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Abstract 

The determination of work hardening for ductile materials at large strains is difficult to 

perform in the framework of usual tensile tests because of the geometrical instability and 

necking in the specimen at relatively low strains. In this study we propose a combination of 

experimental and numerical techniques to overcome this difficulty. Extruded aluminium 

alloys are used as a case since they exhibit marked plastic anisotropy. In the experiments, the 

minimum diameters of the axisymmetric tensile specimen in two normal directions are 

measured at high frequency by a laser gauge in the necking area together with the 

corresponding force, and the true stress-strain curve is found. The anisotropy of the material is 

determined from its crystallographic texture using the crystal plasticity theory. This data is 

used to represent the specimen by a 3D finite element model with phenomenological 

anisotropic plasticity. The experimental true stress-strain curve is then used as a target curve 

in an optimization procedure for calibrating the hardening parameters of the material model. 

As a result, the equivalent stress-strain curve of the material up to fracture is obtained. 
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1.  Introduction 

One of the basic and most important experimental tests in material science is the 

uniaxial tension test. A great variety of ways to perform the test on a given material exists, 

with different sizes and shapes of the specimens and different methods to apply the tensile 

load and measure the resulting displacements and forces. All these variations have a common 

core, defined by the way the material (or in our case an aluminium alloy) deforms plastically. 

At small strains, in the elastic and early plastic regime of deformation, the deformation of the 

specimen may be safely considered homogeneous throughout the cross-section. Consequently 

the stress may be considered homogeneous and is easily calculated as the ratio of the total 

force and cross-section area (either initial or current). In this regime of deformation the 

specimen may also be assumed, without much loss of accuracy, to deform homogeneously 

along its length, at least on some considerable length span in the centre. It allows for a 

convenient way to measure and calculate strains with strain gauges, extensometers, digital 

image correlation or other techniques. The problems arise when the strains reach some critical 

value and the specimen goes into another regime of deformation — diffuse necking [1]. The 

critical strain for necking is much lower than the ultimate strain at fracture for most important 

aluminium alloys. In the diffuse necking regime the deformation concentrates in some area of 

the specimen and the strain becomes highly heterogeneous. Moreover, the stress situation in 

the necking area becomes much more complex. In the homogeneous regime the component of 

the stress along the tensile axis is the only component of the stress tensor and is therefore 

equal to the equivalent stress, provided that the material is isotropic. If the material is 

anisotropic, the latter holds only in the reference direction. But in the necking area the 

heterogeneous deformation field produces a complex stress field with triaxiality deviating 

from one-third. It is still possible to find the average true stress component in the tensile 

direction as well as the average true strain in the necking area, but this true stress component 

will noticeably deviate from the equivalent stress [2]. The conceptual difficulty here is that we 

are seeking the properties of the material, but we measure the response of a specimen with all 

its constraints and instabilities. While the material continues to work-harden up until very 

large strains, we only have reliable information about its behaviour in a relatively small strain 

range, where the specimen is still geometrically stable. 

The first attempt to overcome this problem was made by Bridgman [3]. His approach 

was analytical and consisted of finding the stress field in the neck region of a tensile specimen 

with circular cross-section and isotropic plastic behaviour of the material. The result was a 



parameter which transformed the true stress in the neck of the specimen (smallest cross 

section) into the equivalent stress. Later other researchers tried to improve the initial solution 

aiming for better accuracy [4] or other specimen geometries [5], but after all the Bridgman 

correction for the true stress remains the most popular analytical method.  

The main shortcomings of this solution are the much idealized assumed properties of 

the material and the specimen. The material must be isotropic, which makes the application of 

this method to highly anisotropic textured aluminium alloys very dubious. The correction in 

its initial form depends on the curvature of the neck region which is hard to measure, and the 

existing phenomenological methods, which avoid this measurement, sacrifice some accuracy 

[6]. So a way of extracting the equivalent stress as a function of strain from the tensile test 

after the onset of necking remains an important problem.  

We propose a method of extracting this information from a specimen of arbitrary 

axisymmetric geometry and made of a material with arbitrary plastic anisotropy. Instead of an 

analytical solution we use a numerical solution based on the finite element method (FEM). 

Already in the 1970s, FEM was used to find stress-strain fields in the necking area [7, 8]. It 

has since then been used successfully to model localization up until fracture in uniaxial 

tension [9] and plane strain [10] and for anisotropic textured aluminium alloys [11]. Other 

examples of recent works, where FEM solutions of localization problems are validated by 

experimental data, include [12, 13].  

The plastic anisotropy of the tested material is described by an anisotropic yield 

function. This kind of yield functions is also well established. Since the early work of Hill 

[14], different formulations have been proposed [15, 16]. This sort of functions was found to 

be an adequate representation of the plastic anisotropy of aluminium alloys, when fitted to 

experimental data [17]. A class of non-quadratic yield functions based on linear 

transformations of the stress deviator was proposed in [18] and discussed more generally in 

[19]. These yield functions typically use a large number of parameters to describe the shape of 

the yield surface of the material with high flexibility and accuracy. The drawback is the 

correspondingly high number of material tests necessary to identify these parameters.  

