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Abstract

A 2D rectangular sloshing tank with a flexible sidewall have been studied analytically and numerically,
with a focus on the coupling between sloshing and the flexible wall. This analysis introduces new
knowledge of the effect of internal motions and flow in a membrane structure with a free surface, such
as closed flexible fish cages. A framework for analyzing coupled fluid- membrane interaction in the
time, and frequency domain in 2D have been developed. The analytical solution gives new knowledge
about the effect of the deformations on the linear pressure inside the tank. Coupled eigenfrequencies
and the transfer functions for two different membrane lengths due to sway excitation have been found
both analytically and numerically. The analytical and numerical results agree. The eigenfrequencies
of the system are highly dependent on both the tension and the 2D membrane length. If we consider
a given value of tension, then the eigenfrequency of the coupled system is smaller than the sloshing
frequency of the rigid tank for any given 𝑛. If the tension is small, and we consider a given sloshing
frequency of the rigid tank, then there can be more than 𝑛 eigenfrequencies of the coupled system that
is lower than the sloshing frequency of the rigid tank. For large tensions, the eigenfrequencies of the
system become the sloshing frequency of a rigid tank. For low tensions, numerical challenges for the
direct numerical solution for frequencies close to the natural sloshing frequencies were pointed out.
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1. Introduction

Norway has become the world’s largest producer of Atlantic salmon through the use of open net
structures in the sea. The aquaculture facilities have grown in both size and number. Currently, the
industry faces increased attention on environmental challenges related to fish escapes, sea lice, diseases,
and pollution. A possible solution is to use a Closed Flexible Fish Cage (CFFC) with impermeable
membrane material instead of nets used in conventional aquaculture net cages. Compared to a net-
based structure the behavior of the new membrane-based system changes completely. Multiple model
experiments for both still water, (Strand et al., 2014), current, (Lader et al., 2015; Strand et al., 2016)
and waves (Lader et al., 2016) have been performed, for various filling levels and geometries.Resonant
water motion (sloshing) was observed in model tests with a CFFC both by Rudi and Solaas (1993)
and by Lader et al. (2016). All the results showed that the CFFC is flexible, behaves hydro-elastically
and that the response is highly dependent on both geometry and filling level.

The deformations and forces on the CFFC depend on both the external and internal hydrodynamic
pressure and the structure dynamics. It is crucial to understand the dependency between forces and
deformations, to develop models, which predict the correct environmental forces and response. The
pressure from the liquid motions (sloshing) inside the bag must be found to solve the general problem.
If we can assume that the boundary layer close to the membrane is thin, there are no breaking waves,
and there are no interior structures causing flow separation, the flow inside the bag can be assumed
potential. The CFFC can have any shape. However, the shapes viewed as most practical are ellipsoidal
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and spherical. Sloshing in these shapes are not possible to analyze by analytical methods. To develop
theory and understanding of the coupled system, and the coupling between structural response and
internal water motions, the system is further simplified to a 2D rectangular sloshing tank with a fabric
membrane sidewall. Most considered hydroelastic problems are too complex to analyze analytically,
numerical and/ or experimental methods are therefore used. For this particular system, there exists
an analytical solution, which can give an understanding of the coupled system and can be utilized for
verification of a numerical code, intended used for the end problem.

Liquid sloshing in tanks represents a challenge both in the naval, air and space, civil and in the
nuclear industry, and have therefore been thoroughly studied (Faltinsen, 2009; Ibrahim, 2005). In some
of these cases, hydroelasticity have an effect. Common for most of these cases is that the structural
stiffness of the problem is due to bending stiffness and that the structural natural frequencies are
higher than the sloshing frequencies. A comprehensive review is found in Ibrahim (2005).

In the considered system one of the walls is modeled as a fabric membrane, meaning that the tension
stiffness dominates, with bending stiffness as a minor effect. When tension dominates, the structural
natural frequencies may very well be in the range of the sloshing frequencies. The hydroelastic behavior
of a rectangular tank with a fabric membrane sidewall of different lengths has earlier partly been studied
by Schulkes (1990). Schulkes (1990) investigated the case where the lower part of one of the side walls
was modeled as a membrane. He showed by analytical means that when part of the rigid wall was
replaced with a membrane, the eigenfrequencies of the total system decreased. The extent of this
decrease in eigenfrequency depend on the proportion of the membrane length relative to the length of
the tank wall, and the tension applied to the membrane.

A special case of what we consider is a container with a rigid moving wall, attached to an outside
spring. Lu et al. (1997) and Chai et al. (1996) have analytically solved this coupled fluid-structure
system and found the pressure contribution on the rigid movable wall. Lu et al. (1997) used a similar
method as our analytical method, while Chai et al. (1996) solved the problem by incorporating a wave
maker solution.

The hydroelastic analysis of a rectangular tank with a fabric membrane sidewall of different lengths
can introduce new knowledge of the effect of internal motions and flow in a membrane structure
with a free surface. An analytical solution for the coupled fluid- membrane interaction problem in
the time, and frequency domain in 2D have been found. Coupled eigenfrequencies and the transfer
functions of wave elevation for two different membrane lengths from sway excitation have been found
both analytically and numerically. The effect of hydrostatic pressure is not considered since the end
application of the theory and knowledge is with water on both sides of the membrane.

2. Linear sloshing in a 2D rectangular tank with an elastic wall

Our analytical hydrodynamic method can be classified as a multimodal method (Faltinsen, 2009),
which has been successful in solving linear and nonlinear sloshing problems within potential flow theory
of an incompressible liquid. The method transfers the solution of the Laplace equation for the velocity
potential with initial and boundary conditions to a system of ordinary differential equations that, for
instance, facilitates analytical hydrodynamic stability analysis, and detection of , multiple solutions
and wave regimes. Furthermore, the method facilitates coupling with structural dynamics because
acceleration dependent internal load effects can be explicitly identified, both for linear and non-linear
sloshing problems.

