G(−∇2)χG′dV which is the Laplacian operator formulation,

and
∫
V
χ∗G(−∇2)χG′dV which is the nabla operator formulation. It has been argued that

the second formulation is more fundamental as it enters in the variational principle [43].
As may be shown using Green’s theorem, the two representations differ by a term
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∮
S

χ∗G
(∂χIG′

∂r
− ∂χIIG′

∂r

)
dS (2.38)

In the case of LAPW, this term vanished due to smooth basis functions, and both formu-
lations may be used without taking (2.38) into account. For APW+lo however, this extra
term must be added to the kinetic energy operator whenever the Laplacian energy operator
formalism is used.

2.3.5 Lattices with inversion symmetry

To deal with lattices with inversion symmetry, a final modification is made to the basis set.
First, the origin is chosen at an inversion center to ensure the secular equation is real [38].
Second, one demands that the local orbitals form linear combinations transforming like
plane-waves. This is achieved by attaching a fictitious plane-wave to each local orbital
through a Bessel expansion, as done in (2.29) in the discussion on the APW method. The
plane-wave is fictitious in the sense that the local orbitals are completely confined to the
region I spheres and do not extend to region II. For N local orbitals, one must use N
fictitious plane-waves, the plane-wave set {Glo} chosen such that the basis functions are
linearly independent. This yields

eiGlo·r = eiGlo·Rβ
∑
L

iljl(|G||Rβ |)Y ∗L (Ĝ)YL(r̂β) (2.39)

where L = {l,m}. (2.39) is matched with the local orbital expression φloL,nσ(rβ) =

Rlo,βL,n,σ(rβ)YL(r̂β) from (2.37). In other words, instead of setting alo,βL,nσ = 1 and deter-
mining blo,βL,nσ as in Chapter 2.3.3, one determines the local orbital coefficients by invoking
the matching conditions above. Once alo,βL,nσ and blo,βL,nσ have been determined, the wave-
function reads

ψµ =
∑
L

(∑
G

cG[AβL,µ(G)ul(r) +BβL,µ(G)u̇l(r)]YL(r̂)

+
∑
lo

clo[A
β
L,nσ(lo)ul(r) +BβL,nσ(lo)u̇l(r)]YL(r̂)eiGlo·Rβ

) (2.40)

with cG and clo being associated with their respective reciprocal lattice vectorsG andGlo.
As earlier, µ = {n,σ,k}. The phase shift present for (2.40), along with the lo coefficients,
ensure the local orbitals transform like plane-waves. Finally interchanging the summation
over L with the summation over lo andG, yields a new set of expansion coefficients

ψµ =
∑
L

aβL,µul(r) + bβL,µu̇l(r)]YL(r̂) (2.41)
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where the new coefficients are given by

aβL,µ =
∑
G

AβL,µ(G) +
∑
lo

c(lo)BβL,nσ(lo)

bβL,µ =
∑
G

AβL,µ(G) +
∑
lo

c(lo)BβL,n,σ(lo)
(2.42)

2.3.6 Potential expansion

The potential for both schemes is expanded according to

V (r) =


∑
L VL(r)YL(r̂) region I∑
K VK(r)eiK·r region II

(2.43)

whereK denotes a reciprocal lattice vector, YL again corresponds to spherical harmonics
and L = {l,m}.

2.3.7 Dirac equation & the Scalar Relativistic approximation

Relativistic effects play a significant role in semiconductor transport, and must be incorpo-
rated into the (L)APW(+lo) basis set. In the study of semiconductor transport behaviour,
the energy bands of interest are usually low in energy, so in the interstitial region, elec-
trons are treated sufficiently well non-relativistically. On the other hand, electrons that are
closer to a particular nucleus are subject to much larger negative potentials. Therefore,
relativistic effects are taken into account in region I. The core electrons, those confined
to the atomic spheres, are treated fully-relativistically by solving the Dirac equation for
a spherically symmetric potential. Valence electrons in region I are treated in the Scalar
relativistic approximation (SRA) [44]. The valence electrons are in transport phenomena
of particular interest since these participate the most actively in charge transport.

To obtain a description consistent with the theory of special relativity, one starts with the
Dirac equation. Consider an electron moving in the field of a stationary nucleus producing
a central field Vnuc(r). To an approximation, other electrons altogether will also contribute
with a central field VMF (r). The electron will then satisfy the one-electron Dirac equation

HDΦ = {cα · p+ βmec
2 + V (r)}Φ = εΦ (2.44)

where HD has 4 x 4 components and Ψ is four-dimensional. V (r) = Vnuc(r) + VMF (r),
p is the momentum operator and me the electron mass. c denotes the speed of light. A
comparison with the non-relativistic energy is made after subtracting the restmass: E =
ε−mc2. The elements of α are given by
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αk =

[
0 σk
σk 0

]
(2.45)

with σk being the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
(2.46)

β represents

β =

[
1 0
0 −1

]
(2.47)

where 1 represents the 2 x 2 identity matrix, and 0 the 2 x 2 zero matrix. The Dirac
equation differs with Schrödinger’s in that orbital angular momentum and spin do not
commute with the Dirac Hamiltonian. Instead, now Ĵ2 and Ĵz , where J = L + S is
the total angular momentum, have eigenstates in common with the Dirac hamiltonian.
To construct these eigenstates, one combines the familiar spherical harmonics YL(θ, φ)
which are eigenstates of operators L̂2 and L̂z , with a two-component spinor xσ , which is
an eigenstate of Ŝ2 and Ŝz , to form eigenstates of Ĵ2 and Ĵz . Using the Clebsch-Gordan
coefficients, one gets

χjlm(θ, φ) =
∑
σ=± 1

2

C(l, 1/2, j;m− σ, σ,m)Ylm−σ(θ, φ)xσ (2.48)

where C(j1, j2, j3;m1,m2,m3) are the Clebsch-Gordan coefficients and xσ for σ = ± 1
2

reads

x 1
2

=

[
1
0

]
, x− 1

2
=

[
0
1

]
(2.49)

The quantum numbers {j, l,m} are not independent since j = l ± 1
2 . It is therefore

expedient to introduce the operator K̂ = −1 − σ · L. K̂ has eigenvalues κ = ±(j + 1
2 )

for j = l± 1
2 . Since κ determines both j and l, one may now use a more compact notation

of {κ,m}, and the relativistic equivalent to the Spherical harmonics is χκm. A solution to
Dirac’s equation now reads

Φκm =

[
gκ(r)χκm

−iσrfκ(r)χκm

]
(2.50)

Each element in equation (2.50) consists of a time-independent spatial function and the
two-component spinor constructed in (2.48), corresponding to the spatial as well as the
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1/2 spin degrees of freedom. σr is given by σr = σ · r̂. (2.50) is a solution to (2.44) as
long as the radial components fκ and gκ satisfy the two coupled radial equations

dfκ
dr

=
1

c

(
V − E

)
gκ +

(
κ− 1

r

)
fκ (2.51)

dgκ
dr

= −
(
κ+ 1

r

)
gκ + 2Mcfκ (2.52)

with M ≡ me + 1
2c2

(
E − V

)
and E = ε−mec

2. (2.51) and (2.52) may be decoupled by
first solving (2.52) for fκ and substituting the result into (2.51). This yields

(
− 1

2M

)[
d2gκ
dr2

+
2

r

dgκ
dr
− l(l + 1)

r2
gκ

]
− dV

dr

dgκ
dr

1

4M2c2
+ V gκ −

κ+ 1

r

dV

dr

gκ
4M2c2

= Egκ

(2.53)

The first bracket on the LHS gives rise to the so-called Mass-velocity effect, and the subse-
quent term is denoted the Darwin term. Only the last term on the LHS depends explicitly
on the sign of κ; this is the Spin-orbit coupling (SOC) term. Including this term, the
eigenfunctions in (2.50) will not be eigenstates of spin σ. In the Scalar Relativistic ap-
proximation, this last term is omitted, allowing one to maintain orbital angular momentum
l and spin σ as good quantum numbers. We write f̄ and ḡ to emphasize that the radial
functions are solutions only in the Scalar relativistic approximation. Introducing

φl ≡
1

2Mc

dḡl
dr

(2.54)

(2.53) is written as

dφl
dr

= −2

r
φl +

[
l(l + 1)

2Mcr2
+

1

c

(
V − E

)]
ḡl (2.55)

Here, {κ,m} has been replaced by {l,m, σ}, permissible since the SOC term has been
dropped. (2.50) may now be written as

ΦLσ =

[
ḡlYLxσ

iσr
2Mc

(
− dḡl

dr + 1
r ḡlσ ·L

)
YLxσ

]
(2.56)

where again L = {l,m}. The relativistic spinor has been replaced by a spherical harmonic
YL multiplied with a non-relativistic two-component spinor xσ . ḡlYLxσ is referred to as
the large component, the lower element is referred to as the small component. Finally, to
achieve a more suitable expression for numerical solution methods, Pl = rḡl and Ql =
rcφl are introduced. (2.57) is now written as
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2.3 Full potential Augmented plane-wave method

ΦLσ =
1

r

[
PlYLxσ

iσr
(
−Ql + Pl

2Mcrσ ·L
)
YLxσ

]
(2.57)

and (2.51) and (2.52) as

dPl
dr

= 2MQl +
1

r
Pl (2.58)

dQl
dr

= −1

r
Ql +

[
l(l + 1)

2Mr2
+ (V − El)

]
Pl (2.59)

where a particular linearization energy El is assumed. These equations may be solved in
the same way one would numerically solve the non-relativistic Schrödinger equation as
long as the following boundary condition is met [38]

lim
r→0

Q

P
= c

[l(l + 1) + 1− (2Z/c)2]1/2 − 1

(2Z/c)
(2.60)

We also include an expression for the energy derivative of (2.58) and (2.59) since this is
needed in the linearization. Let Ṗl ≡ dPl

dE |El and equivalently for Q̇l. Write

Ṗ ′l = 2(ṀQl +MQ̇l) +
1

r
Ṗl (2.61)

Q̇′l = −1

r
Q̇l + [

l(l + 1)

2Mr2
+ (V − El)]Ṗl − [

l(l + 1)

2Mr2
+ 1]Pl (2.62)

For future reference

ΦLσ = ulσYL (2.63)

where

ulσ =

[
ḡlxσ

iσr
2Mc

(
− dḡl

dr + 1
r ḡlσ ·L

)
xσ

]
(2.64)

The Scalar relativistic approximation in short amounts to including relativistic effects from
the Mass-velocity term and Darwin term, but cast away the effect of Spin-orbit coupling.
The Dirac equation furthermore gives rise to the large and small components of the radial
wavefunction. Both must participate when evaluating matrix elements: instead of u2, now
f2 + g2 is normalized.
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Chapter 2. Theory

2.3.8 Including Spin-orbit coupling as a second variational step

In the scalar relativistic approximation, just presented, the spin-orbit coupling is neglected
to decouple spin from angular momentum. Although the scalar relativistic approximation
allows one to maintain spin number and angular momentum number as good quantum
numbers, it fails to explain the near-band edge behavior of many semiconductors. Near
the band edge, spin-orbit coupling effects must be taken into account. For the core states,
a fully relativistic model, including spin-orbit coupling from the beginning, will be neces-
sary. For valence states, it is often economical to include spin-orbit coupling as a second
variational step, after having completed a scalar relativistic calculation first. Due to our
interest in the valence states, paramount in transport phenomena, the second method is of
particular interest, and will be presented here.