To reduce the required number of tests in the parameter identification procedure, the 

tests were complemented by numerical simulations utilizing the crystal plasticity theory. 

Knowledge of the crystallographic texture and the plastic behaviour of the slip systems in the 

individual crystals of the material allow us to substitute some of the tests with simulations. 



This method was first used in [20] and [21]. By now it is used by many researchers with 

relative success, especially in predicting the plastic strain anisotropy of metals and alloys [22]. 

Though crystal plasticity simulations may ignore some important physical mechanisms 

playing a role in the plastic response, they are in general cheaper than physical testing. The 

limits of this method are discussed in [23]. Crystal plasticity is used to find the yield surface 

of textured alloys in [24, 25, 26].  

The method we propose is based on these techniques, well established theoretically 

and validated by experiments. We use 3D FEM simulations of a tensile specimen, with an 

anisotropic yield surface, found from crystal plasticity simulations. The true stress-strain 

response of the simulated specimen is then fitted to the response of the real specimen by 

optimizing the properties of the simulated material — its yield strength and hardening 

parameters. When these characteristics are found we can directly obtain the equivalent stress-

strain response of the material.  

In recent years several researchers have approached the problem using a similar 

framework. Zhano and Li [27] used an optimization procedure to extrapolate the stress after 

necking. Cabezas and Celentano [28] used FEM to find correction factors for cylindrical and 

plane steel specimens. Bogusz et al. [29] used digital image correlation and FEM simulations 

to compare correction factors from different analytical models. Ling [30] extrapolated the 

hardening from before necking and validated it with an FEM simulation of the post-necking 

deformation. Westermann et al. [31] used the same laser gauge measurement and a similar 

numerical simulation method as in this work, but for isotropic aluminium alloys. However, to 

the authors’ best knowledge, the proposed combination of crystal plasticity, anisotropic 

material model and optimization technique to obtain the equivalent stress-strain curve all the 

way to failure for a ductile aluminium alloy has not been used before. 

2. Experiments 

2.1. Materials 

Three aluminium alloys were used in the tests: 6060, 6082.50 and 6082.25. The chemical 

composition of the alloys is given in Table 1. The specimens were obtained from 10 mm thick 

and 90 mm wide extruded flat profiles at 90 to the extrusion direction and heat treated to five 

different tempers: T4, T6x, T6, T7 and O. The various heat treatments are described in Table 

2. The alloys were analysed in the scanning electron microscope using electron back-



scattering diffraction (EBSD) and EDAX TSL OIM software to provide grain morphology 

and texture. The orientation distribution functions (ODF) for the three alloys are shown in 

Figure 1, Figure 2 and Figure 3. The EBSD measurements were carried out in the plane 

defined by the extrusion and normal directions of the profile, using 10 µm steps on a square 

grid for the 6060 alloy and 5 µm steps for the 6082 alloys. The ODFs were calculated from 

the pole figures in the EDAX TSL OIM software using a harmonic series expansion and 

triclinic sample symmetry [32]. The total number of measured orientations (or 

grains/subgrains) is 2611, 22416 and 25512 for 6060, 6082.50 and 6082.25 alloy, 

respectively. The grain structure of the alloys is presented in Figure 4. The textures and grain 

structures are typical for recrystallized alloys (6060) and non-recrystallized extruded alloys 

(6082), respectively. The 6060 alloy has an equi-axed, recrystallized grain structure, whereas 

the two 6082 alloys have a non-recrystallized structure with flat, pancake-shaped grains The 

most prominent texture component in all three alloys is a cube component, but the other 

orientations differ strongly between the 6060 alloy and the two 6082 alloys. The texture of the 

6060 alloy is comprised of a strong cube texture with a minor Goss component, while the two 

6082 alloys have a strong cube texture with orientations along the -fibre, which runs from 

the Copper to the Brass orientation, through the S component.   

2.2. Mechanical testing 

Tensile tests were performed at room temperature on three specimens for each temper 

of each alloy, giving a total of 45 tests. The geometry of the specimen is shown in Figure 5. 

The cross-head velocity of the universal tensile testing machine was 1.2 mm / min , which 

corresponds to an initial strain rate of 4 -15 10 s . The force and minimum diameter of the cross 

section in two normal directions were measured during the whole test until fracture. The 

measurements of the minimum diameter were performed with an in-house measuring rig. It 

consists of two lasers mounted normally to each other and to the tensile axis of the specimen. 

The lasers were projecting light beams with dimensions 213 0.1 mm  across the specimen 

and on the detectors on the opposite side of the rig. The system used a high-speed, contact-

less AEROEL XLS13XY laser gauge with 1 μm  resolution, which was installed on a mobile 

frame. The sample was scanned at a frequency of 1200 Hz during the test and the measured 

data were transferred by the built-in electronics to the remote computer via fast Ethernet. This 

setup ensured that the minimum diameters of the specimen in two normal directions are 

accurately measured throughout the whole test.  