A two-dimensional rectangular tank with breadth 𝑙 and mean liquid depth ℎ with a flexible left wall,
where the tank is forced with prescribed horizontal tank motion is considered. We define a Cartesian
coordinate system Oyz with the origin in the center and at the mean free surface with positive 𝑧
upwards (see figure 1).

A stretched 2D membrane is assumed, and bending stiffness and structural nonlinearities are ne-
glected. The membrane deformations are represented in terms of structural eigenmodes with unknown
time-dependent generalized coordinates 𝜈𝑚(𝑡) associated with each dry structural eigenmode 𝑈𝑚(𝑧).
A vertical 2D membrane of length 𝐿 at 𝑦 = −𝑙/2 is fixed at the tank bottom, free surface piercing and
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fixed at the upper end, models the flexible wall. In 2D, a flexible membrane is a cable, and the cable
theory by Irvine (1981) can be used. The differential equation for the considered membrane is

𝜌𝑐𝑑
𝜕2𝑣(𝑧, 𝑡)

𝜕𝑡2
− 𝑇

𝜕2𝑣(𝑧, 𝑡)

𝜕𝑧2
= 𝐹 (𝑧, 𝑡) (1)

Here 𝜌𝑐and 𝑑 are the density and thickness of the membrane, respectively. 𝑡 is the time variable, 𝑣 is
the deformation in the 𝑦− direction, 𝑇 the tension and 𝐹 is the force component per unit length in
the 𝑦− direction. The force per unit length on the right hand side of eq. 1 is

𝐹 (𝑧, 𝑡) =

{︃
−𝑝, −ℎ ≤ 𝑧 ≤ 0

0, 0 ≤ 𝑧 ≤ 𝐿− ℎ
(2)

where 𝑝 is the dynamic water pressure.
We will represent the deformation in terms of dry eigenmodes. That means we consider non-trivial

solutions of eq. 1 without the effect of the water pressure:

𝜌𝑐𝑑
𝜕2𝑣(𝑧, 𝑡)

𝜕𝑡2
− 𝑇

𝜕2𝑣(𝑧, 𝑡)

𝜕𝑧2
= 0, (3)

with harmonic oscillations together with fixed end conditions. The dry eigenmodes of the 2D mem-
brane, are

𝑈𝑚(𝑧) = sin(
𝑚𝜋

𝐿
(𝑧 + ℎ)), (4)

which are connected to the dry natural frequency 𝜆𝑚 = 𝑚𝜋
𝐿

√︁
𝑇
𝜌𝑐𝑑

, with 𝐿 as the length of the 2D

membrane. Then the deformation can be expressed as

𝑣(𝑧, 𝑡) =
∑︁
𝑚

𝜈𝑚(𝑡)𝑈𝑚(𝑧), (5)

where 𝜈𝑚(𝑡) are the generalized structure mode amplitudes.
We assume linear potential flow of an incompressible liquid. The velocity potential and the free

surface elevation are denoted as Φ and 𝜁, respectively. The boundary value problem of the linear
sloshing problem in a rectangular tank with a flexible wall can be expressed as:

∇2Φ =
𝜕Φ2

𝜕𝑦2
+

𝜕Φ2

𝜕𝑧2
= 0 for − 1

2
𝑙 < 𝑦 <

1

2
𝑙,−ℎ < 𝑧 < 0, (6)

𝜕Φ

𝜕𝑧

⃒⃒⃒⃒
𝑧=−ℎ

= 0,

𝜕Φ

𝜕𝑦

⃒⃒⃒⃒
𝑦=− 1

2 𝑙

= �̇�2 +
∑︁
𝑚

�̇�𝑑𝑚𝑈𝑚(𝑧),

𝜕Φ

𝜕𝑦

⃒⃒⃒⃒
𝑦= 1

2 𝑙

= �̇�2,

𝜕Φ

𝜕𝑧

⃒⃒⃒⃒
𝑧=0

=
𝜕𝜁

𝜕𝑡
, (7)

𝜕Φ

𝜕𝑡
+ 𝑔𝜁

⃒⃒⃒⃒
𝑧=0

= 0. (8)

A dot above the variable means time derivative, �̇�2 is the prescribed horizontal rigid body tank velocity
(sway velocity) and 𝑔 is the gravitational acceleration. The deformation velocity of the wall is expressed
as

∑︀
𝑚 �̇�𝑑𝑚𝑈𝑚(𝑧). The boundary value problem for the liquid flow in the tank is illustrated in figure

1.
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Figure 1: Boundary conditions for a two-dimensional rectangular tank with breadth 𝑙 and mean liquid depth ℎ with a
flexible left wall of length 𝐿 that is forced with prescribed horizontal tank motions 𝜂2 in the time domain.

2.1. Analytical time-domain solution

The liquid flow can be described analytically by the multimodal method (Faltinsen, 2009). It
implies that the free surface elevation 𝜁 is expressed as the Fourier series:

𝜁(𝑦, 𝑡) =
1

𝑙

∑︁
𝑚=1

𝜈𝑚(𝑡)

∫︁ 0

−ℎ

𝑈𝑚(𝑧)𝑑𝑧 +

∞∑︁
𝑛=1

𝛽𝑛(𝑡)𝑓𝑛(𝑦) (9)

where 𝑓𝑛(𝑦) = cos(𝜋𝑛(𝑦 + 1
2 𝑙)/𝑙), and 𝛽𝑛 are the generalized free surface coordinates. The spatially

constant term in the Fourier series is a consequence of liquid mass conservation and elastic wall defor-
mations.

