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Abstract (Max 150 words) 

In avian brood parasitism, egg phenotype plays a key role both for host and parasite 

reproduction. Several parrotbill species of the genus Paradoxornis are parasitized by the 

common cuckoo Cuculus canorus and clear polymorphism in egg phenotype is 

observed. In this article, we develop a population genetics model in order to identify 

key parameters that control maintenance of egg polymorphism. The model analyses 

show that egg polymorphism can be maintained either statically as an equilibrium or 

dynamically with frequency oscillations depending on the sensitivity of the host against 

unlike eggs and how the parasite targets host nests with specific egg phenotypes. Based 

on the model we discuss egg polymorphism observed in parrotbills and other host 

species parasitized by the cuckoo. We suggest the possibility that frequencies of egg 

phenotypes oscillate and we appeal for monitoring of cuckoo-host interactions over a 

large spatiotemporal scale. 

 

Keywords: Avian brood parasitism, co-evolution, egg phenotype, frequency-dependent 

selection, oscillation, population genetics model
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Introduction 

Polymorphism in natural populations occurs as discontinuous, discrete assemblages of 

individuals with a shared phenotype. Such polymorphism may evolve and can be 

maintained as a consequence of frequency-dependent selection (Kettlewell, 1973; 

Majerus, 1998; Bond, 2007). Rare mutants for novel discrete phenotypes may spread if 

they enjoy a selective frequency-dependent advantage during interactions with any 

selective agents. Here we focus on polymorphic phenotypes of the eggs that birds 

produce because they can be a crucial component for successful reproduction by both 

host and parasite in avian brood parasitism. 

 

Accepting brood parasitism usually results in significant reduction in reproductive 

success for the host (Rothstein, 1990; Davies, 2000). This strong parasitism pressure 

constitutes a driving force for co-evolutionary interactions between the parasite and the 

host where the host evolves defenses against parasitism like the ability to recognize and 

reject parasitic eggs that look dissimilar in appearance to its own eggs (Rothstein, 1975; 

Davies & Brooke, 1988; Moksnes et al., 1990) and the parasite evolves better egg 

mimicry to counter the host defense (Brooke & Davies, 1988). The host may further 

counter egg mimicry by the parasite by decreasing intra-clutch variation and increasing 

inter-clutch variation in egg phenotype (Øien et al., 1995; Stokke et al., 2002; Stokke et 

al., 2007).  

 

The common cuckoo Cuculus canorus, one of the best studied avian brood parasites, 
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parasitizes several parrotbill species of the genus Paradoxornis. Kim et al. (1995) 

showed that the vinous-throated parrotbill P. webbianus in Korea exhibits clear 

dimorphism in egg color; a clutch contains either white or blue eggs. Lee & Yoo (2004) 

and Lee et al. (2005) demonstrated that the vinous-throated parrotbill has the ability to 

recognize and reject unlike eggs as do many other cuckoo hosts. Despite the 

dimorphism in egg color of the parrotbill, however, only blue eggs are found in the 

cuckoo in Korea (Kim et al., 1995; Lee & Yoo, 2004; Lee et al., 2005). 

 

Recently, Yang et al. (2010) showed that the ashy-throated parrotbill P. alphonisianus in 

southern China, a closely related species of P. webbianus, shows clear polymorphism in 

egg color, with white, pale blue and blue eggs occurring, both in the parrotbill and the 

cuckoo population. Yang et al. (2010) also demonstrated that the ashy-throated 

parrotbill has a fine-tuned ability to recognize and reject eggs that are dissimilar beyond 

a certain threshold. They suggested the possibility that egg polymorphism both in the 

parrotbill and the cuckoo has evolved as a result of co-evolutionary interaction between 

them. 

 

Apparent absence of white cuckoo eggs in Korea should favor parrotbills that produce 

white eggs because such "white parrotbills" can reject blue cuckoo eggs better than 

"blue parrotbills" (Lee et al., 2005). Increase in the frequency of white parrotbills may 

be followed by emergence of "white cuckoos" that can exploit white parrotbills more 

efficiently than blue cuckoos. This parasitic interaction naturally raises an intriguing 
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question about the maintenance of such mutual egg dimorphism in both host and 

parasite under frequency-dependent selection. Presence of the three egg colors both in 

the parrotbill and the cuckoo in China also poses the same question. How can egg 

polymorphism be maintained in both host and parasite in this co-evolutionary arms 

race? 

 

Egg phenotype including background color, patterns like spots, blotches and lines is 

likely genetically determined and a female produces eggs of a constant phenotype 

throughout her lifetime (Collias, 1993; Gosler et al., 2000; Gibbs et al., 2000; Mahler et 

al., 2008; Moksnes et al., 2008). Several independent cases of evolution of egg 

polymorphism (Kilner, 2006) suggest that the underlying genetic mechanisms are 

simple and possibly only involve one or at most a few loci. A recent study on the 

common cuckoo indicates that the genes determining egg coloration are most likely 

found on autosomal loci, rather than the W-chromosome as previously assumed, and 

therefore is subject to Mendelian inheritance (Fossøy et al., 2011). Also, several 

empirical studies suggest that the background egg coloration is governed by at least two 

autosomal loci in birds (Wei et al., 1992; Collias, 1993; Ito et al., 1993). Because egg 

phenotype plays a key role both for the host and the parasite to successfully reproduce 

in avian brood parasitism, frequency-dependent selection is expected to work on egg 

phenotype to cause the egg polymorphism we observe in Korea and China. 