 We introduce a Cartesian coordinate system , ,x y z , where x  is the extrusion 

direction, y  is the transverse direction in the flat profile and z  is the normal direction (i.e. in 

the thickness direction of the profile). The tensile direction is then always in the y  direction. 

If we denote the measured diameters xD  and zD , and assume that the deformed cross section 

is elliptical in shape (which is a reasonable assumption for orthotropic material), then we may 

find the current cross-section area as  
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The true (Cauchy) stress is found as  

 y

F

A
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where F  is the measured tensile force. If we also assume plastic incompressibility, the true 

logarithmic strain may be expressed as 
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where 0A  is the initial cross-section area of the specimen. These measures only express the 

average response of the specimen after necking starts. Similarly when equivalent strains are 

discussed, logarithmic strain is used. It should be noted that the plastic incompressibility 

assumption may not hold at strains near fracture because of void nucleation and growth.  

The strain ratio, denoted yr , is here defined as  

 x
y

z

d
r

d




  (4)  

where  
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Therefore, if we plot the logarithmic strain in the extrusion direction  0ln /x xD D    as a 

function of the logarithmic strain in the normal direction  0ln /z zD D  , then yr   is the 



slope of the resulting curve. The ratio yr  equals unity for isotropic materials, while values 

different from unity indicates anisotropic plastic flow. If the texture evolves significantly with 

plastic deformation, yr  is also expected to change.  

3. Material modelling 

3.1. Crystal plasticity 

To establish a yield surface to use in the phenomenological yield function, the crystal 

plasticity theory is utilized. It is implemented numerically in a rate-dependent form with the 

Kalidindi hardening model [33, 34] and a Taylor-type polycrystal homogenisation [35]. 

3.1.1. Single crystal kinematics and kinetics 

A finite deformation formulation is used. The total deformation gradient is 

multiplicatively decomposed into elastic and plastic parts [36] 

 e pF F F  (6) 

The plastic part pF  transforms the body from the initial configuration 0  into the 

intermediate plastically deformed configuration  , see Figure 6. The elastic component eF  

transforms the body from intermediate into the current configuration   with elastic 

deformation and rigid body rotation. The first transformation is due to slip on the slip systems, 

which are here represented by couples of vectors connected to the lattice. The lattice remains 

undeformed during this transformation. During the second transformation the lattice deforms 

and rotates together with the material. The intermediate configuration is thus unaffected by 

rigid body rotations, so the constitutive relations formulated in this configuration are 

objective. The following relations are based on [33]. The vectors 0
m  and 0

n  are the slip 

direction and slip plane normal vectors, respectively, for a slip system   in the initial and 

intermediate configuration, whereas m and n are the slip system vectors in the current 

configuration, rotated and stretched by the elastic deformation gradient eF . These vectors are 

normal to each other in any configuration by definition. The plastic velocity gradient pL  in 

the intermediate configuration then has these vectors as a basis 
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where   is the slip rate on slip system   in the intermediate configuration and n  is the total 

number of slip systems. The elastic Green strain tensor eE  in the intermediate configuration 

may be defined as 
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where eC  is the elastic right Cauchy-Green deformation tensor and I  is the unity tensor. The 

second Piola-Kirchhoff stress tensor S  in the intermediate configuration is obtained by 

pulling back the Cauchy stress tensor   into this configuration 
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This stress is power conjugate to the elastic Green strain and is found from the hyperelastic 

law 

 :S e
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where S
eC  is the fourth order tensor of elastic moduli. It has 3 independent components and 

hence describes the crystal anisotropy. The total power per unit volume w  produced by the 

crystal consists of elastic (stored) and plastic (dissipated) parts 

 : :e p e e pw w w      S E C S L  (11) 

The plastic part of the total power may be also expressed through the power spent on every 

slip system if the resolved shear stress   is introduced 
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where   is connected to the second Piola-Kirchhoff stress through the slip system vector 

basis 
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3.1.2. Flow and hardening rules 

The plastic flow is described by a widely used rate-dependent rule proposed in [37] as  
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where 0  is the reference slip rate, m  is the instantaneous strain rate sensitivity and c
  is the 

history dependent yield strength of slip system  . The hardening rate of each slip system is 

defined by  
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where h are the slip hardening rates developing on slip system   because of slip on system 

 . They may be decomposed into 

 h q h    (16) 

where q  is a matrix of self-hardening and latent-hardening coefficients and h  may be 

defined as proposed in [34] 
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Here 0h  is the initial hardening rate, s  is the resolved shear stress saturation value and a  is 

the power law parameter. The initial slip resistance 0c
  is assumed equal for all slip systems.  

3.1.3. Polycrystal modelling 

The material sample includes too many orientations to be represented numerically as it 

is, so we represent it with a reduced number of orientations, chosen by analysing its texture. It 

has been shown that this reduced number is enough to accurately represent the properties of 

the material in numerical simulations [26].  Each grain is represented by its orientation and 

volume fraction. We assume the volume fraction to be equal for all grains.  