If we start with n basis functions in the scalar relativistic approximation, and include spin-
orbit coupling as a second step, double the number of basis functions is needed in the
spin-orbit calculations. This is due to a coupling between spin-up and spin-down basis
functions, manifesting itself as nonzero matrix elements between spin-up and spin-down
basis functions in the hamiltonian. At each k-point, a 2n× 2n secular equation must now
be solved, requiring eight times more computational resources compared with SRA [38].
An alternative approach is to capitalize on spin-orbit coupling often being a small effect,
and thereby include it as a second variational step. First solve the secular equation for n
basis functions in the scalar relativistic approximation. After that, the hamiltonian, includ-
ing spin-orbit terms, is diagonalized in the space of a selected low-lying bands obtained
from the scalar relativistic calculations.

In the first variational step which excludes spin-orbit coupling, solutions to Dirac’s equa-
tion (2.57) are used to construct wavefunctions within region I. Recall from Chapter 2.3.7
that these solutions are of the form

ΦLσ =
1

r

[
PlYLxσ

iσr
(
−Ql + Pl

2Mcrσ ·L
)
YLxσ

]
(2.65)

These are not eigenfunctions of the Dirac hamiltonian in (2.44) since they were obtained
in SRA. In order to define the spin-orbit operator, one nonetheless operates with the Dirac
hamiltonian on the SRA wavefunctions, yielding

HDΦLσ = εΦLσ +HsoΦLσ (2.66)

where Hso is given by

Hso =
1

(2Mc)2

1

r

dV

dr

[
σ ·L 0

0 0

]
(2.67)

The termHsoΦLσ is a measure of how much the SRA eigenfunctions deviate from the true
eigenfunctions in (2.44). Notice that Hso acts only on the large component of the radial
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2.3 Full potential Augmented plane-wave method

wavefunction. Let the wavefunctions obtained in the first variational step be

Ψn↑k, En↑k

Ψn↓k, En↓k
(2.68)

where En↑k and En↓k are the corresponding energies. These are, as mentioned above, a
linear combination of (2.65). In the second variational step, one considers a new eigen-
problem for the total hamiltonianHD, includingHso, with a selected subset of (2.68) used
as a new basis set. Often, this subset is significantly smaller than the set (2.68), resulting in
a smaller secular equation. In addition, only the SOC matrix elements must be evaluated,
since we in the first variational step already determined the SRA eigenenergies.

Figure 2.3: Schematic chart for the first and second variational steps. First, the secular equation
is solved in SRA for spin-up and spin-down basis functions, respectively. Next, a new hamiltonian
including the SOC matrix elements is constructed for a selected subset of the original bands. A
second secular equation is then solved, this time including SOC, yielding a new set of wavefunctions.
This figure is largely based on one presented in Singh (2006) [38].

For simplicity, the discussion on the spin-orbit matrix elements is restricted to the LAPW
basis set
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Chapter 2. Theory

ψµ =
∑
G

Cµ(G)ψGµ (2.69)

The second variational treatment is restricted to region I of the unit cell. Inside the spheres
of region I, the basis reads

ψGµ =
∑
L

{aβnk,L(G)ΦβLσ + bβnk,L(G)Φ̇βLσ} (2.70)

In the above, µ = {n,k, σ} and L = {l,m}, as usual. The matrix element between ψGµ
and ψG

′

µ′ reads

〈
ψGµ
∣∣Hso

∣∣∣ψG′

µ′

〉
=
∑
L,L′

aβ∗nkLa
β
n′k′L′

〈
ΦβLσ

∣∣∣Hso

∣∣∣ΦβL′σ′

〉
+bβ∗nkLa

β
n′k′L′

〈
Φ̇βLσ

∣∣∣Hso

∣∣∣ΦβL′σ′

〉
+aβ∗nkLb

β
n′k′L′

〈
ΦβLσ

∣∣∣Hso

∣∣∣Φ̇βL′σ′

〉
+bβ∗nkLb

β
n′k′L′

〈
Φ̇βLσ

∣∣∣Hso

∣∣∣Φ̇βL′σ′

〉
(2.71)

The
∣∣∣ΦβLσ〉 and

∣∣∣Φ̇βLσ〉 are known on beforehand, so the overlaps on the LHS of (2.71)
may be stored initially and reused rather than recalculated in every SCF iteration. Using
(2.65) and (2.67), these elements are calculated. For example

〈
ΦβLσ

∣∣∣Hso

∣∣∣ΦβL′σ′

〉
=

1

(2Mc)2

∫ Rβ

rβ=0

drβ
P ∗l Pl′

rβ

dV

drβ

∫ 2π

φ=0

∫ π

θ=0

dΩY ∗Lx
†
σσ ·LYL′xσ

(2.72)

The summation over L and L′ is greatly restricted since spin-orbit couples only for l = l′

and |m−m′| ≤ 1 [38, 44]. Analogous expressions are easily obtained for the other three
overlaps on the RHS of (2.71). Whether LAPW or APW+lo is used,

〈
ψGµ
∣∣Hso

∣∣∣ψG′

µ′

〉
will

take the form of a linear combination of the overlaps on the LHS of (2.71).

2.3.9 (L)APW(+lo)

We finally present a general expression which will be used to obtain scattering rates inde-
pendent of which of the methods LAPW or APW+lo is used. By defining the expansion
coefficients of this general expression appropriately, one is able to use the more general
overlap expression obtained in Chapter 3 to the particular method used. This expression
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2.4 Wannier functions

also uses notation consistent with a relativistic treatment of the basis functions in region I.
The general expression reads

ψµG(r) =


∑
LR

β
µ,L(G, rβ) region I

1√
V
ei(k+G)·r region II

(2.73)

with

Rβµ,L(G, rβ) =

aβµ,L(G)Φβ1,Lσ(rβ , E1,l) + bβµ,L(G)Φ̇β1,Lσ(rβ , E1,l) + cβµ,L(G)Φβ2,Lσ(rβ , E2,l)
(2.74)

The total wavefunction reads

ψµ(r) =
∑
G

Cµ(G)ψµG(r) (2.75)

One may also use an equivalent representation, where the summation over G has been
carried out, yielding a new set of basis coefficients for region I

ψµ(r) =


∑
LR

β
µ,L(r) region I

∑
G

1√
V

∑
G Cµ(G)ei(k+G)·r region II

(2.76)

where this time, there is noG dependence in region I

Rβµ,L(r) = aβµ,LΦβ1,Lσ(rβ , E1,l) + bβµ,LΦ̇β1,Lσ(rβ , E1,l) + cβµ,LΦβ1Lσ(rβ , E2,l) (2.77)

Here, Φβ1,Lσ , Φ̇β1,Lσ and Φβ2,Lσ are 4-component wavefunctions given by (2.57). Again,
µ = {k, n,σ}. E1,l and E2,l denote linearization energies, and L = {l,m}, where l is
orbital quantum number and m represents magnetic quantum number. Finally, the radius
rβ = |r −Rβ | is defined according to the center of the sphere β.

2.4 Wannier functions

For the independent-particle approximation in a perfect crystal, electron states are con-
ventionally described by Bloch waves labeled by a band index n and a wavevector k. An
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alternative representation in real space was introduced by Gregory Wannier in 1937 [45].
This localized orbital in a periodic structure description is now known as a Wannier repre-
sentation. In the Wannier representation, each state is labeled by band index n and lattice
vectorR, making it a real-space representation of the electron states.

2.4.1 Wannier transformation

According to Bloch’s theorem, a common eigenstate of the one-electron Hamiltonian Ĥ
and the lattice translation operator T̂R is given by

ψµ(r) = eiφnσ(r)uµ(r)eik·r (2.78)

where again µ = {n,σ,k}. One demands that uµ(r) has the periodicity of the real-space
crystal lattice, and eiφnσ(r) the periodicity of the corresponding reciprocal lattice. The lat-
ter, typically not written out explicitly, is not assigned by Schrödinger’s equation, and of-
fers an arbitrary phase to the Bloch wavefunction. This makes the Bloch-state non-unique.
As stated earlier, a real-space representation is more convenient in many applications, for
instance when dealing with transport properties [14]. One finds such a representation by
a Fourier transformation of the Bloch state into a Wannier state. The indeterminacy of the
Bloch state represented by eiφnσ(r) propagates to the Wannier representation which also
becomes non-unique. A Wannier representation of the Bloch state is given as

ωnσ(r −R) = ωγ(r) =
V(

2π
)3 ∫

BZ

N∑
m=1

Umn(k)ψµe
−ik·Rdk (2.79)

where the label γ = {n,σ,R}. R denotes a lattice point and V the crystal volume. This
time, µ = {m,σ,R}. The phase factorUmn(k) represents the arbitrariness inherited from
the Bloch-function phase factor eiφn(r) resulting in the indeterminacy of the Wannier rep-
resentation. The set {|Rn〉} constitute an orthonormal basis and |Rn〉 is transformed into
|R′n〉 by a translation of the lattice vectorR′−R [14]. Finally, the inverse transformation,
carrying one from the Wannier representation to Bloch, is given by

ψµ(r) =
∑
R

N∑
m=1

U†nm(k)eik·Rωγ(r) (2.80)

where µ = {n,σ,k} and γ = {m,σ,R}.