 

Previous theoretical studies have demonstrated that host-parasite co-evolution can 
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promote polymorphism in the levels of host resistance and parasite virulence with their 

levels fluctuating cyclically and that such co-evolutionary cycles are likely to occur in 

antagonistic interactions in general (Sasaki, 2000; Tellier & Brown, 2007a; 2007b; 

Nuismer & Thompson, 2006; Nuismer et al., 2007). Thus, the polymorphism observed 

in the cuckoo and parrotbill interactions could be conceptually understood by these 

previous models; egg polymorphism may be maintained with oscillating frequencies of 

each egg phenotype. However, these models are based on simplified assumptions such 

that hosts and parasites encounter each other completely randomly and that the trait in 

focus is asexually inherited in haploid organisms. We consider these models too 

simplistic to provide any quantitative and empirically testable predictions on frequency 

changes of egg phenotypes observed in avian brood parasitism. 

 

In order to understand how egg polymorphism can be maintained in avian brood 

parasitism and to provide quantitative predictions that can be empirically tested, we here 

construct a population genetics model with biologically plausible genetic and ecological 

assumptions. Based on the model analysis, we identify key parameters that control 

maintenance of egg polymorphism in avian brood parasitism. We suggest the possibility 

that the parrotbill-cuckoo interactions exhibit oscillations in frequencies of distinct egg 

colors and that egg polymorphism can be statically or dynamically maintained in the 

host and the parasite population depending on the sensitivity of the host when 

recognizing unlike eggs and how the parasite targets to parasitize host nests with a 

certain egg phenotype. We discuss egg polymorphism observed in other brood parasitic 
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interactions with implications for the importance of studying the behavior by the 

parasite when utilizing hosts with polymorphic eggs as well as the genetic mechanism 

of egg phenotype. Finally, we emphasize that our findings have general applications 

outside avian brood parasitism to include antagonistic interactions in general. 

 

The model 

We assume sexual and diploid population both for the host and the parasite. We assume 

three distinct egg colors, white, pale blue and blue, as observed in the parrotbill-cuckoo 

interaction (Yang et al., 2010). 

 

We assume the following genetics for the expression of egg phenotype. Egg color is 

controlled by two autosomal loci. The first locus controls the presence or absence of 

blueness with two alleles, b and B. The allele B expresses blueness and is assumed to be 

dominant over b. The second locus controls the expression of the blueness with two 

alleles, m and M. The allele M modifies the expression of blueness and makes eggs pale 

blue and is assumed to be dominant over m. This diallelic two-locus assumption is 

based on sexual inheritance of egg color observed in chickens Gallus gallus, village 

weavers Ploceus cucullatus, and Japanese quails Coturnix japonica (Wei et al., 1992; 

Collias, 1993; Ito et al., 1993). Recombination rate of the two loci is r (0  r  1/2). 

 

As a notation, we hereafter denote egg color as 0 (white), 1/2 (pale blue) and 1 (blue). 

Ten genotypes are possible in a population, each indexed as i and having a phenotypic 

Page 8 of 52Journal of Evolutionary Biology



 - 9 -

value as follows (i = 1, 2, ..., 10). (Genotype i, its phenotype): (bm/bm, 0), (bm/bM, 0), 

(bM/bM, 0), (bm/Bm, 1), (bm/BM, 1/2), (bM/Bm, 1/2), (bM/BM, 1/2), (Bm/Bm, 1), 

(Bm/BM, 1/2), (BM/BM, 1/2). Let hi and pi be the frequency of genotype i in the host 

and the parasite population, respectively. The phenotypic frequency of egg color 0, 1/2, 

1, respectively, is denoted as fh0 = h1 + h2 + h3, fh1/2 = h5 + h6 + h7 + h9 + h10, fh1 = h4 + h8 

for the host and fp0 = p1 + p2 + p3, fp1/2 = p5 + p6 + p7 + p9 + p10, fp1 = p4 + p8 for the 

parasite. We assume infinitely large population, random mating, and non-overlapping 

generations. 

 

We next assume the following ecological situations. Each host female builds a nest and 

completes a clutch of egg color determined by her genotype. Let P denote the 

probability that a host nest is parasitized. The probability that a nest of host female 

genotype i is parasitized by a parasite genotype j conditional on the nest is parasitized is 

assumed to be i pj wherei is the probability that a parasite targets the nest of a host 

genotype i. We here assumed that a host nest is parasitized once at most. Multiple 

parasitism is ignored in our model, which is a close approximation of reality because the 

probability of multiple parasitism is low in parrotbills and most other hosts (but see 

Moskát & Honza (2002), Takasu & Moskát (2011) for high parasitism rate that 

remained constant among years). 

 

It remains unknown how a parasite decides to parasitize a host nest having a certain 

color of eggs in the presence of egg polymorphism in the host population. Because 
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parasites often visit host nests without laying parasitic egg presumably to check nest 

content (Moksnes et al., 2000), the way a parasite utilizes a host nest may not be 

random (Aviles et al., 2006; Cherry et al., 2007), i.e., it may be influenced by 

frequencies of egg phenotypes in the host population and i might not necessarily be the 

same as the frequency hi of host genotype i. Such non-random search has been 

demonstrated as frequency-dependent switching when birds use search images to look 

for prey of a particular color or pattern (Bond, 1983). In order to consider 

non-randomness of parasitic behavior, we assume that i is given as follows using the 

host phenotype frequencies, fh0, fh1/2, fh1. 

