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Summary

Building information modeling (BIM) has had a big impact on modern en-
gineering. Through the information contained in the models, engineers are
able to interpret and organize a vast amount of data. During a conceptual
design phase, a digital platform based on a Knowledge-based engineering
(KBE) model helps in eliminating poor designs, enhancing the process. This
paper examines the possibility of direct contact between a computer aided
three-dimensional interactive application (e.g. CATIA) and a Finite Ele-
ment Software. The goal is to create a method for quick export of building
information model from common CAD-software to an advanced finite ele-
ment analysis. An approach is derived in which the necessary data from the
pre-processor phase is generated for a finite element simulation.



Sammenrag

Bygnings informasjons modellering (BIM) har hatt stor pavirkning pa mod-
erne prosjektering. Gjennom informasjonen i modellene er ingenigrene i stand
til & tyde og organisere store mengder data. Under konseptuell design sa
vil en veletablert digital plattform basert pa kunnskapsbasert prosjektering
bidra til a eliminere svake lgsninger og fremme prosessen. Denne oppgaven
undersgker muligheten i a oppna direkte kontakt mellom en dataassistert
tredimensjonal interaktiv applikasjon (e.g. CATIA) og en endelig element
programvare. Malet er a skape en metode for kjapp overfgring av bygnings
informasjons modell fra CAD-programvare til en avansert endelig element
analyse. En fremgangsmate ble utledet, som generere den ngdvendige dataen
fra en pre-prosesseringen fase for en endelig element simulering.
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Problem Description

Engineering Architecture - The Parametric design of adaptive joints

Create a parametric model of a steel structures which includes custom mod-
ules that gives a real-time capacity verification of welded joints according to
EC3 and generate data for a FEA of the cruical connection. Also, investigate
how the boundary conditions given by the welded connection affects the form
finding process and how the form finding affects forces in the connections.

Key words:

-Analysis welded steel connection
-Eurocode 3

-Python

-Parametric modeling
-Knowledge based design

-Rhino with Grasshopper
-ABAQUS

-Computation time
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Preface

This dissertation, written in the spring of 2017, is the Master thesis which
concludes my Master of Science degree at the Norwegian University of Sci-
ence and Technology, department of structural engineering.

Throughout the length of my studies I've registered that the industry have
moved more towards digital solutions, building information modeling is close
to becoming the norm for planing and managing projects. Which is one of
the reasons why I chose this kind of problem for my master thesis, It’s most
likely that I will be working with digital models at on point in my career.

The method Parametric design used for this problem is a powerful appli-
cation which makes one capable of deriving ones own modules and their
interrelation. I've worked actively with building information modeling prior
to this thesis, and have observed what can be done with the assistance of
parametric modeling. Complex project have been made possible through a
collection of well defined lines of code, which is impressive to say the least.
Mastering this to a certain degree is one of my goal for this problem, since
it will give access to new engineering possibilities.

I wish to thank Professor Anders Rénnquist for our discussions during this
spring, and to Marcin Luczkowski for making time to introduce me to the
software and for his guidance throughout this process. I am truly grateful
for all the help I've got this spring.

v



Contents

Summary

Summary

Problem Description

Preface

List of Figures

Abbreviations

1

Introduction

1.1 Parametric Modeling . . . . . .
1.2 Why Parametric Modeling . . .
1.3 Parametric Design past projects

Software and Methods
2.1 Softwares and Plugins . . . . .

2.2 Scripting in Grasshopper . . . .
2.3 The Input File . ... ... ..

The Algorithm

3.1 Parts . .. ...
3.2 TheMesh ... ... ... ...
3.3 Discretize the physical model .
3.4 Performing operations . . . . .
3.5 Skewed geometry . . . ... ..
3.6 Assembling the INP. . . . . ..

Case Study

4.1 Cantilever Beam . .. ... ..
4.1.1 Mesh Sensitivity . . . .

4.2 Direct connection Karamba . .
4.2.1 Local Mesh Refinement .

4.3 Steel Connection . . . ... ..
4.3.1 Simulation . . . ... ..
4.3.2 The components fexibility

Discussion and Further Work

ii

iii

iv

viii

ix

11
13
17
19
23
26
29

30
30
36
38
41
44
46
48

51



6 Conclusion 53
Bibliography 54
Appendix Al
A Codescripts . . . . . . .. Al
A1l Extrude Part . . .. ... ... oL Al

A2  SweepPart . ... ... A13

A3 MeshHex8 . .. .. ... .. .. ... ......... A25

A4 Support . . ... A27

A5 Load . .. .. ... ... A29

A6  Displacement . . . ... .. ... .. ... ... ..., A31

AT Tie . . .. A33

A8 Tangents . . . . . . . . . ... A34

A9 IPE . ... .. A36

A10 Joint . . . . ... A40

B Grasshopper Files . . . . . . . ... .. ... . B1
B.1  Casel_VonMises.gh - Attachment . . . . ... ... .. B1

B.2  Case2_VonMises.gh - Attachment . . . . .. ... ... B1

B.3  Case3_1_VonMises.gh - Attachment . . . . . . .. ... B1

B.4  Case3_2_VonMises.gh - Attachment . . . . .. ... .. Bl

B.5  Case3_3_VonMises.gh - Attachment . . . . .. ... .. B1

B.6  Case3_4_VonMises.gh - Attachment . . . . .. ... .. B1

B.7  Components.gh - Attachment . . . . . ... ... ... B1

B.8  GableTruss.gh - Attachment . . . . . . ... ... ... B1

B.9  Connection.gh - Attachment . . . . . .. .. ... ... B1

vi



List of Figures

0 3 O Ul i W N

W W W W WWWWwWwWwNNNoNDNDNDNDNDNDN PR === e o
O© 00 JO Tl WINHFRE O OO U WNEFHE O OWOOO T =W+~ O

Interior side of the Sequential roof. . . . . . .. .. ... ...
The roof structure of the Maggie’s Centre in Manchester. . . .
Anatomy of Trees in Grasshopper. . . . . . . .. .. ... ...
Basic Abaqus. . . . . .. ...
The Structure of an INP file. . . . . . . ... .. .. ... ...
Sketch of multiple discretization of hexahedron. . . . . . . ..
Components. . . . . . . . .
The cross-section and mesh of an rectangular part. . . . . ..
Transformation of surface elements. . . . . . .. ... .. ...
Algorithm unaffected by RUN. . . . . . . ... ... ... ...
Part of algorithm that generates brep dependent on Run. . . .
Generated geometry. . . . ... ..o
Reorientation of Mesh. . . . .. . ... ... ... ... .. ..
Rebuild surface element for consistent vertices order. . . . . .
Discretizing the Nodes of the physical model. . . . . . . . . ..
Discretizing the Elements of the physical model. . . . . . . ..
Integration method available in approach. . . . .. ... ...
Discretization of elements. . . . . . . . .. ... ...
Component for adding material properties. . . . . . . . .. ..
Input surface used for generating sets. . . . . ... ... ...
Method for identifying surfaces. . . . . . . . . ... ... ...
Two parts tied together. . . . . . . . ... ... ... .. ...
Skewed element face . . . . ... ...
Skewed connection . . . . . .. ...
A tangent list definition . . . . . . .. ... ...
The INP assembler component (Appx A.9) . . . . . ... ...
Curve defining the path of the beam . . . . .. ... ... ..
Mesh of a simple rectangular beam . . . . .. ... ... ...
Connect components to display contour of beam . . . . . . . .
Applying Boundary Conditions . . . . . . ... .. ... ...
Applying Pressure Load . . . . . .. ... ... ... .....
Finalized Definition . . . . . . . . . ... ... .. ... .. ..
Result from simulation . . . . . . .. ... ... ... ...
Cross section of instances. . . . . . . ... ... ... ... ..
Analyzes results for the different instances. . . . . . . . . . ..
Results of results mesh refinement . . . . . . .. ... .. ...
Statical Problem . . . . . .. ... ... ...
Component that generates IPE mesh . . . . . ... ... ...
Karamba result connected to INP file . . . . . ... ... ...

vil



40
41
42
43
44
45
46
47
48
49
20
51
52

Results are added to the INP document . . . . . . . . . . ... 39

Result from simulation . . . . . . . ... ... ... ... ... 40
Beam in three parts . . . . . . . . . ... ... ... 41
Definition of the model . . . . . . . . .. ... ... .. .... 42
Analyzes results for different grade of meshes. . . . . . . . .. 43
Beam to beam connection . . . . . ... ... ... ... ... 44
Definition of the joint in Grasshopper . . . . . . . . . .. ... 45
Component of the joint (Appx A.10) . . . .. ... ... ... 45
Analyzes of connection . . . . . .. ... L. 46
Analyzes results of refined mesh, connection. . . . . . . . . .. 47
Different positions of the connection. . . . . .. ... .. ... 49
Connections exported to Abaqus . . . . . . .. .. ... ... 50
Possible connectionto EC3 . . . . . . . . ... ... ... 51

viii



Abbreviations

BIM
CAD
CATIA
CNC
DOF
EC
FEA
FEM
GH
GUI
INP-file
OOP
KBE
SDK

Building Information Model
Computer Aided Design
Computer Aided Three-Dimensional Interactive Application
Computer Numerical Control
Degrees of Freedom

Eurocode

Finite Element Analysis
Finite Element Method
Grasshopper

Graphical User Interface
Input file

Object-Oriented Programming
Knowledge-Based Engineering
Software Developers Kit

1X



1 Introduction

This dissertation examines the possibility of direct connection between a com-
puter aided three dimensional interactive application (CATIA) and a Finite
Element Software. The goal is to create a method for quick exporting build-
ing information model (BIM) from common CAD-software to a advanced
finite element analysis. An approach which generates the necessary data
from the pre-processor phase of the finite element program is derived using
Knowledge-based engineering (KBE) model.

1.1 Parametric Modeling

A parametric model is a geometrical structure/model which is build up using
parameters, a quantifiable value which affects the characteristics of a system.
By coupling parameters using mathematical and logical definitions, it’s pos-
sible to record processes which recreates given actions. Through adjusting
the inputs of a definition, one changes the characteristics of the action. In
CAD, parametric modeling is to register a designs features in order to cap-
ture its intent, making it possible to recreate its behavior. This is referred
to as creating classes of geometry. The example can be modeling of the IPE-
beams. In traditional CAD geometrical properties are set for each dimension
manually, while in a parametric model these values can be associated to a
single parameter, e.g. the section type, which changes all the parameters
linked to it automatically. This dependency between parameters leaves the
model with a range of options which are easily accessed and changeable.

Parametric modeling is not exclusively used for physical models, it’s also
common for organizational purposes such as cost and time estimations. In
building information models, parameters are used actively in order to store
and manage large amount of data efficiently. Objects in the model have
parameters which contains information about its discipline, properties, cost,
time to install and etc. This information can be quantified and categorized,
thus allowing the use of filtering methods. By filtering the data, engineers
are able to extract the information which meet certain criteria, information
which can be interpreted directly or be used as input in calculations or sim-
ulations. The digital approach is more efficient and accurate than going
through this information manually.



1.2 Why Parametric Modeling

Parametric models are able to capture the characteristics of design through
its definition. The characteristics changes according to the input values. By
systematical going through possible inputs, manually or with the assistance
of a code, it’s possible to discover an optimal solution for a design problem.
Typical kinds of operations are optimization methods and generating data.
Optimization algorithms maps the behavior of a model by assigning the pa-
rameters a value, then it analyzes the new models characteristics before it
reassigns a value according to a given objective. Today, optimizations are
commonly used in order to maximize the utilization of structural elements
minimizing the cross-sectional areal5]. Given certain constraints, an algo-
rithm can generate data which follows a distinct pattern to create the basis
for CNC fabrication[12]. For designs which contains vast number of compo-
nents it becomes to cumbersome to create the necessary basis for fabrication
manually. The use of algorithms is the most efficient option there is. The
terms design to production and digital fabrication is often associated with
this kind of automatized processes.

Using parametric to capture design are commonly used by manufacturer to
distribute information about their products. Through the definition they’re
able to create models which display the features of the product they can
produce and prohibit to display those they can’t. These models can then
be integrated in BIM and from there it provides users with real time infor-
mation about the products specifications. This is an efficient way for the
manufacturer to inform its customers of what they can and cannot deliver.

Many CAD software today offers designers the opportunity to create and
implement their own procedures and commands, allowing them to create
their own components and define their own inter-component behavior|[2].

Parametric modeling is not without its cons. The associated constraints can
prohibits designers to investigate possible solutions during the conceptional
design phase making it redundant. At this phase manual modeling might
be more suitable since it doesn’t restrict the designer to a limited range of
possible designs. And also, making large designs integrated into one para-
metric model results in a costly calculation time. A single adjustment of a
parameter results that the whole model is recalculated, this is overcome by
dividing the design into multiple sub routines or a hybrid between direct and
parametric modeling.



1.3 Parametric Design past projects

In order to show how parametric modeling is used in practice, this section
gives a short summary of some few projects where parametric played a cru-
cial role.

The ”Sequential roof” project for the new ”Arch_Tec_Lab” building of the
Institute of Technology in Architecture is a roof structure consisting of 168
individual timber trusses, all of which where designed individually in order
to create the desired shape of the structure (fig.1). The elements of the
trusses is built up by softwood timber with linear geometry and notch-free
joints, which where assembled using a fully automated CNC woodworking
technique. In order to design, analyze and detail the roof, the design group
Gramazio Kohle Research at ETH Zurioch created an scheme which was a
four step approach: First generate a model, then run a structural analyzes
on it, followed by defining nail pattern at the joints and finally evaluate the
results and do necessary modifications. In addition to being governed by the
geometry of the roof, the algorithm had to account for building regulations
and fabrication restriction in the design. Due to the sheer amount of elements
of the structure (48,634 timber slats), the calculation time was costly using
approximately 24 hours of work for each iteration. So the algorithm was
developed and modified in to reduce amount of necessary iterations. This
project shows the strength of fabrication-driven design, which could not be
done as efficient without the use of an algorithm. More details about the
project can be found in the article from the book Advances in Architectural
Geometry 2016[3].

Figure 1: Interior side of the Sequential roof.



The Maggie’s Centre in Manchester, a place of refuge for people struggling
with cancer, is a single story building with a high rise roof structure which
create a mezzanine level (fig.2). Due to the buildings purpose, timber was
chosen as the main material because of its warmth. The structure of the
roof consists of 17 identical frames in a repeated pattern over a 3m grid. A
conventional approach of this kind of structural design would be to use glu-
lam beams. Due to the structure being prone to loads, a parametric model
was derived to create a lighter unique section and thus reduce self-weight
load. This digital model combined with advanced manufacturing technology
allowed the design team to find a find a design which carried the structure
while reducing its the self-weight. More details about can be found in the
article[9)].

Figure 2: The roof structure of the Maggie’s Centre in Manchester.

The Arup Group uses BIM actively in order to optimize the workflow in
their projects. Information is the core of BIM and with the correct pro-
cedures an engineer is able to interpret and manage data more efficiently
than before. Allowing workflows to be established when dealing with high
amount of data or a new kind of data. Arup have developed an approach for
transferring data directly between software not compatible which don’t have
BIM integrated. Through data script they translate the information from
the on software to another in order to utilize both software in the design
process. The aim is to optimize the work progress when working on complex
programmes or irregular geometry. More details about can be found in the

paper|[7].



2 Software and Methods

In detail design it’s sometimes necessary to do a FEA in order to control its
capacities. Reason for analyzes might be due to complex geometry or it’s
required documentation. This means that the detail has to be modeled in a
Finite Element software which is often time consuming. The approach de-
rived in this paper exports a numerical model of geometry created in CAD to
the solver in Abaqus by the means of an Input-file. It was developed using the
modeling software Rhinoceros in combination with its plugin Grasshopper;
The Grasshopper interface gives the user the opportunity to create para-
metric models within Rhinoceros. As input for the numerical model, results
from Karamba (a Finite Element add-on for Grasshopper) was integrated
into the analyzes. The approach is limited to static elastic linear problems
using eight-node hexahedron, knows as eight-node brick elements. Steel was
chosen as material due to its isotropic properties which enables the use of
von mises to measure the stresses.

