
Climbing Mont Blanc - Back-end
Improvements

Fredrik Pe Ingebrigtsen

Master of Science in Computer Science

Supervisor: Lasse Natvig, IDI
Co-supervisor: Waqar Hussain, IDI

Sindre Magnussen, Itera

Department of Computer Science

Submission date: July 2017

Norwegian University of Science and Technology

Climbing Mont Blanc - Backend Improvements

Climbing Mont Blanc (CMB) is a system for evaluation of programs executed on modern
heterogeneous multicores, such as the Exynos Octa chips used in Samsung Galaxy S5 and
S6 mobile phones. CMB evaluates both performance and energy efficiency, and provides
the possibility of performance ranking lists and online competitions.

The system is available and under trial use. This master thesis project is focused at improv-
ing the more low-level aspects of the system, i.e., execution of code on the XU3-boards
(backend).

The project has the following goals:

1. Generate and provide low level statistics for each submission.

2. Port bash scripts to Python.

3. Allow easier uploading of submissions (i.e., removing the requirement of uploading
a ZIP-file containing the source file(s)).

4. Show, with examples, how the new metrics (see item 1) can help users improve the
performance of their solutions.

5. Cleanup and improvements in the system architecture.

6. Analyze performance of parallel OpenMP programs.

7. Propose further improvements.

If time permits:

1. Create a integration test.

2. Improve general stability of the system.

The master thesis project is part of the EECS Strategic Research project
at IME (www.ntnu.edu/ime/eecs).

Main supervisor: Prof. Lasse Natvig

Co-supervisor: MSc Sindre Magnussen.

i

ii

Abstract

Energy efficiency in computing is becoming more and more important. With the rise of
smart phones, a whole new industry was born where having a more energy efficient system
would mean longer battery life and an edge over the competition. It has also recently been
an area of interest in High-Perfomance Computing (HPC). This has fuelled research and
development of heterogeneous multi-core architectures, utilizing different CPU cores to
do different tasks.

Utilizing heterogeneous architectures fully is a challenge both for the hardware and soft-
ware engineers. In Online judging systems, users can compete and learn while solving
problems, getting feedback on correctness and efficiency of their submissions. Climbing
Mont Blanc is an online judging system focusing on energy efficiency on heterogeneous
multi-cores, and is to our knowledge the only such system measuring energy efficiency,
aiming to provide an environment for education and practice in energy efficient program-
ming.

The CMB system currently reports time, energy and energy delay product (EDP) per sub-
mission. To assist users in performance tuning their solutions, and to give a better picture
of what the program execution looked liked, some more detailed low-level statistics were
wanted as user feedback. In addition, some general system architectural improvements
were needed to improve stability and ease of development. This thesis focuses improving
the system with regards to these goals.

iii

iv

Sammendrag

Energieffektivitet har i det siste blitt mer og mer viktig. Med fremgangen av smarttelefoner
har det vokst frem en helt ny industri, hvor energieffektivitet er særdeles viktig, spesielt
med tanke på batterilevetid. Det er også vokst frem en interesse for energieffektivitet innen
High-Performance computing (HPC). Dette har sammen inspirert mye ny forskning og nye
produkter, som heterogene multikjerner, der forskjellige kjerner har spesialiserte formål.

Hvordan man best benytter seg av disse nye arkitekturene er en utfordring for både hard-
ware of sowftware ingeniører. Online dømme systemer finnes der brukere kan konkurrere
og lære mens de løser ulike problemer, med tilbakemeldinger om korrekthet og ytelse.
Climbing Mont Blanc (CMB) er et slikt online dømme system, med fokus på energi ef-
fektivitet på heterogene multikjerner, og er, så vidt vi vet, det eneste systemet som måler
energibruk, med mål om og lage et miljø der brukerne kan utdanne og øve seg på å pro-
grammere energieffektive løsninger.

CMB foreløpig rapporterer tidsbruk, energibruk og energiutsettelsesprodukt (EDP) per
brukeropplasting. For å hjelpe brukerne med å justere løsningene sine, og for å gi et klarere
bilde av hva som skjer i løpet av kodekjøringen, har mer detaljerte lavnivå informasjon
vært ønsket av CMB teamet. I tillegg har noen mer generelle systemforbedringer vært
trengt, for å forbedre systemstabilitet og å forenkle utvikling. Denne oppgaven omhandler
forbedringen av CMB systemet i henhold til disse målene.

v

vi

Preface

This thesis was created to fulfill a MSc in computer science at the Norwegian University
of Science and Technology (NTNU), Trondheim. This work has been conducted at the
Department of Computer and Information Science NTNU in the spring of 2017, alongside
being employed as part of the course staff as a teaching assistant in TDT4102 [TDT17].

Acknowledgements

I would like to thank my supervisor Lasse Natvig for letting me contribute to the CMB
system, and for his constructive guidance and feedback throughout the semester. His pos-
itivity has been greatly appreciated.

I would also like to thank my co-supervisor Sindre Magnussen for his technical help along
the way, and always being available when I had questions. Explaining the system in the
beginning, and helping setting it up on my own PC saved me a lot of effort, not to mention
the code reviews he provided, which was of great benefit.

I addition, I would like to thank Jan Grønsberg for his help with the technical management
of the servers and databases.

vii

viii

x

Table of Contents

Problem Statement i

Abstract iii

Sammendrag v

Preface vii

Table of Contents xiii

List of Figures xvi

Abbreviations xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Goals . 2
1.3 Thesis Structure . 4

2 Background 7
2.1 The Mont Blanc Project . 7

2.1.1 Prototypes . 7
2.2 Climbing Mont Blanc . 8

2.2.1 Frontend . 8
2.2.2 Server . 9
2.2.3 Backend . 11
2.2.4 Energy Measurements . 13

2.3 OpenMP . 14
2.4 Profiling . 15

2.4.1 Valgrind . 16
2.4.2 VTune . 17
2.4.3 perf . 17

xi

2.4.4 Poor man’s profiler . 18
2.4.5 Flame Graph . 19

2.5 Related Work . 19
2.5.1 Online Judging Systems . 20
2.5.2 Crowdsourcing Sites . 21

3 CMB Improvements 23
3.1 Generating Low Level Statistics . 23

3.1.1 Backend . 24
3.1.2 Server . 25
3.1.3 Frontend . 25

3.2 Porting Bash Scripts to Python . 26
3.3 Allowing Different File Uploads . 27
3.4 Stability Improvements . 28

3.4.1 Push in Thread . 28
3.5 General Architectural Cleanup and Improvements 28

3.5.1 Removing the compiledSolutions Folder 28
3.5.2 Improvements to the backend run-script 29
3.5.3 Database Dump . 29

4 Results and Analysis 31
4.1 How the New Metrics can Assist Performance Tuning 31

4.1.1 Case study: Text Search . 31
4.1.2 Case study: The Shortest Path Problem 36

4.2 Analysis of OpenMP programs on the Odroid-XU3 39
4.2.1 Choosing CPU affinity manually 39
4.2.2 Performance of The Nasa Parallel Benchmarks on the Odroid-XU3 42

5 Stability 45
5.1 Measurement Accuracy . 45

5.1.1 Experiment setup and Methodology 45
5.1.2 Results and discussion . 46

5.2 System stability . 46

6 Discussion 49
6.1 Profiling . 49

6.1.1 Choosing the Profiler . 49
6.1.2 Limitations . 50

7 Conclusion and Future work 53
7.1 Conclusion . 53

7.1.1 Thesis Goals Achievement . 54
7.2 Future Work . 55

Bibliography 57

A Installation and Setup 61

xii

A.1 Backend Setup . 61
A.1.1 Installing perf on OdroidXU3 61
A.1.2 Flame graph . 62

B Quickstack and perf patches 63
B.1 Quickstack Patch for ARM processors 63
B.2 Linux Perf Tools Patch . 65

C Backlog 67

xiii

xiv

List of Figures

1.1 CMB system overview (taken from the master thesis of Follan and Støa
[TF15]). 1

2.1 CMB system architecture (taken from the master thesis of Magnussen
[Mag16]). 9

2.2 The main view of CMB. 10
2.3 A problem view on CMB. 11
2.4 Database schema (taken from Master Thesis of Follan and Støa [TF15]). . 12
2.5 Board details of Odroid-XU3 (from the Hardkernel webpage [OD17]). . . 13
2.6 Backend execution pipeline (slightly modified from Master Thesis of Fol-

lan and Støa [TF15]). 14
2.7 An example flame graph (taken from [FG17]). Green = Java, yellow =

C++, orange = kernel, red = user and system functions. 20

3.1 New database schema. Profiling table added, the allow profiling at-
tribute in the Problem table and the profiling data in the Submission
table . 26

3.2 Button for profiling a submission, and a button for displaying the profiling
data. 26

3.3 Page for displaying profiling data. 27

4.1 Profiling data for the initial solution. 32
4.2 Profiling data after removing the synchronization with the C streams. . . . 33
4.3 Profiling data using a hash-table instead of a red-black tree. 34
4.4 Profiling data for the initial shortest path solution. 36
4.5 Profiling data after switching to use a vector for storing the previous nodes. 37
4.6 Thread affinity specifications in OpenMP 4. In (a) all threads are in the

same place as master, in (b) close to master, and in (c) equally spread
among places. 39

4.7 Energy and time use of three NPB benchmarks on Odroid-XU3 43

xv

5.1 Measuring accuracy of a solution to the shortest path problem. 47
5.2 Stability of the Odroid XU-3 board, Gunicorn, and Push script. 1 means

online, 0 offline. 48

xvi

Abbreviations

MBP = Mont Blanc Project
CMB = Climbing Mont Blanc

HPC = High-Performance Computing
CPU = Central Processing Unit
OS = Operating System
API = Application Programming Interface

OJ = Online Judge

SSH = Secure Shell Login
SCP = Secure Copy
UFW = Uncomplicated Firewall

EDP = Energy-Delay Product

xvii

xviii

Chapter 1
Introduction

The Climbing Mont Blanc system is an online judge focusing on energy efficiency. The
system has been developed by master students at NTNU. In figure 1.1, an overview of the
system is shown. This thesis’ goals are improving various parts of the system, particularly
adding more feedback about performance.

Figure 1.1: CMB system overview (taken from the master thesis of Follan and Støa [TF15]).

In section 1.1 the motivation for this thesis is outlined, section 1.2 presents the goals in
detail, while section 1.3 explains the thesis structure.

1.1 Motivation

Energy efficiency in computing is becoming more and more important. With the rise of
smart phones, a whole new industry was born where having a more energy efficient system

1

Chapter 1. Introduction

would mean longer battery life and an edge over the competition. This has fuelled research
and development of heterogeneous multi-core architectures, utilizing different CPU cores
to do different tasks. One such example is the ARM big.LITTLE, which features four
smaller, energy efficient cores, and four larger compute cores [ABL17].

The Mont Blanc Project (MBP) is an effort to investigate and demonstrate the usefulness
of heterogeneous architecture in high-performance computing (HPC). Performance is the
main objective in HPC, but as the new commodity platforms become better, constructing
a supercomputer of such elements looks promising [RCG+13]. The MBP aims to create
a prototype said supercomputer, using less than 15 - 30x the energy of a regular super-
computer. If successful this would hugely decrease the cost of super-computing as the
electricity bill is often surpasses construction costs in a matter of years [FFG08].

Utilizing heterogeneous architectures fully is a challenge both for the hardware and soft-
ware engineers. Online judging systems (OJ) are platforms where users can compete and
learn while solving problems, getting feedback on correctness and efficiency of their sub-
missions. Climbing Mont Blanc (CMB) is an online judging (OJ) system focusing on
energy efficiency on heterogeneous multi-cores (the ARM big.LITTLE). To our knowl-
edge it is the only OJ measuring energy efficiency, and aims to provide an environment for
education and practice in energy efficient programming.

The CMB system currently reports time, energy and energy delay product (EDP) per sub-
mission. To assist users in performance tuning their solutions, and to give a better picture
of what the program execution looked liked, some more detailed low-level statistics were
wanted as user feedback. Such performance tuning is perhaps easier and can be done in
more detail on the users own machine before uploading, but because different architectures
greatly impacts code execution, metrics specific to the Odroid XU3 backend (described
further in section 2.2.3) is an advantage.