The Taylor model [35] assumes that all grains undergo the same strain as the whole 

specimen. Stress equilibrium between the grains is then not satisfied. The stress in the 

specimen is found as an average, i.e. 
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where i
g  is the Cauchy stress in grain i  and n  is the total number of grains. The use of the 

Taylor model (here the so-called full-constraint variant is used) against a FEM model of a 

polycrystal and various relaxed constraint models is discussed in [23] and [38]. The 

conclusion is that no method is universally good at describing the polycrystal response, while 

the Taylor model has the advantage of simplicity and computational efficiency. 

Some common assumptions are made about the material. The initial value of the slip 

resistance is the same on all slip systems, as well as the other material parameters; i.e., the 

material has no history of prior deformation. The influence of precipitates, inclusions, 

dispersoids or any other factors is ignored; just pure Schmid slip is considered, so that 

crystallographic texture is the only source of plastic anisotropy. This assumption may seem 

crude, but including these other factors is a very difficult task and for most cases texture is by 

far the main source of anisotropy [39].  

3.2. Continuum plasticity 

The behaviour of the material in the tensile tests is modelled by an anisotropic 

hypoelastic-plastic continuum model. The main features of this model are: small elastic and 

finite plastic strains, isotropic elasticity and orthotropic yield surface, associated plastic flow, 

isotropic strain hardening and corotational formulation. The corotational formulation is used 

to simplify the plastic anisotropy formulation. The principal directions of the plastic 

orthotropy are aligned with the coordinate system, connected to the unrotated configuration. 

The axes of this system are assumed to remain orthogonal during deformation. The 

corotational Cauchy stress is also defined in this system.  

The corotational stress and rate-of-deformation tensors are defined [40] as  

 ˆ T R R   (19) 
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where D  is the rate-of-deformation tensor in the current configuration,   is the Cauchy 

stress tensor and R  is the rotation tensor found from the polar decomposition of the 

deformation gradient tensor 
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The corotational rate-of-deformation tensor is decomposed into a sum of elastic and plastic 

parts 

 ˆ ˆ ˆe p D D D  (22) 

In the hypoelastic formulation the corotational stress rate is connected to the 

corotational deformation rate 

 ˆ ˆˆ : e
el
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where ˆ
el
C  is the fourth order tensor of elastic moduli. Elastic isotropy is assumed for the 

material, so only two independent parameters are enough to define this tensor, i.e. the 

Young’s modulus E  and the Poisson ratio  .  

The yield function is formulated as 
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where   is the equivalent plastic strain,   is the equivalent stress and   is the flow stress in 

uniaxial tension in the reference direction. The evolution of the flow stress   is described by 

a two-term Voce rule [41] 
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where 0  is the yield stress, and iQ  and i  are model parameters governing the work-

hardening.  

The corotational plastic rate-of-deformation tensor evolves according to the associated 

flow rule 
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where   is the plastic multiplier, which satisfies the loading-unloading conditions, written in 

Kuhn-Tucker form as 



 0, 0, 0f f      (27)                        

The form of the equivalent stress used here, called Yld2004-18p by the authors, was 

developed in [19] to represent complex shapes of anisotropic yield surfaces, viz.  
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where  
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In this equation m  is the shape parameter while S  and S  represent the principal values of 

the stress tensors s  and s . These stress tensors are in turn produced by linear 

transformations of the corotational stress tensor 
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where the fourth order tensor T  transforms the corotational stress ̂  into its deviatoric part ŝ  

and the fourth order tensors C  and C  contain the coefficients describing the anisotropy of 

the material. In the orthotropic case 9 independent coefficients are enough to define each of 

them, and in Voigt notation they read 
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If all the anisotropy coefficients ijc  and ijc  are set to unity, this yield function will reduce to 

an isotropic high-exponent yield function. The total number of model parameters of the 

continuum plasticity model to identify is 26: two elasticity coefficients, E  and  ; the initial 

yield stress, 0 ; four hardening parameters, iQ  and i , 1, 2i  ; the shape parameter, m ; and 

the 18 anisotropy coefficients, ijc  and ijc . 

4. Parameter identification 

4.1. Slip system level 

The initial step of the method is to obtain an estimate of the yield surface shape from 

the crystal plasticity (CP) simulations. The microstructural study provided information about 

the orientations of the grains in the alloys and allowed to build the corresponding ODF. To 

run the CP model this information needed to be transformed into a convenient set of 

orientations which accurately represent the texture. Different methods of doing this exist, e.g. 

[42], [43]. The one used in this work is the following. A total of 1000 grain orientations were 

taken randomly from the whole set of measured orientations. The number is small enough to 

provide reasonable computation times and big enough to represent the influence of all texture 

components on the shape of the yield surface [44]. The representativeness of this random set 

in relation to the components of the real texture was checked by making several random 

choices of 1000 orientations, calculating the ODFs of those reduced sets and comparing them 

with the ODF of the real texture. The differences were insubstantial, so this method was used 

for all three alloys.  