2.4.2 Maximally localized Wannier functions

The gauge freedom present in the Bloch state, and inherited by the Wannier representation,
may be used to maximally localize the Wannier functions. This localization corresponds to
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2.5 Gaunt numbers

choosing a particular unitary matrix Umn(k) in (2.79). In order to carry out this procedure,
one first introduces a well-defined localization-criterion

Ω =
∑
n

[
〈0n| r2 |0n〉 − 〈0n| r |0n〉2

]
(2.81)

where Ω denotes the spread in the Wannier function and r is the position operator. Mini-
mizing this spread yields the so-called Maximally localized Wannier functions (MLWFs).
In (2.81), the braket notation indicates integration over the entire crystal. The sum runs
over all basis functions. For details on the minimizing procedure of (2.81), interested read-
ers are referred to Marzari et al. (2012). We still point out one thing in particular about the
minimizing procedure here: in 1962 Blount showed that the matrix elements in Ω may be
expressed in terms of Bloch orbitals,∇k and ∇2

k [46]

〈Rn| r |0m〉 = i
V(

2π
)3 ∫ dkeik·R 〈unk| ∇k |umk〉 (2.82)

〈Rn| r2 |0m〉 = − V(
2π
)3 ∫ dkeik·R 〈unk| ∇2

k |umk〉 (2.83)

To evaluate the matrix elements of (2.82) and (2.83), the Bloch orbitals are assumed to be
discretized onto a uniform Monkhorst-Pack mesh [47]. Using finite-differences to evaluate
the matrix elements of∇k and∇2

k, Marzari et al. (2012) show that the information needed
to carry out the localization procedure is the overlap between Bloch orbitals at neighboring
k-points

Gnm(k, b) = 〈um,k|un,k+b〉 (2.84)

The braket notation in (2.84) again indicates integration over the whole crystal structure.
If the overlaps (2.84) are tabulated, the localization and, equally important, the effect any
unitary transformation may have on the localization, is available through (2.81), (2.82)
and (2.83) with no need to recalculate overlaps, or through any other interaction with the
original Bloch states used to generate Wannier functions.

2.5 Gaunt numbers

The calculation of scattering rates with Fermi’s Golden rule involves overlaps between
(L)APW(+lo) functions. As shown in Chapter 3, the angular integral over three spherical
harmonics functions must then be evaluated. These are normally called Gaunt numbers
[48]
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〈
Y l1m1

∣∣Y l2m2

∣∣Y l3m3

〉
=

(−1)m1

[
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

]1/2(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

) (2.85)

Here, the LHS represents the integral over three spherical harmonics, each with their own
angular momentum and magnetic quantum numbers l and m. The last two parentheses
matrices on the RHS denote Wigner 3-j symbols [49]. These are related to the Clebsch-
Gordan coefficients and similarly denote quantities arising when considering coupled an-
gular momenta. While an exact treatment of the Wigner 3-j symbols for all values of
angular momentum and magnetic quantum numbers is difficult, an expression providing
high accuracy for l ≤ 50 is presented in the EXCITING code manual [50]. This expression
reads

(
l1 l2 l3
m1 m2 m3

)
= (−1)l1+l2+m3

×

√
(l1 +m1)!(l2 +m2)!(l3 +m3)!(l3 −m3)!(l2 −m2)!(l1 −m1)!

(l2 − l1 + l3)!(l1 − l2 + l3)!(l1 + l2 − l3)!(1 + j1 + j2 + j3)!

min(l1+l2−l3,l1−m1,l2+m2)∑
k=max(0,l2−l3−m1,l1−l3+m2)

(−1)k
(l2 − l1 + l3)!(l1 − l2 + l3)!(l1 + l2 − l3)!

(l3 − l1 −m2 + k)!(l3 − l2 +m1 + k)!(l1 + l2 − l3 − k)!k!(l1 −m1 − k)!(l2 +m2 − k)
(2.86)

For this expression to yield accurate Gaunt numbers, none of the spherical harmonics states
participating in the overlap can have quantum angular momentum exceeding l = 50. To
see that this is indeed the case for us, consider the states of interest when dealing with
transport phenomena: In semiconductors, the band edge states mainly consist of s, p, d
and f components, corresponding to l ranging from zero to four [10, 30]. At most, a
handful of higher l components may be added to account for the crystal nature of semi-
conductors. In conclusion, with the expression in (2.86) it becomes possible to evaluate the
Gaunt coefficients of (2.85) at high precision, in a rather straightforward manner, instead
of numerically evaluating the angular integrals over three spherical harmonics.
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In this section, an analytical expression for the wavefunction overlap factor between dif-
ferent carrier states, suitable for integration over the Brillouin-zone, is arrived upon. The
wavefunction overlap factor is expressed in terms of, first, an integral between (L)APW(+lo)
basis functions, and second, an integral between Wannier functions.

Such overlap expressions have already been presented in a specialization project by this
author [2], and comparably, the expressions presented in this thesis are a continuation
as well as an improvement in many respects: First, a much tidier notation has been em-
ployed, permitting the reintroduction of band indices n, spin indices σ, and region I in-
dices β explicitly. This is made possible by using the compact notations µ = {n,σ,k} and
γ = {n,σ,R}. Second, a generalization has been made from radial functions acquired
by solving the one-electron Schrödinger equation, to relativistic 4-component radial func-
tions obtained from the one-electron Dirac equation. This results in a two-component
norm, as demonstrated in Chapter 2.3.7. Third, the region I overlaps involve an integral
over three spherical harmonics. Although these were identified as Gaunt numbers in the
specialization project, no analytical expression was given. The discussion in Chapter 2.5
permits the immediate computation of a Gaunt number once l and m of each spherical
harmonic is provided. Finally, the original expression presented for the Wannier overlap
was found to be unsuitable for numeric integration over the Brillouin-zone. In particular,
no connection between the Wannier overlap and the original (L)APW(+lo) functions had
been established, and no convincing argument for a justifiable cut-off in the summation
over Bravais lattice vectors had been discovered. As shown below in the Wannier section,
a sufficiently good expression for the Wannier overlap is arrived upon here.

Turning now to the wavefunction overlap factor, we want to calculate the expression in
(2.5). Once obtained, spin-flipping is taken into account through (2.4). Recall that the
spin-dependent overlap factor reads
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Gµµ′ =
∣∣Jµµ′

∣∣2; Jµµ′ =

∫
u.c

d3ru∗µ′(r)uµ(r)eiK·r (3.1)

with µ = {n,σ,k}. We will derive an expression for Jµµ′ in (3.1), and once obtained,
it is simply multiplied with its complex-conjugate to yield Gµµ′ . We split the overlap
calculation into an overlap over region I and another over region II

Jµµ′ = JIµµ′ + JIIµµ′ (3.2)

with

JIµµ′ =

∫
I

d3ru∗µ′(r)uµ(r)eiK·r

JIIµµ′ =

∫
II

d3ru∗µ′(r)uµ(r)eiK·r
(3.3)

Before turning to the overlap in the respective bases, we consider the approximation
ei(k

′−k)·r ≈ 1, expected to hold over the unit cell. This approximation is used both for the
(L)APW(+lo) and Wannier overlaps, and holds well if (k − k′) · r � 1. In the case of a
small unit cell, the integration variable r will be sufficiently small over the integration do-
main that the approximation above is appropriate. Even if the unit cell grows, this causes
the Brillouin-zone to shrink, due to their inverse relation. Let us write k − k′ = K̃ + δk
where K̃ is a reciprocal lattice vector and δk is the remainder in the first BZ. As the
Brillouin-zone shrinks, K̃ increases in magnitude at the expense of δk. K̃ is simply ab-
sorbed into the reciprocal lattice vector in K appearing in (3.1). At the same time, δk
shrinks so that the approximation above is justified, despite the unit cell having grown in
size. Admittedly, for wavevectors at the Brillouin-zone edge, this approximation fails if
r is appreciable; at the very unit cell boundary, eiK·r = i. Be that as it may, a similar
simplification has already been made to the matrix element: in (2.2), we approximated
to a constant scattering mechanism over the unit cell. Casting away the slowly varying
exponential factors eik·r is consistent with the matrix element segmentation in (2.2).

3.1 (L)APW(+lo) overlap

Recall that the wavefunction in the (L)APW(+lo) basis set is given by

ψµ(r) =


∑
LR

β
µ,L(r) region I

1√
V

∑
G Cµ(G)ei(k+G)·r region II

(3.4)

where
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3.1 (L)APW(+lo) overlap

Rβµ,L(r) = aβµ,LΦβ1,Lσ(rβ , E1,l) + bβµ,LΦ̇β1,Lσ(rβ , E1,l) + cβµ,LΦβ2,Lσ(rβ , E2,l) (3.5)

Here, β is associated with a particular region I sphere. ΦβLσ is given by

ΦβLσ = uβlσYL (3.6)

with uβlσ given by

uβlσ =

[
ḡlxσ

iσr
2Mc

(
− dḡl

dr + 1
r ḡlσ ·L

)
xσ

]
(3.7)

which yields

Rβµ,L(r) = [aβµ,Lu
β
1,lσ(rβ , E1,l) + bβµ,Lu̇

β
1,lσ(rβ , E1,l) + cβµ,Lu

β
2,lσ(rβ , E2,l)]YL(rβ)

(3.8)

3.1.1 Region I

Only the cell-periodic part should participate in the overlap, but using ei(k
′−k)·r ≈ 1 over

the unit-cell, we instead compute the region I overlap using the whole wavefunction.