In addition, some general system architectural improvements were needed to improve sta-
bility and ease development. This thesis focuses improving the system with regards to
these goals, outlined in further detail in the next section.

1.2 Thesis Goals

In this thesis the goal is to further improve the CMB system following the goals mentioned
in the problem statement. They can be divided roughly in three categories: new features,
general system improvements, and analysis and demonstration.

2

1.2 Thesis Goals

New Features

1. Generate and provide low level statistics for each submission: This is the main
objective of this thesis, and involves generating a set of metrics that when provided to the
user will assist in performance tuning of submissions. Exactly what these should be is
an open question, and will be dependant on the particular problem, submission, among
other things. It is therefore an aim to provide statistics that will be useful in a number of
situations, like where CPU time is spent, memory usage, parallelization, and with regards
to energy efficiency - detailed energy use.

General System Improvements

2. Port Bash scripts to Python: The bash scripts used in the system had consistently
been a source of struggle to the CMB developers, and converting them to Python scripts
was believed to help with debugging and stability, as well allowing for their functionality
to be tested in the same testing framework as the rest of the system.

3. Improve general stability of the system: The server goes down from time to time,
and while it has been a simple enough task to restart it, investigating the cause of theses
failures and finding a solution would ease the administrative responsibilities.

4. Allow single source-file uploads: Magnussen in [Mag16], conducted a user study
where it was found that the format and structure of file uploads was unclear, and that
uploading of single source files was requested. Allowing single source-file uploads would
further increase usability of the site.

Analysis

5. Show, how the new metrics help users improve the performance of their solutions:
With the addition of more feedback, a demonstration of how they may help in performance
tuning is provided to assess their usefulness and suitability.

6. Analyze performance of parallel OpenMP programs: This includes a general
analysis of the performance and energy efficiency of OpenMP programs on the ARM
big.LITTLE heterogeneous multi-core, as well as an investigation of how the CPU affinity
features of OpenMP 4 is suited on the same architecture.

3

Chapter 1. Introduction

Other

7. Propose further improvements: A list of further possible improvements to the CMB
system should be proposed, delineating potential implementation details.

8. Create a integration test (if time permits): The CMB system lacks an integration
test, the inclusion of which would help development, detecting potential cross-unit bugs
not exposed by the unit tests.

1.3 Thesis Structure

This thesis is structured as follows:

Chapter 2: This chapter presents background theory. The MBP is introduced, a thor-
ough description of the current CMB system is presented, followed by an introduction to
OpenMP, an overview of profilers and what they do, as well as an examination of the most
known and popular online judges.

Chapter 3: Here the implementation details of the improvements added in this thesis
is described. This includes the implementation of the new low-level statistics, from the
backend to the frontend, the porting of Bash scripts to Python, allowing single source-file
upload, stability improvements, and some other general system improvements.

Chapter 4: This chapter demonstrates the use of the new metrics, and presents an analy-
sis of OpenMP performance on the Odroid XU3 board, including an examination the CPU
affinity features of OpenMP 4 and how they can be used in the NAS Parallel Benchmarks
to improve performance.

Chapter 5: The system stability is evaluated in this chapter, as well as an examination
of measurement accuracy, reproducing the results found by Follan and Støa in [TF15].

Chapter 6: This chapter contains a discussion of the choice of low-level statistics, in-
cluding the strengths and weaknesses of the possible choices, and the limitations of the
final implementation.

4

1.3 Thesis Structure

Chapter 7: In this chapter a conclusion to the thesis and proposals of further work is
presented.

5

Chapter 1. Introduction

6

Chapter 2
Background

In this chapter, the Mont Blanc Project is first presented in section 2.1, followed by an
in depth description of the Climbing Mont Blanc (CMB) system in section 2.2. Section
2.3 is an introduction to OpenMP, and section 2.4 explains what profilers are, giving some
well known examples. Finally in section 2.5, some existing work related to online judging
systems is presented.

2.1 The Mont Blanc Project

The Mont-Blanc project has from its beginning in 2011 aimed at developing a new type of
super-computer architecture, built from energy efficient solutions used in embedded and
mobile devices, capable of creating new global HPC standards. The project is coordinated
by the Barcelona Supercomputing Centre (BSC), with funding from the European Com-
mission. Starting the first phase of the project with a budget of 14 million, the project has
since then been extended for two more phases, the second from 2013-2016, and the current
third phase, coordinated by Bull, from 2015-2018.

2.1.1 Prototypes

The Mont-Blanc Project have created several prototypes, the two most notable are de-
scribed here.

7

Chapter 2. Background

Tibidabo was the first prototype created by the MB project. It is the worlds first ARM-
based HPC cluster, built using commodity off-the-shelf components that are not designed
for HPC [RRP+14]. The prototype contains compute-boards with NVIDIA Tegra 2 SoCs,
with dual core ARM Cortex A9 @ 1GHz inside. It achieves 120 MFLOPS/W on HPL,
competitive with AMD Operton 6128 and Intel Xeon X5660-based systems. The MB
project identified a an inefficiency in that the power taken by the components required to
integrate small low power dual-core processors offsets the high energy efficiency of the
cores themselves.

Mont Blanc is the latest prototype from the MB project [Ram14]. The Mont-Blanc
compute node is a Server-on-Module architecture. Each node is built around a Samsung
Exynos 5250 mobile SoC containing ARM Cortex-A15 CPUs at 1.7 GHz dual core config-
uration sharing 1 MB of on-die L2 cache, and a mobile ARM Mali-T604 GPU [RRM+16].
The performance is about 35 TFLOPS and the power consumption is about 24 kW. In
November 2014, the Mont Blanc Prototype had an energy eciency of 1.5 GFLOPS/W. The
best Green500 ranking during that time was approximately 5.2 GFLOPS/W.

2.2 Climbing Mont Blanc

Climbing Mont Blanc (CMB) is an online judging system developed by previous master
students at NTNU. Briefly put, it is a website containing various programming problems,
where users may upload solutions to check their validity and performance. The site has
been used for hosting exercises in various courses at NTNU. CMB is inspired by the Mont
Blanc project, and is as far as we know, the only such system where energy efficiency on
heterogeneous architecture is the main focus. The system was first prototyped by Torbjørn
Follan and Simen Støa in their master thesis [TF15]. The following year two more master
students continued developing the system, independently on two different parts. Chris-
tian Chavez examined in his master thesis the possibility of adding more backends to the
system, for improving scalability, by adding a dispatcher for serving submissions to differ-
ent backends [Cha16]. Sindre Magnussen improved the system usability, as well as other
enhancements including changing the database management system to MySQL [Mag16].
This thesis continues development of the system version Magnussen created. Figure 2.1
shows an overview of the CMB system architecture and communication flow.

2.2.1 Frontend

The frontend holds all the code for the graphical user interface at the website, and manages
communication with the server. It is a single-page web application, which only loads one
HTML page, and dynamically updates it according to user interaction. It is built using
AngularJS [AN17], which is a JavaScript-based open-source framework, maintained by
Google. The frontend uses the Model-View-Controller pattern, where each view presented

8

2.2 Climbing Mont Blanc

Figure 2.1: CMB system architecture (taken from the master thesis of Magnussen [Mag16]).

to the user has an associated controller, which retrieves data from the server to build a
model. When the user changes the model through the view, the controller is responsible
for updating its model as well as notifying the server with the new data. Figure 2.2 shows
the main view of CMB. Clicking on a problem switches to the problem view, shown in
figure 2.3, fetching related data from the server.

The frontend is hosted on the same physical machine as the server, but this is not a require-
ment. It uses the Node.js JavaScript run-time environment, which enables JavaScript to be
used on the server, e.g., as scripts to produce dynamic web page content before the page is
sent to the user’s web browser.

Communication with the server is done mainly by Hyper Text Transfer Protocol (HTTP)
requests that retrieves and delivers data to the server. Socket.io is used to allow real-time
automatic updates in the frontend. Socket.io is an API that based on type of client and
server automatically detects supported communication protocols, and sets up a ”socket”
for persistent communication. When this channel is initiated, the server can notify the
client when certain events happen (e.g. program compiled successfully), enabling real-
time updates to the frontend.

2.2.2 Server

The server uses Python FLASK, which is an implementation of a REpresentational State
Transfer [FT02] service in Python. A REST API satisfies certain constraints. It is stateless,
meaning the necessary state to handle the request is contained within the request itself.
Secondly, it has a uniform interface which ensures that requests are the same independently
of intermediate components. Furthermore, it provides a clear client-server separation,

9

Chapter 2. Background

Figure 2.2: The main view of CMB.

cacheableness of requests, and possibility of layering so that a client cannot tell if it is
directly connected to the server, or indirectly via some intermediary.

Other technologies used by the server includes: Gunicorn [GU17], a Python web server
gateway interface (WSGI) HTTP server for UNIX systems, NGINX [NG17], a reverse
proxy serving static files separately from dynamic content, which are forwarded to Guni-
corn, and MySQL [MyS01], the database of the system. The underlying database schema
is shown in Figure 2.4.

The admin frontend, found at the climb.idi.ntnu.no/admin endpoint, is hosted
by the server. This is an interface where admin users can inspect the database, and make
changes to it, such as deleting records or inserting new (for adding new problems). The ad-
min interface also facilitates changing problem visibility, adding/removing users or admin
users, amongst other things.

When the server receives submissions from the frontend, three steps are made. The server
first tries to compile the files, and emits a Socket.io message with the results. If compila-
tion exits without errors the files are stored in the file system. Lastly, an element is added
to the FIFO queue keeping track of submissions that are ready to be executed on the back-
end. When the server receives the results from the board, containing measurement data
as well as the program output, it performs a correctness check, updates the database, and
finally informs the client if the submission succeeded.

10

2.2 Climbing Mont Blanc

Figure 2.3: A problem view on CMB.

The push.py script

Because the backend can only execute one submission at a time, the aforementioned queue
is needed to handle the case where submissions are submitted faster than the backend is
able to execute them. Operating this queue is a Python script called push.py, which
is run as a background process in the server, continuously polling the submission queue,
and, if non-empty, notifies the client that the submission is about to be executed, copies the
corresponding submission files to the backend via SCP (Secure Copy), starts the backend
execution and measuring bash script via SSH, and waits for results. To make sure programs
that hangs (e.g., containing infinite loops) don’t clog the system, the SSH command exits
after a given timeout. Finally, it reports the results back to the server, before beginning the
whole procedure anew.

2.2.3 Backend

The backend is an Odroid-XU3 board [OD17], and is responsible for executing and mea-
suring the user-submitted code. The Odroid-XU3 board is one of the ARM-platforms
used in the Mont Blanc project [MBP17], and features the Samsung Exynos 5 Octa (5422)
[SE517], a System-on-Chip (SoC) with four ARM Cortex-A15 [A1517] and four ARM
Cortex-A7 [A717] cores. Thus, it is a heterogeneous multi-core solution, utilizing the
ARM big.LITTLE technology [ABL17], which enables the OS to perform Global-Task-
Scheduling to dynamically assign threads to the most appropriate CPU based on run-time
information. The GPU is a Mali-T628 [AM17] with support for OpenGL ES 3.0/2.0/1.1

11

Chapter 2. Background

Figure 2.4: Database schema (taken from Master Thesis of Follan and Støa [TF15]).

and OpenCL 1.1. This is also the SoC seen in the Samsung Galaxy S5 smartphone
[SG517].

In addition, the board has four integrated energy monitors, capable of measuring the power
consumption of the four A-15 CPUs, the four A-7 CPUs, the Mali GPU, and the DRAM
in real time. These monitors are used for the energy measuring described further in the
next section.