 

 

 i 
fh0

n

fh 0
n  fh1/ 2

n  fh1
n

hi

fh 0

  for  i = 1, 2, 3 (host phenotype 0) 

 

 i 
fh1/ 2

n

fh 0
n  fh1/ 2

n  fh1
n

hi

fh1/ 2

 for  i = 5, 6, 7, 9, 10 (host phenotype 1/2) 

 

 i 
fh1

n

fh 0
n  fh1/ 2

n  fh1
n

hi

fh1

 for  i = 4, 8 (host phenotype 1) 

 

 

where the parameter n controls the propensity that the parasite is attracted to parasitize 

hosts having a certain egg color; the parasite utilizes hosts just randomly according to 

the actual frequencies (n = 1), the parasite is more likely to utilize a host with rare egg 
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color than would be expected by chance (n < 1), or the parasite is more likely to utilize 

a host with common egg color than would be expected by chance (n > 1) (Fig. 1). 

 

[Fig. 1: How parasites parasitize host nests. Dependency on n.] 

 

We assume that all host males and females have the same ability to recognize and reject 

unlike eggs and this recognition ability is innate, not learnt. The probability that a host 

with egg color CH accepts parasitic egg CP in the nest is denoted as A(CH, CP) and it is 

assumed to be a decreasing function of the absolute difference in color | CH - CP | (CH, 

CP = 0, 1/2, 1); the greater the contrast in color, the smaller the acceptance probability 

as has been demonstrated in many host species and modeled (Higuchi, 1998; Takasu, 

2003; Stokke et al., 2007; Yang et al., 2010). To simplify the notation we denote a0 = 

A(0, 0) = A(1/2, 1/2) = A(1, 1), a1/2 = A(0, 1/2) = A(1/2, 0) = A(1, 1/2) = A(1/2, 1), a1 = 

A(0, 1) = A(0, 1) (1  a0  a1/2  a0  0). A parasitized host breeding pair can produce 

own offspring only when it rejects parasitism successfully. Otherwise, a parasite chick 

fledges from the parasitized host nest. Sex ratio is fixed 1:1 and the genotype 

frequencies are the same in males and females both in the host and the parasite. Table 1 

summarizes these ecological assumptions. 

 

[Insert Table 1 around here] 

 

Using vector notation h = (h1, h2, ..., h10) and p = (p1, p2, ..., p10), the genotype 
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frequencies at the next generation h' and p' are given as follows 

 

 

 h' 
1

w H
TH WH h h   (1) 

 

 p' 
1

w P
TP WP p p   (2) 

 

 

Here, w H  and w P  is the average fitness of the host and the parasite, respectively. TH 

and TP is a 10 by 102 transmission matrix that describes the distribution of offspring 

genotypes produced from a pair of two genotypes as a male and a female for the host 

and the parasite, respectively. WH and WP is a 102 by 102 diagonal matrix with 

coefficients of fitness as the reproductive success from a pair of two genotypes as a 

male and a female for the host and the parasite, respectively.  is Kronecker product 

and h h and p p gives frequencies of mating pairs for the host and the parasite, 

respectively. See Appendix for the derivation. 

 

The coupled dynamics of equation (1) and (2) describes temporal change in the 

genotype frequencies hi and pi (i = 1, 2, ..., 10) and hence the phenotype frequencies fh0, 

fh1/2, fh1, fp0, fp1/2, fp1 under the genetic and ecological assumptions explained above. In 

the next section we analyze the frequency dynamics of egg colors, mainly focusing on 
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maintenance of egg polymorphism, firstly for asexual and secondly for sexual 

inheritance of egg color. 

 

Results 

Asexual inheritance of egg color 

When egg color is asexually inherited to daughters, the coupled dynamics (1) and (2) is 

reduced to the simpler dynamics of the six phenotype frequencies fh0, fh1/2, fh1, fp0, fp1/2, 

fp1 (see Appendix). When the parasite utilizes host nests randomly according to their 

frequencies (n = 1), the reduced dynamics is analytically tractable.  

 

We first look for equilibria at which the six phenotype frequencies temporarily remain 

unchanged, i.e., f'h0 = fh0 = f*h0, f'h1/2 = fh1/2 = f*h1/2, f'h1 = fh1 = f*h1, f'p0 = fp0 = f*p0, f'p1/2 = 

fp1/2 = f*p1/2, f'p1 = fp1= f*p1 (* denotes equilibrium). Under the ecological assumptions 

that parasites randomly parasitize (n = 1) and that unlike eggs are more likely to be 

rejected (1  a0 > a1/2 > a1  0), there exists a unique trimorphic equilibrium where all 

colors are present both in the host and the parasite population as 

 

 

   (4) 

 

 
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if and only if the condition 

 

 

 a0 - 2 a1/2 + a1 > 0     (5) 

 

 

is satisfied. The condition (5) requires that the host accepts moderately mimetic eggs 

with probability a1/2 being less than the arithmetic average of a0 and a1, which 

biologically means that the host has high sensitivity to discriminate unlike eggs (Fig. 2). 

 

[Insert Fig. 2 around here. Relation of the acceptance probabilities a0, a1/2 and a1] 

 

Besides the trimorphic equilibrium (4), there are fourteen equilibria where hosts and 

parasites are either monomorphic or dimorphic; nine equilibria where both hosts and 

parasites are monomorphic with one of the three phenotypes, one equilibrium where 

hosts are dimorphic with 0 and 1 and parasites are monomorphic with 1/2, one where 

hosts are monomorphic with 1/2 and parasites are dimorphic with 0 and 1, three where 

both hosts and parasites are dimorphic with 0 and 1/2, 0 and 1, and 1/2 and 1, 

respectively (Fig. 3). These fourteen equilibria are possible irrespective of condition (5). 

