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ABSTRACT  

Increasing levels of anthropogenic CO2 in atmosphere and aquatic environment have been 

regarded as significant force behind global climate changes. The aquatic environment is also a 

heavy recipient for pollutants embedded in among others municipal and industrial wastewater. 

Despite this, very little effort has currently been put in investigating the potential toxic effects 

of aquatic pollutants on aquatic organisms (fish) in a continuously changing aquatic 

environment driven by global climate change. In the present study, juvenile Atlantic cod 

(gadus morhua) were exposed to Perfluorooctane sulfonate (PFOS; 0, 100 and 200 μg/L) for 

1hour per day in a total of 5 days, and thereafter transferred to water tanks containing; 0%, 

0.3% and 0.9% CO2 for 3, 6 and 9 days. Oxidative stress responses in gills upon exposure to 

PFOS and elevated CO2 levels, singly or in combination were evaluated. Real-time RT PCR 

was in gene expression analysis of; peroxisome proliferator-activated receptor β (ppar-β), 

Acyl-CoA oxidase (acox) and selected antioxidant genes.  Enzyme activity levels of selected 

antioxidant enzymes and the total content of reduced glutathione and malondialdehyde were 

measured spectrophotometrically. Generally, single exposure to PFOS or elevated CO2 levels 

had a weak effect on the transcription of peroxisomal β-oxidation related genes (ppar-β and 

acox). However, an increase in mRNA levels of these genes was observed upon combined 

exposure to both stressors (though not significantly). An apparently CO2 dependent increase 

in mRNA levels for gpx1 and gpx3 at day 6, and SOD activity at day 9 was observed in fish 

exposed to a combination of high PFOS (200 μg/L) and CO2-this indicated presence of high 

cytosolic ROS levels. An apparent time-dependent decrease in activity of all antioxidant 

enzymes was generally observed in most of the exposure groups at day 9. Overall, the 

alterations in gene expression and/or enzyme activities of both peroxisomal β-oxidation 

related genes and antioxidant defenses suggest that both PFOS and elevated CO2 might induce 

oxidative stress, however, combined exposure to these stressors apparently enhances this 

effect. The apparent interactive effect between PFOS and elevated CO2 observed in this study 

suggests that the toxicity of aquatic pollutants could be modified under environmental 

hypercapnia-and this could adversely affect aquatic organisms in numerous ways. 
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1.0    INTRODUCTION 

1.1  BACKGROUND. 

The rapid growth of human population  and the general propensity for humans to desire to 

lead modern (confortable) lifestyles could explain the boom in technological advancements 

and changes in utilization of nature in the past couple of centuries (United Nations Statistics 

Division, 2010). New chemicals have been invented to be used in production of 

pharmaceuticals, household, industrial and warfare products, these include perfluorinated 

compounds (PFCs), brominated organic compounds, and nanoparticles. In addition to 

increased consumption of fossil fuels, land utilization patterns have also changed as more 

forests, wetlands and other compartments of nature are cleared for agriculture, mining and 

other human activities. Although, it has been known that periodically or permanently elevated 

CO2 partial pressure (hypercapnia) in the atmosphere and different ecosystems is a natural 

phenomenon (Langenbuch and Pörtner, 2003), the role of human activities in global climate 

change is hard to ignore, due to increased human-driven emissions of greenhouse gases (CO2, 

CH4, and nitrous oxide). The increasing levels of anthropogenic CO2 in atmosphere and ocean 

surface (Kleypas et al., 2006), coupled with the anticipated disposal of industrial CO2 in deep 

sea (Rajnauth, 2013), imply that elevated CO2 levels may be a serious stress factor in aquatic 

environments, and may potentially impact aquatic organisms in several ways.  

The aquatic environment has also been reported to be a recipient of a variety of persistent 

organic pollutants (POPs) including PFCs that are embedded in municipal, hospital, 

industrial- and sewage treatment-plant effluent deposits (Renner, 2001, Paul et al., 2008). This 

means that aquatic organisms are exposed to a cock-tail of aquatic pollutants, but this is 

happening in a continuously changing environment-due to global climate change. Climate 

change not only affects contaminant exposure, it may also act in concert with the 

contaminants and subsequently alter their toxicities toward aquatic organisms (Doris et al., 

2007).  However, the scientific community has mainly focused on the interactive effects of 

combined exposure to aquatic pollutants and elevated ambient temperatures (as an aspect of 

global climate change) (Noyes et al., 2009, Doris et al., 2007), and surprisingly little attention 

has so far been given to the interactive role of environmental hypercapnia despite the huge 

amounts of anthropogenic CO2 (over 30%) that have been absorbed by the aquatic 
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environment (Sabine, 2004, Khatiwala, 2013). There is a wide knowledge gap about the 

combined effects of PFCs and elevated CO2 on aquatic organisms-hence highlighting the 

importance of this study. 

1.2  PERFLUORINATED  COMPOUNDS (PFCs) 

 

Perfluorinated organic compounds are generally defined as organic compounds containing a 

fully fluorinated carbon backbone  and a charged group at the opposite end (Renner, 2001). 

There are several species of PFCs, but considerable attention has recently been given to 

perfluorinated alkyl acids (PFAAs) such as perfluorooctane sulfonate (PFOS), 

perfluorooctanoic acid (PFOA) and their precursor compounds  especially perfluoroalkyl 

sulfonamide alcohols and fluorotelomere alcohols (Lehmler, 2005, Zhang et al., 2009, Paul et 

al., 2008, Bijland et al., 2011).   

PFCs have been produced and used for over 50 years. Between 1970s and 1989 there was a 

reported 5-fold increase in the production of  PFCs  particularly-perfluorooctane sulfonyl 

fluoride (POSF), a trend that remained constant throughout the 1990s (Paul et al., 2008, 

Renner, 2001).  POSF was primarily produced by the 3-M company since 1949 and was 

mainly used as a starting material for the production of PFOS and other PFOS precursors such 

as N-methyl perfluorooctane sulfonamide (N-Me PFOSA) and N-ethyl perfluorooctane 

sulfonamide (N-Et PFOSA). However, 3M company discontinued the production of these 

chemicals in 2002 (Renner, 2001, Wågbø et al., 2012). Despite this, considerable attention is 

being given to PFOS and its derivatives due to their ubiquitous distribution in the 

environment, as well as bioaccumulation in wildlife and humans (Kannan and John, 2001, 

Harada et al., 2007). 

Sulfonyl-based fluorinated compounds including PFOS and its derivatives such as 

perfluorooctane sulfonyl-fluoride (POSF) and  N-alkyl perfluorooctanesulfonamide alcohols 

can be synthesized by several methods including electrochemical fluorination (ECF), and 

telomerization (Renner, 2001, Lehmler, 2005). In the ECF method a hydrocarbon compound 

is dissolved in liquid hydrogenfluorine (HF) and an electric current is then passed through the 

medium resulting into total fluorination of the hydrocardon compound, this reaction yields a 

complex of fluorinated compounds among others around 25% POSF- a starting material for 
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synthesis of PFOS and PFOS derivatives (Lehmler, 2005, Pabon and Corpart, 2002, Renner, 

2001). 

PFOS is an anion containing a fully fluorinated carbon tail with an adjacent sulfonic acid 

group (Figure 1). The fluorine-carbon bond in the alkyl tail is characterized as being 

thermodynamically very strong (Pabon and Corpart, 2002) . The sulfonic acid group of PFOS 

confers a limited degree of activity with different charged substances including positively 

charged amino acid residues of polypeptides, indeed, it has been reported that  PFOS is a 

blood-borne toxicant because of its ability to bind to plasma proteins-a mechanism through 

which its systemic distribution  is achieved (Zhang et al., 2009). The above mentioned 

structural features of PFOS confer this toxicant with unique physicochemical  properties such 

as; oil and water repellency, chemical inertness and thermal stability (hence the subsequent 

resistance to both environmental and biological degradation), low surface energy (surface 

activity), and very low vapor pressure (very poor volatility) (Martin et al., 2002, Lehmler, 

2005, Houde et al., 2006, Mitchell et al., 2009, Pabon and Corpart, 2002, Paul et al., 2008, 

Hoff et al., 2003b, Renner, 2001). 

 

Figure 1: An image of the chemical structure of PFOS, showing the fluorinated carbon-tail 

and the adjacent sulfonic acid group.  

Because of these properties, PFOS and its derivatives have extensively been used in the 

production of several industrial and household products such as coating treatments for   

carpets, fanishers and apparel, refrigerants, lubricants, adhesives, aqueous firefighting foams 

(AFFFs), and cosmetics (Abbott et al., 2009, Bijland et al., 2011, Kannan and John, 2001, 

Harada et al., 2007, Hoff et al., 2003b, Jeon et al., 2010, Lehmler, 2005, Houde et al., 2006). 
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1.2.1  Environmental distribution, bioaccumulation and biomagnification. 

In wild-life species, PFOS is the most predominant of all PFCs species (Houde et al., 2006). 

This chemical is globally distributed, and has reportedly been found in highly populated 

urbanized areas in North America, Southeast Asia, and Europe as well as scarcely populated 

remote locations such as the Arctic, Antarctic and several pacific regions (Kannan and John, 

2001, Kannan et al., 2002, Renner, 2001). It is unlikely that the global distribution of PFOS is 

attributed to water or air based transport due to its poor water-solubility and low volatility. 

Alternatively, it was hypothesized that particle-bound PFOS and volatile PFOS precursor 

compounds  such as N-ethyl and N-methyl perfluorooctane sulfonamide ( N-Et-PFOSA and  

N-Me-PFOSA) could explain the global distribution of PFOS via long-range atmospheric 

transport (Renner, 2001). This hypothesis was reinforced by the findings made by Martin et 

al, (2002) where N-Et-PFOSA and  N-Me-PFOSA were detected in air samples collected in 

Southern Ontario, Canada. Consumption of PFOS-containing products and release of 

wastewater sludge containing PFOS precursors could be considered as an acceptable route for 

direct emission of PFOS into the aquatic environment (Paul et al., 2008). This indicates that 

long-range oceanic transport could  be a possible dispersion route for PFOS from 

industrialized urban regions to remote rural locations (Wania, 2007). 

 The occurrence PFOS and its precursors in marine mammals, humans, fish and birds has 

been reported by several studies (Kannan and John, 2001, Kelly et al., 2009). Given the above 

mentioned physicochemical properties of PFOS, it has been found not only to be persistent in 

the environment, but also bioaccumulative in both aquatic and terrestrial food webs (Zhang et 

al., 2009). PFOS and its precursors enter aquatic-breathing organisms (fish) through the gills 

and/or intestines (ingested food), upon entry they bind to plasma proteins such as albumin and 

are distributed around the body. Once in the body, PFOS is poorly excreted since the 

compound has been reported to be subjected to extensive enterohepatic recirculation (Johnson 

et al., 1984), and this could partially explain its bioaccumlative properties. The body burden 

of Perfluoroalkyl sulfonamide alcohols such as N-et-PFOSA and N-Me-PFOSA could be a 

stable source for PFOS in different oragnisms. Laboratory studies have shown that PFOS 

could be generated in vitro via  N-Et-PFOSA PFOSA PFOS degradation pathway (Kelly 

et al., 2009). Due to their neutral and lipophilic nature, these PFOS precursors can accumulate 

in fat tissue and therefore bioaccumulate in different organisms. Indeed, these compounds 

have been detected in several organisms such as fish, marine birds, marine mammals and 
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others (Tommy et al., 2004a), and may therefore act as stable internal sources of PFOS in 

both humans and wildlife. It can be hypothesized that biomagnification of PFOS in both 

aquatic and terrestrial food webs could to a given degree be attributed to the presence of these 

compounds (Kelly et al., 2009, Tommy et al., 2004a, Tommy et al., 2004b). High levels of 

PFOS have been found in several animals in the wildlife for example, 1100 ng/g ww and 3673 

μg/L have been reported from liver tissue of tilapia oreochromis niloticus and mullet bile 

mugil icilis, respectively (Olivero-Verbel et al., 2006, Tseng et al., 2006). Biomagnification of 

PFOS has been shown to preferably occur in top predators such as polar bear, marine birds, 

marine mammals and other fish-eating species (OECD, 2002, Haukås et al., 2007).   

1.2.2  TOXICOLOGICAL EFFECTS OF PFCs  

There is growing evidence indicating the biological activity and subsequent toxicity of PFOS 

(Krøvel et al., 2008, Wågbø et al., 2012, Bjorka et al., 2011). Numerous in vivo  and in vitro 

studies have demonstrated effects of PFOS on gap junction intercellular communication(Hu et 

al., 2002b), membrane fluidity and mitochondrial membrane potential (Hu et al., 2002a), 

peroxisome proliferation (in rodents and primates) (Issemann and Green, 1990a, Takacs and 

Abbott, 2007a, Starkov and Wallace, 2002), oxidative stress responses-and lipid metabolism 

(Jurgen et al., 1997, Arukwe and Mortensen, 2011). A number of  studies have also indicated 

the potential developmental and reproductive toxicity, carcinogenicity,  neurotoxicity, and  

immuno-toxicity of PFOS in mammals and low vertebrates such as fish (Zhang et al., 2009).  

In vivo  and in vitro studies have demonstrated that peroxisomal β-oxidation of fatty acids and 

activation of peroxisome proliferator-activated receptors (PPARs), and downstream 

responses, as one of the major metabolic pathways affected by PFOS. The activities of some 

of the enzymes involved in this pathway (especially ACOX) have been shown to be 

substantially increase upon exposure to PFOS (Hu et al., 2005, Oakes et al., 2005), 

consequently leading to generation hydrogen peroxide and intracellular oxidative stress. 

Indeed, several studies have demonstrated an increase in oxidative stress responses such as 

changes in expression of antioxidant genes, and lipid peroxidation following exposure to 

PFOS (Arukwe and Mortensen, 2011, Lorentzen, 2013, Hu et al., 2005) . Given its global 

distribution, persistence and bioaccumulative properties, PFOS will remain a contaminant of 

major concern to aquatic ecosystems for many years to come (Oakes et al., 2005, Wågbø et 

al., 2012). 
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1.3  PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS 

(PPARS) 

 

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcriptional 

factors that belong to the steroid/thyroid/retinoid nuclear hormone receptor superfamily 

(Desvergne and Wahli, 1999). So far, three related isoforms of PPARs (,  and ) have been 

identified in vertebrates (Xenopus, mouse and rats) (Issemann and Green, 1990b, Dreyer et 

al., 1992). PPARs are widely recognized for playing a central role in the transcriptional 

regulation a variety of genes involved in several pathways of lipid metabolism such as fatty 

acid transport, cellular uptake, intracellular activation, catabolism (via both beta and omega 

oxidation) and storage (Desvergne and Wahli, 1999).  

In vitro and in vivo  studies have shown that PPARα, PPARβ and PPARγ  are expressed in a 

tissue specific manner and have distinct functions (Jurgen et al., 1997).  PPARα is generally 

expressed in tissues with high rate of lipid catabolism such as liver, kidney, and heart across 

several species, since this receptor has been reported to play a central role in the 

transcriptional modulation of  genes encoding enzymes involved in lipid catabolic pathways 

such as peroxisomal and mitochondrial -oxidation of fatty acids (Mandard et al., 2004).  

PPARγ is highly expressed in adipose tissue and is reported to promote lipid storage by 

upregulating genes involved in fatty acid and triglyceride biosynthesis, and adipogenesis 

(Vidal-Puig et al., 1996, Hotta et al., 1998, Mizukami and Taniguchi, 1997). PPARβ is 

ubiquitously expressed, with varying levels in different organs, but its physiological functions 

are yet to be fully clarified (Escher et al., 2001). However, research indicates that PPARβ is 

ubiquitously expressed and is involved in global regulation of lipid metabolism and adaptive 

thermogenesis (Vidal-Puig et al., 1996). PPARβ has also been suggested to play an important 

role in the control of cell differentiation, proliferation, and survival (Tanaka et al., 2003, 

Tachibana et al., 2005, Michalik et al., 2006).  

PPARs bind different types of ligands both natural and synthetic. Some of the bona fide 

natural PPAR ligands include unsaturated fatty acids and their metabolic derivatives such as 

eicosanoids (Barry et al., 1997). It has been observed that poly-unsaturated fatty acids 

(PUFA) such as decosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and linoleic acid 
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are more potent PPAR agonists than mono-unsaturated fatty acids (Jurgen et al., 1997, 

Desvergne and Wahli, 1999). Several synthetic PPAR ligands have also been identified, these 

include several hypolipidemic agents such as fibrates and insulin sensitizers such as 

Thiazolidinediones (TZDs) (Desvergne and Wahli, 1999). Several in vivo  and in vitro studies 

have shown that PFOS and other perflouroalkyl acids (PFAAs) species can activate PPARs in 

different organisms (James A. Bjork, 2009). This could partially be explained by the fact that 

PFOS is a structural analogue to some of the endogenous ligands of PPARs such as fatty 

acids. Indeed, PFOS and other PFAAs have sometimes been referred to as “perfluorinated 

fatty acids” (Hu et al., 2005).  

Ligand-bound PPAR forms heterodimers with 9-cis retinoic acid receptor (RXR/ NR2B) after 

which the PPAR:RXR receptor complex binds to PPAR response elements (PPREs) of the 

direct repeat 1 (DR1) type found in the promoter region of target genes, followed by 

transcription the genes (Jonathan et al., 1992, Issemann and Green, 1990b, Mangelsdorf et al., 

1995). 

 

Figure 2. PPARs bind DNA only after forming heterodimers with 9-cis-retinoic acid receptor 

(PPAR:RXR). After ligand binding, the PPAR undergoes conformational changes which 

allows the recruitment of cofactors such as cAMP response element-binding protein (CBP), 

which in turn promote the recruitment of chromatin modifying elements such as coactivator 

acetyl-transferase complex, hence the subsequent assembly of components of specific and 

basal transcription initiation complex.  