As stated previously, the push.py script copies the submission files over the backend,
and then starts a bash script over SSH. This run-script has several tasks. First it compiles
the code 1, returning prematurely if erroneous, then it performs the small correctness test.
The small correctness test is required by all problems, and provides a smaller version
of the original problem, so that faulty submissions does not consume unnecessary time.
Afterwards, if the test was successful, the initial conditions are set by first clearing the
cache, starting the energy monitor, setting CPU temperature, and finally starting the timer
(as is seen in figure 2.6). It then executes the program. These initial conditions are set to
ensure a fair trial for all submissions, and an analysis of the stability and variance between
different submissions were done in [TF15], and in section 5.1 an in depth inspection of
measurement accuracy is presented.

1As the system does not have a cross-compiler, the compilation at the server is not sufficient and the board
must also compile the code.

12

2.2 Climbing Mont Blanc

Figure 2.5: Board details of Odroid-XU3 (from the Hardkernel webpage [OD17]).

2.2.4 Energy Measurements

The Hardkernel website provides a program that reads the energy sensors and displays the
data [OD17]. After the cache is cleared and the CPU temperature is set, the energy monitor
program is started which continuously outputs energy readings, stored in a temporary file.
The user program is then executed, and when finished, the energy monitor stops. With the
time stamps used for measuring run-time, the relevant energy readings can be filtered and
integrated giving the total energy consumption of the user program. The server receives
the measured energy usage along with run time and correctness from the backend, and
calculates the Energy-Delay Product (EDP).

EDP = E ∗D (2.1)

Where E is energy used and D is the delay or execution time. In [HIG94], Gonzales
and Horowitz argues that this is a good metric for energy efficiency at the chip level.
This metric takes both energy and run time into account. Only considering energy is a
poor energy efficiency metric since you could simply run a program slower to get a lower
energy consumption. FLOPS/W is another highly used metric, but this metric is more
useful when running the program several times to test the energy efficiency of different
architectures. CMB However, compares different implementations of the same problems
repeatedly, so the number of operations may differ from one implementation to another.
For these reasons, EDP is preferred over FLOPS/W in the CMB system and is the primary

13

Chapter 2. Background

Figure 2.6: Backend execution pipeline (slightly modified from Master Thesis of Follan and Støa
[TF15]).

energy efficiency metric used in the system.

2.3 OpenMP

OpenMP is a set of compiler directives and library routines for writing parallel shared-
memory programming in C, C++, and FORTRAN [DM98]. A shared memory machine
consists of different threads of execution that have access to a shared memory region.
The threads run asynchronously, and conflicting memory reads/writes must be handled by
the system or the programmer. Shared memory model is the prominent model for small-
scale systems, notably SMP (symmetric multiprocessing) systems. OpenMP combines
Single Program Multiple Data (SPMD) and fork-join styles of execution and offers work
sharing constructs that allow distribution of loop iterations among threads. Aiming to
simplify code parallelization, OpenMP allows beginners, as well as experts, to gradually
move from serial to parallel programming. It extends serial code, such that with only
a few directives, it can greatly improve performance, while maintaining the serial look
and feel of the program. How the parallel threads are spawned and managed is left to
the compiler, the developer only informs of what code should be parallelized. Should
precise thread management and synchronization be needed, e.g., for avoiding data races (a
common bug in multi-threaded programs), OpenMP also provides several constructs like
atomic, critical, barrier, single, and master.

14

2.4 Profiling

#include <iostream>
#include <omp.h>

int main ()
{

int nts, tid;

#pragma omp parallel private(tid) shared(nts)
{
tid = omp_get_thread_num();

#pragma omp single
{
nts = omp_get_num_threads();

}
#pragma omp critical

{
std::cout << "Hello World from thread " << tid << " of " \
<< nts << std::endl;

}
}

}

Listing 1: Hello World using OpenMP in C++. The first compiler directive (#pragma omp
parallel) spawns threads that all do the enclosing work. The single directive marks work
only one thread executes, and critical work is done serially.

2.4 Profiling

Profiling is the process of dynamically analyzing programs, learning details about their
behaviour, to perform various performance engineering tasks. Different techniques are
used to gather data, ranging from code instrumentation, instruction set simulation, hard-
ware interrupts, and performance counters. The gathered data is then used to aid program
optimization, and/or debugging, and typically consists of useful information about the
program execution, e.g., time used, memory footprint, cache utilization, frequency and
duration of function calls, etc. There are generally four ways of profiling a program: event
based, using instrumentation, statistical sampling, simulation based, or a combination.

Event based profiling consists of taking measurements at different events, either software
events (calls, object creation, thread enter/leave) which may be specific to a program-
ming language, or more general hardware events (cycles, cache-references, branches, etc.),
while executing.

Instrumentation based profiling is when code is instrumented with new instructions to
collect the required information. This can be done manually by the programmer in the
source code, or automatically by a tool at various stages (compile-time, run-time).

Simulation based profilers collects data interactively while the program is run in a simula-
tion. With full control over program execution, these profilers can be very precise although
they need information about the underlying architecture for the simulation to be correct.
Naturally, they impose a significant overhead on execution time.

15

Chapter 2. Background

Statistical profiling, or sampling, probes the program at regular intervals using operating
system interrupts (this may also be event-based). Although this approach is a statistical
approximation, and the resulting data is not exact, it has very few side-effects, and does
not greatly impact the program’s time and space requirements. Consequently, sampling
may actually give a more authentic picture of whats happening under normal program
execution.

The amount of error depends on the sampling interval, if a value is n times the
sampling period, the expected error is the square-root of n [FS88]. A way to minimize
statistical error is to either make the program run longer, or combine several profiling runs
into one output.

Hardware performance counters, used by many profilers, are a set of special-purpose reg-
isters, available on most modern microprocessors, that store the counts of hardware related
activities, such as cycles, cache misses/references, or instructions. PAPI (The Performance
API) is a standard API for using such hardware performance counters. It has two inter-
faces: a simple, high level interface for the acquisition of simple measurements and a fully
programmable, low level interface directed towards users with more sophisticated needs
[MBDH99].

2.4.1 Valgrind

Valgrind is a simulation based profiler using dynamic binary recompilation techniques,
offering a multitude of tools that can automatically detect many bugs, and profile pro-
grams in detail [NS07]. Valgrind runs on Linux on a lot of different architectures, and
has some initial support for Mac OSX. It includes a memory error detector, two thread
error detectors, a cache and branch-prediction profiler, a call-graph generating cache and
branch-prediction profiler, and a heap profiler. A Valgrind tool loads the client program
into the Valgrind process, and then recompiles the clients machine code, in a just-in-time,
execution-driven fashion. The core disassembles the code block into an intermediate rep-
resentation (IR), which is instrumented with analysis code, and then converted by the core
back into machine code.

Being a virtual machine it simulates complete program runs, and as such has a very high
precision, suitable for analysis of intricate parts of the program. This also means that
Valgrind needs complete control of the program and cannot attach to already running pro-
cesses. Because of Valgrinds high overhead, often at 20 - 30x execution time, it is unsuited
for our purposes. Keeping profiling times relatively low is essential to giving a smooth
user experience. In addition the system currently does not have a multitude of backends,
so queue buildup is also a concern.

16

2.4 Profiling

2.4.2 VTune

Intel’s VTune Amplifier is a commercial performance profiler, but educational licenses are
also available. VTune supports a wide variety of profiling techniques, including threading
analysis of OpenMP and native threads, GPU application tuning, embedded systems (with
energy profiling for battery use), and more [IN17]. It has both a graphical user interface
and a command line tool, supporting source code analysis of many different languages.

Unfortunately, VTune is only supported on Intel CPU’s, with some support on AMD
CPU’s. ARM architecture is not supported, hence it could not be used on our backends.

2.4.3 perf

The linux perf command is a powerful profiling tool included in the linux kernel [PE17].
It began as a tool for using performance counters, and has later expanded to include tracing
capabilities. There are two main sub commands for profiling: perf stat, and perf
record.

perf stat counts the number of times a given event happen. These events range from
hardware events like cycles, cache-misses or instructions, to software events like context
switching, or page faults. The command has several modes to count in, including per
CPU, per thread, per process, system-wide, in the user level, kernel level, or both. Listing
2 shows an example run of perf stat, were default counts are collected system-wide
for 1 second.

Performance counter stats for ’sleep 1’:

8052.157128 task-clock # 8.020 CPUs utilized [100.00%]
896 context-switches # 0.111 K/sec [100.00%]
27 cpu-migrations # 0.003 K/sec [100.00%]
536 page-faults # 0.067 K/sec

116,502,087 cycles # 0.014 GHz [100.00%]
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
35,257,060 instructions # 0.30 insns per cycle [100.00%]
3,982,809 branches # 0.495 M/sec [100.00%]
707,928 branch-misses # 17.77% of all branches

1.004007793 seconds time elapsed

Listing 2: Example output of perf stat -a sleep 1, which counts default counters system-
wide for 1 second.

perf record is an event-based sampling profiler, which at a given frequency (or pe-
riod) on a given event, collects information including time stamps and stack-traces (op-
tional). As with perf stat, the mode can be specified. In listing 3 an example of
how perf record can be used is shown. This example would record stack traces (and
timings) for the specified background process for 10 seconds. perf record stores the

17

Chapter 2. Background

results in a file which can be viewed later by the perf report or perf annotate
commands.

perf record -F 99 # At 99 Hz
-p PID # Process to monitor
-g # Collect stack-traces
-- sleep 10 # For 10 seconds

Listing 3: Example use of perf record, collecting stack traces of a background process for 10
seconds.

2.4.4 Poor man’s profiler

The poor man’s profiler is the manual way of looking at stack-traces [PMP17]. Many
sampling profilers don’t provide a way to differentiate threads in multi-threaded programs,
often only providing data per single thread or all combined. They can show where CPU
time is spent, but not what individual threads are blocking on. Many debuggers, e.g. GDB,
can walk all threads and provide stacks. The idea then, is to manually use debuggers, or
other tools, and collect stack-traces of background running processes at regular intervals.
An example implementation is shown in listing 4. This is a small Bash script where, in a
for-loop, a tool is used to collect 1000 stack-traces with two second intervals.

#!/bin/bash
nsamples=1000
sleeptime=2
pid=$(pidof mysqld)

for x in $(seq 1 $nsamples)
do

quickstack -f -p $pid
sleep $sleeptime

done

Listing 4: Example of a poor man’s profiler, collecting stacks with quickstack every two seconds.

Quickstack

Quickstack is one such tool, which tries to minimize overheads [QS17]. It internally scans
stack frames and guesses caller functions. Debuggers, which are way more complicated
and provides lots of different features, may have a significant overhead when collecting

18

2.5 Related Work

stack-traces, momentarily stopping the process being monitored. Thus, they are not a
good fit when you are collecting with a high frequency 2.

Quickstack does not support ARM processors, but a patch was applied to fix this [QF17].
As discussed in section 6.1.1, we did not end up using quickstack, but the implementation
details are presented in Appendix B.1.

2.4.5 Flame Graph

Flame graphs are a method of visualizing call-stacks [Gre16]. Many profilers are capable
of generating call-stacks, but a good way of displaying them is not always provided. The
flame graph displays call-stacks as horizontal bars, where each callee is on top of their
respective caller. This creates a choppy graph (resembling flames), and is perhaps best
explained with an example. Figure 2.7 shows an example profile of a Java program. In this
example the coloring corresponds to the different libraries the calls originates from: green
= Java, yellow = C++, orange = kernel, red = user and system 3. As the horizontal length
correlates to amount of samples, i.e, estimated CPU time, flame graphs can immediately
show the user where in the code path most time is used, and where potential bottlenecks
are located.

The author of [Gre16], Brendan Greggs, has also made an open source implementation,
hosted at Github [FG17]. This includes programs for interpreting the output of many
different profilers, as well as the flame graph generator, which uses the SVG file format,
an XML-based vector image format for two-dimensional graphics, to create flame graphs
supporting zoom and search, easily inserted in HTML code.

2.5 Related Work

This section presents some of the best known online judging systems, as well as some
crowd sourcing sites. These are both sites hosting programming problems, and data sets
for their users which can then upload solutions to the problem. The difference of course,
is that crowd sourcing gives out real world problems on behalf of companies which then
in turn receives the best solutions. These sites often give out money prices to the top
contenders. Online judging systems on the other hand, have an educational or recreational
focus.