The velocity potential Φ is expressed as:

Φ(𝑦, 𝑧, 𝑡) = �̇�2(𝑡)𝑦 + 𝜑(𝑦, 𝑧, 𝑡) +

∞∑︁
𝑚=1

Ω𝑑𝑚(𝑦, 𝑧)�̇�𝑚(𝑡) + 𝐶(𝑡) (10)

similarly as in Faltinsen (2009), except for their missing spatially constant 𝐶(𝑡), which gives an im-
portant contribution to the dynamic pressure. The first term in the velocity potential takes care of
the body boundary condition associated with the rigid body motions. The terms associated with the
deformation potential Ω𝑑𝑚 take care of the body boundary conditions due to the membrane deforma-
tions. The 𝜑 term is a sum of sloshing eigenmodes satisfying homogeneous Neumann body boundary
conditions, i.e:

𝜑(𝑦, 𝑧, 𝑡) =

∞∑︁
𝑛=1

𝑅𝑛(𝑡) cos(𝜋𝑛(𝑦 +
1

2
𝑙)/𝑙)

cosh(𝜋𝑛(𝑧 + ℎ)/𝑙)

cosh(𝜋𝑛ℎ/𝑙)
(11)

where 𝑅𝑛(𝑡) are generalized coordinates for the velocity potential.
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The deformation potentials satisfy in addition to the Laplace condition and zero Neumann condi-
tions on 𝑧 = −ℎ and 𝑦 = 0.5𝑙, the boundary conditions:

𝜕Ω𝑑𝑚

𝜕𝑦

⃒⃒⃒⃒
𝑦=− 𝑙

2

= 𝑈𝑚(𝑧), −ℎ < 𝑧 < 0, (12)

𝜕Ω𝑑𝑚

𝜕𝑧

⃒⃒⃒⃒
𝑧=0

=
1

𝑙

∫︁ 0

−ℎ

𝑈𝑚(𝑧)𝑑𝑧, − 𝑙

2
< 𝑦 <

𝑙

2
,

The latter condition is consistent with conservation of liquid mass and the first term of the Fourier
series representation of the free surface given by eq. 9.

To get an analytical solution of Ω𝑑𝑚(𝑦, 𝑧), we represent the wall velocity profile given by 𝑈𝑚(𝑧) as
a Fourier series:

𝑈𝑚(𝑧) = 𝛼0𝑚 +

∞∑︁
𝑘=1

𝛼𝑘𝑚 cos(𝑘𝜋(𝑧 + ℎ)/ℎ), (13)

where the Fourier coefficients 𝛼0𝑚 and 𝛼𝑘𝑚 are found by:

𝛼0𝑚 =
1

ℎ

∫︁ 0

−ℎ

𝑈𝑚(𝑧)𝑑𝑧 = 2
𝐿

ℎ𝑚𝜋
sin2(

𝑚𝜋ℎ

2𝐿
),

𝛼𝑘𝑚 =
2

ℎ

∫︁ 0

−ℎ

𝑈𝑚(𝑧) cos(𝑘𝜋(𝑧 + ℎ)/ℎ)𝑑𝑧 =
2𝐿

𝜋

𝑘𝐿 sin(𝜋𝑘)𝑠𝑖𝑛(𝑚𝜋ℎ
𝐿 ) + ℎ𝑚(−1)𝑘𝑐𝑜𝑠(𝑚𝜋ℎ

𝐿 ) − ℎ𝑚

𝐿2𝑘2 − ℎ2𝑚2
.

Faltinsen (2009, p. 224-225) have presented the following analytical solution

Ω𝑑𝑚(𝑦, 𝑧) = −𝛼0𝑚

2𝑙
((𝑦 − 0.5𝑙)2 − (𝑧 + ℎ)2) −

∞∑︁
𝑘=1

𝛼𝑘𝑚ℎ

𝑘𝜋
cos(𝑘𝜋(𝑧 + ℎ)/ℎ)

cosh(𝑘𝜋(𝑦 − 0.5𝑙)/ℎ)

sinh(𝜋𝑘𝑙/ℎ)
(14)

We must in the end ensure that the total velocity potential satisfies the dynamic and kinematic free
surface conditions as given by eq. 7-8. This set up a relation between the generalized coordinates 𝛽𝑛(𝑡)
and 𝑅𝑛(𝑡), determines 𝐶(𝑡) and derives ordinary differential equations for the generalized coordinates
𝛽𝑛. To find a relation between the generalized coordinates 𝛽𝑛(𝑡) and 𝑅𝑛(𝑡), the kinematic boundary
condition is multiplied with cos(𝜋𝑛(𝑥 + 0.5𝑙)/𝑙) for 𝑛 ≥ 1 and integrated from −𝑙/2 to 𝑙/2. It follows
that

�̇�𝑛(𝑡) = 𝜅𝑛𝑅𝑛(𝑡) (15)

where 𝜅𝑛 is

𝜅𝑛 =
𝜔2
𝑛

𝑔
=

𝜋𝑛

𝑙
tanh(

𝑛𝜋

𝑙
ℎ) (16)

with 𝜔𝑛 as the natural sloshing frequencies for the rigid tank.
To find ˙𝐶(𝑡) we integrate the dynamic free surface condition (eq. 8) over the free surface. The

result is:

˙𝐶(𝑡) = −
∞∑︁

𝑚=1

Ω𝑑𝑚𝜈𝑚(𝑡) − 𝑔

𝑙

∑︁
𝑚=1

𝜈𝑚(𝑡)

∫︁ 0

−ℎ

𝑈𝑚(𝑧)𝑑𝑧 (17)

where

Ω𝑑𝑚 =
1

𝑙

∫︁ 𝑙
2

− 𝑙
2

Ω𝑑𝑚(𝑦, 0)𝑑𝑦 = −𝛼0𝑚

2𝑙
(
𝑙2

3
− ℎ2) −

∞∑︁
𝑘=1

𝛼𝑘𝑚ℎ2

𝑙𝑘2𝜋2
(−1𝑘).