According to Lehmann et al (1997), PPARs appear to promiscuously interact with a variety of 

compounds, and can potentially be activated by different endogenous and exogenous 

compounds.  
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1.4  FATTY ACIDS AND ENERGY METABOLISM 

 

In addition to serving as metabolic regulators, and important components of cell membranes-  

fatty acids (FAs) also serve as essential metabolic fuels (Forman et al., 1997). The breakdown 

of FAs occurs via peroxisomal or mitochondrial β-oxidation pathway depending on the 

physical characteristics of the fatty acids. Catabolism of short, medium, and long straight- 

FAs occurs in the mitochondria, while that of very long straight and branched-FAs occur in 

peroxisomes (Clark, 2010, Kim and Miura, 2004).  The differences in FA substrates of the 

two β-oxidation systems is attributed to the differences in the substrate preferences of the 

enzymes that catalyze the rate limiting steps in these systems. Acyl-CoA dehydrogenase 

(ACOD) catalyzes the first and rate-limiting step of mitochondrial β-oxidation and prefers 

short-and medium straight fatty acids as substrates. On the contrary, short-chain fatty acids 

are poor substrates of acyl-CoA oxidase (ACOX), the enzyme which catalyzes the first and 

rate-limiting step of peroxisomal β-oxidation which preferentially binds to long straight and 

branched fatty acids. Complete β-oxidation of fatty acids does not occur via peroxisomal β-

oxidation, therefore this system of fatty acid β-oxidation- is widely considered as a chain 

shortening step, whose output (short-chain acyl-CoA) are subjected to further (complete) 

oxidation in mitochondria (Crockett and Sidell, 1993, Osmundsen et al., 1991). 

Both ACOD and ACOX are flavoproteins, containing a Flavin adenine dinucleotide (FAD) 

prosthetic group that serves as an electron-accepting group during the oxidation of activated 

fatty acids (fatty acyl-CoA). Peroxisomal β-oxidation is not directly coupled to the electron 

transport chain and oxidative phosphorylation. In the first of the four steps of β-oxidation 

hydrogen peroxide (H2O2) is produced (Nelson and Cox, 2008). This is because after 

oxidation of fatty acyl-CoA, the FAD subunit of ACOX is re-oxidized by transfer of electrons 

to molecular oxygen (Mannaerts and Van Veldhoven, 1993).  In contrast, mitochondrial β-

oxidation is directly coupled to the electron transport chain and therefore substantially 

contributes to energy production via oxidative phosphorylation (Gulick et al., 1994). This is 

because FAD subunit of ACOD is re-oxidized by transfer of electrons to the electron transfer 

flavoprotein (ETF) which delivers the electrons to the electron transfer chain apparatus in the 
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inner mitochondrial membrane, followed by ATP synthesis via oxidative phosphorylation 

(Mannaerts and Van Veldhoven, 1993, Gulick et al., 1994). However, any perturbation of this 

electron transfer process can lead to generation of superoxide anions (·O2
-
) (Gary, 1990). It 

can be argued that hydrogen peroxide and superoxide anions are by-products of peroxisomal 

or mitochondrial β-oxidation of fatty acids. H2O2 and ·O2
-
 are reactive oxygen species (ROS) 

which can react and damage several biological macromolecules such as proteins, nucleic acids 

and lipids and hence inducing different oxidative stress responses (Doull and Casarett, 2013). 

 

1.5  INTRACELLULAR OXIDATIVE STRESS  

 

Free radicals are defined as chemical species capable of independent existence and containing 

one or more unpaired electrons in their outer orbital (Barry and Susanna, 1993, Doull and 

Casarett, 2013, Gutteridge, 1995). There are several types of free radicals including oxygen-

centered radicals (reactive oxygen species), sulfur-centered radicals (thyl), carbon-centered 

radicals (trichloromethyl) and reactive nitrogen species (RNS). In this thesis the emphasis will 

be put on reactive species of oxygen and nitrogen since they are not only reported to be 

mediators of toxicity of various environmental pollutants, they have also been reported to play 

several biologically important roles such as signal transduction (redox signaling) (Forman et 

al., 2004), and immune-defense responses (respiratory burst by macrophages) (Doull and 

Casarett, 2013). 

 

 Reactive oxygen species (ROS) is a collective term used on oxygen-centered radicals such as 

superoxide anions (O2
•
) and hydroxyl radicals (

•
OH), as well as non-radical derivatives of 

oxygen such as singlet oxygen, hydrogen peroxide (HOOH) and hypochlorous acids (HOCl) 

(Barry and Susanna, 1993). ROS are generated in vivo during normal utilization of oxygen by 

aerobic unicellular and multicellular organisms, but can also be generated at relatively high 

rates under pathophysiological conditions (Gary, 1990, Oakes et al., 2005, Sies, 1997). 

Although O2
•
 is less reactive than 

•
OH, it is of high toxicological importance because it serves 

as starting material for production of other types of ROS including hydrogen peroxide 

(HOOH) and hydroxyl radical (
•
OH) (Winston and Di Giulio, 1991). There are a number of 

endogenous sources of intracellular O2
•
 in aerobic organisms, but autoxidation reactions,  

mitochondrial electron transport chain and oxidative biotransformation of both endogenous 
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and exogenous compounds by microsomal cytochrome P450 (CYP) appear to be of particular 

interest. During aerobic respiration four electrons are required for complete reduction of 

molecular oxygen to water (Gary, 1990). One electron reduction of molecular oxygen 

produces O2
•
, further reduction of O2

•
 with a single electron produces HOOH, and when 

further reduced with a single electron HOOH is converted into 
•
OH (Figure 3). Any 

perturbation of the electron transport chain (inner mitochondrial membrane) may result into a 

leakage of partially reduced oxygen species (Gary, 1990).  

 

 

Figure 3: A schematic illustration of how reactive oxygen species are generated via single 

electron-reduction pathway (the red dots represent unpaired electrons). 

 

Excessive production of intracellular HOOH is generally considered toxic. It is not the 

toxicity of HOOH per se that is of major concern, but rather its ability to serve as a starting 

material for the production of the extremely strong oxidant 
•
OH via Haber-Weiss/Fenton 

reaction (Parihar et al., 1996). In the presence of transition-metal ions such as Fe
2+

, Cu
+
, Mn

2+
 

and Ni
2+

 intracellular HOOH undergoes reductive homolytic fission to yield 
•
OH, a process 

also known as  Fenton reaction (Figure 4). 

 

 

Figure 4: Transitional metal ions such as ferrous iron (Fe
2+

) catalyse Fenton reaction whereby 

HOOH is reduced to 
•
OH and OH

-
, while ferrous iron is oxidized to ferric iron (Fe

3+
). In the 

presence of electron-rich molecules such as O2
•
, Fe

3+
 is reduced back to Fe

2+
 ready for a new 

round of Fenton reduction, hence O2
•
 can stimulate transition-metal-ion dependent generation 

of 
•
OH from HOOH (Barry and Susanna, 1993). 
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Hydroxyl radicals are of high toxicological relevance because they are extremely reactive to 

all biomolecules (membrane phospholipids, proteins, nucleic acids and organelles) (Storey, 

1996). With a very short half-life (10
-9

 seconds) hydroxyl radicals are poorly detoxified by 

non-enzymatic antioxidants such as glutathione, ascorbate and uric acid (Lopez-Torres et al., 

1993), additionally, no antioxidant enzymes are known to eliminate 
•
OH. This means that 

these radicals can exert their toxicity without being intercepted (Doull and Casarett, 2013). 

Superoxide anion (O2
•
) plays a central role not only in the production of HOOH, but also in 

the production of reactive nitrogen species. This is because it avidly reacts with nitric oxide 

(
•
ON), the product of nitric oxide synthase (NOS), to form peroxynitrite  (ONOO

-
) that 

spontaneously reacts with CO2 to yield nitrosoperoxy-carboxylate (ONOOCO2
-
). The 

products of homolytic fission of this intermediate are two radicals; nitrogen dioxide ( 
•
NO2) (a 

reactive nitrogen species) and carbonate anion radical (CO2
•-
) (Denicola and Rafael, 2005). 

The mitochondria are a predominant intracellular site for production of peroxynitrite, 
•
NO2 

and CO2
•-
. This is because nitric oxide (

•
ON) is lipophilic and could readily diffuse into 

mitochondrial matrix where there is a steady supply of  O2
•
 and CO2 from electron transport 

chain and citric acid cycle, respectively (Denicola and Rafael, 2005, Squadrito and Pryor, 

1998). 

 

1.5.1  Xenobiotic-enhancement of ROS/RNS generation 

Oxidative stress is defined as the occurrence of an imbalance between production of pro-

oxidants such as ROS and RNS and antioxidant defense systems in favor of pro-oxidants 

(Gary, 1990, Barry and Susanna, 1993). Organic xenobiotic compounds can directly or 

indirectly induce oxidative stress in several organisms. The direct induction of ROS 

generation by xenobiotic compounds may occur via several pathways including;  

a) Redox cycling, in which organic xenobiotic compounds are reduced with electrons derived 

from NADPH, and the unstable intermediates rapidly lose electrons to molecular oxygen, 

thereby forming superoxide radicals (Sies, 1997). In addition to ROS generation, redox 

cycling involving xenobiotic compounds also disrupts cellular energy and redox status due to 

consumption of NADPH (Figure 5).  
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Figure 5: An illustration of ROS generation via redox cycling of xenobiotic compounds. 

b) Redox reactivity, in which xenobiotic compounds can directly induce oxidative stress by 

behaving like free reactive radicals. 

Xenobiotic compounds could indirectly induce oxidative stress via perturbation of several 

metabolic processes. Generally, exposure to contaminants has been associated with a 

concomitant increase in metabolism in order to cover the energy costs related to stress 

responses that are provoked during chemical insult (Heugens et al., 2001).   PFOS has been 

associated with induction of oxidative stress in fish (Krøvel et al., 2008, Liu et al., 2007, Wei 

et al., 2010). This effect has been proposed to be mediated by PPARs-which when bound to 

and activated by PFOS lead to increased transcription of fatty acid β-oxidation related genes; 

Acyl-CoA oxidase (acox) and Acyl-CoA dehydrogenase (acod), and increased activity of these 

enzymes generates ROS (Bjorka et al., 2011, Bjork and Wallace, 2009, Desvergne and Wahli, 

1999).   

Another way in which xenobiotic compounds may indirectly induce oxidative stress is via 

their oxidative biotransformation by microsomal cytochrome P450 enzymes (CYP). CYP 

mediates biotransformation of its substrates (endogenous, as well as xenobiotics) by 

incorporating one oxygen atom into them (RHROH). The catalytic cycle of this process 

consists of multiple sub-steps and disruption at one or several of these steps could cause 

leakage of partially reduced oxygen species including superoxide anions, hydrogen peroxide 

and hydroxyl radical (Bernard et al., 2004). However, generation of ROS via this pathway 

may not relevant for PFOS since biotransformation of this compound has not been yet 

demonstrated in any biological system, so far. When excessive production of ROS such as 

•
OH or RNS (

•
NO2) is not outbalanced by antioxidant systems, high intracellular 

concentrations of these radicals may be reached (Dongmei et al., 2013). These radicals are a 

constant threat to the functional and physical integrity of affected cells since they 

indiscriminately react with all intracellular macromolecules including DNA, several 
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membrane components, proteins and organelles. Some of the pathophysiological outcomes of 

oxidative stress are; apoptosis, necrosis, genotoxicity, carcinogenicity, atherosclerosis (Barry 

and Susanna, 1993) 

 

1.5.3  Lipid peroxidation 

 

Lipid peroxidation is initiated when free radicals such as hydroxyl radicals, trichloromethyl 

radicals (CCl3
•
) or trichloromethylperoxy radicals (CCl3OO

•
) abstract a hydrogen atom from 

methylene group (-CH2-) of fatty acids converting them into carbon-centered lipid radicals 

(L
•
). Polyunsaturated fatty acids which are crucial lipid components of biological membranes, 

are major targets for initiation of lipid peroxidation (Barry and Susanna, 1993, Parihar et al., 

1996, Gutteridge, 1995). In aerobic organisms, L
•
 undergo molecular rearrangement, followed 

by oxygen fixation leading to their conversion to lipid peroxyl radicals (LOO
•
). LOO

•
 can 

have different fates including reacting with other LOO
•
 molecules, attacking membrane 

proteins or abstracting hydrogen atoms from adjacent fatty acids, hence propagating lipid 

peroxidation chain reaction. The length of the propagation chain is determined by factors such 

as membrane lipid composition, membrane lipid-protein ratio, oxygen levels and presence of 

chain-breaking antioxidant molecules such as α-tocopherol with in the membrane (Esterbauer 

et al., 1989).   After the removal of hydrogen atom, the resultant LOO
•
 is converted into lipid 

hydroperoxides (LOOH). Reduced metal complexes such as Fe
2+

 and Cu
+
 facilitate the 

decomposition of LOOH to lipid alkoxyl radicals (LO
•
) via Fe

2+
-mediated Fenton reaction 

(Gutteridge, 1995). Subsequent fragmentation of LO
•
 yields hydrocarbons including ethane 

and cytotoxic aldehydes such as 4-hydroxynon-2-enal and malondialdehyde (Arukwe and 

Mortensen, 2011, Gutteridge, 1995, Barry and Susanna, 1993). 

Deleterious consequences of lipid peroxidation in biological membranes include changes in 

membrane fluidity, a general compromise of membrane functionality, inactivation of 

membrane-bound proteins such as ion channels, signal receptors and several enzymes, and 

increased membrane permeability to ions such as Ca
2+

  (Barry and Susanna, 1993, Boelsterli, 

2009, Gutteridge, 1995).  
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1.6  ANTIOXIDANT DEFENSE SYSTEMS 

 

Antioxidants are defined as any substance that when present at low concentrations compared 

with the oxidizable substrate, considerably delays or inhibits oxidation of the substrate 

(Gutteridge, 1995).  Aerobic organisms have developed both enzymatic and non-enzymatic 

antioxidant defense systems for keeping several reactive species in the cell at steady-state 

(non-toxic) concentrations. Protection from oxidative stress is carried out by antioxidants at 

different levels; prevention of radical formation, interception and subsequent detoxification of 

radicals or oxidized products, and repairing oxidative damage (Gutteridge, 1995, Parihar et 

al., 1996, Sies, 1997).  

1.6.1  Antioxidant enzymes 

Typical to the nature of radicals is the propensity towards chain reactions therefore, 

scavenging, interception and subsequent detoxification of radicals is an important strategy 

against oxidative stress (Sies, 1997, Parihar et al., 1996). These are achieved through a 

concerted effort from both enzymatic and non-enzymatic antioxidants. 

1.6.1 a  Superoxide dismutase (SOD) 

Superoxide anion radicals can be eliminated by their conversion (dismutation) to hydrogen 

peroxide (HOOH) a reaction catalyzed by SOD. SOD (E.C.1.15.1.1) exists as different forms 

of metallo-proteins with different intracellular distribution.  In eukaryotes such as animals and 

higher plants copper/zink (Cu/Zn) SOD is basically located in the cytoplasm, but it is also 

present in peroxisomes and chloroplast, the manganese (Mn) form of SOD is principally 

found in the mitochondria, while Iron (Fe)-SOD is extracellular (Lesser, 2006, Boelsterli, 

2009).  The half-life of O2
•
 is significantly reduced by SOD, this ensures maintenance of  

steady-state concentration of O2
•
 at approximately 10

-10
 mol/L (Lesser, 2006). 

1.6.1 b  Catalase (Cat) 

Catalase (EC.1.11.1.6) plays a crucial role in conversion of HOOH to H2O and O2 in 

peroxisomes-the compartment where high levels of HOOH are generated during fatty acid 

catabolism (Hashimoto and Hidenori, 1987). Catalase is a heme-containing tetrameric enzyme 

with a molecular weight of 220 kD. Its high affinity to HOOH renders it the most efficient 

scavenger of HOOH. This antioxidant enzyme has some unique features; sensitivity to light 
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and rapid turnover that may be attributed to absorption of light by the heme-group. Catalase 

activity is susceptible to several conditions that reduce the rate of protein turnover such as 

perturbation of local environment caused by different forms of stress including heat, cold, pH 

and others (Parihar et al., 1996).   

1.6.1 c.  Glutathione peroxidase-GPx 

Extra-peroxisomal HOOH is scavenged by glutathione peroxidases, GPXs 

(EC.1.11.1.9).(Raes et al., 1987). Like catalase, GPx enzymes catalyze the conversion of 

HOOH to H2O and O2. There are two main categories of GPx enzymes; selenium-dependent 

GPXs and selenium-independent GPXs. Four isoenzymes of selenium-dependent GPXs have 

been identified; Gpx1, GPx2, GPx3-each with different intracellular locations and GPx4 

(extracellular) (Arthur, 2000). Gpx catalyzed reduction of HOOH to H2O and O2 requires 

reduced glutathione (GSH) as a source of electrons (Figure 4) 

 

 

Figure 6: Consumption and  regeneration of glutathione by glutathione peroxidases (GPx) 

and glutathione reductase (GR), respectively. 

1.6.1 d.  Glutathione-s-transferases (GST) 

 Glutathione-S-transferases (GSTs) is a superfamily of selenium-independent peroxidases 

(Storey, 1996). They catalyze the conjugation of reduced glutathione with electrophilic 

substrates such as organic xenobiotic compounds and ROS-damaged cellular components 

including organic hydroperoxides such as lipid and nucleotide hydroperoxides (Storey, 1996, 

Doull and Casarett, 2013).  Due to GST activity, a gradual accumulation of potential cytotoxic 

products under oxidative stress in kept under control.    

1.6.2  Non-enzymatic antioxidants 

Breaking free radical initiated reaction-chain requires a combination of two process; a) 

deactivation of radicals to non-reactive/non-radical end products and b) transfer of radicals 
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from highly sensitive site such as lipid membranes to sites where minimal damage may be 

inflicted (aqueous environment) (Sies, 1997). Several non-enzymatic antioxidants are reported 

to be effective chain-breakers and these include glutathione (GSH), α-tocopherol (vitamin E), 

carotenoids, and others (Storey, 1996, Sies, 1997, Parihar et al., 1996).  