Jµµ′ =

∫
u.c

d3ru∗µ′(r)uµ(r)eiK·r

=

∫
u.c

d3rei(k
′−k)·rψ∗µ′(r)ψµ(r)eiK·r

≈
∫

u.c
d3rψ∗µ′(r)ψµ(r)eiK·r

(3.9)

In order to evaluate the overlap in region I, we first focus our attention on a given sphere β.
The plane-wave eiK·r, appearing in (3.1), is expanded into Bessel functions and Spherical
harmonics with their origin at the center of sphere β. This point is given by the vectorRβ.
See figure 3.4.

eiK·r = 4πeiK·Rβ
∑
L

iljl(|K|rβ)YL(K̂)YL(r̂β) (3.10)

Here, jl(|K|rβ) is a Bessel function, YL is a Spherical harmonics function and K̂ and r̂β
unit vectors pointing along K and rβ , respectively. L = {l,m} as usual, and i denotes
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Figure 3.1: For region I, the integral is conducted inside each atomic sphere. The integration
variable rβ is centered around each respective Rβ as indicated above. Rβ associates the local
origin with the global one.

the imaginary unit. While the initial plane-wave was expressed in terms of a global origin,
we have now changed from a coordinate r with respect to the global origin to rβ which
has its origin at the center of sphere β. The two coordinate representations are related by
r = rβ−Rβ. Inserting the basis from (3.5) and the Bessel expansion (3.10) into the first
integral in (3.3), we get

JIµµ =
∑

L1,L2,L3

∫
I[

aβ∗µ′,L1
uβ∗1,l1σ′(rβ , E1,l1) + bβ∗µ′,L1

u̇β∗1,l1σ′(rβ , E1,l1) + cβ∗µ′,L1
uβ∗2,l1σ′(rβ , E2,l1)

]
Y ∗L1

(r̂β)×

4πeiK·Rβ il2jl2(|K|rβ)YL2
(K̂)YL2

(r̂β)×[
aβµ,L3

uβ1,l3σ(rβ , E1,l3) + bβµ,L3
u̇β1,l3σ(rβ , E1,l3) + cβµ,L3

uβ2,l3σ(rβ , E2,l3)
]
YL3

(r̂β)
(3.11)

The first line on the LHS is inserted for ψ∗µ′(r), second line is inserted for the expansion of
eiK·r and the third line is inserted for ψµ(r). Since these depend on their own respective
summation indices L = {l,m}, a subindex has been added to prevent mixing them up: 1
corresponds to expansion coefficients for ψ∗µ′(r), 2 corresponds to expansion coefficients
for eiK·r, and finally 3 corresponds to ψµ(r). (3.11) consists of a radial and an angular
integral over the chosen sphere β in region I. Sorting out the different integrals, we are left
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3.1 (L)APW(+lo) overlap

with a prefactor given by

4πeiK·Rβ il2YL2
(K̂) (3.12)

an angular integral given by

∫ 2π

φ=0

∫ π

θ=0

dΩY ∗L1
(r̂β)YL2(r̂β)YL3(r̂β) (3.13)

and a radial integral given by

∫ Rβ

0

drβr
2
β

[
aβ∗µ′,L1

uβ∗1,l1σ′(rβ , E1,l1) + bβ∗µ′,L1
u̇β∗1,l1σ′(rβ , E1,l1) + cβ∗µ′,L1

uβ∗2,l1σ′(rβ , E2,l1)
]
jl2(|K|rβ)[

aβµ,L3
uβ1,l3σ(rβ , E1,l3) + bβµ,L3

u̇β1,l3σ(rβ , E1,l3) + cβµ,L3
uβ2,l3σ(rβ , E2,l3)

]
(3.14)

where the radial integral goes from radius zero to Rβ , the radius of atomic sphere β. The
contribution to equation (3.1) now reads

JIµµ′ =
∑

L1,L2,L3

4πeiK·Rβ il2YL2
(K̂)×

∫ 2π

φ=0

∫ π

θ=0

dΩY ∗L1
(r̂β)YL2(r̂β)YL3(r̂β)×∫ Rβ

0

drβr
2
β

[
aβ∗µ′,L1

uβ∗1,l1σ′(rβ , E1,l1) + bβ∗µ′,L1
u̇β1,l1σ′(rβ , E1,l1) + cβ∗µ′,L1

uβ∗2,l1σ′(rβ , E2,l1)
]
jl2(|K|rβ)×[

aβµ,L3
uβ1,l3σ(rβ , E1,l3) + bβµ,L3

u̇β1,l3σ(rβ , E1,l3) + cβµ,L3
uβ2,l3σ(rβ , E2,l3)

]
(3.15)

Reorganized a bit
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JIµµ′ =
∑

L1,L2,L3

4πeiK·Rβ il2YL2(K̂)×

+

∫ 2π

φ=0

∫ π

θ=0

dΩY ∗L1
(r̂β)YL2

(r̂β)YL3
(r̂β)×

+aβ∗µ′,L1
aβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
1,l1σ′(rβ , E1,l1)uβ1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+aβ∗µ′,L1
bβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
1,l1σ′(rβ , E1,l1)u̇β1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+aβ∗µ′,L1
cβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
1,l1σ′(rβ , E1,l1)uβ2,l3σ(rβ , E2,l3)

]
jl2(|K|rβ)

+bβ∗µ′,L1
aβµ,L3

∫ Rβ

0

drβr
2
β u̇

β∗
1,l1σ′(rβ , E1,l1)uβ1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+bβ∗µ′,L1
bβµ,L3

∫ Rβ

0

drβr
2
β u̇

β∗
1,l1σ′(rβ , E1,l1)u̇β1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+bβ∗µ′,L1
cβµ,L3

∫ Rβ

0

drβr
2
β u̇

β∗
1,l1σ′(rβ , E1,l1)uβ2,l3σ(rβ , E2,l3)

]
jl2(|K|rβ)

+cβ∗µ′,L1
aβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
2,l1σ′(rβ , E2,l1)uβ1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+cβ∗µ′,L1
bβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
2,l1σ′(rβ , E2,l1)u̇β1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+cβ∗µ′,L1
cβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
2,l1σ′(rβ , E2,l1)uβ2,l3σ(rβ , E2,l3)

]
jl2(|K|rβ)

(3.16)

This expression is greatly simplified in the case of a normal scattering process, i.e for
K = 0. In that case, the angular integral involves only two spherical harmonics functions,
obeying orthonormality

∫ 2π

φ=0

∫ π

θ=0

dΩY ∗L1
(r̂β)YL3(r̂β) = δL1L3 (3.17)

Also ignoring the factors in (3.16) arising from the Bessel expansion of eiK·r, the region
I overlap will therefore read
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3.1 (L)APW(+lo) overlap

JIµµ′ =
∑
L

aβ∗µ′,La
β
µ,L

∫ Rβ

0

drβr
2
βu

β∗
1,lσ′(rβ , E1,l)u

β
1,lσ(rβ , E1,l)

]
+aβ∗µ′,Lb

β
µ,L

∫ Rβ

0

drβr
2
βu

β∗
1,lσ′(rβ , E1,l)u̇

β
1,lσ(rβ , E1,l)

]
+aβ∗µ′,Lc

β
µ,L

∫ Rβ

0

drβr
2
βu

β∗
1,lσ′(rβ , E1,l)u

β
2,lσ(rβ , E2,l)

]
+bβ∗µ′,La

β
µ,L

∫ Rβ

0

drβr
2
β u̇

β∗
1,lσ′(rβ , E1,l)u

β
1,lσ(rβ , E1,l)

]
+bβ∗µ′,Lb

β
µ,L

∫ Rβ

0

drβr
2
β u̇

β∗
1,lσ′(rβ , E1,l)u̇

β
1,lσ(rβ , E1,l)

]
+bβ∗µ′,Lc

β
µ,L

∫ Rβ

0

drβr
2
β u̇

β∗
1,lσ′(rβ , E1,l)u

β
2,lσ(rβ , E2,l)

]
+cβ∗µ′,La

β
µ,L

∫ Rβ

0

drβr
2
βu

β∗
2,lσ′(rβ , E2,l)u

β
1,lσ(rβ , E1,l)

+cβ∗µ′,Lb
β
µ,L

∫ Rβ

0

drβr
2
βu

β∗
2,lσ′(rβ , E2,l)u̇

β
1,lσ(rβ , E1,l)

]
+cβ∗µ′,Lc

β
µ,L

∫ Rβ

0

drβr
2
βu

β∗
2,lσ′(rβ , E2,l)u

β
2,lσ(rβ , E2,l)

]

(3.18)

3.1.2 Region II

We evaluate the overlap for region II by inserting the plane-wave basis in equation (2.33)
into the second integral in (3.3)

JIIµµ′ =
1

V

∑
G1G2

C∗µ′(G1)Cµ(G2)

∫
II

d3rei(G2−G1+K)·r (3.19)

where the integral runs over region II. We now split the integral
∫
II
d3rei(G2−G1−K)·r

into one over the unit cell and another over region I, the latter subtracted to give the right
integration domain

1

V

∑
G1G2

C∗µ′(G1)Cµ(G2)

∫
II

d3rei(G2−G1+K)·r

=
1

V

∑
G1G2

C∗µ′(G1)Cµ(G2)

∫
u.c

d3rei(G2−G1+K)·r

− 1

V

∑
G1G2

C∗µ′(G1)Cµ(G2)

∫
I

d3rei(G2−G1+K)·r

(3.20)
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Figure 3.2: For region II, the integral is conducted in the interstitial region, given in grey. The
integration variable r is given with respect to the global origin.

SinceG1,G2 andK are reciprocal lattice vectors, so isG2 −G1 +K. This results in a
delta-function V δ(G2 −G1 +K) for the integral over the unit cell

1

V

∑
G1G2

C∗µ′(G1)Cµ(G2)

∫
u.c

d3rei(G2−G1+K)·r

=
∑
G1G2

C∗µ′(G1)Cµ(G2)δ(G2 −G1 +K)
(3.21)

The plane-wave integral over region I is on the other hand a sum over each atomic sphere,
denoted by β in the unit cell. r represents the coordinate within the unit cell, so we write
r = Rβ + rβ to express the integral in terms of coordinates centered inside each sphere
β of region I

1

V

∑
G1G2

∑
β

C∗µ′(G1)Cµ(G2)ei(G2−G1+K)·Rβ
∫
Iβ

d3rβe
i(G2−G1+K)·rβ (3.22)

and the sum runs over all atomic spheres β. In case G2 −G1 +K = 0, (3.22) reduces
to Vβ for the respective sphere. Otherwise, we orient the z-axis alongG2 −G1 +K and
change to spherical coordinates. In total
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3.1 (L)APW(+lo) overlap

∫
Iβ

d3rβe
i(G2−G1+K)·rβ =


Vβ G2 −G1 +K = 0

3Vβ
sin x−x cos x

x3 G2 −G1 +K 6= 0

(3.23)

where x = Rβ |G2 − G1 + K| and Vβ = 4
3πR

3
β , Rβ being the radius of sphere β.

