
Evolving Compositional Pattern
Producing Networks For Cellular
Automata Transition Rules

Mathias Berild Ose

Master of Science in Computer Science

Supervisor: Gunnar Tufte, IDI
Co-supervisor: Stefano Nichele, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Summary

Traditional Cellular Automata (CA) transition rules are encoded as tables that grow quickly
when the number of cell states or the size of the CA neighborhood increases. For meth-
ods that search for good transition rules, such as genetic algorithms, the space of possible
encodings also grows rapidly with both parameters. This thesis investigates replacing the
traditional encoding with Compositional Pattern Producing Networks (CPPNs), a Neural
Network-like structure. The search for good CPPN-based transition encodings is per-
formed with the NeuroEvolution of Augmenting Topologies (NEAT) genetic algorithm.

A software framework is implemented and CA problem solving experiments are per-
formed. The problems investigated include both morphology problems and computational
problems. The results found are diverse, with some problems solved easily, some with
moderate difficulty and some not at all.

In another experiment, the new CA framework is also modified to extend the cellular
model with environmental information. The model lends itself very easily to extension,
and the result is that previously difficult tasks become solvable.

In addition to the task-solving experiments, another experiment is performed to inves-
tigate the relationships between the mechanisms of the NEAT algorithm and the properties
of the CPPN encoding and the CA model. The results from this experiment can inform
decisions about parameters in future experiments.

A variation of the NEAT algorithm called novelty search is also implemented. While
it is not able to produce any more interesting results than the objective NEAT search is, it
does lead to some insights about the algorithm that could lead to success in the future.

The results of the experiments indicate that the new combination of encoding and
algorithm has merit. In addition to the CA model, the algorithm and encoding may also
have applications in other morphogenetic engineering situations.

i

Sammendrag

Tradisjonelle cellulære automater (Cellular Automata, CA) har overgangs-regler kodet
som tabeller som vokser hurtig når antallet celle-tilstander eller størrelsen på CA-nabolaget
øker. For metoder som søker etter gode overgangs-regler, for eksempel genetiske algorit-
mer, vokser rommet av mulige kodinger også fort sammen med begge disse parameterene.
Denne oppgaven undersøker å erstatte den tradisjonelle kodingen med Compositional Pat-
tern Producing Networks (CPPNs), en nevralt nettverk-lignende struktur. Søkingen etter
gode CPPN-baserte overgangs-kodinger blir utført med den genetiske algoritmen Neu-
roEvolution of Augmenting Topologies (NEAT).

Et software-rammeverk blir implementert og eksperimenter for å løse CA-oppgaver
blir utført. Oppgavene som blir undersøkt inkluderer både morfologi-problemer og beregings-
problemer. Resultatene er mangfoldige, da noen oppgaver blir utført enkelt, noen med
moderat vanskelighetsgrad, og noen ikke blir løst i det hele tatt.

I et annet eksperiment blir the nye rammeverket modifisert for å utvide celle-modellen
med miljø-informasjon. Modelen er veldig enkel å utvide, og resultatet er at oppgaver som
tidligere var vanskelige blir mulige å løse.

I tillegg til eksperimenter med å løse oppgaver, undersøker et annet eksperiment forholdet
mellom mekanismene i NEAT-algoritmen og egenskapene til CPPN-kodingen og CA-
modellen. Resultatene fra dette eksperimente kan bidra til å finne bedre parametere til
fremtidige eksperimenter.

En variasjon av NEAT-algoritmen kalt novelty search blir også implementert. Selv
om denne algoritmen ikke produserer resultater som er mer interresante enn det vanlig
NEAT produserer, gir eksperimentet noen innblikk om algoritmen som kan føre til suksess
i fremtiden.

Resultatene fra eksperimentene indikerer at den nye kombinasjonen av koding og al-
goritme kan ha nytte. I tillegg til CA-modellen, kan algoritmen og kodingen også ha
bruksområder i andre morfogenetiske domener.

ii

Preface

This thesis project concludes my five-year integrated Master of Science degree at the De-
partment of Computer Science at the Norwegian University of Science and Technology in
Trondheim. The thesis project has been supervised by Stefano Nichele. I would like to
thank Stefano for coming up with the idea for this interesting project, and for his guidance
and feedback during the process.

The work presented within started with the specialization project in the fall semester
of 2016, and continued in the spring semester of 2017. Parts of the experiments presented
in this thesis (Section 4.2) were performed and analyzed during the specialization project
[1]. The report from the specialization project was further refined with co-authors Stefano
Nichele, Gunnar Tufte and Sebastian Risi to a paper which at the time of writing has been
accepted but not yet published in the IEEE Transactions on Cognitive and Developmental
Systems [2]. I would also like to thank all my co-authors for their efforts to get this work
published.

Mathias Berild Ose
Trondheim, June 2017

iii

iv

Table of Contents

Summary i

Preface iii

Table of Contents vii

List of Tables ix

List of Figures xii

1 Introduction 1
1.1 Research Questions . 2
1.2 Structure of the Thesis . 2

2 Background & Motivation 3
2.1 Complex and Biologically-Inspired Systems 3

2.1.1 Morphogenetic Engineering . 5
2.2 Cellular Automata . 5

2.2.1 CA Definition . 6
2.2.2 Transition Rules . 6
2.2.3 The λ Parameter and the Edge of Chaos 7
2.2.4 Finding Interesting Transition Rules 7

2.3 Artificial Neural Networks . 9
2.3.1 Compositional Pattern Producing Networks 10

2.4 Artificial Evolution and Development 10
2.4.1 NEAT . 11
2.4.2 Novelty Search . 13

2.5 Motivation . 14
2.6 Related Work . 14

v

3 Implementation 15
3.1 CA-NEAT . 15

3.1.1 Mapping CA-NEAT Rules to Traditional Rules 18
3.1.2 Identifying Vestigial Structures 18
3.1.3 Extending CA-NEAT with Environmental Information 18

3.2 Novelty Search . 20

4 Experiments 21
4.1 Overarching Methodology . 21
4.2 Morphogenesis and Replication of 2D Patterns 21

4.2.1 Morphogenesis Problems . 22
4.2.2 Replication Problems . 23
4.2.3 Cellular Model . 23
4.2.4 Results . 24

4.3 2D Morphogenesis with Coordinate Input 27
4.3.1 Results . 31

4.4 Majority and Synchronization Problems 32
4.4.1 Fitness Evaluation . 35
4.4.2 Evolution . 36
4.4.3 Comprehensive Testing . 36
4.4.4 Results . 37

4.5 Investigation of Genome Properties . 42
4.5.1 Experiment Design . 42
4.5.2 Fitness . 44
4.5.3 Speciation . 46
4.5.4 λ . 47
4.5.5 Distinct Behaviors . 48
4.5.6 Network Topology . 52

4.6 Novelty Search . 54
4.6.1 Results . 54

5 Discussion & Future Work 59
5.1 Tasks Solved . 59
5.2 Neighborhood Definitions . 60
5.3 Network Size . 60
5.4 Exploring the CA Behavior Space with Objective and Novelty Search . . 61
5.5 The Role of NEAT Mechanisms and Parameters 62
5.6 CPPN Domain and Activation Functions 62
5.7 Implementation Critique . 62

6 Conclusion 65

Bibliography 67

A CA-NEAT Parameters 71

vi

B CPPN Visualizations 73

C Sample Solutions 99

vii

viii

List of Tables

2.1 Example table-based transition rule . 8

3.1 Possible activation functions . 17

4.1 Summary of results of morphology experiments 24
4.2 Success rate at morphology problems 27
4.3 Sizes of genomes of optimal solutions. 28
4.4 Distribution of max fitness achieved in synchronization evolution 38
4.5 Mechanisms enabled in different scenarios 43
4.6 Overview of the novelty search runs attempted 56

ix

x

List of Figures

2.1 Complex systems taxonomy . 4
2.2 Example CA . 6
2.3 Some CA neighborhoods . 7
2.4 Example ANN . 9
2.5 Example CPPN . 10
2.6 Example NEAT genotype and phenotype 12
2.7 Example of NEAT mutation . 12

3.1 Overview of how to use a CPPN as a CA transition rule 16
3.2 Example first-generation CPPN with 7 out of 10 possible connections. . . 17
3.3 An example extension of CA-NEAT. 19

4.1 Patterns being investigated for morphogenesis and replication. 22
4.2 Seed patterns for morphogenesis. 22
4.3 Success rate of the morphogenesis experiments. 25
4.4 Success rate of the replication experiments. 26
4.5 ”Border” morphogenesis solution . 29
4.6 A solution to the ”Tricolor” morphogenesis 29
4.7 A solution to the ”Mosaic” replication 30
4.8 Success rate at the ”Border” morphogenesis with coordinate input. 31
4.9 Success rate at the ”Nordic” morphogenesis with coordinate input. 32
4.10 One of the found solutions to the ”Border” morphogenesis with coordinate

input. 33
4.11 One of the found solutions to ”Nordic” morphogenesis with coordinate

information. 33
4.12 Un-pruned network . 34
4.13 CA behavior . 35
4.14 Success rate development when training on the k = 10 set of initial con-

figurations. 37
4.15 Majority problem comprehensive testing performance 38

xi

4.16 A successful solution to the majority problem 39
4.17 Another successful solution to the majority problem 39
4.18 Performance of the 48 candidate solutions at the training and test sets. . . 40
4.19 One of the found networks for the synchronization task 41
4.20 The network from Figure 4.19 solving the synchronization task 42
4.21 The development over time of the mean fitness of the populations 44
4.22 The development over time of the max fitness of the populations 45
4.23 The number of species in scenarios D and E over time 46
4.24 The mean and max number of members in the species 47
4.25 Development of the mean λ of five scenarios over time 48
4.26 Breakdown of λ distribution over time in five scenarios 49
4.27 Number of unique behaviors in each generation 50
4.28 Number of unique behaviors seen over time, cumulative. 50
4.29 Number of unique f = 1.0 behaviors seen over time, cumulative. 51
4.30 The mean number of nodes in each scenario 52
4.31 The mean number of disconnected nodes in each scenario 53
4.32 The mean connectivity degree in each population 53
4.33 Cumulative number of unique behaviors observed 55
4.34 Size of the innovation archives . 55
4.35 Network found by novelty search . 57
4.36 The behavior of the network shown in Figure 4.35 58

5.1 CPPN extended neighborhood . 60

xii

Chapter 1
Introduction

Cellular Automata (CA) were first conceptualized and introduced in the 1940’s and 1950’s.
Around the same time, the idea of the evolutionary algorithm was also being developed
independently. Both of these concepts take inspiration from nature, and thus fall into the
category of artificial life. One goal of this field of research is to create artificial systems
that are of complexity comparable to that of biological systems found in nature.

One way to try to achieve this goal is to combine these two distinct concepts: Cellular
systems designed by evolution. Many different kinds of tasks have been solved by cellular
systems that have been created this way. However, more complex tasks and more complex
models means greater spaces of possible solutions that the evolutionary algorithm must
search. For a traditional genetic algorithm it can be both time consuming and challenging
to find good solutions.

One of the possible ways to remedy this problem is to replace the traditional table-
based encoding of CA transition rules with a different encoding: an encoding that sup-
ports a more complex evolutionary algorithm. This thesis describes the investigation of
using Compositional Pattern Producing Networks (CPPNs) as the data structure for tran-
sition rules, and the NeuroEvolution of Augmenting Topologies (NEAT) genetic algorithm
for evolving these CPPNs. Both normal NEAT (objective search) and a variation called
novelty search is investigated.

With CPPN-based transition functions there is not a linear relationship between the
input-output size and the size of the encoding. The algorithm starts with a small encoding
and iteratively adds features to it and adjusts them until an optimal solution is found. This
complexification mimics how biologists believe life on Earth developed.

The CPPN structure is very generic and can be easily adapted to support novel cellular
models. By augmenting the cellular model with environmental information, the new model
can emulate how development in nature is affected by the environment it occurs in.

To test this new combination of model, encoding and algorithm, which we call CA-
NEAT, a custom Python framework was built to run simulations in software. The frame-
work was tasked with solving various CA tasks of different difficulties, with different
degrees of success.

1

Chapter 1. Introduction

1.1 Research Questions
The questions that the thesis aims to answer include:

• What kinds of CA problems can CA-NEAT solve? What kinds of CA problems are
difficult, and why?

• Does adding information to the environment that the CA can access help with solv-
ing difficult tasks?

• How do the measurable properties of the architecture, encoding and algorithm de-
velop over time? How do they correlate?

• What is the effect of the various mechanisms of NEAT on the end result and the
development over time?

• Does changing the algorithm to the novelty search variant give improved results at
tasks where objective search struggles?

1.2 Structure of the Thesis
The structure of the thesis is as follows: Chapter 2 details background theory about the
topics the thesis is concerned with, the motivation for the project, and some of the recent
related work. Chapter 3 describes the development and functionality of the CA-NEAT
framework. Chapter 4 describes the experiments performed with CA-NEAT as separate
sections, including results and some discussion pertaining only to the particular exper-
iments. Chapter 5 discusses the results from a more overarching perspective, and the
possibilities for future work. Chapter 6 offers answers to the research questions and some
concluding remarks.

2

Chapter 2
Background & Motivation

2.1 Complex and Biologically-Inspired Systems

If you try and take a cat apart to see
how it works, the first thing you have
on your hands is a nonworking cat.

Douglas N. Adams
The Salmon of Doubt [3]

.
Complex systems is an umbrella category consisting of a variety of topics from a variety

of domains, such as mathematics, computer science and biology. Figure 2.1 shows one
possible ”taxonomy” of complex systems. It is not immediately obvious why these topics
should be grouped together. The word complex is related to complicated, synonymous
with difficult, intricate and perplexing [4]. In 1962, Herbert Simon proposed a definition
of complex systems as “made up of a large number of parts that interact in a non-simple
way” [5]. Hiroki Sayama later elaborated this definition:

Complex systems are networks made of a number of components that interact
with each other, typically in a nonlinear fashion. Complex systems may arise
and evolve through self-organization, such that they are neither completely
regular nor completely random, permitting the development of emergent be-
havior at macroscopic scales. [6]

The idea of studying complex systems is that by grouping these topics together, it is pos-
sible to start seeing similarities across domains, and find insights about one topic that may
be applicable to other topics.

A common property of complex systems is emergence over scale. Sayama defines
emergence as “a nontrivial relationship between the properties of a system at microscopic

1https://commons.wikimedia.org/wiki/File:Complex_systems_organizational_
map.jpg (CC BY-SA 3.0)

3

https://commons.wikimedia.org/wiki/File:Complex_systems_organizational_map.jpg
https://commons.wikimedia.org/wiki/File:Complex_systems_organizational_map.jpg

Chapter 2. Background & Motivation

Figure 2.1: Complex systems taxonomy. Created by Hiroki Sayama 1.

and macroscopic level”. This means that a process which can be observed at the macro-
scopic level (e.g. the body functions of a cat) can not be explained by studying the indi-
vidual components that make up the system (looking at the cells that make up the body).
Instead, both the individual components and how they interact must be understood.

The other common property of complex systems is self-organization over time. Sayama
defines it as “a dynamical process by which a system spontaneously forms nontrivial
macroscopic structures and/or behaviors over time”. One example is magnetization of
metals, where the initially random configuration of ”spins” (the components of the larger
system) orient themselves over time, so that the magnetic vector of all the individual spins
and that of the whole system become the same [7].

The behavior seen in complex systems can be characterized by these two properties.
Often the behavior is a combination, rather than a clear instance of one or the other.

Many of the topics seen in Figure 2.1 are based on concepts found in nature. These
belong to the group of bio-inspired systems and to the category of artificial life. Since the
infancy of modern computing in the 1940s, computers have gradually gained the capability
to perform many tasks. Along the way, computer scientists and engineers have sometimes
looked to nature for inspiration and goals to reach for. Often, approaching problems from
engineering, mathematical and logical perspectives have yielded good results. But some
times, the analytical approach leads to a dead end. Some tasks that are trivial for a human
to perform, can be practically impossible for a programmer to codify [8]. This is where
the bio-inspired approach may help. Since nature has been able to create biological ”ma-
chines” that can solve these tasks, then perhaps borrowing nature’s methods will allow
computers to do the same.

4

2.2 Cellular Automata

2.1.1 Morphogenetic Engineering

The field of morphogenetic engineering [9] studies the confluence between biological and
artificial systems, and how to create new systems that straddle the the divide. Doursat
et. al. defined four categories of morphogenetic engineering that they classified existing
techniques by:

Category I: by Constructing
Where individual components precisely assemble themselves together into a larger
system for example by physically attaching to each other.

Category II: by Coalescing
Where individual components flock or swarm in a fluid formation, acting as a larger
system while the components are still physically separate.

Category III: by Developing
Where a systems starts as a simple model and iteratively adds complexity by division
or aggregation.

Category IV: by Generating
Where the systems starts as a simple ”grammar” model and iteratively adds com-
plexity by rewriting itself.

Within the third category we find many of the concepts that this thesis is concerned
with, such as evo-devo and morphogenesis.

2.2 Cellular Automata

Cellular Automata (CA) were first invented in the 1940s by John von Neumann and Stanis-
law Ulam as mathematical models of computation [10]. They were inspired by biological
organisms, and created a model that could emulate some of their interesting and useful
properties, such as multi-cellular development (e.g. embryogenesis), reproduction (clonal
or sexual) and robustness (e.g. self-repair).

In the following decades, as modern computers emerged, the concept of CA became
the basis for the field of Cellular Computing (CC). As the performance of ”conventional”
computers kept increasing dramatically (as described by Moore’s law)[11], CC never be-
came the basis for the mainstream computers that we use today, but CA and CC remained
an area of research by mathematicians and computer scientists, and as part of the larger
field of artificial life. More recently, as Moore’s law has faltered and this rate of growth of
performance has diminished, some have started to look for new methods that can lead to
renewed performance growth. Parallel computing has helped a lot, but it has shown itself
to be difficult in practice. Some, such as Michael J. Flynn have speculated that CC might
be the path forward [12] . Matthew Cook proved that a CA of a certain configuration can
be Turing complete [13], giving further credibility to this idea.