2.1 Softwares and Plugins

Abaqus is a Finite Element Analysis software used in multiple industries due
to its modeling capabilities and the possibility to or to do customizations.
The preprocessing in Abaqus are usually performed in Abqus/CAE, at this
part of the software is where the numerical model is defined. The analyzes
runs in Abaqus/Standard or Abaqus/Explicit depending on the type of prob-
lem; The solver Abaqus/Standard in is ideal for static and low-speed dynamic
events, while Abaqus/Explicit simulates brief transient dynamic events. It
is Abaqus/Standard which is employed in this paper.

Rhinoceros, often abbreviated as Rhino, is a CAD software frequently used by
designers and architects. The Rhinois common used by designers thanks to
NURBS, Non-Uniform Rational B-Splines, which are mathematically repre-
sentations that can accurately create shapes as curves and freeform surfaces[10].
The flexibility and accuracy of NURBS allows the user to create precise rep-
resentations of any curves and freeform surfaces, which is usable processes
from illustration to manufacturing.

Grasshopper is a graphical algorithm editor for Rhino which provide users
with a graphical interface to create programs know as definitions. All the
information is laid out on the canvas in form of parameters and components
and the data flows from the left to the right. Parameters is the data in the
definition; These can either be containers which store existing information or



input parameters which are organized on the canvas. Components perform
an action based on the input it receives. Grasshopper offers a variety of com-
ponents which performs different tasks within different disciplines. The user
defines the relation between parameters and components by connecting their
nodes together using wires. Nodes is the access point for input or output
information for each component on the canvas, while wires represent data
passing through. The anatomy of a component is that the nodes on the left
are input data while those on the right are output. This data on the can-
vas results in an algorithm which is called a definition. More details about
the anatomy of Grasshopper definitions can be found in The Grasshopper
Primer[10].

Karamba is a plugin for Grasshopper which runs real time FEA of 3D-
Beams and shell on the Grasshopper canvas. The real time display of results
gives the user an insight in the reactions and how it’s affected by certain
inputs. Karamba uses a limited amount of elements, approximately 10 000,
it’s mainly used for conceptional design in order to investigate possible design.

More information about the softwares and plugins can be found on their
respective homepage.

2.2 Scripting in Grasshopper

Grasshopper offers designers the possibility to create custom codes that runs
through components on the canvas. The VB, Python and C# components
gives the framework of their respective language while giving access to the
SDK (Software Developers Kit) which includes libraries to call Rhino com-
mands through syntaxes. With codes it’s possible to create new procedures
and functions not included in the Grasshopper package. In this paper the
Python and C# components where used.

When creating components the user have to call which type of data that’s be-
ing used, this is due to the Object-Oriented programming (OOP) paradigm
of the languages. This means that for all inputs, variables and output the
type has to be called at the time its created. This lets the component know
which kind of data it’s working on and it’s able to use them in commands
and find the corresponding syntaxes from the library. The framework of the
Python script is not as strict on the calling of data as C# which means its
better suited when drafting the code.

Grasshopper allows the use of Lists and Data Trees to store and transport



data over the canvas. These are arrays of specific data types such as Strings,
Doubles and various geometric types which are called by its position in the ar-
ray. The Data Tree differs from Lists since it’s a hierarchical system of nested
Lists called Branches and are assigned a path which tell Grasshopper where
to find it. A common analogy of Data Tree Branches is the folder system of
windows explorer, Data in the Tree is like the files and the Branches are the
folders. The Data Tree takes a forms the paths according to how the script as-
sembles it. To access the data of a Branch within multple sub-branches then
each sub-index has to be called which can become cumbersome. Grasshop-
per offers some command to manipulate the Trees anatomy, two which are
shown in fig.3. Simplify removes the sub-indices of the Branches leaving just
a single index for the list to be called, while Flatten takes all the data in the
Tree and store it in a single Branch.

(a) A Data Tree of Points. (b) Simplified Tree. (c) Flatten Tree.

Figure 3: Anatomy of Trees in Grasshopper.

2.3 The Input File

In FEA, the preprocessor phase results in a numerical model of the problem
at hand which acts as the basis for the simulation. The INP file, or input
file, is a text file which contains the numerical model derived from the pre-
processor and it’s the communication platform between the pre-processor and
the simulator. It uses computer aided three-dimensional interactive applica-
tions open platform commands in order to create numerical models. Figure4
shows step by step a typical analyzes in Abaqus. Since the INP is a text
file it is easily accessed through a text editor. In the editor one gets direct
control of the model allowing manipulation without the use of the GUI in
Abaqus/CAE. This is faster since the GUI follows strict procedures that’s
time consuming, but since there is no GUI it will be difficult to do adapt the
data for bigger files. In this paper the whole INP file is created in Grasshop-
per giving an alternative GUI to work with.

The INP file consists of mainly three parts: The physical model, the solving

method and the output request. The physical model contains the discretiza-
tion information of the geometry which includes its nodes, element, material

7



Preprocessing
Abaqus/CAE Interactive Mode

Input file (text):

U5blinp Analysis Input file

Simulation

FEM Solver — Abaqus/Standard

Outputfile:
Job.odb,
job.dat

Postprocessing
Abaqus/CAE

Figure 4: Basic Abaqus.

and how it’s assembled. Solving method informs Abaqus of which kind of
simulation its dealing with and the how the loads are applied. The output
request gives the setting for how the information from the solver will be
returned. This paper operates with a fixed setting for the output and will
therefore not go into detail on how it’s defined.

As seen in figure 5 the file consists of multiple distinct sections which are
separated with double asterixes, examples from the figure are PARTS and
ASSEMBLY. In each section it’s possible to initiate an option by calling it
with an asterix followed by a keyword. For example, to specify nodal co-
ordinates it’'s *NODE and to specify element connectivity it’s *ELEMENT.
Note that when calling the element specification option it’s followed by the
sub-option TYPE, this is to let the solver know which type of element it’s
dealing with and how the nodes are connected. Following this format one
is able to generate INP files for a given model, the challenge is to create a
procedure which construct valid information to be used in the Abaqus solver.

From the sub-option TYPE, Abaqus gets the command on how to connect
the nodes the elements in the list. Element connectedness establishes the
elements topology|[1], for the eight-node hexahedron|6] the connectedness ori-
entates the element faces and thus gives the face normals. These normals
is used to determine the Jacobian[1][4] of the element. The Jacobian is a
measure of the faces normals and their relation to each other. The Abaqus
solver won’t run if the Jacobian close to or below zero. Figure 6 shows differ-
ent configurations of the eight-node hexahedron. In 6a the orientation of the



*Heading

<|D>

“* Job name:<Job> Model name: <Model>

“Preprint, echo=NO, model=NO, history=NO, contact=NO

wk

“*PARTS

*Part, name= <Part_|D>
*Node

<<Node humber, X.Coord, Z.Coord, Y.Coord>>
*Element, type= <Type of Element>
<<Elementnumber, Node nr.1, Node nr2, ..., Node nrg>>

*Nset, nset=Set, generate

1,  <Numer of Nodes>, 1
*Elset, elset=Set, generate
1, <Number of elements>, 1

**Section: End_section
*Solid Section, elset=Set, material= <Material>

*End Part

%

L

*ASSEMBLY
*Assembly, name = Assembly

*Instance, name = <Part_|D=>, part= <ID>
*End Instance

*k

<<Lists of part components>>

*End Assembly

*k

“*MATERIALS

<Material Properties>

*k

** BOUNDARY CONDITIONS
e

*

** Name = <Support |D>, Type: Displacement/Rotation
*Boundary

<Conditions>

**

*k

** STEP: <Applied Load>
*Step, name = <Load |D>, nlgeom=NO

<Load data>

*x

* QUTPUT REQUEST

*Restart, write, frequency=0

*x

** FIELD OUTPUT: F-Output-1

*

*Output, field, variable=PRESELECT

** HISTORY OUTPUT: H-Output-1
*Output, history, variable=PRESELECT
*End Step

Figure 5: The Structure of an INP file.




bottom face is oriented 180degrees away from the correct position (node 7
and node 5, and node 8 and node 6 should interchange) resulting in a badly
shaped element. The face normals in 6b are oriented towards the elements
center, resulting in a negative volume. The element in 6b has the correct
topological mapping.

3

7
(a) Misshaped (b) Negative Volume (c) Correct

Figure 6: Sketch of multiple discretization of hexahedron.

The assembly section of the INP file contains information about the parts
used in the model (instances) and how their components (nodes and ele-
ments) are restrained and/or loaded. In order to apply such conditions, sets
containing the identification of entities is created and labeled to the given
operation. The sets contains information of either node or elements, and
the keyword to initiate them are *Nset and *Elset respectively. There’s a
set of sub-options used to inform Abaqus what’s the name of the set and
which instance it’s collected from. Example of node sets being used is when
boundary conditions are applied, and an example of element set is when a
pressure is applied to the model.

10



3 The Algorithm

In addition to the approach successfully discretize numerical models, it also
had to be user friendly. The intention was that this approach was going to
be used by others at a later time. So in order to increase user friendliness,
some of the components features were given extra attention:

o Optimize calculation time: Calculation time is important in order to
boost the interaction value. Interaction is a essential part of graphical
algorithm editors such as Grasshopper. So creating components with
short calculation time is preferable. Initially the code discretized the
model by dividing a solid into elements. This proved to be a time costly
approach since operations on solids are more CPU demanding which
have a negative affect on calculation time. Knowing this, the code
where reorganized so that the numerical model where wrapped around
the geometry making it independent from an initial form. More details
about this in section 3.1.

e Minimize the number of input and output: The information pro-
cessed by the components pass through their nodes and are interlinked
by wires (refer section 2.1). This means that in order for a definition to
run successfully all correlated nodes on the canvas has to be connected.
Connecting these nodes will become cumbersome when components re-
quires a larger amount of input, so creating components with a mini-
mum amount of nodes is preferable. In this algorithm, the information
transferred between components had the majority of its data included
in one single Data Tree. This mean when data are transferred from
that component it’s done with one wire, resulting in shorter assembly
time of the definitions.

e Creating a natural relation between components: The definition
where split into multiple components in order to reduce the number
nodes. Due to INP files being a documentation of the pre-processor
phase, the components fell in to a similar patter. The Karamba, add-
on also have a pre-processor phase, so the components in this approach
have a similar relation as the components in Karamba.
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3.1 Parts

In Abaqus, parts is the geometry of the model. In the INP file there is a
own section for parts, where the information regarding nodal coordinates and
element composition is included. In this approach, two methods for generat-
ing parts is available: extrusion and sweep (fig.7a and fig.7b). These where
chosen since they’re common methods for generating solids in Grasshopper.
There’s a toggle input Run, which acts as a stream filter within the code.
When the toggle is turned on, the component starts to generate the numer-
ical model. The components are similar by the fact that they operates on
curves. The difference is that the extrusion component generates a curve
defined by a start point, tangent and a length (same method as the Line
SDL command in Grasshopper), while the sweep gets its curve through the
input node Razl. This curve is divided into an number of segments equal
to the input Divistons, and is evaluated at the end points of each segment
in order to find the nodal coordinates and the tangents of the curve. These
coordinates and tangents is variables used in the transformation of the Mesh
surfaces.

Figure 8: The cross-section and mesh of an rectangular part.

In this approach, the mesh is represented by the subdivided surface which
represents the cross-section of the part (refer fig.8). The surface elements
in the mesh acts as groups of nodes, where each surface vertex represents
a node. Since the surface elements govern the position of its nodes, makes
it possible to disretize the model by positioning the surfaces instead of each
individual node. Through duplication and transformation (according to the
global origin), each individual surface element is placed into position (fig.9).
More details about mesh surfaces in section 3.2

The physical model displayed in Rhino has two states: before the and af-
ter discretization. The reason for dividing the geometry into two states is to

13



(a) Initial Position (b) Translation. (c) Rotation.

Figure 9: Transformation of surface elements.

give an visual indication if the algorithm ran or not, strengthening its inter-
action. Prior to the discretization (fig.10), the component places the surfaces
from the mesh and the section surface in position (Duplicate ->Transform).
When in position, the vertices (nodes) and edges (curves) of all surfaces are
duplicated and exported to a given data tree or list. The vertices exported
to the data tree Elements and the list Vertices are data used later on in the
discretization of the model. The edges of the section is exported to the data
tree EdgeCurves to be input for the geometry created when the toggle is on.
It’s the edges of the mesh surfaces, exported to Geometry, that’s displayed
in Rhino Indicating the position and orientation of the element faces. This
results in a contour of the final shape. Note that the section surfaces at the
end points of the curve are added to the list Surface, these surfaces are used
to create a closed solid in when the discretizations runs.

When the toggle is on (model is being discretized), the component starts
to generate the solid of the part displayed in Rhino (fig.11). The solid is
built up by a series of surfaces generated by the Loft command; A loft sur-
face is created between each point on the curve for each edge of the section .
These surfaces are added then to the list Surface, which is joined together to
a closed solid when all the edges are lofted. Since the FEA is limited to lin-
ear geometry, the shape of the sweep becomes that of the sweeps in Abaqus
(linear curves between nodes). Figure 12 shows the two states of display.
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3.2 The Mesh

As mention is previous section, the mesh in this approach is a subdivided
surface. The approach is derived so that the mesh can be defined at any posi-
tion in the project, giving the possibility to define a section from an arbitrary
geometry in the project. In order for the discretization to run successfully,
the mesh surfaces have to be managed in order to meet some criteria. These
operations are performed by the Mesh Hex8 component (fig.7c).

The first thing the component does is to reorient the section and the mesh.
Surfaces are translated so that the centroid of the section is positioned at
the global origin, and then it’s rotated so that the surface normal is aligned
with the global x-axis (fig.13a). This gives a consistency not only for the
transformation process to come but also for the rebuilding of elements the
elements. Note that the component has the inputs Offset1 and Offset2,
these inputs allows the user to move the mesh so that the rail curve used
by the part generators doesn’t align with the section centroid. This is useful
when the given rail isn’t the center line of the section but rather one of its
corners (fig.13).

(a) Reorientation of Mesh. (b) Mesh is offset. (c) Surfaces moved to rail.

Figure 13: Reorientation of Mesh.
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Since the mesh can be any divided surface, given that each subdivision has
four vertices, there’s no certainty that the vertices will be ordered in a struc-
tured way. This means that when the nodes of the part are added to the
FElements branch (refer section 3.1) they are ordered randomly, which leads
to a problem when the elements are discretized. Section 2.3 showed that
the elements shape depends on the topological mapping of the element. To
ensure that the element gets the correct mapping, the Mesh Hex8 component
rebuilds the surfaces to ensure a consistent listing of the elements.

To rebuild a element, the component extracts its vertices and calculates the
average point of these. This average point is used as origin point to calculate
the angle between it and each individual vertices. After sorting the vertices
by its angle to the average point, the surfaces are rebuilt so that the indices
of the vertices are consistent (fig.18). This ensure that the element in the
part components have consistent connectivity.

4
X T
L
Angle
Average
Y
X
X
(a) Calculate angle. (b) Vertices order.

Figure 14: Rebuild surface element for consistent vertices order.
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3.3 Discretize the physical model

When the toggle input Run is on, the part components starts to generate the
numerical model. From the way the INP file is structured, the components
starts by listing the nodal coordinates. The list Vertices, which includes all
the vertices of the surface elements in the mesh, is the basis in defining the
parts nodal coordinates (fig.15). Since the nodes are placed into position
using surface elements, the vertices on adjacent surfaces overlap creating du-
plicate points. If the duplicates is not removed from the list, then Abaqus
will use all points threatening the continuity of the mesh. In the case of
duplicates, the nodes with the same nodal coordinates are managed as indi-
vidual nodes. That means if one of the node is displaced, the other won’t
follow. In order to deal with this issue, the duplicate points in Vertices are
removed by calculating the distance between each node in the list and remov-
ing those who have a length close to zero. This results in the new list Nodes.