Subtracting (3.23) from (3.21) yields

JIIµµ′ =∑
G2−G1+K=0

Cµ(G2)

[
C∗µ′(G1)

(
V −

∑
β

Vβ

)
−
∑
β

3Vβ

∑
G2−G1+K 6=0

C∗µ′(G1)3Vβ
sinx− x cosx

x3
ei(G2−G1+K)·Rβ

] (3.24)
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3.1.3 Total overlap

To summarize, we have an expression from region I

JIµµ′ =
∑

L1,L2,L3

4πeiK·Rβ il2YL2(K̂)×

+

∫ 2π

φ=0

∫ π

θ=0

dΩY ∗L1
(r̂β)YL2

(r̂β)YL3
(r̂β)×

+aβ∗µ′,L1
aβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
1,l1σ′(rβ , E1,l1)uβ1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+aβ∗µ′,L1
bβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
1,l1σ′(rβ , E1,l1)u̇β1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+aβ∗µ′,L1
cβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
1,l1σ′(rβ , E1,l1)uβ2,l3σ(rβ , E2,l3)

]
jl2(|K|rβ)

+bβ∗µ′,L1
aβµ,L3

∫ Rβ

0

drβr
2
β u̇

β∗
1,l1σ′(rβ , E1,l1)uβ1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+bβ∗µ′,L1
bβµ,L3

∫ Rβ

0

drβr
2
β u̇

β∗
1,l1σ′(rβ , E1,l1)u̇β1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+bβ∗µ′,L1
cβµ,L3

∫ Rβ

0

drβr
2
β u̇

β∗
1,l1σ′(rβ , E1,l1)uβ2,l3σ(rβ , E2,l3)

]
jl2(|K|rβ)

+cβ∗µ′,L1
aβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
2,l1σ′(rβ , E2,l1)uβ1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+cβ∗µ′,L1
bβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
2,l1σ′(rβ , E2,l1)u̇β1,l3σ(rβ , E1,l3)

]
jl2(|K|rβ)

+cβ∗µ′,L1
cβµ,L3

∫ Rβ

0

drβr
2
βu

β∗
2,l1σ′(rβ , E2,l1)uβ2,l3σ(rβ , E2,l3)

]
jl2(|K|rβ)

(3.25)

and an expression from region II

JIIµµ′ =∑
G2−G1+K=0

Cµ(G2)

[
C∗µ′(G1)

(
V −

∑
β

Vβ

)
−
∑
β

3Vβ

∑
G2−G1+K 6=0

C∗µ′(G1)3Vβ
sinx− x cosx

x3
ei(G2−G1+K)·Rβ

] (3.26)

with x = Rβ |G2−G1 +K| and Vβ = 4
3πR

3
β , Rβ being the radius of sphere β. Together,

these correspond to the overlap integral in (3.1)
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3.2 Wannier overlap

3.2 Wannier overlap

Having obtained an overlap expression for (3.1) based on (L)APW(+lo), the next step is to
do the same for a Wannier representation. The inverse Wannier transformation reads

ψµ(r) =
1

N

∑
R

N∑
m=1

U†nm(k)eik·Rωγ(r) (3.27)

where µ = {n,σ,k} and γ = {m,σ,R}, R denoting a Bravais lattice vector. We are
interested in the cell-periodic Bloch function. The dagger denotes the conjugate transpose
of the unitary matrix used to maximally localize the WFs.

uµ(r) =
1

N

∑
R

N∑
m=1

U†nm(k)eik·(R−r)ωγ(r) (3.28)

Inserting the expression from (3.28) and its complex-conjugate into (3.1) yields

Jµµ′ =
1

N2

∫
u.c

d3r
∑
R′

eik
′·(R′−r)

N∑
m′=1

(
U†n′m′(k

′)
)∗
ω∗γ′(r)

∑
R

e−ik·(R−r)
N∑
m=1

U†nm(k)ωγ(r)eiK·r

(3.29)

with µ = {n,σ,k} and γ = {m,σ,R}; µ′ = {n′,σ′,k′} and γ′ = {m′,σ′,R′}. To
proceed, we now evaluate the Wannier integral in (3.29). This must be done for each region
of the (L)APW(+lo) basis. We again omit the factor ei(k

′−k)·r since it is slowly-varying
over the unit cell

Jµµ′ =
1

N2

∑
R′

∑
R

eik
′·R′−ik·R

N∑
m′=1

N∑
m=1

Um′n′(k′)U†nm(k)∫
u.c

d3reiK·rω∗γ′(r)ωγ(r)

(3.30)

From (3.30), we see that the Wannier overlap includes a summation over real-space lattice
points. A discrete k-mesh in the Brillouin-zone yields a periodicity of the Bloch states,
and consequently the Wannier states, over a supercell in real space. The number of lattice
points in this supercell equals the number of k-points in the original first principles mesh.
The summations each run over all crystal lattice points within this supercell, typically a
couple of thousand, as the number of lattice points scales with the number of k-points
in the Brillouin-zone. A practical implementation must involve a cut-off radius around a
given lattice pointR to restrict the summation.
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A guarantee for such a cut-off radius is given by Panati and Pisante (2011). They prove
that Maximally localized Wannier functions in 3D decay exponentially, something that
had earlier only been conjectured [51]. If we start evaluating the overlap between Wannier
functions centered around the nearest lattice points, and move outward from R0, we will
eventually reach a distance |Rcut −R0| where contributions from any Wannier function
centered around lattice points further out, becomes negligible. This is ensured by the
exponential localization of WFs.

The introduction of a cut-off radius allows us to perform a manageable summation within
the cut-off radius distance |Rcut − R0| from a selected lattice point Ro without loss
of significant contributions to the overlap factor. Such a summation should in principle
be carried out for the equivalent Wannier function centered around every lattice point in
the crystal structure, but Wannier function ωR′n is the periodic image of ωRn, shifted
by R′ − R. This means that once all contributions within the cut-off radius have been
taken into account for a particular ωR0n centered around R0, we take all periodic images
into account simply by multiplying with the number of lattice points. This reduces the
formidable task of carrying out a summation over R and R′ to a summation over real-
space lattice points confined to a cut-off radius, conceivably a couple of unit cells in each
direction. Surface effects are neglected in this final step, appropriate for a sufficiently large
crystal. We are left with

Jµµ′ =
1

N

∑
R

eik
′·0R−ik·R

N∑
m′=1

N∑
m=1

Um′n′(k′)U†nm(k)∫
u.c

d3reiK·rω∗γ′(r)ωγ(r)

(3.31)

where now γ = {n,σ,R} and γ′ = {n′,σ′,0R}, 0R being a reference lattice point.

3.2.1 Region I

For a particular sphere β in region I, the Bloch state reads

ψµ(rβ) =
∑
L

[
aβµLu

β
1,lσ(rβ , E1,l) + bβµLu̇

β
1,lσ(rβ , E1,l) + cβµLu

β
2,lσ(rβ , E2,l)

]
YL(r̂β)

(3.32)

where rβ originates in the center of the sphere β, at pointRβ . The Wannier transformation,
relating N Wannier states to N Bloch states, reads

wγ(r) =
V

(2π)3

∫
BZ

dk

N∑
p=1

e−ik·RUpn(k)ψµ(r) (3.33)
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Figure 3.3: For region I, the integral is conducted inside each atomic sphere. The integration
variable rβ is centered around each respective Rβ as indicated above. Rβ associates the local
origin with the global one.

where the unitary matrix is chosen such that it maximally localizes the Wannier functions.
This corresponds to N Wannier functions since the index n will take on N integer values.
Inserting for (3.32) into (3.33) yields

wγ(rβ) =
∑
L

[( V

(2π)3

∫
BZ

dk

N∑
p=1

e−ik·RUpn(k)aβµL(k)
)
uβ1,lσ(rβ , E1,l)+

( V

(2π)3

∫
BZ

dk

N∑
p=1

e−ik·RUpn(k)bβµL(k)
)
u̇β1,lσ(rβ , E1,l)+

( V

(2π)3

∫
BZ

dk

N∑
p=1

e−ik·RUpn(k)cβµL(k)
)
uβ2,lσ(rβ , E2,l)

]
YL(r̂β)

(3.34)

where the wavevector dependence of the expansion coefficients is shown explicitly be-
cause an integral is performed over the Brillouin-zone: instead of aβµL, bβµL and cβµL, we
write aβµL(k), bβµL(k) and cβµL(k). Defining the parentheses in each line as a new set of
expansion coefficients
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( V

(2π)3

∫
BZ

dk

N∑
p=1

e−ik·RUpn(k)aβµL(k)
)
≡ aβγL

( V

(2π)3

∫
BZ

dk

N∑
p=1

e−ik·RUpn(k)bβµL(k)
)
≡ bβγL

( V

(2π)3

∫
BZ

dk

N∑
p=1

e−ik·RUpn(k)cβµL(k)
)
≡ cβγL

(3.35)

where again γ = {n,σ,R}, yields Wannier functions

wγ(rβ) =
∑
L

[
aβγLu

β
1,lσ(rβ , E1,l) + bβγLu̇

β
1,lσ(rβ , E1,l) + cβγLu

β
2,lσ(rβ , E2,l)

]
YL(r̂β)

(3.36)

We next turn to the exponential factor eiK·r appearing in (3.30). r denotes the coordinate
vector with respect to a global origin. We expand it in terms of Bessel functions centered
around sphere β

eiK·r = 4πeiK·Rβ
∑
L

iljl(|q|rβ)YL(K̂)YL(r̂β) (3.37)

We finally insert for (3.36) and (3.37) into the integral in (3.30)