5

Chapter 2. Background & Motivation

Figure 2.2: An example binary 2D CA. At time step 5 the CA state is the same as that in time step
3, meaning the CA has entered a cyclical attractor with a period of 2 (oscillation).

2.2.1 CA Definition
A CA consists of a grid of very simple units called cells. A cell can be in one out of a finite
set of states, and can change between states based on input to the cell. As such the CA
can be considered as a grid of identical Finite State Automatons. Sipper [14] described the
three core principles of CC, which also apply to CA in general:

Simplicity
A cell is simple and can do very little by itself.

Vast Parallelism
The number of cells is very large, much more than the number of processors in a
conventional parallel computer.

Locality
All interactions between cells take place on a purely local basis. No cell knows or
controls the entire system.

The cells in a CA can ”see” only their closest neighboring cells. They use this lim-
ited information in conjunction with some set of rules to transition from one cell state to
another. Depending on the starting configuration of the whole system and the rules, it is
possible to observe interesting emergent or self-organizing behavior over time and space.
These interesting CA often find an attractor [15, 16]. If a sequence of CA states repeat
periodically it is called a cycle attractor, and if the CA stabilizes into a permanent, fixed
state is is called a point attractor. Figure 2.2 shows an example of a CA that enters a
cyclical attractor. Binary CA, with only two possible cell states, are the most commonly
seen and studied. Greater numbers of cell states is possible, but the increase in degrees of
freedom can lead to some difficulties in implementation.

In many CA models, one of the possible state is designated as the quiescent state. This
state is ”dead”, and can only come alive when something in the neighborhood is already
alive. This is called the quiescent rule.

2.2.2 Transition Rules
Christopher Langton [17] formally defined finite CA as consisting of a finite set of cell
states Σ of size K = |Σ|, a finite input alphabet α, and a transition function ∆. Each
cell has a N -sized neighborhood. The number of possible neighborhood states can be
expressed by equation (2.1).

6

2.2 Cellular Automata

(a) N = 5 (Von
Neumann)

(b) N = 9
(Moore)

(c) N = 3 (d) N = 7

Figure 2.3: Some examples of common neighborhood shapes. The two common 2D shapes are
named for John von Neumann and Edward F. Moore.

|α| = |∆| = |ΣN | = KN (2.1)

The transition function for a CA must thus encode |α| different mappings of N inputs
to one of K outputs. The number of possible unique transition function behaviors is thus
K(KN).

2.2.3 The λ Parameter and the Edge of Chaos
When Langton studied the elementary CA (N = 3,K = 2) [17], he created a metric to
help determine if a rule is ordered, chaotic, or something in between, which he called λ. It
is defined by K, N and the number of transitions that goes to the quiescent state, n.

λ =
KN − n
KN

(2.2)

Langton found that low elementary CA λ values resulted in ordered behavior, either
settling into a static state or repeating periodically. With high λ values, the CA became
chaotic, losing all useful information in the noise. But at the critical border region between
order and chaos, interesting behaviors and computation could occur. This area has come
to be called the edge of chaos.

In the study Langton investigated the λ of 1D binary CA, but the measure can be used
on any CA. The 2D binary transition function shown in Table 2.1 has 17 input combina-
tions that lead to the quiescent (0) state (n = 17), and thus λ ≈ 0.47.

2.2.4 Finding Interesting Transition Rules
Traditionally ∆ has been encoded as a complete mapping ∆ : ΣN → Σ, which can be
implemented as a lookup table. Table 2.1 shows an example of a table encoding for the
CA in Figure 2.2. This works very well for smaller cases such as the elementary CA. But
when working with non-trivial CA where both K and N can be relatively large numbers,
it becomes a problem both to store the mapping ∆ in an efficient way, and the space of
possible ∆ becomes too large to be explored by exhaustive enumeration.

Designing ∆ with interesting behavior by hand is possible, but it is time-consuming
and impractical for problems of greater dimensions. Using adaptive optimization algo-
rithms to explore the space of possible solutions is more feasible. This is not guaranteed

7

Chapter 2. Background & Motivation

Table 2.1: An example table-based transition rule that exhibits the same behavior as seen in Figure
2.2. N = 5,K = 2 gives |α| = 32, the height of the table. The neighborhood shape is ”Von
Neumann” (Figure 2.3a).

North (t0) West (t0) Center (t0) East (t0) South (t0) Center (t1)
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 1 1 0
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 0 1 0
0 1 1 1 0 0
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 1 1
1 0 0 1 0 1
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 0
1 0 1 1 0 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

8

2.3 Artificial Neural Networks

Figure 2.4: An example layered ANN with three input neurons, one bias neuron, three hidden
neurons and two output neurons. Each connection between neurons also has some weight that scales
the value being passed (not shown).

to produce good results though. The use of table-based encodings also puts certain lim-
itations on the search. Using other encodings may enable new, more powerful search
algorithms that can possibly resolve this issue.

2.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) [18, Chapter 1] have been used in many different ap-
plications related to artificial life and intelligence, such as robotics or machine learning.
An ANN is a directed graph structure, with vertices (referred to as neurons) and edges
(referred to as connections). Input values are fed into the first layer of neurons and passed
through the connections to the next layers. All the connections to one neuron is added
together and input to the neuron. In each neuron some activation function transforms the
input to a new value, and in each connection the value is scaled by some weight. There
can also be bias neurons, outputting values that are constant, not determined by input.

This is inspired by neuroscience, with the brain consisting of neurons and synapse
connections. ANNs are useful because they consists of many discrete parts that can be
individually or collectively tuned by some adaptive process, and are easily expanded. The
universal approximation theorem [19] shows that relatively simple ANNs can approximate
a wide variety of functions, and the field of deep learning shows that a large complex
structure with enough tuning can perform very complex tasks, such as image classification
or natural language processing [18]. Figure 2.4 shows an example ANN with three inputs
and two outputs. An example of a use case for this structure could be to control a robot
with three sensors and two motors.

9

Chapter 2. Background & Motivation

(a) (b)

Figure 2.5: An example composition of the sigmoid, sinusoid and hyperbolic tangent functions.
The discrete coordinates of (b) are first normalized to [−1.0, 1.0] and then mapped to various output
values through the CPPN (a).

2.3.1 Compositional Pattern Producing Networks
A Compositional Pattern Producing Network (CPPN) is an artificial development encod-
ing introduced by Kenneth O. Stanley in 2007 [20]. CPPNs are structurally similar to
ANNs, but differ in the use case. Various techniques designed for ANN development and
analysis may also be used for CPPNs.

Just like an ANN, a CPPN consists of a set of nodes with activation functions, weights
and biases, as well as weighted connections between nodes. Also like in an ANN, external
values are input to the first layer, then undergo transformation by weights and activation
functions before being outputted by the final layer. This can be thought of as a composition
of functions producing a pattern, hence the name. An ANN is usually structured with
neurons of the same activation functions, arranged in layers, whereas a CPPN has few
such restrictions on topology and layer-wise heterogeneity.

Figure 2.5 shows an example CPPN and its output when mapped over a 2D Cartesian
grid. A CPPN is able to produce a pattern without multiple steps of development, in
contrast to e.g. a CA where local interactions and time is required. CPPNs have been used
both to produce patterns for the sake of the patterns, e.g. as evolutionary art [21], but also
to create patterns which are used in a larger process, such as machine learning [22] and
robot control [23].

2.4 Artificial Evolution and Development
Artificial development and artificial evolution (evo-devo) takes inspiration from biology in
order to explore large and complex solution spaces for some given problem. Evolutionary
algorithm (EAs) are a type of algorithms inspired by evolution in nature [24]. The genetic
algorithm (GA) is an EA that models natural selection. In a typical GA setup [25, 26],
relatively simple representations of solutions are encoded as genotypes. Through some

10

2.4 Artificial Evolution and Development

development process a genotype may be transformed into a phenotype which can be used
to attempt to solve the problem at hand. The performance of the phenotype at solving the
problem is the fitness of that individual genotype.

The fitnesses of a population of different individuals are compared. A selection process
picks individuals from the population that get to reproduce. This selection process is
usually stochastic, with a bias towards picking the individuals with the highest fitness, but
some chance of picking a less fit individual now and then. An optional part of selection
can be to eliminate some fraction of the population that performed poorly, excluding them
from pair selection entirely. This is analogous to creatures in nature dying before reaching
sexual maturity. The combination of these mechanisms creates a selection pressure that
drives the overall population towards higher average fitness.

Individuals that are selected for reproduction are paired up. The genotypes of the pair
are combined in some fashion to create a new genotype. In addition to the combination,
random mutations may also be applied in order to produce new features not present in
either parent. As new individuals are born, the older parent generation dies out, so that
the entire population is replaced. In some cases the very best individuals of the parent
generation are cloned directly into the next generation, ensuring that their well-performing
genotype continues to be present until some better genotype comes along. This is called
elitism [27].

Starting out with an arbitrary initial population and repeating this generational algo-
rithm, it is often possible to find novel genotypes that encode good solution to the problem
at hand. Like other optimization algorithms that search a space of solutions, there is a
risk of getting stuck in a local maximum and never finding a global maximum, an optimal
solution to the problem at hand. There are many kinds of parameters, such as mutation
rate or selection function that can be tweaked to try to avoid this.

When a phenotype is developed into a genotype, it is either possible that the genotype
encodes the entire phenotype explicitly, or it is possible that the development process
augments the information stored in the genotype to create a more complex phenotype.
This is called respectively direct and indirect encoding [28]. Indirect encodings allows
the evolutionary search to explore a space of genotypes that is smaller than the space
of possible phenotypes. This is the way development happens in nature, where simple
genomes are developed into complex lifeforms [28].

2.4.1 NEAT
NeuroEvolution of Augmenting Topologies (NEAT) is a genetic algorithm variant intro-
duced by Kenneth O. Stanley and Risto Miikkulainen in 2002 [29], designed specifically
to evolve ANNs. When introducing CPPNs [20], Stanley also introduced the CPPN-NEAT
variation of the algorithm.

A NEAT genome consists of genes that encode nodes and connections between them.
Figure 2.6 shows an example genotype to phenotype mapping. NEAT starts with an initial
population of very simple networks, typically with just the input and output nodes and con-
nections between them. Over generations, more nodes and vertices are added or disabled,
activation functions are changed, and weights are adjusted. The process of gradually ex-
panding the genome is called complexification, and reflects how life on earth is believed
to have started with simple organisms and gradually evolved into more complex creatures

11

Chapter 2. Background & Motivation

(a) Genotype (b) Phenotype

Figure 2.6: An example NEAT genotype and corresponding phenotype. This example only shows
the topology that the genotype encodes, leaving out the weights, biases and activation functions.

Figure 2.7: An illustrated example of NEAT mutation starting with a basic network of only two
inputs and one output. Through the sequence, neurons and connections are added until the network
is equal to that in Figure 2.6. This example shows only mutation, leaving out the crossover operation
which is also part of NEAT.

12

2.4 Artificial Evolution and Development

[30, 31]. Figure 2.7 shows an example of how mutation could gradually complexify a
NEAT phenotype network.

The genes that make up a NEAT genome are marked with an innovation number so
that they may be recognized as the same gene in different individuals. As new features
are added to the genomes, the individuals making up the population become gradually
less similar. The degree of similarity is measured through a measure called the compati-
bility distance. When the distance between individuals pass a certain threshold, they are
segregated into separate species. This process is called speciation. Pair selection for repro-
duction happens within species. Typically the species that have the most fit individuals will
produce more children, while the less fit species will produce fewer (but not 0) children.

When a new species appears with a new feature, the feature will not be tuned and likely
affect the fitness of the individuals negatively. NEAT protects new species for a certain
amount of time, allowing them time to adjust before being evaluated and, if performing
poorly, being extincted to make more room for the more fit species.

One notable use case of NEAT is called HyperNEAT [32]. In this process, NEAT is
used to evolve CPPNs whose output determine the topology of ANNs. This is useful be-
cause it allows the ANN to scale easily, since the CPPN can just take more input and output
more topology. If the evolved CPPN has useful output at a small scale, it should also have
a useful output at a large scale. HyperNEAT has been used to create scalable neural net-
works used in applications such as playing Go [33] with different board sizes, controlling
an ”octopus” arm with variable number of segments [34] and multi-agent learning [22].

2.4.2 Novelty Search

Novelty search is another genetic algorithm variant, introduced by Joel Lehmann and Ken-
neth O. Stanley in 2008 [35]. It is designed to be good at deceptive tasks, where local
maximas in the fitness landscape can ”deceive” conventional algorithms and prevent the
search from finding the global maximum.

Novelty search avoids this by eschewing the fitness measure entirely during the search,
and instead rewards innovation, giving higher scores to individuals that exhibit previously
unseen behavior. To find what behavior is new, an archive of seen behaviors is maintained.
A distance metric must be selected that is appropriate for the problem at hand. For ex-
ample, if the behavior of the phenotypes produces strings, an edit distance measure such
as the Levenshtein distance can be used. For each genotype the k nearest neighbors (in
terms of behavior) are found, and the average of these distances can be used as the novelty
metric. If a new behavior is sufficiently novel, it is added to the archive.

The algorithm is otherwise equal to NEAT, with the novelty score substituting for the
objective fitness score. This produces a population with a large variation of behaviors. The
hope is that this way, some individual ”stumbles” into the global maxima. Whether this
has occurred can be determined by using the objective fitness test on the individuals of the
archive.

Novelty search as been applied to several types of problems successfully, including
agent path-finding in deceptive mazes [35], machine learning clustering and classification
[36, 36] and swarm robotics [37].

13

Chapter 2. Background & Motivation

2.5 Motivation
As mentioned in Section 2.2.4, using a more advanced encoding for CA tasks may enable a
more advanced search algorithm. This combination may then lead to successfully solving
tasks that are considered difficult with the classical encoding and algorithm.

In fields such as neuroevolution, NEAT has been shown to produce useful patterns,
without using temporal development and local interactions. However, these tools are used
by nature in processes such as embryogenesis, that we can model with CA. In the quest to
advance cellular systems towards biological levels of complexity, it is worth investigating
if this technique, which is proven in one field, lends itself to being adapted as a part of a
process in another field.

By testing a new model on a few select tasks, we may not only learn whether the model
can accomplish the task, but we may gain more general insights into the components (CA,
the architecture; CPPN, the encoding; NEAT, the algorithm) that make up the model,
shedding further light on domains such as artificial life and morphogenetic engineering. If
something works well, we can try replacing a component with a new one to see if it still
works, or if something does not work well, we can try replacing a component to see if that
changes anything.

2.6 Related Work
In [38], Wolper and Abraham used evolution and CPPNs to find seed patterns for Con-
way’s Game of Life [39], which is a type of CA. The Game of Life has a set of defined
transition rules, so CPPN-NEAT was not used for exploration of transitions. They tried
both normal CPPN-NEAT (objective search) and novelty search. The results were varied,
but the conclusion was in support of further research into using CPPNs for CA problems.

Many different kinds of CA encodings have been investigated previously with positive
results. With Conditionally matching rules [40, 41, 42], the table of transition rules is
not a complete enumeration of all possible inputs, but a sequence of conditions that, if all
asserted, determine the next state of the cell. In instruction-based development [43, 44,
45, 46, 47], the transition function encodes a set of instructions (a small program if you
will) that transforms act on the input to produce the output. With self-modifying cartesian
genetic programming [48], the transition function is a genetic program. In variable length
gene regulatory networks [49], the genomes encode networks that mimic the network of
cells found in nature.

Nichele and Tufte [46, 47, 45] have studied complexification during evolution of CA
transition rules, both with table-based encodings and with instruction-based encodings.

14

Chapter 3
Implementation

In order to conduct the experiments presented in this thesis, a custom framework has been
created in Python. The source code is available at Github1. The system consists of a mix
of library components and self-made components.

The CA subsystem was built from scratch. It supports 1D and 2D grids with various
border conditions (finite, toroidal, expanding), and should be easily extensible for other
cases in the future. For each problem there is a problem-specific fitness function which
receives a genotype as input from the NEAT subsystem, develops the transition function
and iterates the CA before evaluating the performance and returning a fitness value to the
NEAT system.

The NEAT portion of the system is mostly based on the library neat-python2. Data
structures for genomes and networks as well as various functions have been used without
modifications. The main evolutionary loop was re-implemented with modifications. This
was done for multiple reasons, including to take advantage of parallelism using Celery3

and to store the results in a database using SQLAlchemy4. Other software dependencies
include matplotlib5 and seaborn6 for visualization, and dill7 for data and code
serialization.

3.1 CA-NEAT

Since the neat-python library provides a NEAT implementation, the majority of the
development in this project consisted of creating the CA subsystem and the interfacing
between CA code and NEAT code.

1https://github.com/mathiasose/CA-NEAT/
2https://github.com/CodeReclaimers/neat-python/
3http://celeryproject.org/
4http://sqlalchemy.org/
5http://matplotlib.org/
6http://seaborn.pydata.org/
7https://github.com/uqfoundation/dill

15

https://github.com/mathiasose/CA-NEAT/
https://github.com/CodeReclaimers/neat-python/
http://celeryproject.org/
http://sqlalchemy.org/
http://matplotlib.org/
http://seaborn.pydata.org/
https://github.com/uqfoundation/dill

Chapter 3. Implementation

Figure 3.1: Overview of how to use a CPPN as a CA transition rule.

16

3.1 CA-NEAT

Table 3.1: Possible activation functions

Type Equation
Sigmoid f(x) = 1

1+e−x

Hyperbolic tangent f(x) = tanh(x)
Sinusoid f(x) = sin(x)

Gaussian f(x) = ae−
(x−b)2

2c2 a, b, and c are constants
Rectified linear unit f(x) = max(0, x)

Identity f(x) = x

Clamped f(x) =

0 x ≤ 0

x 0 < x < 1

1 x ≥ 1

Inverse f(x) = 1
x

Logarithmic f(x) = log(x)
Exponential f(x) = ex

Absolute value f(x) = |x|

Hat f(x) =

{
1− |x| |x| < 1

0 otherwise

Square f(x) = x2

Cube f(x) = x3

Figure 3.2: Example first-generation CPPN with 7 out of 10 possible connections. N = 5 input
nodes corresponds to the ”Von Neumann” neighborhood shape, andK = 2 output nodes correspond
to a binary CA.