2Discussed further in section 6.1.1
3The yellow C++ functions with Java in their name are from the JVM (Java Virtual Machine), which is

implemented in C++.

19

Chapter 2. Background

Figure 2.7: An example flame graph (taken from [FG17]). Green = Java, yellow = C++, orange =
kernel, red = user and system functions.

2.5.1 Online Judging Systems

Kattis was developed in 2005 at KTH in Stockholm [EKN+11]. First utilized as an
automatic assignment checker for different courses at the university, it has later expanded
a lot, and is now one of more well known and mature OJs available. Kattis is widely used
for hosting programming competitions such as IDI Open [IDI17], removing the burden of
manually checking the correctness of submissions.Kattis supports 15 languages and host
over 1000 problems, ranging from very simple to more challenging.

20

2.5 Related Work

UVa Online Judge is probably the oldest known online judging system. First developed
by a student at the University of Valladolid in 1995 [RML08]. Later, it was expanded for
use in the ICPC programming contest [ICP17]. Its problem archive has over 4300 prob-
lems and user registration is open to everyone. There are currently over 100000 registered
users.

HackerRank was created by Vivek Ravisankar and Hari Karunanidhi as a way of alle-
viating some of the interview process when hiring new software developers [HR17]. They
built automatic code challenges that developers could participate in promoting meritoc-
racy.

2.5.2 Crowdsourcing Sites

Top Coder is perhaps the most popular crowdsourcing site available [TC17].The site
has more than 1,000,000 members and offers over 7,000 challenges per year. It is used
by companies like Amazon, Facebook, IBM, and Microsoft for crowdsourcing real-world
problems. Money prizes are often awarded to the best solutions.

RecSys Challenge [RS17] is a crowdsourcing competition that aims to solve dierent
problems in recommender systems. It began in 2010 and the top three winners of each
challenge are invited to present their solution at the RecSys Conference, as well as receiv-
ing a money prize.

21

Chapter 2. Background

22

Chapter 3
CMB Improvements

This chapter describes the implementation of the changes and new features added to the
CMB system. In section 3.1 the new low-level statistics feature is described, section 3.2
describes the Bash scripts converted to Python, section 3.3 how the uploading of single
source files was implemented, section 3.4 includes the improvements made to the stability
of the system , and finally, section 3.5 contains some general architectural improvements.

3.1 Generating Low Level Statistics

The aim of providing more low level statistics is to help the user analyze their programs, to
find potential performance weaknesses/bottlenecks or bugs. It also helps in understanding
why different implementations behave as they do, and what their strengths and weaknesses
are. In this regard, the type of information wanted is often dependant on the specific
problem, architecture, and implementation details. Thus, in accordance with the goal
outlined in section 1.2 we try to provide some general statistics that are useful in a number
of situations.

The profiling implementation required changes in all parts of the system, from the actual
profiling happening on the backend, to the UI/frontend where the data is presented to the
user. Following is a more in depth look at the implementation details.

23

Chapter 3. CMB Improvements

3.1.1 Backend

An important consideration was whether the profiler should run in parallel to the normal
program execution, or if it should be done separately. Because of the wish to make pro-
filing optional, both per problem and for the user, and because we wanted to keep the
submissions from the previous system version relevant, the profiling is not done together
with normal execution. This way it is easy to control when profiling occurs, and no side-
effects are imposed on normal execution.

In the script managing the profiling the program is executed in a background job, with two
different profilers attaching to the process for monitoring. The first one is a ”poor man’s
profiler” (section 2.?), which continuously collects stack-traces with GDB. This is done
using a simple while-loop, which executes as long as the process is running. The stack-
traces are then later converted to a text file containing the call-stacks, in the input format
required by flame graph. Lastly, the flame graph is generated.

gdb -ex "thread apply all bt" % Print backtraces
-batch % Not interactive mode
-p $pid % Which process

Listing 5: Collecting stack-traces with GDB.

The second profiler is a simple event counter using perf. This command uses perfor-
mance counters, CPU hardware registers that count hardware events such as instructions
executed, cache-misses suffered, or branch-misses. These statistics are added to a JSON
object, and written to standard output.

perf stat -o output.txt -x: % Output file
-e cache-references,cache-misses, % What to count
branches,branch-misses
-p $PID % Which process

Listing 6: Performance counters with perf.

When perf stat is attached to a running process it is required to hit Ctrl+C to stop the
command even though the process has terminated. This is troublesome to do in a script so
a patch was applied to fix this. Now the perf stat command terminates alongside the
process it has been attached to. This patch is detailed further in appendix B.

24

3.1 Generating Low Level Statistics

3.1.2 Server

The server copies the flame graph from the backend, stores the flame graph locally, and
inserts the other data in the database. The flame graph is not stored in the database because
storing images in databases is generally not recommended. It is instead stored in the file
system along with the other submission files. The flame graphs produced are relatively
small in size (less than 200 KB), so storing 1000 flame graphs would take up less than 200
MB of space (our current server has 7.5 GB of space and ∼ 3000 submissions).

When extending the database to accommodate profiling information for a given submis-
sion, we had several ways of implementing it. The first decision was whether a new
table was needed, or if adding columns to the submissions table sufficed. Because we
decided to enable multiple profiling runs per submission (as is done with runs), we used
the former option. A new ”profilings” table was created, resembling the run table but
with the profiling data attribute instead of time/energy. One could have added mul-
tiple columns (one for each performance metric), but we wanted a single JSON column
which contained all of the data. This solution has the advantage that if some other metrics
are added in the future, the database doesn’t need to be migrated. Unfortunately, JSON
columns are only supported in MySQL versions above 5.7 (ours is 5.6), so instead we used
a String column, storing the data in the JSON format, but as a String. The new database
scheme is presented in figure 3.1.

Note that the profiling data attribute also lies in the submissions table. This is be-
cause while multiple profiling runs are possible only the last one is shown to the user, and
this last result is stored along the submission for easier retrieval. This is the same method
used for the different runs, where the latest time and energy measurements are also stored
in the submissions table.

For providing the profiling data to the frontend, only one new endpoint were added to the
Flask REST API. This endpoint serves the flame graph from the file system, if it exist. The
other profiling data also lies in the submissions table, which already has an endpoint for
retrieval, and is automatically retrieved when the user enters a problem view.

3.1.3 Frontend

The accepted programs table in the problem view was extended with two new columns,
one with buttons for starting profiling runs, and one with buttons for displaying profiling
data as seen in figure 3.2. A new HTML partial (a frontend view) was added to show
the profiling information. This view is entered when the user presses the show profiling
button, and is associated with a given submission. When entered the frontend retrieves
the flame graph from the server, and displays it alongside the profiling data found in the
submission data. Figure 3.3 displays the profiling view.

25

Chapter 3. CMB Improvements

Figure 3.1: New database schema. Profiling table added, the allow profiling attribute in the
Problem table and the profiling data in the Submission table

Figure 3.2: Button for profiling a submission, and a button for displaying the profiling data.

3.2 Porting Bash Scripts to Python

The bash scripts used in the system have consistently been the most difficult parts to de-
bug. Bash scripts don’t give helpful error messages (if at all), may hide bugs, and can be
very challenging to understand without a lot of experience and helpful comments. This
is especially true when some scripts starts other scripts over SSH. Therefore, it has been
suggested that they be converted to Python wherever possible.

The server previously had two bash scripts: a compile script for checking that a submis-
sion compiles correctly, and a run script for copying files and starting the backend run
script (which executes the submitted program on the board). In a server otherwise written
exclusively in Python, these were cumbersome to deal with and quite unnecessary. When
rewriting their functionality with Python, they can easily be added to the testing frame-
work, which greatly helps with debugging. Another added benefit in Python is exception

26

3.3 Allowing Different File Uploads

Figure 3.3: Page for displaying profiling data.

handling, which is not possible in bash. Previously, one could not distinguish the errors
produced within these scripts, e.g., a compilation fail vs. various server faults that may
occur in the same moment. This is now correctly distinguished, which in turn also gives
better feedback to the user 1.

The bash script responsible for executing the user submitted code on the board was not
rewritten in Python. This was mainly because we did not want to change the environment
in how code is being executed. Right before the user program is run, the temperature of the
CPU is set to a predefined constant to ensure a fair starting point when measuring energy
consumption. It is probably not impossible to create the same conditions via Python, but
extensive testing would be required to be sure 2.

3.3 Allowing Different File Uploads

From the user study conducted in [Mag16] it was found that the format and structure of
file uploads was unclear, and that uploading of single c/cpp source files was requested.
The requirement that uploaded files must be in a zipped folder was mainly because of
simplicity, and minimizing file size. These however, are not really concerns the user should
need worry about, and zipping submitted files before they are stored in the server is not
difficult. The system now accepts single C/C++ files, creating a zipped folder containing
the single file and sending the zipped folder to the server. This was a simple solution, only
requiring small changes to the front-end code, which improves system usability.

1Preventing server faults of being mistakenly reported as compilation errors.
2Another option is of course to create new starting conditions, thus invalidating all previous runs.

27

Chapter 3. CMB Improvements

3.4 Stability Improvements

3.4.1 Push in Thread

The system originally consisted of three separate processes: the Gunicorn server, the
push.py script, and the frontend. The most commonly failing part was the push.py
script, with which we had much struggles from time to time. When the server receives
a request to run a submission, it stores this information in a job queue. The push script
is a process that requests objects from the job queue, and sends jobs to be executed on
the backend. As mentioned this process regularly failed, mainly when it could not contact
the server 3. Putting this script in its own process seemed unnecessarily complex, so we
proposed a simplification where it is run in a thread by the server.

When the push script is a thread managed by the server, it simplifies several tasks. To
begin with, having one less process is easier to handle at system start/restart. Also, if the
push script crashes on an unexpected error (temporary connection error to the backend to
give an example), there is no harm done as the script simply retries at next scheduling. The
thread is spawned every two seconds after the termination of last thread.

Immediately after this change was implemented, a considerable improvement in overall
system stability was seen. We have had almost no incidents of server crashes since, where
it previously often crashed at server restarts, which happens at 2 am when important secu-
rity updates are needed.

3.5 General Architectural Cleanup and Improvements

3.5.1 Removing the compiledSolutions Folder

When uploading a submission the server first stores the submitted files as a zipped folder,
and then checks if the code compiles before sending it to the backend for execution. If it
compiles correctly it stores the source files unzipped in a folder called compiledSolutions.
This folder exists for legacy reasons from when cross-platform compiling was done. This
entire folder is now redundant as the submission files are stored in the problems directory
anyways. Furthermore, because the server always checks compilation, there is no need
to keep track of which programs compiled without error. When the server sends files to
the backend for execution, it temporarily unzips the submission folder containing the files.
Removing this folder completely saves space on the server, and makes it easier to manage
submission files (as they are only stored at one place).

3Which it in theory always should, but when restarting the system (which happens every now and again) the
first request sent would sometimes fail. Also it had no restart functionality, so it was susceptible to momentary
network failures.

28

3.5 General Architectural Cleanup and Improvements

3.5.2 Improvements to the backend run-script

Some improvements has been made to the backend run-script. This is the script responsi-
ble for executing and measuring the user-submitted programs on the Odroid-XU3 board.
The way energy is measured is by continually noting the power levels, and afterwards in-
tegrating in the time interval the program was executing. Previously, a function in the bash
script parsed the text file containing the power measurements, removing all measurements
not in the given time interval. This was unnecessary as the Python script doing the inte-
gration has to parse the file anyway, and can easily handle removing the first and last lines
(which are outside the interval). This was therefore moved to be handled by the Python
script.

The server executes the run-script over SSH, which writes the results to stdout. Therefore,
all unwanted outputs and errors from intermediate commands in the script are redirected
to /dev/null 4. This has led to the script being difficult to debug, because all errors and
wrong output from most commands are not seen. To alleviate these difficulties, the script
was strengthened with simple debug functionality. The idea is to change the behaviour
if an extra dummy argument is passed to the script. Individual stream redirection is re-
moved from the script, and instead both stdout and and stderr are immediately redirected
to /dev/null. The few commands we actually want the output from are redirected to a
new stdout stream, which was redirected to stdout before it itself changed. If an additional
dummy argument is passed all commands show error messages, making debugging a lot
easier. In listing 7, this functionality is displayed. Note that the file descriptors 1 and 2 are
the normal stdout and stderr streams in Bash. Two new file descriptors (3 and 4) take their
place.