∫
I
d3r∑

L1

[
aβ∗γ′L1

uβ∗1,l1σ
(rβ , E1,l1) + bβ∗γ′L1

u̇β∗1,l1σ
(rβ , E1,l1) + cβ∗γ′L1

uβ∗2,l1σ
(rβ , E2,l1)

]
Y ∗L1

(r̂β)

4πeiK·Rβ
∑
L2

iljl2(|q|rβ)YL2(K̂)YL2(r̂β)

∑
L3

[
aβγL3

u1,l3σ(rβ , E1,l3) + bβγL3
u̇β1,l3σ(rβ , E1,l3) + cβγL3

uβ2,l3σ(rβ , E2,l3)
]
Y ∗L3

(r̂β)

(3.38)

This yields an overlap for region I
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JIµµ′ =
1

N

∑
R

eik
′·0R−ik·R

N∑
m′=1

N∑
m=1

Um′n′(k′)U†nm(k)
∑

L1,L2,L3

∫
I[

aβ∗γ′,L1
uβ∗1,l1σ

(rβ , E1,l1) + bβ∗γ′,L1
u̇β∗1,l1σ

(rβ , E1,l1) + cβ∗γ′,L1
uβ∗2,l1σ

(rβ , E2,l1)
]
Y ∗L1

(r̂β)

× 4πeiK·Rβ il2jl2(|K|rβ)YL2
(K̂)YL2

(r̂β)

×
[
aβγ,L3

uβ1,l3σ(rβ , E1,l3) + bβγ,L3
u̇β1,l3σ(rβ , E1,l3) + cβγ,l3m3

uβ2,l3σ(rβ , E2,l3)
]
YL3

(r̂β)
(3.39)

JIµµ′ denotes the contribution to (3.29) from region I. The first line on the LHS is in-
serted for ω∗γ′(r), the second line is inserted for the expansion of eiK·r and the third
line is inserted for ωγ(r). Since these depend on their own respective summation indices
L = {l,m}, a subindex has been added to prevent mixing them up: 1 corresponds to ex-
pansion coefficients for ω∗γ′(r), 2 corresponds to expansion coefficients for eiK·r, and 3
corresponds to expansion coefficients for ωγ(r). Sorting out the different factors, we are
left with a prefactor given by

4πeiK·Rβ il2YL2(K̂) (3.40)

an angular integral given by

∫ 2π

φ=0

∫ π

θ=0

dΩY ∗L1
(r̂β)YL2

(r̂β)YL3
(r̂β) (3.41)

and a radial integral given by

∫ Rβ

0

drβr
2
β

[
aβ∗γ′,L1

uβ∗1,l1σ
(rβ , E1,l1) + bβ∗γ′,L1

u̇β∗1,l1,σ
(rβ , E1,l1) + cβ∗γ′,L1

uβ∗2,l1
(rβ , E2,l1)

]
jl2(|K|rβ)[

aβγ,L3
uβ1,l3(rβ , E1,l3) + bβγ,L3

u̇β1,l3(rβ , E2,l3) + cβγ,L3
uβ2,l3(rβ , E2,l3)

]
(3.42)

where the radial integral goes from radius zero to Rβ , the radius of atomic sphere β. The
contribution from region I to equation (3.1) now reads
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JIµµ′ =
1

N

∑
R

eik
′·0R−ik·R

N∑
m′=1

N∑
m=1

Um′n′(k′)U†nm(k)
∑

L1,L2,L3

4πeiK·Rβ il2YL2
(K̂)

∫ 2π

φ=0

∫ π

θ=0

dΩY ∗L1
(r̂β)YL2

(r̂β)YL3
(r̂β)∫ Rβ

0

drβr
2
β

[
aβ∗γ′,L1

uβ∗1,l1
(rβ , E1,l1) + bβ∗γ′,L1

u̇β∗1,l1
(rβ , E1,l1) + cβ∗γ′,L1

uβ∗2,l1
(rβ , E2,l1)

]
jl2(|K|rβ)[

aβγ,L3
uβ1,l3(rβ , E1,l3) + bβγ,L3

u̇β1,l3(rβ , E1,l3) + cβγ,L3
uβ2,l3(rβ , E2,l3)

]
(3.43)

3.2.2 Region II

Figure 3.4: For region II the integral is conducted in the interstitial region, given in grey. The
integration variable r is given with respect to the global origin.

In region II, the basis reads

ψµ(r) =
1√
V

∑
G

Cµ(G)ei(k+G)·r (3.44)

with µ = {n,σ,k}. The Wannier transformation (3.33) yields Wannier functions for
region II of the form
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wγ(r) =
1√
V

∑
G

V

(2π)3

∫
BZ

dk

N∑
m=1

Umn(k)Cµ(G)ei(k+G)·r−ik·R (3.45)

with γ = {n,σ,R} and µ = {m,σ,k}. Making the approximation eik·r ≈ 1 over the
unit cell again allows us to express the region II Wannier functions in terms of plane-waves

wγ(r) =
1√
V

∑
G

V

(2π)3

∫
BZ

dk

N∑
m=1

Umn(k)Cµ(G)eiG·r−ik·R (3.46)

By introducing

Cγ(g) ≡
(

V

(2π)3

∫
BZ

dk

N∑
m=1

Umn(k)Cµ(G)e−ik·R
)

(3.47)

the Wannier functions in region II may be written as

wγ(r) =
1√
V

∑
G

CγGe
iG·r

(3.48)

This expression is now inserted into the overlap integral for region II

JIIµµ′ =
1

N

∑
R

eik
′·0R−ik·R

N∑
m′=1

N∑
m=1

Um′n′(k′)U†nm(k)

∫
II
d3reiK·rω∗γ′(r)ωγ(r)

(3.49)

yielding

JIIµµ′ =
1

N

∑
R

eik
′·0R−ik·R

N∑
m′=1

N∑
m=1

Um′n′(k′)U†nm(k)

1

V

∫
II
d3reiK·r

∑
G1

C∗γ′G1
e−iG1·r

∑
G2

CγG2e
iG2·r

(3.50)

and reorganized a bit

JIIµµ′ =
1

N

∑
R

eik
′·0R−ik·R

N∑
m′=1

N∑
m=1

Um′n′(k′)U†nm(k)

1

V

∑
G1

∑
G2

∫
II
d3reiK·rC∗γ′G1

e−iG1·rCγG2e
iG2·r

(3.51)
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We now split the integral over region II into an integral over the whole unit cell and subtract
the contribution from the region I atomic spheres β. This is analogous to the treatment of
the (L)APW(+lo) overlap in region II. This yields

JIIµµ′ =
1

N

∑
R

eik
′·0R−ik·R

N∑
m′=1

N∑
m=1

Um′n′(k′)U†nm(k)

∑
G2−G1+K=0

Cγ(G2)

[
C∗γ′(G1)

(
V −

∑
β

Vβ

)
−
∑
β

3Vβ

∑
G2−G1+K 6=0

C∗γ′(G1)3Vβ
sinx− x cosx

x3
ei(G2−G1+K)·Rβ

] (3.52)

Here, x = Rβ |G2 −G1 +K| and Vβ = 4
3πR

3
β , Rβ being the radius of sphere β.

3.2.3 Total overlap

We have an expression from region I

JIµµ′ =
1

N

∑
R

eik
′·0R−ik·R

N∑
m′=1

N∑
m=1

Um′n′(k′)U†nm(k)
∑

L1,L2L3

4πeiK·Rβ il2YL2
(K̂)

∫ 2π

φ=0

∫ π

θ=0

dΩY ∗L1
(r̂β)YL2(r̂β)YL3(r̂β)∫ Rβ

0

drβr
2
β

[
aβ∗γ′,L1

uβ∗1,l1
(rβ , E1,l1) + bβ∗γ′,L1

u̇β∗1,l1
(rβ , E1,l1) + cβ∗γ′,L1

uβ∗2,l1
(rβ , E2,l1)

]
jl2(|K|rβ)[

aβγ,L3
uβ1,l3(rβ , E1,l3) + bβγ,L3

u̇β1,l3(rβ , E1,l3) + cβγ,L3
uβ2,l3(rβ , E2,l3)

]
(3.53)

with the Wannier coefficients given by

aβγL =

∫
BZ

dk

N∑
p=1

e−ik·RUpn(k)aβµL(k)

bβγL =

∫
BZ

dk

N∑
p=1

e−ik·RUpn(k)bβµL(k)

cβγL =

∫
BZ

dk

N∑
p=1

e−ik·RUpn(k)cβµL(k)

(3.54)

and an expression from region II
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JIIµµ′ =
1

N

∑
R

eik
′·0R−ik·R

N∑
m′=1

N∑
m=1

Um′n′(k′)U†nm(k)

∑
G2−G1+K=0

Cγ(G2)

[
C∗γ′(G1)

(
V −

∑
β

Vβ

)
−
∑
β

3Vβ

∑
G2−G1+K 6=0

C∗γ′(G1)3Vβ
sinx− x cosx

x3
ei(G2−G1+K)·Rβ

] (3.55)

with x = Rβ |G2 −G1 + K| and Vβ = 4
3πR

3
β , Rβ being the radius of sphere β. This

time, the Wannier coefficients are defined as

Cγ(G) =

∫
BZ

dk

N∑
m=1

Umn(k)CµGe
−ik·R (3.56)

3.2.4 Wannier interpolation of matrix elements

It was noted initially in this thesis that Wannier interpolation permits one to save data on
a coarse mesh, and then interpolate between-lying points without significant loss of preci-
sion. The electron-phonon interaction is of principal interest in semiconductor transport,
but the cost of evaluating this matrix element from first principles on a fine (k,k′)-mesh
is very high. Although lattice vibrations in crystals are usually described in a delocalized
orthonormal basis, they may be described in a localized basis which spans the exact same
space for the lattice vibrations [52]. The electron-phonon matrix element may be calcu-
lated from first principles on a coarse mesh and then effectively interpolated onto a finer
mesh, as demonstrated by Giustino et al. [53].