 

[Fig. 3: List of all possible equilibria] 

 
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Local stability of these equilibria can be analyzed by linearizing the dynamics (1) and 

(2) (Murray, 2007). It turns out that all of the equilibria derived above are unstable and 

that the linearized dynamics when at least two phenotypes are present both in the host 

and the parasite population shows oscillations with a period dependent on a0, a1/2, a1 

and P. See Appendix for derivation of these results.  

 

Instability of equilibria where both the host and the parasite are monomorphic can be 

readily shown as follows (see Fig. 3a). When both are monomorphic with the same 

phenotype, rare host mutants having different phenotype can always invade the host 

population because these have higher chance to reject parasitism and increase in 

frequency. In the same logic, when both are monomorphic but with different phenotype, 

rare parasite mutants having phenotype more mimetic to that of hosts can always invade 

the parasite population because these have higher chance of parasitism acceptance and 

increase in frequency. Therefore, monomorphic hosts and monomorphic parasites 

cannot be maintained stably. The same logic applies to equilibria where either hosts or 

parasites, or both, are dimorphic lacking a particular egg color (Fig. 3b, c). 

 

Fig. 4 shows typical frequency dynamics for asexual inheritance of egg color. For 

dimorphic hosts and dimorphic parasites with white and blue eggs (pale blue egg is 

absent in both populations) and the parasite utilizes hosts randomly (n = 1), the 

frequencies of the two phenotypes continue to oscillate. Amplitude of oscillation is 

larger in the parasite than in the host and parasite frequencies apparently converge to a 
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heteroclinic cycle where one phenotype dominates for a longer and longer time but is 

eventually replaced by another phenotype (Fig. 4a) (Seger, 1988). When the parasite 

utilizes hosts with egg color in minority more than its frequency (n < 1), the frequency 

dynamics can be stabilized and the two phenotypes coexist but dynamically (Fig. 4b). In 

contrast, when the parasite utilizes hosts with egg color in majority more than the 

frequency (n > 1), the dynamics is more destabilized and shows a heteroclinic cycle 

similar to the case n = 1 (not shown). 

 

For trimorphic hosts and trimorphic parasites when condition (5) is satisfied and the 

parasite utilizes hosts randomly (n = 1), the frequencies of the three phenotypes exhibit 

complex dynamics, eventually converging to a heteroclinic cycle (Fig. 4c). For n being 

sufficiently small (n < 1), an equilibrium can be reached where all three phenotypes are 

stably maintained both in the host and the parasite (Fig. 4d). When the parasite utilizes 

hosts with egg color in majority more than the frequency (n > 1), the frequencies exhibit 

complex behaviors and eventually show a heteroclinic cycle similar to the case n = 1 

(not shown). When condition (5) is not met, the dynamics starting from all phenotypes 

present converges to an equilibrium where hosts are dimorphic with white and blue and 

parasites are monomorphic with pale blue (not shown). 

 

[Insert Fig. 4 around here. Asexual case, n=1 or n<1, two colors or all colors present] 

 

Fig. 5 shows the dependency of the period of oscillation in the early dynamics on the 
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parasitism rate P. The phenotype frequencies oscillate roughly with a period 

proportional to the inverse of the square root of the parasitism rate P as predicted by 

local stability analysis (see Appendix). 

 

[Insert Fig. 5 around here. Dependency of the oscillation period on the parasitism rate 

P.] 

 

Sexual inheritance of egg color 

We next focus on the case that egg color is sexually inherited, a likely case in the 

cuckoo-parrotbill interactions. The dynamics (1) and (2) is intractable and we 

numerically analyze the behavior.  

 

Fig. 6 shows typical frequency dynamics for sexual inheritance of egg color. For 

dimorphic hosts and dimorphic parasites where there are no pale blue eggs (the allele M 

is absent) and the parasite utilizes hosts randomly (n = 1), the phenotypic frequencies 

oscillate but the oscillation lasts more stably with a longer period compared with the 

asexual case (Fig. 6a, cf. Fig. 4a). When the parasite utilizes hosts with egg color in 

minority more than its frequency (n < 1), the dynamics is stabilized where both the two 

phenotypes coexist nearly equally (Fig. 6b). In contrast, when the parasite utilizes hosts 

with egg color in majority more than the frequency (n > 1), the dynamics is more 

destabilized and shows a heteroclinic cycle similar to the asexual case n = 1 (not 

shown). 
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 

For trimorphic hosts and trimorphic parasites when condition (5) is satisfied and the 

parasite parasitizes the host randomly (n = 1), the frequencies of the three phenotypes 

exhibit complex dynamics, eventually converging to a heteroclinic cycle (Fig. 6c). For n 

being sufficiently small, a stable equilibrium can be reached where all three phenotypes 

are stably maintained both in the host and the parasite (Fig. 6d). When condition (5) is 

not met, the dynamics starting from all phenotypes present converges to an equilibrium 

where hosts are dimorphic with white 0 and blue 1 and parasites are monomorphic with 

pale blue 1/2 (not shown). 

 

[Insert Fig. 6 around here. Sexual case, n=1 or n<1, two colors or all colors present] 

 

Dependency of the period of oscillation on the parasitism rate P for the sexual case is 

shown in Fig. 5. Oscillation period is proportional to the inverse of the square root of P 

but it is nearly two times larger than that of the asexual case. 