The ordinary differential equations for 𝛽𝑛(𝑡) follows by multiplying eq. 8 with cos(𝜋𝑛(𝑥 + 0.5𝑙)/𝑙)
for 𝑛 ≥ 1 and integrating from −𝑙/2 to 𝑙/2. The result is

𝛽𝑛 + 𝜔2
𝑛𝛽 = −𝛾2𝑛

𝜇𝑛
𝜂2 −

∑︁
𝑚

𝛾𝑑𝑛𝑚
𝜇𝑛

𝜈𝑚(𝑡) for 𝑛 = 1, 2.., (18)
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where

𝜇𝑛 =
𝜌𝑙

2𝜅𝑛
,

𝛾2𝑛
𝜌𝑤

=

(︂
𝑙

𝑛𝜋

)︂2

[(−1)𝑛 − 1], (19)

𝛾𝑑𝑛𝑚
𝜌

= −𝛼0𝑚
𝑙2

𝜋2𝑛2
− 1

𝜋2

∞∑︁
𝑘=1

𝛼𝑘𝑚(−1)𝑘𝑙2ℎ2

𝑙2𝑘2 + ℎ2𝑛2
. (20)

Here 𝛾𝑑𝑛𝑚 and 𝛾2𝑛 are the hydrodynamic coefficients assosiated with the wall deformations and sway
motion, respectively.

Based on the found Φ, the linear dynamic pressure 𝑝 on the 2D membrane is :

𝑝 = −𝜌𝑤
𝜕Φ

𝜕𝑡
(− 𝑙

2
, 𝑧) (21)

= −𝜌𝑤

(︂ ∞∑︁
𝑚=1

(Ω𝑑𝑚(− 𝑙

2
, 𝑧) − Ω𝑑𝑚)𝜈𝑚(𝑡) − 𝑙

2
𝜂2(𝑡) +

∞∑︁
𝑛=1

𝛽𝑛(𝑡)

𝜅𝑛
𝜑𝑛(− 𝑙

2
, 𝑧) − 𝑔

𝑙

∞∑︁
𝑚=1

∫︁ 0

−ℎ

𝑈𝑚(𝑧)𝑑𝑧𝜈𝑚(𝑡)

)︂
where 𝜌𝑤 is the liquid density. The last part of the pressure contribution comes from 𝐶(𝑡) and is
a quasi-steady hydrostatic pressure change due to the change in mean free surface position. This
pressure part is added in Malenica et al. (2015), but should not as long as one solves a boundary value
problem with the same free-surface condition as stated in eq. 7 and eq. 8. An additional confirmation
is that we show later, by a numerical solution using the same free surface conditions and the dynamic
pressure given as −𝜌𝑤𝜕Φ/𝜕𝑡, that we get the same results as with the analytical solution.

Ordinary differential equations for the structural mode amplitudes 𝜈𝑚 can now be found by mul-
tiplying eq. 1 with the mode 𝑈𝑗(𝑧) and integrating from 𝑧 = −ℎ to 𝑧 = 𝐿− ℎ. This gives

𝜈𝑗(𝑡) + 𝜆2
𝑚𝜈𝑗(𝑡) =

𝜌𝑤
𝜇

∫︁ 0

−ℎ

𝜕Φ

𝜕𝑡
(− 𝑙

2
, 𝑧)𝑈𝑗(𝑧)𝑑𝑧, (22)

where the generalized modal mass, is 𝜇 = 𝜌𝑐𝑑𝐿/2. The term on the right hand side of eq. 22 can be
rewritten in terms of generalized added mass and restoring coefficients by the following definitions:∫︁ 0

−ℎ

∞∑︁
𝑚=1

(Ω𝑑𝑚(− 𝑙

2
, 𝑧) − Ω𝑑𝑚)𝑈𝑗(𝑧)𝑑𝑧𝜈𝑚(𝑡) = −

∞∑︁
𝑚=1

𝑎
(Ω)
𝑚𝑗

𝜌𝑤
𝜈𝑚(𝑡) (23)

∫︁ 0

−ℎ

∞∑︁
𝑛=1

𝛽𝑛(𝑡)
cosh(𝜋𝑛(𝑧 + ℎ)/𝑙)

𝜅𝑛 cosh(𝜋𝑛ℎ/𝑙)
𝑈𝑗(𝑧)𝑑𝑧 = −

∞∑︁
𝑛=1

𝑎
(𝜑)
𝑛𝑗

𝜌𝑤
𝛽𝑛(𝑡) (24)

𝑔

𝑙

∞∑︁
𝑚=1

∫︁ 0

−ℎ

𝑈𝑚(𝑧)𝑑𝑧

∫︁ 0

−ℎ

𝑈𝑗(𝑧)𝑑𝑧𝜈𝑚(𝑡) =
∑︁
𝑚=1

𝑐𝑚𝑗

𝜌𝑤
𝜈𝑚(𝑡) (25)

𝑙

2

∫︁ 0

−ℎ

𝑈𝑗(𝑧)𝑑𝑧𝜂2(𝑡) =
𝛾2𝑗
𝜌𝑤

𝜂2(𝑡) (26)

Superscripts are used on the coupled added mass coefficients 𝑎
(Ω)
𝑚𝑗 and 𝑎

(𝜑)
𝑛𝑗 to indicate that they are

associated with Ω and 𝜑, respectively. The consequences are that 𝑎
(Ω)
𝑚𝑗 is frequency independent while

𝑎
(𝜑)
𝑛𝑗 is frequency dependent. 𝑎

(Ω)
𝑚𝑗 provide coupling between the structural modes, while 𝑎

(𝜑)
𝑛𝑗 provide

coupling between the structural and sloshing modes. The restoring coefficients 𝑐𝑚𝑗 are associated with
quasi- static hydrostatic pressure change due to mean free-surface change described by the first term in
the Fourier series (eq. 9) for the free surface elevation. The coefficients 𝛾2𝑗 are proportional to coupled
generalized added mass between sway and structural modes. The calculation of and expression for the
different parts of the pressure contribution is given in the appendix (eq. A.1- eq. A.4).
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The total equation for the 2D membrane becomes:

𝜈𝑗(𝑡) +
∑︁
𝑚

1

𝜇
𝑎
(Ω)
𝑚𝑗 𝜈𝑚(𝑡) + 𝜆2

𝑚𝜈𝑗(𝑡) +
∑︁
𝑚

𝑐𝑚𝑗

𝜇
𝜈𝑚(𝑡) = −

∑︁
𝑛

𝑎
(𝜑)
𝑛𝑗

𝜇
𝛽𝑛(𝑡) − 𝜂2(𝑡)

𝛾2𝑗
𝜇

. (27)

From eq. 27 it can be seen that the response of a given mode 𝑗 is dependent on all the other modes,
both structural modes, and free surface modes.