After the duplicates are removed, the code starts to add the nodal coor-
dinates to the Part list. This list contains the data for the part used in the
PARTS section of the INP file. In the INP file, the declaring of nodes are ini-
tiated by the option Node (refer section 2.3) which means that the keyword
*Node is added to the list before the nodal coordinates. Note that the part
components have the input ModelOrigin. This option is used to define the
origin point for the model in the Abaqus/CAE interface. If it’s not specified,
the INP file uses the global origin. When the exported geometry is located
far away from the origin, it becomes hard to navigate in the Abaqus/CAE
model. Before the algorithm appends the nodal coordinates to the list, it
checks if components have an input value for the model origin. If there’s
an input, the nodes from the list is subtracted the input value before it’s
appended to the list. If not, the nodal coordinates are appended to the list
directly.

After the nodal coordinates are appended to the list, the code starts to
add the elements topological mapping to the INP file. The keyword *Ele-
ments with the sub-option type equal to the input ElmntType is added to
the Part list to initiate the declaring of elements. The element type, tells
Abaqus which kind of integration method[4] is used in the calculation and
adapts the elements accordingly. The available integration methods in this
approach are: Full integration, Reduced integration and Incompatible modes
(fig.17). In determining the mapping of each elements, the algorithm uses
the data tree Flements which is structured so that the vertices of each in-
dividual mesh surface at a given position on the curve has it own path. At
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each segment of the curve (element) the algorithm compares the points of
the element faces S1 and S2 (fig.18a) to each node from the Nodes list to find
the node indices of the element corners. In this scenario, the surface element
at the start of the line segment represents S1 and the surface element at the
end represents by S2 (fig.18b).

After all the element in the part is identified, the algorithm create a set
of all the nodes and a set for all the elements. These sets are added to
Part. Before the part is finalized, the algortihm create a section which uses
the newly created element set and assigns it the material properties (fig.19).
This command set the material properties of the elements. To finish the
discretization, the command *End Part is appended to the list.

i i {0}
Hexahedron Full integraion
[ - g L4 0 C3D8
Hexahedron Reduced Integration 1|C3D8R
[ - J > 2 C3D8I

[Hexahedron < Incompatible Modes B

Figure 17: Integration method available in approach.

L) [52]
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2 sS4
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4 8
4

S5

3 7

(a) Connectivity hexahedron element. (b) Vertices order.

Figure 18: Discretization of elements.
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Figure 19: Component for adding material properties.

3.4 Performing operations

Abaqus performs actions on the model by assigning an action onto a set (re-
fer section 2.3). In the INP file, an action is initiated by a keyword which
calls a set to operate on in its definition. To create sets, the algorithm uses
surfaces. The surface is placed on the model and the components register
which of its nodes that’s on that surface (fig.20). To identify which nodes
that’s on the surface, the node is projected onto the surface and then the
distance between it and its projection is calculated. If the distance is within
a certain tolerance, a procedure is initiated depending on which kind of set
the surface is identifying (surface or node set).

Input Surface
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\5_ ]
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Figure 20: Input surface used for generating sets.
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When creating node sets, the component adds the index of the node on
the surface to the set directly. While for identifying surfaces, the component
have to identify 4 nodes (equal to the number of vertices of the element face)
before it adds the face of the element to its set (fig.21). In order to add the
correct face to the set (fig.18a), the component runs through all the elements
in the part. For each point on the surface, it adds the index the node has
in its element topological mapping, to a temporary list which resets between
elements. If that list gets 4 indices, the current element is added to the set
and its side is identified. The side is identified by comparing the indices in
the list with the topological mapping; If the list contains the indices [5,6,7,8]
the side is identified as S2, for [1,2,5,6} it’s S3 and so on.

The components in the algorithm that uses surfaces to define sets are: Sup-
port (fig.7d), Uniform Load (fig.7e), Displacement (figure 7f) and Tie (figure
7g). The support and displacement components generates node sets whereas
the uniform load and tie generate sets of elements. It’s worth noticing that
the Tie component have an extra output. This is due to the fact that this
component ties part together, a tie is an interaction module that couples sur-
faces from separate parts together during the simulation [11]. The surfaces
in the tie are assigned roles, one as Master and the other as Slave. The slave
surface adjust itself according to the master, therefore it’s recommended that
the section with highest mesh density is assigned as slave. Since the tie com-
ponent demands input from two separate parts, it generates the input for
the INP assembler directly (refer section 3.6). Figure 22 shows how ties are
set in this approach.

For very refined meshes, the distances between nodal points can become
so short that the input-surfaces register the points on the surface and those
close to it. To counter this a tolerance input Tol is included. This input
lets the user adjust the sensitivity the algorithm uses when determining if
a point is on the surface. Also, in the case that the surface isn’t positioned
close enough to the nodal points, the sensitivity can be adjusted so that it
register points further away.
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Figure 22: Two parts tied together.

3.5 Skewed geometry

To account for skewed geometry, which is common for connections, the part
components have an input Tngt; A list of vectors, that overrides the rota-
tion of the mesh surfaces so that their surface normal aligns with the input.
The first vector in the list overrides the tangent at the start of the curve, the
second on the tangent at the first division point, this goes on until the list
ends or there’s no point left on the curve to override. Each time the mesh
surface is rotated according to an input vector the height of the surface is
elongated. To account for the elongation, a ratio for scaling the height of the
surface is derived. Examining a skewed element face (fig.23) one can derive
a scaling factor by looking at the ratio between the initial surface height and
the elongated height.
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Figure 23: Skewed element face
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Using this relation to scale the surface element height prevents the geometry
from getting kinks along its sides (figure 24b). Scaling of the mesh surfaces
is performed during the initial transformation process (refer section 3.1). By
including skewed geometry, this approach is capable of covering more designs.

(a) Initial orientation (b) Unscaled (c) Adjusted

Figure 24: Skewed connection

The vectors that the input Tngt receives, can either be defined manually
or by the the component tangent list (fig.25). Tangent list is a component
which generates a list of vectors by comparing the override vector with the
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curves tangent. The component start by adding the override vector T'ngt to
the output list, then it calculates the mean vector between the input vector,
the tangent it overrides and the succeeding tangent. This average vector
is also added to the list. Then a certain condition has to be met for each
succeeding point on the curve:

1 — |Vawg- Tangent sycceeding| < Tolerance

If this condition isn’t met, then the average vector is recalculated using the
previous average vector, the curve tangent at the current point and at the
succeeding tangent. This continues until the condition is met, or until the end
of the curve. When the tolerance is met the component returns the tangent
of the curve at that point and all succeeding points. Since the component
operates on unit vectors, the difference between 1 and the dot product will
converge towards 0 as the average vector closes in to the succeeding tangent

N ST

K

]
A
N

\é Rail
Divisions

Tngt . TList
Tol
EndPt

Figure 25: A tangent list definition
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This component has its limitation, when working with refined meshes and
the override vector might make the elements in the mesh overlapping creat-
ing discontinuity. In these situations it’s best to manually define the vector
list.

3.6 Assembling the INP

In order to export the model, all the information from the discretization
needs to be collected and arranged into one document. This is what the INP
Assembly component does (fig.26). The code of the component contains all
the sections of the model, e.g. **PARTS, **ASSEMBLY, *MATERIAL,
etc. The input is collected and added to their respective section in the file.
When the model have multiple parts, the input nodes of the component
has to be flattened in order for the information to be arranged correctly.
Connecting the output from the INP Assembly to a panel makes it possible
to stream the content of the INP file directly to a text file. Right clicking
the panel gives access to the stream options. When the stream option is
active, Grasshopper does real time update on the document at the stream
destination. NB! In order to import the text file to Abaqus the filename
extension has to be inp.
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Instance
Sets % INP
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Material
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Steps
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Figure 26: The INP assembler component (Appx A.9)
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4 Case Study

To demonstrate the functionality of the approach, the upcoming sections
presents a series of cases which the approach has been applied.

4.1 Cantilever Beam

In order to show how to assemble a definition, this section present a sim-
ple example using a cantilever beam. This is a classic statically problem
frequently used in many textbook problems and tutorials, which makes it a
suitable case to present how to define the code.

The definition starts by determining how the beam will be created. In this
case the beam will be defined using the Sweep Part component, which means
that a curve is created as the path of the model. Figure 27 shows the defini-
tion of a curve, its length is governed by the slider Length. When the value of
Length changes so does the length of the line and also the length of the beam.

Figure 27: Curve defining the path of the beam
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Figure 28: Mesh of a simple rectangular beam

In order to show how to define a mesh, a simple rectangular beam is used as
a cross-section. Figure 28 shows the mesh used in this example. The surface
representing the cross-section is subdivided using a Grasshopper component
called isotrim, it extracts an isoparametric subset of the surface defined by
the divide domain component which divides the surface domain according to
its input U and V Count. Increasing the value of these will refine the mesh.

With a rail and a mesh defined, it’s possible to generate the contour of
the shape (represented by the edges of the surfaces in the mesh). Connecting
these and an integer slider for the Divisions to the sweep component gener-
ates the contour shape of the beam. The window in figure 29 displays the
contour of the beam. The definition in the figure includes a series of addi-
tional input: Material properties, identification of the part, element type and
the toggle. These inputs are not dependent on input from other components,
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Figure 29: Connect components to display contour of beam

except for the material properties but it is declared using panels which is
easily appended. Note that the model origin is connected to a point from
the line, this is to improve navigation in the Abaqus/CAE window.

The restraints are assigned to the beam using surfaces. The Plane Surface
command in Grasshopper, is a convenient way to create surfaces used by the
support component. By creating a plane on the curve defined by one point
on the curve and the tangent at that point, that plane can be used by the
Plane Surface component to create a surface on that plane. In this definition,
the curve is evaluated at the start of the curve to find the coordinates and
tangent. A surface is constructed at the start of the curve by using this data.
This surface is connected to the support component input Face. NB! It’s
important that the dimensions of the surface is greater than the section in
order to identify all restrained nodes.

The restraints are called using lists, if the list includes [ 1,2,3 ] the nodes
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Figure 30: Applying Boundary Conditions

on the surface are restrained against translations. The tick off menu in the
figure generates a list with integers depending on which variables that ticked
off. The component also register strings Ul, U2 and U3 when calling the
restraints. Six DOF are available for restraint even though there’s only three
DOF are available for solids, they’re included to be applied on other element
types in future versions.

Similarly as to the support, the load is assigned using a surface. Here, the
upper edge of the section is copied and swept along the rail resulting in a
surface used to define a pressure load at the top of the beam. This surface
is connected to the uniform load component and it applies a pressure to the
faces adjacent to the surface.

Figure 32 shows the final definition of the cantilever beam. To create the INP
file, an INP Assembly component is placed on the canvas and it’s connected
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Figure 31: Applying Pressure Load

to the model information. Note that the material properties component is
connected to the assembler, this is so that the INP file can declare material
properties. These properties are not a output from the part component due
to the fact this material can be connected to multiple parts creating a series
of multiple output. The INP file output is connected to a panel in order to
stream the numerical model to the .inp file.

The model is then imported to Abaqus and a simulation is run, the result is

shown in figure 33. This simulation shows that there is a connection between
Grasshopper and Abaqus.
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4.1.1 Mesh Sensitivity

A short mesh sensitivity study is performed in order to demonstrate how the
parametric in the model work. In this definition, the mesh is governed by
the inputs U Count, V Count and Divisions (fig.32). Higher the value, more
refined the mesh gets. A beam with the dimensions: 1.2m length, 0.4m cross
sectional height and 0.2m width, was applied to 0.5MPa; Four instances with
cubic elements were analyzed, with refinement of 22 for each instance (fig.34).

In#tanca 1 Instance 2

e e ———————————————

Figure 34: Cross section of instances.

Due to the theory of elasticity and the non-physical (fixed support) boundary
condition, the singularity appear on the bottom and top surface of the beam.
As shown in the graph (fig36), the maximum stress in concentration place is
exponentially converging to the unrealistic big value.
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(a) Instance 1 (b) Instance 2

(c) Instance 3 (d) Instance 4

Figure 35: Analyzes results for the different instances.
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Figure 36: Results of results mesh refinement
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4.2 Direct connection Karamba

To examine the possibility to include output data from Karamba, a static
problem with an built in beam (fig.37) was analyzed by Karamba in order to
find the maximum displacement. This value was connected to the displace-
ment component (fig.39) which integrated it to the FEA. In order for the
component to identify and create a node set to displace(refer section 3.4), a
surface was constructed at the point of maximum displacement.

Self-Weight + 1kN/m

A A A A R

N IPE300

2m

Figure 37: Statical Problem

In order to recreate the IPE section that Karamba uses in its analyzes, a
component that generates mesh of IPE sections was created (Appx A.9).
This component was structured so that it registers the same commands as
the section component in Karamba.

—
IPE Section
. w
Scaling |-
- SB— 1 ])_( i Mesh

Figure 38: Component that generates IPE mesh
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This gives the opportunity to connect both analyzes to the same input value,
ensuring that the same section is used for both analyzes. The IPE compo-
nents input ¢ter refines the mesh according to its value. Figure 38 shows

different meshes generated at different values of iter, values from right to left
are: 0, 1, 5 and 10.

After the Karamba results and the displacement component is connected,
the rest of the model is connected in a similar matter as in the cantilever
case (fig.40). The definition is finalized and the FEA results are connected
to the translation in z-directioin (fig.40).

The simulation from Abaqus (fig.41) shows that the displacement from the
Karamba FEA have successfully been integrated to the numerical model, and
thus a connection between the two programs is confirmed. This direct con-
nection between the code and Karamba gives a real-time data-input that’s
applied to the FEA, boosting the level of interactivity off the approach.

Figure 41: Result from simulation
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4.2.1 Local Mesh Refinement

In this problem, the critical stresses are located at mid-span of the beam.
The mesh used in the analyzes was defined globally, making all the elements
in the mesh of equal in size. In order to make the simulation run more ef-
fective, the mesh should be locally refined at the critical stress region. For
this approach, the local refinement were achieved by dividing the curve into
three equally sized segments. Where each individual segment was the rail of
one sweep, resulting into a total of three parts (fig.42).
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Figure 42: Beam in three parts

The parts are assigned their respective boundary conditions and connected
to one of two sliders Divisions Sides and Divisons Mid (fig.43). The sliders
gives the possibility to define numbers of elements in the critical region sep-
arately from the rest of the beam. The parts are then connected by coupling
the adjacent faces using the tie component, in this problem it doesn’t mat-
ter which part that’s assigned the role of Master or Slave since their cross
sectional mesh is the same (refer section 3.4).
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Figure 43: Definition of the model

The results shows that as the mesh at mid span region becomes more re-
fined, the critical stresses gets concentrated more locally thus increasing the
accuracy refer figure 44. This demonstrates that it’s possible to use this
method to create locally refined mesh.
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4.3 Steel Connection

When working on simple steel connections, the design is based on the EC3-1-
8. In order to implement the requirements from EC3-1-8, predefined solutions
must be created since the code operates on basic components, Per K. Larsen
[8]. The components in the predefined design consists of basic components
from the code creating a possibility to connect EC3 to the approach. To
examine this possibility, a beam to beam connection was modeled (fig.45).

Figure 45: Beam to beam connection

Creating a parametric definition for the connection required several geo-
metrical operations and components (fig.46). Recreating or managing this
definition requires insight its procedures and structure, which doesn’t make
it as flexible as it could have been. A predefined solution should be easily
implemented and its data should be few and understandable. To make the
definition on the canvas predefined, a new component was created that com-
piled the information on the canvas into a single module (fig.47). The input
required from a project is a line and one of its end points. From this input,
the components generates the connection about the point according to the
input meshes (one for the plate and one for the beams). To save input and
calculation time, the component only creates model for FEA with deflections.
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Figure 46: Definition of the joint in Grasshopper
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Figure 47: Component of the joint (Appx A.10)
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4.3.1 Simulation

In this section some different simulations will be presented to show that the
approach is capable of exporting numerical models to FEA. It is assumed
that the weld is the strongest component in the connection.