17

Chapter 3. Implementation

Figure 3.1 gives an illustrated overview of the mapping from neighborhood input to a
new cell state. The cell states are discrete values from a finite set, but the activation func-
tions used in the CPPN expect inputs and outputs from the real numbers (R). Therefore
there a mapping is performed before the CPPN input layer, assigning a continuous value
to each possible cell state. The mapping assigns each value in the finite state set to a value
in the range [−1.0, 1.0], evenly distanced.

The mapped values are then sent to the CPPN as input. After the N values have
propagated through the network there are K different outputs. These are each paired with
one of the cell states, and the cell state corresponding to the CPPN output with the highest
activation value is selected as the output and becomes the next state of the cell.

The activation functions used in the experiments in this thesis are listed in Table 3.1.
The fitness evaluation function is specific to each problem. In all experiments in this

thesis, the fitness values returned are between 0 and 1, with 0 representing a complete
failure and 1.0 representing a perfectly accomplished task.

3.1.1 Mapping CA-NEAT Rules to Traditional Rules
The transfer between the discrete and continuous number domains that happens before
and after the CPPN is activated, means that many CPPNs that are have different topolo-
gies, activation functions and weights, will actually exhibit the exact same behavior as
CA transition rules. Enumerating all the possible inputs and recording the correspond-
ing output of the transition functions creates a classical table/string representation of the
transition functions. We will call this the behavior of the transition function, and use this
representation in analysis.

3.1.2 Identifying Vestigial Structures
With NEAT adding and removing nodes and connections, sometimes nodes end up not
being connected to any of the output nodes. They thus have no effect on the output of the
network, but are still present in the structure. In biology, features that are present but do
not serve any purpose are called vestigial features [50].

To determine which CPPN nodes are in use and which are vestigial, a backwards graph
traversal can be done from the output nodes, following the enabled connections and mark-
ing all the nodes encountered. This can be used both for analysis of genotypes, as well as
to simplify the visualizations of networks.

3.1.3 Extending CA-NEAT with Environmental Information
Another aspect of CA-NEAT that can be explored, is the possibility of using additional
inputs that are not the cell states of the neighbors. A table-based transition function is
a complete mapping from all the possible inputs to a specific output, meaning it must
be possible to enumerate all the possible inputs. A CPPN structure such as a CA-NEAT
phenotype is less restricted in what kinds of inputs it can accept.

In biological cell systems, external factors can have large effects on the development.
For instance, a growing plant will choose which direction to expand in based on where it
can find light or water in its environment. In embryogenesis of animals, spatial information

18

3.1 CA-NEAT

Figure 3.3: An example extension of CA-NEAT.

19

Chapter 3. Implementation

is used to produce the correct layout of the body, with brain cells forming in the head, skin
cells on the surface of the body, and so on. This is not all encoded in the genome of the
organism, but arises from the interaction between the genome rules and the environment.

In a CA experiment, adding environmental information to the transition introduces a
factor of indirect encoding, since the same genotype can then produce different phenotypes
in different environments.

Extending CA-NEAT to accept new kinds of inputs is very simple. The NEAT part
only needs to be told how many input nodes the networks should have. Then the fitness
evaluation function, which must be custom for each problem anyway, must be programmed
to extract the necessary values from the cellular model and input them to the CPPN.

A concrete example is the extension used in the experiment in Section 4.3. Figure
3.3 illustrates this. In addition to the neighborhood information, the coordinate values
of the cell in question is also input to the network, which therefore has two additional
input nodes. The coordinate values are also mapped to the [−1.0, 1.0] domain, but by a
separate mapping function. Other than at the input to the transition function, the extended
CA-NEAT functions exactly like the unextended version.

3.2 Novelty Search
Novelty search has been added in as an extension to the existing CA-NEAT framework.
Many CA problems can be ”deceptive” to a GA and to the programmer tasked with cre-
ating an appropriate fitness function. The CA must transition through a sequence of inter-
mediate states before arriving at the desired target state, but it is not necessarily clear what
intermediate behavior should be rewarded in order to find the final result. This makes a
good case for testing novelty search for these problems.

In order to extend CA-NEAT for novelty search, some phenotype value needs to be
measured and compared in order to calculate novelty. The enumerated ”string” represen-
tation of the transition function was selected for this. The Hamming distance between
different strings can then be calculated and used as a measure of novelty distance. The dis-
tances are normalized to the [0.0, 1.0] range and the mean of the k = 15 closest distances
is used for the innovation score of the individuals.

The threshold for adding a genotype to the innovation archive is initialized at 0.5, but
is dynamically adjusted throughout the run. If 0 genotypes are added in a generation,
the algorithm will pick one at random to add anyway, and also decrease the threshold by
multiplying with a factor between 0.95 and 1.0. If more than 5 individuals are added in a
generation, they will all be added, and afterwards the threshold is increased by multiplying
with a factor between 1.0 and 1.05. The adjusting factors are picked at random from a uni-
form distribution. This should allow the threshold to eventually settle into an appropriate
value, and the randomness should prevent it from oscillating between two different values.

20

Chapter 4
Experiments

4.1 Overarching Methodology

The experiments about to be presented in Sections 4.2, 4.3 and 4.4 have some commonal-
ities. They are about selecting a CA problem and letting CA-NEAT have a go at solving
it. In these experiments, the same basic configuration of CA-NEAT is used. The size of
the CA neighborhood (equal to the number of CPPN inputs) and the number of cell-states
(equal to the number of CPPN outputs) is changed to be appropriate to the problem at
hand. The fitness evaluation function is also custom to every problem.

During development of the system, a variation of different configurations were tried for
different problems. When deciding on the experiments to collect results from for this pa-
per, a deliberate choice was made to use the same CPPN-NEAT configuration and as close
to the same CA configuration as possible for all problems. This makes it easier to make
comparison between experiments, but means that the settings chosen may favor some ex-
periments over others. Appendix A lists the NEAT parameters used in all the experiments.
Notably, the mutation weights are biased towards adding nodes and connections more so
than removing them, leading to the average network size growing over time.

Each experiment consists of 100 independent trials with the same parameters but dif-
ferent initial populations. All experiments have a population size of 200 individuals and
elitism degree of 1. Each generation-population is segregated into species by NEAT, with
selection and reproduction happening within these groups. Sigma scaled selection [51] is
used to select pairs for reproduction.

4.2 Morphogenesis and Replication of 2D Patterns

The first class of problems CA-NEAT was tested on was morphology problems, in the
form of the two tasks of morphogenesis and replication. The patterns investigated in these
experiments are shown in Figure 4.1

These are the same problems and patterns as studied in [46], which used an instruction-

21

Chapter 4. Experiments

(a) 5x5 ”Mosaic” (b) 6x6 ”Border” (c) 6x6 ”Tricolor” (d) 5x5 ”Swiss” (e) 7x7 ”Nordic”

Figure 4.1: Patterns being investigated for morphogenesis and replication.

(a) 5x5 (b) 6x6 (c) 7x7

Figure 4.2: Seed patterns for morphogenesis. For the 6x6 patterns there is no central cell, so the
seed is not symmetric.

based encoding and also tested table-based encoding for comparison. This allowed the
results of [46] to act as a benchmark for testing the CA-NEAT framework during develop-
ment, and to make comparisons between the results for analysis.

4.2.1 Morphogenesis Problems
In CA terms, morphogenesis is the construction of a (more) complex pattern from a simple
”seed” pattern. A biological analogy and inspiration is embryonic development, with the
seed pattern also sometimes called a zygote. Figure 4.2 shows the seed patterns used in
these experiments.

The fitness evaluation function used in the morphogenesis experiments consists of the
following steps:

1. Develop seed pattern for 30 iterations

2. For each stage

(a) Compare cell by cell with target pattern

(b) Calculate ratio of correct out of total cells

3. Pick the highest of the values from step 2

4. Use function (4.1) with value from step 3 as x

f(x) = x ∗ e
5∗x

e5
(4.1)

22

4.2 Morphogenesis and Replication of 2D Patterns

In cases such as the ”Mosaic” pattern (Figure 4.1a), a completely dead CA (all cells
in the quiescent state) would have a ”correct cell” ratio of 0.52. Function (4.1) is used to
reduce the score for such cases, while ensuring that f(1.0) = 1.0.

Because every iteration of the CA is counted equally and separately, the fitness evalua-
tion does not care if the CA becomes stable, enters a cycle, or neither within the 30 allotted
iterations. If the target pattern occurs at any point, that is enough to get a perfect score.

4.2.2 Replication Problems
In a CA replication problem, the initial state has some complex pattern present. The goal
is to produce multiple copies of this initial patterns within the allotted time. Biological
analogies of this is cell division (mitosis) and asexual (clonal) reproduction. For the repli-
cation problem the seed pattern is thus one copy of the target pattern in a larger grid.

The fitness evaluation for a replication phenotype is as follows:

1. Develop seed pattern for 30 iterations

2. For each stage

(a) For each region of target pattern size

i. Compare cell by cell with target pattern
ii. Calculate ratio of correct out of total cells

(b) Pick the highest 3 values from (a)

(c) Multiply any value less than 1.0 by a penalty factor of 0.9

(d) Calculate mean of three values

3. Pick the highest value from stage (2)

In this case the number of replicas sought is three. There is no further contribution
to the score if there are more than three perfect replicas. But it follows logically that if
one instance can be duplicated once, then each of the duplicates should be able to dupli-
cate again, leading to exponential growth if time and space is not limited. Once again a
penalty is applied, this time to penalize the contribution from any imperfect replica pattern,
hopefully driving the selection pressure towards perfect replication.

Compared to the evaluation of morphogenesis of the same pattern, the replication eval-
uation is much more computationally expensive. Therefore it will always take longer to
collect results for a replication problem than the same-pattern morphogenesis problem.

4.2.3 Cellular Model
For both morphology problem categories a 2D CA model is used. For the morphogenesis
problem the grid is of fixed size with toroidal border conditions. For the replication prob-
lem the grid is automatically expanding to accommodate growth in any direction. In theory
this means an infinite grid, but since the CA may only iterate 30 times, there is a practical
limit to how large it may grow. For both problem types the Von Neumann neighborhood
(Figure 2.3a) is used.

23

Chapter 4. Experiments

Table 4.1: Summary of results. The metrics shown are the success rate and the mean number of
generations until a solution is found, with standard deviation also shown. In the case of 100% success
rate, the number of generations column shows how many generations it took until the final solution
was found. In the case of less than 100% success rate, the column shows how many generations
were run until the experiment was stopped.

Problem Success rate % Mean gens. σ gens. Gens. until stop
Mosaic morphogenesis 100 1.2 0.4 2
Border morphogenesis 1 270 0 509
Tricolor morphogenesis 100 56.5 228.8 2189
Swiss morphogenesis 76 147.7 158.9 600
Mosaic replication 100 4.2 10.6 99
Swiss replication 100 7.7 5 20
Tricolor replication 55 55.8 52.6 200
Nordic replication 0 - - 200

4.2.4 Results
The results of the experiments were varied, with some problems being easily solved with
CA-NEAT, some being slowly solved, and some not being consistently solved at all. Table
4.1 summarizes the results in terms of success rate and generations of evolution. In addi-
tion to the varied success rate, there was also a large variation in how many generations
of evolution was required to find solutions. In many cases there was at least one opti-
mal solution among the 20000 individuals generated as part of initial populations. This
means there exists a simple solution consisting of only the input and output layers with
connections. The most extreme of these cases is the ”Mosaic” morphogenesis where 80
runs complete in the initial generation and the last 20 in the second generation. This result
is understandable, since the pattern has so much symmetry and repetitiveness. For more
complex patterns, more generations of evolution is required in order to bring the success
rate nearer 100%.

It is somewhat surprising which problems are easily solved and which ones are dif-
ficult. The ”Swiss” replication is much easier than the ”Swiss” morphogenesis, but the
”Tricolor” morphogenesis is easier than the replication of the same pattern. The fact that
the ”Border” morphogenesis is much more difficult than the ”Tricolor” morphogenesis is
not intuitive, since the ”Border” pattern has both fewer colors and one more symmetry.
Perhaps it is the symmetry that is the ”trap” which leads to a local maxima, and the ”Tri-
color” experiment avoids this, since symmetry in solutions will not give great scores in that
case. Since the other morphogenesis experiments succeed, and one ”Border” solution is
found, there is little reason to suspect that there is any technical error causing poor results.
So the reason must be that the combination of algorithms, problem and parameters cause
the problem to be very difficult.

CA-NEAT does quite well for three out of four replication problems, but fails com-
pletely at the ”Nordic” replication. This problem can be expected to be quite difficult,
since the pattern is rather complex. But the instruction-based encoding in [46] did well at
the task, so it is certainly possible to solve the problem with this particular cellular model.
The development of the mean and median lines shown in Figure 4.4d indicate that the

24

4.2 Morphogenesis and Replication of 2D Patterns

(a) Mosaic pattern morphogenesis, all gener-
ations.

(b) Border pattern morphogenesis, 500 first
generations.

(c) Swiss flag pattern morphogenesis, 600
first generations.

(d) Tricolor flag pattern morphogenesis, 100
first generations.

Figure 4.3: Success rate (cumulative histogram) of the morphogenesis experiments. Also shows the
mean and median of the max fitness in each run.

25

Chapter 4. Experiments

(a) Mosaic pattern replication, 25 first gener-
ations.

(b) Swiss flag pattern replication, all genera-
tions.

(c) Tricolor flag pattern replication, 200 first
generations.

(d) Nordic cross pattern replication, 50 first
generations.

Figure 4.4: Success rate (cumulative histogram) of the replication experiments. Also shows the
mean and median of the max fitness in each run.

26

4.3 2D Morphogenesis with Coordinate Input

Table 4.2: Success rate at morphology problems for table-based, instruction-based and CA-NEAT
transition functions found by GA.

Problem Table-based Instruction-based CA-NEAT
Mosaic morphogenesis 55% 98% 100%
Swiss morphogenesis 23% 100% 76%
Border morphogenesis 69% 98% 1%
Tricolor morphogenesis 19% 46% 100%
Mosaic replication 85% 100% 100%
Swiss replication 1% 100% 100%
Tricolor replication 8% 100% 45%
Nordic replication 0% 100% 0%

evolutionary searches find local maxima from which they can’t escape.
These results were compared with the results of [46]. Table 4.2 shows the success rates

of the different encodings at the different tasks. It was found that CA-NEAT was able to
significantly outperform instruction- and table-based encodings at some problems, while
also performing much worse at other problems. At the morphogenesis tasks, CA-NEAT
outperformed the table-based evolution at 3/4 tasks and the instruction-based evolution at
2/4 tasks. For the replication tasks, CA-NEAT outperformed the table-based evolution at
3/4 tasks and tied at 0% for the last task. Instruction-based evolution had a 100% success
rate at all replication tasks. CA-NEAT equaled this rate at two of the tasks, had some
success at one task, and failed completely at the last task.

In addition to the number of completed runs, another interesting result is the sizes of the
genotypes of optimal solutions. NEAT genotypes consists of a fixed number of input and
output nodes N +K, 0 or more hidden nodes, and some number of connections between
nodes. When evaluating NEAT genotypes it is interesting to consider these numbers both
separately and combined.

Table 4.3 shows some measures of the sizes of optimal genotypes for each experiment.
Since some runs finish with a generation where there is more than one optimal solution
present, the number of optimal genotypes may be higher than the number of finished runs.

Figures 4.5, 4.6 and 4.7 shows visualizations of some results found by evolution. A
larger selection of visualizations is available in Appendix C.

4.3 2D Morphogenesis with Coordinate Input

Adding environmental information to the CA may make it possible to solve a task that is
difficult with only the neighborhood information. To test how CA-NEAT performs with
this modification, we use the morphogenesis task as a test case.

For this experiment, the cellular model is extended to include coordinate information.
The ”Border” and ”Nordic” patterns (Figure 4.1) are targeted in separate experiments. The
”Border” morphogenesis in the previous experiment did not work very well, so it makes
for a good comparison. The ”Nordic” pattern is also difficult to generate with the previous
cellular model, because of the shifted symmetry, so it was not attempted in the previous

27

Chapter 4. Experiments

Table 4.3: Sizes of genomes of optimal solutions. Genomes consist of node genes and connection
genes, which may be counted considered separately or combined. Each genome has a fixed number
N +K input and output nodes, plus some number (possibly 0) of hidden nodes. When considering
genome size, only the hidden nodes are counted.

Min Max Mean Median σ

Mosaic morphogenesis (241
results)

Hidden nodes 0 1 0.1 0 0.3
Connections 4 11 7.1 7 1.5
Combined 4 12 7.2 7 1.6

Border morphogenesis (1
result)

Hidden nodes 7 7 7 7 0
Connections 16 16 16 16 0
Combined 23 23 23 23 0

Tricolor morphogenesis
(119 results)

Hidden nodes 0 14 2 2 2.1
Connections 6 32 15.1 15 4.3
Combined 6 46 17.1 17 6

Swiss morphogenesis (61
results)

Hidden nodes 0 13 2.9 2 3.1
Connections 5 22 10.2 9.5 3.7
Combined 6 32 13.1 11 6.5

Mosaic replication (136
results)

Hidden nodes 0 10 0.6 0 1.2
Connections 4 21 7.6 7 2
Combined 4 31 8.2 8 3

Swiss replication (114
results)

Hidden nodes 0 3 0.5 0 0.7
Connections 7 14 9.5 9 1.5
Combined 7 16 10 10 2

Tricolor replication (47
results)

Hidden nodes 0 20 4.8 4 4.2
Connections 8 41 14.7 14 5.7
Combined 8 61 19.5 17 9.5

28

4.3 2D Morphogenesis with Coordinate Input

Figure 4.5: The only solution that was found for the ”Border” morphogenesis. After finding the
target state in iteration 23, the CA goes in to a two-step cycle which does not include the target state.

Figure 4.6: A solution to the ”Tricolor” morphogenesis that finds a point attractor equal to the target
pattern. Most solutions seen did not stabilize like this, but instead found a variety of cycles.

