@NTNU

Norwegian University of
Science and Technology

Spatio-textual search on Spark

Tord Kloster

Master of Science in Informatics
Submission date: June 2017
Supervisor: Kjetil Ngrvag, IDI

Norwegian University of Science and Technology
Department of Computer Science

Abstract

The amount of spatially aware data is growing at a rapid rate, and challenges both process-
ing and organizing such data is in focus in the scientific world and the industry. But spatial
data seldom exists alone, usually accompanied by some form of textual property. The
challenges increase as we attempt to process the spatio-textual documents that are created,
and the usage of Big Data platforms become a necessity. This paper provides an insight
into different approaches on how to meet the spatial challenges on Big Data platforms, and
provides a way to extend a solution to a spatio-textual index on top of Apache Spark. The
approach is evaluated to show good results on very large datasets.

Sammendrag

Mengden romlige data vokser stadig raskere, noe som skaper utfordringer bade i den viten-
skapelige verden og i industrien. Men ren romlig data eksisterer sjelden alene, da det
ofte tilhgrer en eller annen form for tekst i tillegg. Utfordringene gker nér vi ma pros-
essere disse rom-tekstlige dataene som blir generert, og bruken av Big Data plattformer
blir ngdvendig. Dette arbeidet gir en innsikt i forskjellige lgsninger pa rom-utfordringene
gjennom Big Data plattformer, og viser hvordan man kan utvide en slik metode for & lgse
disse rom-tekstlige utfordringene i Apache Spark. Det resulterende systemet har blitt eval-
uert, og viser god ytelse selv pa veldig store datasett.

Acknowledgements

I would like to thank everyone involved with this paper, including my supervisor Kjetil
Ngrvag who with candid help and support have guided me through this process. I would
also like to thank my friends especially Jama Noor for supporting and encouraging me
through the year, as well as my family for always being there for me.

Table of Contents

Abstract
Sammendrag
Acknowledgements
Table of Contents
List of Tables

List of Figures

1 Introduction
1.1 Problem Definition
1.2 Research Questions
1.3 Thesis Overview e

2 Preliminaries

2.1 MapReduce e
2.1.1 Hadoop e
22 Spark ... e
221 Spark SQL
222 Partitioning
23 Geohashing
23.1 Decoding
232 Encoding
3 Working with Indexes
3.1 Definition
32 Textuallndexes
321 InvertedIndex
322 Bitmaps e e

11

13

15
17
17
17

19
19
20
21
22
22
22
23
24

27
27
28
28
29

3.3 SpatialIndexes e

34 Spatio-textual Indexes oL oL
34.1 Text-First Loose Combination Scheme
3.4.2 Spatial-First Loose Combination Scheme
343 TightCombinations.

Related Work

4.1 Methodology e

42 ReVIEW

Current Spatial Systems

5.1 SpatialHadoop.
5.1.1 Architecture oo
5.2 SpatialSpark
5.3 GeoSpark
54 GISQF
5.5 Hadoop-GIS e
56 Summary .. oL .ol
Approach
6.1 Intro
6.2 Extending spatialindexes
6.2.1 Partitioning
6.2.2 Variations
6.3 OverallPseudocode,
6.4 Spark Specifics
6.5 Querying
6.5.1 SpatialQuery
6.52 Textual Query
6.5.3 Retrievingtheresults
6.6 Baselineversion.
6.7 Restrictions L
6.7.1 Geohash.
6.7.2 Partitioning
Evaluation
7.1 Dataset e e
T2 Setup e
721 Cluster
7.2.2 Run time and Query parameters
7.3 Results. e
7.3.1 Indexcreation.
732 IndexQuery
733 Sizeofindex
7.4 Comparisontothebaseline

7.5 Summary e e e e e

8 Summary and Conclusion

8.1 RQ 1: Spatial indexing on Big data platforms
8.2 RQ 2: Extending spatial indexes
8.3 RQ 3: Spatio-textual indexingon Spark L.
83.1 Runtime
832 Sizeofindex

8.4 Conclusion
8.5 Further work

Bibliography

Appendix

63
63
63
64
64
64
64
65

67

71

10

List of Tables

2.1
2.2
23

3.1
32
33
34

7.1
7.2
7.3

Computation of latitude from Geohash 24
Computation of binary sequence from latitude 24
Worst Case Geohash Precision 25
Bitmapexample oL 29
Comparison of existing textual-first spatio-textual indexes 32
Comparison of existing spatial-first spatio-textual indexes 34
Comparison of existing tightly combined spatio-textual indexes 35
Overview of datasets 53
DataLoadinSpark 54
Index size of Spatial-First 60

11

12

List of Figures

2.1
22

3.1
32
33
34
35
3.6
3.7

7.1
7.2
7.3
7.4
7.5
7.6

Word Count Example L. 20
Base32 Charactermap 23
Example of anInvertedIndex 28
ExampleofaR-tree 30
Example of aGridindex 31
Hilbert Curve Example 31
Example of the TSindex 33
Example of the IF-R*index 33
Example of the SKIindex 35
Dataload Times 55
Query Area 57
Index Creation Dataset 1-7 58
Index Creation 2 Dataset 8-10 58
Index Query L 59
Distribution of records on partitions 60

13

14

Chapter

Introduction

With social media being a huge part of anyone’s life (Duggan and Brenner, 2013) we
are sharing increasingly more and more life events, and as such the data volume in these
social media platforms is also increasing. Event data that have a focus on personal life
experiences usually contains some form of text and a location or place associated with the
event. Photos uploaded to Flickr or Instagram allows the users to check-in to a location
when posting, and smartphones are used as a geolocating service (Fox et al., 2013). With
the increasing amount of location aware devices, social media platforms and willingness
to share personal information, geographically tagged data are increasing rapidly. Tweets
are another example of the data we are sharing through social media and often has a ge-
ographical tag in addition to the 240 text limit. Posts on Facebook can be geotagged to
show where in the world you are posting from, and virtually any social media has some
form of indicating to the world where their posts originates from.

As the volume of spatial data grow, traditional RDBMs can not keep ut with the sheer
amount of data generated (Fox et al., 2013). Researchers and the industry has to figure out
new ways of operating with data on a much bigger scale. Big data platforms have been
created to handle the enormous generation of data (Dean and Ghemawat, 2008), and have
previously been extended to support spatial data as well (Eldawy and Mokbel, 2015).

However there are even more generators for geographically tagged data than just social
networks. GPS-logs from taxis in Shanghai and Shenzhen have been data mined by Tan
et al. (2012), where the data are increasing by 1-2GB per day. NASA satellite data archives
contains over 5S00TB spatially aware data that grow each year (Eldawy and Mokbel, 2015)
and a major requirement for a system that manages all this data is a spatial architecture
that delivers a quick query response on a scalable level (Aji et al., 2013).

Spatial data processing is then obviously a challenge, and there exists many different
techniques to deal with the problem, but spatial data seldom come alone. The spatial
objects generated are usually accompanied by some form of textual data as well. Consider
spatially tagged twitter messages that was previously mentioned, which comes with an
important textual description as well. Life events from personal lives in any social media
platform usually have a way of spatially tagging the events, containing some description of

15

the situation at hand. Web searches on the Internet usually contain some form of spatially
tagged data combined with some search terms.

A well defined field of spatio-textual indexes have already been established (Chen
et al., 2013) for standard datasets, but extending these methods to Big Data platforms have
yet to happen on a big scale. The construction of spatial indexes have been introduced to
these platforms (Eldawy and Mokbel, 2015), however there still are not a huge influx of
different approaches to the spatio-textual problem as of this moment.

There are obvious challenges to overcome when the data size increases over what a
normal relational database is able to handle. Especially when working with data mining,
and extracting information from the spatio-textual data. When the size of the input exceeds
the capabilities of a standard centralized relational database the only way to remedy the
problem would be to vertically extend the hardware of the database. Utilizing a decentral-
ized scalable platform, like a implementation of the Map Reduce paradigm, would be both
increase performance and be cost effective.

My motivation for this project is to explore the current implementations of spatial and
textual indexes on Big Data platforms, and create a spatio-textual index on top of Apache
Spark. As Apache Spark utilizes memory techinques to out perform standard Hadoop, a
functional spatio-textual index would be valuable, as we can use the scalability to analyze
very large datasets. In datasets such as tweets collected from Twitter, one can argue that
there exists just as much information in the spatial and textual data. By exploring different
indexing structures both within the domains of textual and spatial indexing, the goal is to
find a combination that works well when applied to Apache Spark.

16

1.1 Problem Definition

In spatio-textual search, not only text but also location is part of the query, and results are
ranked according to similarity to both of these. In order to perform such queries efficiently,
spatial inverted indexes are used. We are interested in studying how such queries can best
be supported in a system based on Spark

1.2 Research Questions

RQ1 What approaches exists in context of Spatial indexing on Big Data platforms?
RQ2 How can these be extended to spatio-textual?

RQ3 How can we implement these spatio-textual approaches on Spark?

1.3 Thesis Overview

Chapter 2 Contains preliminaries about Big Data platforms, introduces Apache Spark
and provides an explanation of Geohash.

Chapter 3 Defines some basic concepts, theory about standard textual and spatial in-
dexes, and what combination schemes exists. A comparison of different spatio-
textual approaches is presented.

Chapter 4 Explores the related works in the field, and provides an overview of the re-
search.

Chapter 5 Contains an overview of different approaches to spatial indexing on Big Data
platforms, and provides a summary of the mentioned systems.

Chapter 6 Describes the approach of this paper, and details the important aspects and
contributions the system provides.

Chapter 7 Presents results from the evaluation regarding the system, and provides per-
formance results based on the different datasets used.

Chapter 8 Sums up the evaluation, answers the remaining research questions and sug-
gests some topics for further research.

17

18

Chapter

Preliminaries

In this chapter the MapReduce framework will be introduced to the reader, and the open
source implementation, Hadoop, will also be briefly presented. Apache Spark is then
detailed, with an introduction to it’s main modules especially Spark SQL. We will end the
chapter by presenting a geocoding system named Geohash, and explain how it works.

2.1 MapReduce

MapReduce is a programming model and associated implementation for processing large
datasets created at Google in 2003. Users create a map function that process some key/-
value pairs into intermediate key/value pairs, and a reduce function that combine all the
intermediate values with the same key (Yang et al., 2007). This model automatically allows
the operation to be performed in parallel on a cluster (Dean and Ghemawat, 2008). This
means that the users have to express every operation they wish to perform as a map-reduce
implementation, which enables the application to run in parallel on a cluster.

Map Function

map(k',v') — n(k? v?)

A map function takes as parameters a key/value and produces some n other key/value
pair(s). The library then groups all key-value pair and sends them to the reduce function
for further processing.

Reduce Function

reduce((k',v?), (k',v})) — (k',v*)
A reduce function combines two key/value pairs of equal key, and produces one record
with the corresponding key and applies a user defined function to merge the values.

