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Faltinsen et al. (2003) (henceforth, Part 1) examined an undamped nonlinear resonant
steady-state sloshing in a square base tank by developing an approximate (asymptotic)
Narimanov-Moiseev–type multimodal theory. A focus was on longitudinal and diagonal
harmonic tank excitations. Neglecting the linear viscous boundary-layer damping was
justified for model tanks with breadth in the order of meters. However, nonlinear sloshing
in clean tanks of smaller size (count in centimetres) may be affected by damping in finite
depth conditions. Qualitative and quantitative properties of the damped resonant steady-
state sloshing in a square base tank are now studied by using the modal theory from
Part 1 equipped with the linear damping terms. The tank harmonically oscillates along an
arbitrary horizontal (oblique) direction. An analytical asymptotic steady-state undamped
solution is derived and the corresponding response curves are analysed versus the forcing
direction. When the tank width = breadth =L ∼ 10 cm, the surface tension effect on the
free surface dynamics can be neglected but the linear viscous damping should be included
into the Narimanov-Moiseev nonlinear asymptotic modal theory. We analytically show
that the steady-state damped sloshing possesses a series of distinguishing features so
that, e.g., the squares-like standing wave regime fully disappears and becomes replaced
by swirling. Typical response curves of the damped steady-state resonant sloshing are
studied for the liquid depth-to-width ratio exceeding 0.5. The computational results
of the steady-state resonant response amplitudes are in a satisfactory agreement with
observations and measurements by Ikeda et al. (2012), which were conducted with a
relatively small laboratory container.

1. Introduction

Part 1 (Faltinsen et al. 2003) initiated theoretical and experimental studies on the
nonlinear resonant liquid sloshing in a square base tank performing either longitudinal
(along a pair of parallel vertical walls) or diagonal harmonic excitation with the forcing
frequency close to the lowest natural sloshing frequency. The theoretical assumptions
were (a) an ideal incompressible liquid with irrotational flows, i.e. the damping can be
neglected; (b) the mean liquid depth to the tank breadth L (= width) ratio is finite,
(c) the surface tension effect on the free surface dynamic can be neglected, and (d) the
forcing amplitude is small relative to the tank breadth. The latter nondimensional forcing
amplitude η was associated with a small input parameter η � 1. The assumptions (a)–
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(d) are relevant for many clean (without internal structures, e.g., baffles, screens or
bulkheads) rectangular industrial tanks.

By adopting the Narimanov-Moiseev (Duffing–type) asymptotic technique, Part 1
derived a nonlinear approximate (asymptotic) multimodal system governing the gen-
eralised coordinates of the nine natural sloshing modes, which are characterised by the
orders O(η1/3), O(η2/3) and O(η). An asymptotic steady-state (periodic) solution of the
multimodal system was derived to quantify the frequency ranges where the stable and
unstable steady-state resonance wave regimes occur. This steady-state analysis (called the
classification) was supported by model tests (Faltinsen et al. 2003, 2005a) conducted in
a rigid tank with a cross-section of 1 × 1 m. Faltinsen et al. (2005b) (Part 2) showed
that increasing the forcing amplitude (the input parameter η) requires an adaptive
(not Narimanov-Moiseev’s one) asymptotic ordering. Using the corresponding adaptive
modal systems is also needed for smaller liquid depths and to better describe transient
waves. The adaptive ordering accounts for the secondary resonances in the hydrodynamic
system. Faltinsen et al. (2006a) (Part 3) investigated the aspect ratio effect of the square
base.

These studies on resonant sloshing in a square base tank were followed up by many
authors who conducted numerical simulations (Wu & Chen 2009; Wu et al. 2013b,a),
made new model tests (Ikeda et al. 2012) and/or derived their own versions of the
(adaptive) multimodal theory (Ikeda et al. 2012; Pilipchuk 2013; Zhang et al. 2014;
Ikeda et al. 2016). In major cases, assumptions (a)–(d) were common and, therefore, the
results were in agreement with Parts 1–3. In particular, they confirmed the established
stability ranges for (i) the standing resonant wave occurring in the excitation plane
(planar and diagonal for longitudinal and diagonal forcing, respectively), (ii) the squares-
like sloshing (the standing waves by a combined Stokes mode occurring at an angle to the
excitation plane), (iii) the two physically-identical (angularly propagating clockwise and
counterclockwise) swirling waves, whose wave elevations at the perpendicular walls were
equal for the diagonal forcing, and (iv) the irregular (chaotic) waves in the frequency
ranges where (i)–(iii) are unstable. Against this background, experimental observations
and measurements of the steady-state resonant sloshing in a horizontally-shaken square
base tank by Ikeda et al. (2012) look rather contradictory.

Ikeda et al. (2012) investigated the resonant steady-state sloshing for an arbitrary
(including oblique) harmonic horizontal forcing and reported that (i’) the purely standing
resonant waves in the excitation plane exist exclusively for the longitudinal and diagonal
excitations (never for an oblique one), (ii’) the purely squares-like standing waves (see,
definition in (ii)) do not exist anymore, they are replaced by swirling or, alternatively, by
an almost standing wave, which is formally swirling where one from two modified Stokes
modes dominates, (iii’) except for the longitudinal forcing, the two physically-identical
swirling modes of different propagating directions split into two different swirling wave
regimes so that, e.g., the maximum wave elevations at the two perpendicular walls become
non-equal for the diagonal forcing. The differences between (i)–(iii) and (i’)–(iii’) are of
a qualitative character and, therefore, they cannot be clarified within the framework of
assumptions (a)–(d). Because (b) and (d) remain true in these model tests, (a) or/and
(c) must be relaxed to explain the differences.

When the Bond number Bo = gρL2/Ts (g is the gravity acceleration, ρ is the liquid
density, Ts is the surface tension) is larger than ∼ 103, the surface tension should not
affect, globally, the liquid sloshing dynamics (see, page 125 in Faltinsen & Timokha
2009). The capillarity can only influence a local flow at the capillary meniscus due to,
e.g., the dynamic contact angle effect, which is, according to Shukhmurzaev (1997), a
nonlinear phenomenon. When 104 . Bo = gρL2/Ts, the surface tension effect can be
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fully neglected in the sloshing problems without a gas mixture. Even though Ikeda et al.
(2012) used a relatively-small laboratory tank with a 0.1×0.1 m square base, computing
the Bond number shows that it satisfies the first condition, 103 . Bo for the tap water
at 20o C with Ts = 0.073 N/m, ρ = 103 kg/m3 and g = 9.81 m/s2. As a consequence,
assumption (c) is relevant for this experimental case.

Neglecting the linear viscous damping (assumption a) is rather disputable for small-size
tanks. According to Keulegan (1959), the linear laminar viscous boundary layer damping
ratio for a given natural sloshing mode in a rectangular tank with fixed width-to-breadth
ratio and liquid depth-to-tank breadth ratio decreases with increasing the breadth L as
1/L3/4 (see, also, a discussion on pages 264-265 by Faltinsen & Timokha 2009). Keulegan
(1959) showed experimentally an extra non-negligible contribution due to the dynamic
contact angle effect. Hence, when 103 . Bo . 104, the surface tension quantities can
be omitted in the dynamic boundary condition but the related damping may matter.
Whether the linear viscous damping indeed matters and clarifies the experimental data
by Ikeda et al. (2012) is a particular problem, which will be examined in the present paper
by both including the linear viscous damping terms into the Narimanov-Moiseev–type
nonlinear multimodal theory of Part 1 and carrying out the corresponding steady-state
resonant sloshing analysis.

By writing the present paper, we suggest the three following generalisations of Part 1
in mind. First, the steady-state undamped sloshing analysis is extended to the case of an
arbitrary horizontal oblique harmonic excitation. This includes constructing an analytical
periodic solution of the Narimanov-Moiseev–type modal system and studying its stability.
What happens with the effective frequency ranges for the stable steady-state wave regimes
and the corresponding response curves is examined versus the forcing direction, which
changes from longitudinal to diagonal one. Secondly, we introduce the linear damping
terms in the asymptotic modal system and study how this may change the steady-
state resonant sloshing. We show that the linear damping leads to a qualitatively other
steady-state resonant sloshing and prove that (i’)–(iii’) can replace (i)–(iii). According
to our asymptotic theory, this happens when the introduced damping coefficients in the
governing equations of the primary-excited sloshing modes are of the order O(η2/3). Such
a damped sloshing is relevant for a relatively small laboratory tank (Ducci & Weheliye
2014). The results can also be useful, e.g. for modelling the sloshing effect in the tetra-
pack–type cardboard cartons that are filled by a Newtonian liquid (milk, juice, etc.) in the
packing machines (Grundelius 2001). Thirdly, we study a complex (double) effect of the
linear damping and the forcing direction on the steady-state response curves. Even though
the numerical examples were done for the liquid depth-to-tank width ratio h/L = 0.6, the
results should be qualitatively the same for 0.5 . h/L since the hydrodynamic coefficients
in the Narimanov-Moiseev–type modal system weakly change for these depth. These
steady-state results are compared with the measured maximum wave elevations by Ikeda
et al. (2012). Even though our analytical study can evaluate the phase-lags between
the harmonic forcing signal as well as between the Stokes cross-wave components, the
analysis of these lags is not reported. The analysis deserves an independent publication,
especially, in the context of the angular steady flow phenomenon (V-vortex), which was
reported by Royon-Lebeaud et al. (2007) for swirling.

In § 2, we introduce preliminaries from Part 1 and write down the nine-dimensional
Narimanov-Moiseev–type system of ordinary differential (modal) equations, which are
equipped with the linear damping terms associated with the logarithmic decrement of
the corresponding natural sloshing modes. An oblique harmonic horizontal tank forcing
is considered. Utilising the modal equations suggests a set of asymptotic relations
between the nondimensional input parameters on the ε = O(η) scale. Accounting for
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the linear damping in these equations requires the damping coefficients (rates) satisfying
the corresponding asymptotic conditions in terms of η.

Can the latter asymptotic conditions be satisfied for realistic model tests? This query
is answered in § 3. We utilise the modified Keulegan’s formula by Faltinsen & Timokha
(2009, Eq. (6.140)) to estimate the damping ratios caused by the linear laminar boundary
layer on the wetted tank surface. The formula provides the lowest-order asymptotic
approximation in terms of the small parameter

√
νTi,j/L2 (ν is the kinematic viscosity

and Ti,j is the natural period of the i, j-mode). Computations for the tap water at 20o C
show that the theoretical nondimensional damping coefficients have similar order for the
nine lowest natural sloshing modes (governed by the multimodal equations). Because the
theoretical damping ratios increase with decreasing L, the required asymptotic condition
for the nondimensional damping coefficients cannot be satisfied for larger containers alike
in the experiments of Part 1 (L = 1 m). For the laboratory tests by Ikeda et al. (2012)
with the relatively-small 0.1 × 0.1 m base container, one should recall the experimental
results by Keulegan (1959) and Henderson & Miles (1994) (see, also, discussion on pages
264-265 by Faltinsen & Timokha 2009) who pointed out that the linear boundary layer
estimate by Faltinsen & Timokha (2009, Eq. (6.140)) gives only a lower bound of the
linear damping ratios for L . 0.2 m. The difference between the theoretical and measured
values can be significant so that, for instance, the computed nondimensional damping
coefficient for the first natural sloshing mode in the 0.1×0.1 m tank is equal to 0.01 while
Ikeda et al. (2012) measured it to be about 0.0256. The latter value can be assumed to be
of the required O(η2/3) order in the model tests by Ikeda et al. (2012) where η ≈ 0.0075.