3.5.3 Database Dump

The admins of the CMB team wanted a quick way to inspect the database, to gather dif-
ferent data to create statistics. An extra page in the admin panel was added that prints the
complete contents of the database as comma separated values, excluding certain columns
like password-hashes. This gives the admins the ability to further process the data accord-
ing to their needs, for example to make a graph of submissions over time for a certain
problem.

4Redirection to /dev/null is a common way to hide an I/O stream.

29

Chapter 3. CMB Improvements

Stdout and stderr are redirected to /dev/null if
no argument is passed (= not debug mode)
exec 3>&1 # 3 is the new stdout
exec 4>&2 # 4 is the new stderr
if [$# -gt 0] # If more than 0 args
then

DEBUG="True"
else

DEBUG="False"
exec 1>/dev/null # Normal stdout is hidden
exec 2>/dev/null # Normal stderr is hidden

fi

Later, if output is wanted regardless of mode
command 1>&3

Listing 7: Debugging functionality in a Bash script. If no extra arguments stdout and stderr are
silenced.

30

Chapter 4
Results and Analysis

This chapter has two sections. The first describes how the new feedback can be used to
tune performance of submitted programs, and is divided into two case studies involving
problems hosted on the CMB system. The next section (4.2), is an analysis of the perfor-
mance and energy efficiency of OpenMP programs on the Odroid XU3 board, specifically
how setting the CPU affinity manually with the new features of OpenMP 4 can be used to
distribute work among the different cores of the ARM big.LITTLE heterogeneous multi-
core.

4.1 How the New Metrics can Assist Performance Tuning

In this section concrete examples of how the generated profiling information can be used in
performance tuning are presented. We perform a case study of the ”Text Search Problem”,
and ”The Shortest Path Problem” in which different metrics help highlight different issues.

4.1.1 Case study: Text Search

In the text search problem the task is to count number of occurrences of different words in
a large text file. The problem description goes as follows:

Find words in a text. In this problem you are going to count the number of
occurrences of different words in a text file (stdin). Letter case should not be
differentiated, and punctuation ignored. In other words, upper case should be

31

Chapter 4. Results and Analysis

transformed to lower case, and all letters not in ’a’ .. ’z’ should be ignored.
As an example, if one of the search words is ”frank” and the text ”My name
is Frank, Fraaaank! #fRaNk #frankistheman” the count is 2.

An initial solution to the problem is presented in Listing 8. This solution had a running
time of 11.74 seconds, and used 33.85 Joules. In figure 4.1 the corresponding profiling
data is showed. We immediately see that most of the time is spent in various IO func-
tions, stemming from the calls to std::basic istream<...>operator<<, which
corresponds in our program to the calls cin << word. Further up the call-stack we see
that the program spends a lot of time in a function called IO acquire lock fct(),
actually 30 out of the total 57 samples culminated in this function. It turns out that this
is a C library function, which locks standard input/output from other accesses. The stan-
dard C++ streams (cin, cout, cerr, etc.) are synchronized to the standard C streams (stdin,
stdout, and stderr) by default after each input/output operation. This makes it possible
to freely mix C++ and C I/O, and also guarantees thread-safety for the C++ streams,
i.e., no data races. It is however, possible to turn this synchronization off by a call to
std::ios::sync with stdio(false).

Figure 4.1: Profiling data for the initial solution.

After inserting a call to this function in the beginning of main, a huge speedup ap-
pears. It now runs in 1.85 seconds and uses 5.63 Joules. Indeed, the impact of unsyn-
chronizing the C++ streams when a program spends a considerable percentage in I/O is
so large that this simple trick is mentioned in the system’s ”How To”-page. In figure
4.2 the new profiling data is shown. Still, most of the time is spent in reading stan-
dard input, but it may be difficult to optimize this further. The last part of the call-
stack is the call to std::map<...>find(). This function again call a function called
std::Rb tree<...>find() reminding us of the way a map is implemented in C++,
namely with a red-black tree [GS78]. Red-black trees features insertion, deletion, and
search in O(log n) time. As the map usage in our program is dominated by search calls,

32

4.1 How the New Metrics can Assist Performance Tuning

only inserting the words on the first line, and searching for existence for all remaining
words, a data structure with a better search performance would be preferable. The C++
standard library provides unordered map as an alternative to map, which is an unsorted
map (map keeps all elements sorted), implemented as a hash-table. Search, insertion, and
removal of elements have an average time complexity of O(n).

Figure 4.2: Profiling data after removing the synchronization with the C streams.

The program now runs in 2.04 seconds... a 10 % slow down! This probably means that
the number of words to search for is very small1. The programs uses around 5 % more
instructions, but also have a higher IPC. It has roughly the same amount of last level cache
misses, but almost 4 times as many 1st level misses. This indicates that when the element
count is low, a regular map has a more cache friendly memory layout, trumping the fact
that search is asymptotically slower.

The observant reader will have noticed that the function filtering the strings is sub-optimal.
This parses the string twice, once removing all non-alpha characters, and once transform-
ing the remaining to lowercase. Of course, this can be done in one for loop, and results in a
∼ 5 % speed up. Further optimization is probably possible, for instance using an efficient
implementation of a trie as a data structure, and doing the filtering while searching the trie,
but this was not tried (!) out.

1Indeed, it is only 15, but this information is not known to the users.

33

Chapter 4. Results and Analysis

Figure 4.3: Profiling data using a hash-table instead of a red-black tree.

34

4.1 How the New Metrics can Assist Performance Tuning

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <map>

using namespace std;

// Filter a string. Erases all non-alpha characters
// then changes the remaining to lowercase
void filter(std::string& s) {

s.erase(remove_if(s.begin(), s.end(),
[](char x){

return !isalpha(x);
}), s.end());

transform(s.begin(), s.end(), s.begin(), ::tolower);
}

int main() {
// Vector containing the words to search for
vector<string> search_words;

// Map with counts for each word
map<string, int> word_counts;

string word;

// Reading the first line and initializing
while (cin.peek() != ’\n’) {

cin >> word;
filter(word);
word_counts[word] = 0;
search_words.push_back(word);

}
cin.ignore();

// Read rest of file, filter word, and check for existence in the map
while (cin >> word) {

filter(word);
auto it = word_counts.find(word);
if (it != word_counts.end()){

it->second++;
}

}

// Print counts in original order
for (auto const& w : search_words) {

cout << word_counts[w] << " ";
}

}

Listing 8: The initial solution to the Text Search problem.

35

Chapter 4. Results and Analysis

4.1.2 Case study: The Shortest Path Problem

In the next case study the shortest path problem is analyzed. The input is a list of adja-
cent nodes, and their distance, following the list of node pairs one is to find the shortest
path between. A natural choice of algorithm to use is Dijkstra’s algorithm [Dij59], which
traverses through the graph along the current minimum distance until the target node is
reached.

In listing 9, the initial implementation of Dijkstra’s algorithm is shown. When submitted
to CMB it has a running time of 20.42 seconds, and uses 56.11 Joules. In figure 4.4
the corresponding profiling information is shown. What is immediately evident is how
much time is used in retrieving elements from a map (the large operator[]() call
49 %), and the map destructor (∼unordered map() 13 %). Combined over 60 %
when the only map used is the one keeping track of what the previous nodes, needed
when reconstructing the path when a solution is found. It seemed reasonable to use a
hash map (C++’s unordered map) for this purpose as we want a node to node index of
parents. However, when the nodes represented as integers, one can use a vector for the
same purpose, where the index represents the child node. The downside is of course that
all nodes in the graph need to be initialized, i.e., the vector must contain all nodes whereas
the map can contain only those visited up until a solution is found.

Figure 4.4: Profiling data for the initial shortest path solution.

After switching to a vector the running time and energy use drops to 8.29 seconds and
23.70 Joules. From the related information in figure 4.5, it seems now that most of the
CPU time is used in various functions related to the priority queue. We see the pop()
operation, and the comparing function (operator=<int, int>()) taking up most
time. The priority queue (a minimum heap) is a crucial part of the algorithm, and as such

36

4.1 How the New Metrics can Assist Performance Tuning

is expected to consume a lot of resources. There might be some clever ways of improving
this heap further, perhaps by joining this data structure with the visited list, and/or the main
graph.

Dijkstra’s algorithm is not easily parallelized. It can be divided in two, with one instance
searching from the source node, and the other searching from the sink, but further paral-
lelization has proven quite difficult 2. Nevertheless, the shortest path problem asks for the
shortest path between many different source/sink pairs, and these are trivial to parallelize.
When we parallelize the algorithm using OpenMP, the running time and energy use drops
by a factor of four.

Figure 4.5: Profiling data after switching to use a vector for storing the previous nodes.

2In [JAE+12], Jasika et al. investigate the performance gain of several parallel implementations of Dijkstra’s
algorithm, finding an average speedup of only 10 %.

37

Chapter 4. Results and Analysis

bool dijkstra(int start, int end, const std::vector<distVec>& graph,
std::vector<int>& path) {

// Dijkstra’s algorithm with priority queue
const int N = graph.size();

// For keeping track of visited nodes
std::vector<bool> visited(N, false);

// Holds current known best distances to nodes
std::vector<int> distances(N, std::numeric_limits<int>::max());
distances[start] = 0;

std::unordered_map<int, int> prevNodes;

// The priority queue. Holds a <pri, node> pair.
typedef std::pair<int, int> P;
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.push(std::make_pair(0, start));

int current, current_dist;
while (!pq.empty()) {

std::tie(current_dist, current) = pq.top();
pq.pop();

if (current == end) { // Found path
while (current != start) {

path.push_back(current);
current = prevNodes[current];

}
// Need to reverse the path
std::reverse(path.begin(), path.end());

return true;
}

visited[current] = true;

int neighbor, dist_to_neighbor;
for (const auto& tmp : graph[current]) {

std::tie(dist_to_neighbor, neighbor) = tmp;
if (visited[neighbor])

continue;
int alt_dist = current_dist + dist_to_neighbor;
if (distances[neighbor] > alt_dist) {

distances[neighbor] = alt_dist;
prevNodes[neighbor] = current;
pq.push(std::make_pair(alt_dist, neighbor));

}
}

}
return false; // No path exists

}

Listing 9: The initial implementation of Dijkstra’s algorithm.

38

4.2 Analysis of OpenMP programs on the Odroid-XU3

4.2 Analysis of OpenMP programs on the Odroid-XU3

4.2.1 Choosing CPU affinity manually

With the new thread affinity features in OpenMP 4 [OMP13], it is possible to choose
more specifically where threads should be executed. By setting the environment variable
OMP PLACES, which is a platform-specific list of execution units (e.g., CPUs), one can
later use the new proc bind clause for affinity strategy. There are three arguments for
this clause. The first one is master, making all threads execute on the same place as
the master thread. close, which puts the new thread positions close to the master thread.
And spread, where the threads are spread out as much as possible. Figure 4.6 shows how
these different arguments to the proc bind clause will distribute two threads among four
places.

Figure 4.6: Thread affinity specifications in OpenMP 4. In (a) all threads are in the same place as
master, in (b) close to master, and in (c) equally spread among places.

By using these it is now possible to choose which CPUs does what. As an example we
created a small program containing two different workloads, one low intensity where the
CPU is sleeping most of the time, and one high intensity with expensive math operations
10. The OMP PLACES variable is set to 0,1,2,3,4,5,6,73 so that in the first section the

3On the Odroid-XU3 this corresponds to the 8 CPUs, where 0-3 are the smaller Cortex-A7, and 4-7 are the

39

Chapter 4. Results and Analysis

threads are distributed in all cores, and in the second section in the four first (0, 1, 2, 3) 4.