The initial shape of the yield surface, i.e. the initial plastic anisotropy, is commonly 

believed to depend mostly on the texture, and in the utilized CP model it depends solely on 

the texture. Hardening is assumed isotropic in the continuum model, meaning that this shape 

stays the same throughout the deformation. The factor that defines the shape of the yield 

surface of the polycrystal is which slip systems in the constituent crystals activate and which 



do not. Thus, the shape of the yield surface calculated for alloys with different hardening 

parameters should be the same — as for example in [45] and [46] the calculated yield surfaces 

for two different 6063 alloy specimens are the same. In addition the yield surfaces were 

calculated with the same texture, but different sets of hardening parameters with the 

numerical set up used in this work. The results were also identical. 

 In our case we deal with three yield surfaces, corresponding to three different 

textures. The same yield surface is used for all tempers of the same alloy. The hardening 

parameters we use are given in Table 3. 

It should be mentioned that there may be some factors influencing the crystallographic 

slip, which may lead to anisotropic hardening or a totally different yield surface than the one 

found on the basis of our assumptions. Some of them played their role in the response of the 

6082.50 alloy, but accounting for them is a difficult task and outside the scope of this article. 

The crystal plasticity model is implemented into a user material subroutine for LS-DYNA. 

The subroutine utilizes an explicit integration scheme by Grujicic and Batchu [47]. Explicit 

time integration of the momentum equations is used. The material is represented by a single 

eight-node element with one Gauss point (reduced integration). Using more elements in the 

Taylor model increases the computation time significantly, without substantial improvement 

of accuracy. The yield surface is calculated as follows. The element is subjected to a range of 

tensile and shear strain combinations, creating a cloud of points in the strain space. The 

straining stops each time the specific plastic work of deformation reaches a value of 0.5 MPa 

approximately corresponding to incipient yielding. The resulting stress responses are also 

represented by points in stress space, lying on the yield surface, which corresponds to this 

value of plastic work. Then an optimization script uses these stress points and the anisotropic 

yield criterion defined by Eq. (24) to find the components of the transformation tensors in 

Eqns. (32) and (33), see Table 4 for the obtained values. The resulting yield surfaces are 

shown in Figure 7, where x  is the normal stress in the reference direction, which is here the 

extrusion direction, y  is the normal stress in the transverse direction of the flat profile, and 

0 0   is the initial yield stress in the reference direction. The contours represent lines of 

constant shear stresses xy  in the plane of the flat profile. The calculated yield surfaces fit 

well with the ones found for alloys with similar texture/microstructure in [45].  



4.2. Continuum level 

The next step is the application of these results to the continuum plasticity model and 

fitting of this model to the experimental data. The mesh of the FE model of the tensile 

specimen is shown in Figure 8. Owing to the orthotropic symmetry and to reduce computation 

time only 1/8th of the specimen is modelled. The dimensions of the smallest elements used in 

the necking area are 0.3 0.3 0.07   mm3. Several test simulations with larger and smaller 

elements were run to ensure that at this element size the mesh does not affect the solution. 

Symmetrical boundary conditions are utilized and constant velocity is applied to the upper 

plane, where the specimen is fixed to the test machine. It should be noted that in the 

experiments necking occurs at a point determined by the imperfections of the specimen, while 

in the simulation the mesh is made without imperfections and the specimens necks in the 

centre (at the corresponding edge of the mesh). The eight-node constant stress solid element 

with reduced integration available in LS-DYNA was used in the simulations. Explicit time 

integration was chosen, since some initial test runs showed that implicit integration for this 

model does not provide any considerable advantage in speed, stability or accuracy. Mass 

scaling (by increasing the density of the material) was used to reduce the simulation time. It 

was then checked that the kinetic energy was still very small compared with the total energy 

of the specimen, to ensure quasi-static loading conditions. 

The elastic-plastic behaviour of the material is modelled as described in Section 3.2. 

The 18 coefficients of the two linear transformations of the stress tensor used to describe the 

plastic anisotropy were determined as described in Section 4.1.  The elastic constants were set 

to nominal values for aluminium alloys. It thus remains to determine the parameters 0 , iQ  

and i  of the two-term Voce hardening rule. This is done using LS-OPT [48] – an 

optimization tool that interacts with LS-DYNA. Within each iteration LS-OPT runs 

simulations with LS-DYNA varying these parameters within prescribed intervals. A true 

stress-strain curve for the central cross-section area (where necking occurs) is calculated at the 

end of each simulation. These curves are compared to the true stress-strain curves found from 

the experiments for the corresponding alloy. LS-OPT compares the experimental curve with 

the simulated one, calculates the mean squared error and varies the hardening rule parameters 

in such a way that in the next iteration the mean squared error is reduced. After usually 15-20 

iterations the mean squared error reduces from the range of 1-100 to around 51 10  and more 

iterations do not further reduce it.    