An asymptotic steady-state (periodic) solution of the nonlinear Narimanov-Moiseev–
type multimodal system with linear damping terms is analytically derived in § 4 for an
arbitrary oblique harmonic forcing. The derivation leads to a secular (solvability) system
of nonlinear algebraic equations, which couples the four lowest O(η1/3)-order amplitude
parameters. The multi-timing technique from Part 1 is generalised to study stability of the
derived steady-state solution. Part 1 shows how to get an analytical solution of the secular
system with the zero-damping terms for both longitudinal and diagonal excitations. This
analytical scheme is, in our opinion, not applicable for the oblique forcing and/or the
non-zero damping.

Because the linear damping causes the two phase-lags ψ and ϕ for the two lowest-order
periodic sloshing components (the components are associated with the perpendicular
Stokes modes), a more physically-relevant form of the secular equations, which couples
the two amplitudes A,B and the pair ψ,ϕ for the two Stokes modes, is needed. Such
a secular system is derived in § 5. We show that the steady-state resonant sloshing
implies a standing wave, if and only if, sin(ϕ − ψ) = 0. Furthermore, we construct an
analytical solution of the new secular equations for the undamped case and an arbitrary
(oblique) forcing direction. The solution shows that the oblique forcing theoretically
causes maximum six different standing resonant waves and up to three different swirling
modes for a fixed forcing frequency. Each swirling mode implies two physically-identical
angularly progressive waves in clock- and counterclockwise directions, respectively.

The authors do not know how to construct an analytical solution of the secular
equations for the damped resonant sloshing, except for the longitudinal forcing (this
solution is derived and presented). However, without such a solution and extensive
numerical experiments, we prove in section 5.3 a series of specific qualitative properties
regarding the secular equations, which make it possible to confirm that (i’)–(iii’) indeed
replace (i)–(iii) when damping matters. An important conclusion is that the damped
sloshing formally makes impossible the squares-like regime and any other standing
resonant waves. However, because the standing wave criterion admits an asymptotic
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Figure 1. The horizontally-excited tank in panel (a). Panel (b) shows the excitation direction

with the nondimensional forcing amplitude η =
√
η21a + η22a whose projections on the coordinate

axes are η1a = η cos γ and η2a = η sin γ, 0 6 γ 6 π/4.

interpretation, sin(ϕ − ψ) = O(η1/3), one can introduce an almost standing wave mode
for certain input parameters. This occurs when one from the two modified Stokes modes,
which constitute swirling, has an asymptotically-dominant character. These waves were
discovered in the experiments by Ikeda et al. (2012, Fig. 4).

In § 6, we conduct a set of computations to examine the evolution of the undamped and
damped response curves versus the angle 0 6 γ 6 π/4 between the excitation direction
and the Ox axis (γ = 0 corresponds to the longitudinal forcing). The branching for the
damped case is similar to that by Ikeda et al. (2012) who adopted another adaptive-
type modal equations. Difference between damped and undamped branchings can be
significant for the oblique (diagonal) forcing. However, the frequency ranges, where all the
steady-state wave regimes are unstable and irregular motions occur, undergo insignificant
changes. The damping significantly influences the branching for swirling.

In § 7, we compare our theoretical predictions of the maximum wave elevations (the
damped sloshing) with experimental measurements by Ikeda et al. (2012). The agreement
looks rather favourable except, probably, for the larger-amplitude swirling mode. The
latter discrepancy can be lowered by adopting a speculatively larger damping ratios as
it was done by Ikeda et al. (2012).

2. Statement of the problem

We follow Part 1 and consider a rigid square base tank, which is partially filled with
an incompressible liquid to the mean liquid depth h. The tank oscillates harmonically
and horizontally by surge η1(t) = Lη1a cos(σt) and sway η2(t) = Lη2a cos(σt), where L is
the square base side and the nondimensional forcing amplitudes are small and associated
with a small input parameter ε ∼ η, i.e.√

η21a + η22a = η = O(ε)� 1.

The liquid motions are considered in the tank-fixed coordinate system Oxyz so that the
mean free surface Σ0 belongs to the Oxy plane and Oz passes through the centre of
Σ0 (figure 1). The free surface Σ(t) : z = f(x, y, t) and the absolute velocity potential
Φ(x, y, z, t) must simultaneously be found from the corresponding free-surface problem or
its variational analogy (see, Chs. 2, 7, and 9 by Faltinsen & Timokha 2009). The steady-
state resonant waves are described by solutions, which satisfy the periodicity condition
f(x, y, t+ 2π/σ) = f(x, y, t) and Φ(x, y, z, t+ 2π/σ) = Φ(x, y, z, t).

Furthermore, the forcing frequency σ is close to the lowest natural sloshing frequency
σ1 = σ0,1 = σ1,0 (corresponds to the two longest Stokes cross-waves) taken from the
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infinite set

σ2
i,j =

gπ

L

√
i2 + j2 tanh

(
π
√
i2 + j2 h

L

)
(2.1)

(Ch. 4 by Faltinsen & Timokha 2009).
To get a nondimensional formulation, we adopt the characteristic size L and the

characteristic time 1/σ1. This implies, in particular, the unit breadth = width for the
nondimensional tank and the normalised natural sloshing frequencies and the forcing
frequency are

σ̄i,j =
σi,j
σ1

and σ̄ =
σ

σ1
, (2.2)

respectively.
Adopting the nonlinear multimodal method for the nondimensional sloshing problem

suggests the Fourier presentation of the free surface

z = f(x, y, t) =
∑

i,j>0,i+j 6=0

βi,j(t)
(
f
(1)
i (x)f

(2)
j (y)

)
, (2.3)

where (f
(1)
i (x) f

(2)
j (y)) are the nondimensional natural sloshing modes,

f
(1)
i (x) = cos(πi(x+ 1

2 )), f
(2)
i (y) = cos(πi(y + 1

2 )), i > 0, (2.4)

corresponding to the natural sloshing frequencies (2.1) and βi,j(t) are the sloshing-related
generalised coordinates.

Part 1 derived the Narimanov-Moiseev–type nonlinear (asymptotic) modal system
coupling βi,j(t), which takes, after re-denoting β1,0 = a1, β2,0 = a2, β0,1 = b1, β0,2 =
b2, β1,1 = c1, β3,0 = a3, β2,1 = c21, β1,2 = c12, β0,3 = b3, the form

ä1 + 2ξ1,0ȧ1 + a1 + d1(ä1a2 + ȧ1ȧ2) + d2(ä1a
2
1 + ȧ21a1) + d3ä2a1 + d6ä1b

2
1 + d9c̈1b1

+ b̈1(d7c1 + d8a1b1) + d10ḃ
2
1a1 + d11ȧ1ḃ1b1 + d12ḃ1ċ1 = P1,0η1aσ̄

2 cos(σ̄t), (2.5a)

b̈1 + 2ξ0,1ḃ1 + b1 + d1(b̈1b2 + ḃ1ḃ2) + d2(b̈1b
2
1 + ḃ21b1) + d3b̈2b1 + d6b̈1a

2
1 + d9c̈1a1

+ ä1(d7c1 + d8a1b1) + d10ȧ
2
1b1 + d11ȧ1ḃ1a1 + d12ȧ1ċ1 = P0,1η2aσ̄

2 cos(σ̄t), (2.5b)

ä2 + 2ξ2,0σ̄0,2ȧ2 + σ̄2
2,0a2 + d4ä1a1 + d5ȧ

2
1 = 0; (2.5c)

b̈2 + 2ξ0,2σ̄0,2ḃ2 + σ̄2
0,2b2 + d4b̈1b1 + d5ḃ

2
1 = 0, (2.5d)

c̈1 + 2ξ1,1σ̄1,1ċ1 + σ̄2
1,1c1 + d̂1ä1b1 + d̂2b̈1a1 + d̂3ȧ1ḃ1 = 0, (2.5e)

ä3 + 2ξ3,0σ̄3,0ȧ3 + σ̄2
3,0a3 + ä1(q1a2 + q2a

2
1) + q3ä2a1 + q4ȧ

2
1a1 + q5ȧ1ȧ2

= P3,0η1aσ̄
2 cos(σ̄t), (2.6a)

c̈21 + 2ξ2,1σ̄2,1ḃ3 + σ̄2
2,1c21 + ä1(q6c1 + q7a1b1) + b̈1(q8a2 + q9a

2
1) + q10ä2b1 + q11c̈1a1

+ q12ȧ
2
1b1 + q13ȧ1ḃ1a1 + q14ȧ1ċ1 + q15ȧ2ḃ1 = 0, (2.6b)

c̈12 + 2ξ1,2σ̄1,2ḃ3 + σ̄2
1,2c12 + b̈1(q6c1 + q7a1b1) + ä1(q8b2 + q9b

2
1) + q10b̈2a1 + q11c̈1b1
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+ q12ḃ
2
1a1 + q13ȧ1ḃ1b1 + q14ḃ1ċ1 + q15ȧ1ḃ2 = 0, (2.6c)

b̈3 + 2ξ0,3σ̄0,3ḃ3 + σ̄2
0,3b3 + b̈1(q1b2 + q2b

2
1) + q3b̈2b1 + q4ḃ

2
1b1 + q5ḃ1ḃ2

= P0,3η2aσ̄
2 cos(σ̄t); (2.6d)

where

Pi,0 = P0,i =
2

πi
[(−1)i − 1] tanh(πih/L), (2.7)

Part 1 also gives explicit expressions for the hydrodynamic coefficients at the nonlinear
terms, which are also computed in Faltinsen & Timokha (2009, Tables 9.1-9.2).

The derivation details and applicability limits of the nonlinear asymptotic modal
system (2.5)-(2.6) are extensively discussed in Part 1. The system requires that (a) the
nondimensional forcing amplitude is small, (b) the forcing frequency σ is close to the
lowest natural sloshing frequency σ1 (σ̄ satisfies the Moiseev detuning), (c) the two
lowest perpendicular Stokes modes (associated with the generalised coordinates a1(t)
and b1(t)) give the lowest-order (dominant) asymptotic contribution O(η1/3) = O(ε1/3),
and (d) there are no secondary resonances.

The actual asymptotic ordering of the higher sloshing modes (generalised coordinates)
are mathematically deduced following the Narimanov-Moiseev asymptotic technique,
which proves that the second order modes are exclusively associated with a2, b2 and c1
but c12, c21, a3 and b3 are of the third order on the ε = O(η)� 1 scale. The Narimanov–
Moiseev-type modal system may fail with decreasing the liquid depth, increasing the
forcing amplitude and for the transient sloshing. Physically, this is due to the secondary
resonance phenomenon. The multimodal analysis needs then the so-called adaptive order-
ing whose concept was elaborated by Faltinsen et al. (2005b, 2006b). In the corresponding
adaptive modal systems, the higher-order generalised coordinates, including a2, b2, c1
and c12, c21, a3, b3 as well as generalised coordinates, which are not accounted for by
the Narimanov–Moiseev asymptotic scheme, can contribute to the lower asymptotic
components (Faltinsen et al. 2005b, 2006b). A version of the adaptive modal ordering
was adopted by Ikeda et al. (2012), probably, to improve agreement with experiments for
transients; they used a direct simulation of transient and steady-state waves (combined
with a path-following procedure) to numerically analyse the steady-state regimes and
their stability.