1.6.2 a.  Glutathione (GSH)  

Glutathione is tripeptide made up of glutamic acid, cysteine, and glycine and is abundantly 

present in animals and plant tissues (Lesser, 2006). Glutathione plays a direct role in 

antioxidant defense by acting as a chain-breaker of free radical reactions as it has been 

reported to spontaneously react with free radicals such as singlet oxygen, hydroxyl radicals 

and reactive metabolites such as organic hydroperoxides (Parihar et al., 1996). The role of 

glutathione in antioxidant defense comes from its function as a substrate for antioxidant 

enzymes (GPx and GST), regeneration of non-enzymatic antioxidants such as vitamin E and 

reactivation of enzymes inhibited under oxidizing conditions (Storey, 1996). In these 

processes GSH serves as a hydrogen donor and is oxidized to thyl radicals (GS
•
) that are 

further dismutated to their disulfide form (GSSG). GSH is replenished via a NADP(H)-

dependent reaction catalyzed by glutathione reductase (GR) (Figure 4). The intracellular ratio 

of reduced to oxidized glutathione (GSH/GSSG) is considered as a good indicator of 

oxidative stress (Boelsterli, 2009, Lesser, 2006, Storey, 1996, Arthur, 2000).  

Due to the fact that antioxidant protection against oxidative stress is rarely 100% effective, 

repair of the damage caused during oxidative stress is crucial for survival of affected cells. 

This may include various repair mechanisms of oxidative lesions inflicted on DNA, proteins, 

biological membranes and organelles (Gutteridge, 1995).  
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1.7  GLOBAL CLIMATE CHANGE 

 

During the pre-industrial revolution era, temperature on planet Earth has been stable mainly 

because the radiation energy budget (incoming solar radiation versus outgoing radiation) of 

the Earth has almost been in balance (IPCC, 2013). The Earth’s radiation energy budget 

balance can be perturbed by several natural and/or anthropogenic-driven changes in 

atmosphere, biosphere, cryosphere, oceans and land. Changes in climate on a global scale 

have been noticed since the onset of the industrial revolution in the 1760’s. This indicates that 

global climate change has an anthropogenic element to it (Kenneth et al., 2011). The changes 

in atmospheric constituents such as gases, clouds and aerosols, and the subsequent 

enhancement of the greenhouse effect is partly blamed on the increased emissions of 

greenhouse gases such as Carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and 

chlorofluoro carbons (CFCs) into the atmosphere due to human activities. Indicators of global 

climate change include changes in the following environmental parameters; surface 

temperature, ice/snow cover, sea levels, and ocean pH. 

 

1.7.1  Anthropogenic carbon and Ocean acidification 

 

Rising atmospheric CO2 concentrations resulting from human activities is playing a central 

role in anthropogenic ocean acidification (IPCC, 2011). Global atmospheric CO2 

concentrations have increased by 40% from 278 to 390.5 ppm in a time period stretching from 

1750’s to 2011(Ballantyne et al., 2012). Basically, this development has been paralleled with 

human activities such as industrialization, fossil fuel combustion and agricultural activities.  

About 30% (155 ± 30 PgC) of this anthropogenic CO2 in the atmosphere has been reported to 

be taken up by oceans, consequently causing a reduction of pH especially in the ocean surface 

by 0.1 units from 8.2 to 8.1 (Sabine, 2004, Khatiwala, 2013). After absorption CO2 reacts 

with seawater to form carbonic acid ( H2CO3) which dissociates to H
+
 and CO3

2-
  via 

bicarbonate as shown in the reaction below. 

CO2 + H2O ⇌ H2CO3 ⇌ H
+
 + HCO3 ⇌ H

+
 + CO3

2-
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The hydrogen ions produced by these reactions account for the increased H
+
 concentration 

and the corresponding fall in pH in oceans. Indeed, the hydrogen ion concentration has been 

reported to be more than 30% higher than it was for 200 years ago (Potera, 2010), and ocean 

pH has been projected to fall by 0.3-0.5 units within the next century (Caldeira and Wickett, 

2005). 

1.7.2  Hypercapnic challenges to aquatic organisms 

Acid-base status influences several physiological and biochemical processes in both 

vertebrates and invertebrates, for example acid-base parameters such as pH plays a regulatory 

role in metabolic processes and overall rate of energy turnover (Reipschlager and Pörtner, 

1996). This explains why maintenance of acid-base steady state is important for normal 

functionality and survival.  

Elevated environmental CO2 may compromise the aquatic-breather’s (fish) ability to maintain 

physiological pH mainly by weakening the organism’s gas-exchange capacities. One mode of 

regulation of extracellular/plasma pH is through delivery of metabolic CO2 to gills by plasma 

respiratory protein, followed by the diffusion of CO2 to the external medium (Campbell et al., 

2008). Plasma respiratory proteins are highly sensitive to plasma pH and their functional 

capacity is compromised with decreasing plasma pH (Claiborne et al., 2002). High 

environmental CO2 is followed by diffusion of CO2 into the plasma via the gills. CO2 reacts 

with H2O to form H
+
 and HCO3

-
, a reaction catalyzed by erythrocytic carbonic anhydrase 

(CA), subsequently causing a drop in plasma pH. At lower plasma pH values, plasma 

respiratory proteins have low affinity to CO2, hence poor delivery of CO2 to gills for excretion 

(Claiborne et al., 2002). 

Alternatively, fish mainly maintain physiological pH via direct trans-epithelial exchange of 

acid-base relevant ions such as H
+
, Na

+
, Cl

-
, and HCO3

-
 with their environment (Campbell et 

al., 2008, Claiborne et al., 2002). This task is performed by several ion-exchanger membrane 

proteins including Na
+
/H

+
-exchangers (NHE), Cl

-
/HCO3

- 
exchangers, H

+
-ATPases, and 

Na
+
/K

+
-ATPase (Claiborne et al., 2002). Several of the genes encoding the ion-exchangers 

have been shown to be induced under acid-base stress conditions such as hypercapnia 

(Claiborne et al., 2002, Portner et al., 2004, Portner et al., 1998, Portnera et al., 2001, 

Reipschlager and Pörtner, 1996). Several effects of hypercapnia-induced acidosis have been 

demonstrated in vertebrates and invertebrates including  metabolic depression and decreased 
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biosynthesis of protein (Langenbuch and Pörtner, 2003, Claiborne et al., 2002, Portner et al., 

2004, Portner et al., 1998).    

1.8  ATLANTIC COD (Gadus morhua) AS A MODEL ORGANISM 

 

Investigation of how aquatic organisms are being impacted by combined exposure to aquatic 

pollutants and different aspects of climate change is increasingly becoming important. 

Atlantic cod is commonly used as model organism in toxicological studies on marine 

organisms because of the following reasons; Cod is not only a key ecological species in 

marine ecosystems, but is also one of the major commercial fish species (Olsvik et al., 2009), 

there is also relatively good knowledge about cods life history, genome and responses to 

ocean climate variability (Cohen et al., 1990, Drinkwater, 2005).  

1.8 a. Fish gills 

Gills perform critical physiological functions in fish including maintenance of acid-base 

homeostasis, ion regulation and exchange of respiratory gases. Basically, the structure of fish 

gills comprises of branchial arches from which large numbers of filaments extend; from the 

filaments extend lamella which are covered by layers of respiratory cells (Evans, 1987). Gills 

have a large surface area derived from the large respiratory surface of the lamella and the 

extensive epithelial lining the filaments. Although this extensive surface area allows for 

efficient gill functionality, it also forms an expanded and fragile target area for water-borne 

toxicants  (Wendelaar and Lock, 2008), and as a result, gills are strongly affected by aquatic 

pollutants (Ahmad et al., 2000, Fatima et al., 2000, Pawert et al., 1998 ). A variety of aquatic 

pollutants-both POPs and non-POPs, as well as acidification have been reported to have 

negative impacts on fish gills both morphologically and physiologically (Wendelaar and 

Lock, 2008, Dortsa et al., 2011, Evans, 1987)-hence highlighting the relevance of gills in 

toxicology studies. 

 

 



21 

 

1.9  AIMS OF THIS STUDY 

 

Several studies have previously demonstrated that PFOS could induce ROS generation, 

alterations in expression of antioxidant enzymes and subsequent oxidative stress (Oakes et al., 

2005, Liu et al., 2007, Dortsa et al., 2011). These PFOS-related oxidative stress responses 

have been suggested to be mediated by PPARs (Arukwe and Mortensen, 2011). The role of 

CO2-mediated acidification in generation of oxidative stress has also been reported, implying 

that hypercapnia may potentially enhance oxidative stress. Despite the global distribution of 

PFOS in aquatic environment, as well as the steady acidification of oceans, only few studies 

have investigated the effects of combined exposure to water-borne PFOS and environmental 

hypercapnia-and these studies have mainly focused on other test tissues (especially the liver) 

rather than the gills.  

The purpose of this thesis is therefore to investigate the combined effects of PFOS as an 

emerging POP and increased CO2 (hypercapnia), as a quantifiable measure of climate change 

on oxidative stress responses in the gills of an ecologically and economically important fish 

species-Atlantic cod (gadus morhua).   

The hypothesis is that PFOS would induce oxidative stress in gills via activation of the 

ubiquitously distributed PPAR-isoform (PPARβ) and subsequent downstream target genes 

(acox1 or acod), and that the presence of hypercapnia would influence this response either 

via; direct interactive pathways, or indirectly- via compromising antioxidant defenses 

(increased susceptibility to PFOS-related oxidative stress). 
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2.0 MATERIALS AND METHODS 

2.1   CHEMICALS AND REAGENTS 

PFOS (linear, technical grade) was purchased from AlfaAesar (Karlsruhe, Germany). 

TRIzol® reagent was purchased from Invitrogen Life Technologies (Carlsbad, CA, USA). 

Tricaine methane sulfonate (MS-222) was purchased from Norsk Medisinaldepot AS. 

iScriptTM cDNA Synthesis Kit, dNTP mix, iTaq DNA polymerase, EZ Load 100 bp 

Molecular Ruler, and iTaq
TM

 SYBR® Green Supermix with ROX were purchased from 

BioRad Laboratories (Hercules, CA, USA). Dimethyl sulfoxide (DMSO) and 

ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) were purchased from Sigma-

Aldrich Chemie GmbH (Munich,Germany). Clinical grade Absolute Ethanol and Agarose 

were purchased from Sigma-AldrichCo., MO, USA. Chloroform was purchased from Labscan 

Ltd. (Dublin, Ireland). GelRed
TM

 nucleic acid stain was purchased from Biothium (Hayward, 

CA, USA). Clinical grade Isopropanol was purchased from Arcus produkter AS, Norway. 

Information about the reagents used in procedures for determination of content of 

malondialdehyde (MDA), and reduced glutathione (GSH) and enzyme assays is lacking. This 

is because these procedures were performed elsewhere (University of Ancona, Italy).   

 

 

2.2   EXPERIMENTAL DESIGN 

 

2.2.1   Model organism 

Juvenile, sexually immature Atlantic cod (Gadus morhua) were supplied by Atlantic cod 

Juveniles AS (Rissa, Norway). The fish were of equal age and had a body weight of 4.5 ± 0.4 

g and an average length of 8.7 ± 0.2 cm. They were kept at the Centre of Fisheries and 

Aquaculture (Sealab) at NTNU, Trondheim, in circulating seawater with a flow-through of 

0,3 L/minute/kg fish. Prior to experiment the fish were acclimatized for 9 days to water 

temperature of 10 °C and a light:dark  photoperiod of 12:12 hours. The fish were starved 

throughout the acclimatization and exposure periods.  
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2.2.2   PFOS exposure 

Fish were equally distributed in three large tanks containing clean sea water. The three tanks 

represented the different PFOS exposure regimes, namlely; no-PFOS, 100μg and 200μg 

PFOS/L (Table 1). Two stock solutions (SS) at 150mg/L (SS1) and 300mg/L (SS2) were 

made by dissolving PFOS into Milli-Q (MQ) water. To achieve a PFOS concentration of 

100μg/L (moderate), three different 6 L tanks with sea water received 4 mL of SS1 each. To 

achieve a PFOS concentration of 200μg/L (high), three different 6 L tanks with sea water 

received 4 mL of SS2 each, three separate tanks received4 mL of MQ-water (control).  All the 

nine tanks were equipped with fresh air through an aquarium pump and an air stone, since air 

bubbles were used for homogenous mixing of the solutions inside the tanks. Fish were 

transferred from the three large tanks containing clean sea water to the different tanks with 

low, high or no PFOS for a duration of 1 hour, and then returned back to the respective large 

tanks with clean sea water. This event was performed daily for a time period of 5 days. 

  

 

2.2.3   CO2 exposure 

Each of the three CO2 exposure groups (0% (normal), 0,3% (moderate) and 0,9% (high) ) 

were represented by three 6 L tanks with a continuous flow of water. To achieve the different 

levels of CO2, air mixed with either normal CO2 saturation, 0.3% CO2 (low CO2 saturation) or 

0.9% CO2 (high CO2 saturation) was bubbled through the sea water. The CO2-containing air 

was introduced into the water via a specific air pump system. Fish from each PFOS exposure 

group were distributed among each of the three CO2 exposure groups, making a total of nine 

exposure regimens (Table 1). Calculation of water CO2 levels were done based on measured 

pH values. 
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Table 1: An overview of the experimental PFOS and CO2 exposure regimens. Fish were 

initially 

exposed to different concentrations of PFOS and thereafter exposed to increasing levels of 

CO2.   

Group number PFOS exposure CO2 exposure 

1  Control (normal sea water) 

2 No (0μg PFOS/L) Low ( 0,3% CO2) 

3  High (0,9% CO2) 

4  Control (normal sea water) 

5 Low (100μg PFOS/L) Low ( 0,3% CO2) 

6  High (0,9% CO2) 

7  Control (normal sea water) 

8 High (200μg PFOS/L) Low ( 0,3% CO2) 

9  High (0,9% CO2) 

   

 

 

 

2.2.4   Tissue collection and storage 

Ten individuals from each of the exposure groups (Table 1) were anaesthetized using tricaine 

methanesulfonate (MS-222) and sacrificed (by snapping of the head). Organs and tissue from 

5 individuals that were used in gene expression assays were embedded in TRIzol® reagent 

followed by snap-freezing in liquid nitrogen. Organs from the remaining fish were directly 

snap-frozen, these were used for biochemical analyses such as enzyme assays and others. 
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2.3   GENE EXPRESSION ANALYSIS 

 

2.3.1   RNA isolation, and quality assessment 

The success of all gene expression evaluations is highly dependent on the quality and quantity 

of RNA. For achievement of high performance, RNA-based analyses such as real time 

quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and micro-array 

require total RNA that is of high purity and integrity (Fleige and Pfaffl, 2006). Proper 

extraction of RNA from various biological sources is an important step in the aquirement  of 

high quality total RNA-RNA free of contaminants such as genomic DNA, proteins, nucleases 

(RNases), and residues from upstream processes). There are several RNA isolation methods, 

but among the most commonly used are; phenol-based RNA isoalation methods and the 

guanidinium thiocyanate prosedures  (Chirgwin et al., 1979, Cox, 1968).  

 

RNA isolation procedure.  In the current experiment, RNA isolation was based on TRIzol® 

reagent procedure. The procedure was conducted based on descriptions issued by the 

manufacturer (Invitogen). Gill samples of approximately 50-100 mg embedded in 300μL 

TRIzol thawed on ice. 500μL were added, and the tissue was homogenized using the 

Polytron® PT3000 machine homogenizer Kinematica AG. The pistil of the homogenizer was 

sequentially washed with distilled water, 70% ethanol, and DEPC-treated water immediately 

after each round of homogenization.  200μL TRIzol added to a total of 1mL and mixed by 

pipetting.  The homogenate was incubated at room temperature for 5 minutes safter which 

200μL of chloroform were added.  After vigorous shaking for about 15 seconds, samples were 

incubated at room temperature for about 3 minutes, and thereafter centrifuged at 4ᵒC, 12000 

for 15 minutes using Allegra™ X-22R centrifuge from Beckman Coulter.   

 

After centrifugation, the different substances in the sample were partitioned into three phases 

(aqueous, interphase, and phenol) depending on their chemical properties. The upper aqueous 

phase contains RNA, while the phenol phase contains DNA and proteins (chomzynski and 

sacchi 1987). The supernatant was transferred to a new tube and 500μL 100% isopropyl 

alcohol was added. For precipitation of RNA, the solution was mixed by inversion (4-5 times) 

followed by incubation at room temperature for 10 minutes. After centrifugation (4 °C, 

15,000g for 10 minutes) precipitated RNA formed a pellet either at the bottom or on the walls 
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of the tube. Isopropyl was removed from the tube after which the RNA pellet was washed in 

1mL 75% ethanol and vortexed until it loosened from the bottom and/or walls of the tube. 

This was followed by centrifugation (4 °C, 75000g for 5 minutes), and removal of ethanol by 

suction. The pellet was then dissolved in 150μL RNase-free diethylpyrocarbonate (DEPC) 

water, incubated at 60 °C for 10 minutes and thereafter stored at -80ᵒC. 

 

 

Determination of quantity and quality of RNA can be achieved various methods among 

others, by measurement of optical density (OD) via nanodrop (Fleige and Pfaffl, 2006). The 

nanodrop provides spectrophotometric readings for specific biological molecules at different 

wavelengths.  OD deflection at 260nm and 280nm is specific for nucleic acids and proteins, 

respectively, while OD deflection at 240nm is specific for various chemical reagents and salts 

used in RNA isolation processes (BioTekInstrumentsInc, 2006). A spectrophotometric 

reading at 260nm facilitates the calculation of the concentration of RNA in a sample based on 

the fact that an optical density of 1 corresponds to 40μg/nl of single-stranded RNA, while the 

OD ratio at 260nm and 280nm (OD260/OD280) gives an estimate of purity of RNA. 

(Chomczynski and Sacchi, 2006). An OD 260/280 ratio greater than 1.8 is generally 

considered as a good indicator of high quality RNA (substantially pure RNA)(Fleige and 

Pfaffl, 2006).   