29

Chapter 4. Experiments

Figure 4.7: A solution to the ”Mosaic” replication that shows multiple stages of replication. First
the original replicates into two copies. Then each copy tries to replicate, but they interfere with
each other and instead return to one copy each, but at a greater distance. Then they each succeed in
replicating, producing four copies total.

30

4.3 2D Morphogenesis with Coordinate Input

Figure 4.8: Success rate at the ”Border” morphogenesis with coordinate input. 99/100 trials finished
by 25 generations, but the last one was unable to finish before it was stopped after 1000 generations.

experiment, but it is attempted now.
The extension to add coordinate information to CA-NEAT is described in Section

3.1.3. The quiescent rule is still in place: a cell may not change state if all the neigh-
bors are quiescent, even if the information from the coordinates is available to inform a
decision. The coordinate information is meant to be used in conjunction with the neigh-
borhood information, not to replace it. If this was not the case, evolution could come up
with a CPPN where all the neighborhood inputs were disconnected from the output, and a
static pattern was produced in one time step, like in Figure 2.5. That is not a result that we
are interested in.

Like in the previous experiments, 100 independent trials were performed for each tar-
get pattern. Only the input to the transition function is changed from before, so the fitness
evaluation function is still the same as described in Section 4.2.2.

4.3.1 Results
Figure 4.8 shows the success rate of the ”Border” morphogenesis evolution. It was able
to find a solution for 99/100 trials in 25 generations. This shows how a task that was
very difficult (but not impossible) with only neighborhood input becomes easy with the
additional spatial information available. There was even one solution present in the initial
population of one of the trials, meaning a simple CPPN structure with no hidden nodes
can solve the task.

Figure 4.9 shows the success rate of the ”Nordic” morphogenesis evolution. By 100
generations, only 3 of the runs have succeeded. Letting the evolution go on until 1000

31

Chapter 4. Experiments

0

20

40

60

80

100

F
in

is
he

d
ru

ns

mean
median
Finished runs

0 200 400 600 800 1000
Generations

0.0

0.2

0.4

0.6

0.8

1.0
F

itn
es

s

"Norwegian flag morphogenesis with XY inputs"

Figure 4.9: Success rate at the ”Nordic” morphogenesis with coordinate input.

generations results in a total of 20 successful runs. While not as successful as the ”Bor-
der” morphogenesis, this is still a very positive result, since the pattern is so much more
complex.

Figure 4.10 shows one of the found behaviors for the ”Border” morphogenesis that
finds a point attractor equal to the target pattern. Point attractors were quite common
in the optimal behaviors found by CA-NEAT with coordinate information, unlike in the
experiments without coordinate information, where they were rare. Figures 4.11 and 4.12
show visualizations of one of the networks found for the ”Nordic” morphogenesis. The
first shows the minimal structure of only the nodes and connections that affect the output.
The second shows the full network, including all the nodes that are disconnected from the
output layer and all the disabled connections.

4.4 Majority and Synchronization Problems
Another class of CA problems are computational problems that have to do with the trans-
mitting and coordination of information through the grid. This category includes the ma-
jority problem and the synchronization problem, both problems for 1D binary CA. This
problem has been studied extensively with table-based transition functions found by ge-
netic algorithm [52, 53, 26]. The design of the experiments in this section takes inspiration
from these sources, but also does some things differently.

The majority problem (also called the density classification task in literature [52, 53])
is about figuring out which of the states is more common in the initial configuration (IC).
The CA must have some arbitrary IC where one ”color” (black/white) is more common

32

4.4 Majority and Synchronization Problems

Figure 4.10: One of the found solutions to the ”Border” morphogenesis with coordinate input. This
is the shortest solution that was found, needing just five timesteps, and going into a point attractor.

run 98 gen 603 ind 163

N

σ
bias: 0.0

W

σ
bias: 0.0 C

σ
bias: 0.0

sin
bias: 3.2

-1.7

E

σ
bias: 0.0

hat
bias: -3.0

0.8 exp
bias: 0.2

0.4

cube
bias: -7.8

8.7

S

σ
bias: 0.0X

σ
bias: 0.0

clamped
bias: 0.9

0.9 -5.5

Y

σ
bias: 0.0

-0.3inv
bias: 2.8

2.1

■ □▨

3.7-3.8

σ
bias: 0.6

-2.3

hat
bias: -0.9

1.7

-1.1

Figure 4.11: One of the found solutions to ”Nordic” morphogenesis with coordinate information.
This one occurred after 603 generations of evolution. This particular solution uses only four out
of the seven inputs available: both the coordinate values, plus the center and east input from the
neighborhood. Vestigial hidden nodes and disabled connections have been pruned away from the
visualization.

33

Chapter 4. Experiments

N

σ
bias: 0.0

clamped
bias: 0.9

2.5

exp
bias: 0.2

1.0

square
bias: 2.7

0.9

abs
bias: 0.8

-1.8

cube
bias: 4.2

-0.4

σ
bias: -4.8

-0.8

cube
bias: -5.2

1.3

tanh
bias: -0.3

0.9

σ
bias: 3.0

-1.8

W

σ
bias: 0.0

hat
bias: -3.0

-1.8

0.7

p

σ
bias: 0.0

-0.0

sin
bias: 3.2

-1.7

E

σ
bias: 0.0

0.8

0.4

cube
bias: -7.8

8.7

gauss
bias: -4.7

-0.2

clamped
bias: -9.3

-2.5

sin
bias: -3.1

0.6

clamped
bias: -2.5

2.7

S

σ
bias: 0.0

-2.4

1.4

-0.7

1.8

X

σ
bias: 0.0

0.9

-5.5

sin
bias: -0.6

-2.4

inv
bias: -2.0

-1.7

Y

σ
bias: 0.0

-1.0 -0.3

0.3

log
bias: -7.9

-0.9

gauss
bias: -2.7

0.8

inv
bias: 2.8

2.1

-1.5

cube
bias: -3.5

0.6

hat
bias: -1.9

-0.8

log
bias: 0.9

1.2

■ square
bias: 0.1

2.0

□

▨

3.7

abs
bias: -5.4

-2.4

relu
bias: 2.6

-2.0

hat
bias: -7.5

1.2

σ
bias: -2.6

-3.2

-2.0

-1.9

3.1 tanh
bias: -0.4

1.2

exp
bias: -3.1

hat
bias: 1.9

-0.1

2.4

clamped
bias: 1.4

0.3-1.1

0.2

-0.4

0.8 clamped
bias: 3.4

-1.0

-0.5

-0.6

2.6

3.2 identity
bias: -1.1

1.2

gauss
bias: -0.1

-0.1

identity
bias: -3.1

0.0

-0.3

3.4

-1.3

hat
bias: -0.9

-1.1

2.7

-0.6

abs
bias: 9.8

3.0

1.6

0.8

sin
bias: -7.3

-0.30.1

sin
bias: -6.9

-0.9

-2.4

0.4

0.3

-1.30.9

0.5

1.8

relu
bias: -3.9

-1.3sin
bias: -0.3

0.9

0.7

3.6

-0.7

-2.7-1.0

identity
bias: 4.9

-0.3

-3.8

1.2

tanh
bias: 2.5

-0.9

inv
bias: -2.0

-3.3

-5.8

-1.8

1.7

4.1

0.0

clamped
bias: -3.9

0.7

-1.2

0.9

0.4

σ
bias: 0.6

-2.3

-0.6

0.5

1.7-2.1 0.3

-1.1

-0.5

-0.3

-0.3

Figure 4.12: The same network as in Figure 4.12 without pruning reveals an enormous number of
vestigial structures.

34

4.4 Majority and Synchronization Problems

Figure 4.13: The CA behavior encoded by the network shown in Figures 4.11 and 4.12. This one
visits the target pattern at time step 7, then ends up in a different configuration point attractor.

than the other (i.e. not a 1:1 ratio). During the CA development iterations it must then
figure out which color is dominant and end up in a point attractor state where all the cells
are of this color. Depending on the IC this can be easy, or very difficult, so finding a general
solution that can figure out any IC is difficult. Even if the majority of the configuration
is black, there might be a sub-region that is majority white. The lack of global overview
means that the CA needs to send information around the grid and ”negotiate” a consensus
about the color.

The synchronization problem is a similar problem, but in this case the CA should find
its way to a two-step cyclic attractor where all cells share the same state in one timestep,
then all share the other state in the next timestep. It is therefore similar to the majority
problem in the way information must be transmitted across the CA in order to coordinate
the cells, but instead of having to ”count” cells and landing in a specific point attractor, it
can find a cyclic attractor without concern for which of the two states it visits first.

The difficulty of both problem is also dependent on the size of the neighborhood used
in the cellular model. For both experiments in this section, the neighborhood is of size
N = 7 (Figure 2.3. The grid wraps around at the ends (toroidal border conditions).

4.4.1 Fitness Evaluation
For the majority problem, fitness evaluation for a genotype is as follows:

1. Create k ICs of size n, with some ratio r of black/white cells (in a random order).
There should be both black-dominant and white-dominant ICs.

2. For each IC:

(a) Record which color is dominant.

(b) Develop the CA for i = 2 ∗ n iterations, or until a cycle is detected.

35

Chapter 4. Experiments

(c) Calculate the ratio of cells in the final configuration that is of the IC-dominant
color.

3. Calculate the mean of the ratios from (2). This value is the fitness for the individual.

For the synchronization problem, fitness evaluation for a genotype is as follows:

1. Create k ICs of size n, with some ratio r of black/white cells (in a random order).
There should be both black-dominant and white-dominant ICs.

2. For each IC:

(a) Develop the CA for i = 2 ∗ n iterations, or until a cycle is detected.
(b) Check whether the last two iterations match the condition of being all black

and all white (the order does not matter).

3. Calculate the ratio of ICs from (2) that lead to the desired behavior. This value is
the fitness for the individual.

The notable difference in the fitness evaluation methods is that the majority fitness
evaluation gives partial credit for all attempts at solution, whereas the synchronization
evaluation only credits attempts that lead to the exact desired behavior.

4.4.2 Evolution
For the majority problem k = 10 ICs of size n = 49 are created, all with a ratio r = 1/3
of black and white cells. Five are white-dominated and five are black-dominated.

For the synchronization problem, k = 100 ICs of size n = 49 are created, with
individual ratios r selected from a uniform distribution. The uniform distribution creates
a variation of ICs, some very white-dominant, some very black-dominant, and some more
mixed. The majority problem can have a smaller k with challenging r because of the partial
credit, while the synchronization problem needs a larger k with both easy and challenging
r values to get a nuanced fitness score.

For both experiments, 100 independent trials of different initial populations are per-
formed. The same set of ICs is used in all the trials.

4.4.3 Comprehensive Testing
The evolution populations only get to train on a small set of ICs. The performance at these
give an indication, but not an absolute measure of how the individual would perform at any
arbitrary IC. For this reason a more comprehensive test should be performed on the best
individuals produced by evolution. This test can show both how the individuals perform
on ICs they have not seen before, and also how they perform on ICs of greater size n than
they trained on.

The comprehensive testing method is the same for both the majority and synchro-
nization problems. Three different sets of k = 1000 ICs are generated from a uniform
distribution. The sets have different IC sizes, k ∈ {49, 99, 149}. A selection of the best
performing individuals from the evolution are tested on all the 3000 ICs using the same
fitness function as during evolution.

36

4.4 Majority and Synchronization Problems

0

20

40

60

80

100

F
in

is
he

d
ru

ns

mean
median
Finished runs

0 10 20 30 40 50 60 70
Generations

0.0

0.2

0.4

0.6

0.8

1.0

F
itn

es
s

"Majority problem"

Figure 4.14: Success rate development when training on the k = 10 set of initial configurations.
Within the first 10 generations over 50% of the runs had already found an individual that could solve
all the training configurations. Within the first 79 generations, 99/100 runs had found a solution. The
last run finished at 371 generations. This statistical outlier has been omitted from the figure to make
it clearer.

4.4.4 Results
Majority Problem

Figure 4.14 shows the success rate of the majority problem evolution. Every run was
eventually able to find at least one individual that could solve all the training ICs. Across
all 100 runs there were in total 129 individuals with fitness 1.0. Categorizing these by
CA enumerated table behavior and removing duplicates resulted in 111 individuals with
distinct behavior.

These 111 candidates were selected for comprehensive testing. Figure 4.15 shows the
performance of the candidates at the new test ICs. None were able to achieve a perfect
score on the new tests, but some came quite close at over 90% score. Even though all the
candidates had f = 1.0 at the training ICs, there was a large variation of performance at
the test ICs, with the lowest mean score at less than 65%.

Another pattern that the figure reveals is that the variance between the scores on the
different n is wider for the worst-performing candidates, and narrower for the best per-
forming candidates. The worst-performing candidate had an about 0.2 difference between
the best and worst sets, while the best candidate had only about 0.05 difference. The
worst-performing candidates were also clearly better at the n = 49 ICs than the others,

37

Chapter 4. Experiments

Figure 4.15: Performance at more comprehensive testing of the 111 distinct individuals that scored
f = 1.0 on the training configurations. The individuals have been ordered by their mean test
performance.

Rate #
0.94 1
0.95 2
0.96 2
0.97 65
0.98 27
0.99 3
1.0 0

Table 4.4: Distribution of max fitness achieved in 100 independent trials of synchronization evolu-
tion

but the best-performing ones were, while all close, actually performing best at n = 99 and
worst at n = 49.

Figures 4.16 and 4.17 show the different behaviors of two found individuals solving
the same IC.

Synchronization Problem

In 100 generations of evolution none of the trials were able to find any individual that
could solve all k = 100 training ICs. Some did come very close though. Table 4.4 shows
the distribution of the best achieved fitness in the 100 independent trials. While none of
the trials achieved 100% coverage of the configurations, three managed to solve all the ICs
except one. 95 out of 100 trials achieved a score of 0.97 or greater. Because of the uniform
distribution the ICs were sampled from, it is to be expected that a lot of the configurations

38

4.4 Majority and Synchronization Problems

Figure 4.16: A successful solution to the majority problem for an IC of size n = 149 and ratio
59 : 90.

Figure 4.17: Another solution to the majority problem for an IC of size n = 149 and ratio 59 : 90.

39

Chapter 4. Experiments

0 10 20 30 40 50
Candidate

0.75

0.80

0.85

0.90

0.95

1.00

P
er

fo
rm

an
ce

Performance by candidates at training and test sets

Training set (n=49, k=100)
Mean of test sets
Test set (n=49, k=1000)
Test set (n=99, k=1000)
Test set (n=149, k=1000)

Figure 4.18: Performance of the 48 candidate solutions at the training and test sets. The candidates
have been ordered by training performance first, and average test performance second.

40

4.4 Majority and Synchronization Problems

run 115 gen 54 ind 0

L3

σ
bias: 0.0

σ
bias: 3.3

0.6

abs
bias: 0.1

-0.3

L2

σ
bias: 0.0

0.1

L1

σ
bias: 0.0

3.2

C

σ
bias: 0.0

0.9

R1

σ
bias: 0.0

-4.4

R2

σ
bias: 0.0

-0.5

R3

σ
bias: 0.0

-5.1

■

Figure 4.19: One of the found networks for the synchronization task.

are similar in that a behavior that can solve one of them can solve most of them. It is
therefore not surprising to be able to get scores greater than 0.9. The challenge is to be
able to solve all the configurations, both the simple ones and the tricky ones. There was no
IC that was never solved in any of the trials. Most of the ICs were simple and were solved
in every trials. The most difficult IC was solved in 22 of the trials.

Since no individuals achieved perfect scores in the evolution phase, the sample of the
population selected for exhaustive testing was selected by picking the top 10 performing
individuals from each run. These 1000 individuals were then categorized by CA behavior
and the duplicates removed, leaving 48 distinct behaviors.

Figure 4.18 shows the performance of the 48 candidates at the training set and each of
the test sets. There is a correlation between the average score of the test sets and n, with
the n = 49 test performing closest to the n = 49 training performance. It is also clear that
the two candidates that performed the best (f = 0.99) at the training set, also performed
the best at each of the test sets.

Figures 4.19 and 4.20 show an evolved network and its behavior when performing
the synchronization task on a non-trivial IC. This simple network with no hidden nodes
(when pruned of vestigial structures) is actually one of the networks that tied for the best
performance, with a fitness score of 0.99. This shows that very simple network structures
can be tuned to perform very well at this kind of task.

41

Chapter 4. Experiments

Figure 4.20: The network from Figure 4.19 solving the synchronization task. The IC used here is
of size n = 149 and has an initial ratio of cells 56 : 93.

4.5 Investigation of Genome Properties

The process of running a task-solving experiments such as in the preceding sections is
quite opaque. The experiment is configured by human, but after it is started the system
runs itself with no human input, and the human observer can only wait and hope a useful
result emerges at the end.

In order to gain a better understanding of the process, an experiment was designed
with the goal of investigating various properties of the population and their development
over time, rather than to solve a specific task. This involves storing every single individual
from the whole run, then analyzing them quantitatively afterwards.

CA-NEAT can be studied from multiple ”angles”: as a GA experiment there are prop-
erties such as fitness that can be studied, as a CA experiment there is for example the λ
parameterization, and as a graph-based encoding properties such as the number of nodes
can be investigated. Inspecting these, individually and trying to see correlation, should
help with understand the system better, and selecting better configurations for future ex-
periments.

There are also multiple different mechanisms of the algorithm that can enabled or dis-
abled by configuration. Running multiple GA runs with different combinations of mecha-
nisms enabled should give some indication about the effects of the mechanism.

4.5.1 Experiment Design

The ”Swiss” morphogenesis task is used as the basis for this experiment. The previous
experiment with this task showed it to be consistently solvable by CA-NEAT, but not triv-
ially simple. The fitness evaluation for morphogenesis problems is also very fast compared
to other problems, making it possible to run tests with large populations in a reasonable
amount of time. The CA for this problem has K = 2 cell states and the neighborhood
shape ”Von Neumann” (N = 5) is used. An initial population of size P = 1000 was

42

4.5 Investigation of Genome Properties

Table 4.5: Mechanisms enabled in different scenarios

Scenario Mutation Crossover Selection pressure Speciation Elitism
A X
B X X
C X X X
D X X X X
E X X X X X

created, with N input nodes, K output nodes and no initial hidden nodes. This same pop-
ulation was then used as the initial population for five independent ”scenarios” ofG = 100
generations, with different mechanisms of NEAT in use. Table 4.5 shows which mecha-
nisms were used in which scenario. From top to bottom, the table can be read as gradually
enabling mechanisms, until arriving at the full algorithm, as used in other experiments.