For the oblique forcing in figure 1 (b), the assumptions (a-d) can be mathematically
formalised as

η2a = δη1a, 0 6 δ = tan γ 6 1; 0 < ε = P1η1a = −P1,0η1a = O(η), (2.8a)

Λ = (σ1/σ)2 − 1 = σ̄−2 − 1 = O(ε2/3) (the Moiseev detuning), (2.8b)

a1 ∼ b1 = O(ε1/3) ⇒ a2 ∼ b2 ∼ c1 = O(ε2/3) & a3 ∼ b3 ∼ c21 ∼ c12 = O(ε), (2.8c)

σ̄2
0,2 − 4 = O(1), σ̄2

1,1 − 4 = O(1), σ̄2
0,3 − 9 = O(1), σ̄2

1,2 − 9 = O(1). (2.8d)

3. Linear viscous damping ratios

Because (2.5)–(2.6) suggests neglecting the o(ε)-terms, the nondimensional damping
coefficients at the linear framed terms should possess the asymptotic conditions

2ξ1,0 = 2ξ0,1 = O(ε2/3); 2ξi,j σ̄i,j = O(ε1/3), i+j = 2; 2ξi,j σ̄i,j = O(1), i+j = 3 (3.1)
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Figure 2. The theoretical nondimensional damping coefficients 2ξi,j σ̄i,j in the framed terms of
the modal equations (2.5)-(2.6) versus the tank breadth = width L (m). The values are computed
by (3.3) for the tap water with ν = 10−6 [m2/s]. The solid line corresponds to ξ = 2ξ0,1 = 2ξ1,0,
the dotted lines imply 2ξ2,0σ̄2,0 and 2ξ1,1σ̄1,1 and the dashed lines are used to mark 2ξ3,0σ̄3,0

and 2ξ2,1σ̄2,1. The panel (a) is drawn for h/L = 0.35 and (b) is for h/L = 0.6. The damping

coefficients have the asymptotic L−3/4.

to be accounted for simultaneously. Because a1 and b1 have a dominant character, one
should concentrate on

ξ = 2ξ1,0 = O(ε2/3) (3.2)

for the lowest order Stokes modes governed by (2.5).
The linear damping for sloshing in a clean tank is extensively discussed in Faltinsen

& Timokha (2009, ch. 6). The damping ratios ξi,j are associated with the logarithmic
decrements of the natural sloshing modes whose primary contribution is caused by the
linear boundary layer at the wetted tank surface. Faltinsen & Timokha (2009, Eq. (6.140))
gives the asymptotic approximation

ξi,j =

√
ν

2L2σi,j

[
3 + 2π

√
i2 + j2 (0.5− h/L)

sinh(2π
√
i2 + j2 h/L)

]
(3.3)

in terms of
√
ν/(2L2σi,j)� 1, where ν is the kinematic viscosity coefficient. As discussed

by Keulegan (1959) and Faltinsen & Timokha (2009, Sect. 6.3.1), (3.3) provides a rather
accurate estimate of the damping ratios for the lower natural sloshing modes in a
relatively large rectangular tank. When L . 0.2 m, the experimental damping ratios
may be larger than this theoretical value. Keulegan (1959) explained this fact by the
dynamic contact angle (meniscus) effect. He illustrated his hypothesis by comparing the
damping ratios for Lucite and glass basins (see, Fig. 6.6 by Faltinsen & Timokha 2009),
which are clearly different and larger than the estimate (3.3). The higher experimental
damping ratios for the relatively small tanks were described by Henderson & Miles (1994)
and Ikeda et al. (2012) (L = 0.1 m and h/L = 0.6). Ikeda et al. (2012) reported the
experimental value ξ = 2 · 0.0128 = 0.0256 while (3.3) computes ξ = 2ξ1,0 = 0.01.

The nondimensional damping coefficients 2ξi,j σ̄i,j for a tap water with ν = 10−6 m2/s
are computed in figure 2 versus the tank breadth = width L (m) for h/L = 0.35 and
0.6. The solid lines correspond to ξ = 2ξ0,1 = 2ξ1,0, the dotted lines imply 2ξ2,0σ̄2,0
and 2ξ1,1σ̄1,1 and the dashed lines are used to mark 2ξ3,0σ̄3,0 and 2ξ2,1σ̄2,1. The figure
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shows that the relative difference between these lines is not large and the computed
nondimensional damping coefficients for the considered nine sloshing modes have similar
asymptotic order. As a consequence, (3.1) cannot be satisfied for all damping coefficients.
One should focus on (3.2) for a1 and b1, but neglect the linear damping terms for the
higher-order generalised coordinates in (2.5c)-(2.6).

In Part 1 and Ikeda et al. (2012), the nondimensional experimental amplitudes were
about O(ε) = η = 0.0075 (actually, 0.0078 and 0.00725). The first tank has the horizontal
dimension L = 1 m. For this size, (3.3) provides a rather accurate prediction of ξ. Figure 2
shows that ξ = 0.002 < η in this case so that the asymptotic condition (3.2) is clearly
unsatisfied. For the laboratory tank (L = 0.1 m) by Ikeda et al. (2012), the theoretical
damping coefficient is ξ = 0.01 but the authors reported the experimental ξ = 0.0256.
This value may theoretically be considered as satisfying (3.2) for η = 0.0075.

4. Steady-state asymptotic solution and its stability

By applying the analytical scheme by Faltinsen et al. (2003, Sect. 3.2), one can derive
an exact asymptotic steady-state solution of (2.5)-(2.6) starting with

a1(t) = a cos σ̄t+ ā sin σ̄t+ o(ε1/3); b1(t) = b̄ cos σ̄t+ b sin σ̄t+ o(ε1/3), (4.1)

which determines the lowest-order approximation of the surface wave

z = S(x, y; a, b̄) cos σ̄t+ S(x, y; ā, b) sin σ̄t+ o(ε1/3), (4.2)

where S(x, y; a, b) = af
(1)
1 (x) + bf

(2)
1 (y) is the combined Stokes mode.

The derivation is presented in Appendix A. The asymptotic procedure is almost
identical to that from Part 1. We neglect the linear damping terms in (2.5c) (see,
discussion in § 3). The third-order generalised coordinates by (2.6) are driven. They do
not affect a1, b1, a2, b2 and c1. We arrive at the necessary solvability condition appearing
as the (secular) system of nonlinear algebraic equations

1© : a
[
Λ+m1(a2 + ā2) +m2b̄

2 +m3b
2
]

+ ā
[
(m2 −m3)b̄b+ ξ

]
= ε,

2© : ā
[
Λ+m1(a2 + ā2) +m2b

2 +m3b̄
2
]

+ a
[
(m2 −m3)b̄b− ξ

]
= 0,

3© : b
[
Λ+m1(b2 + b̄2) +m2ā

2 +m3a
2
]

+ b̄ [(m2 −m3)āa− ξ] = 0,

4© : b̄
[
Λ+m1(b2 + b̄2) +m2a

2 +m3ā
2
]

+ b [(m2 −m3)āa+ ξ] = δε,

(4.3)

which couples the nondimensional amplitude parameters a, ā, b and b̄. The right-hand
side components are defined by (2.8a). The coefficients m1 and m3 are strongly affected
by the second-order generalised coordinates by (2.5c), so that

m1 = − 1
2d2 − d1(p0 − 1

2h0)− 2h0d3,

m2 = − 3
4d6 + 1

4d10 −
3
4d8 + 1

4d11 − d7p1 − h1( 1
2d7 + 2d9 − d12),

m3 = − 1
4d6 + 3

4d10 −
1
4d8 −

1
4d11 − h1( 1

2d7 + 2d9 − d12)

and ξ = 2ξ0,1 = 2ξ1,0, which are functions of the nondimensional liquid depth h/L.
Owing to (2.8b) and (3.2), all quantities in (4.3) have the same asymptotic order O(ε).
The functions mi = mi(h/L) were analysed in Part 1 (see, figure 3). The graphs show that
m2 < 0, h/L > 0.17..., m1 + m2 < 0 for h/L > 0.27... and m2 −m3 < 0, m1 + m3 > 0
for the finite liquid depths, 0.5 . h/L. We use these inequalities in our forthcoming
analytical and numerical studies and, therefore, these are, generally speaking, restricted
to 0.5 . h/L.

We can use the linear Lyapunov method and the multi-timing technique to study
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Figure 3. Reprint from Faltinsen et al. (2003, Fig. 4) illustrating the nondimensional coefficients
mi(h/L), i = 1, 2, 3 and their linear combinations versus the liquid-depth-to-breadth ratio h/L
for a square base basin. The point H1 (m1 = 0, h/L = 0.337...) denotes the soft/hard spring
change for the planar steady-state waves. The point H2 (m1 = m3) defines h/L = 0.274..., H3

implies h/L = 0.27..., where m1 +m2 = 0, and H4 corresponds to h/L = 0.17..., where m2 = 0.
The point E (h/L = 0.4...) is obtained from the equality m2 = 3m1.

the stability of the constructed asymptotic steady-state solutions. For this purpose, we
introduce the slowly varying time τ = 1

2ε
2/3σ̄t, whose order is chosen according to the

Moiseyev detuning σ̄−2 − 1 = O(ε2/3), and express the perturbed solutions as

a1 = (a+ α(τ)) cos σ̄t+ (ā+ ᾱ(τ)) sin σ̄t+ o(ε1/3),

b1 = (b̄+ β̄(τ)) cos σ̄t+ (b+ β(τ)) sin σ̄t+ o(ε1/3),
(4.4)

where a, ā, b and b̄ come from (4.3). Inserting (4.4) into (2.5)-(2.6), gathering terms of
the lowest asymptotic quantities order and keeping linear terms in α, ᾱ, β and β̄ lead to
the following linear system of ordinary differential equations

s′ + ξs + S s = 0, (4.5)

where s = (α, ᾱ, β, β̄)T , the prime is the differentiation by τ , and the matrix S has the
following elements

s11 = −2m1aā− (m2 −m3)bb̄; s12 = −Λ−m1a
2 − 3m1ā

2 −m2b
2 −m3b̄

2,

s13 = −2m2āb− (m2 −m3)ab̄; s14 = −2m3āb̄− (m2 −m3)ab,

s21 = Λ+ 3m1a
2 +m1ā

2 +m2b̄
2 +m3b

2; s22 = 2m1aā+ (m2 −m3)bb̄,

s23 = 2m3ab+ (m2 −m3)āb̄; s24 = 2m2ab̄+ (m2 −m3)āb,

s31 = 2m2ab̄+ (m2 −m3)bā; s32 = 2m3āb̄+ (m2 −m3)ab,

s33 = 2m1bb̄+ (m2 −m3)aā; s34 = Λ+m1b
2 + 3m1b̄

2 +m2a
2 +m3ā

2,

s41 = −2m3ab− (m2 −m3)āb̄; s42 = −2m2āb− (m2 −m3)ab̄,

s43 = −Λ− 3m1b
2 −m1b̄

2 −m2ā
2 −m3a

2; s44 = −2m1bb̄− (m2 −m3)aā.

The fundamental solution s = exp(λτ)a of (4.5) follows from the spectral matrix
problem [(λ + ξ)E + S]a = 0, where λ are the unknown eigenvalues and a are the
corresponding eigenvectors. Computations give the following characteristic bi-quadratic
equation

(λ+ ξ)4 + s1(λ+ ξ)2 + s0 = 0, (4.6)

where s0 is the determinant of S and s1 is a complicated function of the elements of S.
The eigenvalues λ can be expressed as −ξ ± √x1,2, where x1,2 = 1

2 (−s1 ±
√
s21 − 4s0)
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are two solutions of the quadratic equation x2 + s1x + s0 = 0. The fixed-point solution
(associated with a, ā, b and b̄) is asymptotically stable (α, ᾱ, β and β̄ exponentially decay
with τ) if and only if the real component of λ is strongly negative.