 

Having an OD260/280 ratio value greater than 1.8 does not automatically qualify the RNA 

sample as high quality RNA, it is also important to verify the integrity RNA for proper 

validation of RNA quality. This is because non-intact RNA may compromise the performance 

of several downstream procedures and assays such as complementary (c) DNA synthesis, 

qRT-PCR, etc (Fleige and Pfaffl, 2006). Since ribosomal RNA (18S and 28S rRNA) 

represents approximately 80% of the cells` total RNA, it expected that non-degraded RNA 

forms two clear bands on a gel (Blobel and Potter, 1967), while fragmented RNA would form 

clouds at the end of the gel.  

 

RNA quantification and verification of RNA quality.  In the current experiment, the nanodrop 

was used to determine the concentration of RNA (at 260nm). Samples with RNA 

concentration above 1000ng/μL were diluted with DEPC-treated water until concentrations 

below this limit were achieved. The measured RNA concentration for most of the samples 
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ranged between 500 and 2500 ng/μL, while the OD260/280 ratio was between 1.8 and 2.0. 

RNA integrity was evaluated by separating 1μg RNA from randomly selected samples using 

formaldehyde gel electrophoresis at 75 V for 1.5 hours. Two clear bands for 18S and 28S 

rRNA were observed from the resultant gel (Figure 7). Based on this observation, coupled 

with the absorbance ratio value greater than 1.8, it was concluded that the RNA was of an 

acceptable quality, and could therefore be used for cDNA synthesis. 

 

 

 

Figure 7: For validation of integrity of isolated RNA, total RNA in randomly chosen samples 

was separated by formaldehyde gel electrophoresis. The observation of two prominent bands 

of 18S rRNA and 28S rRNA (constitute approximately 80% of cellular RNA) shows the 

presence of intact RNA. 
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2.3.2   Primer testing 

 

Gene specific Atlantic cod primer pairs used for gene expression analysis of target genes 

(table x) have been successfully used in prior experiments on Atlantic cod (Lorentzen, 2013). 

In order to test primer pairs for their sequence specificity and general functionality, they were 

used in PCR amplification of specific sequences from pooled cDNA samples using iTaq DNA 

Polymerase kit and dNTP mix from Bio-Rad, and PCR program shown in table 3. This was 

followed by separation of the amplification product using gel (1% agarose) electrophoresis 

(see Appendix A for reagents and protocol for DNA gel electrophoresis). Highly functional, 

sequence specific primer pairs were expected to yield a single amplification product that is 

shown in the gel as single, clear bands of a given size. Primer pairs yielding either nonspecific 

products or primer dimers are detected by the presence of multiple bands of incorrect size on 

the gel. Single bands of appropriate amplicon size were seen on gel after separation of the 

amplification product, an indication of specific primer binding and successful amplification of 

the target sequence. The primer pairs were ready for use in downstream processes such as 

qPCR. 
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Table 2: Gene specific primer pairs used in real-time PCR 

 

         Primer sequence (5’-3’)   

Target gene              Forward                                Reverse Annealing 

temperature 

Amplicon 

size (bp) 

     

Catalase. 

 (cat) 
   GCCAAGTTGTTTGAGCACGTT CTGGGATCACGCACCGTA 60ᵒC 101 

     

Acyl-CoA oxidase. 

(acox) 
     GCG TTCGTAGTGGAGAGGAG GCGCACGTTCTCAAAGTA 60ᵒC 108 

     

Peroxisome 

proliferator-activated 

beta. 

 (ppar-β) 

     GGCTTCGTGGACCTCTTCCT TCACAAATCCTTTGCCAT 60ᵒC 133 

     

Mn-superoxide 

dismutase. 

 (mn-sod) 

      ATGTGGCCTCCTCCATTGAA GCATCACGCCACCTATGT 60ᵒC 129 

     

CuZn-superoxide 

dismutase. 

 (cuzn-sod) 

       CATGGCTTCCACGTCCATG CGTTTCCCAGGTCTCCAA 60ᵒC 133 

     

Glutathione peroxidase 

1. 

(gpx1) 

    GTAGGATGGCCAAAAATGTGT GGCCCCAGTCATCTGAGC 60ᵒC 116 

     

Glutathione peroxidase 

3. 

 (gpx3) 

      CGTTCTCGGGTTTCCCTGTA GCTCAAACAGCGGGAAC 60ᵒC 125 

     

Glutathione reductase 

 (gr) 
TCACGCTCACCACCAAGGA GTGTGGAGGCCAGTCGTG 60ᵒC 122 

     

Phosphatidylserine 

Decarboxylase. 

(pisd) 

TCTGGACCTTTGGCGTCAAC TTCAGCGGTCGTCTGAAG 60ᵒC 91 
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Phosphatidylethanolam

ine-N-methyltransferase 

(pemt) 

GGTTCTCCGTCAGGCTGAAG CGGCGACTACTTTGGGAT 60ᵒC 68 

     

Aromatase 

 (cyp19) 
GAGGAGACGCTCATCCTCAG TAGCTGCGTGTCTTCTTCC 60ᵒC 167 

 

 

 

2.3.3   cDNA synthesis 

 

Complemenary DNA (cDNA) is essential for RNA-based gene expression analyses such as 

qRT-PCR. The assumption is that all mRNA is converted to cDNA, implying that a cDNA 

pool is representative of the original RNA profile (Pfaffl, 2004).  Synthesis of cDNA and 

quantification of PCR product can be performed by one-step or two-step qRT-PCR. One-step 

qRT-PCR combines first-strand cDNA syntheis and qPCR reactions, while these reactions are 

separated in the two-step qPCR (Invitrogen, 2008). For high efficiency of cDNA synthesis 

processes there should be an optimal choice of primers, enzymes (RT and polymerase), and 

RNA free from contamination materials ( salts, phenols and other chemicals used in the RNA 

isolation process) (Pfaffl, 2004). In the cDNA synthesis process, oligo (dT) primers anneal to 

the polyadenylated 3’ tail present on most RNAs, and are extended across the length of 

mRNA molecules. The efficiency of Oligo (dT) primers is compromised by the presence of 

secondary structures in mRNA. This problem is overcome by the use of a blend of oligo(dT) 

primers and nonspecific hexamer primers. This ensures complete conversion of all mRNA to 

cDNA (Pfaffl, 2004). 

 

cDNA synthesis procedure.  Synthesis of cDNA was performed with the iScript cDNA 

synthesis kit from Bio-Rad and an Eppendorf Mastercycler gradient thermocycler (Brinkman 

instruments, Westbury, NY, USA). Synthesis of cDNA was based on the protocol provided 

by the manufacturer of the kit (Bio-Rad), with a reaction mastermix composition and PCR 

program given in table 3 and 4, respectively. The concentration of RNA extracts was 

determined with nanodrop, and samples with concentration above 1000ng/μL were diluted 
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with DEPC-treated water until a concentration below this limit was achieved (500-

1000ng/μL). The measured RNA concentrations were used to calculate the volume of RNA 

needed to yield 1000ng. 1000ng was diluted in RNase free water to a volume of 5μL and used 

to produce a total volume of 20μL cDNA for each sample. A negative control (lacking 

template) was added to each cDNA well plate to check for contamination with exogenous 

nucleic acid in downstream processes, and the cDNA samples were stored at -20ᵒC. 

 

 

Table 3: Components for cDNA synthesis reaction.  

Components                              Volume per reaction (μL) 

   5x iScript reaction mix            4 

   iScript reverse transcriptase            1 

   Nuclease free water           10 

  RNA template(1000ug) diluted in RNase-free water            5 

  

 Total          20 

 

 

 

 

 

 

Table 4: PCR program for cDNA synthesis. 

Phase Temperature (°C) Time (minutes) 

Primer anneling             25           5 

First strand synthesis             42           30 

Termination               85            5 

   

Hold                4            ∞ 

 

 



32 

 

2.3.4   Real-Time  Polymerase Chain Reaction (qPCR) 

 

The expression of 10 genes (Table 2) was analyzed by real-time PCR (Mx300P system and 

MxProTM QPCR software) using SYBR® green for detection of amplified DNA sequences and 

ROX as reference dye. In contrast to the traditional (end-point) PCR, qPCR quantifies the 

PCR product at the end of each reaction cycle in real time (Invitrogen, 2008). SYBR® green 

is a molecular probe that indiscriminately binds to all double stranded (ds) DNA in a sample. 

After the intercalation of SYBR® green between ds DNA, the probe emits light at wavelength 

of 520nm (fluorescence) (Clark, 2010). Ideally, the strength of fluorescence signal is directly 

proportional to the amount of PCR product generated in the exponential phase of the PCR 

reaction (Invitrogen, 2008). As PCR proceeds, the amount of fluorescence increases 

exponentially until it’s above the background fluorescence emitted by the reference dye.  The 

number of cycles at which the target fluorescence signal crosses the threshold is called Cycle 

threshold (Ct). The input amount of the target in a sample can be derived from Ct value and a 

standard curve.  

Real-time PCR protocol.  Total cDNA from tissue collected at day 3 and day 6 was diluted to 

1:10, and 1:6 for cDNA from tissue collected at day 9. A reaction mix containing 5 μL diluted 

cDNA, 12.5 μL 2x iTaq SYBR® Green supermix with ROX (from BioRad), 6.5 autoclaved 

water, 0.5 μL of each primer (forward and reverse) was made for each sample. The thermal 

cycling program was set as follows: hot-start polymerase activation at 95ᵒC for 3 min, 40 

cycles of; 30 s at 95ᵒC (denaturation), 15 s at 60ᵒC (annealing), 15 s at 72ᵒC (extension), 

followed by melt curve stage; 1 min at 95ᵒC, 30 s at 65ᵒC, and 30 s at 95ᵒC.  

A quality check of the data generated by qPCR must be conducted. The disadvantage of using 

SYBR® green for amplification monitoring it nonspecifically binds to all PCR product 

molecules, both desired the amplicon, nonspecific products and primer dimers. The resultant 

fluorescence signal may provide misleading data, hence misinterpretation of expression of 

gene of interest. Post-amplification melt-curve analysis allows for the detection non-specific 

primer binding and primer dimers.  Different PCR products can often be distinguished based 

on their sequence specific melting temperature. This is because the melting temperature of 

nucleic acids is influenced by physical and chemical characteristics of the nucleic acids such 

as length, GC content and others. Under post-amplification melt-curve analysis, a single 

qPCR product will give a single, narrow peak at a particular melting temperature, while 
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nonspecific products or primer dimers typically give additional peaks at different melting 

temperature than the target product (Invitrogen, 2008, Bustin, 2000, Bustin and Nolan, 2004). 

Post-amplification melt-curve analyses indicated successful qPCR amplification of all target 

genes, since a single peak at a given melting temperature was observed for all of the amplified 

genes (with the exception of GPx3).  

For validation of existence of single qPCR product, a gel electrophoresis assay (1% agarose 

gel) was used to separate qPCR product taken from randomly chosen samples. Observation of 

a single bands expected amplicon size is often an acceptable validation of presence a single 

PCR product. Single bands of appropriate amplicon size were observed for all amplified 

genes (with the exception of GPx3), hence a verification of the successful amplification of 

target genes (Figure 8).    

 

 

 

 

Figure 8: In order to validate the specificity of primer-pairs used in real-time PCR, 

amplification products chosen from random samples were separated gel electrophoresis. The 

presence of a single band in each well observed in the image is shows that only a single 

amplification product of appropriate size was produced after PCR procedure. 
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2.3.5   Normalization of gene expression data 

 

A dilution series of known amount of plasmid containing CYP19 (aromatase) gene was made 

and there after amplified using real-time PCR. The resultant Ct values were plotted against the 

logarithm of copy numbers to yield a standard plot (Appendix C, Figure C1). The linear 

equation obtained from this standard plot was used to normalize all gene expression data. 

 

2.4   ENZYME ASSAYS 

 

Enzyme activity levels of antioxidant enzymes; Glutathione reductase, Glutathione 

peroxidase, Superoxide dismutase, Glutathione-S-transferase, and Catalase, as well as total 

cellular content of malondialdehyde (MDA), and reduced Glutathione (GSH) were 

determined by using spectrophotometric methods. Table B1, in Appendix B contains the 

procedures for making the different reagents used in these assays. 

 

2.4.1   Preparation of cytosolic fraction 

Cytosolic fraction of gill tissue was prepared for enzyme activity assays. After pH of Tris-

HCL buffer was adjusted to 7.5, samples were homogenized (1:4 w/v ratio) in homogenizing 

buffer, centrifuged at 110,000g for 1 hour and 10 minutes, and aliquots of supernatant were 

made and stored at -80 ºC. 1 μL DTT (antioxidant) per 100 μL cytosolic fraction was added to 

aliquots that were to be used for GPx activity assays. 

 

2.4.2   Determination of enzyme activity 

 

Determination of Catalase activity 

Due to the fact that Catalase functions as a scavenger for hydrogen peroxide (H2O2), its 

activity was determined by measuring the loss of absorbance due to consumption of H2O2 at 

240 nm at a constant temperature of 18 ºC. K-phosphate buffer was adjusted to pH=7 and then 

980 μL 100 mM K-phosphate buffer, 10 μL H2O2 from 1.2 M stock and 10 mL sample 
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(cytosolic fraction) were added to a quartz spectrophotometer cuvette followed by the 

measurement of absorbance at 240 nm over time. Enzyme activity is expressed as a unit of 

activity relative to total protein content and is calculated via the following formula: 

 

Cat activity (units) = Δ240/0.04 * assay dil./proteins = μmol/mg proteins 

Where: 

Δ240 = change in absorbance per minute 

0.04 = extinction coefficient (M
-1

 cm
-1

) 

Proteins = concentration of (mg/mL) 

 

 

 

Determination of Glutathione S-transferase activity 

 

Glutathione S-transferase (GST) mediates the conjugation of reduced glutathione (GS
-
) to 

electrophilic compounds. The conjugate produced absorbs light at 340 nm. The absorbance at 

340nm was therefore used in the determination of GST activity. Working buffer solution (K-

phosphate buffer + CDNB) was prepared by adding 1.5 mL 50 mM CDNB stock solution in 

50 mL 50 mM K-phosphate buffer at pH 6.5. For measurement of enzyme activity: 965 μL 

working buffer solution, 15 μL 100 mM GSH, and 20 mL sample (cytosolic fraction) was 

added to a quartz spectrophotometer cuvette, and absorbance at 340 nm was measured over 

time. Enzyme activity is expressed as a unit of activity relative to total protein content and is 

calculated via the following formula: 

 

GST activity (units) = Δ340/9.6 * assay dil./proteins*1000 = μmol/mg proteins 

Where: 

Δ340 = change in absorbance per minute 

9.6 = extinction coefficient (M
-1

 cm
-1

) 

Proteins = concentration of (mg/mL) 
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Determination of Glutathione reductase activity 

 

Glutathione reductase (GR) uses NADPH as reduction equivalent as it mediates the reduction 

of oxidized glutathione (GSSG) back to it reduced state (GSH). GR activity can be 

determined by measuring consumption of  NADPH at 340 nm at a constant temperature of 18 

ºC. 750 μL 100 mM K-phosphate buffer at pH 7, 100 μL 10 mM GSSG, 10 μL 100 mM 

EDTA, 100 μL 1 mg/L NADPH, and 40 mL sample (cytosolic fraction) was added to a quartz 

spectrophotometer cuvette, and absorbance at 340 nm was measured 5 times through a 3 

minute period. Enzyme activity is expressed as a unit of activity relative to total protein 

content and is calculated via the following formula: 

 

GR activity (units) = Δ340/6.22 * assay dil./proteins*1000 = μmol/mg proteins 

Where: 

Δ340 = change in absorbance per minute 

6.22 = extinction coefficient (M
-1

 cm
-1

) 

Proteins = concentration of (mg/mL) 

 

 

 

Determination of Glutathione peroxidase activity 

GPx uses reduced glutathione (GSH) as reduction equivalent as it catalyzes the reduction of  

H2O2 or organic peroxides to H2O or ROH(reduced organic compound). The oxidized 

glutathione (GSSG) that is generated by GPx reactions is reduced by GR to regenerate GSH 

which is the biologically active form of glutathione.  GR uses NADPH as reducing equivalent 

during the regeneration of GSH. GPx activity can be determined by measuring consumption 

of NADPH at 340 nm at a constant temperature of 18 ºC. Stock solution of 100 U/mL GR was 

prepared from original stock solution (i.e. if stock solution is 1384 U/mL, take 72.25 μg/mL). 

846 μL 100 mM K-phosphate buffer at pH 7.5, 10 μL 100 mM EDTA, 20 μL 100 mM GSH, 

10 μL 100 U/mL GR, 100 μL sample or blank solution and 10 μL 20 mg/mL NADPH was 

added to a plastic spectrophotometer cuvette, and absorbance was measured at 340 nm. 

Several blank reactions were measured before measuring samples until a 0.10-0.15 Δ min blank  

was achieved. After the volume of NADPH was modified to get an absorbance of 0.9-1.2, 15 

μL 200 mM CHP was added. In order to get accurate absorbance values, absorbance of blank 
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reaction was subtracted from that of the sample reaction: Δmin sample- Δmin blank= Δmin final sample. 

Enzyme activity is expressed as a unit of activity relative to total protein content and is 

calculated via the following formula: 

 

GPx (CHP) activity = Δ340/6.22 * assay dil./proteins*1000 = μmol/mg proteins 

Where: 

Δ340 = change in absorbance per minute 

6.22 = extinction coefficient (M
-1

 cm
-1

) 

Proteins = concentration of (mg/mL) 

 

 

 

Determination of Superoxide dismutase activity 

 

Determination of superoxide dismutase (SOD) activity was done by monitoring the 

diminishing reduction of cytochrome c by ·O2 - by the xanthine oxidase/hypoxanthine system. 

One unit (U) of SOD is defined as the amount of enzyme inhibition by 50 % the reduction of 

cytochrome c. Different volumes of each sample were used to determine 50 % inhibition of 

the reaction rate. Xanthine oxidase 6mU/mL was prepared from available stock solution. 