Scenario A
Scenario A is different from the rest, since it is not a GA run, but more of a random
walk in the search space using the mutation mechanism from the GA. The individu-
als present in the initial population are mutated once per generation, and the mutated
versions are recorded as the next ”generation”. With no crossover and no selection
pressure, the individuals will be completely independent from each other throughout
the entire run.

Scenario B
Scenario B uses NEAT, however the selection mechanism is completely randomized,
so there is no selection pressure towards the goal of accomplishing the morphogen-
esis task.

Scenario C
Scenario C has selection pressure appropriate for the morphogenesis task, but does
not use the speciation mechanism of NEAT.

Scenario D
Scenario D uses NEAT with selection pressure like C does, but also uses the speci-
ation mechanism.

Scenario E
Scenario E uses all mechanisms of NEAT, including a per-species elitism degree of
E = 1.

Unlike the problem-solving experiments, this experiment does not involve multiple
trials of the same configurations. The reasoning is that this would mean we would be
studying averages of averages in the following figures, and some relationships between
properties could be hidden by this. We therefore should not draw any strong conclusions
from the observations, but use it to find hypotheses that can be more rigorously investigated
later.

43

Chapter 4. Experiments

0 20 40 60 80 100
Generations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
F

itn
es

s
Mean fitness of five diverging populations

A
B
C
D
E

Figure 4.21: The development over time of the mean fitness of the populations

4.5.2 Fitness

When working with genetic algorithms, the most obvious property of a population to study
is perhaps the average fitness over time. Figure 4.21 shows the mean fitness development
across the whole population for each of the five scenarios. As one would expect, scenario
A and B do not show any considerable improvement over time. A declines steadily, while
B has a slight, but not very significant increase. Among C, D and E, which have selection
pressure, there is a sharp increase in the first 10 generations. D then flattens out for the
remaining time, while C and E improves some more, at a slower rate.

Averaging hides one important aspect of the fitness distribution, namely the maximum
value, which indicates ”success” when it reaches 1.0. Looking at the maximum fitness
development over time in Figure 4.22, both A and B appears to decline over time, but B
less so than A. C and D act similar in that they hover around the upper half of the scale,
sometimes finding a 1.0 score, but are unable to stay stable there. Whereas E, with the
elitism mechanism is able to stay at 1.0 once it finds it. D finds a perfect solution quite
early, but this seems likely to be a ”fluke”, since it loses it again and takes a long time to
find another. This is consistent with the results of the ”Swiss” morphogenesis in Section
4.2, where in 100 independent trials, a few of them chanced upon an early solution.

The fact that the C average fitness overtakes both the D and E averages can hypothet-
ically be explained by the difference the speciation mechanism makes. In scenario C, the
search can only optimize for fitness, so when it finds a good candidate it will make a large
number of children for that candidate. Scenarios D and E can optimize for diversity as

44

4.5 Investigation of Genome Properties

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
itn

es
s

A

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
itn

es
s

B

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
itn

es
s

C

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
itn

es
s

D

0 20 40 60 80 100
Generations

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
itn

es
s

E

Max fitness of five diverging populations

Figure 4.22: The development over time of the max fitness of the populations

45

Chapter 4. Experiments

0 20 40 60 80 100
Generations

0

10

20

30

40

50

60

70

80

90
N

um
be

r
of

 s
pe

ci
es

Number of species in each generation

D
E

Figure 4.23: The number of species in scenarios D and E over time

well, searching in multiple directions. When a good candidate is found in a species, its
children will dominate only in that species, while the other species continue their search
unaffected. Another possible factor is the stagnation check which is also part of the spe-
ciation mechanism. This eliminates species that have not improved average fitness in 15
generations. If a species has ”peaked”, then it will be eliminated eventually, even if it’s
average fitness is above the population average. In the task-solving experiments, the run is
stopped when a ”perfect” solution is found, but in this experiment it is allowed to continue,
so this effect can happen.

4.5.3 Speciation
Another GA property that can be studied is the NEAT-specific speciation in scenarios D
and E. Figure 4.23 shows the number of different species over time. Both follow approx-
imately the same development in the first 40 generations, before D overtakes E and they
stabilize at different levels. The difference in levels is quite significant. A speculative rea-
son for this is that the lack of elitism in D means that a species there is more likely to split
into multiple species by chance. Whereas with elitism in E, the members of the species
may be more likely to remain more similar to the elite in the population, leading to less
diversity within the species.

Figure 4.24 shows the mean number of members per species over time. The devel-
opment is as one would expect with the growing number of species seen in Figure 4.23,
declining more rapidly at first then gradually stabilizing. The accompanying plot of the

46

4.5 Investigation of Genome Properties

0 20 40 60 80 100
Generations

0

200

400

600

800

1000

S
iz

e
Number of individuals per species

D mean
D max
E mean
E max

Figure 4.24: The mean and max number of members in the species of scenarios D and E over time

max number of species members gives an indication of the variance of the underlying
data. It fluctuates a lot at first, but as 100 generations approach, the max stabilizes and is
only slightly higher than the mean, indicating that the population consists of many species
approximately the same (low) number of members.

In the case where there is elitism, as the species size approaches the number of elites
(E = 1) there is less room for innovation in that species, since one member of each species
is always a copy of a previous member. If the species size were to reach 1, there would be
no innovation at all happening. Since the population of scenario E seems to have stabilized
around 55 species, a mean species size around 1000/55 ≈ 18 should avoid this problem
and leave room for innovation.

4.5.4 λ

The λ parameter is an interesting property of a CA transition function to study. Figure
4.25 shows the mean λ over time for the five scenarios. The shapes of the curves have a lot
of similarities with the shapes of the fitness curves in Figure 4.21. The random mutation in
scenario A drives the mean λ towards 0, while the combination of mutation and crossover
without selection pressure of scenario B causes the λ to fluctuate a lot and increase slightly,
but not very significantly. Scenarios C, D and E have roughly the same development: a
sharp rise to about 0.9, then flattening out.

Figure 4.26 shows the scenarios broken down individually into stack plots, illustrating
the distribution of values changing over time. The values are sorted into six bins, two

47

Chapter 4. Experiments

0 20 40 60 80 100
Generations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Mean of five diverging populations

A
B
C
D
E

Figure 4.25: Development of the mean λ of five scenarios over time

special ones for λ exactly equal to 0.0 and 1.0 and four for the equal intervals in between.
In earlier experiments it was observed that the two extreme λ occur often, so they get
special bins in this visualization.

It can be seen that scenario A has a very strong bias towards producing λ = 0.0, while
the other scenarios skew more towards producing higher λ values. This would suggest that
crossover mechanism is at least partially responsible for producing higher λ values. There
is also a strong resemblance between C and E, less so between D and the others. Why
this is so is not entirely obvious, but it could just be a consequence of the randomness of
the trial. If the experiment was repeated with multiple trials, we could determine if this is
just a fluke or not. In any case, it is clear that all the scenarios with selection pressure are
strongly biased towards producing λ > 0.75.

The task at hand and the implementation of the fitness function must also be consid-
ered when analyzing the λ result. The fitness evaluation function is described in detail
in Section 4.2.1. Notably, when trying to produce a ”Swiss flag” pattern, 20/25 cells are
active in the target state, meaning that the algorithm can get some score easily by produc-
ing a transition function with λ = 1.0. This can explain why the algorithm produces very
many λ = 1.0 solutions early on.

4.5.5 Distinct Behaviors
Another way to analyze the population is to look at the diversity of the enumerated behav-
ior ”strings” (described in Section 3.1.1) over time. Figure 4.27 shows how many unique

48

4.5 Investigation of Genome Properties

0 20 40 60 80 100
Generations

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n

 distribution in A

(a) Scenario A

0 20 40 60 80 100
Generations

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n

 distribution in B

(b) Scenario B

0 20 40 60 80 100
Generations

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n

 distribution in C

(c) Scenario C

0 20 40 60 80 100
Generations

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n

 distribution in D

(d) Scenario D

0 20 40 60 80 100
Generations

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

ut
io

n

 distribution in E

(e) Scenario E

 = 1.0
0.75 < < 1.0
0.5 < <= 0.75
0.25 < <= 0.5
0.0 < <= 0.25
 = 0.0

(f) Legend

Figure 4.26: Breakdown of λ distribution over time in five scenarios

49

Chapter 4. Experiments

0 20 40 60 80 100
Generations

0

100

200

300

400

500

600

700

800
N

um
be

r
of

 b
eh

av
io

rs
Number of unique behaviors observed in each generation

A
B
C
D
E

Figure 4.27: Number of unique behaviors in each generation

0 20 40 60 80 100
Generations

0

2000

4000

6000

8000

10000

12000

14000

N
um

be
r

of
 b

eh
av

io
rs

Cumulative number of unique behaviors observed

A
B
C
D
E

Figure 4.28: Number of unique behaviors seen over time, cumulative.

50

4.5 Investigation of Genome Properties

0 20 40 60 80 100
Generations

0

1

2

3

4

5

6

7
N

um
be

r
of

 b
eh

av
io

rs
Cumulative number of unique behaviors with f=1.0 observed

A
B
C
D
E

Figure 4.29: Number of unique f = 1.0 behaviors seen over time, cumulative.

behaviors are present in each generation of each scenario. The initial population is clearly
very diverse, but the diversity drops very rapidly in each of the scenarios. Scenarios A
and B decrease slightly slower than the rest at the beginning. The rate of decreasing slows
down and they eventually stabilize at low levels. Scenarios C, D and E drop down fast at
first, but then they do a sharp turn. C and D fluctuate a it up and down, but overall seem to
stabilize. E rises steadily again and stabilizes at a significantly higher level than the others.

Figure 4.28 visualizes the number of unique behaviors seen in the entire lifetime of
the scenario. A and B are almost identical, showing almost no increase after the first 20
generations. C and D climb steadily and overtake A and B at different points. The contrast
between E and the rest is stark. There is a much higher rate of increase, and it is almost
linear over time, reaching about twice the value that the next best does in 100 generations.
These result have some big implications. First of all, it is clear that a random search
such as A and B gets ”stuck” quite quickly and stops producing innovative results. With
selection pressure, the search is slower at first, needing quite some time to overtake the
initial flood of innovation produced by randomness. But it keeps a steady increase where
the random searches stagnate. And the presence of elitism increases the innovation by a
very considerable degree.

In a ”best-case” where every behavior in every generation is distinct, the number of
unique behaviors observed would be P ∗ G = 100000. Scenario E passes 12000 unique
behaviors observed, which is ”only” 12% of the theoretical maximum. And for a K =

2, N = 5 CA, the number of total possible behaviors is KKN

= 232 ≈ 4.3 ∗ 109. This

51

Chapter 4. Experiments

0 20 40 60 80 100
Generations

0

5

10

15

20

25

30

35
N

od
es

Mean number of nodes

A
B
C
D
E

Figure 4.30: The mean number of nodes in each scenario

illustrates the futility of attempting to solve advanced CA tasks by exhaustive enumeration
of behaviors. Luckily, while the proverbial haystack may be humongous, there are many
needles to be found within it, and you only need to find one to be successful. Figure
4.29 illustrates the number of distinct behaviors observed with a perfect fitness score. As
one might expect, the diversity of the optimal behaviors is higher when the diversity of
all behaviors is higher. Scenario E is able to find 7 distinct solutions to the task in 100
generations.

4.5.6 Network Topology
The individuals of the populations are graph structures, and can also be studied as such.
Appendix B showcase a selection of structures CA-NEAT has found. Figure 4.30 shows
the development of the mean number of nodes in the networks of each scenario. The
growth of scenario A is approximately linear. Since the individuals of the population are
completely independent from each other, the law of large numbers means that the curve
should fit the expected value given by the probabilities of adding and removing nodes,
(Padd − Premove)x = (0.5 − 0.25)x = 0.25x. The full listing of mutation probabilities
is given in in Appendix A. This is not a very useful insight by itself, but it does give a
baseline which the other scenarios can be compared to. Scenario B has a slightly higher
growth than A. This makes sense considering the crossover mechanism. If two parents
independently are likely to gain a new node, then their child will have both of the new
nodes, leading to a bigger growth rate overall. The three scenarios with selection pressure

52

4.5 Investigation of Genome Properties

0 20 40 60 80 100
Generations

0

5

10

15

20

25
N

um
be

r
of

 d
is

co
nn

ec
te

d
no

de
s

Mean number of disconnected nodes

A
B
C
D
E

Figure 4.31: The mean number of disconnected nodes in each scenario

0 20 40 60 80 100
Generations

0.05

0.10

0.15

0.20

0.25

0.30

C
on

ne
ct

iv
ity

Mean connectivity of five diverging populations

A
B
C
D
E

Figure 4.32: The mean connectivity degree in each population

53

Chapter 4. Experiments

at first follow the same pattern, with much lower growth than the baseline. Then they
diverge around 30 generations. Scenario C ”catches up” with scenario A and settles into a
near-linear growth like scenario A. Scenario D also goes into a near-linear growth close to
the same as scenario A, but without ”catching up” first. Scenario E continues with almost
the same growth rate for all 100 generations, ending up at a much lower number than the
rest.

Figure 4.31 shows the number of vestigial nodes that do not connect to the output layer.
The significance of these is that they are equally likely to be affected by mutation as any
other node, but they do not affect the output of the network. The more vestigial nodes
there are, the more likely that the mutation operation does ”nothing”.

Scenarios A and B have curve shapes very similar to those they had in Figure 4.30,
suggesting a simple proportional correlation when the process is completely random. More
interestingly, the curve of scenario C does a sudden turn to overtake both A and B. The
curve of C reaches almost the same value as that in Figure 4.30, indicating the population
members have a very large number of disconnected nodes. The curves of D and E are
similar to their counterparts in Figure 4.30. Again it is clear that E has a distinctly different
development than the rest.

Figure 4.32 shows another measure of connectedness which is often used in graph
theory, connectivity = c∑n

x=1 x , where c is the number of connections and n is the number
of nodes. In this perspective, C follows D and E at first, but diverges and drops much
quicker to the level of A and B.

What these observations seem to indicate, is that the population of C comes to be dom-
inated by networks with many nodes and fewer connections. It is likely that in repeated
trial this would not occur every time, but that it is just part of the randomness of the single
trial. This is perhaps more likely to occur with the scenario C parameters than the others.
Scenarios A and B are somewhat predictable systems with behavior determined by the
constant parameters set before the experiment. The selection pressure of C can possibly
act as a feedback loop, causing a random feature to dominate the whole population. Sce-
narios D and E have speciation which automatically create (somewhat) independent trials
within the population.

4.6 Novelty Search

Section 3.2 describes how CA-NEAT was extended to support novelty search.
Because novelty search disregards the objective, a search for a specific neighborhood

size N and number of states K creates population that can be used on any CA with that N
or K. For example, the same population could contain solutions to both morphogenesis
and replication of both the 6x6 ”Tricolor” and 7x7 ”Nordic” patterns (Figure 4.1).

4.6.1 Results

Several differentN andK combinations were tested and the resulting innovations archives
checked against the objective function of appropriate tasks. Table 4.6 gives an overview
of the combinations tested.

54

4.6 Novelty Search

0 200 400 600 800 1000
Generations

0

10000

20000

30000

40000

50000
N

um
be

r
of

 b
eh

av
io

rs
Cumulative number of unique behaviors observed

No speciation
With speciation

Figure 4.33: Cumulative number of unique behaviors observed. The two runs share the properties
N = 5,K = 4, P = 50, G = 1000, and differ in whether they have speciation enabled.

0 200 400 600 800 1000
Generations

0

2000

4000

6000

8000

10000

N
um

be
r

of
 a

rc
hi

ve
d

in
di

vi
du

al
s

Size of innovation archive

No speciation
With speciation

Figure 4.34: Size of the innovation archives. The archives are a subset of their corresponding
populations.

55

Chapter 4. Experiments

Table 4.6: Overview of the novelty search runs attempted

N K P G Speciation Objectives tested
5 4 50 1000 Yes {Tricolor, Nordic} {morphogenesis, replication}
5 4 50 1000 No {Tricolor, Nordic} {morphogenesis, replication}
5 2 50 1000 No Border morphogenesis
7 2 200 1000 No Majority, synchronization

The tasks that were tested for were selected because they were sufficiently challenging
for the objective search (as described in Sections 4.2, 4.4). Other tasks such as ”Mosaic”
morphogenesis had multiple solutions present in the initial population. Using novelty
search in such cases would not tell us anything about the effectiveness of the search algo-
rithm.

When testing against the objective functions of the sufficiently challenging tasks, the
results were not particularly useful, with no optimal solutions found for any of the tasks
tested. Detailed results about the fitnesses found are not too interesting and is omitted from
this report. Suffice it to say, the success rate was 0% across the board.

One configuration that was tested was N = 5, K = 4, a population size of P = 50,
for G = 1000 generations. We will take closer look at the results, assuming them to
be representative for the results of all the experiments. This configuration was tested in
two independent runs, with and without speciation. Figure 4.33 shows the cumulative
number of unique behaviors observed in the two runs. The figure is created from the full
population of each run, not the innovation archive, which is a subset of the full population.
It shows that the novelty search is correctly implemented and does in fact produce many
novel genotypes in each generation. It can be compared to Figure 4.28 in Section 4.5,
taking into account the different population size. The curves are approximately equal,
showing no particular effect from the presence or lack of speciation. At 1000 generations,
the runs are at 47806 unique individuals (no speciation) and 47969 (with speciation). This
is as good as equal, and it is close to the curve of the maximum possible unique behaviors
y(x) = 50x. Still, 50000 unique individuals would only be 50000

225
≈ 0.0012% of the

search space.
Figure 4.34 shows the development of the sizes of the innovation archives. The two

archive sizes are approximately the same in the first 150 generations, but then diverge con-
siderably. The population without speciation adds far fewer innovations to the archive than
the population with speciation does. Over 1000 generations, the population with specia-
tion adds on average almost 10 individuals to the archive per generation, while the popula-
tion with speciation adds on average 3-4 innovations per generation. Since the speciation
threshold is supposed to dynamically adjust to keep the number of added innovations be-
tween 1-5, this must mean that the average innovation metric in the speciated population
is changing continuously, so that the threshold is not able to keep up. This could happen
because the average innovation degree is continuously increasing, or because it is fluctu-
ating around some value. The species extinction may be the cause of this, since it will be
removing whole groups of individuals that may affect the innovation degree drastically. In
either case the threshold adjusting algorithm is always a step behind.