In the limit case ξ → 0, Part 1 derived the stability condition (<[λ] < 0) in the
following form

s21 − 4s0 > 0 & s0 > 0 & s1 > 0. (4.7)

For O(ε2/3) = ξ > 0, the stability condition can be written as the alternative

either s21 − 4s0 > 0 & − s1 +
√
s21 − 4cs 6 0 (⇔ s0 > 0 & s1 > 0) ,

or s21 − 4s0 > 0 & − s1 +
√
s21 − 4s0 > 0 &

√
1
2

(
−s1 +

√
s21 − 4s0

)
< ξ,

or s21 − 4s0 < 0 &
√

2
√
s0 − s1 < ξ.

(4.8)

Part 1 constructed an analytical solution of (4.3) for the undamped sloshing with ξ = 0
and either longitudinal (δ = 0) or diagonal (δ = 1) excitation. The proposed analytical
technique is most probably not applicable for oblique forcing directions with 0 < δ < 1
as well as for the damped case with ξ = O(ε2/3). The forthcoming section proposes an
alternative analytical approach.

5. Damped versus undamped sloshing. Qualitative differences

5.1. Rewriting (4.3) in an alternative form

The non-zero linear damping naturally leads the two phase-lags, ψ and ϕ, for the two

perpendicular Stokes modes f
(1)
1 (x) and f

(2)
1 (y) (along the Ox and Oy directions) in

(4.2), which are characterised by the lowest-order amplitude parameters a, ā and b, b̄,
respectively. A physically-relevant form of (4.3) should therefore couple the ‘integral’
lowest-order amplitudes A,B and the phase-lags ψ,ϕ:

A =
√
a2 + ā2 and B =

√
b̄2 + b2 > 0, (5.1a)

a = A cosψ, ā = A sinψ, b̄ = B cosϕ, b = B sinϕ. (5.1b)

To get these equations, we insert (5.1) into expressions ā 1©−a 2©, b̄ 3©− b 4©, a 1©+ ā 2©
and b 3©+ b̄ 4© of (4.3), which give{

1 : A [Λ+m1A
2 + FB2] = ε cosψ, 3 : A [DB2 + ξ] = ε sinψ,

2 : B [Λ+m1B
2 + FA2] = δε cosϕ, 4 : B [DA2 − ξ] = −δε sinϕ,

(5.2a)

F = m2 cos2(α) +m3 sin2(α) = (m2 +m3 C
2)/(1 + C2),

D = (m3 −m2) sin(α) cos(α) = (m3 −m2)C/(1 + C2),
(5.2b)

where

α = ϕ− ψ, C = tanα

(F(α) and D(α) are the π-periodic functions of the phase-lags difference α). The secular
systems (4.3) and (5.2) are mathematically equivalent, i.e., getting known A,B, ψ,ϕ from
(5.2) computes a, ā, b, b̄ and visa-versa.

The present paper concentrates on the response curves in the (σ̄, A,B) space. To
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exclude the phase-lags ψ and ϕ from (5.2), one can take 1
2 + 3

2 and 2
2 + 4

2

leading to the two equations with respect to A and B{
A2
[
(Λ+m1A

2 + FB2)2 + (DB2 + ξ)2
]

= ε2,

B2
[
(Λ+m1B

2 + FA2)2 + (DA2 − ξ)2
]

= δ2ε2,
(5.3)

which parametrically depend on α (or C = tanα). An additional equation is needed to
compute α. Inserting ϕ = ψ + α into 2 and 4 and using expressions for (ε cosψ) and
(ε cosψ) from 1 and 3 gives{

(δA)
[
cosα(Λ+m1A

2 + FB2)−sinα(DB2 + ξ)
]
−B
[
Λ+m1B

2 + FA2
]

= 0,

(δA)
[
cosα(DB2 + ξ) + sinα(Λ+m1A

2 + FB2)
]

+B
[
DA2 − ξ

]
= 0,

(5.4)

which can be treated as a system of linear algebraic homogeneous equations with respect
to the amplitude parameters δA and B. When δ 6= 0 (non-longitudinal forcing), the
system should have a nontrivial solution (δAB 6= 0) and, therefore, the zero-determinant
condition must be satisfied

sinα
[
Λ2 + ξ2 + (m1 +m3)Λ(A2 +B2) +m1m3(A4 +B4)

+A2B2(m2
1 +m2

3 − cos2 α (m2 −m3)2)
]

+ ξ cosα (m1 −m2)(B2 −A2) = 0. (5.5)

The system (5.3), (5.5) governs A2, B2 and α for the oblique forcing. When δ = 0 (the
longitudinal forcing), (5.4) leads to the equations

B[Λ+m1B
2 + FA2] = 0 and B[DA2 − ξ] = 0, (5.6)

whose solutions are either B = 0 (a planar wave occurring in the excitation plane Oxz)
or B 6= 0 (three-dimensional sloshing). The planar standing wave is governed by

A2
[
(Λ+m1A

2)2 + ξ2
]

= ε2, B = 0 (5.7)

but the three-dimensional sloshing follows from the system{
A2
[
(Λ+m1A

2 + F(α)B2)2 + (D(α)B2 + ξ)2
]

= ε2,

Λ+m1B
2 + F(α)A2 = 0, D(α)A2 − ξ = 0.

(5.8)

Remark 1. The steady-state resonant waves by (4.2) always imply either standing (the
two combined Stokes modes in (4.2) are the same) or swirling wave. A criterion for the
standing wave is that vectors (a, b̄) and (ā, b) are parallel, i.e.

ab = āb̄ ⇔ sin(ϕ−ψ) = 0, C = tan(ϕ−ψ) = 0 ⇔ ϕ = ψ+πi, i = 0,±1,±2, . . . . (5.9)

This means that a standing resonant wave occurs, if and only if, the phase-lags difference
is proportional to π (C = 0). Otherwise, (4.2) defines swirling.

Remark 2. When ξ2 + δ2 6= 0 (namely, except for the longitudinally-excited undamped
sloshing), cosα 6= 0. Indeed, if δ = 0 and ξ 6= 0 (longitudinally-excited damped sloshing),
owing to (5.9), the phase-lags difference α = 0 for the planar standing waves (⇒ cosα =
±1) and the last equation of (5.8), (m3 −m2) cosα sinα = ξ 6= 0 does not allow cosα =
0 for the three-dimensional sloshing. Furthermore, when δ 6= 0 (oblique excitations),
assuming cosα = 0 transforms (5.5) to

ξ2 = −(Λ+m1A
2 +m3B

2)(Λ+m1B
2 +m3A

2), F = m3 and D = 0. (5.10)

Inserting ξ2 into the two equations of (5.3), multiplying these equations and, again, using
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(5.10) derive

A2B2ξ2(A2 −B2)2(m1 −m3) = δ2ε4 > 0,

which is never satisfied for δ 6= 0, since (m1 −m3) < 0 according to figure 3.

When cosα 6= 0, one can multiply (5.5) by cosα and rewrite the system (5.3), (5.5) in
the form

a2(C2 + 1) + (a0 − a2) + ξ a1C = 0, b2(C2 + 1) + (b0 − b2)− ξ a1C = 0, (5.11a)

C ((C2 + 1) c3 + c1) + ξ c0 (1 + C2) = 0, (5.11b)

where

a2 = A2
(
(Λ+m1A

2 +m3B
2)2 + ξ2

)
− ε2; b2 = B2

(
(Λ+m1B

2 +m3A
2)2 + ξ2

)
− δ2ε2,

a0 = A2
(
(Λ+m1A

2 +m2B
2)2 + ξ2

)
− ε2; b0 = B2

(
(Λ+m1B

2 +m2A
2)2 + ξ2

)
− δ2ε2,

a1 = (m3 −m2)A2B2,

c3 = ξ2 + (Λ+m1A
2 +m3B

2) (Λ+m1B
2 +m3A

2),

c1 = −(m3 −m2)2A2B2, c0 = (m1 −m2)(B2 −A2).

Remark 3. The coefficients at C and C2 in (5.11a) have the equal asymptotic order,
namely, b2 ∼ b0 ∼ a2 ∼ a0 ∼ ξ a1 = O(ε2). It can happen that solving the system (5.11)
gives a small nonzero C, i.e.

0 6= |C| . O(ε1/3) = O(
√
A2 +B2). (5.12)

Formally, this solution implies a swirling wave mode (Remark 1 above). However, by
treating (5.11a) in an asymptotic sense on the ε1/3 scale and neglecting the o(ε2) terms
leads to b0 = a0 = 0, which are equations for a standing wave regime. This formal
mathematical conflict can be resolved by interpreting (5.12) as a condition for an almost-
standing wave mode. Ikeda et al. (2012, Fig. 4 (g)) experimentally observed those modes.

5.2. Undamped steady-state resonant sloshing for oblique excitations

When 0 < δ 6 1 (0 < γ 6 π/4), the steady-state analysis can be done by using (5.11)
with ξ = 0, which takes the form

a02(C2 +1)+(a00−a02) = 0, b0
2(C2 +1)+(b0

0−b0
2) = 0, C((c03(C2 +1)+c1) = 0, (5.13)

where

a02 = A2(Λ+m1A
2 +m3B

2)2 − ε2; b0
2 = B2(Λ+m1B

2 +m3A
2)2 − δ2ε2,

a00 = A2(Λ+m1A
2 +m2B

2)2 − ε2; b0
0 = B2(Λ+m1B

2 +m2A
2)2 − δ2ε2,

c03 = (Λ+m1A
2 +m3B

2) (Λ+m1B
2 +m3A

2).

The third equation of (5.13) yields the alternative: either C = 0 or c3(C2 + 1) + c1 = 0.
Because of the standing wave criterion (5.9), the first case implies a standing wave, but
the second case corresponds to swirling.

Inserting C = 0 into (5.13) reduces them to the equality a00 = b0
0 = 0, which has the

analytical solution

B2
(
(m1 −m2)(B2 −A2)± ε/A

)2
= δ2ε2, Λ = ± ε/A−m1A

2 −m2B
2. (5.14)

The analytical solution suggests solving the first (cubic) equation (from one to three
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positive roots B2 > 0) for a given ±A and, thereafter, computing Λ for these ±A and
B (the second equation).

When C 6= 0, substituting (C2 + 1) = −c1/c3 > 1 into the two first equations of (5.13)
derives the system

(Λ+m1A
2 +m3B

2)D(Λ;A,B) = (m2 −m3)ε2,

(Λ+m1B
2 +m3A

2)D(Λ;A,B) = (m2 −m3)δ2ε2,

0 < (Λ+m1A
2 +m3B

2)(Λ+m1B
2 +m3A

2) 6 (m3 −m2)2A2B2,

(5.15)

where the function

D(Λ;A2, B2) = 2Λ2 + Λ(A2 +B2)(2m1 +m2 +m3)

+m1(m2 +m3)(A4 +B4) + 2(m2
1 +m2m3)A2B2 (5.16)

commutates by variables A2 and B2. Structure of (5.15) requires

Λ(1− δ2) + (m3 − δ2m1)A2 + (m1 − δ2m3)B2 = 0, (5.17)

which, because (m3−δ2m1) > 0 for 0.5 . h/L (figure 3), makes it possible to express A2

as a linear combination of B2 and Λ. Substituting this expression into the first/second
equation of (5.15) derives a cubic equation with respect to B2 whose coefficients are
functions of Λ. This means that, for any fixed Λ, we can find the real positive roots B2

as functions of Λ, but (5.17) returns the corresponding A2. One can say that we have an
analytical solution for C 6= 0.