Working buffer was prepared from 50 mL 100 mM K-phosphate buffer at pH 7.8, 0.006 g 

Hypoxanthine, 0.012 g Cytochrome c and 100 μL 100 mM EDTA, and absorbance at 550 nm 

was measured at 18 ºC.  Absorbance  blank solution for; working buffer, K-phosphate buffer 

and Xantine oxidase was measured three times (Δblank should be ≅ 0.08-0.1), and three 

absorbance values for different volumes of K-phosphate buffer and Xantine oxidase samples 

were also registered (Table 5). The percentage of inhibition in the blank samples for these 

three volumes should be; 70 % for Reading 1, 50 % for Reading 2, and 20 % for Reading 3. 

The results should fit on a semi logarithmic scale, yeilding y=ax2+bx+c by second order 

regression. The x value is considered to represent 50 % variation of Δblank, and Volume (Vol.) 

necessary to reduce 50 % of blank reaction. Enzyme activity was calculated via the following 

formula:  

 

U.SOD/mg protein = 1000/Vol*sample dil./Proteins (mg/mL) 
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Table 5: Overview of readings (at 55nm) taken during determination of SOD activity. 

 Blank Reading 1 Reading 2 Reading 3 

Working buffer 

(μL) 

500 500 500 500 

K-phosphate 

buffer (μL) 

470 460 450 430 

Sample (μL)  10 20 40 

Xanthine oxidase 

(μL) 

30 30 30 30 

 

 

 

2.4.3   Determination of reduced Glutathione 

 

Conjugation of GSH with the dye DTNB at 412 nm was monitored for determination of total 

reduced GSH, the oxidized glutathione (GSSG) that is produced in this reaction is reduced 

back to GSH by GR (using NADPH as co-factor). Samples were homogenized (1:4 w/v ratio) 

in homogenizing buffer and kept on ice for 45 minutes, and thereafter  centrifuged at 37,000g 

for 15 minutes at 4 ºC. Aliquots of supernatants were made and stored at -80 ºC. Preparation 

of working buffer was done by adding; 10 μL 100 mM EDTA to 1 mL 100 mM K-phosphate 

buffer at pH 7. The stock solution (100 mM GSH) from which standards were made was 

prepared by dissolving 0.0307 g GSH in 1 mL dH2O, followed by dilution via the series given 

below:   

                   GSH 100 mM → GSH 10 mM → GSH 1 mM → GSH 100 μM  

                   GSH 100 μM → (GSH 10 μM, GSH 20 μM, and GSH 30 μM)  

100 μM of each standard were used to obtain a 1 μM, 2 μM, and 3 μM final concentrations of 

GSH standards. 

 

1 mL working buffer, 100 μL blank or standard, 5 μL 20 mM DTNB, 50 μL 4 mg/mL 

NADPH, and 10 μL 100 U/mL GR was added in cuvettes for blank and standard reactions. 
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1 mL working buffer, 5 μL 20 mM DTNB, 100 μL sample, 50 μL 4 mg/mL NADPH, and 10 

μL 100 U/mL GR was added in cuvettes for sample reactions.  Δmin of blank and standards 

were used to obtain the linear equation between absorbance and concentration (y=ax+b). This 

equation was used to convert Δsample to concentration in μmol/L, thereafter total Glutathione 

levels were calculated via the following equation:  

                                          

           GSH+2GSSG (μmol/g tissue) = (concentration/1000) * sample dilution * w/v   ratio* 1 

 

 

2.4.4   Determination of Malondialdehyde 

 

For determination of changes in lipid peroxidation MDA was measured. After gill tissue was 

washed in ice-cold 0.9 % NaCl, and blotted on blotting paper, approximately 0.1 g of tissue 

was minced, and diluted (1:3) in ice-cold Tris-HCL buffer at pH 7.4. Samples were 

homogenized and centrifuged for 20 minutes at 3,000g in 650 μL of reagent 1-R1 (Table 6), 

therafter, 100 μL H2O,100 μL sample and 150 μL of R2 were added to microcentrifuge tube, 

vortexed and incubating at 45 ºC for 40 minutes. Samples were thereafter cooled on ice and 

centrifuged for 10 min at 15,000g. This was followed by measurement of absorbance at 586 

nm using Helma quartz cell and compared to a standard curve (Table 6). 

 

                    Table 6: Reagents used for determination of malondialdehyde (MDA). 

 

Reagent 1 (R1)  0.064 g 10.3 mM 1-methyl-2-phenylindole 

30 mL acetonitrile 

10 mL methanol 

  

Reagent 2 (R2) HCL 37 % 

  

Reagent 3 (R3) 0.0165 mL 10 mM 1,1,3,3-tetramethoxypropane 

10 mL 20 mM Tris-HCL 
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A standard curve was generated by diluting S2 in ddH2O (Table 7). After addition of 150 μL 

of R2 the solutions were; vortexed, incubated at 45 ºC for 40 minutes and thereafter cooled on 

ice and centrifuged at 15,000g for 10 minutes. This was followed by measurement of 

absorbance at 586 nm. 

 

 

Table 7: Volume of S2 and ddH2O in standard curve used for determination of MDA levels 

 

 

 

                                                                        Concentration μM 

 0  0.2 0.5 0.8 1.0 2.0 3.0 4.0 6.0 8.0 

S2 volume 

(μL) 

 

 

0  

 

2 

 

5 

 

8 

 

10 

 

20 

 

30 

 

40 

 

60 

 

80 

ddH2O 

volume 

(μL) 

 

200  

 

198 

 

195 

 

192 

 

190 

 

180 

 

170 

 

160 

 

140 

 

120 

 

 

 

 

 

2.5   Statistical analysis 

 

Statistical analysis was performed using IBM SPSS® statistical software (version 20).  The 

Shapiro-Wilk test was used to test for normality. Non-normally distributed data was converted 

to normal distribution using natural logarithm (ln) or square root transformations. Potential 

outliers were identified by observation of the box-plot coupled with Grubbs tests. Datasets 

with adequate normality were further tested for homogeneity of variance using parametric 

Levene’s test. Data found to be normally distributed and with homogenous variance was 

analysed for significant differences between groups using one-way ANOVA followed by 

Tukey’s post hoc multiple comparison test. However, data found to be normally distributed, 
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but lacking homogeneity of variance (and/or equal sample size) was analyzed using one-way 

ANOVA followed by robust Welch test and Games-Howell post hoc multiple comparison 

test. Non-normally distributed data was tested for homogeneity of variance by nonparametric 

Levene’s test and analyzed for significance by a Kruskal-Wallis one-way analysis of variance 

followed by Dunn’s nonparametric post hoc test. Level of significance was set to α = 0.05. 

Further analysis of biometric data was performed with Umetrics SIMCA-P
+
 21.0 (α = 0.05). 
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3.0 RESULTS 

 

3.1 Validation of hypercapnia in experimental tanks 

 

The relatively high permeability of CO2 and carbonic acid across biological membranes 

compared to H
+
 could partly explain the reportedly higher toxicity of CO2 in aquatic 

organisms compared to strong acids that yield the same pH (Kikkawa and Kita, 2004). It is 

therefore important to ensure that addition of CO2 to experimental tanks actually caused an 

increase of partial pressure of CO2 (PCO2) (hypercapnia). In this study, verification of 

hypercapnia was done by daily measurement of experimental tanks pH values (Figure 9), 

which were in turn used to calculate PCO2 in the experimental tanks tanks (Figure 10) (with 

salinity of 33.8ppm, total alkalinity of 2223 µmol kg
-1

, temperature of 10°C and atmospheric 

pressure of 10 dbar). In the tanks containing normal seawater, pH values ranging from 7.60 to 

7.83 and PCO2 levels of 596-1136 were registered.  In the 0.3% CO2 experimental tanks pH 

values of 7.08-7.45 and PCO2 levels at 1714 and 3745 were registered, while in the 0.9% CO2 

experimental tanks, pH values of 6.63-6.96 and PCO2 at 4844-11455 were registered. An 

increase in PCO2 and a concomitant drop in pH was observed after fish were added to the 

experimental tanks, this was due to additional respiratory CO2 from the fish (Figures 9 and 

10).  
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Figure 9: Saturation of CO2 in the experimental tanks was achieved by the introduction of a 

mixture of air containing normal (green lines), 0.3% (purple lines) or 0.9% CO2 (blue lines) to 

the appropriate experimental tanks. The pH in the various CO2 exposure tanks was monitored 

throughout the experiment. 

 

 

 

Figure 10: Saturation of CO2 in the experimental tanks was achieved by the introduction of a 

mixture of air containing normal (green lines), 0.3% (purple lines) or 0.9% CO2 (blue lines) to 

the appropriate experimental tanks. The levels of PCO2 in the different  experimental tanks 

were calculated based on the measured pH values in the respective tanks.  



44 

 

3.2 Body PFOS burden 

 

Carcasses (excluding the head, and internal organs) of fish from normocapnia exposure 

groups were analyzed for accumulated PFOS levels. High-performance liquid 

chromatography coupled with tandem mass spectrometry (HPLC/MS/MS) was used in the 

determination of PFOS body burden. For quantitative analysis, the isotope dilution method 

was performed with MPFOS as internal standard, a five-point calibration curve (0-400 

ng/mL) for the analyte (PFOS) and a fixed concentration (20ng/mL) of internal standard. The 

performance of the above mentioned analysis was based on the procedures used in previous 

studies (Mortensen et al., 2011). 

Table 9: Measured concentrations of PFOS body burden in carcasses of fish from 

normocapnia exposure groups. 

Nominal concentration. 

(µg PFOS L
-1

 water) 

        Measured  concentration. 

        (ng PFOS g
-1

 weight wet, mean ± SEM) 

 

        Day 3     Day 6 Day9 Total 

0        2.6±0.1     2.5±0.2 2.8±0.2* 2.6±0.1 

100       1013±122.7     736.3±102.9 769.9±63.1 840.0±62.6 

200     1693.4±154.2      1754.2±170.1 1425.7±401.8** 1674.1±93.5 
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3.3 Effects on physiological parameters 

 

The effects of single or combined exposure to CO2 or PFOS on the weight, and length of 

individual fish were measured. Based on the measurements of the weight and length of fish in 

the different exposure scenarios (Table 10), there were no significant changes in fish size. 

These observations indicated that stress related to experimental conditions (starvation and 

exposure to stressors), had a minimal (negligible) effect on biometric data of the individuals.  

Table 10: Alterations in average length and weight following single or combined exposure of 

PFOS and elevated CO2 levels to juvenile Atlantic cod. The measurements were done after 

the fish were sacrificed and are given in grams (g) and centimeters (cm), with SEM. 

        Length (cm)             Weight (g) 

Average SEM Average SEM 

No PFOS, normal CO2 (control) 8.85  0.17 4.51  0.32 

No PFOS + 0.3% (low) CO2 8.73  0.14 4.30  0.25 

No PFOS + 0.9% (high) CO2 8.76  0.16 4.41  0.30 

 

100μg PFOS + normal CO2 8.68  0.21 4.19  0.35 

100μg PFOS + 0.3 (low) CO2 8.92  0.24 4.67  0.40 

100μg PFOS + 0.9 (high) CO2 8.74  0.22 4.21  0.28 

 

200μg PFOS + normal CO2 8.33  0.16 3.80  0.08 

200μg PFOS + 0.3 (low) CO2 8.61  0.17 4.11  0.18 

200μg PFOS + 0.9 (high) CO2 8.76  0.23 4.16  0.32 
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3.4   EFFECTS ON LIPID METABOLISM 

3.4.1     PPAR-β  

Generally, single exposure to PFOS or elevated CO2 resulted to weak changes in the 

expression of ppar-β (Figure 11). Combined exposure to PFOS and elevated CO2 caused 

differential changes in mRNA levels for ppar-β. Nonetheless, an insignificant increase of 

ppar-β transcript above control, occurred in several combined exposure groups; 200μg 

PFOS/L+ 0.3% CO2 and 200μg PFOS/L+0.9CO2 (day 3), 0.9%CO2+PFOS (day 6) and 

0.3%CO2+PFOS (day 9) (Figure 11).       

 

FIGURE 11: Changes in mRNA levels for Peroxisome proliferator-activated receptor-beta ( 

ppar-β) in gills of juvenile Atlantic cod (Gadus morhua) exposed to PFOS and elevated levels 

of dissolved  CO2, singly or in combination. The mRNA levels were analyzed with 

quantitative RT-PCR using gene specific primer pairs. Data are presented as mean percentage 

of control (n=4/5) ± standard mean of error (SEM), with the non-treated group (No PFOS/ 0% 

CO2 group) referred to as the control. Asterisks denote significant differences between  

exposure groups and  control, while different letters indicate significant differences between 

exposure groups (one-way ANOVA with Tukey`s post-hoc test (p < 0.05) for ppar-β day 9, 

and Games-Howell post hoc test (p < 0.05)  for ppar-β day3+ 6) 
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3.4.2      EFFECTS ON ACYL-CoA OXIDASE (acox1)  

With the exception of the insignificant increase at day 6, minimal changes from control levels 

were observed in transcript levels for acox1 upon single exposure to PFOS as seen at day 3 

and 9, respectively (Figure 12). Apparently, an overall slight reduction in transcriptional 

regulation of acox1 to levels below control was observed following exposure to elevated CO2 

alone (0.3% and 0.9%) (Although not significant) (Figure 12).  An insignificant increase in 

cox1 transcription above control levels was observed following combined exposure to high 

CO2 levels (0.9%CO2) and PFOS as seen at day 3 and 6, respectively.  

 

FIGURE 12: Changes in mRNA levels for Acyl-CoA Oxidase (acox1) in gills of juvenile 

Atlantic cod (Gadus morhua) exposed to PFOS and elevated levels of dissolved CO2, singly 

or in combination. Messenger RNA (mRNA) levels were analyzed with quantitative RT-PCR 

using gene specific primer pairs. Data are presented as mean percentage of control (n=4/5) ± 

standard mean of error (SEM), with the non-treated group (no PFOS/ 0% CO2 group) referred 

to as the control. Asterisks denote significant differences between  exposure groups and  

control, while different letters indicate significant differences between exposure groups (one-

way ANOVA with Tukey`s post-hoc test (p < 0.05) for  acox1 day 3+9, and Games-Howell 

post hoc test (p < 0.05) for acox1 day 6). 
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3.4.3   EFFECTS ON GENES INVOLVED IN MEMBRANE   

PHOSPHOLIPID HOMEOSTASIS 

Generally, single exposure to PFOS or elevated CO2 levels (0.3% or 0.9%) caused weak 

differential changes of both pisd and pemt mRNA levels from control levels (Figure 13). 

However, an increase in transcript levels for pemt was observed only after exposure to high 

CO2 (0.9%) as seen at day 3 and 9, respectively (though not significant). A similar increase in 

transcriptional levels for pemt was also observed following combined exposure to high CO2 

and PFOS (0.9%CO2+PFOS), though not statistically significant (Figure 13B).  Apparently, 

combined exposure to low CO2 levels and PFOS generally caused minimal changes in 

expression of both pemt and pisd from control levels. Of the two genes- pemt responded more 

clearly under the different exposure conditions, but this occurred predominately after 

exposure to high CO2 levels alone or in combination with PFOS.  
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FIGURE 13: Changes in messenger RNA (mRNA) levels for A: Phosphatidylserine 

decarboxylase (pisd) and B:  Phosphatidylethanolamine-N-methyltransferase (pemt) 

expressed as percentage of control (n=3/4/5) ± standard mean of error (SEM). Juvenile 

Atlantic cod (Gadus morhua) were exposed to PFOS and elevated levels of dissolved CO2, 

singly or in combination and transcriptional changes  were analyzed with quantitative RT-

PCR using gene specific primer pairs. Asterisks denote significant differences between 

exposure groups and control, while different letters indicate significant differences between 

exposure groups (one-way ANOVA with Tukey`s post-hoc test (p < 0.05) for pisd day 3+6+9, 

and for pemt day 9 and Kruskal-Wallis nonparametric one-way ANOVA (p < 0.05), followed 

by Dunn`s nonparametric post hoc test for pemt day 3+6). 
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3.5    EFFECTS ON OXIDATIVE STRESS RESPONSES 

 

3.5.1  SUPEROXIDE DISMUTASE (SOD) 

Exposure to PFOS alone apparently led to differential transcriptional regulation of both 

isoforms of superoxide dismutase (sod) (Figure 14A and B, respectively). Differential 

regulation of both CuZn and Mn-sod was also observed after exposure to low CO2 levels 

(0.3%) alone as seen at day 3 and 6, however, prolonged exposure to low CO2 levels was 

followed by reduction in mRNA levels below control for both isoforms as seen at day 9. On 

the other hand, exposure to high CO2 levels (0.9%) alone only resulted to minimal changes in 

sod mRNA levels from control levels (Figure 14A and B, respectively). Although differential 

regulation of both CuZn and Mn-sod transcription was generally observed upon combined 

exposure to elevated CO2 and PFOS, a significant drop in mRNA levels for Mn-sod well 

below control levels at day 9 following combined exposure to low CO2 levels and high PFOS 

concentration (0.3%CO2+200μgPFOS/L) and high CO2 levels and low PFOS concentrations 

(0.9% CO2+100μgPFOS/L) was noteworthy (Figure 14B). 

In fish exposed to PFOS alone (PFOS+ 0% CO2), an apparent PFOS concentration dependent 

decline in SOD activity below control levels was observed at day 3 (though not significant). 