 

We also investigated the effect of recombination rate of the two loci, rH and rP, on the 

frequency dynamics. The dynamics are quantitatively similar unless the recombination 

rate is nearly zero, which is consistent with linkage disequilibrium decreasing 

exponentially whereby all genotypes are eventually created (Crow & Kimura, 1970).  

 

Discussion 
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We have shown that the frequency dynamics of genotypes/phenotypes critically 

depends on ecological factors, the sensitivity of hosts when recognizing unlike eggs 

(acceptance probabilities a0, a1/2, and a1), and how the parasite utilizes the host 

(parameter n). 

 

Egg polymorphism with three phenotypes present can be maintained only when the host 

has a high sensitivity to reject moderately mimetic eggs (a0 – 2a1/2 + a1 > 0). Otherwise, 

an equilibrium is reached where the parasite shows monomorphism with the 

intermediate pale blue color and the host showing dimorphism with two extremes of 

white and blue. 

 

The way the parasite targets hosts, parameter n, critically affects if polymorphism is 

statically or dynamically maintained; only when n is sufficiently small so that hosts with 

an egg color in minority is more parasitized, the frequency dynamics converges to a 

stationary polymorphism. With smaller n, a negative feedback operates on the risk of a 

host being parasitized and this contributes to stabilize the frequency dynamics. 

Otherwise, frequencies oscillate with a period roughly proportional to the inverse square 

root of the parasitism rate and polymorphism is dynamically maintained. In this case, 

the amplitude of oscillation is always larger in the parasite than in the host. This is 

because selection operates stronger in the parasite than in the host; all parasites 

experience judgment of a host's accepting or rejecting parasitism while not all hosts are 

parasitized. If the amplitude is large enough, a certain phenotype may be lost by chance 
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in the parasite population when the frequency becomes extremely low. This 

demographic stochasticity has been ignored in our model but it could be significant as 

we argue in the real system below.  

 

These results remain qualitatively the same, irrespective of asexual or sexual inheritance 

of egg color, although it quantitatively affects the period with which frequencies 

oscillate; sexual inheritance results in nearly two times longer period of frequency 

oscillation compared with asexual case.  

 

We assumed that the acceptance probabilities A(CH, CP) are a decreasing function of the 

difference in color | CH - CP | (CH, CP = 0, 1/2, 1), and that these can be represented by 

three parameters, a0, a1/2, and a1 (1  a0  a1/2  a1  0), i.e., the dynamical system (1) 

and (2) is structurally symmetric. We have carried out numerical analyses where each of 

the acceptance probabilities A(CH, CP) is randomly perturbed around a0, a1/2, a1 with a 

certain range to incorporate asymmetry and found that all the results remain 

qualitatively similar. Thus, we conclude that our results are robust and not artifacts 

caused by the symmetry of the model structure.  

 

We assumed diallelic two-locus genetics where both the blue allele B and the modifier 

allele M are dominant. We confirmed that modification of this genetic assumption of 

dominance does not change the results greatly. Simple genetics as we assumed might be 

justified by independent evolution of polymorphism in egg color in avian brood 
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parasitism (Kilner, 2006). Further empirical study to elucidate detailed genetic 

mechanisms underlying egg phenotype expression is certainly needed. 

 

The importance of host sensitivity against unlike egg has been suggested in theoretical 

studies where egg phenotype is assumed to be a continuous trait which is asexually 

inherited; the higher the host sensitivity to discriminate unlike eggs, the more discrete 

egg phenotypes can coexist both in the host and the parasite population (Takasu, 2003; 

2005). We have obtained qualitatively the same result in our model. Our results also 

corroborate previous theoretical studies that co-evolutionary dynamics of adaptive traits 

in antagonistic interactions between prey/host and predator/parasite tend to exhibit 

oscillation in the level of adaptive traits of hosts and prey (resistance to parasitism or 

predation) and parasites and predators (virulence or attack rate) (Seger, 1988; Gavrilets 

& Hastings, 1998; Gandon, 2002; Nuismer et al., 2005; Nuismer & Thompson, 2006; 

Kopp & Gavrilets, 2006; Tellier & Brown, 2007a; 2007b). In these previous models, 

however, simpler assumptions like haploid populations, asexual inheritance of 

phenotypes and random encounters of antagonistic organisms (n = 1 in our model) are 

assumed. Random encounters that many of the previous models have assumed may be 

justified for micro-parasites like viruses that passively contact with target hosts. In 

contrast, avian brood parasites do not necessarily parasitize hosts randomly (Avilés et 

al., 2006; Cherry et al., 2007) as complex cognitive mechanisms may be involved in 

search for target hosts (Bond, 1983). We have shown that relaxing the random encounter 

rule results in the novel finding that polymorphism can be statically maintained if a 
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rarer host egg phenotype attracts more parasites. The way the parasite utilizes hosts is 

likely to evolve although it has not been considered in our model. We stress the need for 

theoretical study that focuses on the evolution of parasite behaviors coupled with the 

evolution of egg polymorphism. 