19

On the example in Figure 2.1 the input is put through an initial splitting stage followed
by a mapping stage where the maps are then shuffled before they are reduced and merged
to the final result. Shuffling is an intermediate step that groups records of the same key,
before the reduce function is applied.

Figure 2.1 Word count, map-reduce example

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Bear, 1 Bear, 2

Deer, 1 Bear, 1
River, 1
Car, 1

Car, 1 Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer, 1 4>{ Deer, 2 }—»
Deer, 1

Deer, 1
Deer Car Bear Car, 1
Bear, 1 River, 1 River, 2
River, 1

The workflow of a MapReduce application starts with splitting the input files into M splits
and multiple copies of the application is started in the cluster. The copies of the applica-
tions are all worker nodes, except one instance called the master. The master assigns map
or reduce tasks to each idle worker. Worker nodes periodically writes the results of the
tasks to disk, and passes the location of the results back to the master. As other worker
nodes need the results they acquire it by using remote procedure calls to read the data.
When the final reduce task is complete R output files are created, one per reduce task, and
stored on disk. At this point, the MapReduce application returns to the user’s code again.

2.1.1 Hadoop

Apache Hadoop is an open source framework for computing large datasets reliable, scal-
able and in a distributive manner. The framework is derived from Google’s MapReduce
and Google file system(GFS) (Ghemawat et al., 2003) and as such is fundamentally simi-
lar.

Hadoop File System

HDFS is a distributed file system based on GFS, designed to be fault tolerant and to run on
commodity hardware. The goal of using HDFS is to store data distributed among the entire
cluster. There are two main parts of HDFS as it is a master/slave architecture: the master
called NameNode, and the slaves called DataNode. The NameNode is responsible for the
namespace of the file system and file acces. The DataNodes are responsible for managing

Thttps://cs.calvin.edu/courses/cs/374/exercises/12/lab/ [Accessed: 03-May-2017]

20

the node they reside on, this includes handling read/write requests from the clients and
replicating data on request from the NameNode.

The files stored in HDFS are split up and distributed across the whole cluster. Data can
also be replicated which increases fault tolerance, but also improves performance when
reading the data. As the read requests are received the most local replication will be
serving the requests to save network bandwidth.

2.2 Spark

Apache Spark is a system for general purpose big data analytics. It is a quick, general
purpose cluster computing system that provides high-level APIs in Java, Scala, Python
and R. Apache Spark is highly scalable and as an example, a large Internet company uses
Spark and it’s associated module, Spark SQL, to build data pipelines and run queries on
an 8000-node cluster with over 100 PB of data(Armbrust et al., 2015). Developed by
UC Berkley in 2010 the purpose of the system was to support more applications than
MapReduce by improving multi-pass operations such as:

Iterative algorithms like machine learning, and graph algorithms
Interactive data mining by loading data into ram and performing multiple queries
Streaming algorithms that can maintain an aggregate over time

At the core of every spark application is a Driver program that launches the parallel
operations described in the user code. It submits the operations as tasks and distributes
these to Executors on the cluster. Executors are processes that are launched on the worker
nodes to complete tasks assigned by the Driver.

Fundamentally, Spark utilizes the same idea as MapReduce and Hadoop but extends
the system to support applications that cannot be expressed efficiently as acyclic oper-
ations. The main abstraction in Spark is the introduction of the Resilient Distributed
Dataset,)(RDD) which is a read-only representation of objects that are distributed across
the cluster.

A RDD is computed lazily, and initially only the transformations for how to create the
RDD is stored. Only when a RDD needs to return some data to the Driver, for example to
show some results, is the RDD computed. The RDDs can be cached in the memory of the
machines in the cluster, which enables it to be used in multiple MapReduce-like parallel
operations (Zaharia et al., 2010) without being recomputed each time. This is the biggest
advantage Spark achieves over MapReduce and Hadoop, and outperforms Hadoop by a
factor of 20 when processing interactive applications (Zaharia et al., 2010). The possibility
to compute an intermediate RDD, perform multiple and possibly various transformations
on the data without recomputing the base multiple times is a big improvement to these
types of operations.

There are multiple extensions of Spark, also called modules, that improves the func-
tionality of specific areas in the field. The main four modules are: Spark SQL (Armbrust
et al., 2015), Spark Streaming (Zaharia et al., 2013), MLib (Machine Learning) (Meng
et al., 2016) and GraphX (Xin et al., 2014). As we are using Spark SQL to implement our
final application, this module will be explained in the next section.

21

2.2.1 Spark SQL

Spark SQL is a module for Spark that integrates relational processing with Spark’s func-
tional programming API (Armbrust et al., 2015). Spark SQL extends the core Spark sys-
tem by two main additions:

Relational processing , with a tighter integration between Spark SQL’s declerative Dataframe
API and Spark’s procedual core.

Optimization through the implementation of a query optimizer called Catalyst, which is
extensible and provide users with the possibility to add optimization rules.

Spark SQL provides a Dataframe API that can perform relational operations on both
external data as well as standard Spark collections. Dataframes are computed lazily, simi-
larly to RDDs, so that relational optimizations are performed before computing.

While standard spark provides a functional and general API, it does not offer any great
opportunities to perform sophisticated optimizations. With the introduction of the opti-
mizer Catalyst (Armbrust et al., 2015), automatic optimization is improved and provides
up to 10x faster computations than standard Spark in operations that can be expressed as
SQL statements.

Spark SQL is built based on the previous attempt to create a relational interface for
Spark, Apache Shark (Xin et al., 2013), which had a couple of difficult to address chal-
lenges.

2.2.2 Partitioning

Spark can partition the data on a column in the dataset. Using a some string as the partition-
ing value we can distribute the records in such way that we can prune away the partitions
that definitely does not contain the string we are querying for. Spark can store each dataset
in a file format known as parquet (Apache, 2017) to store the partitions on disk. This file
format keeps the partitioning scheme by storing each partition in a separate folder.

2.3 Geohashing

Geohash is a geocoding system that was originally created by Gustavo Niemeyer in 2008
to represent coordinates in a url friendly manner (Fox et al., 2013). To accomplish this, a
space filling curve is utilized to map a coordinate in (latitude, longitude) format into a
one dimensional string. The general type of space filling curve used is a Z-Order curve,
but the system can use other space filling curves as a replacement. The resulting geohash
then represents a spatial bounding box (Balki¢ et al., 2012) in the spatial domain. Despite
being intended for representing geographical data in URLSs, Geohashes have turned out
to be very useful as a way of indexing spatial data when it comes to databases. This is
especially useful in Apache Spark, as we can use this value as our column to partition the
index.

22

There are a few important characteristics in regards to a geohash which we are going
to exploit when querying the index:

e Each rectangle can be interpreted as a latitude longitude rectangle. This is true as
we will explain later because the geohash is constructed by a series of divisions on
the full domain ([-180, 180] x [-90, 90]).

e Adding a character to the end of a geohash means further dividing the rectangle, and
as such all geohashes that extend another geohash while sharing prefixes are located
within the primary rectangle.

e Geohashes that share prefixes are considered to be close. This only applies one way,
meaning close geohashes does not need to share prefix.

2.3.1 Decoding

When decoding a geohash, for example ”gcpuz”, which is located in the middle of London,
the string is decoded into binary from the following base32 character map.

Figure 2.2 Base32 Character map

Decimal 0 | 1|2 |3 |4 5|6 7 89|10|11 |12 |13 |14 |15
Base32 0 | 1|2 |3 |4|5|6 7 8|9 b|c|d|e|f]|g

Decimal | 16 17 |18 |19 20|21 22 |23 |24 25|26 27 28|29 30 31

Base32 h | j |k m|n | p|lg|r|s|t|lu|v | w|x|y]|z

The geohash is read from left to right and decoded character by character into the bi-
nary: 0111101011101011101011111.

The latitude and longitude are interleaved, which means that reading every even bit
creates the latitude binary, and every odd bit creates the longitude binary.
longitude = 0111111111111
latitude = 110010010011
Each bit in the respective binary string describes a division based on the minimum and
maximum value of the coordinate system. In the case of geohash there are different values
for latitude and longitude, as latitude ranges from -90 to 90, while longitude ranges from
-180 to 180.

To calculate the correct latitude coordinate we divide the interval -90 to 90 by 2 which
produces another 2 intervals [—90, 0] and [0, 90]. As the first bit in the latitude binary is a 1
we discard the [0, 90] interval and repeat by diving [—90, 0] by 2 and selecting the correct
interval to continue with according to the current bit in the binary sequence. A calculation
of latitude by decoding the geohash “’gcpuz” can be observed in the example listed in Table
2.1.

23

Minimum value | middle value | Maximum value | bit
-90 0 90 1
0 45 90 1
45 67.5 90 0
45 56.25 67.5 0
45 50.625 56.25 1
50.625 53.438 56.25 0
50.625 52.031 53.438 0
50.625 51.328 52.031 1
51.328 51.680 52.031 0
51.328 51.504 51.680 0
51.328 51.416 51.504 1
51.416 51.460 51.504 1

Table 2.1: Computation of latitude from Geohash

2.3.2 Encoding

Similarly, encoding a (latitude, longitude) coordinate starts with comparing the middle
value of the starting interval [—90, 90] to the latitude value. When the middle value is
bigger than the target, the lower bound interval is used, and the higher bound interval is
used if the middle value is smaller. An example is provided in Table 2.2. After completing
this task for both latitude and longitude the binary sequence for the latitude, longitude pair

is interleaved before it is converted to Base32.

Minimum value | Middle value | Maximum value | 51.460 > Middle value
-90 0 90 1
0 45 90 1
45 67.5 90 0
45 56.25 67.5 0
45 50.625 56.25 1
50.625 53.438 56.25 0
50.625 52.031 53.438 0
50.625 51.328 52.031 1
51.328 51.680 52.031 0
51.328 51.504 51.680 0
51.328 51.416 51.504 1
51.416 51.460 51.504 1

Since Geohash is an implementation which is based on the geographic coordinate sys-
tem, the latitude, longitude format, the distance between two geohashes does not rep-
resent real distance, but distance between the lat/long coordinates. Cell dimensions vary

Table 2.2: Computation of binary sequence from latitude

with latitude, so the worst case scenario can be observed in Table 2.3

24

Number of characters Area Width Area Length
1 5,000km x 5,000km
2 1,250km x 625km
3 156km X 156km
4 39.1km X 19.5km
5 4.89km X 4.89km
6 1.22km X 0.61km
7 153m X 153m

8 38.2m X 19.1m
9 4.77m X 4.77m
10 1.19m X 0.596m
11 14.9cm X 14.9cm
12 3.7cm X 1.9cm

Table 2.3: Worst case (Cell size) for Geohash is at the equator

Geohashes have been used in current systems to index spatial data, among them are:
(Lee et al., 2014)s spatial query on HBase, Elasticsearch > and MongoDB 3.