Giustino et al. do not decompose the matrix element into a wavefunction overlap factor
and an interaction overlap factor, as done in (2.2), so the approach employed for the MC
program will differ: We start by determining the Bloch states on a coarse Brillouin-zone
mesh. Next, we transform the set of Bloch states to a set of Maximally localized Wannier
functions and express the wavefunction overlap factor in terms of these, as done in (3.51).
To Wannier interpolate the wavefunction overlap factor, the unitary matrices are needed
on a fine mesh. These may themselves be Wannier interpolated through

Umn(R) =
1

N

∑
k

e−ik·RUmn(k) (3.57)

Umn(k) =
∑
R

eik·RUmn(R) (3.58)
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Chapter 3. Matrix elements

Here, Umn(R) is the contribution to unitary matrix Umn(k) from lattice point R, as de-
fined in (3.57). As mentioned earlier, the discretization of the Brillouin-zone yields Wan-
nier functions periodic in a supercell, with the number of lattice points within this supercell
equal to the number of discrete k-points in the discretized Brillouin-zone. This number
is denoted N in (3.57). Due to the exponential localization of WFs within this supercell,
Umn(R) decays rapidly with |R| [54]. This in turn permits an inexpensive interpolation
of the unitary matrix and thus the wavefunction overlap factor.

As long as the interaction matrix element (2.2) is also available on a fine mesh, the total
scattering rates on the LHS of (2.2) are readily computed on a fine mesh.
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4.1 Output from first principles programs

Now that the wavefunction overlap factor has been derived both in the (L)APW(+lo) and
Wannier bases, the first step towards implementation is to obtain the necessary informa-
tion from Wien2k and Wannier90 to compute the (L)APW(+lo) and Wannier overlaps,
respectively.

From Wien2k, we have extracted the basis coefficients for region I and II, respectively,
and the radial functions associated with each basis coefficient of region I. It is possible
to read the basis coefficients from case.vector, where <case> is replaced with the ses-
sion name of the particular Wien2k-simulation. This is however tedious as the case.vector
file is unformatted. Another option, the one selected in this scheme, is to generate the
files case.almblm and case.radwf. These print the basis coefficients and radial functions
from region I by running the routine lapw2. For lapw2 to generate case.almblm and
case.radwf, the option ALM must be selected in the input file case.in2. Basis coefficients
in case.almblm are displayed in ten columns: the first two pairs represent the APW basis
coefficients, first the real and then the imaginary component; the next two pairs represent
the basis coefficients in the LAPW method; and finally, the last two pairs denote local
orbital basis coefficients. In case.radwf, an exponential mesh, yielding finer grid near the
origin and coarser further out, is used to display two columns representing the large and
small radial wavefunction components in (3.7).

For the interstitial region, the option WFPRI in case.in1 will write the region II basis coef-
ficients to case.output1. If the crystal structure under simulation has inversion symmetry,
then for each k-point, the local orbital-coefficients clo are printed immediately after the
plane-wave coefficients. Recall that these coefficients appear in (2.40) in the discussion on
lattices with inversion symmetry. Each local-orbital-coefficient corresponds to a particular
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reciprocal lattice vector.

Finally, the unitary transformation, needed in the Maximally localized Wannier transfor-
mation, is given in case.wout after running the softwares Wien2Wannier and Wannier90
[15, 16]. Once all relevant data has been extracted, the next step is to implement routines
computing the wavefunction overlap factor for region I and II, in the (L)APW(+lo) and
Wannier bases, respectively.

4.2 Overlap routines

Numerical integration over three-dimensional space can be notoriously difficult [55]. The
result may also vary according to what numerical scheme is employed. To minimize the
error in the overlap computation, we therefore take two steps: First, we treat as much as
possible of the overlap analytically. Second, if possible, we use routines already available
in the Wien2k source code, to ensure high compatibility between overlap routines and
those already in Wien2k used to generate the output.

4.2.1 (L)APW(+lo) overlap

Wien2Wannier

One option is to extract the wavefunction overlap factor from a software Wien2Wannier.
Recall from Chapter 2.4.2, dealing with the maximal localization of Wannier functions,
that an overlap between (L)APW(+lo) states at neighboring k-points is needed to con-
struct MLWFs. This information may also be used to calculate scattering rates in the
(L)APW(+lo) basis. The overlaps (2.84) are in fact tabulated in the program Wien2Wannier
to provide necessary input for the program Wannier90. Since the overlaps are given free
of any computational cost after a Wannierization has been performed, they may possibly
be reused when calculating scattering rates.

Yet the overlaps needed in the construction of MLWFs differ from the scattering overlap
(2.4) in three regards: First, an exponential factor eiK·r is present in (2.4), but not found
in the overlap (2.84) used to construct MLWFs. Second, in (2.4), unlike in Wien2Wannier,
initial spin states are averaged over and final spin states summed over. Third, the overlaps
needed in the construction of MLWFs are only taken between neighboring k-points. The
initial and final charge carrier states are not restricted to neighboring k-points; they are
not even restricted to states in the first Brillouin-zone. Thus, the overlaps needed to calcu-
late scattering rates represents only a tiny fraction of the overlaps needed for determining
the scattering rates of interest. We therefore conclude that although overlaps between
(L)APW)+lo) basis functions are used to construct MLWFs, these are slightly different
and additionally represent only a tiny part of the overlaps we need. The effort needed to
extract this data is not worthwhile. We must therefore compute this overlap ourselves.
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4.2 Overlap routines

Region I

Starting with region I, the wavefunction overlap factor consists of basis coefficients mul-
tiplied with a radial and an angular integral. To carry out the radial integral, we seek a
routine computing the radial integral over two-component relativistic radial functions on
an exponential mesh. RINT13, a routine part of the subprogram lapw1 does exactly this
[56]. The routine has been extracted from Wien2k, now working as part of a program
reading case.radwf and then tabulating the radial overlaps. For the angular integral over
three spherical harmonics functions, an expression was presented in Chapter 2.5. This
expression has also been implemented, largely based on the EXCITING source code [50].
It returns the Gaunt number for a given set of angular and magnetic quantum numbers.
Using the evaluated radial and angular integrals as well as the region I basis coefficients,
the wavefunction overlap factor is readily computed.

Region II

For region II, the wavefunction overlap factor involves sums over reciprocal lattice vec-
tors and the region I spheres β. A scheme for calculating optical matrix elements by
Ambrosch-Draxl et al. was mentioned initially in this thesis. Although the optical matrix
element 〈n′k| ∇ |nk〉 differs from the wavefunction overlap factor, in the basis of plane-
waves, a routine computing the optical matrix element is easily modified to compute the
wavefunction overlap factor. For plane-waves, the difference between a wavefunction
overlap and one with ∇ is multiplication with the exponent wavevector; from a compu-
tational point of view, this is easily changed. Therefore, the routine planew, part of the
software Optic, has been modified to compute the wavefunction overlap factor of region
II. In addition to computing the wavefunction overlap factor instead of the optical matrix
element, the routine has been generalized to arbitrary initial and final k-point.

4.2.2 Wannier overlap

The Wannier overlap has not yet been implemented. We will first need to Wannier trans-
form the (L)APW(+lo) coefficients. This requires a k-space integral over the Brillouin-
zone, where the unitary matrix participates. The unitary matrix is outputted in Wannier90,
but before running Wannier90, it is necessary to run the interface program Wien2Wannier
which prepares data from a given Wien2k-simulation. Once Wannier90 has finished, the
unitary matrix is available in case.wout. The k-space integral involving the unitary matrix
must be evaluated numerically, for example using the tetrahedron method [57].

Conveniently, the Wannier overlap and the (L)APW(+lo) overlap are linear combinations
of exactly the same kind of terms. For region I, a radial integral over each sphere β in
region I, and an integral over three spherical harmonics functions; for region II, a sum
over reciprocal lattice vectors and region I spheres β. Once the Wannier coefficients are
known, the Wannier overlap is readily evaluated with a cut-off radius invoked on the crystal
lattice vectors.
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4.2.3 Spin-dependent overlap

Spin-orbit coupling generally plays a significant role in transport phenomena and should
eventually be included. In that case, Wien2k will output the wavefunction data in sep-
arate files for spin up and down, respectively. These files follow the nomenclature ex-
plained above, except for the addition of ’up’ or ’dn’ added at the end for spin up or
down wavefunctions, respectively: instead of case.radwf, Wien2k outputs case.radwfup
and case.radwfdn. Once the routines reading the wavefunction files have been modified,
the wavefunction overlap factor may be computed with the overlap routines already im-
plemented for region I and II in the (L)APW(+lo) overlap.

4.3 Numeric suitability for Brillouin-zone integration

Now that a new first-principles scheme has been developed for the calculation of wave-
function overlap factors, it is pertinent to turn to the following question: Are the overlap
factors obtained suitable for numeric integration over the Brillouin-zone?

Starting with the (L)APW(+lo) overlap, one should initially appreciate that, apart from
the radial integrals, no intermediate numeric steps have been taken to acquire the wave-
function overlaps. Once the radial integrals, Gaunt numbers and region II expressions, the
latter found on the bottom line of (3.26), are computed for a particular set of bands and spin
orientations, the overlapGµµ′ is entirely given by the (L)APW(+lo) basis coefficients. Per-
forming a Brillouin-zone integral for the overlap amounts to varying the basis coefficients
with respect to k; for each k-point, a linear combination of two sets of basis coefficients
is computed, while the radial integrals and Gaunt coefficients, which may be stored in ad-
vance, are reused for each grid point. The overlap for a given pair of wavevectors is readily
extracted with the same level of detail as the (L)APW(+lo) coefficients themselves.

Comparably, the Wannier overlap involves an intermediate step, in which Wannier coef-
ficients are constructed from the (L)APW(+lo) coefficients. Remember that the Wannier
coefficients do not depend on wavevector k; rather, they are labeled by a Bravais lattice
vector R. As seen from (3.30), the k dependence is inherited by e−ik

′·0R+ik·R and the
unitary matrices. To compute the Wannier integrals, we reuse the routines used to eval-
uate the radial integrals, Gaunt numbers, and region II lattice sums for the (L)APW(+lo)
scheme. Once the Wannier integral has been computed, an integral over the Brillouin-
zone amounts to collecting contributions from varying k-points on which the overlap is
tabulated. Through Wannier interpolation, a fine mesh is obtained efficiently at which the
overlap is accurately tabulated.
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Most of the time spent on this thesis has been devoted to implementing a working program
which computes the normal (L)APW(+lo) overlap between two wavefunctions at arbitrary
k-point. We apply this to GaAs to investigate bands principal in transport phenomena. In
particular, we look at the wavefunction distribution between the atomic spheres and the
interstitial region for these near-band edge states.