It follows from Greens second identity, boundary conditions on mean free surface 𝑆𝐹 and mean
wetted surface 𝑆𝐵 and 𝑛 as the normal direction to these surfaces that∫︁

𝑆𝐹+𝑆𝐵

[︂
(Ω𝑑𝑚(−𝑙/2, 𝑧) − Ω𝑑𝑚)

𝜕Ω𝑑𝑗(−𝑙/2, 𝑧)

𝜕𝑛
− (Ω𝑑𝑗(−𝑙/2, 𝑧) − Ω𝑑𝑗)

𝜕Ω𝑑𝑚(−𝑙/2, 𝑧)

𝜕𝑛

]︂
𝑑𝑆

=

∫︁ 0

−ℎ

[︂
(Ω𝑑𝑚(−𝑙/2, 𝑧) − Ω𝑑𝑚)𝑈𝑗(𝑧) − (Ω𝑑𝑗(−𝑙/2, 𝑧) − Ω𝑑𝑗)𝑈𝑚(𝑧)

]︂
𝑑𝑧 = 𝑎

(Ω)
𝑚𝑗 − 𝑎

(Ω)
𝑗𝑚 = 0.

That means find that 𝑎
(Ω𝑑)
𝑚𝑗 = 𝑎

(Ω𝑑)
𝑗𝑚 . By exchanging the mode 𝑈𝑗 with the Fourier representation in

eq. 24, we find that 𝑎𝜑𝑛𝑗 = 𝛾𝑑𝑛𝑗 .

2.2. Analytical frequency-domain solution

We solve both the tank and the 2D membrane problem in the frequency domain, by substituting
𝜈𝑚 = 𝜈𝑚 exp(𝑖𝜔𝑡) and 𝛽𝑛 = 𝛽𝑛 exp(𝑖𝜔𝑡) with 𝜔 as the forcing frequency in eq. 18 and eq. 27. The
result is

(𝜔2
𝑛 − 𝜔2)𝛽𝑛 − 𝜔2

∑︁
𝑚

𝛾𝑑𝑛𝑚
𝜇𝑛

𝜈𝑚 =
𝛾2𝑛
𝜇𝑛

𝜔2𝜂2 (28)

−𝜔2
∑︁
𝑛

𝑎𝜑𝑛𝑗
𝜇

𝛽𝑛 + (𝜆2
𝑚 − 𝜔2)𝜈𝑗 +

∑︁
𝑚

1

𝜇
(𝑐𝑗𝑚 − 𝜔2𝑎

(Ω)
𝑚𝑗 )𝜈𝑚 = 𝜔2 𝛾2𝑗

𝜇
𝜂2 (29)

2.2.1. Estimating the eigenfrequencies of the system

If we combine 28 and 29 we get:

−
∑︁
𝑛

∑︁
𝑚

𝜔4𝑎𝜑𝑛𝑗𝛾𝑑𝑛𝑚

𝜇𝜇𝑛(𝜔2
𝑛 − 𝜔2)

𝜈𝑚 + (𝜆2
𝑚 − 𝜔2)𝜈𝑗 +

∑︁
𝑚

𝑐𝑗𝑚 − 𝜔2𝑎
(Ω)
𝑚𝑗

𝜇
𝜈𝑚 =

𝜔2

𝜇
(𝛾2𝑗 −

∑︁
𝑛

𝜔2𝑎𝜑𝑛𝑗𝛾2𝑛

𝜇𝑛(𝜔2
𝑛 − 𝜔2)

)𝜂2.

(30)

The natural frequencies of the system is found by looking at the nontrivial solution of eq. 30 for zero
excitation (𝜂2 = 0). For a given mode 𝑗 we can see that there are coupling to other modes both in
the structural modes (𝑚) and for the sloshing (modes 𝑛). The coupling causes the natural frequencies
𝜔*
𝑛 to differ from the natural frequencies 𝜔𝑛 of the rigid tank. Equation 30 will have two limits when

it comes to tension 𝑇 . When tension 𝑇 → ∞, the dry structural natural frequencies 𝜆𝑚 → ∞, and
30 reduces to 𝜔*

𝑛 = 𝜔𝑛. Meaning that the eigenfrequencies of the system become the eigenfrequencies
of the sloshing problem. On the other hand when 𝑇 = 0, the system still have stiffness from the free
surface stiffness term 𝑐𝑚𝑚, meaning that 𝜔*

𝑛 > 0 also for the case of zero tension. However, this is a
case where the linear 2D membrane theory as described here is not valid, as bending is neglected and
will have an influence in reality.

A first estimate of the coupled eigenfrequency of the tank with the elastic wall is that we neglect the
coupling effect between structural modes, and only considers one structural mode, together with one

free surface mode. We introduce the following wet 2D membrane eigenfrequency as 𝜆*
𝑚 =

√︂
𝜇𝜆2

𝑚+𝑐𝑚𝑚

𝜇+𝑎
(Ω)
𝑚𝑚

.