2https://www.elastic.co/guide/en/elasticsearch/guide/current/geohashes.html [Accessed 15-May-2017]
3https://docs.mongodb.com/manual/core/geospatial-indexes/ Accessed 30-May-2017

25

26

Chapter

Working with Indexes

In this chapter we will cover the basics of textual and spatial indexes. Starting with the
definitions of the dataset, different types of queries that are discussed and various index
structures. There are a lot of different types of both spatial and textual indexes and this
chapter will highlight some of the various combinations when considering a spatio-textual
index.

3.1 Definition

The literature in this area usually define spatio-textual objects with a (latitude, longitude)
value and a textual description. There are three main ways of combining spatial and textual
indexes: text-first loose, spatial-first loose or tightly combined combination scheme (Chen
et al., 2013).

Example Dataset

D is a geo-textual dataset. An object, 0 € D, is defined as a pair of spatial coordinates, and
the textual description. More formally o = {l, ¢, i}, where 0.l = {o.latitude, o.longitude}
and o.t is a textual description of the geo-textual object represented as a text document.
0.1 is the associated ID to the object.

TkQ

Top-k kNN query takes three arguments, TkQ = g{w, p, k} where q.w is a set of query
keywords. q.p is a spatial point of where the result should be compared to and ¢.k is the
number of results that should be returned. Top-k kNN finds the top %k objects from the
similarities of both keywords and spatial point.

Specifically the ranking score of an object o for a TkQ ¢ can be defined as such:
ST (0,q) = o - SDist(o.d,q.p) + (1 — o) - TRel(o.t,q.w) Where SDist is the spatial
distance between the object 0.l and the query spatial point ¢.p calculated by using the

27

normalized euclidean distance. T Rel is the textual relevance between the object 0.t and
the query keywords g.w and is calculated with an information retrieval model, in this case
the language model (Chen et al., 2013). As this is only an example note that there exists
different approaches to ranking the spatio-textual objects.

BkQ

Boolean kNN query takes the same arguments as TkQ, BkQ = q{w, p, k} and ranks the
objects that contains the keywords g.w based on the spatial point. The query returns the

top k results of the ranking.

The query ranking is defined as: Vo € q(D)((flo’ € D\q(D))(dist(0'.l,q.p) < dist(0.l,q.p))A
qg.w C o'.t)(Chen et al., 2013)

BRQ

Boolean Range Query takes two arguments BRQ) = ¢q{w,r} where w is a set of key-
words, and 7 is a spatial region. For q(D) the result of BRQ is a subset of D, where the
objects Vo € ¢(D)(o.l € g.r Ag.w C o.t) Or in other words, the result are objects that are
contained withing the query region and contains all the query keywords.

3.2 Textual Indexes

The value of any information retrieval system can be expressed as a variety of factors, such
as processing power, disk efficiency and the quality of the returned data. Using an index
to improve the efficiency of the queries we want to perform is valuable as it increases at
least two of these factors.

3.2.1 Inverted Index

An inverted index is a textual indexing structure where each occurring term ¢ is mapped to
the documents o € D containing the term. There are two main variants of inverted index:

Record-level index which maps each word to the corresponding document ID

Word-level index which extends the record-level with the position of each word in the
document.

Figure 3.1 Example of an Inverted Index

Inverted Index
+TERM: DOCUMENT ID
+money: (0.2) , (0.4), (0.7)
+home: (0.1), (0.2), (0.3)
+winning : (0.5), (0.3), (0.6)
+trump: (0.8), (0.2), (0.4)
+hillary: (0.1), (0.2), (0.3), (0.5), (0.7)

28

3.2.2 Bitmaps

Bitmaps can be used as a textual index, where the each bit indicates whether the object
contains the term or not. Some variations of the index exists where each term have a
bitmap to indicate which document contains the term.

(0.1) | (0.2) | (0.3) | (0.4) | (0.5) | (0.6) | (0.7) | (0.8)
money 0 1 0 1 0 0 1 0
home 1 1 1 0 0 0 1 0
winning | O 0 1 0 1 1 0 0
trump 0 1 0 1 0 0 0 1
hillary 1 1 1 0 1 0 1 0

Table 3.1: Bitmap example

3.3 Spatial Indexes

As we observe that more and more spatial data are generated, we want to efficiently process
the data by utilizing indexing strategies. Creating spatial indexes usually comes down to
expressing a spatial point or area in such a way that a query algorithm can traverse and
return the result efficiently.

R-tree

A R-tree has similar structure to a B*-tree and stores multidimensional rectangles. Non-
leaf nodes store the bounding rectangles for its sub-tree (Beckmann et al., 1990), providing
an efficient way of checking whether the sub-tree contains any close objects. The structure
must allow for overlapping rectangles, meaning it is not guaranteed to provide only one
search path through the tree.

29

Figure 3.2 Example of a R-tree

—

R#*-tree

A R*-tree is a version of the R-tree where the overlap of the rectangles are optimized by
implementing a new split algorithm and a forced reinstate (Beckmann et al., 1990). The
forced reinstate improve the overlap by deleting old” entries and inserting them again.
This reduces the overlap of the bounding and leaf query regions.

Grid

Grid indexes divide the spatial domain into a number of equally sized square or rectangles.
The documents are then associated with the grid cell based on the spatial data. Working
with grid indexes are usually more easy as the grid can be created before processing any
input, and the structure does usually not need to change during processing.

30

Figure 3.3 Example of a Grid index

Space Filling Curves

Space filling curves are continuous lines that cover the entire space of an plane. The idea of
a SFC is to place the points that are close to each other in space, together on a curve. This
way we can represent spatial distance as points on a line. There are some common SFCs in
the literature, the most popular ones being Z-curve and Hilbert curve (Christoforaki et al.,
2011). As we will see in the next section space filling curve in the context of spatio-textual
indexing schemes can be combined with inverted files (Chen et al., 2013). This allows for
skipping large parts of the list when querying with spatial information.

Figure 3.4 Points on a normal line compared to points on a space-filling-curve(Hilbert)

LT

31

3.4 Spatio-textual Indexes

As data with both spatial and textual information increases the need for processing the
queries of both spatial and textual parameters increases. Vaid et al. (2005) described a
study of the Excite engine, where one fifth of all searches included some form of spatial
awareness. This includes search terms that was considered geographical: a postal code,
any directional qualifier, place name etc. To service such requests the need for an index to
handle both spatial and textual arises, and we will introduce a couple of examples below.
The formal definition of the spatio-textual problem can be defined as: given a set of spatio-
textual objects o € D, where each object contain a spatial location, a textual description
and an ID o = {I,¢,7}. We aim to combine a textual index based on o.t and a spatial index
based on 0./ in a way that we can perform a query to retrieve the objects based on both 0.t
and o.l.

3.4.1 Text-First Loose Combination Scheme

Text-first combination first employ a textual index as the top level index, and then arrange
the result in the leaf nodes as a spatial index. An example is using an inverted file as a top
level index, and then arranging the postings in the inverted file in a R-tree.

Index Spatial Part | Textual Part | BkQ TkQ | BRQ
Text Primary Index (TS) | Grid inverted file | text-first v
Inverted-File R*-tree R*-tree inverted file | text-first | A v

Table 3.2: Comparison of existing textual-first spatio-textual indexes (Chen et al., 2013)

Text Primary Index (TS)

TS (Vaid et al., 2005) is one of the first grid-based spatio-textual indexes, and is classified
as a text-first loose combination in terms of it’s combination scheme (Chen et al., 2013).
TS consists of a modified inverted file, where each indexed term is associated with cell-
specific sub-lists to represent their location (Vaid et al., 2005). The index can only provide
BRQ, as no simple extension of the indexing scheme is better than using a normal inverted
file (Chen et al., 2013).

The index is quite simple in the fact that the textual part of the document is indexed
with an inverted index. The spatial domain is divided into a grid, and each inverted file
is assigned the best matching grid cell. In the evaluation by Chen et al. (2013), TS was
one of the better text primary indexes for space requirements, using 12GB to generate the
index for the biggest dataset. However grid-based indexes are performing worse compared
to the other indexing strategies (Chen et al., 2013).

32

Figure 3.5 Example of the TS index

Inverted Index
+TERM: DOCUMENT ID
+money
+home
+winning ©»
+trump d o,
+hillary

(]
(0.7)

Inverted File R*-tree

IF-R* (Zhou et al., 2005) utilizes a text-first combination scheme with an inverted file as
the top level index. Each distinct term ¢ in D has a R*-tree which is used to keep the
objects o that contains the term ¢ (Chen et al., 2013).

The performance of the index is tied to the number of query terms. An increase above
1 affects the performance negatively. There also exists variations that replaces the inverted
index with bitmaps, but these perform worse overall (Chen et al., 2013).

Figure 3.6 Example of the IF-R* index

Inverted Index
+TERM: R-Tree reference
+money
+home
+winning
+trump
+hillary »|R1|R3|
| - _I I_ _ _'
Vv Y
R4 | RS R7
E_ _E' — l | I 'E' — l
'} v v
12 R8 R10 R11 _

33

3.4.2 Spatial-First Loose Combination Scheme

Spatial-first combination indexes are using a spatial index as primary index, and a textual
index as leaf node.

Index Spatial Part | Textual Part | BkQ | TkQ | BRQ
ST Grid inverted file v
R*-IF R*-tree inverted file A v
SF2I(Chen et al., 2006) | SFC inverted file v
SKI (Cary et al., 2010) | R-tree bitmaps v v

Table 3.3: Comparison of existing spatial-first spatio-textual indexes (Chen et al., 2013)

Spatial Primary Index (ST)

ST (Vaid et al., 2005) is very similar to TS, combining a grid based spatial index with an
inverted file. However in ST, the spatial index is at the top level, and an inverted index
is constructed at each cell that contains all the documents that has a footprint in the cor-
responding cell (Vaid et al., 2005). Compared to TS, ST happens to perform consistently
worse (Chen et al., 2013).

R*-IF

The R*-IF (Zhou et al., 2005) index is the counterpart of the IF-R* index, and uses a
R*-tree to store all the documents based on the spatial data, an inverted file is created at
each leaf node. R*-IF is therefore considered as a spatial-first index. The objects o € D
are stored as a R*-tree. At each leaf node an inverted file is used to consider the textual
properties 0.t of the objects (Chen et al., 2013).

It is shown that IF-R* performs better than R*-IF for BRQ(Chen et al., 2013), and as
such IF-R* should be preferred over R*-IF.

Hybrid Spatial-Keyword Indexing (SKI)

SKI (Cary et al., 2010) uses an extended R-tree for the spatial part, and a bitmap version
of a inverted file. The R-tree is extended in the sense that the non-leaf nodes contains
a bitmap of what terms are contained in the leaf nodes in the subtree (Chen et al., 2013).
Specifically every term ¢ € D has a bitmap with length of the documents located at the leaf
nodes, with the value of 1 if the corresponding object contains the term ¢, and O otherwise.