Because of performance issues with the implementation, it was not feasible to run

56

4.6 Novelty Search

run 1 gen 0 ind 3559

L3

σ
bias: 0.0

sin
bias: 0.6

-0.6 sin
bias: 23.2

-1.5

L2

σ
bias: 0.0

gauss
bias: 0.8

0.8

L1

σ
bias: 0.0

clamped
bias: 7.9

-0.3

sin
bias: -2.7

0.4

C

σ
bias: 0.0

-0.6

-5.5

R1

σ
bias: 0.0

-0.7

5 6

hat
bias: -1.8

σ
bias: -7.6

0.4

-5.9

1.8

0.3

sin
bias: -6.2

σ
bias: 15.9

-0.90.3

-2.2 -0.5

tanh
bias: 0.8

-2.6

square
bias: -15.2

2.0

Figure 4.35: Network found by novelty search

many independent trials of the same configuration. There is a possibility that in a larger
number of trials, some might succeed. But a more performant implementation is necessary
to test this.

These results suggest that this approach to novelty search is not going to lead to pro-
duce anything that is more interesting than what objective search produces. This does not
necessarily mean that novelty search is never going to work for CA problems, only that
the setup used in these experiments is flawed and must be reconsidered.

Figures 4.35 and 4.36 show an example of a network found in the N = 5,K = 2
novelty search and the behavior when tested in a 5x5 morphogenesis cellular model.

57

Chapter 4. Experiments

Figure 4.36: The behavior of the network shown in Figure 4.35

58

Chapter 5
Discussion & Future Work

The individual experiments are discussed in their sections in Chapter 4. This chapter
discusses the overarching themes, what went well and not so well, and the possibilities for
future work.

5.1 Tasks Solved

Morphogenesis of all the patterns listed in Figure 4.1 has been achieved, either using only
neighborhood information or using neighborhood information in conjunction with coor-
dinate information. In comparison with table-based and instruction-based evolution, CA-
NEAT did better than either in most cases. This is a very promising result with potential
applications in different morphogenetic engineering situations, for example constructing
micro- or nanoscale structures in carbon nanotubes or bio-matter. Such tasks can be dif-
ficult to perform by machine, but might be possible if the substrate can be stimulated to
assemble itself.

Replication of four patterns was tested with a standard neighborhood information cel-
lular model. The results were in general better than the corresponding results with table-
based evolution, though not as good as the results of instruction-based evolution.

With positive results from the morphogenesis with coordinate information, it seems
likely that the replication performance can also be improved by adding information to the
environment. For example, the environment could be augmented with ”anchor points” in
cells at intervals, giving the CA something a ”scaffold” when producing duplicates, similar
to how some crystals form in nature (heterogeneous nucleation).

For both the majority and synchronization problems some phenotypes were found that
performed quite well. While the results were not in any way revolutionary, they do not
exclude the possibility that a more fine-tuned model could perform well. Optimizing the
parameters of the algorithm may be crucial to achieve this. It would also be interesting to
investigate whether different parameters are optimal for different problem categories.

59

Chapter 5. Discussion & Future Work

(a) (b)

Figure 5.1: An example CPPN with a large available input neighborhood, but only the Von Neumann
sub-neighborhood connected to the output layer.

5.2 Neighborhood Definitions

The experiments in this thesis have only used the Von Neumann 2D neighborhood defini-
tion and the size 7 1D neighborhood definition. The neighborhood definition of the cellular
model can be expanded to greater sizes easily in CA-NEAT, since it is as simple as adding
new input nodes to the CPPN. Adding another input node is not any more complicated
than adding another hidden node is, nor does it affect the run time performance of the
algorithm any more. Larger neighborhood definitions would create much more diversity
in the initial population, but could also possibly create genotypes that are more complex
than what is required for the problem.

Figure 5.1 shows one possible way to implement larger neighborhoods while trying to
avoid over-complication. Since NEAT can add connections by mutation, there could be
many input nodes available, but only a small selection connected in the initial population.
When mutating new genotypes, new inputs could be connected, and over time it could be
determined if this was a good innovation. This is similar to FS-NEAT, a NEAT variation
which has been shown to solve certain tasks more efficiently than regular NEAT [54].

5.3 Network Size

In many of the morphology tasks, both with and without environmental information, there
were solutions present in the initial populations of some of the trials. This means that those
tasks could be solved with only the input and output neurons and the connections between
them.

The results of the analysis of network size also indicate that the complexification by
network growth can be detrimental. The scenario that was able to find the greatest number
of solutions was the one that had the lowest average number of nodes, and the lowest
average number of disconnected nodes.

If a problem can be solved with a smaller structure, then the possibility of adding to
the size may be detrimental to the performance, since it introduces more components that
need to be tuned. It might be worthwhile in the future to try an experiment where the
mutation probabilities of adding and removing nodes is set to 0 and see how NEAT does
when tuning a fixed-size structure. Another possibility could be to allow the adding of
nodes, but to have the fitness evaluation penalize it. The selection pressure would then be
optimizing both for task solving and for smaller genomes.

60

5.4 Exploring the CA Behavior Space with Objective and Novelty Search

5.4 Exploring the CA Behavior Space with Objective and
Novelty Search

With both objective search NEAT and novelty search, the algorithms are able to explore
the space of CA behaviors quite effectively. However, the search spaces are very large,
and fully exploring them would take very large populations over very many generations.
A given space may have multiple optimal solutions present, but if they are very sparse
or the fitness evaluation is deceitful, then objective search can struggle to succeed. The
”Nordic flag” replication task is like this. It has the same behavior space as the other four-
color tasks, but it is a ”tricky” task because of the shifted symmetry of the pattern. The
task was solved by the instruction-based encoding in [46], but CA-NEAT could not find
any solutions with the same cellular model.

While the universal approximation theorem says that an ANN-structure such as the
CA-NEAT encoding can encode any function, it does not tell us which kind of functions
are easy to encode and which are difficult. CPPN may be predisposed to approximate some
types of functions, and be less disposed to other types. A potential future experiment could
try to categorize the found behaviors, to see if some types of behaviors are dominant or
missing. One possible taxonomy that could be used is Wolfram’s classification [16].

Novelty search was tried on non-trivial problems. While a large number of behaviors
were investigated, the search could not find behaviors that were objective-optimal. Novelty
search explores more efficiently than objective search, but without being able to direct the
search towards an optimum it just meanders around the behavior space.

The choice of the enumerated mapping string to measure the innovation distance be-
tween phenotypes in novelty search has disadvantages. The novelty search was able to
explore the space at an almost optimal rate, yet 1000 generations of search could only
explore about a 1

100000 th of the space. The use of the behavior string also ”reintroduces”
the restrictions of table-based transition functions to CA-NEAT. It can’t handle other types
of input that cannot be enumerated (e.g. environment information like in Section 4.3),
and as the size of the neighborhood or the number of cell states increases, so does the
computational complexity of creating the strings and comparing them.

This does not mean CA-NEAT and novelty search are incompatible. It should be
possible to use other more suitable properties for the innovation measure that have smaller
spaces. These properties could be task-specific. For example, in a morphogenesis task
where finding a point attractor is required, the final (stable) state of the CA could be used
as a vector, and distance calculated appropriately.

Another possible option is to use the innovation archive population as a diverse initial
population for objective search. Instead of balancing the trade-off between exploration and
exploitation, the search would have two distinct phases for exploration and exploitation.
It is possible some of the genotypes in the archive are close to, but not quite optimal, and
that some generation of objective search evolution could lead to optimal results. It would
probably be necessary to sample the archive though, as it may be much larger than the size
of a population in NEAT.

61

Chapter 5. Discussion & Future Work

5.5 The Role of NEAT Mechanisms and Parameters
The investigation of the underlying properties of the populations revealed a lot of interest-
ing patterns. The utility of elitism was very apparent. The scenario with elitism was able
to explore the CA behavior space much more effectively, and found many more solutions
than the other scenarios. The population with elitism had fewer nodes in total, and thereby
also fewer vestigial nodes and a higher connectivity degree. Having a larger number of
nodes appeared to be detrimental to the performance of the other populations. With more
nodes there were also more vestigial nodes, and so more of the mutation operations would
have been ineffective, leading to less innovation.

The property analysis performed in this project has only touched upon a few of the
properties of the encoding. Future experiments could explore more of them to gain an even
deeper understanding. There are decades of research on network structures and network
growth to draw from [55]. There are also other properties and parameterizations of CA
transition rules that can also be studied, such as the sensitivity measure µ or the pre-image
degree Z [56].

5.6 CPPN Domain and Activation Functions
The set of possible neuron activation functions used in these experiments (Table 3.1) are
the ones provided by python-neat by default. No analysis of how appropriate these are
for CA problems was performed. This set of activation functions is meant to be used with
R input values, so the cell states are mapped to R before they are input to the CPPN. A
potential future experiment could explore other activation function sets, potentially in the
cell state domain. For example, for a binary CA problem the possible activation functions
could be binary functions like {∨,∧,⊕} and the connection weights could be 1 or−1 (¬).
Instead of K network outputs of which one is selected, there would be one output which
would give the next state. Binarized neural networks have been shown to perform well
at some machine learning applications, for example those relating to image processing of
black and white images [57].

5.7 Implementation Critique
The basic CA-NEAT framework was not terribly difficult to implement, especially since
python-neat provided an excellent basis. The biggest technical challenge was to take
advantage of the parallelism at the fitness evaluation stage. This was implemented using
celery, and was crucial to being able to run multiple concurrent experiments each with
multiple concurrent fitness evaluations, which allowed for a large volume of results.

The CA-NEAT model lended itself very easily to extension with environmental input.
Programming the extension was only a matter of rewriting the fitness evaluation function
and specifying a bigger number of input nodes for the CPPNs. The extension did not have
a noticeable effect on the run time performance of the program.

When implementing CA-NEAT, the choice of database for persisting results was a re-
lational (SQL) database. When CA-NEAT was extended to novelty search, this meant that

62

5.7 Implementation Critique

the innovation archive was also implemented as relational table. This had detrimental ef-
fects on the performance of the system that made gathering results take much longer than
it did for objective search. As the innovation archive grew larger during experiments, it be-
came obvious that this had a large detrimental effect on the performance of the algorithm,
both in terms of time spent calculating and in terms of memory used during calculations. In
every generation the whole innovation archive was queried from the database and loaded
into memory, and the Hamming distances were calculated between the whole generation
of individuals and the whole of the archive. This also prevented concurrency in fitness
evaluation, further slowing the process. If implementing novelty search from scratch, a
more suitable database structure could be used instead. Inspiration could be taken from
the techniques used for embedding spaces in machine learning applications.

63

Chapter 5. Discussion & Future Work

64

Chapter 6
Conclusion

CA-NEAT has been tested on both morphology problems (morphogenesis, replication)
and computational problems (density classification, synchronization). Some tasks were
more difficult than others, but in each category CA-NEAT was able to produce some good
behaviors. Some of the morphology tasks were easily solved by using a simple cellular
model with only neighborhood information, and some tasks that were difficult with the
simple model became solvable when extending the model with coordinate information.

The success of the extended model at task performance, and the ease of adding the
extension to the encoding is a very promising result. The CPPN-based encoding could
help make many difficult tasks possible, not only CA tasks, but also potentially in other
morphogenetic engineering models.

The analysis of the relationship between NEAT mechanisms and properties of the pop-
ulation revealed some interesting trends. It definitely showed the advantage of NEAT with
speciation and per-species elitism in exploring the space of CA behaviors. It also showed
that the genetic algorithm can reach high fitnesses and specific λ values in just a few gen-
erations, but that sometimes a large number of generations of fine-tuning is needed before
finding the perfect solution.

It was also apparent that the network growth could be detrimental to the performance
of the population. With high probability of mutation adding to the network, the networks
grew very large. The more components of the network, the more tuning is required. With
mutation also sometimes removing connections, many of the nodes would be disconnected
from the output nodes. With nodes that do not affect the network output, but are still targets
of mutation, the effectiveness of mutation to explore the space is diminished. Parameters
and mechanisms that limit the growth of the network may bring about better results.

While the novelty search implementation used in this thesis did not produce any op-
timal results for any of the tasks investigated, it was very efficient at exploring the space
of CA behaviors. But because of the size of the space, much more time would have to be
spent searching to find optimal results consistently. But novelty search does not to be writ-
ten off entirely for CA problems. If smaller problem-specific search spaces can be defined
and searched, it might be possible to use novelty search successfully for CA problems.

65

Chapter 6. Conclusion

66

Bibliography

[1] Mathias Berild Ose. Evolved Compositional Pattern Producing Networks As Cel-
lular Automata Transition Rules. Research rep. Department of Computer Science
Norwegian University of Science and Technology, 2016.

[2] Stefano Nichele et al. “CA-NEAT: Evolved Compositional Pattern Producing Net-
works for Cellular Automata Morphogenesis and Replication”. In: IEEE Transac-
tions on Cognitive and Developmental Systems (2017). Forthcoming.

[3] Douglas Adams. The Salmon of Doubt: Hitchhiking the Universe One Last Time.
Harmony, 2002.

[4] “Roget’s 21st Century Thesaurus, Third Edition”. In: (Mar. 2017). URL: http:
//www.thesaurus.com/browse/detailed.

[5] Herbert A Simon. “The architecture of complexity”. In: Proceedings of the Ameri-
can philosophical society 106.6 (1962), pp. 467–482.

[6] Hiroki Sayama. Introduction to the modeling and analysis of complex systems. Open
SUNY Textbooks, 2015.

[7] Francis Heylighen et al. “The science of self-organization and adaptivity”. In: The
encyclopedia of life support systems 5.3 (2001), pp. 253–280.

[8] Hans Moravec. Mind children: The future of robot and human intelligence. Harvard
University Press, 1988.

[9] René Doursat, Hiroki Sayama, and Olivier Michel. “A review of morphogenetic
engineering”. In: Natural Computing 12.4 (2013), pp. 517–535.

[10] John von Neumann. Theory of Self-Reproducing Automata. Ed. by Arthur W. Burks.
Champaign, IL, USA: University of Illinois Press, 1966.

[11] Robert R Schaller. “Moore’s law: past, present and future”. In: IEEE spectrum 34.6
(1997), pp. 52–59.

[12] Michael J. Flynn. “Parallel processors were the future... and may yet be”. In: Com-
puter Magazine (1996).

[13] Matthew Cook. “Universality in elementary cellular automata”. In: Complex sys-
tems 15.1 (2004), pp. 1–40.

67

http://www.thesaurus.com/browse/detailed
http://www.thesaurus.com/browse/detailed

BIBLIOGRAPHY

[14] Moshe Sipper. “The Emergence of Cellular Computing”. In: Computer Magazine
(1999).

[15] Carlos Gershenson. “Introduction to random Boolean networks”. In: arXiv preprint
nlin/0408006 (2004).

[16] Stephen Wolfram et al. Theory and applications of cellular automata. Vol. 1. World
scientific Singapore, 1986.

[17] Chris G Langton. “Computation at the edge of chaos: phase transitions and emer-
gent computation”. In: Physica D: Nonlinear Phenomena 42.1 (1990), pp. 12–37.

[18] Yoshua Bengio, Ian J Goodfellow, and Aaron Courville. “Deep learning”. In: An
MIT Press book in preparation. Draft chapters available at http://www. iro. umon-
treal. ca/ bengioy/dlbook (2015).

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–
366. ISSN: 0893-6080. DOI: http://dx.doi.org/10.1016/0893-
6080(89)90020-8. URL: http://www.sciencedirect.com/science/
article/pii/0893608089900208.

[20] Kenneth O Stanley. “Compositional pattern producing networks: A novel abstrac-
tion of development”. In: Genetic programming and evolvable machines 8.2 (2007),
pp. 131–162.

[21] Kenneth O Stanley. “Exploiting regularity without development”. In: Proceedings
of the AAAI Fall Symposium on Developmental Systems. AAAI Press Menlo Park,
CA. 2006, p. 37.

[22] David B D’Ambrosio and Kenneth O Stanley. “Generative encoding for multiagent
learning”. In: Proceedings of the 10th annual conference on Genetic and evolution-
ary computation. ACM. 2008, pp. 819–826.

[23] Sebastian Risi and Kenneth O Stanley. “Confronting the challenge of learning a flex-
ible neural controller for a diversity of morphologies”. In: Proceedings of the 15th
annual conference on Genetic and evolutionary computation. ACM. 2013, pp. 255–
262.

[24] C. Darwin. On the Origin of Species by Means of Natural Selection. London: John
Murray, 1859.

[25] John H Holland. “Genetic algorithms”. In: Scientific american 267.1 (1992), pp. 66–
72.

[26] Melanie Mitchell. “Life and evolution in computers”. In: History and philosophy of
the life sciences (2001), pp. 361–383.

[27] JA Vasconcelos et al. “Improvements in genetic algorithms”. In: IEEE Transactions
on magnetics 37.5 (2001), pp. 3414–3417.

[28] Jeff Clune et al. “On the performance of indirect encoding across the continuum
of regularity”. In: IEEE Transactions on Evolutionary Computation 15.3 (2011),
pp. 346–367.

68

http://dx.doi.org/http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208

BIBLIOGRAPHY

[29] Kenneth O Stanley and Risto Miikkulainen. “Evolving neural networks through
augmenting topologies”. In: Evolutionary computation 10.2 (2002), pp. 99–127.