5. Results  

5.1. Continuum plasticity model calibration 

The results of the optimization procedure described in the previous section are 

presented in Figure 9 to Figure 11 for the three alloys in terms of the true stress-strain curves 

for the five tempers. The true stress-strain curves, obtained for three specimens of each alloy-

temper combination, are in good agreement with each other, so only one typical curve is 

shown. In general, the two-term Voce hardening rule led to very good fit with small error for 

most of the simulations. The largest error is observed for 6060-T7, where the overall shape of 

the curve could not be accurately reproduced. A better fit for this case would have been 

obtained by using a three-term Voce hardening rule. One may notice that the simulated curves 

for the 6060 alloy tend to bend upwards at the end of the simulation, as if the work-hardening 

rate suddenly increases. This is a numerical artefact, caused by the very large deformation of 

the elements in the necking zone. This unphysical behaviour is not observed for the 6082 

alloys, because of their lower ductility.  

The simulation model accounts for plastic anisotropy, and the correspondence of the 

anisotropy in plastic flow in the simulations and experiments was also checked. This is done 

by comparing the strain ratio yr  obtained in experiments and simulations. The results are 

shown in Figure 12 to Figure 14. The experimental and simulated value of yr  are reasonably 

close for alloys 6060 and 6082.25, while the discrepancy is large for 6082.50. Also noticeable 

is the low ductility of this alloy compared to the very similar 6082.25 alloy and the 

instabilities seen in the measured values of yr  for the T6, T6x and T7 tempers. The error in 

the predicted value of yr   means that the yield surface predicted solely on the basis of texture 

is inaccurate, at least for the actual stress state. While slip on crystallographic slip systems is 

the mode of deformation of both these alloys, the slip systems activated are very different. 

Thus, the assumption of equal initial slip resistance and hardening parameters on all slip 

systems is not adequate for this alloy.  

The main difference between these two 6082 alloys is the contents of Cr (and to some 

extent Cu) and the presence of Cr dispersoids (see Table 1). It is reasonable to assume that the 

influence of these elements on the slip is very strong and cannot be ignored in the modelling 

of the material. Another point of interest is that in the case of the 6060 alloy we observe 

significant change in the yr  value throughout the test. The most obvious reason for this is an 



evolution of the texture with the deformation. This means that the shape of the yield surface 

also evolves and our assumption of isotropic hardening is reasonable, but not generally 

correct. The 6082 alloys demonstrate much less evolution of yr , so at least for these alloys, 

the assumption of isotropic hardening holds with reasonable accuracy.  

A comparison between the necking zones of the specimens at fracture as observed in 

the experiments and predicted by the finite element model is presented for two different alloys 

and tempers in Figure 15. In the figure, the experimental and numerical results have been 

superimposed. Considering the discrepancy in the yr  ratio between the model and the 

experiment, the curvature of the neck zone is well reproduced in both cases. 

5.2. Equivalent strain-stress 

The main result of the model calibration is the parameters in the Voce hardening rule 

defining the equivalent stress-strain curves of the materials. The results are compiled in 

Figure 16 to Figure 18. The equivalent stress-strain curves are plotted until fracture. For most 

alloys/tempers the equivalent stress-strain curves obtained for the three specimens tested are 

in very good agreement with each other. Therefore only the averaged equivalent stress-strain 

curve is shown in the figures. In Table 5 the numerical values of the hardening parameters for 

typical specimens are presented. 

The first notable result is the profound effect of the heat treatment on the initial 

strength and work-hardening of the three alloys. A detailed discussion of the physical 

mechanisms responsible for the observed behaviour will be presented elsewhere. The second 

observation is the large difference in ductility between the alloys. For the 6060 alloy even the 

usually less ductile T6 and T7 tempers fracture at more than 120% strain. The difference in 

ductility between 6082.50 and 6082.25 is all the more surprising, considering their very 

similar chemical composition.  

The “apparent hardening rate” at large strains is much higher for the true stress-strain 

curves than for the equivalent stress-strain curves, see Figure 19 for two examples. The reason 

for this is obviously the contribution of the triaxial stress field to the true stress measured after 

necking. The hydrostatic stress does not contribute to the equivalent stress, which is based on 

linear transformations of the stress deviator. Figure 19 shows another difference: the 

equivalent stress may be either higher or lower than the true stress even before necking for the 

different alloys. The reason for this is that the specimens are oriented at 90 to the extrusion 



direction, which was taken here as the reference direction, and the stress in any direction other 

than the extrusion direction depends on the anisotropy of the yield surface. In this case, the 

90 flow stress is either lower (6060) or higher (6082.25) than the 0 flow stress.  

The method of using an anisotropic plasticity model to find the equivalent stress was 

compared to a similar method, but using an isotropic plasticity model (adopting the von Mises 

yield criterion) and the modified Bridgman correction method as it is formulated in [6]. The 

comparison of obtained stress-strain curves is shown in Figure 20. The results are noticeably 

different. The Bridgman correction overestimates the hardening rate, while the isotropic 

plasticity model underestimates the equivalent stress. However, compared with the true stress-

strain curve the three equivalent stress-strain curves are in reasonable agreement.  

6. Discussion and conclusions 

While it is hard to evaluate how accurately we predicted the equivalent stress-strain 

curves, it is possible to re-evaluate the accuracy of the initial assumptions in light of the 

results.  