34

Figure 3.7 Example of the SKI index

0.1 o2 0.5 | 0.8 03| o4
Terms
hillary | 110 R 110
home A o]0 U
money Ol L ORI L

3.4.3 Tight Combinations

Tight combination focuses on using both the textual and spatial index to prune the query
area simultaneously. There have been used 2 different strategies in the following indexes,
the first which integrates a text summary into each node of a spatial index, the second with
spatial information injected in each textual index (Chen et al., 2013). SFC-QUAD is an

example of the latter.

Index Spatial Part | Textual Part BkQ | TkQ | BRQ
KR*-tree(Hariharan et al., 2007) | R*-tree inverted file A v
IR? (De Felipe et al., 2008) R-tree bitmaps v A
IR-tree (Cong et al., 2009) R-tree inverted file A v A
IRLi-tree (Li et al., 2011) R-tree inverted file v

SKIF (Khodaei et al., 2010) Grid inverted file v
WIBR-tree (Wu et al., 2012) R-tree iverted bitmaps | v’ A
S21 aR-Tree inverted file A v A
SFC-QUAD SFC inverted file v

Table 3.4: Comparison of existing tightly combined spatio-textual indexes (Chen et al., 2013)

35

SFC-QUAD

SFC-QUAD uses an inverted index at the top level, and sorts the document IDs according
to their Z-curve position (Chen et al., 2013). The use of this space filling curve accurately
sorts the documents based on the spatial data. SFC-QUAD also uses a quad-tree struc-
ture to enable skipping. For a query, the quad-tree is traversed and m document ranges
are found which contains all the documents that satisfy the query location. The query pro-
cesser, which is an inverted file, then only accesses these ranges, and can skip the rest of the
documents (Christoforaki et al., 2011). Finally objects containing all the query keywords
are found through document-at-a-time processing along with forward skip optimization.
SFC-QUAD is only suitable for BRQ (Chen et al., 2013).

S2I

S2I (Rocha-Junior et al., 2011) is an index that maps each term to an aggregated R-tree
or a block based on the frequency of the index. Using a inverted file as primary index,
each term ¢ points either to a block, or an aR-tree. There are three main components to the
S2I index: the vocabulary which describes the frequency for each term, a flag indicating
whether the storage method is a block or a aR-tree, and a pointer to the aR-tree or block.
Blocks are used to store objects that have a low frequency. For each object, the id, the
impact of the term in the corresponding document and spatial location is stored. Trees
The aR-tree use the same structure as a normal R-tree, but in addition keeps a aggregated
value in the form of the maximum impact of the corresponding term.

Single-keyword algorithm (SKA) and Multiple-keyword algorithm (MKA) (Rocha-
Junior et al., 2011) are two top-k spatial keyword queries that where developed to exploit
the S2I index. The approach showed to outperform the DIR-tree (Cong et al., 2009) in
both query and update.

36

Chapter

Related Work

In this chapter a overview of different papers in the related field of spatio-textual indexing
will be presented. Different approaches to the current problem will be explored, including
other related research.

4.1 Methodology

Both for this chapter and the next, articles where gathered through research document
aggregators on the Internet. For this chapter, concepts describing both spatio-textual and
spatial indexes where used to search for research papers as (Oates, 2005) suggests. As
for the next chapter concepts describing Big Data platforms, and spatial indexing where
used. After obtaining a set of papers, the papers where processed by skimming through
and selecting the most important documents to be read carefully through. Another pass of
this method yielded a set of research papers that describe a part of the current state of the
art.

4.2 Review

When processing all of the different research papers, the amount of different index strate-
gies are clearly showing. There exists a lot of work in indexing textual and spatial data,
both in their own individual state, but also as spatio-textual objects. The most common
approach when constructing spatio-textual indexes has been to combine the most used in-
dexes from each domain. Inverted index from the textual side, and R-tree from the spatial
side.

State of the art spatio-textual indexes combine these indexes but by constructing a cus-
tom combination scheme are able to improve performance significantly over the rest. By
utilizing properties of term frequencies in documents and utilizing aR-trees, Rocha-Junior
et al. (2011) created a spatio-textual index that outperforms the previous state of the art

37

indexes in the field. The S2I index, maps each occurring term in a document to either an
aggregate R-tree or a block depending on the frequency of the term. Efficient algorithms
to exploit this index is also part of the contribution, and provides top-k spatial keyword

query.

As an overview and comparison between a multitude of different types of spatio-textual
indexes Chen et al. (2013) found through extensive evaluation that if the target query
method is BRQ, SFC-QUAD beats all the other indexes in both query execution time and
index size. Grid based indexes where also reported to be unfavorable, when dealing with
BRQ. IF-R* created the largest index in size, using 173GB to create a index on a dataset
called TWITTER containing 20M objects. Consistently it was showed that R-tree based
text-first require much more index space as objects will be replicated many times.

There exists a lot of different approaches when indexing spatio-texutal data however,
and Christoforaki et al. (2011) explores new and efficient algorithms for improving query
processing by utilizing space filling curves and inverted indexes. The paper has a focus on
web searches and puts higher priority on the textual part of spatio-texutal queries. Instead
of focusing on the fine grained attributes of some spatial structures, more coarse grained
approaches improves performance. This approach can lead to improvement in both run
time and index size, as the overhead associated with structures like R-trees are reduced.

As for addressing the question whether to utilize a spatial-first or textual-first index,
Christoforaki et al. (2011) created a naive textual first approach that improved performance
compared to other spatial indexes such as R-tree. They argued that as there is significantly
more textual than spatial data in current geo search engines, it would be important to focus
more on the textual part of the problem. The Text-first index was created using an inverted
index, complimented by state of the art IR query processing techinques, such as com-
pressing the document ids and frequencies using the OPT-PFD(Optimized PForDelta) al-
gorithm which is an efficient way of compressing very large collections (Yan et al., 2009).
The Text-first baseline was extended to include a coarse grade spatial structure based on
kd-trees and space filling curves (Christoforaki et al., 2011). This approach outperformed
the baseline CPU cost by an order of two magnitudes. In conclusion the paper showed
that for several million pages, R-tree based methods do not appear to perform as good as
a carefully implemented trivial baseline. This is also not only restricted to R(*)-trees, as
all deep spatial structures spend significant time navigating the structure and performing
lookups in the leaf nodes (Christoforaki et al., 2011).

Skovsgaard et al. (2014) explores techniques to support a top-k function for frequent
terms in a spatio-temporal tagged text content. They argue that index structures based on
R-trees are not well suited for rapid content stream and spatio-temporal aggregate queries.
While not exactly within our scope, streaming spatio-temporal data, which includes mi-
croblogs and Twitter, are a huge contribution to the amount of geo-tagged data out there.

Tsatsanifos and Vlachou (2015) focused on including non-spatial information into spatio-
textual queries. E.g. a hotel would be ranked higher if there are nearby restaurants and
entertainment facilities. The paper then aims to not only retrieve objects that have high

38

spatio-textual similarity, but also include information about facilities in the nearby vicin-
ity. The index proposed here is called ”SRT” and uses a bitmap to represent the occurance
of terms in the global vocaulary. Each bitmap is then mapped to a hilbert curve. The order
of the objects is defined in a way such that if the distance of the vectors are 1, the objects
have only 1 different term. The index uses a R-tree built on both the spatial location, the
hilbert value and a non-spatial score.

Lee et al. (2014) presents a lightweight index on top of HBase and Hadoop. The index
is created by using a type of space filling curve called geohash to create bounding boxes
from a latitude/longitude pair as a hash string. This string has unique properties that can
be utilized to specify how much precision the records in the index should have, and can be
used to define the size of the bounding boxes. The paper mentions pruning, but does not
detail in any form how the pruning process happens.

In (Fox et al., 2013) the researchers have also facilitated the use of Geohash as a spatial
indexing structure, but on top of Apache Accumolo', which is a distributed key-value
store . The contribution of the paper is mostly focused around spatio-temporal queries,
and constructs the rowID (key) to be a combination of a temporal value and a geohash
character. The rest of the record is then the more specific spatial location and time. This
approach only uses 1 character of the 7 calculated to distribute the records, as it was noted
as an explosion of unique rowID ranges if the whole geohash value was used as key.
However the most significant variable under the evaluation was the number of geohash
characters in rowlID (Fox et al., 2013). As one geohash character is able to cover 1/32 of
the earth, by using two would cover 1/1024 which is much more specific. The study also
lists many results in tuning Accumulo, which is not particularly useful.

To sum up there exists a lot of different approaches to spatio-textual indexing. We have
in the previous chapter introduced a couple of different indexes and combination schemes,
and we can see that there exists a lot of different approaches in the related work. Many
usages of R-tree has been observed, but a lot of work has also been done on using space
filling curves as a spatial index. Inverted index is however much more dominant when
spatial and textual are combined, but there are exceptions to this as well.

Thttps://accumulo.apache.org/

39

40

Chapter

Current Spatial Systems

In this chapter multiple currently available approaches to solving spatial processing on Big
Data platforms will be presented. Initially a overview of SpatialHadoop will be detailed,
a further extension called GISQF will follow. A alternative variant which also extends
Hadoop is called Hadoop-GIS and will be explained before rounding up with 2 implemen-
tations of Spatial processing on Apache Spark.

5.1 SpatialHadoop

SpatialHadoop is a MapReduce framework based on standard Hadoop, but developed to
incorporate native support for spatial data.

5.1.1 Architecture

SpatialHadoop is an extention of the Hadoop framework, and injects spatial data aware-
ness into each layer of the architecture. Specifically it extends Hadoop’s first layer, the
language layer, with a expressive high level language for performing spatial operations
and describing spatial types. The storage layer is supplemented by adding spatial index
structures like Grid file, R- and R+-trees. In the map-reduce layer, a SpatialFileSplitter
and SpatialRecordReader is added to improve spatial data processing efficiency.

Challenges with index creation

Index structures are optimized for procedural programming, where a program executes
statements sequentially. Hadoop utilizes functional programming, where map and reduce
functions are executed by slave nodes. This means traditional solutions for constructing
R-trees are not applicable (Eldawy and Mokbel, 2015).

41

Language Layer

In the language layer SpatialHadoop adds a high level language for expressing spatial op-
erations and data types. This layer provides Pigeon, which is an extension of Pig Latin that
adds spatial data types, functions and operations (Eldawy and Mokbel, 2015). Standard
spatial data types are supported, such as Point and Polygon for example. Extending Pig
Latin with more spatial awareness creates support for filter and join functions as well.