The undamped steady-state resonant sloshing due to an oblique harmonic excitation
with 0 < δ < 1 (0 < γ < π/4) can theoretically lead to maximum six different standing
steady-state resonant waves (three for A and three for −A by (5.14)). Each point on
the corresponding response curves in the (σ/σ1, A,B) space determines a single steady-
state wave from these six solutions. In the contrast, Part 1 reports three standing waves
for longitudinal and diagonal harmonic excitations, which consist of one planar and
two squares-likes resonant waves so that any point on the squares-like response curves
corresponds to two physically-identical Stokes waves occurring with an angle to the
excitation plane.

Equations (5.15) and (C2 + 1) = −c1/c3 > 1 determine maximum three physically-
different undamped swirling waves. Each point on the corresponding curves implies
two physically-identical swirling waves (clock- and counterclockwise) associated
with (Λ,A,B,C) and (Λ,A,B,−C). By analysing 3 (AB2D(α) = ε sinψ) and 4

(A2BD(α) = δε sinϕ), we derive these two waves as z = S(x, y;A cosψ,B cosϕ) cos σ̄t+
S(x, y;A sin |ψ|, B sin |ϕ|) sin σ̄t + o(ε1/3) and z = S(x, y;A cosψ,B cosϕ) cos σ̄t −
S(x, y;A sin |ψ|, B sin |ϕ|) sin σ̄t + o(ε1/3). The results for the undamped swirling are
consistent with Part 1 where only longitudinal and diagonal harmonic excitations were
considered.

5.3. Damped steady-state resonant sloshing

Except for the longitudinal forcing, we do not know how to construct an analytical
solution of the secular equations for the damped sloshing with O(ε2/3) = ξ > 0. However,
one can classify the corresponding steady-state solutions by using the standing wave
criterion (5.9). When A,B > 0 and ξ > 0 in equations 3 and 4 , the criterion leads to

ψ = ϕ+ 2πi, i ∈ Z and B = δA. (5.18)
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5.3.1. Longitudinal forcing

When δ = 0 and ξ > 0, (5.7) transforms (5.2a) to the form (5.6), which we rewrite as{
A2
(
ξ2 + [Λ+m1A

2]2
)

= ε2,

0 < A 6 ε/ξ; B = 0; 0 6 ψ = ϕ = arccosA [Λ+m1A
2]/ε 6 π.

(5.19)

The roots describe the planar steady-state standing wave by the first Stokes mode

z = A cos(σ̄t− ψ) f
(1)
1 (x) + o(ε1/3). (5.20)

The squares-like standing waves are impossible for the damped sloshing.

To describe swirling, we rewrite (5.8) in the form
A

[
Λ+m1A

2 +
m2 +m3 C

2

1 + C2
B2

]
= ε cosψ; A

[
(m3 −m2)C

1 + C2
B2 + ξ

]
= ε sinψ;

B2 = − 1

m1

[
Λ+

m2 +m3 C
2

1 + C2
A2

]
> 0; A2 =

ξ (1 + C2)

(m3 −m2)C
> 0.

(5.21)
Consequently substituting expressions for A2 and B2 into the square sum of the first row
equations gives the nonlinear algebraic equation with respect to C:

q6C
6 + q5C

5 + q4C
4 + q3C

3 + q2C
2 + q1C + q0 = 0, (5.22)

where

q6 = ξ3(m2
1 −m2

3)2 > 0,

q5 = 2ξ2Λ (m3 −m2)(m3 +m1)(m1 −m3)2,

q4 = ξ
[
ξ2[3m4

1 + (m2
2 − 6m2m3 −m2

3)m2
1 − 2m1m3(m2 −m3)2 +m2m

2
3(m2 + 2m3)]

+Λ2(m2 −m3)2(m1 −m3)2
]
,

q3 = ε2(m2 −m3)3m2
1 + 2Λξ2

[
m1(m3

2 −m2
2m3 +m2m

2
3 −m3

3)

+(m2 −m3)(m2
1(m2 +m3 − 2m1)−m2m3(m2 +m3))

]
,

q2 = ξ
[
Λ2(m2 −m3)2(m1 −m2)2

+ξ2[3m4
1 + (−m2

2 − 6m2m3 +m2
3)m2

1 − 2m1m2(m2 −m3)2 +m2
2m3(2m2 +m3)]

]
,

q1 = 2ξ2Λ (m3 −m2)(m1 +m2)(m1 −m2)2,

q0 = ξ3(m2
1 −m2

2)2 > 0

are functions of Λ. The polynomial equation (5.22) has maximum six positive roots C
((m3−m2) > 0 in the last formula of (5.21)). Substituting these roots in expressions for
A2 and B2 of (5.21) computes (σ/σ1, A,B,C), which implies a point on the corresponding
response curves. Because δ = 0, a unique phase-lag ϕ cannot be found; ϕ are restored for
each C = tanα as ϕ1 = ψ+α and ϕ2 = ψ+α± π. Physically, these two phase-lags ϕ1,2

for each point (σ/σ1, A,B,C) on the response curves mean that the point determines
two physically-identical swirling waves (clockwise and counterclockwise).

5.3.2. Diagonal forcing

When δ = 1, (5.18) transforms (5.2a) to the form{
A2
(
ξ2 + [Λ+ (m1 +m2)A2]2

)
= ε2,

A = B > 0, 0 6 ψ = ϕ = arccosA [Λ+ (m1 +m2)A2]/ε 6 π,
(5.23)
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whose solution describes the diagonal wave

z = A cos(σ̄t− ψ)S(x, y; 1, 1) + o(ε1/3) (5.24)

by the combined diagonal-type Stokes mode S(x, y; 1, 1). The squares-like standing waves
are impossible for the diagonally-forced damped sloshing.

The diagonally-forced undamped sloshing requires A = B (the wave amplitudes are
equal in the Ox and Oy directions). This fact was extensively discussed in Part 1.
Substituting A = B in 1 and 2 of (5.2a) for the damped sloshing (ξ > 0) leads to
either ϕ = ψ (corresponds to the diagonal wave) or ϕ = −ψ. The latter condition means
that the left-hand sides of 3 and 4 are equal and, therefore, 2Aξ = 2Bξ = (A+B)ξ = 0,
which is impossible. As a consequence, the diagonally-forced swirling is characterised by
the non-equal wave responses along the perpendicular walls.

5.3.3. Oblique forcing

When 0 < δ < 1, substituting the standing wave criterion (5.18) into (5.2) and taking
the difference of 1 and 2 derive (m1−m2)(1−δ2)A3 = 0. Figure 3 shows that m1 > m2

and, therefore, this equality is never fulfilled. As a consequence, the standing resonant
wave regime is not possible for the oblique non-diagonal forcing with 0 < δ < 1. All
steady-state resonant waves are formally of the swirling type.

5.3.4. Summary

Theoretical results on the damped resonant sloshing in sections 5.3.1–5.3.3 show that
(A) the standing resonant waves exist only for longitudinal and diagonal harmonic
excitations, these are of planar or diagonal types, respectively, (B) the squares-like
standing waves are impossible, (C) for the oblique non-diagonal forcing with 0 < δ < 0, all
the damped steady-state sloshing regimes are of the swirling type, (D) when asymptotic
condition (5.12) (the nonzero C is relatively small) is satisfied, the corresponding swirling
becomes close to a standing wave by a modified Stokes mode so that it can be treated as an
almost-standing wave, (E) two physically-identical swirling waves of the opposite angular
directions are only possible for the longitudinal forcing, (F) for the oblique forcing with
γ 6= 0, each point on the response curves implies a unique swirling wave whose amplitudes
along Ox and Oy axes are never equal, even for the diagonal forcing.

6. Damped versus undamped response curves

The undamped response curves for the longitudinal forcing (δ = γ = 0) were extensively
analysed and discussed in Part 1 for various liquid depths and forcing amplitudes.
Figure 4 (a) shows the corresponding response curves in terms of the ‘integral’ amplitudes
A and B, which present the dominant sin- and cos-components in a1 and b1. To get A
and B, we use, in fact, an exact asymptotic solution of the modal system constructed in
Appendix A. The solution neglects the o(ε)-quantities but the modal equations (2.5)-(2.6)
are also derived within to the O(ε)-order sloshing component.

In our numerical analysis, we will present a three-dimensional view in the (σ/σ1, A,B)
space and its projections on the (σ/σ1, A) and (σ/σ1, B) planes. The panel (b) of
the figure depicts the corresponding response curves for the damped sloshing (ξ =
0.0256). The solid lines specify stable solutions. The computations were done with
the nondimensional forcing amplitude η = η1a = 0.0075 (η2a = 0) and h/L = 0.6.
Because m1, m2 and m3 weakly depend on h/L for 0.5 . h/L, the branching should
be similar for these relatively-high liquid depth-to-tank breadth ratios. The latter fact



Resonant three-dimensional sloshing. Part 4 17

E

s

d

P
l

P
l

Pr

Pr

P
l

Pr

d

1

1

0

0

T

(a)

p
0

0

0

1

B

σ/σ

W

V

E

U

1

A

B

σ/σ

d d
s

A

1

T

V

W

E

U

s

d 1

0d

0

0
p

σ/σ

U

V

W

T

 0.1

 1.1

 0.95
 0.9

 0

 0.1

 0.2

 0.3
 0

 1

 0.1

 0.2

 0.3

 1.05 1 0.95 0.9

 0.3

 0.2

 0.1

 1.05 1 0.95 0.9

 0.3

 0.2

 1.05

P

P
D

U

V

B

σ/σ

W

SV
U

D

E T

1

0

0

Pl

Pl

Pr

PrPl

(b)

0
0

0

E

S

W
E

T

σ/σ
A

B

r

0
A

σ/σ

W

S

V

U 

P

1

00
D

T

1

 0

 1

 0.3

 0.2

 0.1

 0

 0.9
 0.95

 1
 1.05

 1.1  0

 0.1

 0.2

 0.3

 0.95 0.9 0.85

 0.3

 0.2

 0.1

 0

 1.05 1 0.95 0.9 0.85

 0.3

 0.2

 0.1

 1.05

Figure 4. The steady-state waves response curves in the (σ/σ1, A,B) space and their projection
on the (σ/σ1, A) and (σ/σ1, B) planes for the undamped (panel a) and damped (panel b) cases.
The longitudinal forcing with the nondimensional amplitude η = η1a = 0.0075 and h/L = 0.6.
The solid lines specify stable solutions. The branches PlTEP0(p0) and PrWP0(p0) belong to the
(σ/σ1, A) plane. They correspond to the planar standing waves. The small letters p0, d0, d1 and
s0 in (a) mean that the corresponding branches meet at the infinity. The squares-like standing
waves exist for the undamped case (b). They are presented by the two branches d1Ud0 and
d0E. The undamped swirling corresponds to Ws0V d1. The squares-like waves disappears in
the damped case (b). The branch ED0UV S0W represents in panel (b) a swirling wave mode.
However, computations show that condition (5.12) is satisfied on the stable sloshing subbranch
D0U and, therefore, the subbranch represents an almost standing wave by a modified Stokes
mode (close to a square-like wave in the panel a). All steady-state waves are unstable in the
frequency range between T and V where irregular (chaotic) wave motions are expected. Results
in (a) are based on computation schemes from Part 1. Computational formulas for getting (b)
are presented in section 5.3.1.

is also true for figures 5–8 where we present the response curves for the oblique forcing
with γ = π/36 = 50, π/6 = 300, π/4.5 = 400 and π/4 = 450, respectively. Henceforth,
the small letters (p0, d0, s0 and d1) are used to specify the fact that the corresponding
branches meet at the infinity.