Additionally, an apparent decline in enzyme activity was also observed after single exposure 

to high PFOS alone (200μg PFOS/L) at day 9 (Figure 14C). Generally, insignificant reduction 

in SOD activity to levels below control occurred in elevated CO2-alone exposure groups as 

seen at day 3 and 9, respectively (Figure 14C). At day 9, an apparent CO2-level dependent 

increase (not significant) in SOD activity  above control was observed in exposure groups 

treated with a combination of high PFOS concentration ( 200μg PFOS/L) and elevated CO2 

levels  (Figure 14C). 
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FIGURE 14: Changes in messenger RNA (mRNA) levels for A: CuZn Superoxide dismutase 

(CuZn-sod) and B: Mn-superoxide dismutase (Mn-sod) expressed as percentage of control 

(n=3/4/5) ± standard mean of error (SEM).Changes in enzyme activity for SOD (Figure 4C) 

are expressed as pmol/minute/mg protein, with SEM (n=2/3). Juvenile Atlantic cod (Gadus 

morhua) were exposed to PFOS and elevated levels of dissolved CO2, singly or in 

combination. Transcriptional changes were analyzed with quantitative RT-PCR using gene 

specific primer pairs, and enzyme activity was measured spectrophotometrically. Asterisks 

denote significant differences between exposure groups and control, while different letters 

indicate significant differences between exposure groups (one-way ANOVA with Tukey`s 

post-hoc test (p < 0.05) for Mn-sod day 9+3, and Games-Howell post hoc test (p < 0.05) for 

CuZn-sod day 9 and Kruskal-Wallis nonparametric one-way ANOVA(p < 0.05) followed by 

Dunn`s nonparametric post hoc test for CuZn-sod+Mn-sod day 6 and  enzyme assays).  
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3.5.2   CATALASE (CAT) 

Generally, cat mRNA levels only slightly changed from control levels after exposure to PFOS 

alone (Figure 15A). A time-dependent reduction in cat mRNA levels below control levels 

occurred upon exposure to low levels of CO2 (0.3% CO2) alone, as observed from the 

significant drop at day 9 (Figure 15A). However, this effect was reversed after exposure to 

high CO2 levels, since exposure to 0.9% CO2 alone resulted either to restoration back to 

control levels or an apparent increase over control levels as seen at day 3 and 9, respectively 

(Figure 15A). It was observed that combined exposure to PFOS and elevated CO2 resulted to 

differential regulation of expression of cat. Nevertheless, this effect was apparently 

characterized by noticeable increase in mRNA levels to levels above control after combined 

exposure elevated CO2 levels and PFOS, as seen at day 3 in the 0.3% CO2+200μg PFOS/L 

and 0.9% CO2+100μ PFOS/L exposure groups, and at day 6 in the 0.9% CO2+PFOS exposure 

groups (Figure 15A). 

Apparently, weak differential changes from control levels were observed in CAT activity 

following exposure to PFOS alone (Figure 15B). Exposure to elevated CO2 levels alone (0.3% 

or 0.9%) resulted to a general reduction in the enzyme activity below control levels, with an 

apparent CO2-level dependent decline observed at day 6 (though not significant). This 

apparently negative impact of hypercapnia on CAT activity was clearer at day 9 where 

exposure to 0.3% CO2 alone caused a significant reduction in enzyme activity well below 

control, while exposure to 0.9% CO2 alone resulted to insignificant but noticeable reduction in 

enzyme activity (Figure 15B).  Combined exposure to PFOS and elevated CO2 caused 

differential changes in CAT activity as seen at day 3 and 6. However, a reduction in CAT 

activity was observed after relatively prolonged exposure to a combination of both stressors as 

seen at day 9, with a significant drop in the 0.3% CO2+100μg PFOS/L exposure group (Figure 

15B). 
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FIGURE 15: Changes in messenger RNA (mRNA)  levels for A: Catalase (cat) expressed as 

percentage of control (n=4/5) ± standard mean of error (SEM), and B: enzyme activity for 

catalase (CAT) expressed as pmol/minute/mg protein, with SEM (n=2/3). Juvenile Atlantic 

cod (Gadus morhua) were exposed to PFOS and elevated levels of dissolved CO2, singly or in 

combination. Transcriptional changes were analyzed with quantitative RT-PCR using gene 

specific primer pairs, and enzyme activity was measured spectrophotometrically. Asterisks 

denote significant differences between exposure groups and control, while different letters 

indicate significant differences between exposure groups (one-way ANOVA with Tukey’s 

post-hoc test (p < 0.05) for cat day 6, and Games-Howell post hoc test (p < 0.05) for  cat day 

9 and Kruskal-Wallis nonparametric one-way ANOVA (p < 0.05) followed by Dunn`s 

nonparametric post hoc test for   cat day 3 and enzyme assays).  
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3.5.3   GLUTATHIONE PEROXIDASE (GPx) 

A significant fall in gpx3 mRNA levels to levels clearly below control was observed after 

treatment with low concentrations of PFOS alone (100μgPFOS/L) at day 3 and 9, while 

exposure to high concentrations of PFOS alone (200μgPFOS/L) generally resulted to 

differential changes in gpx3 transcript levels (Figure 16B). When compared with the 

unexposed group, exposure to low levels of CO2 caused an overall decrease in transcriptional 

expression of both gpx1 and gpx3 (Figure16 A and B, respectively). However, this negative 

response was observed more clearly for gpx3 compared to gpx1, as observed from the 

significant drop in mRNA levels for gpx3 at day 3 and 9 following single exposure to 0.3% 

CO2 compared to control (Figure 16B). Exposure to high levels of CO2 (0.9%) led to 

differential regulation of both gpx1 and gpx3.  

Combined exposure to PFOS and elevated CO2 levels had unclear effects on transcription 

levels of both gpx1and gpx3 since both isoforms were regulated differentially (Figure 16 A 

and B). Nevertheless, some observations are noteworthy: a CO2-level dependent increase in 

the amount of transcript for gpx3 at day 6 following combined exposure to elevated CO2 and 

high PFOS (elevated CO2+ 200μg PFOS/L), and a similar but insignificant effect on gpx1 in 

the same exposure groups (elevated CO2+high PFOS) (Figure 16B) 

After exposure to elevated levels of CO2 alone (0.3% and 0.9%), a general decline in enzyme 

activity below control levels was observed at day 6 and 9, with a significant drop observed 

only in the 0.3% CO2 group at day 6 (Figure 16C). Only minimal differences were found 

between enzyme activity observed after exposure to PFOS alone and that observed in the 

untreated group as seen at day 3 and 6. This was however followed by an apparent reduction 

in GPx activity in the same exposure groups to levels well below control at day 9 (Figure 

16C).  Combined exposure to elevated CO2 and PFOS caused an overall drop in GPx activity 

below control levels, but a significant drop was only observed in 0.3% CO2+ 200μg PFOS/L 

exposure group at day 6 (Figure 16 C). 
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FIGURE 16: Changes in messenger RNA (mRNA) levels for A: Glutathione peroxidase 1 

(gpx1) expressed as percentage of control (n=3/4/5) ± standard mean of error (SEM), and B: 

Glutathione peroxidase 3 (gpx3) expressed as percentage of control (n=3/4/5) ± standard 

mean of error (SEM). Changes in enzyme activity for GPx (Figure 12C) are expressed as 

pmol/minute/mg protein, with SEM (n=2/3). Juvenile Atlantic cod (Gadus morhua) were 

exposed to PFOS and elevated levels of dissolved CO2, singly or in combination. 

Transcriptional changes were analyzed with quantitative RT-PCR using gene specific primer 

pairs, and enzyme activity was measured spectrophotometrically. Asterisks denote significant 

differences between  exposure groups and  control, while different letters indicate significant 

differences between exposure groups (one-way ANOVA with Tukey`s post-hoc test (p < 

0.05) for gpx1 day 6+9, and Gpx3 day 3, Games-Howell post hoc test (p < 0.05) for gpx1 day 

3 and gpx3 day 6+9 and Kruskal-Wallis nonparametric one-way ANOVA (p < 0.05),  

followed by Dunn`s nonparametric post hoc test for  gpx1 day 6 and enzyme assays).  
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3.5.6   GLUTATHIONE REDUCTASE (GR) 

At day 3, exposure to PFOS alone caused an apparent PFOS-concentration dependent 

reduction in mRNA levels for glutathione reductase compared to control (though not 

significant), however the impact of PFOS exposure on the transcription of this gene was weak 

at further days of the experiment  (Figure 17A). With the exception of the significant decrease 

in the 0.9% CO2 alone exposure group at day 6, the overall changes in the transcript levels for 

glutathione reductase weakly differed from control levels following exposure to elevated CO2 

alone (Figure 17A). Apparently, combined exposure to elevated CO2 and PFOS caused 

differential regulation of glutathione reductase at mRNA level.  

Apparently, exposure to PFOS alone resulted to differential regulation GR activity (Figure 

17B). An apparent biphasic response of GR activity was observed upon exposure to elevated 

CO2 levels alone or in combination with PFOS. This is based on the observation that an 

insignificant increase in GR activity above control that was observed earlier on in the 

experiment (day 3) was reversed toward control levels at day 6 and followed by further 

decline below control levels at day 9 (Figure 17 B). Note that the negative impact observed at 

day 9 was only significant in fish exposed to low CO2 (0.3% CO2) alone or in combination 

with low PFOS concentrations (0.3%CO2 +100μg PFOS/L) (Figure 17 B). 
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FIGURE 17: Changes in messenger RNA (mRNA) levels for A: Glutathione reductase (GR) 

expressed as percentage of control (n=4/5) ± standard mean of error (SEM), and B: enzyme 

activity for  Glutathione reductase (GR) expressed as pmol/minute/mg protein, with SEM ( 

n=2/3). Juvenile Atlantic cod (Gadus morhua) were exposed to PFOS and elevated levels of 

dissolved CO2, singly or in combination. Transcriptional changes were analyzed with 

quantitative RT-PCR using gene specific primer pairs, and enzyme activity was measured 

spectrophotometrically. Asterisks denote significant differences between  exposure groups 

and  control, while different letters indicate significant differences between exposure groups 

(one-way ANOVA with Tukey`s post-hoc test (p < 0.05) for GR mRNA levels at day 9, and 

Kruskal-Wallis nonparametric one-way ANOVA (p < 0.05),  followed by Dunn`s 

nonparametric post hoc test for GR mRNA levels at day 3+6 and  enzyme assays).  

 

 



58 

 

3.5.7   GLUTATHIONE S-TRANSFERASE (GST) 

At day 3 and 6, weak changes in GST activity were observed after exposure to PFOS alone 

compared to control, however, enzyme activity increased to levels above control at day 9 

(though not significant) (Figure 18). Upon exposure to elevated CO2, GST activity generally 

differed weakly from enzyme activity levels in the unexposed groups. An insignificant 

increase in GST activity above control levels was observed following combined exposure to 

high CO2 and high PFOS levels (0.9%CO2+200μg PFOS/L) at day 3 and 6, however this 

effect was reversed to levels below control at day 9 (though not significantly) (Figure 18).  

 

FIGURE 18:  Changes in enzyme activity for Glutathione S-transferase (GST) expressed as 

pmol/minute/mg protein, with SEM (n=2/3). Juvenile Atlantic cod (Gadus morhua) were 

exposed to PFOS and elevated levels of dissolved CO2, singly or in combination, and enzyme 

activity in the gills was measured spectrophotometrically. Asterisks denote significant 

differences between exposure groups and control, while different letters indicate significant 

differences between exposure groups (Kruskal-Wallis nonparametric one-way ANOVA (p < 

0.05), followed by Dunn`s nonparametric post hoc test).  
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3.5.7    NON-ENZYMATIC ANTIOXIDANTS 

In some few instances pooled samples were used in the measurements of cellular content of 

reduced glutathione and in thiobarbituric acid (TBARS) assay, a consequence of which was 

the inability to estimate variation within some exposure groups, hence the lack of error bars in 

the respective groups (Figure 19 and 20). 

Reduced glutathione (GSH) 

An apparent overall decline in GSH levels compared to control was observed after single 

exposure to PFOS or elevated CO2 (0.3% and 0.9%) (Figure 19). However, differential 

changes in GSH content were observed upon combined exposure to PFOS and elevated CO2 

levels (Figure 19). 

 

FIGURE 19:  Changes in levels of reduced Glutathione (GSH) expressed as nmol/minute/mg 

protein, with SEM (n=1/2). Juvenile Atlantic cod (Gadus morhua) were exposed to PFOS and 

elevated levels of dissolved CO2, singly or in combination, and glutathione levels in the gills 

were measured spectrophotometrically. Asterisks denote significant differences between 

exposure groups and control, while different letters indicate significant differences between 

exposure groups (Kruskal-Wallis nonparametric one-way ANOVA (p < 0.05),  followed by 

Dunn`s nonparametric post hoc test).  
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3.6     EFFECTS ON LIPID PEROXIDATION 

 3.6.1   MALONDIALDEHYDE (MDA) 

Apparently, an overall increase in MDA levels above control was observed in fish exposed to 

PFOS alone (Figure 20). At day 3, exposure to elevated CO2 levels alone led to an apparent 

CO2-level dependent increase in MDA levels (though not significant). This observation 

should be considered with caution due to the large standard deviation values for these 

exposure groups. The malondialdehyde response to hypercapnia was biphasic in nature since 

the apparent increase in MDA levels earlier on (day 3) was leveled back to control levels at 

day 6, and followed by a decline well below control levels at day 9 (though not significant) 

(Figure 20). A similar development of events was observed after combined exposure to both 

stressors, where an apparent increase in MDA levels observed at day 3 was followed by an 

apparent time-dependent decline at later days of the experiment, though none of the effects 

could be proved statistically (Figure 20).  
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FIGURE 20:  Changes in levels of reduced Malondialdehyde (MDA) expressed as 

pmol/minute/mg protein, with SEM (n=1/2). Juvenile Atlantic cod (Gadus morhua) were 

exposed to PFOS and elevated levels of dissolved CO2 , singly or in combination, and 

malondialdehyde levels in the gills were measured spectrophotometrically. Asterisks denote 

significant differences between exposure groups and control, while different letters indicate 

significant differences between exposure groups (Kruskal-Wallis nonparametric one-way 

ANOVA (p < 0.05), followed by Dunn`s nonparametric post hoc test).  
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4.0 DISCUSSION 

Several studies have associated the toxicity of PFOS and other high profile PFCs such as 

PFOS and PFOA in fish with the induction of oxidative stress (Arukwe and Mortensen, 2011, 

Wågbø et al., 2012, Lorentzen, 2013)). Induction of oxidative stress under hypercapnic 

conditions has also been suggested by some studies (Denicola and Rafael, 2005, Rafael et al., 

2001). However, there are very few studies that have investigated the potential toxic effects of 

PFOS on fish in a continuously changing aquatic environment driven by global climate 

change. This raises great concern given the reportedly increasing accumulation of 

anthropogenic CO2 into aquatic environment (IPCC, 2013) and the global distribution of 

PFCs (PFOS) (Renner, 2001).  The present study reports the effects of single or combined 

exposure to an emerging POP (PFOS) or elevated CO2 levels (representative of ocean 

acidification) on oxidative stress responses in the gills of juvenile Atlantic cod. 

 

4.1   ANALYTICAL METHODS 

4.1.1 EVALUATION OF real-time PCR PROCEDURES 

The success of a two-step real-time PCR (reverse transcription followed by quantitative PCR) 

as an analytical method for gene expression is greatly dependent on the quality of early 

upstream processes such as RNA isolation and complementary DNA (cDNA) synthesis 

(Fleige and Pfaffl, 2006). This is because errors introduced at these early steps could 

significantly compromise the efficiency, sensitivity and accuracy of real-time PCR, thereby 

increasing the risk of providing erroneous results (Invitrogen, 2008). Collection of high 

quality RNA (pure and intact) is important for the efficiency of reverse transcription step (RT) 

in which the template for real-time PCR process is generated. Well aware that RNA quality 

could be readily compromised by intracellular nucleases and/or different components of body 

fluids such as blood and bile, all tissue samples used in this study were embedded in TRIzol® 

reagent and snap frozen in liquid nitrogen. An RNA-purity check was performed with the help 

of nanodrop, and  A260/A280 ratio of above 1.8 was registered for all samples. This was an 

indication of “clean” RNA samples (Pfaffl, 2004), which were thereafter converted to cDNA. 
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The downside of the nanodrop method is its insensitivity to degraded RNA and hence the 

inability to check for RNA integrity. The presence of intact RNA in extracts was verified 

through gel electrophoresis on randomly chosen RNA samples, with single band for 18S 

rRNA and 28S rRNA observed for each sample.   

Because errors introduced at the cDNA synthesis stage are likely to be amplified in 

downstream PCR steps, thoughtful planning and execution of this procedure is extremely 

important for the success of real-time PCR and the reliability of derived results (Bustin and 

Nolan, 2004). High quality starting material was used for cDNA synthesis in the present study 

with A260/A280 >  1.8 and RNA concentration >  100 ng/μL just as recommended (Bustin 

and Nolan, 2004, Pfaffl, 2004). For maximum coverage of cellular RNA content, oligo-dT 

primers rather than sequence specific primers were used for cDNA synthesis. 

Specificity, efficiency and accuracy of quantitative real-time PCR (qPCR) are greatly 

dependent on primers. Primers should be specific for the gene of interest (with high selectivity 

for cDNA rather than genomic DNA), and less likely to form primer-dimers or secondary 

intramolecular structures (Invitrogen, 2008). This is why primer functionality was tested 

before proceding to qPCR procedures. This was done by using gene specific primer-pairs in 

PCR amplification of a cDNA pool collected from Atlantic cod, followed by separation of 

PCR product by gel electrophoresis, the observation of only one band per well indicated 

presence of a single PCR product and hence verification of primer functionality. 

Due to the use of gene-specific high quality primers, only one amplification product is 

expected at the end of each qPCR assay.  Because each PCR product has specific properties 

such as size, GC content, and melting point, the specificity of qPCR products is verified 

through dissociation curve analysis (Pfaffl, 2004, Bustin, 2000). Performance of this analysis 

revealed that all amplification products in each qPCR assay peaked at the same melting point, 

thereby indicating the presence of a single amplification product. Further verification was 

done by separation of qPCR products from randomly chosen samples on agarose gel 

electrophoresis, which also revealed single bands of expected size.  
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4.1.2  NORMALIZATION OF qPCR DATA 

Experimental inconsistencies introduced at the different stages including RNA isolation, 

reverse transcription and qPCR amplification are among the sources of variability in qPCR. If 

not eliminated this variability could potentially lead to erroneous interpretation of the data and 

misleading conclusions  (Invitrogen, 2008).The effects of variability can be neutralized 

through normalization of the data, which can be done via two strategies; relative or absolute. 