Storage Layer

SpatialHadopp uses a two layer index structure to overcome the challenges with traditional
index creation. The top layer is a global index which indexes all of the partitions across
the nodes of the cluster. A local index further indexes the records within each node.
SpatialHadoop stores the spatial indexing structures within HDFS, and in combination
with the global index file are able to retrieve the input files without having to scan all the
data (Eldawy and Mokbel, 2015).
The index is created by completing three phases:
1) Partitioning: This phase partitions the input file into n partitions. To get the number

S(1
of partitions the equation n = [M] (Eldawy and Mokbel, 2015) is used where S

is the input files, B is the HDFS block capacity (default = 64 MB) and « is an "overhead
ratio” which accounts for the overhead when storing the local indexes.

Next a minimum bounding rectangle (MBR) is created for each partition to decide the
spatial area of each partition. All of the MBRs makes up the entire space domain.

Finally each record r is assigned to a partition p that covers the record’s geographical
space, and the map function writes an intermediate pair < p,r >.
2) Local Indexing: The requested index structure is now created as a local index on each
partition. Each local index has to fit in one HDFS block B, as this allows spatial operations
to access each local index as one map task. It also ensures that the index is load balanced
by Hadoop when it relocates the blocks across nodes.
3) Global Indexing: To build the global index, as the requested index structure, all local
index files are concatenated into one file and a global index is built by using the bounding
rectangles as the index key. This global index is kept in memory at the master node.

MapReduce Layer

Similar to standard Hadoop, the MapReduce layer is where the query processing runs
MapReduce tasks. SpatialHadoop however supports spatially indexed input files, and en-
riches the Hadoop system by using a SpatialFileSplitter. This splitter exploites the global
index to prune the file blocks so that only blocks that can contain the answer is retrieved.
A SpatialRecordReader is used to read the resulting splits and uses the local index when
processing the data.

42

Operations Layer

In addition to the previously mentioned layers, the Operation layer make up the core of
SpatialHadoop, and with the resulting spatial functionality the system can perform oper-
ations such as range query, k-nearest neighbor and spatial join. As an example, a range
query takes a set of spatial records R and a query area A and returns 7 C R where r is
located in A.

Query Work flow

1) Global Filter: By using the global index, SpatialHadoop checks whether the block
b has its bounding rectangles inside A, b.bound C A, if this is true the whole block is
returned as all records inside the block is inside the query area. If the block is not in A
at all it is discarded, as no record could be located inside A. However if the bounds are
partially overlapping A, the block is sent to further processing in step 2.

2) Local filter: The local filter uses the local index to extract the matching records.
This means for example traversing the R-tree to extract the proper records. With Replica-
tion: With Grid-file and R+trees the global filter has to further process all blocks that are
partially or completely inside A, as there may be duplicates records . The local filter has
an extra step, which is called duplicate avoidance (Eldawy and Mokbel, 2015).

5.2 SpatialSpark

SpatialSpark is a implementation of spatial operations and indexing on top of Apache
Spark. The technical contributions consists of two spatial-join algorithms, spatial index-
ing and range query (You et al., 2015). SpatialSpark is build with the Spark specific
RDD(Resilient Distributed Dataset) in mind. The programming language used is Scala.

The index is created by sampling the dataset and creating minimum bounding rectan-
gles based on the sample data. The remainder is then scanned and each record is placed in
the best matching partition based on the partition’s MBR and the record MBR. The index
is saved as a textfile, and by querying the index with a geometry it is possible to prune
away records that cannot match the query parameter. Scanning through the index, each
partition that is partly covered, of fully covered by the query area is returned. This ap-
proach is very similar to SpatialHadoop, as there exists a “global” index, which can prune
partitions before filtering the remainders.

Some problems related to efficiency when computing on multiple nodes have been
documented (You et al., 2015), and a preliminary investigation showed that overhead when
shuffling small jobs where high enough to affect the overall performance. Suggested fur-
ther research on the trade off between number og partitions and size of partitions.

43

5.3 GeoSpark

GeoSpark is an in-memory cluster computing system for processing large spatial datasets.
It is implemented on top of core Apache Spark to provide support for spatial data types,
indexes and spatial operations (Yu et al., 2015). GeoSpark thereby extends the standard
Resilient Data Set (RDD) to support spatial data, which is called Spatial Resilient Data Set
(SRDD).

GeoSpark consists of 3 layers:

Apache Spark Layer which is the normal Apache Spark operations and data types.

Spatial Resilient Distributed Dataset (SRDD) Layer Which extends the normal RDD
with spatial data types and operations to partition the SRDD across the cluster. To
partition the data, GeoSpark utilizes a global grid file. The spatial space is split
into equal geographical cells, and each element in the SRDD is assigned to the
overlapping cell. If an element intersects with multiple cells, a duplicate is made for
each. (Yu et al., 2015) Two types of indexes are supported in this layer, R-Tree and
Quadtree.

Spatial Query Processing Layer provides support for spatial queries such as Spatial range
query, spatial join query and spatial KNN query.

5.4 GISQF

(Al Naami et al., 2014) has developed a Geographic Information System Query Frame-
work (GISQF) on top of SpatialHadoop. This system extends the normal operations of
SpatialHadoop to include indexing, decoding and querying a specific dataset, the Global
Data of Events, Langugage and Tone (GDELT '). GISQF consists of 3 layers, the bottom
layer being responsible for preprocessing the datasets into shape objects so that Spatial-
Hadoop can accept the input. The second layer communicates with SpatialHadoop to
index the dataset, the index is saved in HDFS. The third layer is responsible for query
processing.

When creating the index, GISQF creates a "PreMaster” file that contains a record de-
scribing the MBR of the input dataset. The input is then divided into partitions based on
the specified index, for example R-tree, Grid or R+-tree. A local index is then created on
each partition containing meta data for some blocks and their MBRs. The local index is
stored in HDFS. All local indexes are concatenated into one global index to be stored into
the main memory. The process of creating the index is bottom-up, as the global index is
created first when all the local indexes have been completed. Querying is top-down, as the
system first query the global index and then the local indexes.

All in all Al Naami et al. (2014) extends SpatialHadoop to perform indexing on a
specific dataset, and utilizes a lot of the same methods as SpatialHadoop but adapts the
input to the system. The paper only presented comparisons to standard Hadoop, which
it outperformed. The paper reinforces the need for MapReduce when dealing with big
datasets, and utilizes the same methods as SpatialHadoop when constructing the index.

Thttp://www.gdeltproject.org/ [Accessed 4-May-2017]

44

5.5 Hadoop-GIS

A scalable spatial data warehousing system, designed to run large scale spatial queries
by utilizing the MapReduce paradigm. Hadoop-GIS uses global partitioning and an on
demand local index to support efficient queries. The system is also integrated into Hive
to support declarative queries. The spatial objects are distributed into buckets called tiles,
and each object are given a tile UID which is then stored on HDFS. Each tile is then
spatially processed individually, boundary objects are handled. Aji et al. (2013) aims to
provide a spatial query engine that can (/)support a variety of spatial queries, and that
can be extended.(2) Parallelized on a cluster, and (3) can leverage existing indexing and
query methods. This resulted in Real-time Spatial Query Engine(RESQUE). On spatial
partitioning Aji et al. (2013) provided 2 main arguments on why it is very important,
first of all, partitioning the 2 dimensional data creates a set of tiles which becomes the
processing unit for the query tasks. The partitions are independent and can be run in
parallel, therefore the partitioning scheme determines the computational parallelization.

Second, data skew can be quite substantial in spatial data (Aji et al., 2013), by ex-
perimenting with the numbers of partitions, the goal is to create partitions that contains
similar number of records. The example used in the paper was OpenStreetMap, where by
partitioning the dataset on 4Kx4K, resulting in partitions with 20k records when the av-
erage number was 4,291. Optimizing the partitioning scheme to normalize the number of
records in the partitions would then improve performance. As a conclusion, Hadoop-GIS
utilizes spatial partitioning and partition based parallel processing to create a solution that
combines the scalable and cost-effective nature of MapReduce with efficient spatial query
processing and access methods.

5.6 Summary

Most current systems reviewed focused on partitioning the data in an efficient way. Aji
et al. (2013) showed that there are two main reasons for doing this, to increase parallel
processing efficiency and to reduce record skew in the dataset. There where multiple
ways of achieving this, Eldawy and Mokbel (2015) with SpatialHadoop created a global
index based on local indexes as a way to prune away partitions. You et al. (2015) with
SpatialSpark sampled the input dataset and created minimum bounding rectangles and
fitted the remaining dataset into the best matching partition. GeoSpark (Yu et al., 2015)
constructed a global grid file, and placed records into the corresponding cell.

As well as partitioning, in most of the systems there was a need for a local index.
Variations of R-tree was most commonly used, as well as quad-tree or grid file.

SpatialHadoop seems to be the common denominator for the rest of the systems, as the
structure of the indexes are based on the idea of having one global index keeping track of
the MBR of the local indexes to enable pruning.

45

46

Chapter

Approach

6.1 Intro

This chapter will be a presentation of the approach for extending a spatial index with a
textual property. An exploration of selecting a combination scheme and deciding adop-
tions that would need to be made implementing the index on top of Apache Spark will be
presented. Finally the resulting system will be introduced.

6.2 Extending spatial indexes

The most intuitive method of extending the existing spatial indexing systems with a textual
property would be to extend the spatial index to a spatial-first spatio-textual index as we
have seen in Chapter 3 and 4.

For example SpatialHadoop’s R-trees can be fitted with an inverted file at their leaf
nodes which can describe the textual properties resulting in something similar to a R-IF
index. Chen et al. (2013) showed that IF-R performed better than R-IF when querying,
so another alternative could be to construct a inverted index first, and use R-trees for each
posting in the inverted file.

We should consider a few criteria when selecting indexes to extend. The index needs
to perform well, with quick run times when querying. In addition to this, the size of the
index should be considered, as we are working with large datasets and the result in both
cases should not grow more than linearly. The index build time should be considered as
well, as we want the system to generate the index in a reasonable time.

Using space filling curves to index geographical data seems to be the most space con-
serving strategy. Both in Christoforaki et al. (2011) and Lee et al. (2014) the space filling
curve strategy showed good results in space considerations and run time.

Fox et al. (2013) and Lee et al. (2014) have utilized geohashes to represent the spatial
data, both on top of distributed platforms. This approach complements the MapReduce
aspect of Spark, as we can freely compute the geohash for each record without having to

47

pay attention to a global structure like a R-tree.

When establishing Geohash as our spatial structure, an important aspect of how to
partition the data arises as we do not have any global structure that can be used. We will
discuss this in then next section.

After accepting Geohash as our primary index, the choice of textual index are in ques-
tion. The state of the art in spatio-textual indexing are using an inverted index at the top
level, and the index itself is the most common textual index in the field. By choosing to
use an inverted index, we only need a binding from each word to the ID of the record.

Combining the spatial and textual indexes was first done by creating the baseline, and
is utilizing the textual-first combination scheme. Later a spatial-first variation was used
that included partitioning.

By using the spatial-first combination scheme, the index have a way of querying the
spatial region, obtain the results and find the term we are querying for. The remaining
process is then simply to retrieve the record from the dataset.