The undamped planar sloshing corresponds to B = 0, C = 0, ξ = 0 and A > 0 in (5.7)
so that the non-zero amplitude A is then governed by the cubic equation A(Λ+m1A

2) = ε
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Figure 5. Similar to figure 4 but for an oblique forcing with γ = 50 = π/36. The non-zero γ
splits the connected branch PlT (E)p0(P0) in figure 4 at the bifurcation point E. The undamped
case (a) is characterised by five categories of standing resonant waves (maximum six are possible
possible according to the theory). They are represented by the branches PlTd0, d0p0, d1U1d0,
d1U2d0 and PrWp0. Each point on these branches implies a single standing wave type (not two as
in figure 4 for the squares-like wave mode). Because γ is relatively small, the stable subbranches
PlT and PrW correspond to the nearly-planar standing waves. The swirling-related branches
are Ws0 and s0V G where G belongs to d1U1d0 (has coordinates (σ/σ1, A,B) = (0.83, 0.04, 0.4)
in this numerical example). In the panel (b), the nonzero damping and angle γ split the
response curves at both E and W from figure 4. There appear two non-connected branches
PlTD0U1V1S

′
0W1Pr and (loop-like) P0D

′
0U2V2S

′′
0W2P0. Formally, each point on these branches

imply a single (stable/unstable) swirling wave. Computations show that (5.12) is satisfied on
the stable subbranches PlT and PrW1 (almost planar wave) as well as on U1D0 and U2D

′
0. The

point G in the panel (a) coincides with U1for the damped case (b). Results in (a) are based on
formulas (5.14) (standing waves) and (5.15) (swirling). Results for (b) are a numerical solution
of (5.11) (computational details are given in Supplementary Materials).

(see, condition (5.9) and equations (5.3), (5.6) with δ = ξ = 0). The phase-lags are ψ = 0
for (Λ+m1A

2) > 0 and ψ = π as (Λ+m1A
2) < 0. The second phase-lag ϕ is associated

with the zero cross-wave component (B = 0) and, therefore, it has no a physical meaning.
Because the standing wave condition (5.9) requires sin(ϕ− ψ) = 0, one can take ϕ = ψ.
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The undamped planar steady-state waves are represented by the branches PlTEp0 and
PrWp0 in figure 4 (a). The branches belong to the (σ/σ1, A) plane. They are invisible
(coincide with the horizontal axis) in projection on the (σ/σ1, B) plane. An extensive
discussion of the turning point T and the bifurcation points E and W can be found
in Part 1. The bifurcation points E and W are origins of the squares-like and swirling
waves, respectively. The planar resonant waves are stable for the forcing frequencies in
the left of T and in the right of W .

Setting ξ = 0 in (5.8) makes it possible to consider the three-dimensional undamped
steady-state sloshing with B 6= 0 due to the longitudinal forcing. The last equation of
(5.8) deduces that D(α) = 0 and, thereby, we arrive at the alternative: either sinα = 0
or cosα = 0. Because of (5.9), the first case (sinα = 0) implies three-dimensional (non-
planar) standing waves, which are, as we know from Part 1, the square-like resonant
steady-state sloshing. When cosα = cos(ϕ − ψ) = 0, the secular equations (5.8) with
ξ = 0 govern the undamped swirling.

Substituting sinα = 0 in (5.8) derives A2(Λ+m1A
2 +m2B

2)2 = ε2 and (Λ+m1B
2 +

m2A
2) = 0, which govern the nondimensional amplitudes A and B of the squares-like

wave regime. The phase-lag ψ = 0 for (Λ + m1A
2 + m2B

2) > 0 and ψ = π when
(Λ+m1A

2 +m2B
2) < 0. Another phase-lag ϕ follows from the standing wave condition

(5.9), sin(ϕ − ψ) = 0. It equals to either ϕ = ψ or = ψ ± π. The non-uniqueness of
ϕ implies two different squares-like waves for each point of the corresponding response
curves in the (σ/σ1, A,B) space. These two squares-like standing waves are defined by
z = ±S(x, y;A,B) cos σ̄t+o(ε1/3) and z = ±S(x, y;A,−B) cos σ̄t+o(ε1/3). They can be
treated as occurring with an equal (positive and negative) angle relative to the forcing
plane Oxz. The squares-like sloshing is presented in figure 4 (a) by the two branches
Ed0 and d1Ud0. The (unstable waves) branch Ed0 emerges from the bifurcation point E.
Point U divides d1Ud0 into Ud0 (stable squares-like sloshing) and Ud1 (unstable one).

In the second case (cosα = cos(ϕ− ψ) = 0, undamped swirling), amplitudes A and B
are computed from A2(Λ+m1A

2 +m3B
2)2 = ε2 and (Λ+m1B

2 +m3A
2) = 0. The first

phase-lag ψ = 0 for (Λ+m1A
2 +m3B

2) > 0 and ψ = π when (Λ+m1A
2 +m3B

2) < 0.
Because δ = 0, the second phase-lag ϕ cannot be directly computed by using (5.2a).
Requiring cosα = 0 deduces however that ϕ = ψ± π/2. Accounting for (4.2) and (5.1b),
±π/2 for ϕ implies two swirling waves for each point on the corresponding branches in the

(σ/σ1, A,B) space. These two waves are z = ±(Af
(1)
1 (x) cos σ̄t+Bf

(2)
1 (y) sin σ̄t)+o(ε1/3)

and z = ±(Af
(1)
1 (x) cos σ̄t − Bf

(2)
1 (y) sin σ̄t) + o(ε1/3). They are physically identical

and only differ by the propagating angle direction, clockwise or counterclockwise. The
undamped swirling regime is represented by the branches Ws0 and d1V s0 in figure 4 (a).
The (unstable swirling) branch Ws0 emerges from the planar-wave response curves at
the bifurcation point W . Another swirling-related branch d1V s0 is divided by V into
stable and unstable subbranches.

For the undamped longitudinally-forced sloshing, irregular (chaotic) waves are possible
for the forcing frequencies laying between the abscissas of T and V . This fact was
extensively discussed in Part 1.

The response curves for the damped steady-state sloshing due to the longitudinal forcing
are drawn by using the analytical solution (5.19)–(5.22). Figure 4 (b) illustrates the
numerical output for ξ = 0.0256. According to our results from section 5.3.1, the damped
squares-like waves are impossible. The connected branch PlTEP0WPr belongs to the
(σ/σ1, A)-plane; it is responsible for the planar waves (P0 is not at the infinity). The
damping saves the two bifurcation points E and W . These points are now two origins
for the damped swirling, which is represented by the arc-like branch ED0UV S0W . The
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Figure 6. The same as in figure 5 but for γ = 300. A novelty in the panel (a) [undamped
sloshing] is that an extra stable swirling subbranch U1U

′
1 appears with increasing γ. The damped

sloshing response curves in the panel (b) show vanishing the stable almost standing waves
(U1D

′
0 in figure 5 b). The loop-like branch P0W1S

′′
0 V2P0 has now only one stable piece V2S

′′
0

corresponding to swirling (condition (5.12) is not satisfied). Results in (a) are based on formulas
(5.14) (standing waves) and (5.15) (swirling). Results for (b) are a numerical solution of (5.11)
(computational details are given in Supplementary Materials).

points D0 and S0 are not at the infinity now; d1 disappears. Computations show that
the asymptotic condition (5.12) is satisfied on the (stable sloshing) subbranch D0U . This
means that the subbranch represents an almost standing wave when a modified Stokes
mode dominates. This mode is close to a squares-like wave on Ud0 in the panel (a). The
linear damping ratio ξ = 0.0256 gives a negligible effect on positions of V and T . As
a consequence, the frequency range, where irregular waves are expected, remain almost
the same in (a) and (b).

One should note that Ikeda et al. (2012) numerically detected both irregular and
regular (periodic) damped sloshing between T and V by using their adaptive multimodal
system with linear damping terms. A dedicated model tests are needed to quantify
whether the regular sloshing exists in this frequency range and, thereby, clarify whether



Resonant three-dimensional sloshing. Part 4 21

B

p

s

d

U’

r

l

1σ/σ

1

U1

U
2

V

0

1

0

d

0

d

1

2

1

1

(a)

1

0

1

d0

1

A

σ/σ

W
VT

s

p

U
U’

U

P

d

l

Pr

0

0

0

1

2U

0

l

r

P

p

d

U

U’ V

W

B

A

P

P

T

s

P

σ/σ

W

 0.1

 1 0.9 0.85

 0.2

 0.1

 0.3
 0.2

 0.1
 0

 1
 1.05

 0.95
 0.9

 0.85

 0.1

 0.2

 0.3

 1

 0.3

 0.95 0.9 0.85

 0.3

 0.2

 0.95

B

V2

0P

0

1
V 0

S’

0

1

2

Aσ/σ

P

W

U

T

S’
S’’

V

Pl

Pr

1

1

1 0

0

0

V2

B (b)D0

1

W

r
P

l
P

D

S’’

W

A

σ/σ

D

P

T U

V

S’

S’’

P

W P
l

r

1

0 0

1

1 1

0

0

V2

σ/σ

 0.2

 0.3

 0.85  0.9  0.95  1  1.05

 0.1

 0

 1.05 1 0.95 0.9 0.85

 0.3

 0.2

 0.1

 0

 0.3
 0.2

 0.1
 0

 1
 1.05

 1.1

 0.95
 0.9

 0

 0.1

 0.2

Figure 7. The same as in figure 6 but for γ = 400. For the undamped case in (a), the subbranches
d0U1U

′
1V s0, Ws0 and U2d0 tend the A = B plane. The first two subbranches convert to the

undamped swirling but U2d0 should turn into the diagonal standing wave (the limit is shown in
figure 8 a). In the panel (b), the swirling-related response curves do not belong to the A = B
plane as γ → π/4. As a consequence, only U1D0 tends to the plane. It convert to the diagonal
standing wave for γ = π/4. Results in (a) are based on formulas (5.14) (standing waves) and
(5.15) (swirling). Results for (b) are a numerical solution of (5.11) (computational details are
given in Supplementary Materials).

one should switch to an adaptive asymptotic ordering from the Narimanov–Moiseev one
for a better description of the resonant sloshing in this frequency range.

Almost longitudinal forcing (γ = π/36 = 50) is considered in figure 5. When comparing
the undamped sloshing in panels (a) of figures 4 and 5, one should remember that the
oblique forcing admits up to six different standing waves. We identify five categories
of those standing waves represented by the branches PlTd0, d0p0, d1U1d0, d1U2d0 and
PrWp0. The former d1Ud0 in figure 4 (a) splits into the two branches d1U1d0 and d1U2d0,
but the bifurcation point E vanishes so that the former PlTEp0 is divided into PlTd0 and
d0p0. In contrast to the longitudinal forcing in figure 4 (a), each point on the branches
implies only one unique standing wave. Two pieces of PrWp0 and PlTd0 are close to the
horizontal plane B = 0; they imply an almost planar stable steady-state wave regime.
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Figure 8. The same as in figure 6 but for the diagonal forcing with γ = 450 = π/4. In the
panel (a), all branches away from the A = B plane correspond to the squares-like standing wave
regime; U2 is the corresponding bifurcation point for this regime. The branches PlTd0, PrW and
U2d0 imply the diagonal standing waves. The branches d0U

′
1V s0 and Ws0 correspond to swirling

(two physically-identical waves in clockwise and counterclockwise directions, respectively). Only
diagonal standing waves belong to the A = B plane in the damped case (b): the branch
PlTD0WPr. The (stable sloshing) subbranches WR1, WR2, S′0V1 and S′′0 V2 correspond to
swirling (condition (5.12) is not satisfied on them). Results in (a) are based on formulas
(5.14) (standing waves) and (5.15) (swirling). Results for (b) are a numerical solution of (5.11)
(computational details are given in Supplementary Materials).