The first issue is the yield function. The full-constraint Taylor simulations predicted 

the yield function rather well for two of the three alloys, as judged based on the measured 

strain ratio yr . In the case of the 6082.50 alloy it looks like some factors skewed the yield 

surface completely out of the texture-defined shape. Computational crystal plasticity has been 

developing for decades, but accurate predictions of yield surface shapes, which account for 

texture, grain morphology, precipitates, hard particles, dispersoids, dislocation substructures 

and other possible factors are far from full realization. Hence, further development of the 

computational crystal plasticity should improve the accuracy of our model. Other types of 

homogenization could be tested, like self-consistent models, relaxed constraint models or the 

crystal plasticity finite element method. The assumption of isotropic hardening seems to be 

fulfilled with good accuracy for the two 6082 alloys, but not for the 6060 alloy. The yield 

surface defines the direction of the plastic strain rate, and this direction was gradually 

changing according to e.g. Figure 12. In case of the 6060 alloy the initial value of the strain 

ratio yr , and ergo the yield surface shape, was predicted quite well by the full-constraint 

Taylor model. So the evolution of the yr  ratio is most probably due to evolution of the texture. 

To improve the predictive power of our model, an evolving yield surface could be 

implemented in the continuum plasticity, with evolution based on the predictions by the 



crystal plasticity theory. The first problem is a considerable increase in the computation time 

and the second is that the predictions of texture evolution by crystal plasticity are also still not 

very accurate. In any case, the difference between the equivalent stress-strain curves obtained 

with the isotropic and anisotropic versions of the continuum plasticity model is not large, see 

Figure 20, and the predicted hardening rate is approximately the same (compared to the 

Bridgman correction), meaning that improvements in this area would not be very cost-

effective.  

The second issue is the two-term Voce hardening rule. It is rather flexible and fits to 

most of the 6xxx alloys hardening curves well, but in some cases, like 6082.50-T4 or 

especially 6060-T7, it was likely not flexible enough to reproduce some of the features of the 

true stress-strain curve. More terms in the Voce hardening rule or another hardening rule 

altogether could be used, though more complex hardening rules again means increasing the 

computation time.      

Some improvements could be done in FEM implementation of the methods too. An 

accurate description of the necking zone requires a dense mesh. In addition very high local 

strains distort the elements immensely. To prevent the elements from too much of shape 

distortion and associated problems, they are initially not cubic but flatted. However, the 

model still shows some artificial stiffening at the latest stages of deformation, around 140-

150% logarithmic strain. This could be prevented by re-meshing the geometry at least partly 

after a certain strain is reached. The main problem with all kinds of measures that makes the 

model more accurate, but more complicated, is that it is run not once but sometimes hundreds 

of times by LS-OPT to optimize the hardening parameters, meaning that any increase in 

computation time for one simulation leads to a much larger increase in the total optimization 

time. 

The equivalent stress-strain curves were found for deformation after necking and large 

strain values until fracture. It should be remembered though that what was really found is the 

equivalent stress-strain curves in an isotropically hardened two-term Voce material with 

Yld2004-18p yield criterion implemented in an FEM mesh. How well the predicted 

equivalent stress-strain curves correspond to the real curves depends on how accurate the 

assumptions and the models are. For practical applications the accuracy of the results is 

determined by how well it predicts the forces and displacements in various problems, so at 

least for the problem of necking in a cylindrical rod it is very accurate. In any case, until a 



method of measuring stress in situ is developed, any stress estimate after necking will be just 

an estimate, depending on abstractions and assumptions. The comparison in Figure 20 

indicates that this model is the next step towards a more accurate estimate of the equivalent 

stress-strain curves at large strains. 
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Tables 

 

Table 1: Chemical composition of the alloys in wt%. 

 

Alloy Fe Si Mg Mn Cr Cu Zn Ti 

6060 0.193 0.422 0.468 0.015 0.000 0.002 0.005 0.008 

6082.50 0.200 1.020 0.670 0.540 0.001 0.003 0.005 0.010 

6082.25 0.180 0.880 0.600 0.530 0.150 0.020 0.005 0.011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Heat treatment of the specimens to different tempers. 

 

Temper Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

T4 540°C in salt 
bath for 15 

min 

Fast water 
cooling 

One week at 
room 

temperature 

___ ___ 

T6x 540°C in salt 
bath for 15 

min 

Fast water 
cooling 

15 min at 
room 

temperature 

185°C in oil 
bath for one 

hour 

Air cooling 

T6 540°C in salt 
bath for 15 

min 

Fast water 
cooling 

15 min at 
room 

temperature 

185°C in oil 
bath for five 

hours 

Air cooling 

T7 540°C in salt 
bath for 15 

min 

Fast water 
cooling 

15 min at 
room 

temperature 

185°C in oil 
bath for one 

week 

Air cooling 

O 540°C in salt 
bath for 15 

min 

Fast water 
cooling 

15 min at 
room 

temperature 

350°C in salt 
bath for 

twenty four 
hours 

Air cooling 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Crystal plasticity model parameters used in the yield surface calculations. 