The first simulation (figd8) shows the result of a simulation where a truss with
a 45° pitch is deflected with Imm at mid span. The second simulation (fig49)
shows how the mesh density affects the stress distribution. This model is also
deflected Imm at the mid span. The results (fig.48) shows that the critical

Figure 48: Analyzes of connection

stresses are located at the base of the beams and at the connection. While
the results (fig.49) shows that as the mesh gets more refined, the critical
stresses becomes more concentrated, similar to the refinement from section
4.2.1. These results shows that it’s possible to create and export numerical
models from Grasshopper to Abaqus.
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4.3.2 The components fexibility

The module for the predefined connection was derived so that it could adapt
itself according the geometry given. Figure 50 shows how the connection
follows the slope of a gable truss as the dimensions of the truss changes.
This demonstrates how a fully parametric connection behaves, showing the
potential of this approach. When the INP file assembler is running, it is
constantly changing the numerical model according to the connection (fig.51),
and it is possible at any point to export the numerical model to FEA.
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(a) High inclination angle

(b) Low inclination angle

(¢) Connection placed at bottom chord

Figure 50: Different positions of the connection.
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(a) Export High inclination angle

(b) Export Low inclination angle

(c) Export Connection placed at bottom chord

Figure 51: Connections exported to Abaqus
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5 Discussion and Further Work

The approach, which is limited to eight-node hexahedron, is able to export
numerical models to FEA successfully. The eight-node hexahedron elements
is commonly used in modeling three-dimensional solids, which means the
approach is able to cover a large variety of design. Its fully parametric, up-
dating the numerical model in real time. This enables designers to quickly
run simulation without having to redefine the model for each modification.
During conceptional design, the engineer is able to to run several analyzes
over a shorter time period.

The final product became more universal than the problem description stated,
it’s able to disrectize most solids and are not exclusively for joint, this cre-
ates a foundation for future development. By supplementing it with a series
of predefined solutions, similar to that of the IPE component and the pre-
defined joint, it’s possible to create a library which can cover a large range
of designs. In the future, it could be possible to create a modules which is
related to EC3. By creating a connection between the modules of the library

and a component which calculates the component combination in accordance
to EC3 (fig.52).

Does verification to see
if the components is in
accordance to the standard

aterial

Figure 52: Possible connection to EC3
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The majority of the work done on this paper was on the method on how
to export the building information, and less on interpretation of simulation
results. A future study on assembling stable numerical models is required.
Through doing a series of simulations, it could be possible to optimize the
boundary conditions of the predefined connections so that they cover most
cases.

The mesh discretization is controlled by the user through the available in-
puts: mesh, curve divisions and tangents. This enables the user to control
the local refinement of mesh giving the analyzes higher accuracy. While the
use of mesh generators are faster, they might in some instances result in some
poor meshes which causes poor results from the FEA.

For this approach, it would be possible to include a scaling factor list similar
to the tangent list (refer section 3.5). This could be a list of factors which
performs a non-uniform scaling, or uniform, on the surface elements in order
to create a non-uniform cross section member. During the initial transfor-
mation process (translation and rotation), the surface elements are scaled
according to a given point on the curve.

As the approach is now it’s time costly to create the models for more com-
plex joints. The components in it has to be discretized individually and then
be assembled. In the case of bolted connections, the mesh surrounding the
hole has to be created locally and then integrated in the global mesh of the
component. Given time, this could be solved and then that solution could
be made parametric and applied on future parts.
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6 Conclusion

It’s been verified that a computer aided three-dimensional interactive appli-
cation can be used to obtain direct contact to a Finite Element Software,
and that it can be applied to export building information models from CAD
to a finite element analyzes.

The approach derived in this paper enables engineers to create numerical
models which adapts itself according to a design, models which can be di-
rectly be exported to an finite element analyzes. Its universal and versatile,
giving the possibility to cover a large variety of design problems. In the fu-
ture it can be supplemented with a library of predefined designs for a more
complete solution package.
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Appendix

A Code scripts
A.1 Extrude Part

//Declare variables;
Point3d Crd;
Vector3dd Trns, Tngt, xprd;
Plane pln;
Transform Scle, rot;
double Scly, Sclz;
string Nr, X, Y, Z;
int Count;

//Create output tree;

DataTree <Curve> Crvs = new DataTree<Curve>();

DataTree <Point3d> Elements = new DataTree<Point3d >();

DataTree <System.Object> GeoTree = new DataTree<System.Object >();
DataTree <string> Inf = new DataTree<string >();

DataTree <int> Tick = new DataTree<int >();

DataTree <int> Tock = new DataTree<int >();

//Create Lists;

List< Point3d > Vertices = new List<Point3d >();

List< Point3d > Nds = new List<Point3d >();

List< Brep > Srf = new List<Brep>();

List< Brep > ObjList = new List<Brep>();

List< string > PrtLst = new List<string >();

List< string SetLst = new List<string >();

List< string InsLst = new List<string >();

List< string > BCLst = new List<string >();
StpLst = new List<string >();

EINr = new List<string >();

Y

List< string
List< string

vV VV VYV
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List <Brep> SupLst = new List<Brep>();
List <double> TolSupLst = new List<double >();
List <Brep> DisLst = new List<Brep>();
List <double> TolDisLst = new List<double >();
List <Brep> LdLst = new List<Brep>();
List <double> TolLdLst = new List<double >();
List <Brep> TieLst = new List<Brep>();
List <double> TolTieLst = new List<double >();

[T DT
NNy,

//Create Curve according to input;

Direction . Unitize ();

Point3d EndPt = new Point3d(StrtPt.X 4+ Length % Direction.X, StrtP
Curve Rail = new LineCurve(StrtPt, EndPt);

//Divide the curve to get points where the loft curves will be pla
var PrPts = Rail.DivideByCount (Divisions , true);

for ( int i = 0; i < Divisions + 1; i++)

{
Trns = Rail.PointAt(PrPts[i]) — new Point3d (0, 0, 0);
if (i < Tngts.Count && Tngts.Count > 0)

{
Tngt = Tngts[i];
xprd = Vector3d. CrossProduct (Rail. TangentAt(PrPts[i]), Tngts[i
pln = new Plane(Rail.PointAt(PrPts[i]), xprd);
Scly = 1 / Math.Cos(Vector3d. VectorAngle (Rail.TangentAt (PrPts|
if (xprd = new Vector3d (0, 0, 0))
{
Sclz = 1.0;
}
else
{
Sclz = 1 / Math.Cos(Vector3d. VectorAngle (Rail.TangentAt (PrPt
}
}
else
{
Tngt = Rail.TangentAt(PrPts[i]);
Scly = 1.0;
Sclz = 1.0;
}

A2



Scle = Transform. Scale(Plane.WorldYZ, Scly, Sclz, 1);
rot = Transform.Rotation(Vector3d.XAxis, Tngt, Rail.PointAt(PrPt
Brep Brds = Mesh.Branch (0)[0]. DuplicateBrep ();
Brds. Transform (Scle);
Brds. Translate (Trns);
Brds. Transform (rot );
if (i =0 || 1 = Divisions)
{
Srf.Add(Brds);
}
Crvs.AddRange (Brds. DuplicateEdgeCurves (), new GH_Path(i));
for ( int j = 0; j < Mesh.Branch(1).Count; j++)
{
Brep Obj = Mesh.Branch (1)[j]. DuplicateBrep ();
Obj. Transform ( Scle );
Obj. Translate (Trns);
Obj. Transform (rot );
ObjList .Add(Obj);
Vertices.AddRange(Obj. DuplicateVertices ());
Elements.AddRange (Obj. DuplicateVertices (), new GH_Path(0, i, ]
GeoTree. AddRange (Obj. DuplicateEdgeCurves (), new GH_Path(1, 0,
}
}

//Divide the curve to get points where the loft curves will be pla
if (Run)
{
for ( int i = 0; i < Divisions; i++)
{
for ( int j = 0; j < Crvs.Branch(i).Count; j++)

{

}
}
Brep Shape = Brep.JoinBreps(Srf, doc.ModelAbsoluteTolerance )[0];
GeoTree.Add(Shape, new GH_Path(0, 0, 0));
//Discretize the data of the Part;
PrtLst.Add(string.Format(”*Part, name={0}", ID));
//Nodes of the Part;
PrtLst.Add(”*Node”);
Nds.AddRange( Point3d . CullDuplicates ( Vertices , doc.ModelAbsolute’l
for ( int i = 0; i < Nds.Count; i++)

Srf.AddRange(Brep. CreateFromLoft (new List<Curve>{ Crvs.Branc
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}

Nr = (i + 1).ToString();
if (ModelOrigin != Point3d.Origin)

{
Crd = new Point3d(Nds[i].X — ModelOrigin.X, Nds[i].Y — Mode!
}
else
{
Crd = Nds|i];

}

X = Crd.X. ToString ();
Y = Crd.Y.ToString ();
Z = Crd.Z.ToString ();
PrtLst . Add(Nr + 7, 7 + X+ 7, 7" +Z+ 7,7 +7Y);

//Sort element Nodes and identify faces which is supported or lo.
PrtLst.Add(string .Format(”+«Element, type={0}”, ElmntType[0]));
Count = 1;

//1f Load, import input for load;

if ( Load.PathExists(0) )

{

}

double TolLd;

Brep LdSrf = new Brep();

for (int i = 0; i < Load.Branch(0).Count(); i++)

{
GH_Convert. ToBrep (Load.Branch (0)[i], ref LdSrf, Grasshopper.
GH_Convert . ToDouble (Load . Branch (3)[i], out TolLd, GH_Convers
TolLdLst . Add(TolLd );
LdLst.Add(LdSrf);

}

//1f Tie, import input for tie;
if ( Tie.PathExists(0) )

{

double TolTie;

Brep TieSrf = new Brep();

for (int i = 0; i < Tie.Branch(0).Count(); i++)

{
GH_Convert. ToBrep(Tie.Branch (0)[i], ref TieSrf, Grasshopper.
GH_Convert. ToDouble( Tie.Branch (2)[i], out TolTie, GH_Convers
TolTieLst.Add(TolTie);
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TieLst .Add( TieSrf);

}
}

for ( int i = 0; i < Divisions; i++)
{
for ( int j = 0; j < Mesh.Branch(1).Count; j++)
{
EINr.Add(Count. ToString ());
for ( int k = 0; k < Elements.Branch(0, i, j).Count; k++)

{

for ( int 1 = 0; 1 < Nds.Count; 1++)

{
if ( PtCmp(Elements.Branch (0, i, j)[k], Nds[1]))

EINr.Add((1 + 1).ToString ());

}
}
}

for ( int k = 0; k < Elements.Branch (0, i, j).Count; k++)

{

for ( int 1 = 0; 1 < Nds.Count; l++)

{
if ( PtCmp(Elements.Branch(0, i + 1, j)[k], Nds[l]))

EINr.Add((l + 1).ToString());
}
}
if ( Load.PathExists(0) )

for (int m = 0; m < Load.Branch (0).Count; mt+)
{
Tick . EnsurePath (m)
if ( IdenSet (LdLst
{
Tick.Add(k + 1, new GH_Path(m));
if (Tick.Branch(m).Count = 4)

{

[m], Elements.Branch (0, i, j)[k], Tc

Inf.Add((Count ). ToString () + ”,”, new GH_Path(1, m
Inf.Add(SrfInd (Tick.Branch(m)). ToString (), new GH.

}
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}
if ( IdenSet(LdLst[m], Elements.Branch(0, i + 1, j)[k]

Tick.Add(k + 5, new GH_Path(m));

if (Tick.Branch(m).Count = 4)

{
Inf.Add((Count ). ToString () + ”,”, new GH_Path(1l, m
Inf.Add(SrfInd (Tick.Branch(m)). ToString (), new GH.

}
}
}

}
if ( Tie.PathExists(0) )

for (int m = 0; m < Tie.Branch (0).Count; m++)
{
Tock . EnsurePath (m);
if ( IdenSet(TieLst[m], Elements.Branch(0, i, j)[k], T
{
Tock.Add(k + 1, new GH_Path(m));
if (Tock.Branch(m).Count = 4)
{
Inf.Add((Count ). ToString () + ”,”, new GH_Path(1l, m
Inf.Add(SrfInd (Tock.Branch(m)). ToString (), new GH.

}

}
if ( IdenSet(TieLst[m], Elements.Branch(0, i + 1, j)[k

Tock.Add(k + 5, new GH_Path(m));
if (Tock.Branch(m).Count = 4)

{
Inf.Add((Count ). ToString () + ”,”, new GH_Path(1l, m
Inf.Add(SrfInd (Tock.Branch(m)). ToString (), new GH.
}
}
}
}
}
PrtLst.Add(String.Join(”, 7, EINr.ToArray()));

Count = Count + 1;
EINr. Clear ();
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Tick. ClearData ();
Tock. ClearData ();
}
}
//Identify nodes on supported face;
if ( Support.PathExists(0) )

{
double TolSup;
Brep SupSrf = new Brep ();
for (int i = 0; i < Support.Branch(0).Count (); i++)
{
GH_Convert . ToBrep (Support . Branch (0)[i], ref SupSrf, Grasshop
GH_Convert. ToDouble(Support.Branch (3)[i], out TolSup, GH_Co
TolSupLst.Add(TolSup);
SupLst . Add(SupSrf);
}
for (int i = 0; i < Nds.Count; i++)
{
for (int j = 0; j < Support.Branch(0).Count; j++)
{
if ( IdenSet(SupLst[j], Nds[i], TolSupLst[j]) )
Inf.Add((i + 1).ToString() + 7,”, new GH_Path(0, j, 1));
GeoTree.Add(Nds[i].X. ToString (), new GH_Path(2, j, 0));
GeoTree . Add(Nds[i].Y.ToString (), new GH_Path(2, j, 1));
GeoTree.Add(Nds[i].Z.ToString (), new GH_Path(2, j, 2));
}
}
}
}

//Identify displaced nodes;
if ( Displ.PathExists(0) )
{
double TolDis;
Brep DisSrf = new Brep();
for (int i = 0; i < Displ.Branch(0).Count(); i++)
{
GH_Convert. ToBrep(Displ.Branch (0)[i], ref DisSrf, Grasshoppe
GH_Convert. ToDouble(Displ.Branch(3)[i], out TolDis, GH_Conv
TolDisLst.Add(TolDis);
DisLst.Add(DisSrf);
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}

for (int i = 0; i < Nds.Count; i++)

{
for (int j = 0; j < Displ.Branch(0).Count; j++)
{
if ( IdenSet(DisLst[j], Nds[i], TolDisLst[j]) )
Inf.Add((i + 1).ToString() + ”,”, new GH_Path(0, j, 2));
GeoTree.Add(Nds[i].X. ToString (), new GH_Path(3, j, 0));
GeoTree.Add(Nds[i].Y.ToString (), new GH_Path(3, j, 1));
GeoTree.Add(Nds[i].Z. ToString (), new GH_Path(3, j., 2));
}
}
}
}

Ny,
Ny,
//Create sets of nodes;
PrtLst.Add(”*Nset, nset=Set—1, generate”);
PrtLst.Add(string .Format(” L, {0}, 17, Nds.Count));
//Create sets of elements;
PrtLst.Add(”*Elset , elset=Set—1, generate”);
PrtLst.Add(string . Format (” 1, {0}, 17, Count — 1));
//Define section;
PrtLst.Add(string.Format(”**Section: {0} _section”, ID));
PrtLst.Add(string.Format(”+Solid Section, elset=Set—1, material=
PrtLst . Add(”,”);
//Finish defining Part;
PrtLst.Add(”*End Part”);
PrtLst . Add (7 xx");
//Create instance of the part;
InsLst.Add(string .Format (”+Instance , name={0}, part={0}", ID));
InsLst.Add(”«End Instance”);
InsLst . Add (7 *x");
//BC; Add nodes on supported Face;
if ( Inf.PathExists(0, 0, 1) )
{
for (int i = 0; i < Support.Branch(0).Count; i++)
{
SetLst.Add(string .Format(”«Nset , nset={0}, instance={1}", Su
for (int j = 0; j < Inf.Branch(0, i, 1).Count; j++)
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{
SetLst .Add(Inf.Branch (0, i, 1)[j]);