Other points on the aforementioned five branches correspond to a squares-like standing
wave. The swirling wave regime is represented by Ws0 and s0V G. A novelty is that the
latter branch meets d1U1d0 at a point G (coordinates (σ/σ1, A,B) = (0.83, 0.04, 0.4) in
this numerical example). Each point on the swirling-related branches corresponds to two
identical (clockwise and counterclockwise) swirling waves.

A complex effect of the non-zero γ and damping on the response curves is demonstrated
in figure 5 (b). The branching should be compared with that in figure 4 (b) as well as
with the panel (a). We see that ξ = O(ε2/3) and a relatively-small γ split the response
curves at both E and W from figure 4. As a consequence, the two non-connected branches
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PlTD0U1V1S
′
0W1Pr and (loop-like) P0D

′
0U2V2S

′′
0W2P0 appear. Both of them have very

attractive geometry, especially, in the (σ/σ1, A,B) space. Each point on these response
curves implies swirling. However, computations show that (5.12) is satisfied on the stable
subbranches PlT and PrW1 (almost planar wave) as well as on U1D0 and U2D

′
0. The

point G from the panel (a) coincides with U1 for the damped case. The most important
effect of the non-zero γ for an oblique forcing is that the two physically-identical swirling
waves (clockwise and counterclockwise) split into two different ones. We can see this
effect by comparing the panels (a) and (b) in figure 5. Condition (5.12) is satisfied on
V1S

′
0 and V2S

′′
0 and, therefore, two swirling waves of different amplitudes along the Ox

and Oy axes are expected represented by these stable sloshing subbranches.

Figures 6 and 7 demonstrate what happens with the response curves with a further
increase of γ. The trends are different for the damped and undamped cases. The panels (a)
show that, after G met U1, an extra subbranch U1U

′
1 appears, which implies a stable

swirling. With increasing γ close to π/4, U1 moves away from the primary resonance
zone, but U1U

′
1V s0 tends laying in the A = B plane. The latter will be responsible for

the diagonally-exited swirling in figure 8. Another subbranch U2d0 also approaches the
A = B plane; it corresponds to the diagonal wave as γ = π/4. The damped sloshing
response curves in the panels (b) of figures 6 and 7 show that the linear damping erases
the U2D

′
0 subbranch for non-small γ. They also confirm that the plane A = B contains

only response curves of the diagonal wave regime.
The diagonal wave regime for γ = π/4 (diagonal forcing) is characterised by three

stable sloshing subbranches. They must belong to the A = B plane. Figure 8 shows
the latter fact for both damped and undamped sloshing. The subbranches PlT and
PrW transform from the stable planar waves as γ changes from 0 to π/4. Part 1
describes another stable diagonal sloshing subbranch, which should be situated over PlT .
Considering the limit γ → π/4 shows that the third subbranch results from the stable
standing wave regimes on U2d0 but, because the linear damping annihilates U2D

′
0, the

stable diagonal waves are represented by U1D0.

7. Comparison with experiments

Ikeda et al. (2012) conducted relevant experimental studies on the steady-state wave
regimes for the damped liquid sloshing. The maximum wave elevations near the two
perpendicular walls (at the points (x0 L, 0) and (0, x0 L) with x0 = 0.4) were measured
including for standing, swirling and irregular wave motions. The experimental data are
reported for the longitudinal (γ = 0), oblique (γ = π/6) and diagonal (γ = π/4)
cases. The forcing amplitudes are slightly different and equal to η = 0.00727, 0.00726,
and 0.00717, respectively. In the model tests, the liquid depth ratio is h/L = 0.6.
Before presenting the experimental measurements, they extensively discussed in their
Fig. 4, what kind of stable and unstable steady-state resonant waves are observed for
these three experimental cases. This includes a discussion on the stable waves, which,
normally, correspond to the standing (planar and diagonal) waves or what we called an
almost standing waves (see, discussion around the asymptotic condition (5.12)). A special
emphasis of Ikeda et al. (2012) was also placed on the fact that two swirling waves with
the different angular directions are characterised by different maximum elevations at the
measurement probes for the non-longitudinal forcing.

These experimental measurements of the L-scaled maximum steady-state wave eleva-
tions, ζmax

x and ζmax
y , at the probes (x0 L, 0) and (0, x0 L) (x0 = 0.4) are compared with

our asymptotic modal prediction in figures 9–11. We computed these maximum wave
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Figure 9. The experimental (Ikeda et al. 2012) and theoretical L-scaled maximum wave
elevations at (0.4L, 0) (marked by ζmax

x ) and (0, 0.4L) (ζmax
y ) for the longitudinal forcing along

the Ox axis. The nondimensional forcing amplitude is η = η1a = 0.00727 (η2a = 0) and the
mean liquid depth is h/L = 0.6. The solid lines denote the computed maximum wave elevations
for the stable steady-state regimes. The computations used ξ = 0.0256, which corresponds to
the experimental logarithmic decrement estimated by Ikeda et al. (2012). The empty circles
correspond to the experimental planar regime but the filled circles indicate swirling. The
green/grey filled circles correspond in our classification to an almost standing wave in which
one from two modified Stokes mode dominates (formally, it is a swirling mode). The theoretical
subbranches adopted notations of the response curves in figure 4 (b).
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elevations as described in Appendix B. Readers can see that we accounted for actual
positions of the measurement probes as well as contributions given by all nonlinearly-
involved generalised coordinates, from O(η1/3) to O(η). The authors experience says that
working with asymptotic nonlinear solutions of the resonant sloshing problems requires
accounting for the higher-order contributions. Finally, we do not speculate with the
damping coefficients but use ξ = 0.0256, which Ikeda et al. (2012) experimentally found
by estimating the logarithmic decrements.

The theoretical stable steady-state wave elevations are marked in figures 9–11 by the
solid lines. The experimental notation symbols are partly adopted from the corresponding
figures by Ikeda et al. (2012). Empty circles mark the measured maximum wave elevations
for standing waves (planar and diagonal), the green/grey filled circles appear in figures 9
and 10 to specify the almost standing waves. The half-circles (filled) are used to detect
the two swirling modes of the different angular directions when these directions dictate
non-equal maximum wave elevations at the perpendicular walls. The filled circles are used
in figure 9 for the longitudinal forcing where the swirling direction was not important
according to Ikeda et al. (2012) and our theoretical predictions.

Figure 9 presents the experimental and theoretical results for the longitudinal forcing
along the Ox-axis. The theoretical subbranches adopt notations from figure 4. First,
we note that the theoretical frequency ranges for the stable steady-state sloshing are
generally good predicted, especially for the frequency zone between T (lower bound)
and V (upper bound) where irregular waves are theoretically expected. This range was
supported by the model tests. However, the theoretical points D0 and S0 are located
rather far from the experimentally detected ones. Ikeda et al. (2012) increased ξ to
0.03 for a more precise theoretical prediction of these points. Our speculative numerical
experiments showed this increase really helps for a better fit of these point positions. It
also provides a better agreement for ζmax

y in the swirling case. One interesting point is a
clearly non-zero experimental values of ζmax

y for the planar wave regime (PlT and WPr).
Accounting for the second- and third-order generalised coordinates makes this elevation
non-zero but the actual experimental values are clearly larger. We do not know how to
explain this fact.

Figure 10 illustrates the theoretical and experimental maximum steady-state wave
elevations for the oblique forcing with γ = π/6. The response curves in terms of the
lowest-order amplitude components A (Ox direction) and B (Oy) for this experimental
case are presented in figure 6 (b). The half-circles denote the experimental swirling modes
of the two different angular directions that should theoretically belong to either V1S

′
0 or

V2S
′′
0 of figure 6 (b). Again, we should remark on a problem in a precise prediction of the

larger swirling amplitude of the two swirling modes for both ζmax
x and ζmax

y , which can be
fixed by a speculatively increase of the damping coefficient ξ from 0.0256 to 0.03. Because
this happens for the larger wave elevations, this may be related to the dynamic contact
angle damping, as Keulegan (1959) suggested. This kind of damping (Shukhmurzaev
1997) is of the nonlinear nature and, therefore, may increase with amplitudes.

Figure 11 focuses on the diagonal forcing with γ = π/4. A difference from figures 9
and 10 is the absence of the green/grey circles marking the almost standing wave regime.
We expect only stable diagonal and swirling waves. The first one is well predicted, but,
as it has been commented earlier, the asymptotic theory cannot well approximate the
maximum wave elevation for the swirling modes.

One must note that Ikeda et al. (2012) performed their own computations. An adaptive
multimodal theory was used. Their theoretical results may look better than our computa-
tions in some frequency ranges where swirling occurs but has a similar precision for other
frequency ranges. We did not compare our asymptotic modal steady-state results with
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their computations. The reasons for that are that, first, Ikeda et al. (2012) neglected the
O(η2/3) and O(η) generalised coordinates when computing the elevations, which must,
in our opinion, be included, secondly, they adopted a speculatively larger ξ = 0.03 for
a better fit of the experimental measurements, thirdly, the authors most probably (we
did not find out an answer in the text) did not account for the actual positions of the
measurement probes. As we remarked above, after adopting the speculatively larger ξ,
our results would possess a better accuracy for swirling.

8. Conclusions

A motivation for starting this study has been a series of qualitative differences between
theoretical and experimental results, which we and some other authors obtained for the
resonant sloshing in a square base tank, and experiments and computations by Ikeda et al.
(2012). These were discussed in the Introduction and denoted as differences between (i)–
(iii) and (i’)–(iii’). After realising that these differences can be clarified by the linear
damping effect, which may be rather important for relatively-small laboratory tanks,
we found out a lack of knowledge on the undamped resonant sloshing (expected for
large containers) when the forcing is neither longitudinal nor diagonal. This caused
the threefold goal of the present paper. First, we generalise Part 1 for the oblique
forcing. Second, we estimate when the linear damping can be important, establishing,
in particular, that it really can matter for the laboratory tests by Ikeda et al. (2012)
but can be neglected for our earlier experiments. Third, we mathematically explain
the aforementioned differences as well as performed some computations to compare the
response curves for the damped and undamped cases. All the results remain true for
the liquid depth-to-tank width ratio 0.5 . h/L as we have discussed in the context of
figure 3.

For the undamped resonant steady-state sloshing, we were able to find an analytical
solution of the corresponding secular (necessary solvability condition) system for any
oblique forcing. Based on this solution, one concludes that there are theoretically possible,
for a given forcing frequency, maximum six different standing steady-state resonant waves.
Each point on the corresponding response curves determines a single steady-state wave
from these six solutions. On the contrary, Part 1 reports maximum three standing waves
for longitudinal and diagonal harmonic excitations, which consist of one planar and
two squares-likes resonant waves so that any point on the squares-like response curves
corresponds to the two physically-identical Stokes waves occurring with an angle to the
excitation plane. Each point on the undamped swirling response curves corresponds to
physically-identical swirling waves (clock- and counterclockwise).