[30] JE Darnell and WF Doolittle. “Speculations on the early course of evolution”. In:
Proceedings of the National Academy of Sciences 83.5 (1986), pp. 1271–1275.

[31] Addy Pross. “On the emergence of biological complexity: life as a kinetic state of
matter”. In: Origins of Life and Evolution of Biospheres 35.2 (2005), pp. 151–166.

[32] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. “A hypercube-based
encoding for evolving large-scale neural networks”. In: Artificial life 15.2 (2009),
pp. 185–212.

[33] Jason Gauci and Kenneth Stanley. “Indirect encoding of neural networks for scal-
able go”. In: Parallel Problem Solving from Nature, PPSN XI (2010), pp. 354–363.

[34] Brian Woolley and Kenneth Stanley. “Evolving a single scalable controller for an
octopus arm with a variable number of segments”. In: Parallel Problem Solving
from Nature, PPSN XI (2010), pp. 270–279.

[35] Joel Lehman and Kenneth O Stanley. “Exploiting Open-Endedness to Solve Prob-
lems Through the Search for Novelty.” In: ALIFE. 2008, pp. 329–336.

[36] Enrique Naredo, Leonardo Trujillo, and Yuliana Martı’nez. “Searching for novel
classifiers”. In: European Conference on Genetic Programming. Springer. 2013,
pp. 145–156.

[37] Jorge Gomes, Paulo Urbano, and Anders Lyhne Christensen. “Evolution of swarm
robotics systems with novelty search”. In: Swarm Intelligence 7.2-3 (2013), pp. 115–
144.

[38] Josh Wolper and George Abraham. “Evolving Novel Cellular Automaton Seeds
Using Computational Pattern Producing Networks (CPPN)”. In: (2015).

[39] Elwyn R Berlekamp, John Horton Conway, and Richard K Guy. Winning Ways, for
Your Mathematical Plays: Games in particular. Vol. 2. Academic Pr, 1982.

[40] Michal Bidlo and Zdenek Vasicek. “Evolution of cellular automata with condition-
ally matching rules”. In: 2013 IEEE Congress on Evolutionary Computation. IEEE.
2013, pp. 1178–1185.

[41] Michal Bidlo. “Investigation of Replicating Tiles in Cellular Automata Designed by
Evolution Using Conditionally Matching Rules”. In: Computational Intelligence,
2015 IEEE Symposium Series on. IEEE. 2015, pp. 1506–1513.

[42] Michal Bidlo. “On routine evolution of new replicating structures in cellular au-
tomata”. In: 7th International Conference on Evolutionary Computation Theory and
Applications. SCITEPRESS. 2015.

[43] Michal Bidlo and Jaroslav Škarvada. “Instruction-based development: From evolu-
tion to generic structures of digital circuits”. In: International Journal of Knowledge-
Based and Intelligent Engineering Systems 12.3 (2008), pp. 221–236.

[44] Michal Bidlo and Zdenek Vasicek. “Evolution of cellular automata using instruction-
based approach”. In: 2012 IEEE Congress on Evolutionary Computation. IEEE.
2012, pp. 1–8.

69

BIBLIOGRAPHY

[45] Stefano Nichele, Tom Eivind Glover, and Gunnar Tufte. “Genotype Regulation by
Self-modifying Instruction-Based Development on Cellular Automata”. In: Interna-
tional Conference on Parallel Problem Solving from Nature. Springer. 2016, pp. 14–
25.

[46] Stefano Nichele and Gunnar Tufte. “Evolutionary growth of genomes for the de-
velopment and replication of multicellular organisms with indirect encoding”. In:
Evolvable Systems (ICES), 2014 IEEE International Conference on. IEEE. 2014,
pp. 141–148.

[47] Stefano Nichele, Andreas Giskeødegård, and Gunnar Tufte. “Evolutionary growth
of genome representations on artificial cellular organisms with indirect encodings”.
In: Artificial life (2016).

[48] Simon L Harding, Julian F Miller, and Wolfgang Banzhaf. “Self-modifying carte-
sian genetic programming”. In: Cartesian Genetic Programming. Springer, 2011,
pp. 101–124.

[49] Martin A Trefzer et al. “On the advantages of variable length GRNs for the evolution
of multicellular developmental systems”. In: IEEE Transactions on Evolutionary
Computation 17.1 (2013), pp. 100–121.

[50] GB Muller. “Vestigial organs and structures”. In: Encyclopedia of Evolution 2 (2002),
pp. 1131–1133.

[51] Peter JB Hancock. “An empirical comparison of selection methods in evolution-
ary algorithms”. In: AISB Workshop on Evolutionary Computing. Springer. 1994,
pp. 80–94.

[52] Melanie Mitchell, Peter Hraber, and James P Crutchfield. “Revisiting the edge of
chaos: Evolving cellular automata to perform computations”. In: arXiv preprint
adap-org/9303003 (1993).

[53] Melanie Mitchell, James P Crutchfield, Rajarshi Das, et al. “Evolving cellular au-
tomata with genetic algorithms: A review of recent work”. In: Proceedings of the
First International Conference on Evolutionary Computation and Its Applications
(EvCA’96). Moscow. 1996.

[54] Aksel Ethembabaoglu, Shimon Whiteson, et al. “Automatic feature selection using
FS-NEAT”. In: (2008).

[55] Mark EJ Newman. “The structure and function of complex networks”. In: SIAM
review 45.2 (2003), pp. 167–256.

[56] Gina Maira Barbosa de Oliveira, Pedro PB de Oliveira, and Nizam Omar. “Guide-
lines for dynamics-based parameterization of one-dimensional cellular automata
rule spaces”. In: Complexity 6.2 (2000), pp. 63–71.

[57] Itay Hubara et al. “Binarized neural networks”. In: Advances in Neural Information
Processing Systems. 2016, pp. 4107–4115.

70

Appendix A
CA-NEAT Parameters

CA-NEAT has a large number of parameters that affect the outcome of the experiments.
This appendix lists some notable ones that would be needed to reproduce the results in this
thesis consistently.

Listing A.1: Parameters that define the initial population. Notably, for each generated individual,
the ratio of connectivity is determined individually to be a value between 0.5 and 1.0.

i n i t i a l h i d d e n n o d e s = 0
i n i t i a l c o n n e c t i o n = ’ p a r t i a l ’
c o n n e c t i o n f r a c t i o n = lambda ∗ a r g s : 0 . 5 ∗ (1 + random . random ())

Listing A.2: Parameters that have to do with selection and speciation

s u r v i v a l t h r e s h o l d = 0 . 2
s t a g n a t i o n l i m i t = 15
c o m p a t i b i l i t y t h r e s h o l d = 3 . 0
e x c e s s c o e f f i c i e n t = 1 . 0
d i s j o i n t c o e f f i c i e n t = 1 . 0
w e i g h t c o e f f i c i e n t = 0 . 5

71

Appendix A. CA-NEAT Parameters

Listing A.3: Parameters that have to do with mutation

max weight = 30
min we igh t = −30
w e i g h t s t d e v = 1 . 0
p r o b a d d c o n n = 0 . 5
p r o b a d d n o d e = 0 . 5
p r o b d e l e t e c o n n = 0 . 2 5
p r o b d e l e t e n o d e = 0 . 2 5
p r o b m u t a t e b i a s = 0 . 8
b i a s m u t a t i o n p o w e r = 0 . 5
p r o b m u t a t e r e s p o n s e = 0 . 8
r e s p o n s e m u t a t i o n p o w e r = 0 . 5
p r o b m u t a t e w e i g h t = 0 . 8
p r o b r e p l a c e w e i g h t = 0 . 1
w e i g h t m u t a t i o n p o w e r = 0 . 5
p r o b m u t a t e a c t i v a t i o n = 0 .002
p r o b t o g g l e l i n k = 0 . 0 1

72

Appendix B
CPPN Visualizations

This appendix contains visualizations of CPPN structures found by CA-NEAT. They range
from small networks that a human can reason about with some effort, to huge networks
that are difficult if not impossible to reason about. The intent of this appendix is not to
have the reader try to parse the structures, but to showcase the diversity of the populations
evolved by NEAT.

The visualizations are created programatically from the genome data structures using
Graphviz1. All the networks shown are pruned of vestigial structures and disabled con-
nections.