6.2.1 Partitioning

This system should be able to perform similar functions as SpatialHadoop, which uses a
global index to allow pruning among the partitions. An index in each partition is used to
further improve performance, but in our case we want to utilize a textual index at this level.
When working with Apache Spark we want to utilize all of the system’s most efficient
functionality. By using the partitioning tools that exists within Spark, we can automate the
process of pruning partitions when querying. By selecting the proper columns to partition
the data on when creating the index, we are able to prune partitions that certainly does not
contain the query area.

The partitioning function in Spark is based around selecting a column or multiple
columns to partition the data. Records will be distributed into partitions based on values
in the columns if we select some carefully chosen values. We use this in our evaluation to
show test whether an index partitioned on the geohash performs better than the baseline of
using a unpartitioned text-first index.

Spatial-first

As the partitioning function in Spark is column based, we need to select a proper partition-
ing scheme. Fox et al. (2013) has previously proved that using a small prefix of the full
geohash have proved to increase performance when pruning. By placing the first character
of the geohash in a separate column, we can first partition the data into 32 folders based
on the first character. This enables us to immediately select only the partition that our
geohash is located within.

It is important to note that while using more characters to partition the data would
possibly improve query run time as we could prune increasingly more data, the partitioning
function in Spark specifically indicates that the function works best when creating less than
tens of thousands partitions. Using 3 geohash characters would create 32’768 partitions,
and in addition to this, HDFS does not work well with many small files. By using 1
character we can balance the need to prune data with the restrictions our system provides.

48

After pruning the irrelevant partitions, a pass to filter the remaining geohashes are
performed by comparing the prefixes to the geohash computed when querying.

Using geohash to represent spatial information provides a ”good enough” precision if
we use an appropriate amount of characters in the hash. As default this precision value is
set to 12, giving the geohash a worst case precision of 3.7cm x 1.9cm (7cm?).

For each record that is encoded with a geohash, we should also utilize a textual index.
A simple but effective index is the record-level inverted index, which maps each word
to the corresponding document ID. To utilize this in a distributive manner we create a
new record for each word, attach the ID to the word while keeping the geohash value.
Performing filtering based on the geohash string first will prune the data, resulting in a
dataset with all of the words that exists within our query area. From there finding the
tweets that contain the right queryterm is done by filtering the remaining rows and remove
words that is not our search term. This will result in a final dataset containing a set of
IDs that can be efficiently retrieved by querying the ID’ed input dataset. The dataset is
partitioned by ID in Spark, resulting in 32 partitions. A join to extract the IDs is then
performed as we collect the correct tweets from the input dataset. The final result are
printed to disk.

6.2.2 Variations

The baseline of the index was first created, Textual-First and later extended to a Spatial-
First variation. Textual-First uses a similar structure as Spatial-first, but are not partitioned
by the geohash. In addition to this Textual-First queries the index initially by filtering the
dataset based on the query term, before filtering the geohashes based on the query area.

6.3 Overall Pseudo code

Algorithm 1 Overview of program flow for the spatio-textual index

1: ReDistributed < ProcessInput()

2: Assignld()

3: for Word in Tweet. TextContent do
4: RemoveStopwords()

5 ComputeGeoHash/()

6 Create Row(Geohash, Word, 1D)
7

: RePartition()

6.4 Spark Specifics

ReDistributed The first step is to read the input and redistribute the data as it may not
be in a parallelizable form. This step reads the data, redistributes the input into a
suitable number of partitions.

49

Assignld After the data has been parallelized, an ID is assigned to each record so we can
refer to this ID in the inverted index. After every record is given an ID, the dataset is
partitioned by the ID using a hash function to partition the data across 32 partitions.

ZippedDataset = Dataset[ID, Tweet]

RemoveStopwords A naive and simple IR method to remove the most common stop
words. This includes removing symbols and urls.

ComputeGeoHash Computes a geohash from the latitude, logitude pair that is associated
with the tweet.

Create Row For each remaining important term, a row of the term, geohash and the ID is
created. The first character in each geohash is given its own column, as to partition
the data in the RePartition stage.

GeohashedWords = Dataset|Geohash, Word, ID, Char — 1]

RePartition The partitioning function partitions the records based on C'har — 1, which
is the first character of the calculated geohash. This function also saves the index to
disk.

6.5 Querying

For a query ¢{g, t} where q.g is a geohash of the query location and ¢.t is the query term,
the spatio-textual query execution is completed in three steps:

6.5.1 Spatial Query

When querying the spatial index, the first geohash character in the query geohash q.g is
retrieved. Spark then reads the stored index’s metadata to retrieve only the partitions that
have the correct geohash prefix.

After retrieving the partitions, a filter is performed to find the geohashes that either
start with or is equal to ¢g.g. In case of border cases which have been discussed previously,
every neighbor to the geohash is also collected and the records starting with or are equal
to the neighbors are also returned.

6.5.2 Textual Query

When querying about a textual term q.t, a filter is applied to the dataset finding the records
that contain the term ¢. The records that contain the terms collected and the ID column is
selected.

50

6.5.3 Retrieving the results

After collecting the IDs that fit the spatio-textual query, we apply a hash function to the
IDs, to find the partitions in ZippedDataset we need to collect. Finally the resulting IDs
and the retrieved records from ZippedDataset are joined, and the results are saved to
disk.

6.6 Baseline version

The baseline version of the index also follows the same procedure for constructing the
index, but does not include the last step RePartition. When querying, the textual query is
performed first, filtering to retain only the query term before performing the spatial query.
The spatial query only filters the remaining records by ¢.g. The retrieval of the results are
equal.

6.7 Restrictions

Some restrictions apply when working with this system, the most applicable is listed be-
low.

6.7.1 Geohash

Finding neighbour hashes At certain locations the hash value for surrounding areas does
not share the same prefix. A solution used in the current system is to find the neigh-
bor hashes and include them in the query. For example the hash value near the ”02”,
North Greenwich, England is *ulOhbp’, but just across the river a couple of hundred
meters away, the hash is "gcpuzz’.

Precision When creating and querying, the precision could affect the result of the index
and query time. As default the indexing precision is set to 12, giving the error rate
of about 7 cm?.

BRQ This approach is only suited for boolean range queries, as the results are not ranked
in any way.

6.7.2 Partitioning

This partitioning scheme can be improved, but for a naive system like this it seems accept-
able. Utilizing Spark’s integrated partitioning function is likely to be efficient enough for
our purpose. The downside of this however is that we have less coarse grained control of
the actual process when partitioning. Finding alternatives, and improving the amount of
partitions we can prune is likely to increase performance in the long run.

A better partitioning scheme could then potentially increase the performance of the
index by grouping together geohashes that has the same prefix. The current method parti-
tions the data based on the first geohash character, which means that when queried with a
more precise geohash does not prune more partitions.

51

Another probable performance enhancement is a better IR solution to retrieving the
final records when we have collected the IDs of the query.

52

Chapter

Evaluation

In this chapter the results from evaluation will be presented. First setup and information
about the cluster will be detailed along with some technical details about the run parame-
ters. Data for run times, index creation times and index size then follows accompanied by
a short comment.

7.1 Dataset

We have a big dataset of Tweets that we have split into varying sizes.

Name # Geo-Tagged Records
Dataset1 10.8M
Dataset2 16.8M
Dataset3 28.4M
Dataset4 50.2M
Dataset5 86.3M
Dataset6 142.1M
Dataset7 454 1M
Dataset8 521.3M
Dataset9 2703.2M
Dataset10 3619.8M

Table 7.1: Overview of datasets

53

The dataset contains 3619M geo-tagged tweets collected over a period of time. The
information in each record is quite substantial, as it contains data about the tweeting user
and place information. The dataset is collected from all around the world, and totals to
about 1.5 TB in compressed gzip files.

The most important information in the tweets are of course the geographical data and
the textual content. A lot of metadata about the user, media contained in the tweets,
retweets etc. are not very interesting to our system. What we are extracting from the
tweets are the spatial data, that are either specific geo tagged points, or a bounding box
from an associated place where the tweet was posted. We prioritize the geo tagged point
as it is more precise than the bounding box, but use a point in the bounding box if the geo-
point is not specified. In addition to the spatial data, we also collect the textual description
of the tweet. An example of the full tweet can be found in Appendix A.

7.2 Setup

The full spatio-textual dataset consisted of 112 compressed files containing the tweets. The
compression used in this case was gzip, which is not a parallelizable format, and as a result
each file could only be loaded by one core at the time. This created some disproportional
loading times that can be observed in Table 7.2. Note that Dataset1-6 each consisted of
a single gzip file, thus could only utilize one executor and one core on that executor at
a time. Dataset 7-10 consisted of multiple files which enables Spark to read each file
simultaneously, however even the biggest dataset could only utilize 112 cores at a time.
This means that the data load time is bound by the biggest gzip file in the directory, even
if the other 111 are finished. The index itself is stored as a parallelizable format, parquet,
which means we can fully utilize the cluster, and by extension all of the executors when
loading the index to query.

Name Data Load (in seconds)
Dataset] 480
Dataset2 780
Dataset3 1380
Dataset4 2340
Dataset5 3960
Dataset6 6840
Dataset7 3960
Dataset8 5400
Dataset9 8280
Dataset10 10800

Table 7.2: Data Load in Spark

54

Figure 7.1 Data Load Times

12000
10000

8000

G000

4000

- I I
0--..

10.8M 16.8M 28.4M 50.2ZM B6.3M 142.1M 454.1M 521.3M 2703.2M3619.8M

Seconds

Number of records

7.2.1 Cluster

The testing environment consists of 20 machines each running with 16 cores and 125GB
memory. Each machine where running Ubuntu linux 14.04. Apache Spark had enabled
dynamic allocation of resources, so the number of executors where dynamically being
added as needed. The number of cores per executor, the memory available in each executor
where specified at run time, as well as a driver.

Index creation:

Executor : 1 cores, 7G Memory

Driver : 2 cores, 4G Memory

Both : Extra JVM options ” -XX:MaxPermSize=256M ”’

Index Query:
Executor : 3 cores, 3G Memory
Driver : 2 cores, 4G Memory

Both : Extra JVM options ” -XX:MaxPermSize=256M ”

55

7.2.2 Run time and Query parameters

Below is a summary of the run times for each dataset. For each dataset the index was cre-
ated 6 times and the median value was chosen to represent the average performance. The
performance evaluation is based on the Spatial-First variation, and an example comparison
is presented afterwards.

Below is a listing of query parameters used in all queries. Figure 7.2 is a visual repre-
sentation of the query area.

Location 40.754669,-73.986053 is the coordinate for Midtown in Manhattan, NY.

Precision A geohash precision of 5 characters where used. Geohashes from the imme-
diate neighbors is also included. This means the bounds for the query includes the
entire Manhattan area and more, see Figure 7.2 for an visual representation.

Query Term The Query term used in the search is “money”.