So what happens if we don’t set thread affinities, but instead let the OS choose what work
goes where? By removing the OMP PLACES variable, the proc bind clause and chang-
ing to 4 threads in the first section, we let the OS decide how to distribute work. Interest-
ingly, we now get the exact same results! The high intensity workloads are done on the
large cores, while the low intensity workloads are done on the smaller ones. The Global
Task Scheduling (GTS) distributing work on the big.LITTLE architecture is capable of
figuring out what kind of work is being done, and dynamically schedules threads to appro-
priate CPUs. The GTS keeps track of load history as each thread runs, and uses the history
to anticipate the performance needs of the thread next time it runs [ABL17].

larger Cortex-A15. Setting OMP PLACES=cores does the same thing.
4In this example it’s important to also set the environment variable OMP NESTED=TRUE so that the sections

are allowed to spawn internal threads.

40

4.2 Analysis of OpenMP programs on the Odroid-XU3

#include <iostream>
#include <stdlib.h>
#include <omp.h>
#include <sched.h>
#include <unistd.h>

// A low intensity workload, where the CPU is
// sleeping most of the time
int low_intensity()
{

int result = 0;
for (int i=0; i<5; i++) {

usleep(1000000); // 1 second
result += 3*i*i + 45*i + 235;

}
return result;

}

// A high intensity workload, doing some
// arbitrary math
int high_intensity()
{

int result = 0;
for (int i=0; i<500000; i++) {

result += (3*i*i + 45*i + 235) % (1 + i * 50);
}
return result;

}

int main()
{

#pragma omp parallel sections
{

#pragma omp section
{

#pragma omp parallel num_threads(8) proc_bind(close)
{

if (sched_getcpu() > 3) { // If we are at a big CPU
int r = high_intensity();
#pragma omp critical
std::cout << "High intensity at CPU " << sched_getcpu() << "\n";

}
}

}
#pragma omp section
{

#pragma omp parallel num_threads(4) proc_bind(close)
{

int r = low_intensity();
#pragma omp critical
std::cout << "Low intensity at CPU " << sched_getcpu() << "\n";

}
}

}
}

Listing 10: OpenMP example setting thread affinity with the proc bind clause. There are four
high and four low intensity workloads, distributed to the Cortex-A15 and A7 cores.

41

Chapter 4. Results and Analysis

4.2.2 Performance of The Nasa Parallel Benchmarks on the Odroid-
XU3

The NASA Advanced Supercomputing (NAS) division Parallel Benchmarks (NPB) is a
benchmarks suite, developed in 1991, targeting performance evaluation of highly paral-
lel supercomputers. They are made and maintained by NASA. The benchmarks origi-
nally contained five kernels and three pseudo-applications, and has later been expanded
to include more benchmarks. It has several reference implementations, including MPI,
OpenMP, and serialized versions.

In this section we explore the possibility of ”outperforming” the GTS on a selected sub-
set of the NPB. More specifically, can we distribute work manually among the cores in
a better performing way (with regards to time and energy use) than the GTS? We look
at three benchmarks: IS, an integer sorting algorithm, EP, the ”embarrassingly parallel”
benchmark, and FT, a 3D discrete fast Fourier transform 5.

As these are all benchmarks with heavy computation, and little to no low intensity work,
our first strategy is analyzing the performance if all work is restricted to the four large
cores. Figure 4.7 shows the average energy and time usage for the three benchmarks using
four or eight threads. A performance increase is seen in the IS and FT benchmarks, for
both time and energy use, while the EP benchmark performs worse. To find out what
causes these results, a further inspection of how the OpenMP threads do work in each
benchmark was needed. By instrumenting the code to notify which CPU is currently
working we get a better picture of how the GTS distributes work. It turns out that both
the IS and FT benchmarks have a relatively few number of workloads, where each one is
computationally heavy. This resulted in each of the eight threads always being assigned
to the big cores, which in turn means that having eight threads, as opposed to four, adds
some unnecessary overhead of spawning and joining. In the case of the EP benchmark,
a much larger number of workloads were present, and the small cores were occasionally
contributing. This particular benchmark has a very high parallelism, so restricting the
number of cores only hindered performance.

It is evident that choosing the number of OpenMP threads, and how to distribute them on
a heterogeneous system, is not a straight forward task, and that deep knowledge of the
specific problem is needed. The default in OpenMP is to create as many threads as there
are CPUs. Coupling this with the GTS, which is capable of dynamically assigning work to
appropriate cores, this makes for a sound strategy in most cases. Indeed, the performance
gain by our strategy in the IS and FT benchmarks were very slight, and fiddling with thread
allocations is more likely to cripple performance if care is not taken. It would be interesting
to examine if better performance gains can be achieved in benchmarks suites specifically
made for heterogeneous systems, such as the Rodinia suite [CSB+10]. If there are a greater
contrast between workloads, some low intensity and befitting the smaller cores, manually
assigning workloads in OpenMP may be an advantage.

5The implementation is included in the digital appendix.

42

4.2 Analysis of OpenMP programs on the Odroid-XU3

(a) Energy use.

(b) Time use.

Figure 4.7: Energy and time use of three NPB benchmarks on Odroid-XU3

43

Chapter 4. Results and Analysis

44

Chapter 5
Stability

This chapter takes a look at the measurement accuracy of the new system (section 5.1), and
how the results compare to the results of the testing done by Follan and Støa in [TF15].
In section 5.2 the overall system stability in the time of the author working on the CMB
system is measured, from January to June 2017.

5.1 Measurement Accuracy

When Follan and Støa first developed the CMB system, it was a priority to make the time
and energy measurements as accurate as possible to ensure fairness among submissions.
To that end, a thorough inspection was undergone, where issues with cache usage were
identified and fixed. This section tries to reproduce their results, as a general system
examination, but also for evaluating potential repercussions the new changes may have
had on measurement accuracy.

5.1.1 Experiment setup and Methodology

Trying to replicate the results of Follan and Støa, we use as close to the same setup as we
could. The tests are run on the Odroid-XU3 board, which besides having an updated linux
kernel, uses the same software to run programs. Before each run the core temperature is
set to 60 degrees Celsius, and cache is cleared with the following command:

sync && echo 3 > /proc/sys/vm/drop_caches

45

Chapter 5. Stability

To calculate the mean and relative standard deviation, the following equations are used:

x =
1

N

N∑
i=1

xi (5.1)

s =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (5.2)

RSD =
s

x
(5.3)

N is the number of samples, xi is sample i, and s the standard deviation. The RSD can
be used to compare standard deviation when mean running time and energy use differs.

5.1.2 Results and discussion

The time and energy used was measured for a naive solution to the shortest path problem,
the same solution used by Follan and Støa. The program was run every 15 minutes over a
period of several days. Figure 5.1 shows the results of these measurements. One thing im-
mediately stands out. There was 1.5 second increase in running time for 12 hours between
the 2. and 3. of June. The cause of the run time (and energy) spike is not understood. A
potential reason can be background running processes taking up CPU time, but they could
not be identified. With an RSD of 0.7 % this is a slight increase in variation compared to
the reported RSD of roughly 0.2 % reported by Follan and Støa. Without the spike we get
an RSD of 0.15 %.

It is also not fully understood why the same program now takes 8 seconds longer. The only
change to how the system executes user submitted programs is the updated linux kernel,
the same compiler with the same flags are used in the same environment. Indeed, we see
a change in run time for many of the previous submissions for several different problems,
some taking longer and some with a faster running time.

5.2 System stability

A cron job is run run every 15 minutes on the server, notifying the CMB team when parts
of the system is down. This testes the three parts of the system: the Gunicorn server,
the board, and the Python push script. If any of these are offline, an email is sent so
appropriate actions might be taken to restore the failing part, and the maintenance page
is automatically displayed at the web page. Using these data a plot of the systems down

46

5.2 System stability

Figure 5.1: Measuring accuracy of a solution to the shortest path problem.

times can be made. Figure 5.2, the system stability from 1. January 2017 to 1. June 2017
is shown.

The end of the push graph in figure 5.2 represents the integration of the push script into
the Gunicorn server as further detailed in section 3.4.1. As mentioned, this completely
removed the troubles with the push script, and the only system down time since, not as a
result of scheduled maintenance, is when the board was down on the 4th and 16th of April.
The board going offline is usually because of momentary down time of the University
network, and the problem often solves itself when connectivity resumes.

47

Chapter 5. Stability

Figure 5.2: Stability of the Odroid XU-3 board, Gunicorn, and Push script. 1 means online, 0
offline.

48

Chapter 6
Discussion

In this chapter we discuss some of the choices presented when implementing the profiling
and some of its limitations, difficulties, and what we would have liked to see.

6.1 Profiling

To provide a good analysis for further performance tuning, we wanted the profiler to pro-
vide certain data. Specifically, we wanted to provide an accurate call graph, showing
where the program spends CPU time, and where the location of potential bottlenecks.
It was also desired to show how the different cores are utilized, particularly for parallel
programs, where the distribution of work in the heterogeneous environment is difficult to
visualize. Additionally, more information about energy usage, for example showing the
energy consumption over time. Following, we discuss the method used for profiling, and
its advantages and limitations.

6.1.1 Choosing the Profiler

There were many factors to consider when choosing a profiler. First and foremost, it
needs to be supported on the Odroid XU3 card (for obvious reasons). Secondly, user
experience is important, so the profiler should give results back in a reasonable amount
of time. Having a relatively short profiling time is also essential with regards to queue
buildup. There is currently only one backends so queue buildup is a very real concern
(especially if profiling and execution is happening on the same one!). Furthermore, to
keep the integrity of the existing database, it was a requirement that if the profiling is done

49

Chapter 6. Discussion

together with normal execution, the overhead must be unnoticeable.

We ended up using a ”poor man’s profiler” for collecting stack-traces as no other function-
ing alternative was found. As the programs we wanted to profile may be very short lived, to
get produce statistically relevant stack-traces very frequent probing is important. The poor
man’s method of collecting stack-traces is more suited for long running processes, where
frequent probing is not necessary, and you can instead analyze over a longer time-period.

Our method does not sample as frequent as a real profiler is able to, and while it’s not fully
understood why, we believe it due to how they are able to attach to processes. Although
the while-loop (shown in listing 11) has no sleep calls, so the only pause is the one in-
troduced by the kill command (checking wether the process is still alive), it is run as
a different process and it’s up to the operating system to distribute CPU-time. We tried
two different ways of collecting stack-traces: GDB, and Quickstack. Quickstack have
very small overheads, but the call-stacks produced were often missing the last parts of the
stack, and in some cases seemed entirely jumbled (as in clearly giving the wrong order of
caller/callee). Consequently, we opted to use GDB which gave better call-stacks though
with higher overheads. This resulted in a slow down of ∼ 3 times normal execution.

The reason for GDB’s large overhead is because it uses the ptrace system call to monitor
processes. This system call enables a controller to inspect and manipulate the internal state
of its target, but necessitates two context switches for each call and momentarily halts
execution. Thus, GDB is not particularly suited for sampling stacks with a high frequency.

while kill -0 $PID 2>/dev/null;
do

gdb -ex "thread apply all bt" -batch -p $PID
done

Listing 11: Collecting stack-traces with GDB in a while loop.

The other profiling tool used is perf stat for counting performance counters. With
these counts, the number of key hardware events are reported back to the user. These
include total instructions used, 1st and last level cache loads and misses, and cycles. The
number of cache misses can be especially helpful for comparing the cache ”friendliness”
of different solutions to a problem.

6.1.2 Limitations

We did not figure out a way in which to measure exactly how CPUs are utilized. The
current method is capable of distinguishing threads, but whether or not it should could be
discussed. If one simply wants to know where most of the CPU time is spent, distinguish-
ing between threads is not necessary, and may clutter the information. On the other hand,
when profiling OpenMP programs, distinguishing threads can be helpful. If the OpenMP

50

6.1 Profiling

program does not utilize native threading, the different threads will correspond only to
OpenMP threads, and provide a glance of how OpenMP distributes work among CPUs.
However, this is not necessarily a very accurate glance. How the threads are distributed
among CPUs is mostly up to the OS (in our case ARM big.LITTLE’s GTS) as mentioned
in section 4.2.1. Nonetheless, it still provides information of what the particular threads
are doing.