Here 𝑎Ω𝑚𝑗 is used to estimate the added mass effect. This gives:(︂
− 𝜔4 𝑎

(𝜑)
𝑛𝑚𝛾𝑑𝑛𝑚

𝜇𝑛(𝜇 + 𝑎
(Ω)
𝑚𝑚)

+ (𝜔2
𝑛 − 𝜔2)(𝜆*

𝑚
2 − 𝜔2)

)︂
𝜈𝑚 = 0. (31)
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Equation 31 is a fourth order directly solvable equation with two possible positive solutions for
every parameter combination. An estimate of the first two possible eigenfrequencies, based on the first
structural mode (𝑗 = 1) and the first free surface mode (𝑛 = 1) are found by:

𝜔𝑒𝑠𝑡
1𝑠 , 𝜔𝑒𝑠𝑡

2𝑠 =

⎯⎸⎸⎸⎸⎸⎷𝜎2
1 + 𝜆*

1
2 ∓

√︂
(𝜎2

1 + 𝜆*
1
2)2 − 4(1 − 𝑎

(𝜑)
11

𝜇+𝑎
(Ω)
11

𝛾𝑑11

𝜇1
)𝜎2

1𝜆
*
1
2

2(1 − 𝑎
(𝜑)
11

𝜇+𝑎
(Ω)
11

𝛾𝑑11

𝜇1
)

(32)

2.3. Numerical solution

A numerical solution using the Harmonic Polynomial Cell (HPC) method has been implemented.
The HPC method is a field method initially described by Shao and Faltinsen (2014a,b) to solve the
Laplace equation with boundary conditions for an unknown velocity potential. In the HPC method, the
local expression of the velocity potential within a cell uses harmonic polynomials. Hence, the governing
equation is satisfied naturally. The connectivity between different cells is built by overlapping the local
expressions. A key feature of the HPC method is in using higher-order local expressions satisfying
Laplace equation, which means that we can expect a better accuracy than for many other low order
field and boundary integral formulations presently used. Moreover, the HPC method operates with
a sparse coefficient matrix, so that many existing numerical matrix solvers can solve the associated
problem efficiently.

The solution by the HPC method is based on representing the velocity potential as

Φ =

𝑀∑︁
𝑚=0

𝜑𝑚�̇�𝑚 (33)

where 𝑣0 = 𝜂2 and 𝑈0 = 1 and 𝜑𝑚 satisfy the body boundary condition

𝜕𝜑𝑚

𝜕𝑦

⃒⃒⃒⃒
𝑦=−𝑙/2

= 𝑈𝑚(𝑧) (34)

together with homogenous Neumann conditions at 𝑦 = 𝑙/2 for 𝑚 ≥ 1 and 𝜕𝜑0𝜕𝑦 = 1 at 𝑦 = 𝑙/2,
homogenous Neumann conditions at 𝑧 = −ℎ and the combined free surface condition following from
eq. 7 and eq.8. The 2D membrane is solved numerically by a modal representation, as for the analytical
solution, where the deformation is given by eq. 5. Eq. 22 is used to find 𝜈𝑗 by first expressing the
right hand side in terms in terms of generalized added mass coefficients 𝑎𝑗𝑚 defined as follows

𝜌𝑤

∫︁ 0

−ℎ

𝜕Φ

𝜕𝑡
𝑈𝑗(𝑧)𝑑𝑧 = −

𝑀∑︁
𝑚=0

𝑎𝑗𝑚𝜈𝑚, 𝑗 = 1..𝑀 (35)

𝑎𝑗𝑚 = −
∫︁ 0

−ℎ

𝜑𝑚𝑈𝑗(𝑧)𝑑𝑧 (36)

Simpson’s integration method is used. The expressions are controlled by using that 𝑎𝑗𝑚 = 𝑎𝑚𝑗 for
𝑗 between 1 and 𝑀 . The latter follows by using Green’s second identity∫︁

𝑆𝐹+𝑆𝐵

[︂
𝜑𝑗

𝜕𝜑𝑚

𝜕𝑛
− 𝜑𝑚

𝜕𝜑𝑗

𝜕𝑛

]︂
𝑑𝑆

together with boundary conditions on the mean the free surface 𝑆𝐹 and on the mean wetted tank
surface 𝑆𝐵 and using that 𝜕/𝜕𝑛 means derivative along surface normal.
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Figure 2: Non-dimensional eigenfrequencies of the coupled system eigenfrequencies 𝜔*
𝑛

√︀
𝑙/𝑔 for given stiffness 𝑘ℎ/ 1

2
𝜌𝑤𝑔ℎ2

for a rectangular tank with a rigid moving left wall. 𝜔𝑛 is the sloshing eigenfrequency for the rigid tank. Water depth
(h)-to- l tank length ratio=0.5.

3. Case simulation results

To better get an understanding of how the system behaves, two main test cases have been run. For
both cases, a 2D sloshing tank is used. The water depth-to-tank length ratio ℎ/𝑙 is 0.5. Furthermore,
wall thickness-to-tank length ratio is 𝑑/𝑙 = 2.5 ·10−3 and water density to solid wall density is 𝜌𝑤/𝜌𝑐 =
1. The fist case is with a rigid movable left wall with a spring attached, as described by Lu et al.
(1997) and Chai et al. (1996). The second case is with a membrane left wall.

3.1. Case simulation results, movable wall

A special case of what we consider is that the wall moves as a rigid body, which corresponds to
𝑈𝑚 = 1. This case have earlier been studied by Lu et al. (1997) and Chai et al. (1996). The relations in
the coupled system is given by eq. 30 with the coefficients for this particular system given as 𝜇 = 𝜌𝑐𝑑ℎ,

𝜆2
𝑘 = 𝑘/𝜇, where 𝑘 is a spring stiffness and the coefficients 𝑐𝑟𝑤 = 𝜌𝑤𝑔ℎ2

𝑙 , 𝑎𝑟𝑤,(Ω) = 𝜌𝑤ℎ
3𝑙 (𝑙2 + ℎ2) and

𝑎𝑟𝑤,(𝜑)𝛾𝑟𝑤
𝑑 = 𝜌𝑤

2𝑙2

(𝑛𝜋)3 tanh(𝑘𝑛ℎ), where 𝑟𝑤 stands for rigid wall.

The eigenfrequencies for the analytical solution has been estimated as a function of the spring stiff-
ness 𝑘 by considering when the determinant of the coupled system becomes zero. The non-dimensional
eigenfrequencies 𝜔*

𝑛

√︀
𝑙/𝑔 of the system for different stiffness, for the case where the wall moves as a

rigid body is plotted in figure 2. The analytical and the numerical solution based on the HPC method
give the same eigenfrequencies. These eigenfrequencies also agree with the eigenfrequencies found by
the method of Lu et al. (1997).The eigenfrequencies 𝜔*

𝑛 are dependent on the spring stiffness 𝑘. From
figure 2 we see that 𝜔*

𝑛 ≤ 𝜔𝑛 as analytically shown by Schulkes (1990). When 𝑘 → 0, the dry eigenfre-
quency 𝜆𝑘 → 0, but since the coupled fluid structure problem still have stiffness from the free surface
stiffness term 𝑐𝑟𝑤, the first eigenfrequency 𝜔*

1 is finite.