7.3 Results

We will split the results from index creation in two parts, Dataset 1-7 in group 1 (Figure
7.3) and 8-10 in group 2 (Figure 7.4). This is done as the numbers increase substantially,
making it easier to read the values from the graphs. The results from querying the index
remains within a reasonable range and is presented in a single graph.

7.3.1 Index creation

As we can see from the figures 7.3 and 7.4, index creation is fairly consistent at the smallest
datasets. This is probably due to overhead when working with the cluster, as it does not
have enough data to utilize the resources efficiently. The dynamic allocation enabled in
Spark can also affect the performance at this level, as it takes some time in each task before
more executors are added. Further observations show that the run time increases at least
linearly once the dataset becomes big enough.

56

Figure 7.2 Query Area - Collected from http://ge

ohash.gofreerange.com/

7 _ . Edgewat

57

Figure 7.3 Index Creation Dataset 1-7

450

400

350

300

250

200

Seconds

150

o

50

0
10.8M 16.8M 28.4M 50.2M 86.3M 142.1M 434.1M

Mumber of records

Figure 7.4 Index Creation 2 Dataset 8-10

3000

2500

2000

1500

Seconds

1000

521.3M 2703.2M 3619.8M

Number of records

58

7.3.2 Index Query

Index query remains quite stable until the dataset become big enough, possibly due to
spark overhead when running the query on smaller datasets. As the figure 7.5 shows,
when the dataset exceeds S00M records the run time also increases.

We can observe a steep increase in run time when querying the larger datasets. Note
that the 9th dataset contains over 5x as many records as dataset 8. The total time for
querying even the largest dataset does not take more than 200 seconds.

Figure 7.5 Index Query

250

200

150

Seconds

100

1]
10.8M 16.8M 28.4M 50.2M 86.3M 142.1M 454.1M 521.3M 2703.2M 3619.8M

MNumber of records

7.3.3 Size of index

The amount of space the index uses is defined as zipped Dataset + GeohashedDataset.
The size of the zippedDataset would be very similar to the input dataset as we only add
an ID to the records. The most interesting value to examine in this case is the size of
GeohashedDataset.

The indexes are compressed to the file type “’parquet”’(Apache, 2017), and is designed
to retain the partitioning of index. The compression codec used is ”snappy”’.

The following Table 7.3 is a listing of the index sizes for each dataset. The two sizes
describe the total size including HDFS replication (3x replication) and when unreplicated.

59

Name Size replicated | Size unreplicated
Datasetl 1.5909 GB 543.01 MB
Dataset2 2.4730 GB 844.13 MB
Dataset3 4.1326 GB 1.3775 GB
Dataset4 7.3040 GB 2.4347 GB
Dataset5 12.956 GB 4.3188 GB
Dataset6 21.341 GB 7.1137 GB
Dataset7 66.714 GB 22.238 GB
Dataset8 76.822 GB 25.607 GB
Dataset9 421.44 GB 140.48 GB
Dataset10 529.67 GB 176.56 GB

Table 7.3: Index size of Spatial-First

The distribution of records in partitions is represented with the Figure 7.6.The data is
collected from the spatial-first index created on Dataset10 showing values for the biggest
partitions. A more detailed table containing all the results can be found in Appendix B

Figure 7.6 Distribution of records on partitions

Partition
mEODm1l
2 m3
m4d =5
WG =7
m3 =g
Hp B¢
Hd He
f mg
Bh ¥
mEk ©m
Hn ®p
Hg ET
s Bt
u My
Bw X
l}r z

60

7.4 Comparison to the baseline

A comparison to the baseline was performed on the biggest dataset, using the same query
parameters as used in the previous section.

Creation Index construction took 2426 seconds on average. Which is much better than
the spatial-first version. The time saved from not having to perform the partitioning
makes up the big difference.

Query Query time are very similar, the baseline querying on 270 seconds, and spatial-first
with 196.

Size The size of the Baseline index was calculated to 214GB before replication, versus
176GB for the Spatial-First variation .

Another comparison was made where the query geohash precision was set at 8 char-
acters. This meant that the result only contained less than 5 records. When operating with
few result the query times improved more using the spatial-first variant. This indicates that
the retrieval of the documents in the last stage might be a bottleneck. This assumption can
be made as no changes occurs in the spatial and textual query stage, where the amount
of work remains constant. But the final retrieval stage accesses fewer partitions before
returning the result.

Baseline: Query with 8 geohash characters: 146 seconds

Spatial-First Query with 8 geohash characters: 90 seconds

7.5 Summary

As we can observe from the various graphs and tables, the index are performing well both
when creating the index as well as when querying. The run times seems to be growing
linearly which is to be expected, and the sizes of the indexes are calculating to about 10%
of the total input dataset. The query times does not vary drastically between the baseline
and the spatial-first variant, however the spatial-first variant does maintain a performance
boost over the baseline. The baseline does however perform on a acceptable level regard-
less. When working with Spark, parquet retains a lot of metadata and information about
the dataset, this could be affecting the performance in a positive way. The more precise
query yielded some hints that the retrieval process might be a possible bottleneck.

61

62

Chapter

Summary and Conclusion

In this chapter the evaluation results will be summarized, and the research questions will
be accounted for. As a final comment some further research are suggested.

8.1 RQ 1: Spatial indexing on Big data platforms

In this paper several different spatial indexing systems have been explored, both systems
built on top of distributed databases such as HBase and Accumulo, Big data platforms
such as Hadoop, and systems built on top of Apache Spark. Several similar trends can
be observed throughout the survey, where the most predominant one is the usage of a
global method of pruning partitions. The usage of a global and local index can be found
in systems based on SpatialHadoop, but other approaches such as using characters from
geohashes are also represented. Many of the current systems today utilizes some form
of spatial structure such as R-trees or Grid file, however arguments have been made in
both in favor and apposing this approach. Using an inverted index for storing the textual
properties are most widely used.

8.2 RQ 2: Extending spatial indexes

There are quite a number of different spatio-textual indexes in the field, however finding
the right combination proved to be a challenging task. Going away from the more common
usage of R-trees, we have focused more on utilizing coarse grained spatial structures such
as space filling curves. To extend a SFC with a textual index, a simple inverted file has
shown good result past experiments (Christoforaki et al., 2011). In the created system
we utilized Geohash to represent each record’s location, and this value was also used to
partition the index. By utilizing this approach, which had previously been used by Fox
et al. (2013) and Lee et al. (2014), we are able to prune the index area down to 1/32
of the earth when querying our index. This method achieves a similar pruning effect as
SpatialHadoop, however to improve the pruning function we are restricted by limitations

63

in Spark and HDFS. After establishing a spatial index by utilizing Geohashes, we extend
the spatial index by adding an Inverted index for each geohashed tweet. After pruning
the partitions based on location, we can filter the records to obtain only the records that
both are within the spatial query area, and contains the query term. We have in this paper
used both the text-first combination in the baseline of the index. The second variant used
a spatia-first combination scheme and improved partitioning.

8.3 RQ 3: Spatio-textual indexing on Spark

A series of experiments have shown an initial spatio-textual index built on top of Apache
Spark. Combining a space-filling curve and an inverted index shows good initial results
during the evaluation. Both the Geohash and inverted index are well documented index
structures, and as the evaluation suggest, supports a large dataset both in index creation
and at query time.

8.3.1 Run time

The creation of the index remains within a reasonable amount of time, even when the input
dataset was large. Query times where also showing to grow linearly, as Spark was able to
prune the partitions not containing the proper records. The limiting factor in both cases are
the number of characters to partition the index on. If we use 2 characters in stead of 1 when
creating the index, the query algorithm is able to prune more partitions and decreases the
spatial area from 1/32 to 1/1024. This is not possible to achieve in the current system as
the partitioning function is documented to only handle a partition number less than tens of
thousands, in addition if two characters where used, HDFS would also be a bottleneck, as
too many small files would be created. The spatial-first variant did show to outperform the
baseline in querying the dataset, both when returning a large amount of results and when
only returning a few.

8.3.2 Size of index

The size of the index also seems to be acceptable. Constructing to about 10% of the input
dataset shows that the index is indeed not growing out of control. The baseline did however
produce a bigger index than the spatial-first variation.

8.4 Conclusion

We have in this paper given a overview of different approaches to spatial indexing on Big
Data platforms. A couple of different methods to extend such a spatial index to spatio-
textual have been introduced. By using the information gathered from the related work, a
spatio-textual index has been created on top of Apaches Spark. Evaluation based on this
index is presented, and provides good results.

64

8.5 Further work

Suggested further work consists of exploring a better partitioning scheme when distribut-
ing the index, as we can only limit the query area to 1/32 of the earth’s surface at query
time. Finding a solution to the partitioning scheme so that it could utilize all of the geo-
hash characters without causing problems for HDFS and Spark could improve query per-
formance.

Exploring if there are any possibility to extend the index to support BkQ or TkQ is also
suggested.

The baseline version of the index does not partition the index, as the number of unique
terms globally are more than tens of thousands. The index performs rather well however,
and exploring possible ways of improving the last retrieval stage would be an important
part of improving the spatial-first index in comparison to the baseline. Another perfor-
mance enhancing operation to explore further is a way of partitioning the index based on
the terms.

65

66

Bibliography

Aji, A., Wang, F,, Vo, H., Lee, R., Liu, Q., Zhang, X., and Saltz, J. (2013). Hadoop GIS: a
high performance spatial data warehousing system over mapreduce. Proceedings of the
VLDB Endowment, 6(11):1009-1020.

Al Naami, K. M., Seker, S., and Khan, L. (2014). GISQF: An efficient spatial query
processing system. In 2014 IEEE 7th International Conference on Cloud Computing
(CLOUD), pages 681-688.

Apache, S. F. (2017). Apache parquet documentation. https://parquet.apache.
org/documentation/latest/. [Accessed 18-May-2017].

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan,
T., Franklin, M. J., Ghodsi, A., et al. (2015). Spark SQL: Relational data processing in
spark. In Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, pages 1383-1394.

Balkié, Z., goétarié, D., and Horvat, G. (2012). GeoHash and UUID identifier for multi-
agent systems. In KES International Symposium on Agent and Multi-Agent Systems:
Technologies and Applications, pages 290-298.

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The R*-tree: an
efficient and robust access method for points and rectangles. In ACM SIGMOD Record,
volume 19, pages 322-331.

Cary, A., Wolfson, O., and Rishe, N. (2010). Efficient and scalable method for processing
top-k spatial boolean queries. In International Conference on Scientific and Statistical
Database Management, pages 87-95.

Chen, L., Cong, G., Jensen, C. S., and Wu, D. (2013). Spatial keyword query processing:
An experimental evaluation. Proceedings of the VLDB Endowment, 6(3):217-228.

Chen, Y.-Y., Suel, T., and Markowetz, A. (2006). Efficient query processing in geographic
web search engines. In Proceedings of the 2006 ACM SIGMOD international confer-
ence on Management of data, pages 277-288.