5.1 GaAs

A Wien2k-simulation has been run for GaAs. Since the overlap program has not yet
been generalized to account for different spin states, the simulation excludes spin-orbit
coupling. We are primarily interested in the bands central in carrier transport; these are
highlighted with band index and color in figure 5.1.

According to figure 5.1, the edge of the valence band has a 6-fold degeneracy, with bands
12-14 all coinciding at k = Γ, each band associated with two spin states. The central-
cell area of the mentioned bands is primarily made up of p-orbitals. In figure 5.1, bands
12, 13 and 14 are given in yellow, black and blue, respectively. The valence band edge
6-fold degeneracy disagrees with experiments, which instead reveal a 4-fold degeneracy.
Had spin-orbit effects been included, the correct 4-fold degeneracy would be present at the
valence band edge of figure 5.1 [2].

The conduction band edge has band index 15, and is given in red in figure 5.1. As shown,
GaAs has a direct band gap for which the conduction band edge has a central-cell area of
s-orbital character. The next conduction band valley is found near theX-point. Further up,
directly above the conduction band edge, at k = Γ, bands 16-18 form a degenerate valley.
Like for the valence band edge, the bands are superposed of p-orbitals, but in this case
antibonding orbitals are formed, lying higher in energy than the corresponding bonding
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orbitals [58].

Figure 5.1: Band structure of GaAs calculated with first
principles program Wien2k. Spin-orbit coupling effects are
not included. Bands 12-15 are of principal interest in trans-
port phenomena and have been highlighted with band in-
dices and colors. GaAs has a direct bandgap at k-point Γ,
correctly predicted in this simulation. On the other hand,
a 6-fold valence band edge is incorrectly predicted due to
the exclusion of spin-orbit coupling effects; had these been
included, a split-off band would form, yielding a correct 4-
fold valence band edge.

The norm has been computed for
bands 11-19 at k = Γ and k =
L. In figures 5.2 and 5.3, the total
norm as well as the contributions
from |Jnk,n′k′ | and |Jnk,n′k′ | are
shown.

Wien2k distinguishes between three
kinds of states: core, semi-core
and valence states [59]. Core
states are entirely confined to
the atomic spheres of region I.
Semi-core states have a few per-
cent of their charge outside the
atomic spheres, but are predomi-
nantly in region I. Finally, valence
states have a significant charge
distributed to the interstitial re-
gion.

As expected when computing the
norm, values very close to 1 are
obtained. This holds true for all
bands both for k = Γ and k = L,
regardless of how the wavefunc-
tion is distributed between the two
regions.

Shown in figure 5.1, band 11 is
the lowest in energy. At the ori-
gin, only a few percent of the in-
terstitial region contributes. Ac-
cordingly, we categorize it as a
semi-core state. For k = L, the
norm has a significant portion of
its contribution from the interstitial region, so here, band 11 is a valence state.

At k = Γ, bands 12-14 constitute the top of the valence band. Here, the top of the va-
lence band is made of p-orbitals. These must transform into one another as one rotates
the wavefunctions with an angle corresponding to a symmetry operation for a Zinc Blende
crystal. Bands 12-14 are therefore expected to have identical distribution of the norm
between region I and II. Furthermore, the interstitial region is expected to host more of
the wavefunction for higher-lying bands as these are more energetic. Peculiarly, band 12,
compared to bands 13 and 14, has a larger portion of its wavefunction in the interstitial
region. At the same time, the wavefunction of band 15 is distributed identically with that
of bands 13 and 14. For a given band, it is the atomic spheres of region I that dictate

56



5.1 GaAs

11 12 13 14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

band index

|Jnk,n′k′ |

Semi-core and valence band states at k = (0, 0, 0)

|JInk,n′k′ |
|JIInk,n′k′ |

15 16 17 18

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

band index

|Jnk,n′k′ |

Conduction band states at k = (0, 0, 0)

|JInk,n′k′ |
|JIInk,n′k′ |

Figure 5.2: |Jnk,n′k′ |, plotted at k-point Γ for bands 11-18, as given by Wien2k. Bands 12-14
constitute the top of the valence band, and are in the central-cell area made up of p-orbitals. These
should transform into one another as one rotates them by an angle corresponding to a symmetry
operation for a Zinc Blende crystal. Since band 12 has a larger portion of its wavefunction in
the interstitial region, that is however impossible. Interestingly, band 15 is distributed identically
with bands 13 and 14 between the atomic spheres and the interstitial region. This indicates that
wavefunctions for bands 12 and 15 have been alternated in Wien2k, giving an incorrect band edge
description. How this alternation has happened is unknown. At k = Γ, bands 16-18 should, like
bands 12-14, also transform into one another as one rotates them by an angle corresponding to
a symmetry operation for a Zinc Blende crystal. Being identically distributed between the atomic
spheres and the interstitial region, this is in agreement with the band structure in 5.1.
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Figure 5.3: |Jnk,n′k′ | plotted at k-point L for bands 11-18, as given by Wien2k. Compared to
wavefunctions at k = Γ, the interstitial region hosts a larger portion of the norm. In particular, at
the origin, band 11 is a semi-core state; at k = L, it is a valence state. Oddly, the wavefunction of
band 12 is weighted closer to the nucleus than band 15, indicating that bands 12 and 15 have been
alternated. How this alternation has happened is unknown. Compared to k = Γ, we also see that
the degeneracy for bands 16-18 has been lifted: whereas p-orbitals make up bands 16-18 at k = Γ,
other orbitals mix in at k = L to lift the degeneracy.

the wavefunction distribution between region I and II. Yet, the atomic spheres are cho-
sen arbitrarily; an accidental identical distribution of the wavefunction for bands 13-15 is
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Figure 5.4: |Jnk,n′k′ | plotted at k-point Γ for bands 11-18. The wavefunction-to-band correspon-
dence has been modified by alternating the wavefunctions for bands 12 and 15, restoring the valence
band edge symmetry. Furthermore, the first conduction band’s larger weight in the interstitial re-
gion, as compared with bands 13 and 14, is now appropriate as band 15 is a conduction band state.
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Figure 5.5: |Jnk,n′k′ | plotted at k-point L for bands 11-18. The wavefunction-to-band correspon-
dence has been corrected. Compared to the valence bands, band 15 now appropriately has a larger
contribution from the interstitial region.

extremely unlikely. Assuming the wavefunction of band 12 has been alternated with that
of band 15, the valence band edge symmetry is restored, and the first conduction band’s
larger weight in the interstitial region, as compared with bands 13 and 14, is appropriate.
Hence, we conclude that the printed wavefunctions for bands 12 and 15 have somehow
been alternated, presumably in Wien2k. Why this alternation has occurred is unknown.
The alternation has been corrected in figures 5.4 and 5.5.

For k = L, we observe that for the valence bands 12-14, the interstitial region contributes
more to the overlap than at k = Γ. The same holds true for band 15, having a majority of
its charge in the interstitial region. Furthermore, the valence bands 12-14 no longer have
identical wavefunction distribution between regions I and II. From figure 5.1, this is seen
in light of the band degeneracy having been lifted at k = L. While the wavefunction of
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5.1 GaAs

band 12-14 is primarily superposed of p-orbitals near k = Γ, other orbitals mix in as one
moves towards k = L.

As seen from figure 5.1, bands 16-18 form a second conduction band valley at k = Γ.
Here, electrons are constructed using the same p-orbitals as those for bands 12, 13 and 14,
but for bands 16-18 superposed to form antibonding orbitals. As expected, the norm is
distributed between region I and II identically, as shown in figure (5.4). About 60% of the
norm contribution comes from region II for all three bands.

At k = L, roughly 70% of the norm comes from region II. Here, analogous to bands
12-14, other orbitals mix in to lift the degeneracy as compared with k = Γ where only
p-orbitals participate. At k = L, band 16 has a slightly smaller contribution from region
II than band 17, and band 17 has a slightly smaller contribution from region II than band
18. The clear correspondence between bands 12-14 and bands 16-18 further strengthens
the theory that wavefunctions of bands 12 and 15 have been alternated in Wien2k.
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Chapter 6
Conclusion

During the work with this master thesis, several achievements have been made. First,
the wavefunction overlap factor in the bases (L)APW(+lo) and MLWFs has been derived.
Both expressions are suitable for numeric integration over the Brillouin-zone, allowing us
to use them in the MC program to simulate carrier transport in semiconductor materials.
The Wannier overlap should eventually be used to compute the wavefunction overlap on a
coarse mesh before Wannier interpolation is used to generate a finer mesh inexpensively.

The (L)APW(+lo) wavefunction overlap routine has been implemented and tested on a
Wien2k-simulation for GaAs. A direct band gap is correctly predicted, but at the same
time, an incorrect 6-fold valence band edge is incorrectly predicted due to the exclusion
of spin-orbit effects. With regard to the band edge wavefunctions, a norm very close to 1
was obtained for bands 11-19 both for k = Γ and k = L. Furthermore, the wavefunction
distribution between an interstitial region and atomic spheres, respectively, has been in-
vestigated. Somehow, wavefunctions for bands 12 and 15 have been alternated in Wien2k.
The cause of this alternation is unknown, so it was corrected manually. Electron states for
higher bands tend to have a larger portion of their norm contribution from the interstitial
region. Also, electron states for k = L, compared to states at k = Γ, tend to have a larger
portion of their norm contribution from the interstitial region. Finally, for bands 12-14, and
bands 16-18, respectively, the wavefunction distribution between the mentioned regions is
identical at k = Γ, in agreement with degeneracies evident fromthe GaAs band structure.

Although a working implementation has been tested for the (L)APW(+lo), it applies only
to the normal (L)APW(+lo) overlap. It should be generalized to Umklapp processes and
also take spin states into account.

Finally, a scheme has been developed for Wannier overlaps. It is worthwhile to implement
this scheme, allowing us to capitalize on Wannier interpolation.
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