3.2. Case simulation results, flexible wall

A test case with a flexible membrane wall with two different membrane wall lengths 𝐿 (𝐿 = ℎ and
𝐿 = ℎ), and different tensions were then investigated.
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Figure 3: Non-dimensional eigenfrequencies of the coupled system eigenfrequencies 𝜔*
𝑛

√︀
𝑙/𝑔 for given tensions 𝑇/𝑇0

where 𝑇0 = 1
2
𝜌𝑤𝑔ℎ2 for a rectangular tank with a membrane at the left wall. 𝜔𝑛 is the sloshing eigenfrequency for the

rigid tank. Water depth (h)-to- l tank length ratio=0.5. Membrane length left: 𝐿 = ℎ. Right: 𝐿 = 2ℎ.

3.2.1. Eigenfrequencies of the coupled system

The eigenfrequencies for the analytical solution have been estimated as a function of the tension 𝑇
by considering when the determinant of the coupled system becomes zero. Even though the hydrostatic
pressure is not applied to the system, the hydrostatic pressure force equal to 𝐹𝑠 = 1

2𝜌𝑤𝑔ℎ
2 is a real

physical quantity to compare the amount of tension applied to the system too. We therefore define
𝑇0 = 𝐹𝑠 = 1

2𝜌𝑤𝑔ℎ
2 and use 𝑇/𝑇0 which is a ratio between the tension forces and the hydrostatic

pressure forces. Converged results have been obtained by increasing numbers 𝐽 of structural modes
and numbers 𝑁 of generalized free-surface coordinates. The non-dimensional eigenfrequencies 𝜔*

𝑛

√︀
𝑙/𝑔

of the system for different tensions 𝑇/𝑇0 ∈ [5·10−3, 10], for 2D membrane lengths ℎ/𝐿 = 1 and ℎ/𝐿 = 2
are plotted in figure 3.

The eigenfrequencies of the system are highly dependent on both the tension and the 2D membrane
length. If we consider a given value of 𝑇/𝑇0, then the eigenfrequency 𝜔

*
𝑛 of the coupled system is smaller

than the sloshing frequency 𝜔𝑛 of the rigid tank for any given 𝑛. When 𝑇/𝑇0 → ∞, 𝜔*
𝑛 → 𝜔𝑛. If 𝑇/𝑇0

is small, and we consider a given 𝜔𝑛, then there can be more than 𝑛 eigenfrequencies of the coupled
system that is lower than 𝜔𝑛.

The first mode eigenfrequency of the system, from free surface mode 𝑛 = 1, and structural mode
𝑗 = 1 can be nicely estimated with 𝜔𝑒𝑠𝑡

1𝑠 , as can be seen from figure 2. The line of 𝜔𝑒𝑠𝑡
2𝑠 is not plotted

in the figure, and that is because it did not fit with the system frequencies. The higher 𝜔*
𝑛 are

not direct solutions of eq. 32 with other 𝑛, 𝑗 combinations, which indicates that these frequencies
depend on more than one set of (𝑛, 𝑗) terms. This result was expected since the rigid tank sloshing
frequencies are located so closely together that it is plausible that more than one will influence the
coupled eigenfrequency 𝜔*

𝑛 for 𝜔*
𝑛 > 𝜔1. The figure shows that lower eigenfrequencies 𝜔*

𝑛 than 𝜔𝑒𝑠𝑡
1𝑠

exist for the two lowest investigated tensions 𝑇/𝑇0.
If the eigenfrequencies of the flexible membrane in figure 3 are compared to the eigenfrequencies

of the rigid moving wall case displayed in figure 2, we see that one eigenfrequency 𝜔*
𝑛 converges to

𝜔*
𝑛

√︀
𝑙/𝑔 ≈ 1, for both the rigid movable wall and for the flexible membrane case when respectively 𝑇

and 𝑘ℎ → 0 for the studied case. However, it is not general that this eigenfrequency of the system
is close to

√︀
𝑔/𝑙, when 𝑇 → 0. The similarity of the eigenfrequencies can be explained as follows: In

eq. 13 we represent the deformation mode as a Fourier series. If the constant term 𝛼0𝑚 gives a much
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larger contribution to the pressure for the first mode than the remaining terms, the effect would be
that solution of the case with the membrane wall will approach the solution of the rigid moving wall
case, for frequencies lower than the first sloshing frequency. Higher eigenfrequencies 𝜔*

𝑛 does not show
the same trend of being comparable.

For 𝑇 > 0.1𝑇0 the eigenfrequencies appear to be converged within the frequency range for number
of structural modes 𝐽 ≥ 3 for both the 2D membrane lengths. However, as the tension decreases more
structural modes come into play. For the coupled analysis it was observed that as long as 𝐽,𝑁 ≥ 6,
the eigenfrequencies of the system did not change with increasing 𝑁, 𝐽 for the given tension interval.
This result would indicate that all the eigenfrequencies for the studied cases are within the first six
eigenmodes.