51

Chapter 6. Discussion

52

Chapter 7
Conclusion and Future work

This chapter concludes the thesis, evaluating which goals were met, and finally proposes
further improvements to the CMB system.

7.1 Conclusion

This thesis has described several improvements and new features to the CMB system, in
addition to some performance analysis of OpenMP programs on the ARM big.LITTLE
architecture. The main goal was providing more detailed low level information to the user.
To that end, the system can now optionally provide profiling information for successful
submissions. This consists of a flame graph, a visualization of program call stacks, and
performance counters such as instructions used and cache statistics. These are intended to
help users, and two case studies of different problems on CMB were performed to show
how the profiling information may be of assistance. In addition, several general archi-
tectural improvements have been made such as converting key bash scripts into Python,
moving the functionality of the push script to the Gunicorn server, and improvements
to the run script. Their implementation as well as the implementation of the low level
statistics were described in detail in chapter 3. Some other minor improvements include
allowing the upload of single source code files, removing the compiledSolutions folder,
and an easily accessible database dump in the admin interface.

An analysis of the system stability and measurement accuracy was performed and detailed
in chapter 5. This showed encouraging results, confirming the perceived increase in system
stability. The measurement accuracy was high, although a slight change in the run time of
some submissions had changed.

53

Chapter 7. Conclusion and Future work

7.1.1 Thesis Goals Achievement

This section evaluates which goals were met, in accordance to the goals set in section 1.2.

1. Generate and provide low level statistics for each submission: Covered by section
3.1 where the implementation is described. A Flame Graph where the call stacks are
visualized, as well as certain performance counters were added as feedback. Some of the
choices made were discussed in section 6.1.

2. Port Bash scripts to Python: This goal is considered covered by section 3.2 which
details the changes needed to port the Bash scripts, and why not all were converted.

3. Improve general stability of the system: The changes done to the push script dis-
cussed in section 3.4.1, drastically improved the system stability and as such covers the
goal.

4. Allow single source-file uploads: This is covered by section 3.3, which describes the
implementation details.

Analysis

5. Show, how the new metrics help users improve the performance of their solutions:
Considered covered by section 4.1 which gives examples of how these new features can
help users with the performance of their submissions, in the form of two case studies of
problems found on the existing CMB system.

6. Analyze performance of parallel OpenMP programs: Section 4.2 is considered
to cover this goal. The performance and energy efficiency of OpenMP programs on the
Odroid XU3 board is measured in the form of the NAS parallel benchmarks, as well as an
investigation of how the CPU affinity features of OpenMP 4 can be utilized to manually
distribute tasks among the different CPUs of ARM big.LITTLE heterogeneous multi-core.

Other

7. Propose further improvements: This is considered covered by the ensuing section
where several future improvements are proposed in an order of decreasing priority.

54

7.2 Future Work

8. Create a integration test (if time permits): The CMB system lacks an integration
test, the inclusion of which would help development, detecting potential cross-unit bugs
not exposed by the unit tests.

7.2 Future Work

This section describes some potential new features that can be added to the CMB system.
The master thesis of Magnussen [Mag16], presents an extensive list, including some points
tackled in this thesis, and still contains very relevant suggestions. The following list is an
extension following the same ordering based on priority, marked either as A (high), B
(medium), or C (low).

Development and testing

A. Create an integration test: An integration test would ease development making it
faster to catch potential bugs introduced. The unit tests cannot catch all bugs, and a manual
test of the submission to execution pipeline is often required when changes have been
made. A good integration test should work on the production server, development server,
and locally, and hopefully indicate where problems lie.

Features and Improvements

A. Support for more backends: The main bottleneck of the system is currently the exe-
cution of code on the backend. If the system is to be used by a larger audience, for instance,
in combination with courses at NTNU, scaling the backend by adding more boards would
be beneficial.

B. Frontend user statistics: Providing more statistics to the user could increase user
enjoyment and be of assistance when conducting competitions on the site. Such statistics
might include global high score, total number of submissions/runs, and number of top
three finishes to name a few.

B. More detailed performance information: There are a lot more information about
the program execution that would be interesting to see. Specifically, more detailed infor-
mation of energy expenditure, such as energy use over time, which is definitely possible
as energy readings are already recorded under the whole execution. Additionally, hard-
ware use over time (which cores are used, GPU), would be quite challenging, but very
interesting.

55

Chapter 7. Conclusion and Future work

B. More Problems: The system could always benefit from more problems being added.
Especially, it lacks certain advanced problems suited for parallelizing using OpenMP,
Pthreads or OpenCL. It also lacks problems where energy efficiency is a top priority, or
especially difficult. One could for instance imagine problems mimicking the behaviour of
real world examples where energy efficiency is important, such as smart phone apps where
low and high intensity workloads are intertwined, and perhaps the time duration is set.

C. Seasons: Dividing the year into seasons, where season high scores are reset every
now and then (e.g., each semester), could help keep problems fresh as new participants
joining the site would not have to compete against very old submissions.

C. Support for additional languages: Adding support for more accepted languages
(e.g., Python, Java) is a large task, but would greatly expand the potential user base and
courses that could utilize the system. This would require changes to all parts of the system.

C. User control over the CPU affinity with OpenMP: As discussed in section 4.2.1, it
is possible for the user to control which cores are used if certain run time parameters are
set before execution (meaning environment variables in the backend OS). If these could
be set on a per problem basis, the users could employ the affinity features of OpenMP
4. However, this requires particular knowledge of OpenMP by the users, if it is not aptly
explained.

56

Bibliography

[A1517] ARM Cortex-A15. http://www.arm.com/products/
processors/cortex-a/cortex-a15.php, Apr 2017.

[A717] ARM Cortex-A7. http://www.arm.com/products/processors/
cortex-a/cortex-a7.php, Apr 2017.

[ABL17] ARM big.LITTLE technology. http://www.arm.com/products/
processors/technologies/biglittleprocessing.php, Apr
2017.

[AM17] ARM Mali-628. http://www.arm.com/products/multimedia/
mali-performance-efficient-graphics/mali-t628.php,
Apr 2017.

[AN17] What is AngularJS. https://docs.angularjs.org/guide/
introduction, Apr 2017.

[Cha16] Christian Chavez. Climbing mont blanc and scalability. 2016.

[CSB+10] Shuai Che, Jeremy W Sheaffer, Michael Boyer, Lukasz G Szafaryn, Liang
Wang, and Kevin Skadron. A characterization of the rodinia benchmark suite
with comparison to contemporary cmp workloads. In Workload Characteri-
zation (IISWC), 2010 IEEE International Symposium on, pages 1–11. IEEE,
2010.

[Dij59] Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[DM98] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for
shared-memory programming. IEEE computational science and engineering,
5(1):46–55, 1998.

57

http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/multimedia/mali-performance-efficient-graphics/mali-t628.php
http://www.arm.com/products/multimedia/mali-performance-efficient-graphics/mali-t628.php
https://docs.angularjs.org/guide/introduction
https://docs.angularjs.org/guide/introduction

[EKN+11] Emma Enström, Gunnar Kreitz, Fredrik Niemelä, Pehr Söderman, and Viggo
Kann. Five years with kattisusing an automated assessment system in teach-
ing. In Frontiers in Education Conference (FIE), 2011, pages T3J–1. IEEE,
2011.

[FFG08] Wu-chun Feng, Xizhou Feng, and Rong Ge. Green supercomputing comes of
age. IT professional, 10(1), 2008.

[FG17] Flame Graphs Implementation. https://github.com/
brendangregg/FlameGraph, Apr 2017.

[FPL17] Linux Kernel with perf changes for Odroid XU3. https://github.
com/fredrikpe/linux/tree/odroidxu3-3.10.y, Jun 2017.

[FS88] Jay Fenlason and Richard Stallman. Gnu gprof. GNU binutils.[Online]. Avail-
able: http://www. gnu. org/software/binutils, 1988.

[FT02] Roy T Fielding and Richard N Taylor. Principled design of the modern web
architecture. ACM Transactions on Internet Technology (TOIT), 2(2):115–
150, 2002.

[GCL17] The GNU C Library. https://www.gnu.org/software/libc/, Apr
2017.

[Gre16] Brendan Gregg. The flame graph. Communications of the ACM, 59(6):48–57,
2016.

[GS78] Leo J Guibas and Robert Sedgewick. A dichromatic framework for balanced
trees. In Foundations of Computer Science, 1978., 19th Annual Symposium
on, pages 8–21. IEEE, 1978.

[GU17] Gunicorn - Python WSGI HTTP Server for UNIX. https://gunicorn.
org, Apr 2017.

[HIG94] Mark Horowitz, Thomas Indermaur, and Ricardo Gonzalez. Low-power dig-
ital design. In Low Power Electronics, 1994. Digest of Technical Papers.,
IEEE Symposium, pages 8–11. IEEE, 1994.

[HR17] Hackerrank. https://www.hackerrank.com/, Jun 2017.

[ICP17] The ACM-ICPC International Collegiate Programming Contest. https:
//icpc.baylor.edu/, Jun 2017.

[IDI17] IDI Open. https://idiopen.idi.ntnu.no/open17/, Jun 2017.

[IN17] Intel R© VTune
TM

Amplifier 2017. https://software.intel.com/
en-us/intel-vtune-amplifier-xe, Apr 2017.

[JAE+12] Nadira Jasika, Naida Alispahic, Arslanagic Elma, Kurtovic Ilvana, Lagumdz-
ija Elma, and Novica Nosovic. Dijkstra’s shortest path algorithm serial and
parallel execution performance analysis. In MIPRO, 2012 proceedings of the
35th international convention, pages 1811–1815. IEEE, 2012.

58

https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
https://github.com/fredrikpe/linux/tree/odroidxu3-3.10.y
https://github.com/fredrikpe/linux/tree/odroidxu3-3.10.y
https://www.gnu.org/software/libc/
https://gunicorn.org
https://gunicorn.org
https://www.hackerrank.com/
https://icpc.baylor.edu/
https://icpc.baylor.edu/
https://idiopen.idi.ntnu.no/open17/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

[Mag16] Sindre Magnussen. Improving system usability of climbing mont blanc - an
online judge for energy efficient programming. 2016.

[MBDH99] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. PAPI: A
portable interface to hardware performance counters. In Proceedings of the
department of defense HPCMP users group conference, volume 710, 1999.

[MBP17] Mont Blanc Prototypes. http://www.montblanc-project.eu/
arm-based-platforms, Apr 2017.

[Mid17] Uli Middelberg. How to compile a custom linux kernel
for your arm device. https://github.com/umiddelb/armhf/wiki/

How-To-compile-a-custom-Linux-kernel-for-your-ARM-device, Mar 2017.

[MyS01] AB MySQL. Mysql, 2001.

[NG17] NGINX. https://www.nginx.com/resources/wiki/, Apr 2017.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan notices, volume 42,
pages 89–100. ACM, 2007.

[OD17] Odoid-XU3. http://www.hardkernel.com/main/products/
prdt_info.php?g_code=G140448267127, Apr 2017.

[OMP13] OpenMP 4.0 Specification. http://www.openmp.org/wp-content/
uploads/OpenMP4.0.0.pdf, Apr 2013.

[Pat17] Hardik Patel. Added correct dts tree interrupts/nodes for hw perf
events/counters odroid-xu3 dev board). https://github.com/
patelhardik/kendroid_kernel_hardkernel_odroidxu3/
commit/e90ac2cb272437fe40e947cbcab148b65591b06d, Mar
2017.

[PE17] Perf Wiki. https://perf.wiki.kernel.org/index.php/Main_
Page, Apr 2017.

[PMP17] poor man’s profiler. https://poormansprofiler.org/, Apr 2017.

[QF17] Quickstack patch for ARM 32. https://github.com/fredrikpe/
quickstack, Apr 2017.

[QS17] quickstack. https://github.com/yoshinorim/quickstack, Apr
2017.

[Ram14] Alex Ramirez. The mont-blanc prototype, 2014.