 

11c , 

MPa 

12c , 

MPa 

44c , 

MPa 

0 , 

 s-1 

m  ,q

 
0h , 

MPa 

a  
s , 

MPa 

0c
 , 

MPa 

106430 60350 28210 0.010 0.005 1.40 411.25 1.354 104.02 46.70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4: Coefficients of the YLD2004-18p yield function.  

 

Coefficients 6060 6082.50 6082.25 

12c  0.3050 0.8200 0.8178 

13c  0.8051 1.3231 1.3225 

21c  -0.3320 0.9911 0.9947 

23c  0.5246 1.3224 1.3271 

31c  -0.4386 0.2510 0.2568 

32c  0.6322 0.5384 0.5350 

44c  0.9768 1.2124 1.2029 

55c  1.0000 1.0000 1.0000 

66c  1.0000 1.0000 1.0000 

12c  0.8578 -0.1219 -0.1288 

13c  -0.2922 0.7228 0.7223 

21c  1.0911 1.1599 1.1617 

23c  0.8548 1.3144 1.3056 

31c  1.1442 0.9191 0.9130 

32c  0.6040 0.6100 0.6049 

44c  -0.2170 0.8633 0.8661 

55c  1.0000 1.0000 1.0000 

66c  1.0000 1.0000 1.0000 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: The obtained parameters for the two-term Voce hardening rule. 

 

Alloy/temper 
0 , MPa 1Q , MPa 1 , MPa 2Q , MPa 2 , MPa 

6060-T4 64.00 72.64 1402.52 104.67 395.35 

6060-T6 167.00 43.63 1652.83 57.70 85.00 

6060-T6x 65.00 60.92 1646.22 102.96 255.07 

6060-T7 125.00 27.36 2623.50 51.95 724.50 

6060-O 35.00 46.36 1732.53 70.09 171.64 

6082.50-T4 135.00 140.53 1661.71 148.90 252.71 

6082.50-T6 250.00 65.20 51322.6 66.13 530.16 

6082.50-T6x 250.00 38.65 48547.3 99.14 899.76 

6082.50-T7 190.00 56.17 2528.25 30.52 110.22 

6082.50-O 38.00 36.95 2129.88 94.77 465.48 

6082.25-T4 157.00 143.03 1961.54 105.74 269.89 

6082.25-T6 305.00 46.59 1344.37 54.13 107.42 

6082.25-T6x 300.00 66.13 1296.66 59.76 104.59 

6082.25-T7 170.00 44.35 1515.79 45.51 460.98 

6082.25-O 65.00 45.88 2179.59 87.46 319.21 

 

 

 

 

 

 

 

 



 

Figures 
 

 

Figure 1: Orientation distribution function for the 6060 alloy. 

 

 

 

 

 

 

 

 

 



 

Figure 2: Orientation distribution function for the 6082.50 alloy. 

 

 

 

 

 

 

 

 

 



 

Figure 3: Orientation distribution function for the 6082.25 alloy. 

 

 

 

 

 

 

 

 

 



 

Figure 4: Grain structure of the 6060 (left), 6082.50 (centre) and 6082.25 (right) alloys, where 
the extrusion direction is horizontal and the normal (or thickness) direction is vertical. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5: Tensile specimen geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6: Decomposition of the total deformation gradient into elastic and plastic parts. 
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Figure 7: Generated yield surfaces for alloys 6060 (top left), 6082.50 (top right) and 6082.25 
(bottom). Maximum value of 0/xy   is 0.88 for 6060 and 0.52 for 6082 alloys.  

 

RD

D



 

Figure 8: Finite element mesh of the tensile specimen. 

 

 

 

 



 

Figure 9: True stress versus logarithmic strain curve for the 6060 alloy. 
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Figure 10: True stress versus logarithmic strain curve for the 6082.50 alloy. 
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Figure 11: True stress versus logarithmic strain curve for the 6082.25 alloy. 
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Figure 12: Logarithmic strain in extrusion direction ( x ) versus logarithmic strain in normal 

direction ( z ) for the 6060 alloy. 
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Figure 13: Logarithmic strain in extrusion direction ( x ) versus logarithmic strain in normal 

direction ( z ) for the 6082.50 alloy. 
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Figure 14: Logarithmic strain in extrusion direction ( x ) versus logarithmic strain in normal 

direction ( z ) for the 6082.25 alloy. 
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Figure 15: Necking in FEM model and real specimen in 6060-T4 (left) and 6082.25-T6x 
(right). 

 

 

 

 

 



 

Figure 16: Equivalent stress-strain curves for the 6060 alloy. 
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Figure 17: Equivalent stress-strain curves for the 6082.50 alloy. 
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Figure 18: Equivalent stress-strain curves for the 6082.25 alloy. 
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Figure 19: Comparison between equivalent and true stress versus logarithmic strain curves for 
6060-T4 (left) and 6082.25-T4 (right). 
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Figure 20: Comparison between different methods of estimating the equivalent stress-strain 
curve based on measured true stress-strain curve for the 6060 alloy in temper T4.  
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