}
}
}
//Displ/Rot; Add displaced nodes;
if ( Inf.PathExists(0, 0, 2) )

{
for (int i = 0; i < Displ.Branch(0).Count; i++)
{
SetLst .Add(string . Format(”+Nset, nset={0}, instance={1}", Di
for (int j = 0; j < Inf.Branch(0, i, 2).Count; j++)
{
SetLst.Add(Inf.Branch (0, i, 2)[j]);
}
}
}

//Add elements on tied face;
if ( Inf.PathExists(1, 0, 4) )

{
for (int i = 0; i < Tie.Branch(0).Count; i++)
{
SetLst.Add(string.Format(”«Elset , elset={0}—{1}—TieSrf, inte
for (int j = 0; j < Inf.Branch(1l, i, 4).Count; j++)
{
SetLst .Add(Inf.Branch(1, i, 4)[j]);
}
}
}

//Define tie surface;
if ( Inf.PathExists(l, 0, 5) )

{
for (int i = 0; i < Tie.Branch(0).Count; i++)
{
SetLst.Add(string .Format(”*Surface , type=ELEMENT, name={0}—{
SetLst .Add(string . Format("{0} —{1}—TieSrf, S{2}”, Tie.Branch (
}
}

//Add elements on loaded face;
if ( Inf.PathExists(1, 0, 2) )

{
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for (int i = 0; i < Load.Branch(0).Count; i++)

{
SetLst.Add(string.Format(”«Elset , elset={0}—Surf, internal ,
for (int j = 0; j < Inf.Branch(1, i, 2).Count; j++)

{
SetLst.Add(Inf.Branch(1, i, 2)[j]);

}
}
¥
//Define load surface;
if ( Inf.PathExists(1, 0, 2) )

{
for (int i = 0; i < Load.Branch(0).Count; i++)
{
SetLst.Add(string .Format(”*Surface , type=ELEMENT, name={0}",
SetLst .Add(string . Format(”"{0}—Surf, S{1}”, Load.Branch(2)[i]
}
}

//Boundary conditions;
if ( Support.PathExists(0) )

{
for (int i = 0; i < Support.Branch(1).Count; i++)
{
BCLst.Add(string . Format(”{0}”, Support.Branch(1)[i]));
}
}
//Steps;
if ( Load.PathExists(0) )
{
for (int i = 0; i < Load.Branch(1).Count; i++)
{
StpLst.Add(string.Format(”{0}”, Load.Branch(1)[i]));;
}
}

if ( Displ.PathExists(0) )

for (int i = 0; i < Displ.Branch(1).Count; i++)

{
StpLst.Add(string .Format(”{0}”, Displ.Branch(1)[i]));

}
}
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}

Geometry = GeoTree;
Part = PrtLst;
Instance = InsLst;
Sets = SetLst;

BC = BClLst;

Steps = StpLst;

}

// <Custom additional code>

public int Srflnd(List < int > N)

{

int Indx;

if (IN.Except(new List<int>{ 1, 2, 3, 4 }).Any() && N.Count = 4)
{

Indx = 1;
}
else if (IN.Except(new List<int>{ 5, 6, 7, 8 }).Any() && N.Count =
{
Indx = 2;
}
else if (IN.Except(new List<int>{ 1, 2, 5, 6 }).Any() && N.Count =
{
Indx = 3;
}
else if (IN.Except(new List<int>{ 2, 3, 6, 7 }).Any() && N.Count =
{
Indx = 4;
}

else if (IN.Except(new List<int>{ 3, 4, 7, 8 }).Any() && N.Count =
{

Indx = 5;
¥
else
{

Indx = 6;
}

return Indx;

All



}

public bool IdenSet(Brep Srf, Point3d Nd, double Tol)
{

bool Truth;

Point3d Pt = Srf.ClosestPoint (Nd);

Vector3dd Vet = Pt — Nd;

if (Vct.Length < Tol)

{

Truth = true;
}
else
{

Truth = false;
¥

return Truth;

}

public bool PtCmp(Point3d EINd, Point3d Nd)
{

bool Truth;
Vector3dd Vet = EINd — Nd;

if (Vct.Length < doc.ModelAbsoluteTolerance)

{

Truth = true;
}
else
{

Truth = false;
}

return Truth;
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A.2 Sweep Part

//Declare variables;
Point3d Crd;
Vector3dd Trns, Tngt, xprd;
Plane pln;
Transform Scle, rot;
double Scly, Sclz;
string Nr, X, Y, Z;
int Count;

//Create output tree;

DataTree <Curve> Crvs = new DataTree<Curve>();

DataTree <Point3d> Elements = new DataTree<Point3d >();

DataTree <System.Object> GeoTree = new DataTree<System.Object >();
DataTree <string> Inf = new DataTree<string >();

DataTree <int> Tick = new DataTree<int >();

DataTree <int> Tock = new DataTree<int >();

//Create Lists;

List< Point3d > Vertices = new List<Point3d >();
List< Point3d > Nds = new List<Point3d >();
List< Brep > Srf = new List<Brep>();

List< Brep > ObjList = new List<Brep>();
List< string > PrtLst = new List<string >()
List< string > SetLst = new List<string >()
List< string > InsLst = new List<string >();
List< string > BCLst = new List<string >()
List< string > StpLst = new List<string >();
List< string > EINr = new List<string >();
List <Brep> SupLst = new List<Brep>();

List <double> TolSupLst = new List<double >();
List <Brep> DisLst = new List<Brep>();

List <double> TolDisLst = new List<double >();
List <Brep> LdLst = new List<Brep >();

List <double> TolLdLst = new List<double >();
List <Brep> TieLst = new List<Brep>();

List <double> TolTieLst = new List<double >();

sy,
N N Ny,

//Divide the curve to get points where the loft curves will be pla

Y
)

Y
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var PrPts = Rail.DivideByCount (Divisions , true);

for ( int i = 0; i < Divisions + 1; i++4)
{
Trns = Rail.PointAt(PrPts[i]) — new Point3d (0, 0, 0);
if (i < Tngts.Count && Tngts.Count > 0)
{
Tngt = Tngts[i];
xprd = Vector3d.CrossProduct (Rail.TangentAt(PrPts[i]), Tngts|i
pln = new Plane(Rail.PointAt(PrPts[i]), xprd);
Scly = 1 / Math.Cos(Vector3d. VectorAngle (Rail.TangentAt(PrPts]
if (xprd = new Vector3d (0, 0, 0))

{
Sclz = 1.0;
}
else
{
Sclz = 1 / Math.Cos(Vector3d. VectorAngle (Rail.TangentAt (PrPt
}
}
else
{
Tngt = Rail.TangentAt(PrPts[i]);
Scly = 1.0;
Sclz = 1.0;
}

Scle = Transform. Scale (Plane.WorldYZ, Scly, Sclz, 1);

rot = Transform.Rotation(Vector3d.XAxis, Tngt, Rail.PointAt(PrPt
Brep Brds = Mesh.Branch (0)[0]. DuplicateBrep ();

Brds. Transform (Scle );

Brds. Translate (Trns);
Brds. Transform (rot );
i

if (i =0 || 1 = Divisions)
{

Srf.Add(Brds);
}

Crvs.AddRange (Brds. DuplicateEdgeCurves (), new GH_Path(i));
for ( int j = 0; j < Mesh.Branch(1).Count; j++)
{

Brep Obj = Mesh.Branch(1)[j]. DuplicateBrep ();

Obj. Transform ( Scle );
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Obj. Translate (Trns);

Obj . Transform (rot );

ObjList . Add(Obj);

Vertices.AddRange(Obj. DuplicateVertices ());
Elements.AddRange (Obj. DuplicateVertices (), new GH_Path(0, i, ]
GeoTree. AddRange (Obj. DuplicateEdgeCurves (), new GH_Path(1, 0,

}
}
//Divide the curve to get points where the loft curves will be pla
if (Run)
{
for ( int i = 0; i < Divisions; i++)
{
for ( int j = 0; j < Crvs.Branch(i).Count; j++)
{
Srf.AddRange(Brep. CreateFromLoft (new List<Curve>{ Crvs.Branc
}
}

Brep Shape = Brep.JoinBreps(Srf, doc.ModelAbsoluteTolerance )[0];
GeoTree.Add(Shape, new GH_Path(0, 0, 0));
//Discretize the data of the Part;
PrtLst.Add(string .Format(”+Part, name={0}", ID));
//Nodes of the Part;
PrtLst.Add(”*Node” );
Nds.AddRange (Point3d . CullDuplicates ( Vertices , doc.ModelAbsolute'l
for ( int i = 0; i < Nds.Count; i++)
{
Nr = (i + 1).ToString();
if (ModelOrigin != Point3d.Origin)

{
Crd = new Point3d(Nds[i].X — ModelOrigin.X, Nds[i].Y — Mode!
}
else
{
Crd = Nds[i];
}

?

X = Crd.X. ToString ();
Y = Crd.Y. ToString ();
).

Z = Crd.Z.ToString ();
PrtLst Add(Nr + 7, 7 + X+ 7, 7 + Z + 7, 7 +Y);

}
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//Sort element Nodes and identify faces which is supported or lo.
PrtLst.Add(string .Format(”«Element, type={0}”, ElmntType[0]));
Count = 1;
//1f Load, import input for load;
if ( Load.PathExists(0) )
{
double TolLd;
Brep LdSrf = new Brep();
for (int i = 0; i < Load.Branch(0).Count(); i++)
{
GH_Convert. ToBrep (Load.Branch (0)[i], ref LdSrf, Grasshopper.
GH_Convert. ToDouble (Load . Branch (3)[i], out TolLd, GH_Convers
TolLdLst . Add(TolLd );
LdLst.Add(LdSrf);
}
1
//1f Tie, import input for tie;
if ( Tie.PathExists(0) )

{
double TolTie;
Brep TieSrf = new Brep();
for (int i = 0; i < Tie.Branch(0).Count(); i++)
{
GH_Convert. ToBrep(Tie.Branch (0)[i], ref TieSrf, Grasshopper.
GH_Convert. ToDouble(Tie.Branch(2)[i], out TolTie, GH_Convers
TolTieLst.Add(TolTie);
TieLst.Add(TieSrf);
}
}
for ( int i = 0; i < Divisions; i++)
{

for ( int j = 0; j < Mesh.Branch(1).Count; j++)
{
EINr.Add(Count. ToString ());
for ( int k = 0; k < Elements.Branch(0, i, j).Count; k++)

{

for ( int 1 = 0; 1 < Nds.Count; 1++)

{
if ( PtCmp(Elements.Branch (0, i, j)[k], Nds[1]))
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EINt.Add((1 + 1).ToString ());

}
}
}
for ( int k = 0; k < Elements.Branch(0, i, j).Count; k++)
{
for ( int 1 = 0; 1 < Nds.Count; 1++)
{
if ( PtCmp(Elements.Branch(0, i + 1, j)[k], Nds[l]))
EINr.Add((1 + 1).ToString());
}
}
if ( Load.PathExists(0) )
for (int m = 0; m < Load.Branch (0).Count; mt++)
{
Tick . EnsurePath (m);
if ( IdenSet(LdLst[m], Elements.Branch(0, i, j)[k], Tc
{
Tick.Add(k + 1, new GH_Path(m));
if (Tick.Branch(m).Count = 4)
{
Inf.Add((Count). ToString () + ”,”, new GH_Path(1, m
Inf.Add(SrfInd (Tick.Branch(m)). ToString (), new GH.
}
}
if ( IdenSet(LdLst[m], Elements.Branch(0, i + 1, j)[k]
Tick.Add(k + 5, new GH_Path(m));
if (Tick.Branch(m).Count = 4)
{
Inf.Add((Count ). ToString () + ”,”, new GH_Path(1l, m
Inf.Add(SrfInd (Tick.Branch(m)). ToString (), new GH.
}
}
}
}

if ( Tie.PathExists(0) )
for (int m = 0; m < Tie.Branch (0).Count; mt+)
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}

}

Tock . EnsurePath (m);
if ( IdenSet(TieLst[m], Elements.Branch(0, i, j)[k], T
{
Tock.Add(k + 1, new GH_Path(m));
if (Tock.Branch(m).Count = 4)
{
Inf.Add((Count). ToString() + ”,”, new GH_Path(1, m
Inf.Add(SrfInd (Tock.Branch (m)). ToString (), new GH.

}

}
if ( IdenSet(TieLst[m], Elements.Branch(0, i + 1, j)[k

Tock.Add(k + 5, new GH_Path(m));
if (Tock.Branch(m).Count = 4)

{
Inf.Add((Count ). ToString () + ”,”, new GH_Path(1l, m
Inf.Add(SrfInd (Tock.Branch(m)). ToString (), new GH.
}
}
}
}
}
PrtLst.Add(String.Join (7, 7, EINr.ToArray()));

Count = Count + 1;
EINr. Clear ();
Tick.ClearData ();
Tock. ClearData ();

//Identify nodes on supported face;
if ( Support.PathExists(0) )

{

double TolSup;
Brep SupSrf = new Brep ();
for (int i = 0; i < Support.Branch(0).Count(); i++)

{

GH_Convert . ToBrep (Support . Branch (0)[i], ref SupSrf, Grasshop
GH_Convert. ToDouble(Support.Branch (3)[i], out TolSup, GH_Co
TolSupLst.Add(TolSup);

SupLst . Add(SupSrf);
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}

}
for (int i = 0; i < Nds.Count; i++)
{
for (int j = 0; j < Support.Branch (0).Count; j-++)

{
if ( IdenSet(SupLst[j], Nds[i], TolSupLst[j]) )

Inf.Add((i + 1).ToString() + ”7,”, new GH_Path(0, j,

);
GeoTree.Add(Nds[i].X. ToString (), new GH_Path(2, j, ;

1)
0));
GeoTree.Add(Nds[i].Y.ToString (), new GH_Path(2, j, 1));
GeoTree.Add(Nds[i].Z. ToString (), new GH_Path(2, j, 2))

)

}
}
}

//Identify displaced nodes;
if ( Displ.PathExists(0) )

{

double TolDis;

Brep DisSrf = new Brep();

for (int i = 0; i < Displ.Branch(0).Count(); i++)

{
GH_Convert. ToBrep(Displ.Branch (0)[i], ref DisSrf, Grasshoppe
GH_Convert. ToDouble(Displ.Branch(3)[i], out TolDis, GH_Conv
TolDisLst.Add(TolDis );
DisLst.Add(DisSrf);

¥

for (int i = 0; i < Nds.Count; i++)

{
for (int j = 0; j < Displ.Branch(0).Count; j++)

{
if ( IdenSet(DisLst[j], Nds[i], TolDisLst[j]) )

Inf.Add((i + 1).ToString() + ”7,”, new GH_Path(0, j, 2)
GeoTree.Add(Nds[i].X. ToString (), new GH_Path(3, j, 0))
GeoTree.Add(Nds[i].Y.ToString (), new GH_Path(3, j, 1));
GeoTree.Add(Nds[i].Z. ToString (), new GH_Path(3, j, 2))

);

)
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Ny,
[T DT

//Create sets of nodes;

PrtLst.Add(”*Nset, nset=Set—1, generate”);

PrtLst.Add(string .Format (” 1, {0}, 17, Nds.Count));
//Create sets of elements;

PrtLst.Add(”*Elset , elset=Set—1, generate”);

PrtLst.Add(string . Format (” L, {0}, 17, Count — 1));
//Define section;

PrtLst.Add(string.Format(”**Section: {0}_section”, ID));
PrtLst.Add(string .Format(”+Solid Section, elset=Set—1, material=
PrtLst . Add(”,”);

//Finish defining Part;

PrtLst.Add(”*End Part”);