[RCG+13] Nikola Rajovic, Paul M Carpenter, Isaac Gelado, Nikola Puzovic, Alex
Ramirez, and Mateo Valero. Supercomputing with commodity cpus: Are mo-
bile socs ready for hpc? In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, page 40.
ACM, 2013.

59

http://www.montblanc-project.eu/arm-based-platforms
http://www.montblanc-project.eu/arm-based-platforms
https://github.com/umiddelb/armhf/wiki/How-To-compile-a-custom-Linux-kernel-for-your-ARM-device
https://github.com/umiddelb/armhf/wiki/How-To-compile-a-custom-Linux-kernel-for-your-ARM-device
https://www.nginx.com/resources/wiki/
http://www.hardkernel.com/main/products/prdt_info. php?g_code=G140448267127
http://www.hardkernel.com/main/products/prdt_info. php?g_code=G140448267127
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://github.com/patelhardik/kendroid_kernel_hardkernel_odroidxu3/commit/e90ac2cb272437fe40e947cbcab148b65591b06d
https://github.com/patelhardik/kendroid_kernel_hardkernel_odroidxu3/commit/e90ac2cb272437fe40e947cbcab148b65591b06d
https://github.com/patelhardik/kendroid_kernel_hardkernel_odroidxu3/commit/e90ac2cb272437fe40e947cbcab148b65591b06d
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://poormansprofiler.org/
https://github.com/fredrikpe/quickstack
https://github.com/fredrikpe/quickstack
https://github.com/yoshinorim/quickstack

[RML08] Miguel A Revilla, Shahriar Manzoor, and Rujia Liu. Competitive learning
in informatics: The uva online judge experience. Olympiads in Informatics,
2:131–148, 2008.

[RRM+16] Nikola Rajovic, Alejandro Rico, Filippo Mantovani, Daniel Ruiz, Josep Oriol
Vilarrubi, Constantino Gomez, Luna Backes, Diego Nieto, Harald Servat,
Xavier Martorell, et al. The mont-blanc prototype: an alternative approach
for hpc systems. In High Performance Computing, Networking, Storage and
Analysis, SC16: International Conference for, pages 444–455. IEEE, 2016.

[RRP+14] Nikola Rajovic, Alejandro Rico, Nikola Puzovic, Chris Adeniyi-Jones, and
Alex Ramirez. Tibidabo: Making the case for an arm-based hpc system.
Future Generation Computer Systems, 36:322–334, 2014.

[RS17] RecSys - ACM Recommender Systems. https://recsys.acm.org/,
Jun 2017.

[SE517] Samsung Exynos 5422. http://www.samsung.com/global/
business/semiconductor/product/application/detail?
productId=7978&iaId=2341, Apr 2017.

[SG517] Samsung Galaxy S5. http://www.samsung.com/uk/
smartphones/galaxy-s5-g900f/SM-G900FZKABTU/, Apr
2017.

[TC17] TopCoder CrowdSourcing. https://www.topcoder.com/, Jun 2017.

[TDT17] TDT4102 - Procedural and Object-Oriented Programming. https://www.
ntnu.no/studier/emner/TDT4102, Jun 2017.

[TF15] Simen Støa Torbjørn Follan. Climbing mont blanc - a prototype system for
online energy efficiency based programming competitionson arm platforms.
2015.

60

https://recsys.acm.org/
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7978&iaId=2341
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7978&iaId=2341
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7978&iaId=2341
http://www.samsung.com/uk/smartphones/galaxy-s5-g900f/SM-G900FZKABTU/
http://www.samsung.com/uk/smartphones/galaxy-s5-g900f/SM-G900FZKABTU/
https://www.topcoder.com/
https://www.ntnu.no/studier/emner/TDT4102
https://www.ntnu.no/studier/emner/TDT4102

Appendix A
Installation and Setup

Magnussen provides a comprehensive installation guide of the system in [Mag16]. For
new developers it’s highly recommended to follow those instructions when setting up the
system. This chapter expands and updates the sections in need to match the new version
of the system.

A.1 Backend Setup

Some additional technologies are needed on the backend to support the new profiling fea-
ture. These are the linux perf tools, and the Flame Graph tool.

A.1.1 Installing perf on OdroidXU3

The perf profiling tool might not be supported out of the box on the OdroidXU3 board.
To find out you can perform a simple check using the command perf stat ls. If the
most of the metrics are listed as <not supported>, following the guide at [Pat17] and
[Mid17] (which is simplified beneath) should fix the issue.

What is needed is a recompilation of the linux kernel with the modification of two files. A
branch with these modifications (and some other small changes) is available at [FPL17],
and using this branch simplifies the process. Following is the method of recompiling the
linux kernel.

The other changes included in the linux branch at [FPL17], include a bug fix of the perf

61

tools, and a change so that perf stat ends with the process if attached to it (explained
in section 3.1.1). New developers should be aware of these changes if they are using a
different linux kernel. Indeed, if hardkernel releases a newer linux kernel for the Odroid
XU3 (our version was 3.10), the instructions in this section are no longer valid.

Followig are the steps for recompiling the kernal.

$ git clone --depth 1 --single-branch -b odroidxu3-3.10.y
https://github.com/fredrikpe/linux

$ cd linux
$ make odroidxu3_defconfig
$ make -j 8 zImage dtbs modules
$ sudo cp arch/arm/boot/zImage arch/arm/boot/dts/*.dtb /media/boot
$ sudo make modules_install
$ sudo make firmware_install
$ sudo make headers_install INSTALL_HDR_PATH=/usr
$ kver=‘make kernelrelease‘
$ sudo cp .config /boot/config-${kver}
$ cd /boot
$ sudo update-initramfs -c -k ${kver}
$ sudo mkimage -A arm -O linux -T ramdisk -a 0x0 -e 0x0

-n initrd.img-${kver} -d initrd.img-${kver} uInitrd-${kver}
$ sudo cp uInitrd-${kver} /media/boot/uInitrd

A restart of the OS is now required. Afterwards run the following to install perf.

$ cd linux/tools/perf
$ make -j ‘getconf _NPROCESSORS_ONLN‘ perf
$ cp perf /usr/bin/

If done correctly the command perf stat ls should now display the appropriate met-
rics (i.e., not all of them but most).

A.1.2 Flame graph

Installing Flame Graph is a simple git clone.

$ git clone https://github.com/brendangregg/FlameGraph

62

Appendix B
Quickstack and perf patches

B.1 Quickstack Patch for ARM processors

Quickstack uses the stack pointer and the instruction pointer for figuring out stack straces.
It includes the header file sys/user.h from the GNU C Library [GCL17], which is only used
by GDB, and includes a struct called user regs struct referencing the registers. This
is implemented differently based on the architecture of the CPU. Quickstack supported
x86 and i386 variants, but not ARM 32 or 64. To add support for 32 bit ARM, for our
Cortex-A15 and Cortex-A7 CPUs, some changes to the accessing of these registers were
necessary. These are highlighted in listing reflst:qspatch

63

@@ -13,6 +13,9 @@
#elif defined(__x86_64__)
#define STACK_IP rip
#define STACK_SP rsp

+#elif defined(__arm__)
+#define STACK_IP 15
+#define STACK_IP 13
@@ -199,9 +202,18 @@ static bool match_debug_file(const string& name, const char* file) {

}

static int get_user_regs(int pid, user_regs_struct& regs) {
+#if defined(__arm__)
+ struct iovec iov;
+ iov.iov_base = (void*) ®s;
+ iov.iov_len = sizeof(regs);
+#endif

int count = 100;
while (1) {

+#if defined(__arm__)
+ int e = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &iov);
+#else

int e = ptrace(PTRACE_GETREGS, pid, 0, ®s);
+#endif

if (e != 0) {
if (errno == ESRCH && count-- > 0) {
sched_yield();

@@ -405,7 +417,7 @@ static bool check_shlib(const std::string& fn) {
return false;

}
ulong vaddr = 0;

-#if defined(__i386__)
+#if defined(__i386__) || defined(__arm__)

Elf32_Ehdr* const ehdr = elf32_getehdr(elf);
Elf32_Phdr* const phdr = elf32_getphdr(elf);

@@ -414,7 +426,7 @@ static bool check_shlib(const std::string& fn) {
const int num_phdr = ehdr->e_phnum;
for (int i = 0; i < num_phdr; ++i) {

-#if defined(__i386__)
+#if defined(__i386__) || defined(__arm__)

Elf32_Phdr* const p = phdr + i;
#else

Elf64_Phdr* const p = phdr + i;
@@ -663,8 +675,13 @@ static int get_stack_trace(int pid,

uint n_scanned_from_last_frame = 0;
bool sp_jumped = false;

+#if defined(__arm__)
+ ulong sp = regs.uregs[STACK_SP];
+ ulong top_addr = regs.uregs[STACK_IP];
+#else

ulong sp = regs.STACK_SP;
ulong top_addr = regs.STACK_IP;

+#endif
@@ -1393,7 +1410,11 @@ int main(int argc, char** argv) {

get_tids(target_pid, threads);
_attach_started = (int*)mmap(

+#if defined(__arm__)
+ 0, getpagesize(), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
+#else

0, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
+#endif

pid_t quickstack_core_pid = fork();
if (quickstack_core_pid < 0) {

Listing 12: Changes to quickstack.cc to support 32-bit ARM

64

B.2 Linux Perf Tools Patch

A patch was applied to change the behaviour of the perf stat command when it is
attached to running processes. Normally it is required to hit Ctrl+C to stop the command
even though the process has terminated. After this patch the perf stat command ter-
minates alongside the process it has been attached to.

if (WIFSIGNALED(status))
psignal(WTERMSIG(status), argv[0]);

} else {
- while (!done) {
- nanosleep(&ts, NULL);
- if (interval)
- print_interval();
- }
+ char piddir[40];
+ int check_proc = target.pid && access("/proc", X_OK) == 0 \
+ && !strchr(target.pid, ’,’);
+ if (check_proc)
+ snprintf(piddir, sizeof piddir, "/proc/%d", atoi(target.pid));
+ while(!done) {
+ nanosleep(&ts, NULL);
+ if (interval)
+ print_interval();
+ if (check_proc && access(piddir, X_OK) < 0 && errno == ENOENT)
+ break;
+ }
}

t1 = rdclock();

Listing 13: Changes to builtin-stat.c to change perf stat attachment behaviour

65

66

Appendix C
Backlog

• Bugs and known issues:

– Flame graph is saved in browser and does not reload when a new is generated.

– Some characters give problems in DB dump. Should be encoded to Unicode
first.

• Security issues:

– Security when profiling. User program should be run under the worker user.

67

68

	Problem Statement
	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Thesis Goals
	Thesis Structure

	Background
	The Mont Blanc Project
	Prototypes

	Climbing Mont Blanc
	Frontend
	Server
	Backend
	Energy Measurements

	OpenMP
	Profiling
	Valgrind
	VTune
	perf
	Poor man's profiler
	Flame Graph

	Related Work
	Online Judging Systems
	Crowdsourcing Sites

	CMB Improvements
	Generating Low Level Statistics
	Backend
	Server
	Frontend

	Porting Bash Scripts to Python
	Allowing Different File Uploads
	Stability Improvements
	Push in Thread

	General Architectural Cleanup and Improvements
	Removing the compiledSolutions Folder
	Improvements to the backend run-script
	Database Dump

	Results and Analysis
	How the New Metrics can Assist Performance Tuning
	Case study: Text Search
	Case study: The Shortest Path Problem

	Analysis of OpenMP programs on the Odroid-XU3
	Choosing CPU affinity manually
	Performance of The Nasa Parallel Benchmarks on the Odroid-XU3

	Stability
	Measurement Accuracy
	Experiment setup and Methodology
	Results and discussion

	System stability

	Discussion
	Profiling
	Choosing the Profiler
	Limitations

	Conclusion and Future work
	Conclusion
	Thesis Goals Achievement

	Future Work

	Bibliography
	Installation and Setup
	Backend Setup
	Installing perf on OdroidXU3
	Flame graph

	Quickstack and perf patches
	Quickstack Patch for ARM processors
	Linux Perf Tools Patch

	Backlog