 

The vinous-throated parrotbill in Korea shows dimorphism in egg color as white and 

blue and the ratio of white to blue varies from 0.21:0.79 to 40:60, while only blue 

cuckoo eggs are found (Kim et al., 1995; Lee & Yoo, 2004). The two egg colors may 

coexist either statically or dynamically depending on how the cuckoo parasitizes the 

dimorphic parrotbill as our model has shown. Frequency of the cuckoo parasitism in 

blue or white parrotbills paralleled the egg-color ratio of the parrotbill population (Lee 

et al., 2005). This implies that the cuckoo parasitizes the parrotbill in Korea just 

randomly. In this case, we expect frequency oscillation with the period in the order of a 

few hundred generations because 5.3% of nests (10 out of 190) were found parasitized 

in Korea (Lee et al., 2005), and actual parasitism rate would be higher as unlike cuckoo 

egg had been rejected before detection (Fig. 5). Then, the apparent absence of white 

cuckoo eggs in Korea may have occurred by chance; cuckoos producing white eggs 

were once too small in frequency and they were lost by chance. We speculate that white 

cuckoos, if emerging by some reason like immigration from other area, are likely to 

increase in frequency and frequency oscillation may last. Studying the way the cuckoo 

selects host nests is needed together with long-term monitoring of egg color frequencies 

in Korea. 
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 

The ashy-throated parrotbill in southern China shows polymorphism in egg color, white, 

pale blue, and blue, as well as in the cuckoo population. The ratio of white:pale 

blue:blue is 0.564:0.014:0.422 in the parrotbill, while it is 0.417:0.125:0.453 in the 

cuckoo (Yang et al., 2010). The parrotbill in southern China recognizes and rejects 

unlike eggs sensitively (Yang et al., 2010), and it is likely that condition (5) is satisfied, 

so that all the three colors can be maintained either statically or dynamically. Temporal 

variation in the three egg colors does not clearly show a trend of oscillation in 

frequencies over the past 10 years (Yang et al., 2010). Most likely, 10 years monitoring 

is too short to detect frequency changes because 4.3% of the parrotbill nests (24 out of 

555) were found to be parasitized (Yang et al., 2010) and this gives an oscillation period 

in the order of a few hundred generations (Fig. 5). We suggest that the frequencies will 

likely change in the next several decades if the cuckoo in China parasitizes the parrotbill 

nearly randomly, irrespective of parrotbill egg color. Further long-term monitoring and 

behavioral study about the way the cuckoo parasitizes the parrotbill is needed. 

 

Discrete polymorphism in egg phenotype is rare but in avian brood parasitism, and egg 

polymorphism has likely evolved through co-evolutionary interactions between brood 

parasites and their hosts (Kilner, 2006). The common cuckoo as a species produces eggs 

with a variety of phenotypes but the cuckoo as a whole consists of several independent 

host races, each of which is specialized on a particular host species by producing eggs 

mimetic to those of the host (Moksnes & Røskaft, 1995; Davies, 2000). A similar 
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system is found in the Red-chested cuckoo Cuculus solitarius which has three distinct 

egg phenotypes as chocolate/coffee brown, green-blue with red/brown spots, and coffee 

with brown freckling (Kuiper & Cherry, 2002; Honza et al., 2005). Egg polymorphism 

in avian brood parasitism like the cuckoo and the parrotbill interaction (Kim et al., 

1995; Lee & Yoo, 2004; Lee et al., 2005; Yang et al., 2010) constitutes an ideal system 

for studying how polymorphism can be maintained in a co-evolutionary context 

(Rothstein, 1990). It is ideal also because the time scale of the life cycle for the parasite 

and the host is nearly equal in avian brood parasitism so that evolution of novel egg 

phenotypes would proceed at equal pace in the two parties. Although empirical data on 

phenotypic frequencies and their temporal changes are too limited to draw any 

conclusion, we suggest the possibility that egg polymorphism in avian brood parasitism 

is dynamically maintained with temporarily varying phenotypic frequencies. 

 

In this model we assumed that both the host and the parasite populations are closed in 

the sense that there is no gene flow to and from the outside. Extending our model to 

consider spatial structure enables us to study a "metapopulation" genetics in which we 

might expect a geographical gradient in phenotypic frequencies (Thompson, 2005). The 

absence of white cuckoos in Korea and the presence of the three egg colors in southern 

China may be continuously linked at a larger spatial scale. We may further observe 

temporally and spatially fluctuating phenotypic frequencies where egg polymorphism is 

dynamically maintained. Study focused at a larger spatial scale is certainly needed in 

order to better understand how egg polymorphism is maintained spatially and to 
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demonstrate co-evolution in action in avian brood parasitism, which will certainly 

contribute to enrich our general understanding of co-evolution in antagonistic 

interactions. 

 
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Appendix 

Derivation of the model 

In general, the frequency of genotype i in the next generation, xi', is given as follows 

 

 

 xi

'  T(i j,k)w j x j xk /w 
j,k1

N

   (i = 1, 2, ..., N) (A1) 

 

 

where N is the number of genotypes (N = 10 in our model), T(i j,k) is the transition 

probability that a breeding pair of genotype j as female and k as male produces offspring 

of genotype i, wj is the fitness as the reproductive success of the breeding pair in which 

the female has genotype j (males do not lay eggs and the male k does not influence the 

reproductive success in our model), and w  is the average fitness defined by 

 

 

 w  w j x j

j1

N

  

 

 

to normalize the genotype frequencies x'i (i = 1, 2, ..., 10) to sum up to 1. In vector and 

matrix notation, equation (A1) is written as equation (1) and (2) by replacing xi with hi 

and pi for the host and the parasite, respectively. 
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 

We here describe the details of fitness matrices WH, WP and the transmission matrices 

TH, TP. 