3.2.2. Transfer function of free surface elevation of the coupled system

The analytical and numerical ratios 𝜁𝑎/𝜂2𝑎 (transfer function) between the wave amplitude at the
right wall and the sway amplitude versus non-dimensional forcing frequency 𝜔

√︀
𝑙/𝑔 are plotted for the

membrane length 𝐿 = ℎ and 𝐿 = 2ℎ in Figure 4 and 5, respectively. The non-dimensional tensions
𝑇/𝑇0 = 1

4 ,
1
2 , 1 and 2 are examined. The analytical and numerical solutions agree very well, which

support the correctness of both of them. Similar as for the eigenfrequencies plotted in figure 3 we
see that the transfer functions are dependent on the tension in the system. The response goes to
infinity at the eigenfrequencies of the system. If a rigid tank is considered, the system will have five
eigenfrequencies in the considered frequency range. However, 𝜔2 and 𝜔4 correspond to even modes,
and resonance oscillations at the right wall at these frequencies cannot be excited. For the tank with
a flexible wall, we note resonant response at six eigenfrequencies for 𝑇/𝑇0 = 1

4 and 𝑇/𝑇0 = 1
2 and

𝐿 = 2ℎ. There are five eigenfrequencies for the other considered cases. When 𝐿 = ℎ, very narrow
resonant response occurs close to 𝜔2 with 𝑇/𝑇0 = 1

2 , 1 and 2, and close to 𝜔4 with 𝑇/𝑇0 = 1 and 2.
When 𝐿 = 2ℎ, very narrow resonant response occurs close to 𝜔2 with 𝑇/𝑇0 = 1 and 2. A large response
is seen also between 𝜔3 and 𝜔4 for 𝑇/𝑇0 = 1

2 for 𝐿 = ℎ, and between 𝜔3 and 𝜔5 for 𝑇/𝑇0 = 1
2 and

1, for 𝐿 = 2ℎ. The response of the free surface rises to infinity at the eigenfrequencies, in agreement
with linear potential flow theory of incompressible liquid.

More modes are needed in the analytical solution for the transfer function compared to the analysis
of the eigenfrequencies to find the correct amplitude. In the calculation of the transfer function, 30
generalized free-surface coordinates 𝛽𝑛 were used.

In the numerical solution, a square grid (𝑑𝑥 = 𝑑𝑧) with 𝑁𝑥 = 101 nodes in the free surface were
used. A convergence study has been run, and the results are converged. It was observed that for low
tensions (𝑇 < 1

4𝑇0) peaks in the transfer function showed up in the solution at the eigenfrequencies
of the tank. These peaks vanished when the grid was refined. This cancellation effect can be seen by
looking at eq. 30. When 𝜔 → 𝜔𝑛, the first and the last term in the eq. 30 will be much larger than
the rest. Also, it can be assumed that the contributions from the given mode n, will be far greater
than the other modes, reducing eq. 30 at the frequency limit 𝜔 → 𝜔𝑛 to:∑︁

𝑚

𝛾𝑑𝑛𝑚𝜈𝑚 = 𝛾2𝑛𝜂2, (37)

which means that at the sloshing eigenfrequency of the rigid tank, the resonance cancels and we
get a frequency independent relation between the forced sway and the deformation. The practical
implications of this are that for frequencies around the sloshing eigenfrequency of the rigid tank, a
more refined grid is needed for this canceling effect to happen. If care is not shown in the numerical
solution, numerical inaccuracies can cause unphysical resonances. It was the fact that we had the
analytical solution that pointed out this numerical problem for the direct solution of the boundary
value problem.
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Figure 4: The analytical and numerical ratio
𝜁(𝑙/2)
𝜂2𝑎

between the wave amplitude at the right wall (𝜁(𝑙/2))and the sway

amplitude 𝜂2𝑎 versus non-dimensional forcing frequency 𝜔
√︀

𝑙/𝑔 for forced sway oscillation of a rectangular tank with
a membrane as the left wall. Water depth (h)-to- l tank length ratio=0.5. Membrane length 𝐿 = ℎ. Influence of
non-dimensional membrane tension 𝑇/𝑇0 where 𝑇0 = 1

2
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Figure 5: The analytical and numerical ratio
𝜁(𝑙/2)
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between the wave amplitude at the right wall (𝜁(𝑙/2))and the sway

amplitude 𝜂2𝑎 versus non-dimensional forcing frequency 𝜔
√︀

𝑙/𝑔 for forced sway oscillation of a rectangular tank with
a membrane as the left wall. Water depth (h)-to- l tank length ratio=0.5. Membrane length 𝐿 = 2ℎ. Influence of
non-dimensional membrane tension 𝑇/𝑇0 where 𝑇0 = 1

2
𝜌𝑤𝑔ℎ2 .
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4. Conclusion and further work

A 2D rectangular sloshing tank with a flexible sidewall have been studied analytically and numeri-
cally, with a focus on coupling effects between sloshing and the flexible wall. Analytical and numerical
solutions agree. The two cases are: one case with a rigid movable left wall with a spring attached. The
second case is the tank with a flexible membrane left wall for different tensions and two different 2D
membrane lengths (𝐿 = ℎ and 𝐿 = ℎ).

The eigenfrequencies of the system with a flexible membrane left wall, rely heavily on both tension
and 2D membrane length. Number 𝑛 eigenfrequency is lower than number 𝑛 eigenfrequency of the
rigid tank for finite tension. For low tensions, more than one eigenfrequency may exist between two
neighbouring sloshing frequencies for the rigid tank. For large tensions, the eigenfrequencies of the
system become the sloshing frequency of a rigid tank. For a given tension, one low eigenfrequency is
found to involve interaction only between the lowest structural mode and sloshing mode. The other
eigenfrequencies involve combinations of several structural and sloshing modes.

The analytical solution has provided important guidance for the numerical solution. If care is not
shown in the numerical solution, numerical inaccuracies can cause unphysical resonances.

By comparing the analytical solution with the numerical solution, it has been shown that it is
wrong to add a quasi-steady hydrostatic pressure change due to the time-dependent change in the
mean free surface caused by the elastic wall deformations.

The response of the coupled system is infinite at the eigenfrequencies of the system, in reality, the
amplitude must be finite. To find the actual response of the system, viscous damping and nonlinear
free surface effects should be included; this is left for further work. In continuation of the presented
work, we wish to use the gained knowledge and the validated numerical code to analyze the response
of a semi-circular closed flexible fish cage in waves.
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Appendix A.

The different parts of the pressure contribution on the membrane with modes are calculated as:∫︁ 0
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