PrtLst . Add (7 xx7);

//Create instance of the part;
InsLst.Add(string . Format(”«Instance , name={0}, part={0}", ID));
InsLst.Add(”+End Instance”);

InsLst . Add (7 *%");

//BC; Add nodes on supported Face;

if ( Inf.PathBExists(0, 0, 1) )

{
for (int i = 0; i < Support.Branch(0).Count; i++)

{

/1111171
/1171171

SetLst.Add(string .Format(”«Nset, nset={0}, instance={1}", Su
for (int j = 0; j < Inf.Branch(0, i, 1).Count; j++)
{
SetLst.Add(Inf.Branch(0, i, 1)[j]);
}
}

}
//Displ/Rot; Add displaced nodes;

if ( Inf.PathExists(0, 0, 2) )

{
for (int i = 0; i < Displ.Branch(0).Count; i++)
{
SetLst .Add(string . Format(”+Nset, nset={0}, instance={1}", Di
for (int j = 0; j < Inf.Branch(0, i, 2).Count; j++)

{
SetLst .Add(Inf.Branch (0, i, 2)[j]);

}
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}
}
//Add elements on tied face;
if ( Inf.PathExists(1, 0, 4) )

{
for (int i = 0; i < Tie.Branch(0).Count; i++)
{
SetLst.Add(string .Format (”«Elset , elset={0}—{1}—TieSrf, inte
for (int j = 0; j < Inf.Branch(1l, i, 4).Count; j++)
{
SetLst.Add(Inf.Branch(1, i, 4)[j]);
}
}
¥

//Define tie surface;
if ( Inf.PathExists(1, 0, 5) )

{
for (int i = 0; i < Tie.Branch(0).Count; i++)
{
SetLst.Add(string .Format(”«Surface, type=ELEMENT, name={0}—{
SetLst .Add(string . Format("{0} —{1}—TieSrf, S{2}”, Tie.Branch (
}
}

//Add elements on loaded face;
if ( Inf.PathExists(1, 0, 2) )

{
for (int i = 0; i < Load.Branch(0).Count; i++)
{
SetLst.Add(string.Format(”«Elset , elset={0}—Surf, internal ,
for (int j = 0; j < Inf.Branch(1l, i, 2).Count; j++)
{
SetLst.Add(Inf.Branch(1, i, 2)[j]);
}
}
}

//Define load surface;
if ( Inf.PathExists(1, 0, 2) )

{

for (int i = 0; i < Load.Branch(0).Count; i++)

{
SetLst.Add(string .Format(”*Surface , type=ELEMENT, name={0}",
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SetLst .Add(string .Format(”{0}—Surf, S{1}”, Load.Branch(2)[i]

}
}

//Boundary conditions;
if ( Support.PathExists(0) )

{
for (int i = 0; i < Support.Branch(1).Count; i++)
{
BCLst.Add(string . Format (”{0}”, Support.Branch(1)[i]));
}
}
//Steps;
if ( Load.PathExists(0) )
{
for (int i = 0; i < Load.Branch(1).Count; i++)
{
StpLst.Add(string.Format(”{0}”, Load.Branch(1)[i]));;
}
}

if ( Displ.PathExists(0) )

for (int i = 0; i < Displ.Branch(1).Count; i++)
{
StpLst.Add(string.Format(”{0}”, Displ.Branch(1)[i]));

}
}

}

Geometry = GeoTree;
Part = PrtLst;
Instance = InsLst;
Sets = SetLst;

BC = BClLst;

Steps = StpLst;

}

// <Custom additional code>
public int Srflnd(List < int > N)

{

int Indx;
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if (IN.Except(new List<int>{ 1, 2, 3, 4 }).Any() && N.Count = 4)

{
Indx = 1;
}
else if (IN.Except(new List<int>{ 5, 6, 7, 8 }).Any() && N.Count =
{
Indx = 2;
}
else if (IN.Except(new List<int>{ 1, 2, 5, 6 }).Any() && N.Count
{
Indx = 3;
}
else if (IN.Except(new List<int>{ 2, 3, 6, 7 }).Any() && N.Count =
{
Indx = 4;
}
else if (IN.Except(new List<int>{ 3, 4, 7, 8 }).Any() && N.Count =
{
Indx = 5;
}
else
{
Indx = 6;
}
return Indx;
}
public bool IdenSet(Brep Srf, Point3d Nd, double Tol)
{
bool Truth;

Point3d Pt = Srf.ClosestPoint (Nd);
Vector3dd Vet = Pt — Nd;

if (Vct.Length < Tol)
{

Truth = true;

}

else

{

Truth = false;
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}

return Truth;

}

public bool PtCmp(Point3d EINd, Point3d Nd)

{
bool Truth;

Vector3dd Vet = EINd — Nd;

if (Vet.Length < doc.ModelAbsoluteTolerance)
{

}

else

{

Truth = false;

}

return Truth;

Truth = true;
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A.3 Mesh Hex8

//Declare variables
Vector3dd Norm, y0, z0, Trns;
Transform xform;
double ycrd, zcrd, rad;
Brep Obj;

//Create output tree
DataTree <System.Object> tree = new DataTree<System.Object >();

//Create Lists

List< Point3d > Vrt = new List<Point3d >();
List< Point3d > Pts = new List<Point3d >();
List< double > Ang = new List<double >();

Yy
N N NNy,

//Orient Mesh and Profile according to the YZ-system
Norm = (Section.Surfaces[0]).NormalAt (0.5, 0.5);

if (Norm = Vector3d.ZAxis)

{

y0 = Vector3d.CrossProduct (Vector3d.YAxis, Norm);
}
else
{

y0 = Vector3d.CrossProduct (Vector3d.ZAxis, Norm);
}

z0 = Norm;

z0.Rotate (1.5 * Math.PI, y0);

xform = Transform.Rotation (Norm, z0, y0, Vector3d.XAxis, Vector.
Section . Transform (xform );

Point3d Cntr = AreaMassProperties.Compute(Section ). Centroid;

Point3d pt = new Point3d (0, Offsetl, Offset2);
Trns = pt — Cntr;

Section. Translate (Trns);
tree.Add(Section , new GH_Path(0));

for( int i = 0; i < IniMesh.Count(); i++)
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{

}

IniMesh [i]. Transform (xform);
IniMesh[i]. Translate (Trns);

////////////////////////////////////////////////////;???;?////////

N ey,

11771777

//Sort vertices according to the yz—coordinate
//system w/points in the 3rd quadrant being first pt
for( int i = 0; i < IniMesh.Count(); i++)

{

}

Cntr = AreaMassProperties.Compute(IniMesh[i]). Centroid;
for( int j = 0; j < IniMesh[i]. DuplicateVertices ().Count(); j++)
{
Vrt.Add(IniMesh[i]. DuplicateVertices ()[j]);
yerd = Vrt[j].Y — Cntr.Y;
zecrd = Vrt[j|.Z — Cntr.Z;
rad = Math.Atan2(zcrd , yerd);
Ang.Add(rad);
}
var Sorted = Vrt.Zip(Ang, (x, y) = new { x, y })
.OrderBy (pair => pair.y)
.Reverse ()
.ToList ();
Pts = Sorted.Select (pair = pair.x). ToList ();
Obj = Brep.CreateFromCornerPoints (Pts[0], Pts[l], Pts[2], Pts[3]
tree .Add(Obj, new GH_Path(1));
Pts. Clear ();
Ang. Clear ();
Vrt. Clear ();

Mesh = tree;
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A.4 Support

//Create output tree
DataTree <System.Object> tree = new DataTree<System.Object >();

Yy
NNy,

//Add surface and ID to be used in Part component
tree.Add(Face, new GH_Path(0));
tree.Add(ID, new GH_Path(2));

Ny,

N Yy,
//Add conditions to be exported in INP

for ( int i = 0; i < Conditions.Count(); i++)

{ if (Conditions[i] == "U1” || Conditions[i] == "17)
tree.Add(string.Format(”{0}, 1, 17, ID), new GH_Path(1));
%f(Conditions[i] — "U2” || Conditions[i] = 727)
tree.Add(string.Format(”{0}, 2, 27, ID), new GH_Path(1));
}if(Conditions[i] — "U3” || Conditions[i] = ”37)
tree.Add(string .Format(”{0}, 3, 3”7, ID), new GH Path(1));
}';f(Conditions[i] — "UR1” || Conditions|[i] == "4")
tree.Add(string.Format(”{0}, 4, 4”7, ID), new GH_Path(1));
}';f(Conditions[i] — "UR2” || Conditions[i] = ”5")
tree.Add(string.Format(”{0}, 5, 5”7, ID), new GH_Path(1));
]’;f(Conditions[i] — "UR3” || Conditions|[i] = 76")
} tree.Add(string.Format(”{0}, 6, 6”7, ID), new GH_Path(1));

}
N N N Ny,
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NNy,

//Add tolerance for pointcompare

if (Tol = 0)
{
tree.Add(0.001, new GH_Path(3));
}
else
{
tree .Add(Tol, new GH_Path(3));
}

Support = tree;
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A.5 Load

//Create output tree
DataTree <System.Object> tree = new DataTree<System.Object >();

Yy
NNy,

//Add surface and ID to be used in Part component
tree.Add(Face, new GH_Path(0));
tree.Add(ID, new GH_Path(2));

Ny,

N Yy,
//Add conditions to be exported in INP

tree .Add(”**”, new GH_Path(1));

tree.Add(strlng Format (" «x STEP: {0}”, ID), new GH_Path(1));

tree.Add(”*x”, new GH_Path(1));

tree.Add(strlng Format ("« Step, name={0}, nlgeom=NO", ID), new GH_F

tree.Add(” Uniform Load”, new GH_Path(1));

tree.Add(”«Static”, new GH_Path(1));

tree.Add(”0. 1 1., 1le—05, 1.7, new GH_Path(1));

tree . Add(”*%” , new GH_Path(1));

tree.Add(” *x LOADS”, new GH_Path(1));

tree.Add(” **” , new GH Path (1));

tree.Add(string .Format(”+% Name: {0}—Load  Type: Pressure”, ID),

tree.Add(” «Dsload” , new GH_Path(1));

tree.Add(strlng Format (”{0}, P, {1}”, ID, Magnitude), new GH_Path (

tree.Add(”*x”, new GH_Path(1));
(
(
(
(
(
(
(
(
(
(
(

tree .Add(” «xx OUTPUT REQUESTS”, new GH_Path(1));
tree.Add(”*x”, new GH_Path(1));

tree.Add(” «Restart , write, frequency=0", new GH_Path(1));
tree . Add(” %", new GH Path (1));

tree . Add(”
tree .Add
tree .Add
tree .Add
tree .Add

x% FIELD OUTPUT: F—Output—1”, new GH_Path(1));

7xx”, new GH_Path(1));

7%« Output, field , variable=PRESELECT”, new GH_Path(1));
7xx”  new GH_Path(1));

7xx HISTORY OUTPUT: H—Output—1", new GH_Path(1));
tree.Add(”*x”, new GH_Path(1));

tree.Add(” «Output, history , variable=PRESELECT” 6 new GH_Path(1));
tree.Add(”«End Step”, new GH_Path(1));

LTI 001000007000 107707110711711111
N NNy,

//Add tolerance for pointcompare
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if (Tol = 0)

{
tree.Add(0.001, new GH_Path(3));
h
else
{
tree.Add(Tol, new GH_Path(3));
}

[ITTTTIITIL I
R Ny,

Load = tree;
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A.6 Displacement

//Create output tree

DataTree <System.Object> tree = new DataTree<System.Object >();

//Add surface and ID to be used in Part component
tree.Add(Face, new GH_Path(0));

tree.Add(ID, new GH_Path(2));

//Add tolerance for pointcompare

if (Tol = 0)
{
tree.Add(0.001, new GH_Path(3));
}
else
{
tree .Add(Tol, new GH_Path(3));
}

//Add conditions to be exported in INP
tree.Add(” %", new GH_Path(1));

tree.Add(strmg Format (”«x STEP: {0}”, ID), new GH_Path(1));
tree.Add(”*x”, new GH_Path(1));
tree.Add(strlng Format ("« Step , name={0}, nlgeom=NO", ID), new GH_F
tree.Add(”*Statlc”, new GH_Path(1));
tree.Add(”0 1., 1e—05, 1.7, new GH_Path(1));
tree .Add(”**”, new GH_Path(1));
tree .Add(”** BOUNDARY CONDITIONS” ; new GH_Path(1));
tree.Add(”*x”, new GH_Path(1));
tree.Add(strlng Format ("% Name: {0} Type: Displacement/Rotation”
tree.Add(” *Boundary” , new GH_Path(1));
tree . Add(” %", new GH,Path(l));
if (Tx != 0)
{
tree .Add(string .Format(”{0}, 1, 1, {1}”, ID, Tx), new GH_Path(1)
}
if (Tz != 0)
{
tree.Add(string .Format(”{0}, 2, 2, {1}”, ID, Tz), new GH Path(1)
}
if (Ty != 0)
{

tree.Add(string.Format(”{0}, 3, 3, {1}”, ID, Ty),

}
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if (Rx != 0)

tree .Add(string.Format(”{0}, 4, 4, {1}”, ID, Rx), new GH_Path(1)
}
if (Rz != 0)
{

tree .Add(string.Format(”{0}, 5, 5, {1}”, ID, Rz), new GH_Path(1)

}

if (Ry != 0)
{
tree.Add(string . Format(”{0}, 6, 6, {1}”, ID, Ry), new GH_Path(1)
¥
tree.Add(” %", new GH_Path (1))

(

tree.Add(” «x OUTPUT REQUESTS”, new GH_Path(1));
tree.Add(”*x”, new GH_Path(1));
tree.Add(”«Restart , write, frequency=0", new GH_Path(1));
tree.Add(”**”, new GH_Path(1));
tree .Add(” xx FIELD OUTPUT: F—Output—1", new GH_Path(1));
tree . Add(”*%” , new GH_Path(1));

tree . Add(”«Output, field , variable=PRESELECT” , new GH_Path(1));
tree.Add(”*x”, new GH_Path(1));

tree.Add(” x+x HISTORY OUTPUT: H-Output—1", new GH_Path(1));
tree.Add(” %", new GH_Path(1));

tree.Add(” «*Output, history , variable=PRESELECT”, new GH_Path(1));
tree.Add(”«End Step”, new GH_Path(1));
Ny,
N NNy,

Displ = tree;

~—

//
//
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A.7 Tie

//Create output tree
DataTree <System.Object> tree = new DataTree<System.Object >();
List< string > INPLst = new List<string >();
//Add surface and ID to be used in Part component
tree.Add(Face, new GH_Path(0));
tree .Add(ID, new GH_Path(1));

//Add tolerance for pointcompare

if (Tol = 0)
{
tree.Add(0.001, new GH_Path(2));
}
else
{
tree.Add(Tol, new GH_Path(2));
}

//Add conditions to be exported in INP
INPLst.Add(string . Format ("% Constraint: {0}”, ID));

INPLst .Add(string . Format (" Tie, name={0}, adjust=yes, type=SURFACE
INPLst.Add(string . Format(”{0}—{1}—TieSrf, {0}—{2}—TieSrf”, ID, Sla
[T LT DT
R NNy,

Part = tree;
INP = INPLst;
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A.8 Tangents

//Create output;

List< Vector3dd > TngtLst = new List<Vector3d >();
//Create Variables;

double T;

Vector3dd Vavg;

//Divide the curve to get the points;

var PrPts = Rail.DivideByCount (Divisions , true);
Tngt. Unitize ();

if (Tol > 0)
{
T = Tol,;
}
else
{
T=0.1;
}

Ny,
/?/{é/éé/{////////////////////////////////////////////////////////
1 ndPt
{

TngtLst.Add(Tngt ) ;

Vavg = Vmn(Tngt, Rail.TangentAt(PrPts[Divisions — 1]), Rail.Tang

TngtLst.Add(Vavg);

for (int i = 2; i < Divisions + 1; i++)