Under the relative strategy, qPCR data is normalized to a normalizer gene (also known as 

reference gene or “housekeeping gene”). However, use of this this method requires 

unregulated expression of the reference gene under different exposure conditions, which has 

been demonstrated not to be the case for those genes that have so far been employed including 

β-actin, glyceraldehyde-6-phospshate dehydrogenase and others (Arukwe, 2006, Bustin, 

2000). If normalizer genes are to be used, then one has to prove their constant expression 

under the exposure conditions in question. Under the absolute strategy, the data is normalized 

to a pre-made standard curve. A dilution series is made from known concentrations of linear 

plasmid containing the amplicon of interest, and then qPCR amplified simultaneously with 

test samples. A standard curve is generated in which each of the plasmid concentrations are 

plotted against a specific Ct value. The unknown sample Ct values are normalized to this 

standard curve, to determine the number of mRNA copies initially present in the samples 

(Pfaffl, 2004). Normalization to standard curves is widely considered to be a sufficient and 

accurate method for determination of the copy number of mRNA for the gene of interest. In 

this study, all qPCR data was normalized to a standard plot that was created from plasmids 

containing the cyp19 (aromatase) gene. 

 

 

4.1.3   MALONDIALDEHYDE AND THIOBARBITURIC ACID (TBARS) 

Due to its cheapness and relative ease, the TBARS test is widely used for the measurement of 

cellular content of malondialdehyde (MDA) a well-known product of lipid peroxidation. In 

this procedure, thiobarbituric acid is added to the test samples and heated at low pH, the 

resultant pink chromogen (MDA) is measured spectrophotometrically.  However, precaution 

should be taken when using data on MDA levels derived from TBARS test as an indicator of 

oxidative stress-mediated peroxidation of lipid systems. This is mainly because the TBARS 

test has been criticized for being relatively unreliable and has been associated with the risk of 
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providing inaccurate signals. This is because this test has been considered non-specific since 

it can detect other aldehydes in addition to MDA and also the fact that most, if not all of the 

MDA measured is a product of decomposition of lipid peroxides, which are produced during 

the acid-heating stage. Peroxide decomposition generates radicals which could in turn initiate 

lipid peroxidation processes, hence potentially causing undesired amplification of the 

measured signal (Barry and Susanna, 1993).  

 

4.1.4  EVALUATION OF STATISTICAL ANALYSIS 

Statistically significant differences between the means of different exposure groups are more 

likely to be detected by parametric tests such as one-way ANOVA compared to non-

parametric tests, this is due to their larger statistical power. However, their stringent 

assumptions such as normality of dataset, which are often difficult to meet, allow for the 

application of less stringent but also less robust non-parametric test. The probability of 

detecting statistically significant group mean differences is diminished upon application of 

non-parametric tests. Statistical analysis is also influenced by sample number (direct 

relationship), and variation among individuals (inverse relationship). High variability can 

reduce statistical power during hypothesis testing.  Nonetheless, variation between individuals 

is common in biological systems due to individual differences in response to different 

conditions. In addition to biological variation, technical variations are inevitably introduced 

by the operator at different phases of the experiment such as tissue extraction, RNA isolation, 

reverse transcription and PCR amplification (Invitrogen, 2008). In this study, statistical 

significance was largely not proved probably due to small sample size (n = 2-5), relatively 

high variation within some exposure groups, and occasional used of non-parametric tests. 

However, a lack of significant does not necessarily mean that the difference/effect does not 

exist (Gunnar, 2005, Helmut, 2008), or lack of biological significance, for this reason 

statistically insignificant results were also discussed, though more emphasis was put on 

statistically significant results.  

 

Further analysis of the data was performed with Principle component analysis (PCA) method 

in order to find possible patterns in oxidative stress responses and the different exposure 

regimes that could be associated with them. PCA analysis was performed on normalized real-
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time PCR data and data for enzyme activity as well as content of MDA and glutathione-and 

the data was analyzed in groups based on the sampling days (3, 6 and 9). All PCA models had 

poor predictive properties since their goodness of prediction (Q
2
X) value was low-ranged 

from (0.8% to 19.9%). In addition, observations from the score and loading plots showed no 

clustering of the variables and samples. Because of the poor predictive properties of the PCA 

models and the absence of clustering of variables and samples, PCA analysis seemed not to 

provide any useful information-therefore, a decision was made not to include the PCA results 

in this thesis.  

4.2  EXPERIMENTAL SETUP 

 

4.2.1   PFOS EXPOSURE, UPTAKE AND BIOCONCENTRATION 

The uptake of water-borne PFOS by fish may be influenced by several confounding factors, 

with this in mind, exposure to PFOS was done under normocapnic conditions before initiation 

of CO2 exposure in order to avoid any influence that dissolved (saturated) CO2 could 

potentially have on PFOS uptake by the fish. This would also allow us to investigate PFOS 

toxicity following its bioconcentration, and how this toxicity may change under hypercapnic 

conditions.  The rationale behind the short-term experimental design was to allow for 

bioaccumulation of PFOS by exploiting its high bioconcentration rate, and poor elimination 

from the exposed organism (Zhang et al., 2009, Kannan et al., 2003). Values of measured 

body PFOS burden show that substantial levels of PFOS were accumulated after exposure to 

both high and medium nominal PFOS concentrations (100 and 200 μg/L), since all 

concentrations were well above the detection limit (10 ng/g wet weight). Several field studies 

have reported the presence of high PFOS levels in fish from industrialized and/or heavily 

populated areas: 1100 ng/g PFOS was detected in the liver of tilapia (oreochromis sp) and 

Japanese seaperch (Lateolabrax japonicus) in two heavily polluted rivers (nam-kan and tour-

chyan) in Taiwan (Tseng et al., 2006). Average PFOS concentrations of 3673ng/g was 

detected in the bile of mullet (mugil incilis) at an industrialized site in Colombia- Cartagena 

bay (Olivero-Verbel et al., 2006).     Put in context of the high PFOS burden detected in fish 

and fish-eating animals in industrialized and/or highly populated areas, the high body PFOS 

burden used in the present study is realistic. 
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4.2.2  DISSOLVED CO2 LEVELS IN EXPERIMENTAL TANKS 

Field studies on ocean acidification have reported hydrogen ion concentration to be more than 

30% higher than it was for 200 years ago (Potera, 2010).  Ocean acidification has been 

predicted to continue and ocean pH has been projected to fall by 0.3-0.5 units within the next 

century and 0.8-1.4 units by 2300 (Caldeira and Wickett, 2005). In the present study, 

saturation of experimental water with moderate and high CO2 levels resulted to a drop in pH 

ranging from 0.4 to 0.9 units. Seen in light of the projected drop in ocean pH mentioned 

above, the pH values measured in the current study can be considered realistic. 

 

4.3  EFFECTS ON PEROXISOMAL-β OXIDATION 

 

The mechanisms through which high profile perfluoro-alkyl acids such as PFOS exert their 

toxicity are yet to be fully understood. Nevertheless, PFOS toxicity has been associated with 

PPAR mediated peroxisomal proliferation in several species including rodents, monkeys, fish 

and humans (Takacs and Abbott, 2007b, Sohlenius et al., 1993, Ikeda et al., 1987). However, 

sensitivity of PPARs and their target genes towards PFCs may be dependent on PPAR 

isoform and the organism in question. Generally, PPARβ response to PFOS has been 

suggested to be weaker compared to PPARα and PPARγ across several species including 

mouse, rat and humans (Takacs and Abbott, 2007b, Seacat et al., 2003, Sohlenius et al., 

1993), and similar tendencies have also been suggested for several fish species. (Wågbø et al., 

2012, Hoff et al., 2003a).  

Additionally, conflicting results have been reported about the effect of PFCs on the 

expression of Acyl-CoA oxidase-: Oakes and colleagues (2005) reported a moderate increase 

in ACOX1 activity in five different fish species; fathead minnow (pimehales promelas), 

rainbow trout (oncorhynchus mykiss), creek chub (semotilus atromaculacus), spottail shiner 

(notropishudsonius), and white sucker (catostomus commersoni) in a short-term PFOS 

exposure (3 mg/L) experiment. In other studies, exposure of fish to PFOSA-a precursor for 

PFOS or perfluorododecanoic acid showed no significant effect on ACOX enzyme activity or 

gene transcription (Wågbø et al., 2012, Liu et al., 2008). 
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In the present study, exposure to PFOS alone generally caused rather minimal and 

insignificant changes in gill mRNA levels for pparβ and its downstream target gene-acox1, 

compared to unexposed group. It is possible that this apparently weak response could be 

attributed to the fact that PPARβ is ubiquitously/abundantly expressed in most organs 

(Michalik et al., 2006), and probably involved in basic cellular processes such as cell 

proliferation, differentiation and membrane turnover  (Braissant and Wahli, 1998). It is 

therefore arguable that further induction following exposure to PFOS was difficult to detect 

due to the high base-line transcript levels of ppar-β.  

Alternatively, the fish used in this study were starved throughout the experiment and 

starvation has been associated with increased utilization of lipid stores for energy production 

(Li et al 2007).  Due to its reported involvement in the regulation of global lipid metabolism, 

it is possible that ppar-β was expressed at relatively high levels throughout this short 

experiment to allow increased β-oxidation of fatty acid as an adaptive response to starvation, 

and hence making it difficult to detect any transcriptional alterations upon further stimulation 

by activating agents such as PFOS.   

It could also be speculated that the weak responses of peroxisomal-β oxidation related genes 

observed in gills of juvenile Atlantic cod following exposure to PFOS alone could have been 

a potential mechanism for dealing with water-borne xenobiotic compounds. This speculation 

is based on the fact that fish gills are in intimate first contact with aqueous external 

environment that usually contains a mixture of numerous water-borne compounds, several of 

which are potential activators of pleiotropic transcriptional factors including PPARβ. Since 

activated-PPARβ has been suggested to be involved in the regulation of several cellular 

processes, it could be arguable that the weak responses to water-borne PFOS may have been a 

potential mechanism of avoiding unnecessary perturbation of different cellular processes that 

are direct or indirect downstream targets for PPARβ.  

This apparently weak effect of PFOS on pparβ and its target gene (acox) appears to be in 

agreement with the suggestion of a general low sensitivity of fish species towards peroxisome 

proliferators (Hoff et al., 2003a, Pretti et al., 1999). Additionally, after exposure of PFOS 

(2ppm) to juvenile Thicklip grey mullets (chelon labrosus) for 2 and 16 d, it was concluded 

that PFOS did not behave as a typical peroxisome proliferator (Bilbao et al., 2010). On the 

contrary, this observation  is in conflict with studies that have demonstrated peroxisome-
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proliferation activity of PFOS in several fish species (Arukwe and Mortensen, 2011, Oakes et 

al., 2005). Possible explanations for this discrepancy could be differences in experimental 

setup (exposure dosage and duration), and study-tissue (due to the possibility of tissue 

specific responsiveness to PFOS).  

 

Despite the minor transcriptional changes of  pparβ following exposure to elevated CO2 levels 

compared to normocapnia (control), a drop in acox mRNA levels to levels below control 

(though not significant) was generally observed under hypercapnic conditions (0.3% or 0.9% 

CO2).This apparent reduction effect of hypercapnia on peroxisomal-β oxidation observed in 

this study is in agreement with previous studies that have reported an association between an 

overall metabolic depression and hypercapnia in marine organisms (Langenbuch, 2002, 

Kenneth et al., 2011, Portner et al., 1998). 

On the other hand, combined exposure to elevated CO2 and PFOS caused an insignificant 

increase in pparβ transcription as seen in different exposure groups;  200μg PFOS/L+0.3% 

CO2, 100μg PFOS/L+0.9% CO2 and 0.9% CO2+PFOS at day3 and 6, respectively. Although 

not statistically proven, this observation appears to suggest that gill pparβ was more 

responsive when the stressors where given in combination rather than singly.  Note that the 

apparently negative effect of hypercapnia on the transcription of acox was also reversed in the 

presence PFOS, however, this occurred predominantly under high CO2 levels where acox 

mRNA levels were either restored back to control levels (day 9) or slightly but insignificantly 

increased above control (day 3 and 6). This observation is in agreement with observations 

made in a similar study recently done in our laboratory showing that combined exposure to 

PFOS and elevated CO2 (at identical levels like in the current study) caused an increase in 

mRNA levels of hepatic pparβ and its target gene, Acyl-CoA dehydrogenase (acod) in 

juvenile Atlantic cod (Lorentzen, 2013)  

It is possible to consider the observed increase in transcript levels for  pparβ and acox (though 

not significant) upon exposure to PFOS under hypercapnic conditions as an adaptive response 

to increase in energy demand required to deal with the stress created by both stressors.  This 

apparent hypercapnia-related modification of fish sensitivity to PFOS is in agreement with the 

general view in toxicology that environmental factors including;  pH, ambient temperature, 
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and salinility may influence toxicokinetic and toxicodynamic properties of pollutants, and 

could also potentially alter their toxicities (Doris et al., 2007) 

 

4.4   EFFECTS ON ANTIOXIDANT SYSTEMS 

Antioxidant responses are commonly used in assessment of biological effects of 

environmental pollutants in several organisms. This is achieved through measurement of 

variations of transcriptional expression of several antioxidant and detoxification genes as well 

as the functional activity of the gene products (enzyme activity) (Regoli et al., 2011). 

However, antioxidant responses could be difficult to elucidate or predict, with inconsistent 

and/or contradictory results commonly arising between variations in transcript expression of 

genes and catalytic activity of the gene products (Giuliani et al., 2013). Nevertheless, 

transcriptional changes are considered to be more sensitive to contamination, hence their 

utilization as biomarkers of exposure, while biochemical responses such as enzyme activity 

are considered to function more efficiently as biomarkers of effect (Giuliani et al., 2013, 

Regoli et al., 2011). 

Generation of ROS is considered an obligatory outcome of the expression/activity of fatty 

acid β-oxidation related genes such as PPARs and ACOX, therefore measures of oxidative 

stress are commonly used in the evaluation of whether toxicity of a given pollutant is 

attributed to oxidative stress-related damage arising from peroxisomal proliferation (Oakes et 

al., 2005). However, as already mentioned, conflicting results have been reported about fish 

sensitivity to typical mammalian peroxisome proliferators such as PFOS, hence making it 

debatable if PFOS related oxidative stress responses should be attributed to peroxisomal or 

extra-peroxisomal sources. 

Exposure to PFOS alone generally caused differential changes in the expression of pparβ and 

acox, as well as all antioxidant enzymes (SOD, CAT, GPX and GR). Although unclear, the 

alterations in expression of antioxidant enzymes could be considered as an adaptive response 

to oxidative stress, however, it is likely that sources of free radicals may be extra-peroxisomal 

rather than peroxisomal.  

Alternative intracellular sources of ROS include autoxidation reactions and the “leakage” of 

electrons from the electron-transport chains to oxygen (Gary, 1990). Generation of superoxide 
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anions in association with PFOS exposure may be attributed the ability of PFOS to disrupt 

phospholipid bilayers (Lehmler et al., 2006, Hu et al., 2000, Hu et al., 2002a, Takacs and 

Abbott, 2007b).  Upon interaction with several of its components, PFOS can disrupt the 

electron transport chain (ETC) located in the mitochondrial inner membrane which may be 

followed by leakage of partially reduced oxygen intermediates (ROS) into cytosol, hence 

generation of oxidative stress (Starkov and Wallace, 2002). This mitochondrial respiratory 

dysfunction and the resultant oxidative stress has been associated with the induction of 

mitochondrial membrane potential transition (MMPT), and cellular necrosis or apoptosis 

(Sokol et al., 2001). Generally, the transcriptional expression and activity of cytosolic 

antioxidants (SOD and GPx) following exposure to PFOS alone was differential (with the 

exception of gpx3). Nevertheless, these observations may indicate transient generation of 

intracellular ROS upon PFOS exposure.  

There could be several explanations for this unclear response all of which are speculative; for 

instance, it could be speculated that the impact of PFOS could be tissue specific. In a 14 d in 

vivo experiment where juvenile Atlantic salmon were forced-fed with 0.2mg/kg PFOS, organ 

specific changes in peroxisomal β-oxidation and oxidative stress responses were observed, 

with greater severity in kidney than in the liver (Arukwe and Mortensen, 2011). In another 

study, Oakes and colleagues (2005) demonstrated that exposure to 3mg PFOS/L for 14-28 d 

predominantly provoked hepatic compared to gonadal oxidative stress responses in female 

fathead minnow (pimephales promelas). Additionally, antioxidant responses were 

demonstrated to be generally higher in liver than gills of juvenile European eel (Anguilla 

Anguilla) exposed to moderately or highly polluted sediments (Regoli et al., 2011).  

 It may be possible that the observed ambiguous response to PFOS exposure in the gills might 

have been due to several tissue specific factors including; oxidative 

metabolic/biotransformation and bioconcentration capacity and cellular machinery (which is 

lower in fish gills). Additionally, fish gills are not only a site for uptake of water-borne 

toxicants, but also a major site of depuration of these compounds (Martin et al., 2003). It may 

be possible that a continuous flux of water-borne PFOS in and out of the gills could have 

made it difficult to allow accumulation of PFOS to sufficient concentrations needed to 

provoke a clear response in this tissue. 
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There are conflicting reports about the association of lipid peroxidation with PFOS exposure. 

In an in vivo 8d experiment where juvenile Atlantic cod were exposed to PFOS (0.2 mg 

PFOS/kg fish), hepatic  malondialdehyde (MDA) levels significantly increased only at day 2 

but no significant changes were observed on further days-day 5 and 8, while  renal MDA 

levels hardly changed compared to the control (Arukwe and Mortensen, 2011).  Additionally, 

in an in vitro study where hepatocytes from freshwater tilapia (Oreochromis niloticus) were 

exposed to 0,1,5,15 and 30 mg PFOS/L for 24 hours, no significant changes in MDA levels 

were observed (Liu et al., 2007). In this study, the measured levels of MDA appear to have 

generally increased (though not significantly) following exposure to PFOS alone, an 

indication of lipid peroxidation since MDA is a well-known product of this process. However, 

due to reasons already given concerning the TBARS test, this observation should be 

considered with precaution. 