 

Fitness matrix for the host WH is given as follows using parasitism rate P 

 

 

 WH  (1 P)I P ˜ W  

 

 

where the first term in the r.h.s. is reproductive success when not parasitized and the 

second term is that when parasitized. Here I is the 102 by 102 identity matrix with 1 

along diagonal elements and 0 elsewhere. ˜ W  consists of ten 10 by 10 diagonal 

matrices Wi defined as 

 

 

 



˜ W 

˜ W 1 0 L 0
0 ˜ W 2 0 0

M 0 O 0

0 0 0 ˜ W 10



















, 



˜ W i 

wi 0 L 0

0 wi 0 0

M 0 O 0
0 0 0 wi



















 

 

 

where wi is host reproductive success from host female genotype i (i = 1, 2, ..., 10). For 
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the host to successfully reproduce, parasitism has to be rejected. Thus, from Table 1, wi 

is obtained as products of the probability of being parasitized by a parasite j and the 

probability of rejecting the parasitism  

 

 

 wi  1 A(CH (i), CP ( j)) p ji

1
hij1

10

  

 

 

where CH(i) and CP(i) refers to the egg color of genotype i of the host and the parasite, 

respectively. We have assumed that the probability that a host genotype i is parasitized 

is given by i in which the parameter n controls the way the parasite searches host nests. 

Thus we have to divide the term by hi to derive fitness (when n = 1, i = xi) 

 

For the parasite to successfully reproduce, parasitism has to be accepted. Thus the 

fitness matrix for the parasite WP is given as equally as above but the element wi is 

replaced with 

 

 

 wi  A(CH ( j),  CP (i)) j

j1

10

  

 

 
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as products of the probability of parasitism to host genotype j and the probability of the 

parasitism being accepted, summed over all possible host genotypes. 

 

Transmission matrix T consists of ten 10 by 10 square matrices Ti (i = 1, 2, ..., 10) 

arranged horizontally 

 

 

 T  T1 T2 L T10  

 

 

The j-th column of Ti represents the frequencies of offspring genotypes produced by a 

breeding pair (the female is genotype i and the male is j) and the column sum amounts 

to 1 (j = 1, 2, ..., 10). E.g.,  

 

 

 T1 

1 1/2 0 1/2 (1 r) /2 r /2 0 0 0 0
0 1/2 1 0 r /2 (1 r) /2 1/2 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 1/2 r /2 (1 r) /2 0 1 1/2 0

0 0 0 0 (1 r) /2 r /2 1/2 0 1/2 1
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





































 

 
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 

using recombination rate r of the two loci. In the same way, T2 through T10 are obtained. 

The host and the parasite have a recombination rate rH and rP, respectively. 

 

Asexual inheritance 

Asexual inheritance of egg phenotypes (no male contribution to offspring egg color) can 

be implemented by setting the matrix Ti to have 0 in all elements except the ith row 

being 1 (i = 1, 2, ..., 10). 

 

 

 



Ti 

0 0 L 0

M

1 1 L 1

0 0 L 0

0 0 0 0 0





















 

 

 

This applies both to the host and the parasite. In asexual inheritance, the frequency 

dynamics of 10 genotypes in the host and the parasite populations (20 genotypes in 

total) can be reduced to the frequency dynamics of six phenotypes, h = (fh0, fh1/2, fh1), p 

= ( fp0, fp1/2, fp1). 

 

 
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Local stability 

Local stability of an equilibrium can be studied by examining eigenvalues of the 

linearized dynamics around the equilibrium. 

 

For the equilibrium (4) when condition (5) is met and all three colors are present, we 

have two zero and four complex eigenvalues  

 

 

 1  2  0 

 

 3,4 1 (a0  a1/ 2)(a0  a1)i 

 

 5,6 1 (a0  a1/ 2)(a0  2a1/ 2  a1)i 

 

 

where 

 

 

  
P

(a0
2  2a1/ 2

2  a0a1){3a0  4a1/ 2  a1  P(a0
2 2a1/ 2

2  a0a1)}
 

 

 
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is a positive real value when the condition (5) is satisfied and the parasitism rate P is 

small enough. The absolute value of the four complex eigenvalues is always larger than 

unity and the equilibrium (4) is unstable; once perturbed the six frequencies oscillate 

approximately with periods 

 

 

 T1 
2

tan1(a0  a1/ 2)(a0  a1)


1
P

 

 

and 

 

 T2 
2

tan1(a0  a1/ 2)(a0  2a1/ 2  a1)


1
P ,

 

 

 

both of which are proportional to the inverse of square root of parasitism rate P. A 

shorter period will dominate actual frequency oscillation. 

 


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Table 1 

Combinations of host and parasite genotypes conditional on parasitism having occurred 

with probability P. The upper is host fitness as the probability of rejecting parasitism. 

The lower is parasite fitness as the probability of parasitism being accepted. 