{

if (1 — Math.Abs(Vector3d.Multiply (Vavg, Rail.TangentAt(PrPts]|

Vavg = Rail.TangentAt(PrPts[Divisions — i]);
TngtLst.Add(Vavg);
}

else
{
Vavg = Vmn(Vavg, Rail.TangentAt(PrPts[Divisions — i]), Rail.
TngtLst.Add(Vavg);
}
}

TngtLst. Reverse ();

}

else
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TngtLst.Add(Tngt ) ;
Vavg = Vmn(Tngt, Rail.TangentAt(PrPts[1]), Rail.TangentAt(PrPts]|
TngtLst.Add(Vavg);
for (int i = 2; i < Divisions + 1; i++)
{
if (1 — Math.Abs(Vector3d.Multiply (Vavg, Rail.TangentAt(PrPts]|

Vavg = Rail.TangentAt(PrPts[i]);
TngtLst.Add(Vavg);
h

else

{
Vavg = Vmn(Vavg, Rail.TangentAt(PrPts[i]), Rail.TangentAt(Pr
TngtLst.Add(Vavg);

}
} }
sy,

N Ny
TList = TngtLst;
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A9 IPE

import rhinoscriptsyntax as rs
import Rhino as rh

UnSclMesh = []

Mesh = []

#Create dimensions according to chosen IPE—section [NS-EN 10 034]
if IPE:

if IPE = ’IPE8S0’ or IPE = ’ipe80 ’:
d = [80, 46, 3.8, 5.2]

elif IPE = ’'IPE100’ or IPE = ’ipel00 ’:
d = [100, 55, 4.1, 5.7]

elif TIPE = ’IPE120’ or IPE = ’ipel20 ’:
d = [120, 64, 4.4, 6.3]

elif IPE = ’'IPE140’ or IPE = ’ipel40 ":
d = [140, 73, 4.7, 6.9]

elif IPE = ’"IPE160" or IPE = ’ipel60 ’:
d = [160, 82, 5.0, 7.4]

elif TPE = ’IPE180’ or IPE = ’ipel80 ’:
d = [180, 91, 5.3, 8.0]

elif IPE = ’"IPE200" or IPE = ’ipe200 ’:
d = [200, 100, 5.6, 8.5]

elif TPE = ’"IPE220" or IPE = ’ipe220 ’:
d = [220, 110, 5.9, 9.2]

elif IPE = ’IPE240° or IPE = ’ipe240 :
d = [240, 120, 6.2, 9.8]

elif TPE = ’"IPE270" or IPE = ’ipe270 ’:
d = [270, 135, 6.6, 10.2]

elif TPE = ’IPE300’ or IPE = ’ipe300 ’:
d = [300, 150, 7.1, 10.7]

elif IPE = ’"IPE330° or IPE = ’ipe330 ’:
d = [330, 160, 7.5, 11.5]

elif TPE = ’"IPE360’" or IPE = ’ipe360 ’:
d = [360, 170, 8.0, 12.7]

elif TPE = ’IPE400’ or IPE = ’ipe400 ’:
d = [400, 180, 8.6, 13.5]

elif IPE = ’'IPE450’ or IPE = ’ipe450 ’:

d = [450, 190, 9.4, 14.6]
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elif IPE = 'IPE500’ or IPE = ’ipe500 ’:
d = [500, 200, 10.2, 16.0]

elif TPE = ’"IPE550" or IPE = ’ipe550 ’:
d = [550, 210, 11.1, 17.2]
elif IPE = ’'IPE600’ or IPE = ’ipe600 ":

d = [600, 220, 12.0, 19.0]
#Draw the edges of the section

pt = [rh.Geometry.Point3d (0,0.5xd[2],—0.5%xd[0]+d[3]),
rh.Geometry.Point3d (0,0.5xd[1], —0.5%xd[0]4+d[3]),
rh . Geometry . Point3d (0,0.5xd[1], —0.5xd[0]+0.5%xd[3]),
rh . Geometry.Point3d (0,0.5%d[1],—0.5%xd[0])
rh.Geometry. Point3d (0,—0.5%d[1],—0.5%xd[0]),
rh.Geometry. Point3d (0,—0.5xd[1], —0.5xd[0]+0.5%d[3]) ,
rh.Geometry . Point3d (0,—0.5%xd[1], —0.5xd[0]+d[3]) ,
rh . Geometry.Point3d (0, —0.5%d[2], —0.5%xd[0]+d[3])]

Mrr = rh.Geometry. Transform . Mirror (rh. Geometry. Plane . WorldXY')

for i in range(0,len(pt)):
Temppt = rh.Geometry.Point3d (pt[i].X,pt[i].Y,pt[i].Z)
Temppt . Transform (Mrr)
pt. append(Temppt)

pt[8],pt[15] = pt[15],pt[8]
pt[9], [ 4] = pt[14],pt[9]
%1 ] t[13] = pt[13],pt[10]

1], pt[12] = pt[12], pt[11]
pt append(pt[ ])
Ln = rs.AddPolyline (pt)
#Create and sort the points being used in the mesh:
if iter and iter != 0:
LnBot = rs.AddLine(pt[2],pt[5])
ptsBot = rs.DivideCurve (LnBot,2xiter+1,True, True)
LnBot2 = rs.AddLine(pt[3],pt[4])
ptsBot2 = rs.DivideCurve (LnBot2,2xiter+1,True, True)
for 1 in range(0,2xiter+1):
Elm = rs.coercebrep(rs.AddSrfPt ([ptsBot[i],ptsBot2[i],ptsB
UnSclMesh . append (Elm)
Elm = Elm. Duplicate ()
Elm. Transform (Mrr)
UnSclMesh . append (Elm)
LnFT1 = rs.AddLine(pt[1],pt[0])
ptsFT1 = rs.DivideCurve (LnFT1,iter , True, True)
LnFT2 = rs.AddLine(pt[6],pt[7])
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ptsFT2 = rs.DivideCurve (LnFT2,iter ,True, True)
InW1 = rs.AddLine(pt[15],pt[0])
ptsW1 = rs.DivideCurve (LnW1,2x iter +2,True, True)
InW2 = rs.AddLine(pt [8] ,pt[7])
ptsW2 = rs.DivideCurve (LnW2,2x iter +2,True, True)
Elm = rs.coercebrep (rs.AddSrfPt ([ptsFT2[—1],ptsFT1[—1],ptsBot |
UnSclMesh . append (Elm)
Elm = Elm. Duplicate ()
Elm. Transform (Mrr)
UnSclMesh . append (Elm)
Elm = rs.coercebrep(rs.AddSrfPt ([ptsW2[iter +1],ptsWl[iter +1],p
UnSclMesh . append (Elm)
Elm = Elm. Duplicate ()
Elm. Transform (Mrr)
UnSclMesh . append (Elm)
for 1 in range(1l,iter+1):
Elm = rs.coercebrep(rs.AddSrfPt ([ptsFT1[i],ptsFT1[i—1],pts!
UnSclMesh . append (Elm)
Elm = Elm. Duplicate ()
Elm. Transform (Mrr)
UnSclMesh . append (Elm)
Elm = rs.coercebrep(rs.AddSrfPt ([ptsFT2[i],ptsFT2[i—1],pts!
UnSclMesh . append (Elm)
Elm = Elm. Duplicate ()
Elm. Transform (Mrr)
UnSclMesh . append (Elm)
Elm = rs.coercebrep(rs.AddSrfPt ([ptsW2[i —1],ptsW1[i—1],pts)
UnSclMesh . append (Elm)
Elm = Elm. Duplicate ()
Elm. Transform (Mrr)
UnSclMesh . append (Elm)
elif iter = O:
UnSclMesh . append (rs. coercesurface (rs. AddPlanarSrf(Ln)))
#Scale and return the section and Mesh:
if Scaling:
Scl = rh.Geometry. Transform. Scale (rh. Geometry. Plane . WorldYZ, Sc
else:
Scl = rh.Geometry. Transform . Scale (rh.Geometry . Plane . WorldYZ,0.(
for i in range(0,len (UnSclMesh)):
UnSclMesh [i]. Transform (Scl)
Mesh . append (UnSclMesh [i])
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Srf = rs.coercebrep(rs.AddPlanarSrf(Ln))
Srf. Transform (Scl)
Section = Srf
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A.10 Joint

import rhinoscriptsyntax as rs

import Rhino as rh

import scriptcontext as sc

import clr

import math

clr . AddReference (” Grasshopper”)

import Grasshopper.Kernel.Data.GH_Path as ghpath
import Grasshopper.DataTree as datatree

import System

#Create trees

Crvs = datatree [System.Object | ()
Elements = datatree [System.Object ()
Geometry = datatree [System.Object]()
Inf = datatree [System.Object ] ()

Tock = datatree [System.Object | ()

#Create Lists
Part = []
Instance = |[]
Sets = []

BC = ]

Tie = []
Steps = []
Vertices = []
Srf = []

if (Center — Rall PomtAtStart) Length < sc.doc.ModelAbsoluteTolerance
Ev =0
Tngt = Rail.TangentAt (1)
Direction = Tngt — rh.Geometry. Vector3d (0,0,Tngt.Z)
rh.Geometry. Vector3d. Unitize (Direction)
rh.Geometry. Vector3d . Reverse (Direction)

else:

Ev =1
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Tngt = Rail.TangentAt (0)
Direction = Tngt — rh.Geometry. Vector3d (0,0,Tngt.Z)
rh.Geometry. Vector3d. Unitize (Direction)
Trns = rh.Geometry. Transform . Translation(—Direction *0.5% PlateThick)
Center. Transform (Trns)
if Tngt.Z — Center.Z = 0:
StrtPtl = Center — 0.5% DirectionxPlateThick
else:
Crv = rh.Geometry. Line (Center , —rh.Geometry. Vector3d.ZAxisxCenter .
StrtPtl = rs.coerce3dpoint (sc.doc.Objects.AddPoint(rh.Geometry. Int
if Ev = 1:
if Rail.ClosestPoint (StrtPtl)[1] —Length_.Memb/Rail.Line.Length < 0:
EndLnl = Rail.PointAt (0)
else:
EndLnl = Rail.PointAt(Rail. ClosestPoint (StrtPt1)[1] —Length-Mem
else:
if Rail.ClosestPoint (StrtPtl)[1]+ Length_.Memb/Rail.Line.Length > 1:
EndLnl = Rail.PointAt (1)
else:
EndLnl = Rail.PointAt(Rail. ClosestPoint (StrtPt1)[1]+4 Length-Mem
if Ev = 0:
V1 = (rh.Geometry.Point3d (StrtPt1.X, StrtPt1.Y,0) —rh.Geometry. Point.
V2 = (rh.Geometry.Point3d (EndLnl.X,EndLnl.Y,0) —rh.Geometry. Point3d
else:
V1 = (rh.Geometry.Point3d (StrtPt1.X, StrtPt1.Y,0) —rh.Geometry. Point.
V2 = (rh.Geometry.Point3d (EndLnl.X,EndLnl.Y,0) —rh.Geometry. Point3d
StrtPt2 = rh.Geometry.Point3d (StrtPtl1.X, StrtPt1.Y,StrtPtl.Z)
Trns = rh.Geometry. Transform . Translation (2% DirectionxV1)
StrtPt2 . Transform (Trns)
EndLn2 = rh.Geometry.Point3d (EndLnl.X, EndLnl.Y,EndLnl.Z)
Trns = rh.Geometry. Transform . Translation (2 Direction*V2)
EndLn2. Transform ( Trns)
RailM1 = rh.Geometry. Line (StrtPt1 ,EndLnl ). ToNurbsCurve ()
RailM2 = rh.Geometry. Line (StrtPt2 ,EndLn2). ToNurbsCurve ()

#Discretize Plate

EndPt = Center 4+ Direction*PlateThick

RailPl = rs.coercecurve(rs.AddLine(Center ,EndPt))
Geometry . Add(RailPl ,ghpath (0,0,0))

Pts = rs.DivideCurve(RailPl 1)
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PrPts = RailPl.DivideByCount (1, True)
for i in range(0,2):
Trns = rs. VectorCreate (Pts[i],rh.Geometry. Vector3d (0,0,0))
Tngt = RailPl.TangentAt(PrPts[i])
rot = rh.Geometry. Transform . Rotation (rh.Geometry. Vector3d . XAxis, Tn
Brds = Mesh_Plate.Branch (0)[0]. Duplicate ()
Brds. Translate (Trns)
Brds. Transform (rot)
Srf.append(Brds)
Brds = Brds.DuplicateEdgeCurves ()
for j in range(0,len(Brds)):
Crvs.Add(Brds[j], ghpath(i))
for j in range(0,len(Mesh_Plate.Branch(1))):
Obj = Mesh_Plate.Branch (1)[j]. Duplicate ()
Obj. Translate (Trns)
Obj. Transform (rot )
Vrt = Obj.DuplicateVertices ()
Lns = Obj.DuplicateEdgeCurves ()
List .append (Obj)
for k in range(0, len(Lns)):
Vertices.append (Vrt[k])
Elements.Add(Vrt k], ghpath(0,i,j))
Geometry.Add(Lns k], ghpath(1,0,1))

if Run = True:
for 1 in range(0,len(Crvs.Branch(i))):
Lft = rs.AddLoftSrf([Crvs.Branch (0)[i],Crvs.Branch(1)[i]],None
Srf.append (Lft [0])
Shape = rs.JoinSurfaces (Srf)
Geometry . Add(Shape, ghpath (0,0,0))
Part.append ('« Part , name={}—Plate '. format (ID))
Part.append (”*Node”)
Nds = rs.CullDuplicatePoints( Vertices)
del Vertices [:]
for i in range(0, len(Nds)):
Nr = str(i+1)
if ModelOrigin:
Crd = (Nds[i]—ModelOrigin)
else:
Crd = Nds|i]
X = str(Crd.X)
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Y = str(Crd.Y)
Z = str(Crd.Z)
Coord = [Nr, X, Z, Y]
TEXT = ’, ’.join (Coord)
Part . append (TEXT)
Part.append ( '+ Element, type={}’.format (ElmntType[0]))
Count =1
for j in range (0, len(Mesh_Plate.Branch(1))):
EINr = [str (Count)]
for k in range(0, len(Elements.Branch(0,0,j))):
for 1 in range (0, len(Nds)):
if rs.PointCompare(Elements.Branch(0,0,j)[k],Nds[1]):
EINr. append (str (1+41))
for k in range(0, len(Elements.Branch(0,0,j))):
for 1 in range(0, len(Nds)):
if rs.PointCompare(Elements.Branch(0,1,j)[k],Nds[1]):
EINr. append (str (1+41))
if rs.PointCompare(Srf[0]. ClosestPoint (Elements.Branch (0,0

Tock.Add(k+1,ghpath (0))
if len(Tock.Branch(0)) =
Inf.Add(’’.join ([str Count) ,71) ,ghpath (1,0,4))
Inf.Add(1,ghpath(1,0,5))
1

if rs.PointCompare(Srf[0 osestPomt (Elements . Branch (0,1

Tock.Add(k+5,ghpath(n))
if len(Tock.Branch(0)) =
Inf.Add(’’.join ([str Count) ",7]) ,ghpath (1,0,4))
Inf.Add(1,ghpath(1,0,5))
1

if rs.PointCompare(Srf[1l osestPomt (Elements . Branch (0,0

)
[
(
J.
)
[
(
J.
1
)
[
(
J.
1
)
[
(

Tock.Add(k+1,ghpath (1))

if len(Tock.Branch(1l)) =
Inf.Add(’’.join ([str Count),”,”]),ghpath(1,1,4))
Inf.Add(2,ghpath(1,1,5))

if rs.PointCompare(Srf[1 losestPomt (Elements . Branch (0,1

Tock.Add(k+5,ghpath (1))

if len(Tock.Branch(1)) = 4:
Inf.Add(’’.join ([str(Count),” ,”]|),ghpath(1,1,4))
Inf.Add(2,ghpath(1,1,5))

TEXT = ', ’.join (EINr)
Part . append (TEXT)