High intracellular CO2 levels as is the case during hypercapnia could be associated with 

oxidative stress. Generation of ROS and RNS under hypercapnic conditions may occur either 

via peroxynitrite pathway (Denicola and Rafael, 2005), or  Fenton reaction (Sipe and Murphy, 

1991, Garrick and Garrick, 2009).  The later scenario may seem to be less likely since fish 

have been reported to efficiently compensate for acid-base disturbances through trans-

epithelial transfer of acid-base equivalents via their gills with the help of membrane ion-

exchangers such as Na
+
/H

+
 exchangers, Cl

-
/HCO3

-
 exchanger, and Na

+
/K

+
 ATPase (Towle 

and Weihrauch, 2001).  In other words, oxidative stress associated with hypercapnia may 

most likely arise from actual intracellular elevation of CO2 levels rather than hypercapnia-

related changes in pH. 

The reaction yielding peroxynitrite has been reported to occur at a higher rate compared to 

SOD mediated dismutation of superoxide anions. Indeed, nitric oxide has been reported as the 

only known biological molecule produced at substantially high levels under 

pathological/stressful conditions to out-compete endogenous SOD for superoxide anions 

(Beckman and Koppenol, 1996).  An example of the stressful conditions under which high 

levels of nitric oxide is produced is hypercapnia: In a 48 h in vitro study, Lang and colleagues 

(2000) demonstrated that more nitric oxide was produced by rat alveolar epithelial cells under 

hypercapnic condtions (5% or 15% CO2) via increased activity of inducible nitric oxide 

synthase (iNOS). Reference to these findings should however be done with caution due to the 

huge differences in hypercapnic levels and test organisms.   
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Apparently, an overall decrease in SOD activity was observed following exposure to elevated 

CO2 (0.3% and 0.9%), although this could not be proven statistically. The decrease in SOD 

activity could be associated with a decline in intracellular superoxide anion levels, and hence 

a subsequent reduction in the need for SOD. A partial explanation for the low superoxide 

anion levels could be their high consumption during formation of peroxynitrite-a process that 

is fast (k = 6.7x10
9
 M

-1
• S

-1
) (Rafael et al., 2001, Vesela and Wilhelm, 2002), and probably 

favored under hypercapnic conditions as mentioned above. 

Generally, the transcriptional expression of gpx3 and GPx activity decreased after exposure to 

elevated CO2, though this effect was only significant at 0.3% CO2. This drop in transcriptional 

expression and activity of glutathione peroxidase  could indicate presence of low 

concentrations of hydrogen peroxide in the cytosol, and could be associated with the observed 

low SOD activity since hydrogen peroxide is a major product of SOD mediated dismutation 

of superoxide anions (Gary, 1990).  

ROS and RNS generated via the peroxynitrite pathway under hypercapic conditions could 

lead to oxidative damage of several biomolecules among others lipid components of cellular 

membranes (lipid peroxidation). At day 3, an apparent CO2-level dependent insignificant 

increase in MDA levels above control was observed following exposure to elevated CO2 

alone (0.3% or 0.9%).  This could indicate occurrence of lipid peroxidation during 

hypercapnia. However, this observation should be considered with precaution due to high the 

relatively big standard deviation values.  However, this effect was reversed at further days of 

the experiment in an apparently time-dependent manner. The reason for the fall in MDA 

levels is unknown, but could be linked to the fact that MDA molecules are reactive 

electrophilic species and therefore cytotoxic, so they may have been eliminated via oxidation 

to CO2 by aldehyde dehydrogenases (Siu and Draper, 1982, Draper et al., 1986) 

A direct consequence of increased expression of peroxisomal β-oxidation related genes 

(particularly acox) observed after combined exposure to PFOS and hypercapnia is the 

generation of hydrogen peroxide. A corresponding increase in expression of catalase 

(peroxisomal scavenger of hydrogen peroxide) was also expected. Although transcriptional 

changes for catalase were generally differential, an apparent increase in mRNA levels in 

0.3%CO2+200μg PFOS/L and 0.9%CO2+100μg PFOS/L exposure groups at day 3 and 

0.9%CO2+ PFOS exposure groups at day 6 is noteworthy. Although not significant, this 
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increase in transcription of catalase could be considered as an adaptive response to increased 

intracellular levels of hydrogen peroxide. Therefore, it could be arguable that exposure to 

PFOS under hypercapnic conditions could have possibly caused increased generation of 

energy via peroxisomal fatty acid β-oxidation, which in turn generated ROS.  

Clear (not differential) changes in CAT activity occurred only after relatively durable 

exposure (day 9), where the enzyme activity dropped below control (only significant in the 

0.3%CO2+100μg PFOS/L group). This apparent time-dependent decrease in enzyme activity 

could be an indication that this antioxidant system could have been overwhelmed by huge 

amounts of hydrogen peroxide. This result seems to further support the suggested 

improvement of responsiveness of fish to PFOS (as a peroxisome proliferator) under 

hypercapnic conditions compared to normocapnia, hereby indicating that PFOS toxicity may 

most likely be ROS-mediated under hypercapnia. However, given the fact that the observed 

effects were largely not statistically proven and the existence of only a handful of similar 

studies (Lorentzen, 2013), more studies need to be done for the verification of this suggested 

positive effect of hypercapnia on the peroxisome proliferator activity of PFOS in fish. 

The apparent CO2 dependent increase in SOD activity upon combined exposure to high PFOS 

concentration (200μg PFOS/L) and elevated CO2 at day 9 could indicate the presence of high 

cytosolic levels of superoxide anions, hence the augmentation of this adaptive mechanism 

responsible for elimination of these radicals.  

An increase in SOD activity is expected to be followed by a corresponding increase in 

hydrogen peroxide levels. Glutathione peroxidase scavenges extra-peroxisomal hydrogen 

peroxide, and therefore the expression of the different isoforms of the gpx gene is expected to 

increase as an adaptive response to increased intracellular levels of hydrogen peroxide 

(Winston and Di Giulio, 1991, Arthur, 2000). Transcriptional regulation of gpx1 and gpx3 at 

day 6 seems interesting; mRNA levels of both isoforms increased following combined 

exposure to both stressors in an apparently CO2 dependent manner, although this effect was 

clearer in the high PFOS+ elevated CO2 exposure groups (200μg PFOS/L+ CO2), and was 

statistically proven only for gpx3. This increase in transcriptional levels for gpx could be 

considered as an adaptive response to increased intracellular levels of hydrogen peroxide.  

However, the observed increase in mRNA levels of gpx1 and gpx3 at day 6 appears not to 

have been translated into a corresponding increase in enzyme activity. On the contrary, GPx 
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activity dropped below control levels upon combined exposure to both PFOS and elevated 

CO2, with a significant drop observed in the 200μg PFOS/L+ 0.3%CO2 exposure group. A 

decrease in enzyme activity was also observed in the same exposure groups at day 9 (though 

not significant). This could indicate an inability to produce functional enzymes and most 

probably a compromised capacity of the cellular hydrogen peroxide scavenging systems upon 

combined exposure to both stressors.   

ROS and RNS apparently generated upon combined exposure to PFOS and elevated CO2 

could be associated with occurrence of lipid peroxidation. At day 3, the levels of MDA 

increased (though not significantly) following combine exposure to both stressors (Figure 16), 

thereby indicating the occurrence of lipid peroxidation. However, for reasons already 

mentioned this effect was reversed in an apparently time-dependent manner at further days of 

the experiment.   

 

4.4.1 EFFECTS ON GLUTATHIONE BASED ANTIOXIDANT 

RESPONSES 

 

Generally, intracellular levels of reduced glutathione dropped below control (though not 

significantly) upon single exposure to PFOS or hypercapnia, while differential changes were 

observed following combined exposure to both stressors. The generally low levels of reduced 

glutathione could probably be attributed to its high consumption during direct or indirect 

(enzyme mediated) elimination of free radicals (ROS, RNS and reactive intermediates of lipid 

peroxidation) generated under the different exposure conditions. However, the capacity to 

replenish cellular GSH and therefore maintenance of a reduced redox-state in the gill cells 

appears to have been relatively weakened under hypercapia alone or in combination with 

PFOS. This is due to the reduction in enzyme activity for glutathione reductase observed 

under the above-mentioned conditions especially at day 9.  

Upon exposure to PFOS alone, weak changes in GST activity were observed at day 3 and 6 

followed by an increase at day 9 (though not significant). This could imply that the 

involvement of GST in PFOS elimination might have occurred at later rather early stages of 

exposure. This “postponed” response might have been an attempt to avoid unnecessary 
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consumption of GSH (which is costly to produce) at earlier stages of chemical insult. The 

increased GST activity following combined exposure to high levels of both stressors (200μg 

PFOS/L+0.9 CO2) observed at day 3 and 6 may indicate increased GST mediated elimination 

oxidative stress products. However, the reversal of this effect to levels well below control at 

day 9, coupled with the apparent CO2 dependent drop in activity in groups exposed to 

elevated CO2 levels alone observed at the same day, might have been due to overwhelming of 

this detoxification pathway by oxidative stress products generated under the respective 

exposure conditions. 

Note that with the exception of SOD activity in the high PFOS+ elevated CO2 exposure 

groups (200μg PFOS/L+CO2), an overall decrease in enzyme activity of all antioxidants was 

observed at day 9 especially in groups exposed to hypercapnia alone or in combination with 

PFOS. It is possible that this apparent time-dependent decline in antioxidant enzyme activity 

may be attributed to oxidative impairment related to oxidative stress  or overwhelming of the 

antioxidant enzymes (Giuliani et al., 2013). This result is an indication of a possibility of  

compromised capacity of antioxidant defenses following exposure to hypercapnia alone or in 

combination with PFOS, a consequence of which is an imbalance between pro-oxidants and 

antioxidants-oxidative stress-hence occurrence of oxidative stress.  

Several vital biological molecules are potential targets for oxidative damage under oxidative 

stress conditions, whose damage could result into numerous deleterious consequences for the 

affected organism (Storey, 1996). Introduction of single or double strand breaks in DNA or 

oxidative modification of the DNA bases by ROS or RNS can cause loss-of-function 

mutations resulting into deleterious effects not only  for the victim such as increased risk of 

cancer development but also for future generations if germ cells are affected (Anthony and 

Murphy, 1995). Upon oxidative attack, the structure of proteins could be modified which may 

potentially compromise their functionality (Hyslop et al., 1988), and thereby disrupting 

several vital protein-dependent cellular processes.  

Several important cellular processes are dependent on properly functioning intact membranes 

(plasma membrane and intracellular organelle membranes), these include; different extra-

cellular signal transduction pathways by components of plasma membrane (Campbell et al., 

2008), mitochondrial-based energy production (Bruce et al., 2007) and compartmentalization 

of otherwise cytotoxic substances in specific organelles (Clark, 2010). Lipid peroxidation can 
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alter membrane integrity and structure, consequently resulting into impairment several of the 

above-mentioned membrane functions. Many organisms are able to deal with oxidative stress 

by hindering or mitigating several of oxidative stress related damages. However, allocation of 

huge amounts of energy to antioxidant defenses and/or containment of oxidative stress related 

damage (repair or elimination of damaged substances) may leave less energy available for 

vital processes including; reproduction, growth, hence a potential reduction in the fitness of 

the organism (Heugens et al., 2001). 

Taken together, the results in this study indicate that generation of oxidative stress occurred 

under all exposure conditions in the gills of Atlantic cod, however, this effect was clearer 

upon exposure to elevated CO2 levels alone or in combination with PFOS.  

4.5  EFFECTS ON MEMBRANE PHOSPHOLIPID HOMEOSTASIS 

A noticeable but insignificant increase mRNA levels for both pemt and pisd at day 9 was 

observed following exposure to high PFOS concentrations under normocapnia compared to 

control. Additionally, an increase in mRNA levels for pemt occurred only after exposure to 

high CO2 levels alone or in combination with PFOS (Figure 9). There is a discrepancy 

between these results and those reported in a similar study (with identical experimental setup 

as in the current study) (Lorentzen, 2013). In this study, no significant effects were observed 

in hepatic pemt and pisd after single or combine exposure to elevated CO2 (0.3% and 0.9%) 

and PFOS (100μg or 200μg PFOS/L), and this was attributed to the organisms’ choice not to 

invest energy in unnecessary metabolic processes. This discrepancy could be attributed to 

differences in test tissue. Unlike the liver, the gills were in direct contact with the exposure-

medium, which was saturated with CO2 or also contained dissolved membrane active 

compounds (PFOS). It could be speculated that phospholipid composition of membranes in 

gill cells is likely to change as the exposed organisms attempt to maintain the membrane 

functionality in gill cells. 
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5.0 CONCLUSION 

Taken together, these results indicate that PFOS and hypercapnia might induce oxidative 

stress in fish-although the observed changes in the expression of antioxidant genes were 

generally unclear (differential) in fish singly exposed to PFOS or elevated CO2. Generally, 

single exposure to PFOS or elevated CO2 levels had a weak effect on the transcription of 

peroxisomal β-oxidation related genes (ppar-β and acox). This raises some questions about 

the extent to which peroxisomal fatty acid β-oxidation pathway contributes to intracellular 

oxidative stress.  However, ppar-β and acox were more responsive to PFOS under 

hypercapnic conditions, as mRNA levels of these genes generally increased above control 

(though not significantly) in fish exposed to a combination of both stressors. This was an 

indication that peroxisomal fatty acid β-oxidation pathway might be involved in the induction 

of oxidative stress under such conditions. An increase in extra-peroxisomal ROS generation 

was also suggested to have occurred following combined high PFOS (200μg) and elevated 

CO2 levels. This was due to the apparent CO2 dependent increase in mRNA levels of gpx1, 

gpx3 at day 6 and SOD activity at day 9 observed in fish exposed to a combination of high 

PFOS (200μg) and elevated CO2 levels.  

The apparent positive interactive effect of water-borne PFOS and seawater hypercapnia on 

oxidative stress responses observed in this study may serve as a warning signal about the 

potentially huge environmental challenges faced by several aquatic organisms given the 

widespread distribution of PFOS and the increasing release of anthropogenic CO2 into 

atmosphere which is in turn absorbed by aquatic environment. 

 

6 FUTURE PERSPECTIVES 

In order to get an extensive understanding of how aquatic organisms may be impacted by combined 

exposure to PFOS and environmental hypercapnia, more studies need to be done on several aquatic 

organisms, especially those that dwell at the surface of oceans since most of the anthropogenic CO2 in 

the atmosphere is absorbed by ocean surface waters. 
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Appendix 

Appendix A: Reagents used for gel electrophoresis 

Table A1: 10 x MOPS used in preparation of gels and buffers. 

MOPS      41.86 g     

EDTA      (0.2 M) 25 mL 

DEPC-treated MilliQ water    475 mL 

Adjusted to pH = 7.0 with NaOH 

Autoclaved (121°C, 20 min) 

Total      500mL 

Table A2: Sample buffer.       

Deionized formamide        250 μL 

10 x MOPS         50 μL 

37% formaldehyde       83 μL 

DEPC treated Milli-Q water        57 μL 

Glycerol          50 μL 

Total         (490 μL)   

Table A3: 1% agarose gel with formaldehyde 
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Agarose          1.0 g 

10 x MOPS          10 mL 

DEPC treated Milli-Q water        87 mL 

Formaldehyde (37%)         5.1 mL 

GelRed          10 μL 

 

Table A4: 1% agarose gel 

Agarose          1.0 g 

1 x TAE          100 mL 

GelRed          10 μL 

 

Table A5: 50x TAE  

Tris base           242 g 

Glacial acetic acid          57.1 mL 

EDTA (0.5 M, pH 8.0)         100 mL 

MilliQ water            1 L 

Autoclaved (121°C, 20 min) 

Total          (1 L) 

 

Table A6: Running buffer 

10 x MOPS       20 mL 

DEPC-treated MilliQ water                 225 mL 

Formaldehyde (37%)                   5 mL 

Total        250mL 

Appendix B: Reagents used for biochemical analysis 

Reagents (and their recipes) used in assays for enzyme activity and total content of 

glutathione and malondialdehyde are given in table B1. 

Table B1: Reagents used in biochemical assays 

Reagent     Recipes 
Bacitracin     100 mg/mL Dissolve 100 mg bacitracin in 1 mL dH2O 

CDNB, 50 mM    Dissolve 0.0506 g CDNB in 5 mL methanol 

CHP, 200 mM     Add 37 μL CHP 5.2 M to 963 mL methanol 

DTNB, 20 mM     Dissolve 0.07962 g DTNB in 10 mL methanol 

DTT 100 mM     Dissolve 0.01542 g DTT in 1 mL methanol 

EDTA, 100 mM    Dissolve 3.7224 g EDTA in 100 mL dH2O 
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GSH, 100 mM     Dissolve 0.0307 g GSH in 1 mL dH2O 

GSSG, 10 mM     Dissolve 0.006566 g GSSG in 1 mL dH2O 

H2O2, 1.2 M     Add 100 μL H2O2 12 M to 900 μL dH2O 

Homogenizing buffer                100 mL Tris-HCL buffer, 100 μL 100 mM PMSF, 100 μL 

100 mg/mL bacitracin, and 1.8 g NaCl 

K-phosphate buffer, 100 mM   Dissolve 1.36 g KH2PO4 in 100 mL dH2O. Adjust pH. 

NaCl, 1.8 %     Dissolve 1.8 g NaCl in 100 mL buffer 

NADPH, 1 mg/mL    Dissolve 1 mg NADPH in 1 mL dH2O 

NADPH, 4 mg/mL    Dissolve 4 mg NADPH in 1 mL dH2O 

NADPH, 20 mg/mL    Dissolve 2 mg NADPH in 100 μL dH2O 

PMSF, 100 mM    Dissolve 0.174 g PMSF in 10 mL methanol 

Tris-HCL buffer, 100 mM   Dissolve 1.211 g C4H11NO3 in 100 mL dH2O, adjust pH. 

 

 

 

Appendix C: Real-time PCR calibration curve 

The calibration curve used for normalization of real-time PCR data was prepared by making a 

dilution series of plasmids containing gadus morhua cyp19 gene followed by PCR 

amplification. Y=-4.372*log(X)+13.09, was derived from standard curve. 
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Figure C1: Calibration curve for normalization of real-time PCR data. 

 