1http://www.graphviz.org/

73

http://www.graphviz.org/

Appendix B. CPPN Visualizations

run 26 gen 55 ind 70

N

σ
bias: 0.0

identity
bias: -1.9

0.3

cube
bias: 1.8

1.6

W

σ
bias: 0.0

exp
bias: -0.4

0.6

exp
bias: -3.1

3.3

gauss
bias: -1.2

0.2

C

σ
bias: 0.0

relu
bias: -0.4

1.9

E

σ
bias: 0.0

3.7

2.4

cube
bias: -1.9

1.7

S

σ
bias: 0.0

0.5

1.9

X

σ
bias: 0.0

0.5

-7.6clamped
bias: 0.6

-0.8

Y

σ
bias: 0.0

hat
bias: -4.9

1.0 5.4-4.4

■□

▨

1.15.5 0.1

0.5

1.9

Figure B.1: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

74

run 73 gen 991 ind 102

N

σ
bias: 0.0

W

σ
bias: 0.0

gauss
bias: 1.2

-0.9

C

σ
bias: 0.0

identity
bias: 3.2

-4.9

E

σ
bias: 0.0

identity
bias: 0.5

10.8

S

σ
bias: 0.0

-3.8

abs
bias: 4.2

-1.6

X

σ
bias: 0.0

-29.8

Y

σ
bias: 0.0

gauss
bias: -1.4

-0.4-3.0

-0.5 identity
bias: 0.1

-0.1

tanh
bias: 2.0

2.7

inv
bias: 1.0

0.7

hat
bias: -6.6

■□

▨ inv
bias: 4.6

-6.8

square
bias: -15.3

0.3

cube
bias: 4.7

-0.5

identity
bias: -4.0

-1.4 sin
bias: 0.8

-3.8

inv
bias: -3.8

-0.2

cube
bias: -1.5

-1.2

exp
bias: 4.8

0.2

inv
bias: 2.2

-0.2

0.1

σ
bias: -1.3

sin
bias: -2.9

0.6

hat
bias: -1.8

2.4

1.2

0.1

gauss
bias: 0.2

abs
bias: -3.3

-2.5

identity
bias: -10.3

1.4

clamped
bias: 2.9

-1.1

tanh
bias: 4.9

2.1

square
bias: -8.4

0.5

-2.0

1.0

-0.4

-3.5

-1.0 0.7

Figure B.2: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

75

Appendix B. CPPN Visualizations

run 27 gen 321 ind 115

N

σ
bias: 0.0

sin
bias: 1.6

1.0

W

σ
bias: 0.0

abs
bias: 3.4

6.7

C

σ
bias: 0.0

E

σ
bias: 0.0

log
bias: -1.1

-13.6-1.1

S

σ
bias: 0.0

0.3

X

σ
bias: 0.0

identity
bias: 0.4

-5.6

Y

σ
bias: 0.0

1.8

inv
bias: 1.4

2.2

■

0.1

□

▨

-1.3

Figure B.3: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

76

run 77 gen 130 ind 181

N

σ
bias: 0.0 W

σ
bias: 0.0

exp
bias: -4.9

6.1

exp
bias: -0.3

-0.2

C

σ
bias: 0.0E

σ
bias: 0.0

1.9

S

σ
bias: 0.0X

σ
bias: 0.0

hat
bias: -5.7

0.4

4.2-4.1

inv
bias: 1.7

0.6

Y

σ
bias: 0.0

log
bias: -3.4

10.5

inv
bias: 1.2

1.8

abs
bias: 1.1

1.9 inv
bias: -0.5

-0.3

■hat
bias: -0.1

-2.5

□

-0.2

0.0

cube
bias: -1.3

0.1

hat
bias: -1.6

0.6

▨

0.9

relu
bias: -1.0

0.1

-1.3 -0.7

inv
bias: 1.9

1.0

0.6

-4.1

gauss
bias: -1.1

-2.0

0.3

0.2

-0.2

-0.2

Figure B.4: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

77

Appendix B. CPPN Visualizations

run 29 gen 429 ind 174

N

σ
bias: 0.0

abs
bias: 0.6

2.3

cube
bias: 5.2

5.7

abs
bias: 1.3

-1.1

W

σ
bias: 0.0

clamped
bias: -6.5

-0.2

cube
bias: 5.7

12.4-9.3

C

σ
bias: 0.0E

σ
bias: 0.0

10.1

S

σ
bias: 0.0

7.0

X

σ
bias: 0.0

1.2-10.9

Y

σ
bias: 0.0

clamped
bias: -2.2

1.6

■

0.9

□▨

square
bias: 1.2

identity
bias: 0.2

0.5

hat
bias: 0.4

1.0

-8.4

exp
bias: -0.6

1.2 -0.1 0.2

Figure B.5: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

78

run 78 gen 778 ind 9

N

σ
bias: 0.0

hat
bias: 0.5

1.9

σ
bias: 2.3

-0.2

W

σ
bias: 0.0

abs
bias: 0.2

0.1

relu
bias: -0.5

4.5

gauss
bias: -6.7

0.5

C

σ
bias: 0.0

E

σ
bias: 0.0

exp
bias: 0.7

14.8

S

σ
bias: 0.0

-6.6

X

σ
bias: 0.0

exp
bias: -2.1

-1.1

hat
bias: 2.4

0.9

Y

σ
bias: 0.0

gauss
bias: 6.9

1.6

-4.2

tanh
bias: -3.6

5.5

■

□

▨

2.5

0.8

sin
bias: -2.3

-2.5-1.9

-0.2

6.6

-0.3

1.1

0.4

-0.6

Figure B.6: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

79

Appendix B. CPPN Visualizations

run 30 gen 139 ind 87

N

σ
bias: 0.0

W

σ
bias: 0.0

gauss
bias: -2.3

-0.1

cube
bias: 0.0

-1.3

relu
bias: 0.4

0.2

C

σ
bias: 0.0E

σ
bias: 0.0

-0.5

identity
bias: -2.7

-9.1

hat
bias: -1.3

-0.0

S

σ
bias: 0.0

1.1

X

σ
bias: 0.0

-5.6

relu
bias: -0.3

-0.1

sin
bias: 0.0

1.3

Y

σ
bias: 0.0

5.4 -1.0

-1.0

■□

square
bias: -2.5

▨

0.64.7

square
bias: -2.7

-2.6

hat
bias: 1.1

-0.5

3.7cube
bias: 0.0

0.7

sin
bias: -1.0

-0.3

identity
bias: -0.1

clamped
bias: -0.2

1.2

-1.5

3.0

1.4

0.2

-1.1

Figure B.7: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

80

run 82 gen 505 ind 152

N

σ
bias: 0.0 W

σ
bias: 0.0

relu
bias: -9.4

7.6

abs
bias: 3.3

-5.2

C

σ
bias: 0.0

E

σ
bias: 0.0

tanh
bias: 4.6

4.0

S

σ
bias: 0.0

hat
bias: 3.4

-0.1

X

σ
bias: 0.0

exp
bias: -1.6

12.6

relu
bias: -14.9

-11.0

Y

σ
bias: 0.0

clamped
bias: -2.4

11.0

gauss
bias: 2.9

-3.8

■

□ ▨

0.9

σ
bias: 9.7

-8.6

0.5

σ
bias: -1.0

-2.3exp
bias: -3.1

1.0

exp
bias: -0.4

-2.0

inv
bias: -3.7

-2.2

cube
bias: -0.8

4.0

-1.0

exp
bias: 0.6

1.1

0.0

1.0

sin
bias: -2.0

0.4

0.4

0.6

Figure B.8: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

81

Appendix B. CPPN Visualizations

run 44 gen 262 ind 93

N

σ
bias: 0.0

exp
bias: -7.0

-3.4

W

σ
bias: 0.0

6.7

C

σ
bias: 0.0

hat
bias: -0.4

-1.1-1.6

E

σ
bias: 0.0

7.2 hat
bias: -0.4

-5.1

identity
bias: -1.4

0.6

S

σ
bias: 0.0

2.1-3.0

X

σ
bias: 0.0

1.3

exp
bias: -3.7

-3.3

Y

σ
bias: 0.0

σ
bias: -10.2

12.1

■

□ ▨

tanh
bias: -0.3

-0.8

gauss
bias: -1.0

0.5

2.6

clamped
bias: 0.5

-2.5 -1.2

Figure B.9: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

82

run 83 gen 661 ind 197

N

σ
bias: 0.0 W

σ
bias: 0.0

exp
bias: -4.5

11.9

C

σ
bias: 0.0

6.9

sin
bias: 3.0

-2.8

E

σ
bias: 0.0

relu
bias: -2.0

2.9

S

σ
bias: 0.0

gauss
bias: 5.0

-0.9

σ
bias: -2.7

-1.0

X

σ
bias: 0.0

exp
bias: 4.6

-13.6

Y

σ
bias: 0.0

cube
bias: -1.1

2.8

inv
bias: 1.4

1.4

■

□ ▨

-0.1

abs
bias: 0.0

1.0

tanh
bias: 0.8

2.3

exp
bias: -1.3

sin
bias: 0.6

0.5

-0.3

hat
bias: -2.4

-0.8

cube
bias: 4.0

-0.9

0.4

-2.8

-2.0

-2.9

Figure B.10: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

83

Appendix B. CPPN Visualizations

run 54 gen 89 ind 36

N

σ
bias: 0.0

gauss
bias: 2.0

0.2

identity
bias: -2.1

-0.3

W

σ
bias: 0.0

relu
bias: -7.8

-1.3

exp
bias: 1.8

4.7

exp
bias: 0.7

-1.1

C

σ
bias: 0.0

-3.2

E

σ
bias: 0.0

-8.7

S

σ
bias: 0.0

0.4 0.1

X

σ
bias: 0.0

-1.0

exp
bias: -5.9

-9.3

Y

σ
bias: 0.0

1.8

clamped
bias: -0.9

6.0

inv
bias: 1.6

1.6

hat
bias: 2.4

0.4

■

□

0.0

▨

3.9

-2.6square
bias: 0.1

0.9

-8.3

relu
bias: -1.5

0.5

σ
bias: -2.3

-1.63.0

-0.4

-2.3

Figure B.11: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

84

run 56 gen 894 ind 74

N

σ
bias: 0.0

sin
bias: 3.0

0.9

cube
bias: -1.6

1.8

W

σ
bias: 0.0

hat
bias: 7.4

-0.3

tanh
bias: -2.8

0.7

log
bias: -8.9

-3.7

square
bias: -8.3

1.7

cube
bias: -14.2

0.2

C

σ
bias: 0.0

-12.8

E

σ
bias: 0.0

-4.5

S

σ
bias: 0.0

0.3

relu
bias: 9.8

-1.8

hat
bias: 1.1

-0.7

X

σ
bias: 0.0

-18.8

Y

σ
bias: 0.0

tanh
bias: -0.5

6.3

inv
bias: -3.6

-1.7

■ log
bias: 12.1

-0.2

□

σ
bias: -6.1

▨

2.5

-1.4

relu
bias: -1.9

1.7

identity
bias: -7.1

-1.4

identity
bias: -2.5

-2.4

0.8

square
bias: 4.6

identity
bias: 7.1

-2.0

-0.0 hat
bias: 1.4

-0.9

relu
bias: 4.6

0.2

3.7

-2.2

exp
bias: -12.2

1.4

hat
bias: 2.2

2.1

abs
bias: -4.2

5.6

2.0

-0.9inv
bias: -3.9

0.0

-0.6

-1.1

0.6

inv
bias: 3.7

0.7

tanh
bias: -5.0

3.0

-1.1

0.5-2.1

Figure B.12: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

85

Appendix B. CPPN Visualizations

run 62 gen 185 ind 6

N

σ
bias: 0.0

W

σ
bias: 0.0

hat
bias: -2.1

0.9 relu
bias: -0.9

3.2

C

σ
bias: 0.0

cube
bias: -0.4

1.0

E

σ
bias: 0.0

relu
bias: -2.1

-11.6

5.4log
bias: 0.2

0.2

S

σ
bias: 0.0

exp
bias: 2.5

0.5

X

σ
bias: 0.0

-7.4

Y

σ
bias: 0.0

8.8

■

□

▨

0.1 2.0 2.2

Figure B.13: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

86

run 91 gen 99 ind 105

N

σ
bias: 0.0

W

σ
bias: 0.0

sin
bias: -2.1

-0.3

cube
bias: 0.3

5.1

exp
bias: -3.3

-1.5

C

σ
bias: 0.0

E

σ
bias: 0.0

1.9

5.4

S

σ
bias: 0.0

X

σ
bias: 0.0

-8.5

Y

σ
bias: 0.0

0.1

relu
bias: -3.9

8.63.3

sin
bias: 0.1

-0.8

■□identity
bias: -2.5

1.5

▨

clamped
bias: -0.7

0.6

3.6

0.3

log
bias: 2.0

-4.1

tanh
bias: 1.2

0.8

sin
bias: 1.1

0.8

hat
bias: 1.8

0.0

1.1

-0.4

Figure B.14: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

87

Appendix B. CPPN Visualizations

run 99 gen 133 ind 110

N

σ
bias: 0.0

W

σ
bias: 0.0

square
bias: 0.3

-2.0

exp
bias: -1.1

-1.8

exp
bias: -0.3

6.2

C

σ
bias: 0.0

gauss
bias: -0.2

0.4

E

σ
bias: 0.0

cube
bias: 0.0

-6.0 0.6

S

σ
bias: 0.0

X

σ
bias: 0.0

-5.3

-2.3

Y

σ
bias: 0.0

hat
bias: 1.8

1.1 3.9 1.1

cube
bias: -0.5

0.7

■ □

▨

-0.2

-0.63.0

Figure B.15: A network evolved for the ”Nordic” morphogenesis with coordinate information task.

88

run 50 gen 9 ind 145

L3

σ
bias: 0.0

log
bias: -0.5

-0.9

σ
bias: 1.3

1.1

L2

σ
bias: 0.0

L1

σ
bias: 0.0

0.0 0.8 square
bias: -1.1

1.6

C

σ
bias: 0.0

R1

σ
bias: 0.0R2

σ
bias: 0.0

-0.8

R3

σ
bias: 0.0

exp
bias: -1.3

2.1

■

-0.9 2.1

Figure B.16: A network evolved for the majority problem. This one uses only 4/7 inputs, yet is able
to solve all the ICs in the training set.

89

Appendix B. CPPN Visualizations

run 65 gen 21 ind 164

L3

σ
bias: 0.0

identity
bias: -0.5

1.4

L2

σ
bias: 0.0

1.0

L1

σ
bias: 0.0

hat
bias: 0.5

1.0

log
bias: -0.8

-0.3

C

σ
bias: 0.0

σ
bias: 1.5

-1.6

R1

σ
bias: 0.0

2.2

R2

σ
bias: 0.0

σ
bias: -0.8

0.7

R3

σ
bias: 0.0

-0.0

■

-1.0 square
bias: -0.8

1.6 -1.5

1.4

1.6

Figure B.17: A network evolved for the majority problem. This one has separated into two sub-
networks, each deciding the activation value of one of the outputs.

90

run 1 gen 0 ind 1345

L3

σ
bias: 0.0

sin
bias: -0.9

-0.1 abs
bias: -6.1

3.2

sin
bias: 15.0

1.3

L2

σ
bias: 0.0

gauss
bias: -2.8

-1.2

L1

σ
bias: 0.0

sin
bias: -9.1

-0.1

C

σ
bias: 0.0

0.3

hat
bias: 5.6

1.5

R1

σ
bias: 0.0

-0.2

5

6 σ
bias: -9.3

0.9

abs
bias: 3.6

2.90.4

sin
bias: 3.9

0.4

abs
bias: 1.6

-1.2

identity
bias: -1.0

2.1

sin
bias: -2.8

sin
bias: 5.8

2.9

-0.9

hat
bias: -12.9

tanh
bias: 6.3

-0.7

1.9

-0.9

clamped
bias: -0.7

1.4

abs
bias: -3.1

1.4

log
bias: -9.9

-1.2 square
bias: -16.8

-0.3

2.0

2.1

clamped
bias: 3.0

0.5

square
bias: 10.7

1.3

tanh
bias: -4.2

-3.20.5

-2.9

2.0

1.61.3

Figure B.18: A network evolved with novelty search (N = 5,K = 2).

91

Appendix B. CPPN Visualizations

run 1 gen 0 ind 1984

L3

σ
bias: 0.0

sin
bias: 6.5

-1.8

clamped
bias: 0.8

1.2

exp
bias: -0.6

0.5

L2

σ
bias: 0.0

-3.5σ
bias: -1.7

0.2clamped
bias: 5.2

-1.3

L1

σ
bias: 0.0

1.6

inv
bias: 4.1

-0.0

C

σ
bias: 0.0

-0.3

R1

σ
bias: 0.0

0.8 sin
bias: -0.1

-0.9

5 6

gauss
bias: -1.5

1.0

-1.8

inv
bias: 2.4

-0.0

-1.30.0

identity
bias: 0.0

1.5

0.1 1.3

Figure B.19: A network evolved with novelty search (N = 5,K = 2).

92

run 1 gen 0 ind 2287

L3

σ
bias: 0.0

sin
bias: 13.6

-0.2

sin
bias: 1.0

-0.7

L2

σ
bias: 0.0

sin
bias: 15.1

-2.8

inv
bias: 1.2

-0.1

identity
bias: -2.3

0.9

L1

σ
bias: 0.0

0.6

tanh
bias: -0.1

-1.5σ
bias: 0.4

-2.4

tanh
bias: -1.8

2.3

C

σ
bias: 0.0

0.4

-1.7

R1

σ
bias: 0.0

2.4

5

6

-6.3

σ
bias: -7.8

-0.8

-0.7 -0.7

-0.7

relu
bias: -2.9

inv
bias: 9.7

-1.5 sin
bias: 0.4

-3.7

-0.21.2

1.2

-2.7

Figure B.20: A network evolved with novelty search (N = 5,K = 2).

93

Appendix B. CPPN Visualizations

run 1 gen 0 ind 649

L3

σ
bias: 0.0

sin
bias: 10.0

-1.1

inv
bias: -9.6

-5.1

sin
bias: 15.9

-1.7

L2

σ
bias: 0.0

0.5

identity
bias: -4.3

-0.5

L1

σ
bias: 0.0

2.7

σ
bias: -1.3

0.1

C

σ
bias: 0.0

-0.9

2.8

clamped
bias: 4.0

1.3

R1

σ
bias: 0.0

0.5

5 tanh
bias: -3.3

1.0

6

σ
bias: -14.1

-3.8 hat
bias: 0.0

-2.3

gauss
bias: -17.8

cube
bias: 6.5

-0.3

1.1

2.1 0.9 -2.3

relu
bias: -11.0

identity
bias: 1.0

0.1

-0.9

clamped
bias: -2.7

-2.2

relu
bias: 0.6

gauss
bias: -0.2

0.7

0.2

exp
bias: 4.7

0.3

abs
bias: 11.3

-4.0

cube
bias: -1.8

0.2

σ
bias: -8.9

0.2clamped
bias: 1.1

0.9

cube
bias: 7.3

-0.1

-2.4

-1.6log
bias: -0.6

1.1

σ
bias: -1.5

-2.2

0.4

-1.7

sin
bias: -0.8

-3.1

-0.7

-1.7

1.7 -0.0

Figure B.21: A network evolved with novelty search (N = 5,K = 2).

94

run 1 gen 0 ind 1579

L3

σ
bias: 0.0

sin
bias: -1.6

0.4

abs
bias: -0.3

-2.5

sin
bias: 24.7

0.0

L2

σ
bias: 0.0

gauss
bias: 1.5

-0.4

L1

σ
bias: 0.0

sin
bias: -0.4

-0.9

identity
bias: -0.0

-0.5

C

σ
bias: 0.0

-2.5

hat
bias: 1.1

-0.2

relu
bias: 2.8

3.1

R1

σ
bias: 0.0

-3.3σ
bias: 2.6

2.4

5

6

tanh
bias: 5.1

sin
bias: 11.3

0.9

clamped
bias: 14.6

σ
bias: -11.6

1.0

-0.9

-1.8

-1.6sin
bias: 8.1

1.8

sin
bias: -4.3

2.5

1.0

gauss
bias: -8.5

1.3 identity
bias: -24.3

2.7

tanh
bias: -2.4

-1.0

σ
bias: -14.4

1.8

1.4

inv
bias: -5.0

-0.5 -0.5

tanh
bias: 12.9

-0.7

hat
bias: 4.2

-2.2

exp
bias: -5.8

-1.5

0.7

σ
bias: 5.5

-1.5

inv
bias: -3.1

square
bias: -19.3

1.9

relu
bias: -6.9

1.8

-2.9

1.9

cube
bias: -2.6

gauss
bias: 0.9

-0.9

-1.9

2.1

-1.0

1.4

0.9

identity
bias: -11.1

2.5

σ
bias: 3.9

2.6

-1.8

inv
bias: -1.1

-0.3

-0.5 -3.7

1.6

Figure B.22: A network evolved with novelty search (N = 5,K = 2).

95

Appendix B. CPPN Visualizations

run 1 gen 0 ind 2091

L3

σ
bias: 0.0

sin
bias: 1.2

1.5

sin
bias: 1.5

-0.4

L2

σ
bias: 0.0

sin
bias: 13.3

-2.6

L1

σ
bias: 0.0

-0.8

C

σ
bias: 0.0

0.1

inv
bias: 1.6

-0.5 exp
bias: -0.2

1.1

R1

σ
bias: 0.0

-1.6

5tanh
bias: 2.2

-0.1

6

abs
bias: 0.9

-0.3

-0.7

sin
bias: 3.2

-1.6

-2.8

0.4

-4.7

Figure B.23: A network evolved with novelty search (N = 5,K = 2).

96

run 1 gen 0 ind 3577

L3

σ
bias: 0.0

sin
bias: 26.6

3.6

L2

σ
bias: 0.0

gauss
bias: -0.7

-0.4

L1

σ
bias: 0.0

sin
bias: -0.4

1.2

C

σ
bias: 0.0

sin
bias: 2.2

-0.6 clamped
bias: 10.3

-3.31.5

R1

σ
bias: 0.0

0.4

5

6

hat
bias: -1.1

σ
bias: -4.4

1.8

-3.50.6

0.5

sin
bias: -5.6

clamped
bias: 15.9

1.3

-0.3

0.9 -1.8

tanh
bias: 1.3

2.3

square
bias: -15.6

0.5

Figure B.24: A network evolved with novelty search (N = 5,K = 2).

97

Appendix B. CPPN Visualizations

run 1 gen 0 ind 988

L3

σ
bias: 0.0

sin
bias: 18.8

0.5

cube
bias: 0.8

0.9

L2

σ
bias: 0.0

gauss
bias: -1.2

-2.7

L1

σ
bias: 0.0

sin
bias: -5.6

-0.8

C

σ
bias: 0.0

sin
bias: -2.7

-0.5

3.0

R1

σ
bias: 0.0

4.7

56

inv
bias: -9.8

σ
bias: -16.9

-1.7

0.3

1.3 -3.2

1.4

3.1

Figure B.25: A network evolved with novelty search (N = 5,K = 2).

98

Appendix C
Sample Solutions

This appendix contains some visualizations of hand-picked example solutions that were
found.

In morphogenesis cases where a previous state is revisited (a cycle is found), the num-
ber above the last state shown indicates which previous state it is equal to.

For the morphogenesis examples up to 30 states are shown, including states after the
target pattern is seen. For replication examples, the visualizations stop after an optimal (3
copies) solution is seen.

Figure C.1: A solution to the ”Mosaic” morphogenesis where the CA finds a two-step cycle that
includes the target pattern.

99

Appendix C. Sample Solutions

Figure C.2: Another two-state cycle that includes the target state.

Figure C.3: Another two-state cycle that includes the target state.

Figure C.4: A solution where the target pattern can be seen early, but when the CA continues it
becomes chaotic.

100

Figure C.5: A solution to the ”Swiss” morphogenesis where the CA goes in to a three-state cycle
that contains the target pattern.

Figure C.6: Another solution, where after visiting the target state the CA eventually annihilates
itself completely.

101

Appendix C. Sample Solutions

Figure C.7: A solution where the CA develops with one of two possible symmetries, but still finds
the solution that has two symmetries.

Figure C.8: A solution that quickly finds the target pattern, but then keeps developing and finds a
longer cycle that does not include the target pattern.

102

Figure C.9: Another solution which visits the target pattern, but stabilizes in a point attractor not
equal to the target.

Figure C.10: A solution which stabilizes into a ”Tricolor” pattern and then cycles through different
permutation of the colors.

103

Appendix C. Sample Solutions

Figure C.11: A solution that looks very chaotic for a very long time, but eventually manages to
recover and create patterns with vertical lines.

Figure C.12: A solution to the ”Mosaic” replication, where expansion happens only along one axis.

104

Figure C.13: Another solution, where replication is done in three directions while retaining the
original.

Figure C.14: A solution to the ”Swiss” replication that expands symmetrically along both axes.

Figure C.15: A solution which expands in two orthogonal directions.

105

Appendix C. Sample Solutions

Figure C.16: A solution which is like that of Figure C.14, except the CA ”forgot” one direction.

Figure C.17: A solution that has the same behavior as that of the ”Mosaic” replication in Figure
4.7.

106

Figure C.18: A solution which illustrates that the fitness function doesn’t care about noisy ”back-
ground” patterns as long as it finds at least three perfect replicas.

Figure C.19: A solution which expands only along one axis.

107

Appendix C. Sample Solutions

Figure C.20: A solution to the ”Tricolor” replication. All the found solutions expanded only along
the horizontal axis.

Figure C.21: Another solution to the ”Tricolor” replication.

Figure C.22: A solution to the ”Border” morphogenesis with coordinate input. Finding a point
attractor (like Figure 4.10) or a two-step cycle attractor containing the target pattern like this was
quite common among the found solutions.

108

Figure C.23: A ”solution” to the ”Border” morphogenesis with coordinate input. This illustrates a
weakness of the fitness evaluation, since the ”solution” does not appear to try to target the wanted
pattern, but does 30 different things and just happened to visit the target pattern at time step 22. This
did not occur too often though, most morphogenesis results found a point or cyclic attractor within
30 time steps.

109

Appendix C. Sample Solutions

Figure C.24: A solution to the ”Nordic” replication with coordinate input. This is the ”quickest”
solution (tied with others), finding a point attractor in time step 6.

Figure C.25: A solution to the ”Nordic” replication with coordinate input.

110

	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research Questions
	Structure of the Thesis

	Background & Motivation
	Complex and Biologically-Inspired Systems
	Morphogenetic Engineering

	Cellular Automata
	CA Definition
	Transition Rules
	The Parameter and the Edge of Chaos
	Finding Interesting Transition Rules

	Artificial Neural Networks
	Compositional Pattern Producing Networks

	Artificial Evolution and Development
	NEAT
	Novelty Search

	Motivation
	Related Work

	Implementation
	CA-NEAT
	Mapping CA-NEAT Rules to Traditional Rules
	Identifying Vestigial Structures
	Extending CA-NEAT with Environmental Information

	Novelty Search

	Experiments
	Overarching Methodology
	Morphogenesis and Replication of 2D Patterns
	Morphogenesis Problems
	Replication Problems
	Cellular Model
	Results

	2D Morphogenesis with Coordinate Input
	Results

	Majority and Synchronization Problems
	Fitness Evaluation
	Evolution
	Comprehensive Testing
	Results

	Investigation of Genome Properties
	Experiment Design
	Fitness
	Speciation
	
	Distinct Behaviors
	Network Topology

	Novelty Search
	Results

	Discussion & Future Work
	Tasks Solved
	Neighborhood Definitions
	Network Size
	Exploring the CA Behavior Space with Objective and Novelty Search
	The Role of NEAT Mechanisms and Parameters
	CPPN Domain and Activation Functions
	Implementation Critique

	Conclusion
	Bibliography
	CA-NEAT Parameters
	CPPN Visualizations
	Sample Solutions