Count = Count + 1

Tock . ClearData ()
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del EINt[:]
Part.append (”*Nset, nset=Set—1, generate”)
Part .append ('’ 1, {}, 17. format (len (Nds)))
Part.append ("« Elset , elset=Set—1, generate”)
Part.append (’ 1, {}, 17. format (Count—1))
Part.append (’#* Section: {}_section ’.format (ID))
Part.append ('« Solid Section, elset=Set—1, material={}’.format (Mat
Part.append(”,”)
Part .append (”«End Part”)
Part .append (7 *%”)
Instance.append ( '+ Instance , name={}—Plate, part={}—Plate ’. format (1I
Instance.append (”*End Instance”)
Instance .append (7 *x")
Sets.append ('« Nset , nset=Displacement , instance={}—Plate ’. format (I
for i in range(0,2):
for j in range(0,len(Nds)):
if rs.PointCompare(Nds[j],Srf[i]. ClosestPoint (Nds[j])) =
Sets.append (’’.join ([str(i+1),”,"]))
for i in range(0,2):
Sets.append ('« Elset , elset=Tie{}—{}—Plate—TieSrf, internal, in
for j in range(0,len(Inf.Branch(1,i.,4))):
Sets.append (Inf.Branch(1,i,4)[j])
for i in range(0, 2):
Sets.append ('« Surface , type=ELEMENT, name=Tie{}—{}—Plate—TieSr
Sets.append (' Tie{}—{}—Plate—TieSrf, S{}’.format(i+1,ID,Inf.Bra
del Srf[:]
del EINt[:]
Inf.ClearData ()
Elements. ClearData ()
Crvs. ClearData ()

#Dlscretlze Memberl
Pts = rs.DivideCurve (RailM1, Divisions)
PrPts = Rail.DivideByCount(Divisions , True)
for 1 in range(0,Divisions+1):
Trns = rs. VectorCreate (Pts[i],rh.Geometry. Vector3d (0,0,0))
Tngt = —Direction
xprd = rs.VectorCrossProduct (Rail. TangentAt(PrPts[i]), Tngt)
pln = rs.PlaneFromNormal (Pts[i],xprd)
Scly = 1/math.cos(rh.Geometry. Vector3dd. VectorAngle (Rail.TangentAt(
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if xprd = rh.Geometry. Vector3d (0,0,0):

Sclz = 1.0
else:

Sclz = 1/math.cos(rh.Geometry. Vector3d. VectorAngle(Rail . Tangen
Scly =1
Sclz =1

Scle = rh.Geometry. Transform. Scale (rh.Geometry.Plane. WorldYZ, Scly ,
rot = rh.Geometry. Transform . Rotation (rh.Geometry. Vector3d.XAxis, Tn
Brds = Mesh_Member. Branch (0)[0]. Duplicate ()
Brds. Transform (Scle)
Brds. Translate (Trns)
Brds. Transform (rot)
if i = 0 or i = Divisions:
Srf.append(Brds)
Brds = rs.DuplicateEdgeCurves (Brds)
for j in range(0,len(Brds)):
Crvs.Add(Brds[j], ghpath(i))
for j in range(0,len(Mesh-Member.Branch(1))):
Obj = Mesh_Member. Branch (1)[j]. Duplicate ()
Obj. Transform ( Scle)
Obj. Translate (Trns)
Obj. Transform (rot )
Vrt = Obj.DuplicateVertices ()
Lns = Obj.DuplicateEdgeCurves ()
List .append (Obj)
for k in range(0, len(Lns)):
Vertices.append (Vrt [k])
Elements.Add(Vrt [k],ghpath(0,1,j))
Geometry.Add(Lns k], ghpath(1,0,1))

if Run = True:
for 1 in range(0,Divisions):
for j in range(0,len(Crvs.Branch(i))):
Lft = rs.AddLoftSrf([Crvs.Branch(i)[j],Crvs.Branch(i+1)[j]
Srf.append (Lft [0])
Shape = rs.JoinSurfaces (Srf)
Geometry . Add(Shape , ghpath (0,0,0))
Part.append (’* Part , name={}—Memberl’. format (ID))
Part.append (”*Node”)
Nds = rs.CullDuplicatePoints( Vertices)
del Vertices [:]
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for 1 in range (0, len(Nds)):
Nr = str(i+1)
if ModelOrigin:
Crd = (Nds[i]—ModelOrigin)
else:
Crd = Nds[1i]
X = str(Crd.X)
Y = str(Crd.Y)
Z = str(Crd.Z)
Coord = [Nr, X, Z, Y]
TEXT = 7, ’.join (Coord)
Part . append (TEXT)

Part.append ('« Element , type={}’.format (ElmntType[0]))
Count = 1

for i in range(0, Divisions):
for j in range (0, len(Mesh-Member.Branch(1))):
EINr = [str(Count)]
for k in range (0, len(Elements.Branch(0,i,j))):
for 1 in range(0, len(Nds)):
if rs.PointCompare(Elements.Branch(0,i,j)[k],Nds[1
EINr.append(str(1+1))
for k in range (0, len(Elements.Branch(0,i,j))):
for 1 in range (0, len(Nds)):
if rs.PointCompare(Elements.Branch(0,i+1,j)[k],Nds
EINr.append (str(1+1))
if rs.PointCompare(Srf[0]. ClosestPoint (Elements.Branch

Tock.Add(k+1,ghpath (0))
if len(Tock.Branch(0)) —
Inf. Add (. join([str(Count) *,"]) ,ghpath (1,0 ,4
Inf.Add(1,ghpath(1,0,5))
if rs.PointCompare(Srf[0]. losestPomt(Elements.Branch
Tock.Add(k+5,ghpath(n))
if len(Tock.Branch(0)) = 4:
Inf.Add(’’.join ([str(Count),” ,”]),ghpath(1,0,4
Inf.Add(1,ghpath(1,0,5))

TEXT = 7, ’.join (EINr)
Part . append (TEXT)

Count = Count + 1

Tock . ClearData ()

del EINr[:]

Part.append (”«Nset, nset=Set—1, generate”)
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Part.append (’ 1, {}, 17.format(len(Nds)))
Part.append ("« Elset , elset=Set —1, generate”)
Part .append ('’ L, {}, 1’. format (Count—1))
Part.append (’#* Section: {}_section ’.format (ID))
Part.append (’* Solid Section, elset=Set—1, material={}".format(Mat
Part.append (”,”)
Part.append (”*«End Part”)
Part.append (7 *x")
Instance.append (’*Instance , name={}—Memberl, part={}—Memberl’. form
Instance.append (”*End Instance”)
Instance.append (7 xx”)
Sets.append ('« Nset , nset=Sup—Memberl, instance={}—Memberl’. format (
for i in range(0,len(Nds)):

if rs.PointCompare(Nds[i],Srf[1]. ClosestPoint (Nds[i])) = True

Sets.append (’ 7. join ([str(i+1),”,"]))

Sets.append ('« Elset , elset=Tiel —{}—Memberl—TieSrf, internal , insta:
for j in range(0,len(Inf.Branch(1,0,4))):

Sets.append (Inf.Branch(1,0,4)[j])
Sets.append (’x Surface , type=ELEMENT, name=Tiel —{}—Memberl—TieSrf .
Sets.append (' Tiel —{}—Memberl—TieSrf, S{}’ . format (ID,Inf.Branch (1,0
BC.append (” Sup—Memberl, 1, 17)
BC.append (” Sup—Memberl, 2, 2”)
BC. append (” Sup—Memberl, 3, 3”)
del Srf[:]
del EINr[:]
Inf.ClearData ()
Elements. ClearData ()
Crvs. ClearData ()

#Discretize Member2
Pts = rs.DivideCurve (RailM2, Divisions)
PrPts = Rail.DivideByCount (Divisions ,True)

for

i in range(0,Divisions+1):
Trns = rs. VectorCreate(Pts[i],rh.Geometry. Vector3d (0,0,0))
Tngt = Direction
xprd = rs. VectorCrossProduct (Rail.TangentAt(PrPts[i]), Tngt)
pln = rs.PlaneFromNormal (Pts[i],xprd)
Scly = 1/math.cos(rh.Geometry. Vector3d. VectorAngle (Rail.TangentAt (
if xprd = rh.Geometry. Vector3d (0,0,0):
Sclz = 1.0
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else:
Sclz = 1/math.cos(rh.Geometry. Vector3d. VectorAngle (Rail.Tangen
Scly =1
Sclz =1
Scle = rh.Geometry. Transform. Scale (rh.Geometry.Plane. WorldYZ, Scly ,
rot = rh.Geometry. Transform.Rotation (rh.Geometry. Vector3d.XAxis, Tn
Brds = Mesh_Member.Branch (0)[0]. Duplicate ()
Brds. Transform ( Scle)
Brds. Translate (Trns)
Brds. Transform (rot)
if i = 0 or i = Divisions:
Srf.append(Brds)
Brds = rs.DuplicateEdgeCurves (Brds)
for j in range(0,len(Brds)):
Crvs.Add(Brds[j], ghpath(i))
for j in range(0,len(Mesh-Member.Branch(1))):
Obj = Mesh_Member.Branch (1)[j]. Duplicate ()
Obj . Transform ( Scle)
Obj. Translate (Trns)
Obj. Transform (rot)
Vrt = Obj.DuplicateVertices ()
Lns = Obj.DuplicateEdgeCurves ()
List .append (Obj)
for k in range(0, len(Lns)):
Vertices.append (Vrt[k])
Elements.Add(Vrt [k], ghpath(0,1i,j))
Geometry.Add(Lns k], ghpath(1,0,1))

if Run = True:
for i in range(0,Divisions):
for j in range(0,len(Crvs.Branch(i))):
Lft = rs.AddLoftSrf([Crvs.Branch(i)[j],Crvs.Branch(i+1)[j]
Srf.append (Lft [0])
Shape = rs. JoinSurfaces (Srf)
Geometry . Add(Shape , ghpath (0,0,0))
Part.append (’*Part, name={}—Member2’. format (ID))
Part.append (”*Node”)
Nds = rs.CullDuplicatePoints( Vertices)
del Vertices
for i in range(0, len(Nds)):
Nr = str(i+1)
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if ModelOrigin:
Crd = (Nds[i]—ModelOrigin)
else:
Crd = Nds|[i]
X = str(Crd.X)
Y = str(Crd.Y)
Z = str(Crd.Z)
Coord = [Nr, X, Z, Y]
TEXT = 7, ’.join (Coord)
Part . append (TEXT)

Part.append ( '+ Element, type={}’.format(ElmntType[0]))
Count = 1

for i in range (0, Divisions):
for j in range(0, len(Mesh_-Member.Branch(1))):
EINr = [str (Count)]
for k in range (0, len(Elements.Branch(0,i,j))):
for 1 in range (0, len(Nds)):
if rs.PointCompare(Elements.Branch(0,i,j)[k],Nds[l
EINr.append(str(1+1))
for k in range(0, len(Elements.Branch(0,i,j))):
for 1 in range (0, len(Nds)):
if rs.PointCompare(Elements.Branch(0,i+1,j)[k],Nds
EINr. append (str (1+41))
if rs.PointCompare(Srf[0]. ClosestPoint (Elements.Branch

Tock.Add(k+1,ghpath (0))

if len(Tock.Branch(0)) =
Inf.Add(’’.join ([str (Count) *,7]) ,ghpath (1,0 ,4
Inf.Add(1,ghpath(1,0,5))

)
[
(
if rs.PointCompare(Srf[0].
Tock.Add(k+5,ghpath (n

)

[

(

losestPomt (Elements . Branch

)

if len (Tock.Branch (0
Inf.Add(’’.join (
Inf.Add(1,ghpath

TEXT = ', ’.join (EINT)
Part . append (TEXT)

Count = Count + 1

Tock . ClearData ()

)
) = 4:
str ( ount ) ,” ,”]),ghpath (1,0 ,4
1,0,5)

)

7

del EINr[:]
Part.append (”*Nset, nset=Set —1, generate”)
Part .append ('’ 1, {}, 17. format (len (Nds)))

Part.append ("« Elset , elset=Set—1, generate”)
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Part.append (’ 1, {}, 1’. format (Count—1))
Part.append (’+x* Section: {}_section ’.format (ID))
Part.append ('« Solid Section, elset=Set—1, material={}’.format (Mat
Part.append (”,”)

Pamt.append(”*End Part”)

Part.append (" #%”)

Instance.append ('« Instance , name={}—Member2, part={}—Member2’. form
Instance.append (”*End Instance”)

Instance .append (7 *x")

Sets.append ( '+« Nset , nset=Sup—Member2, instance={}—Member2’. format (
for i in range(0,len(Nds)):

if rs.P%ﬁntCknnpare(Nds[l] Srf[1]. ClosestPoint (Nds[i])) == True
Sets.append (’’.join ([str(i+1),”,"]))
Geometry.Add(Nds[i].X, ghpath(2,j,0))
Geometry .Add(Nds[i].Y,ghpath(2,j,1))
Geometry .Add(Nds[i].Z,ghpath(2,j,2))

[

[1].Z,

BC.append (” Sup—Member2, 1, 1”)

BC. append (” Sup—Member2, 2, 2”)

BC. append (” Sup—Member2, 3, 37)

Sets.append ('« Elset , elset=Tie2—{}—Member2—TieSrf, internal , insta

for j in range(0,len(Inf.Branch(1,0,4))):

Sets.append (Inf.Branch(1,0,4)[j])

Sets.append (’x Surface , type=ELEMENT, name=Tie2—{}—Member2—TieSrf ’

Sets.append (’Tie2—{}—Member2—TieSrf, S{}’.format (ID,Inf.Branch (1,0

Tie.append (”*% Constraint: Tiel”)

Tie.append (”*Tie, name=Tiel, adjust=yes, type=SURFACE TO SURFACE”)

Tie.append (' Tiel —{}—Memberl—TieSrf, Tiel—{}—Plate—TieSrf . format (II

Tie.append (”*x Constraint: Tie2”)

Tie.append (”*Tie, name=Tie2, adjust=yes, type=SURFACE TO SURFACE”)

Tie.append ( ’TieZ—{}—MemberQ—TieSrf , Tie2—{}—Plate—TieSrf ’. format (II

Steps.append (7 *%")

Steps.append ("+% STEP: Displacement”)

Steps.append (7 xx")

Steps.append (”*Step, name=Displacement , nlgeom=NO")

Steps.append(”*Statlc”)

Steps.append (70 1., 1le—=05, 1.7)

Steps.append (7 *x )

Steps.append (” % BOUNDARY CONDITIONS” )
(7=
(
(

7xx7)

7

Steps .append
Steps.append
Steps .append

% Name: Displacement Type: Displacement/Rotation”)
« Boundary”)

2
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if Tx:

Steps.append (' Displacement , 1, 1, {}’.format(Tx))
if Tz:

Steps.append (' Displacement , 2, 2, {}’.format(Tz))
if Ty:

Steps.append(’Iﬁsplammnent, 3, 3, {} .format(Ty))
Steps.append (7 xx")
Steps.append (" xx OUTPUT REQUESTS”)
Steps.append (7 xx”)
Steps.append(”*Restart write , frequency=0")
Steps.append (7 *%”)
Steps.append (" xx FIELD OUTPUT: F—Output—17)
Steps.append (7 xx")
Steps.append(”*(hmput field , variable=PRESELECT”)
Steps.append (7 *x”)
Steps.append (" +% HISTORY OUTPUT: H-Output—1")
Steps.append (7 *x")
Steps.append (" *Output, history , variable=PRESELECT”)
Steps.append (”«End Step”)
del Srf
del EINr
del Inf
del Elements
del Crvs
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B Grasshopper Files

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

Casel _VonMises.gh - Attachment
Case2_VonMises.gh - Attachment
Case3_1_VonMises.gh - Attachment
Case3_2_VonMises.gh - Attachment
Case3_3_VonMises.gh - Attachment
Case3_4_VonMises.gh - Attachment
Components.gh - Attachment
GableTruss.gh - Attachment

Connection.gh - Attachment
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