    Hosts 

 

 

Parasites 

 

Phenotype: 0 

Genotype freq.: x1, 

x2, x3 

Prob.: 1, 2, 3 

Phenotype: 1/2 

Genotype freq.: x5, 

x6, x7, x9, x10 

Prob.: 5, 6, 7, 9, 

10 

Phenotype: 1 

Genotype freq.: x4, 

x8 

Prob.: 4, 8 

Phenotype: 0 

Genotype freq.: y1, 

y2, y3 

1 – a0 

a0 

1 – a1/2 

a1/2 

1 – a1 

a1 

Phenotype: 1/2 

Genotype freq.: y5, 

y6, y7, y9, y10 

1 – a1/2 

a1/2 

1 – a0 

a0 

1 – a1/2 

a1/2 

Phenotype: 1 

Genotype freq.: y4, 

y8 

 

1 – a1 

a1 

1 – a1/2 

a1/2 

1 – a0 

a0 

 

 
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Figure legends 

Fig. 1 

The way the parasite targets to parasitize a host nest. The inner disk represents host 

phenotypic frequency of the three colors, 0, 1/2 and 1, each being 16.7%, 33.3% and 

50.0% (1/6, 2/6, 3/6), respectively, as an example. The outer disk represents relative 

frequencies of host nests being actually parasitized,1 + 2 +3, 5 + 6 +7 + 9 +10, 

and 4 + 8. If parasites randomly search for host nests to parasitize (n = 1), the relative 

frequencies become identical to the actual frequencies of the three colors (Left). If 

parasites utilize hosts with an egg color in minority more than actual frequencies (n < 1), 

hosts with color 0 is more likely parasitized (Middle). If parasites utilize hosts with an 

egg color in majority more than actual frequencies (n > 1), hosts with color 1 are more 

likely parasitized (Right). 

 

Fig. 2 

The acceptance probabilities of parasitic eggs by the host, a0, a1/2, and a1, plotted 

against the difference in egg color. The host does not tolerate moderately mimetic eggs 

(thick lines) and host sensitivity is high (a0 - 2a1/2 + a1 > 0). The host tolerates the 

moderately mimetic eggs (gray lines) and sensitivity is low (a0 - 2a1/2 + a1 < 0). The 

unique trimorphic equilibrium (4) is possible if and only if the condition (5), a0 – 2a1/2 + 

a1 > 0, is satisfied. 

 

 
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Fig. 3 

Possible equilibria of the frequency dynamics of (1) and (2) when egg color is asexually 

inherited and the parasite parasitizes randomly (n = 1). The horizontal axis represents 

egg color of the host and the parasite. The vertical axis represents frequency (scale is 

arbitrary except for monomorphic equilibria). a) Both the host and the parasite are 

monomorphic in egg color. b) The host is dimorphic with 0 and 1 and the parasite 

monomorphic with 1/2. Or the host is monomorphic with 1/2 and the parasite dimorphic 

with 0 and 1. c) Both the host and the parasite are dimorphic. d) All colors are present 

both in the host and the parasite. This trimorphic equilibrium is possible if and only if 

condition (5) is satisfied. 

 

Fig. 4 

Frequency dynamics of the three phenotypes of the host and the parasite when egg color 

is asexually inherited. Black curve represents frequency of white 0, gray curve for blue 

1 and dotted curve for pale blue 1/2. a) Pale blue eggs (1/2) are absent both in the host 

and the parasite. Parasites search for host nests randomly (n = 1). b) Same as a) but 

parasites utilize host nests with an egg color in minority more often than its frequency 

(n = 0.5). c) All colors are present and parasites search for host nests randomly (n = 1). 

d) Same as c) but parasites are attracted to hosts with an egg color in minority (n = 0.5). 

Initial frequencies of the three color in the host and the parasite (fh0, fh1/2, fh1, fp0, fp1/2, 

fp1) are set equal to those observed in Yang et al. (2010), (313/547, 0, 234/547, 10/21, 0, 

11/21) for a) and b), (313/555, 8/555, 234/555, 10/24, 3/24, 11/24) for c) and d), 
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respectively. Parameters used in common are a0 = 0.8, a1/2 = 0.3, a1 = 0.1 and P = 0.05 

based on Yang et al. (2010). 

 

Fig. 5 

Dependency of oscillation period T on the parasitism rate P. Dot and rectangle shows 

period T for asexual and sexual inheritance, respectively. Dotted and thick curve 

represents least-square fit of the inverse of square root of the parasitism rate P; 20.0/ P 

(asexual) and 41.9/ P (sexual). Oscillation period T was calculated by Fourier analysis 

from time series of the phenotypic frequencies where pale blue was absent and parasites 

utilize hosts randomly (n = 1). For asexual inheritance, time series data in the early 300 

generations were used to avoid the effect caused by heteroclinic cycle.  

 

Fig. 6 

Frequency dynamics of the three phenotypes of the host and the parasite when egg color 

is sexually inherited. Black curve represents frequency of white 0, gray curve for blue 1 

and dotted curve for pale blue 1/2. a) Pale blue eggs (1/2) are absent both in the host and 

the parasite (the allele M is absent). Parasites search for host nests randomly (n = 1). b) 

Same as a) but parasites utilize host nests with an egg color in minority more often than 

its frequency (n = 0.5). c) All colors are present and parasites search for host nests 

randomly (n = 1). d) Same as c) but parasites are attracted to hosts with an egg color in 

minority (n = 0.5). Note that the dynamics (1) and (2) are calculated up to 4,000 

generations for c) and d). Initial frequencies of ten genotypes in the host and the parasite 
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are set equal to the Hardy-Weinberg equilibrium whose phenotypic frequencies match 

those observed in Yang et al. (2010), (fh0, fh1/2, fh1, fp0, fp1/2, fp1) = (313/547, 0, 234/547, 

10/21, 0, 11/21) for a) and b), (313/555, 8/555, 234/555, 10/24, 3/24, 11/24) for c) and 

d), respectively. Parameters used in common are a0 = 0.8, a1/2 = 0.3, a1 = 0.1, P = 0.05 

and recombination rate rH = rP = 0.5 (the two loci are not linked). 

 
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Figure  4
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Figure  6
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