67

https://parquet.apache.org/documentation/latest/
https://parquet.apache.org/documentation/latest/

Christoforaki, M., He, J., Dimopoulos, C., Markowetz, A., and Suel, T. (2011). Text vs.
space: efficient geo-search query processing. In Proceedings of the 20th ACM interna-
tional conference on Information and knowledge management, pages 423—-432.

Cong, G., Jensen, C. S., and Wu, D. (2009). Efficient retrieval of the top-k most relevant
spatial web objects. Proceedings of the VLDB Endowment, 2(1):337-348.

De Felipe, 1., Hristidis, V., and Rishe, N. (2008). Keyword search on spatial databases. In
ICDE 2008. IEEE 24th International Conference on Data Engineering, pages 656—665.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107-113.

Duggan, M. and Brenner, J. (2013). The demographics of social media users, 2012, vol-
ume 14. Pew Research Center’s Internet & American Life Project Washington, DC.

Eldawy, A. and Mokbel, M. F. (2015). Spatialhadoop: A mapreduce framework for spatial
data. In 2015 IEEE 31st International Conference on Data Engineering, pages 1352—
1363.

Fox, A., Eichelberger, C., Hughes, J., and Lyon, S. (2013). Spatio-temporal indexing in
non-relational distributed databases. In 2013 IEEE, International Conference on Big
Data, pages 291-299.

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The google file system. In ACM
SIGOPS operating systems review, volume 37, pages 29-43.

Hariharan, R., Hore, B., Li, C., and Mehrotra, S. (2007). Processing spatial-keyword (sk)
queries in geographic information retrieval (gir) systems. In SSBDM’07. 19th Interna-
tional Conference on Scientific and Statistical Database Management, pages 16—16.

Khodaei, A., Shahabi, C., and Li, C. (2010). Hybrid indexing and seamless ranking of
spatial and textual features of web documents. In Database and Expert Systems Appli-
cations, pages 450-466.

Lee, K., Ganti, R. K., Srivatsa, M., and Liu, L. (2014). Efficient spatial query processing
for big data. In Proceedings of the 22nd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages 469—472.

Li, Z., Lee, K. C., Zheng, B., Lee, W.-C., Lee, D., and Wang, X. (2011). IR-tree: An
efficient index for geographic document search. IEEE Transactions on Knowledge and
Data Engineering, 23(4):585-599.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J.,
Tsai, D., Amde, M., Owen, S., et al. (2016). MLIlib: Machine learning in apache spark.
Journal of Machine Learning Research, 17(34):1-7.

Oates, B. J. (2005). Researching information systems and computing. Sage.

68

Rocha-Junior, J. B., Gkorgkas, O., Jonassen, S., and Ngrvag, K. (2011). Efficient pro-
cessing of top-k spatial keyword queries. In International Symposium on Spatial and
Temporal Databases, pages 205-222.

Skovsgaard, A., Sidlauskas, D., and Jensen, C. S. (2014). Scalable top-k spatio-temporal
term querying. In 2014, IEEE 30th International Conference on Data Engineering
(ICDE), pages 148-159.

Tan, H., Luo, W., and Ni, L. M. (2012). Clost: a hadoop-based storage system for big
spatio-temporal data analytics. In Proceedings of the 21st ACM international conference
on Information and knowledge management, pages 2139-2143.

Tsatsanifos, G. and Vlachou, A. (2015). On Processing Top-k Spatio-Textual Preference
Queries. In EDBT, pages 433-444.

Vaid, S., Jones, C. B., Joho, H., and Sanderson, M. (2005). Spatio-textual indexing for
geographical search on the web. In International Symposium on Spatial and Temporal
Databases, pages 218-235.

Wu, D, Yiu, M. L., Cong, G., and Jensen, C. S. (2012). Joint top-k spatial keyword query
processing. IEEE Transactions on Knowledge and Data Engineering, 24(10):1889—
1903.

Xin, R. S., Crankshaw, D., Dave, A., Gonzalez, J. E., Franklin, M. J., and Stoica, I.
(2014). GraphX: Unifying data-parallel and graph-parallel analytics. arXiv preprint
arXiv:1402.2394.

Xin, R. S., Rosen, J., Zaharia, M., Franklin, M. J., Shenker, S., and Stoica, 1. (2013).
Shark: SQL and rich analytics at scale. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of data, pages 13-24.

Yan, H., Ding, S., and Suel, T. (2009). Inverted index compression and query processing
with optimized document ordering. In Proceedings of the 18th international conference
on World wide web, pages 401-410.

Yang, H.-c., Dasdan, A., Hsiao, R.-L., and Parker, D. S. (2007). Map-reduce-merge:
simplified relational data processing on large clusters. In Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, pages 1029-1040.

You, S., Zhang, J., and Gruenwald, L. (2015). Spatial join query processing in cloud:
Analyzing design choices and performance comparisons. In 2015, 44th International
Conference on Parallel Processing Workshops (ICPPW), pages 90-97.

Yu, J., Wu, J., and Sarwat, M. (2015). Geospark: A cluster computing framework for pro-
cessing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems, page 70.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, 1. (2010). Spark:
cluster computing with working sets. HotCloud, 10:10-10.

69

Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and Stoica, I. (2013). Discretized
streams: Fault-tolerant streaming computation at scale. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pages 423—-438.

Zhou, Y., Xie, X., Wang, C., Gong, Y., and Ma, W.-Y. (2005). Hybrid index structures for
location-based web search. In Proceedings of the 14th ACM international conference
on Information and knowledge management, pages 155-162.

70

AW =

W

23
24
25
26
27
28

Appendix

Appendix A

{
"in_reply_to_status_id_str":null,
"in_reply_to_status_id":null,
"created_at":"Sat Oct 03 15:42:18 +0000 2015","
in_reply_to_user_id_str":null,
"source":"<a href=\"http://twitter.com/download/iphone\"
rel=\"nofollow\">Twitter for iPhone<\/a>",
"retweet_count":0,
"retweeted":false,
"geo":null,
"filter level":"low",
"in_reply_to_screen_name":null,
"is_quote_status":false,
"id_str":"650335072202190848",
"in_reply_to_user_id":null,
"favorite_count":0,
"id":650335072202190848,
"text":"yes there is 1 might be renting a room lol",
"place":{
"country_code":"US", 15
"country":"United States",
"full _name":"Middleton, WI",
"bounding_box": {
"coordinates":[[[-89.600763,43.081683], [-89
.600763,43.133416], [-89.452015,43.133416
1,[-89.452015,43.081683111,
"type":"Polygon"},
"place_type":"city",
"name" :"Middleton",
"attributes":{},
"1id":"004e2b299%al1fb473",
"url":"https://api.twitter.com/1.1/geo/1id/004e2b299
alfb473.json"},
"lang":"en",

71

30
31
32
33
34
35
36
37
38
39
40
41
4
43

44
45

46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68

"favorited":false,
"coordinates":null,
"truncated":false,
"timestamp_ms":"1443886938511",
"entities":{

"urls":[],
"hashtags":[],
"user_mentions":[],

"symbols":[]},

"contributors":null,

"user":{

"utc_offset":null,
"friends_c ount":284,
"profile_image_url_https":"https://pbs.twimg.com/

profile_images/3483706310/5e9¢c7801c67bdc61ed72£0

5815d22b01_normal. jpeg",
"listed_count":0,
"profile_background_image_url":"http://abs.twimg.
com/images/themes/themel/bg.png",
"default_profile_image":false,
"favourites_count":15,
"description":"Ask and i will tell you",
"created_at":"Sat Apr 06 08:17:55 +0000 2013",
"is_translator":false,
"profile_background_image_url_https":"https://abs.
twimg.com/images/themes/themel /bg.png",
"protected":false,
"screen_name":"_philtaz",
"id_str":"1331025042",
"orofile_link_color":"0084B4",
"id":1331025042,
"geo_enabled":true,
"orofile_background_color":"CODEED",
"lang":"en",
"orofile_sidebar_border_color":"CODEED",
"oprofile_text_color":"333333",
"verified":false,
"profile_image_url":"http://pbs.twimg.com/

profile_images/3483706310/5e9c7801c67bdc61ed72£0

5815d22b01_normal. jpeg",
"time_zone":null,
"url":"https://pvallejos.avonrepresentative.com/",
"contributors_enabled":false,
"orofile_background_tile":false,
"statuses_count":364,

72

69
70
71
72
73
74
75
76
77
78

"follow_request_sent":null,
"followers_count":51,
"orofile_use_background_image":true,
"default_profile":true,
"following":null,

"name":"phillip wvallejos",
"location":null,

"orofile_sidebar_fill color":"DDEEF6",
"notifications":null }

73

Appendix B

Partition

I"‘d“{:.}iéﬂiC.—r'ln"-'—z_'D'G:ﬁEI—-jtﬂ—hmﬁLnﬂ'mmﬂmmhmMI—*D

Size (MB)

5314
124.58
29.649
339.85
5156
44288
75879
24345
760.79
bE962
8.3595
45803
597900
21905
10853
33992
0.0089209
10057
45145
187.46
0.0022939
2.1791
18467
34292
49009
49009
41290
13723
53356
11628
418.06
b4.6

Files

1072
1112
1422
1114
1126
1001
1858
1797
1548
1703
1114
1219
1951
1880
1750
1711

297
1285
383

126
1618
703
2133
2133
1693
1051
2172
769
Bb2
486

74

	Abstract
	Sammendrag
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Definition
	Research Questions
	Thesis Overview

	Preliminaries
	MapReduce
	Hadoop

	Spark
	Spark SQL
	Partitioning

	Geohashing
	Decoding
	Encoding

	Working with Indexes
	Definition
	Textual Indexes
	Inverted Index
	Bitmaps

	Spatial Indexes
	Spatio-textual Indexes
	Text-First Loose Combination Scheme
	Spatial-First Loose Combination Scheme
	Tight Combinations

	Related Work
	Methodology
	Review

	Current Spatial Systems
	SpatialHadoop
	Architecture

	SpatialSpark
	GeoSpark
	GISQF
	Hadoop-GIS
	Summary

	Approach
	Intro
	Extending spatial indexes
	Partitioning
	Variations

	Overall Pseudo code
	Spark Specifics
	Querying
	Spatial Query
	Textual Query
	Retrieving the results

	Baseline version
	Restrictions
	Geohash
	Partitioning

	Evaluation
	Dataset
	Setup
	Cluster
	Run time and Query parameters

	Results
	Index creation
	Index Query
	Size of index

	Comparison to the baseline
	Summary

	Summary and Conclusion
	RQ 1: Spatial indexing on Big data platforms
	RQ 2: Extending spatial indexes
	RQ 3: Spatio-textual indexing on Spark
	Run time
	Size of index

	Conclusion
	Further work

	Bibliography
	Appendix