The main results on the damped resonant sloshing are: (A) the standing resonant
waves exist only for longitudinal and diagonal harmonic excitations, these are of planar
or diagonal types, respectively, (B) the squares-like standing waves are impossible, (C) for
the oblique non-diagonal forcing with 0 < δ < 0, all the damped steady-state sloshing
regimes are of the swirling type, (D) under the asymptotic condition (5.12), the damped
swirling may become close to a standing wave by a modified Stokes mode so that the
resonant sloshing can be treated as an almost-standing wave, (E) two physically-identical
swirling waves of the opposite angular directions are only possible for the longitudinal
forcing, (F) for the oblique forcing, each point on the response curves implies a swirling
wave whose amplitudes along the Ox and Oy axes are never equal, even for the diagonal
forcing. These results make it possible to explain the differences between (i)–(iii) and
(i’)–(iii’) described in the Introduction. The results are extensively discussed by using
the numerical response curves. The damped sloshing response curves are also compared
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with those for the undamped ones. The latter comparison showed that a complex effect
of the nonzero damping and angle γ between the forcing direction and the Ox-axis may
significantly change both the branchings and the effective frequency ranges for swirling.
Introducing the linear viscous damping is relevant for small-size laboratory tanks and very
special applications exemplified by the packaging machines for the tetra-pack cardboard
cartons.

We compared our results with the measured maximum wave elevations by Ikeda
et al. (2012). A satisfactory agreement was found. The agreement for swirling can be
improved by a speculative increase of the damping coefficient as Ikeda et al. (2012)
has done. Because the maximum discrepancy happens for the larger swirling elevations,
this increase can be qualitatively argued by nonlinear dynamic-contact angle damping
(Shukhmurzaev 1997) and the strongly-nonlinear free-surface phenomena. In this context,
the asymptotic linear damping ratio (3.3) makes it possible to evaluate only a lower bound
for the total energy dissipation per a cycle. However, to the authors best knowledge, the
literature does not give a method for quantifying the dynamic contact angle effect on the
logarithmic decrements.

The authors acknowledge the financial support of the Centre of Autonomous Marine
Operations and Systems (AMOS) whose main sponsor is the Norwegian Research Council
(Project number 223254–AMOS).

Appendix A. The steady-state asymptotic solution of (2.5)-(2.6)

Following Faltinsen et al. (2003) and using (2.8), (3.2), we can derive an analytical
solution of (2.5)-(2.6) in terms of ε1/3. The analytical procedure starts with the lowest-
order approximation (4.1), which, being substituted into (2.5c)-(2.5e) gives

a2 = p0(a2 + ā2) + h0(a2 − ā2) cos 2σ̄t+ 2h0aā sin 2σ̄t+ o(ε), (A 1a)

b2 = p0(b̄2 + b2) + h0(b̄2 − b2) cos 2σ̄t+ 2h0b̄b sin 2σ̄t+ o(ε), (A 1b)

c1 = p1(ab̄+ āb) + h1(ab̄− āb) cos 2σ̄t+ h1(āb̄+ ab) sin 2σ̄t+ o(ε), (A 1c)

where

p0 =
d4 − d5
2σ̄2

2,0

; h0 =
d4 + d5

2(σ̄2
2,0 − 4)

; p1 =
d̂1 + d̂2 − d̂3

2σ̄2
1,1

; h1 =
d̂1 + d̂2 + d̂3
2(σ̄2

1,1 − 4)
.

Owing to (2.8c) (no secondary resonance condition), coefficients p0, h0, p1 and h1 are
formally of the order O(1).

Furthermore, inserting (4.1) and (A 1) into (2.5a) and (2.5b) and gathering the first
Fourier harmonic derive the solvability (secularity) equations (4.3) with respect to the
unknown amplitude parameters a, ā, b and b̄. After finding a, ā, b and b̄ from (4.3) and
gathering the super-harmonics in (2.5a) and (2.5b), we get

a1 = a cos σ̄t+ ā sin σ̄t+
{

[a(n1(−a2 + 3ā2) + n2(b2 − b̄2)) + 2n2bāb̄] cos 3σ̄t

+[ā(n1(ā2 − 3a2) + n2(b2 − b̄2))− 2n2abb̄] sin 3σ̄t
}
/(9− σ̄2

1,0) + o(ε), (A 2)

b1 = b̄ cos σ̄t+ b sin σ̄t+
{

[b̄(n1(−b̄2 + 3b2) + n2(ā2 − a2)) + 2n2abā] cos 3σ̄t

+[b(n1(b2 − 3b̄2) + n2(ā2 − a2))− 2n2aāb̄] sin 3σ̄t
}
/(9− σ̄2

0,1) + o(ε), (A 3)

where n1 = 1
2d2 +h0( 3

2d1 +2d3), n2 = 1
4 (d6 +d8 +d10 +d11)+h1( 1

2d7 +2d9 +d12), N1 =
− 3

4q2 + 1
4q4 + h0(− 1

2q1 − 2q3 + q5)− q1p0, and N2 = 1
4q2 + 1

4q4 + h0( 1
2q1 + 2q3 + q5).
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In similar way, one can get

a3 =
{
N1(a2 + ā2)[a cos σ̄t+ ā sin σ̄t]− P3,0η1a cos σ̄t

}
/(1− σ̄2

3,0)

+N2

{
a(−a2 + 3ā2) cos 3σt+ ā(ā2 − 3a2) sin 3σt

}
/(9− σ̄2

3,0) + o(ε), (A 4)

c21 =
{

(N3ā
2b̄+ (N4 −N3)abā+N4a

2b̄) cos σ̄t+ (N3a
2b+ (N4 −N3)ab̄ā

+N4ā
2b) sin σ̄t

}
/(1− σ̄2

2,1) +N5

{
(ā2b̄+ 2abā− a2b̄) cos 3σ̄t

+(bā2 − 2aāb̄− a2b) sin 3σ̄t
}
/(9− σ̄2

2,1) + o(ε), (A 5)

c12 =
{

(N3ab
2 + (N4 −N3)bāb̄+N4ab̄

2) cos σ̄t+ (N3b̄
2ā+ (N4 −N3)bb̄a

+N4b
2ā) sin σ̄t

}
/(1− σ̄2

1,2) +N5

{
(ab2 + 2ābb̄− ab̄2) cos 3σ̄t

+(āb2 − 2abb̄− āb̄2) sin 3σ̄t
}
/(9− σ̄2

1,2) + o(ε), (A 6)

b3 =
{
N1(b̄2 + b2)[b̄ cos σ̄t+ b sin σ̄t]− P0,3η2a cos σ̄t

}
/(1− σ̄2

0,3)

+N2

{
b̄(−b̄2 + 3b2) cos 3σ̄t+ b(b2 − 3b̄2) sin 3σ̄t

}
/(9− σ̄2

0,3) + o(ε) (A 7)

from (2.6). Here, N3 = − 1
4q7−

1
4q9+ 3

4q12−
1
4q13+h0( 1

2q8+2q10−q15)−q8p0+h1(− 1
2q6−

2q11 + q14), N4 = − 3
4q7−

3
4q9 + 1

4q12 + 1
4q13 + h0(− 1

2q8− 2q10 + q15)− q8p0 + h1(− 1
2q6−

2q11+q14)−q6p1, N5 = 1
4q7+ 1

4q9+ 1
4q12+ 1

4q13+h0( 1
2q8+2q10+q15)+h1( 1

2q6+2q11+q14).

Appendix B. Theoretical steady-state wave elevations at the walls

Experiments by Ikeda et al. (2012) and Faltinsen et al. (2003) deal with measurements
of the maximum steady-state wave elevations at the perpendicular walls. The measure-
ments were done slightly away from the walls. For brevity, we can associate the positions
of the measured probes with the coordinates ζx : ( 1

2Lx0, 0) and ζy : (0, 12Ly0).
Neglecting the linearly involved generalised coordinates and using the notations

− x1 = f
(1)
1 (x0), −y1 = f

(2)
1 (y0), x2 = f

(1)
2 (x0), y2 = f

(2)
2 (x0),

− x3 = f
(1)
3 (x0), −y3 = f

(2)
3 (y0)

computes the wave elevations at ζx and ζy as

ζx(t) = −x1a1(t) + x2a2(t)− b2(t)− x3a3(t) + x1c12(t), (B 1a)

ζy(t) = −y1b1(t)− a2(t) + y2b2(t)− y3b3(t) + y1c21(t), (B 1b)

where the nonlinearly-governed generalised coordinates are accounted for. Substituting
the steady-state solution from Appendix A into (B 1) derives the following expressions
to approximate the steady-state wave elevations:

ζx(t) = p0
[
x2(a2 + ā2)− (b2 + b̄2)

]
+ cos σ̄t

[
−x1a− x3

(
N1a(a2 + ā2)− P3,0η1a

)
/(1− σ̄2

3,0)

+ x1(N3ab
2 + (N4 −N3)bāb̄+N4ab̄

2)/(1− σ̄2
1,2)
]

+ sin σ̄t
[
−x1ā− x3N1ā(a2 + ā2)/(1− σ̄2

3,0)

+x1(N3b̄
2ā+ (N4 −N3)bb̄a+N4b

2ā)/(1− σ̄2
1,2)
]

+ cos 2σ̄t
[
h0(x2(a2 − ā2)− (b̄2 − b2))

]
+ sin 2σ̄t

[
2h0(x2aā− b̄b)

]
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+ cos 3σ̄t
[
−x1

(
a[n1(−a2 + 3ā2) + n2(b2 − b̄2)] + 2n2bāb̄

)
/(9− σ̄2

1,0)

−x3N2a(−a2 + 3ā2)/(9− σ̄2
3,0) + x1N5(ab2 + 2ābb̄− ab̄2)/(9− σ̄2

1,2)
]

+ sin 3σ̄t
[
−x1

(
ā[n1(ā2 − 3a2) + n2(b2 − b̄2)]− 2n2abb̄

)
/(9− σ̄2

1,0)

−x3N2ā(ā2 − 3a2)/(9− σ̄2
3,0) + x1N5(āb2 − 2abb̄− āb̄2)/(9− σ̄2

1,2)
]

; (B 2a)

ζy(t) = p0
[
−(a2 + ā2) + y2(b2 + b̄2)

]
+ cos σ̄t

[
−y1b̄− y3

(
N1b̄(b̄

2 + b2)− P0,3η2a
)
/(1− σ̄2

0,3)

+y1(N3ā
2b̄+ (N4 −N3)abā+N4a

2b̄)/(1− σ̄2
2,1)
]

+ sin σ̄t
[
−y1b− y3N1b(b

2 + b̄2)/(1− σ̄2
3,0)

+y1(N3a
2b+ (N4 −N3)aāb̄+N4ā

2b)/(1− σ̄2
2,1)
]

+ cos 2σ̄t
[
h0(−(a2 − ā2) + y2(b̄2 − b2))

]
+ sin 2σ̄t

[
2h0(−aā+ y2b̄b)

]
+ cos 3σ̄t

[
−y1

(
b̄[n1(−b̄2 + 3b2) + n2(ā2 − a2)] + 2n2abā

)
/(9− σ̄2

0,1)

−y3N2b̄(−b̄2 + 3b2)/(9− σ̄2
0,3) + y1N5(ā2b̄+ 2abā− a2b̄)/(9− σ̄2

2,1)
]

+ sin 3σ̄t
[
−y1

(
b[n1(b2 − 3b̄2) + n2(ā2 − a2)]− 2n2aāb̄

)
/(9− σ̄2

0,1)

−y3N2b(b
2 − 3b̄2)/(9− σ̄2

0,3) + y1N5(bā2 − 2aāb̄− a2b)/(9− σ̄2
2,1)
]
. (B 2b)

The maximum theoretical wave elevations at the two measured probes are, therefore,
associated with the maximum of the truncated series on the interval [0, 2π].
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