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The evolutionary equilibrium hypothesis was proposed to explain variation in egg rejection rates among individual
hosts (intra- and interspecific) of avian brood parasites. Hosts may sometimes mistakenly reject own eggs when
they are not parasitized (i.e. make recognition errors). Such errors would incur fitness costs and could counter the
evolution of host defences driven by costs of parasitism (i.e. creating equilibrium between acceptors and rejecters
within particular host populations). In the present study, we report the disappearance of host eggs from
nonparasitized nests in populations of seven actual and potential hosts of the common cuckoo Cuculus canorus.
Based on these data, we calculate the magnitude of the balancing parasitism rate provided that all eggs lost are a
result of recognition errors. Importantly, because eggs are known to disappear from nests for reasons other than
erroneous host rejection, our data represent the maximum estimates of such costs. Nonetheless, the disappearance
of eggs was a rare event and therefore incurred low costs compared to the high costs of parasitism. Hence, costs as
a result of recognition errors are probably of minor importance with respect to opposing selective pressure for
the evolution of egg rejection in these hosts. We cannot exclude the possibility that low or intermediate egg
rejection rates in some host populations may be caused by spatiotemporal variation in the occurrence of parasitism
and gene flow, creating a variable influence of opposing costs as a result of recognition errors and the costs of
parasitism. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.

ADDITIONAL KEYWORDS: co-evolution – cuckoo – fitness cost – host defence – host–parasite interactions2 .
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INTRODUCTION

In hosts of avian brood parasites, the costs of para-

sitism impose strong selection for the evolution of

defensive traits because successful parasitism in

many cases leads to a total loss of host reproductive

output. Therefore, many hosts have evolved fine-

tuned egg rejection abilities, which, in several cases,

have been countered by parasites evolving mimetic

eggs (Payne, 1967; Brooke & Davies, 1988; Davies &

de Brooke, 1989a; Moksnes et al., 1991; Antonov

et al., 2006a; Starling et al., 2006; Spottiswoode &

Stevens, 2010; Stoddard & Stevens, 2010, 2011;

Begum et al., 2011). In some species, there is appar-

ently no variation in rejection abilities either within

or between populations, and rejection rates are more

or less fixed at 100% (i.e. all individuals are capable

of rejection) as long as the appearance of the para-

sitic egg is cognitively recognizable for the individu-

als in question (Stokke, Moksnes & Røskaft, 2005).

However, even rejection rates of non-mimetic eggs

are only moderate in several other host species, often

showing prominent temporal and/or spatial variation

(Brooke, Davies & Noble, 1998; Soler et al., 1999;

Stokke et al., 2008), relying on additional cues other

than egg appearance when deciding to reject para-

sitic eggs (i.e. conditional responses; Brooke et al.,

1998; Davies, 2000). Such co-occurrence of acceptors

and rejecters (either as fixed or flexible strategies)

within a single host population is often explained by

the costs of making errors in the recognition and

rejection of foreign eggs, which could outweigh the

benefits of egg rejection under specific circumstances

(Rothstein, 1982a; Marchetti, 1992; Lotem, Naka-

mura & Zahavi, 1995; Davies, Brooke & Kacelnik,

1996; Takasu, 1998). Specifically, host individuals

attuned to reject foreign eggs may mistakenly reject

one of their own eggs in nests that are not para-

sitized (Stokke et al., 2005; Røskaft et al., 2002a) or

own eggs instead of parasitic eggs in parasitized

nests. These costs obviously have fitness conse-

quences because the resulting clutch size will be

smaller than the original one. In theory, such errors

are most likely to occur in hosts that have high vari-

ation in egg appearance within clutches (Davies &

de Brooke, 1989b; Lotem et al., 1995; Stokke et al.,

2007), making it difficult for hosts to recognize and

hence reject parasitic eggs. Thus, if parasitism rates

are low or variable, the costs of making recognition

errors could potentially be higher than the costs of

parasitism. Such a scenario could result in equilib-

rium between acceptors and rejecters within particu-

lar host populations or, if costs as a result of

recognition errors and rejection costs are high, could

even lead to acceptance being the optimal strategy

(the evolutionary equilibrium hypothesis; Lotem &

Nakamura, 1998).

However, the importance of recognition errors as

an opposing selective force to egg rejection, at least

in hosts of evicting parasites, has been questioned

(Røskaft et al., 2002a; Stokke et al., 2002). In brood

parasites such as honeyguides (Indicatoridae) and

cuckoos (Cuculidae), the parasitic chick gets rid of all

host eggs or young from the nest soon after hatching

(Davies, 2000; Anderson et al., 2009; Grim et al.,

2009; Spottiswoode & Koorevaar, 2012), enforcing

high costs on host reproduction and hence strong

selection for the evolution of defences against para-

sitism (Medina & Langmore, 2015), depending on

the level of parasitism (Davies et al., 1996). Further-

more, estimating the occurrence of recognition errors

is not straightforward. It is well known that partial

egg losses may be a result of jostling or partial pre-

dation (Rothstein, 1982b; Lerkelund et al., 1993).

Hence, only the constant monitoring of nests

throughout the egg-laying and incubation period can

provide us with evidence for the occurrence of recog-

nition errors. Without such monitoring, we cannot

rule out the possibility that eggs may disappear for

other reasons than erroneous host rejection and esti-

mates of such costs are therefore in many cases prob-

ably higher than what is actually the case.

The present study aims to report the disappear-

ance of own eggs in actual and potential host species

of common cuckoo Cuculus canorus. Based on these

data, we estimate the maximum costs of recognition

errors and the parasitism rate that should balance

these costs. We discuss our results in relation to cur-

rent knowledge of co-evolutionary adaptations in

common cuckoos and their hosts.

MATERIAL AND METHODS

EMPIRICAL DATA ON THE DISAPPEARANCE OF EGGS

AND OTHER RELEVANT FACTORS

Data on the disappearance of own eggs in nonpara-

sitized nests were retrieved from our own field stud-

ies in which nests were monitored throughout the

egg-laying and incubation periods. We retrieved (1)

number of host eggs lost from unparasitized host

nests in the specific population; (2) mean clutch size

in the specific population (F); and (3) rejection rate of

experimentally added, non-mimetic eggs within the

study populations. In addition, we also retrieved (4)

the observed parasitism rate within each population

(Table 1). The number of eggs lost in each popula-

tion, termed the ‘number of disappeared eggs’, was

calculated as the number of eggs lost from non-

parasitized nests divided by total number of

© 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ��, ��–��
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nonparasitized nests (excluding nests that were nat-

urally or experimentally parasitized). We only

included nests with single host eggs lost because the

disappearance of more than one egg could indicate

partial predation rather than actual errors in recog-

nition. Hence, in our marsh warbler Acrocephalus

palustris population, we omitted cases where three

out of four eggs (N = 1) and four out of five eggs

(N = 2) disappeared. In our corn bunting Miliaria

calandra population, we omitted cases where two out

of three eggs (N = 1), three out of five eggs (N = 1),

and four out of five eggs (N = 1) disappeared. We

also omitted clutches where egg-laying did not follow

the ‘one egg per day’ criterion. More specifically, this

refers to two extraordinary cases in the chaffinch

Fringilla coelebs population, with an irregular egg

laying sequence (Stokke et al., 2002). Furthermore,

the loss of all eggs in the clutch was considered to be

caused by predation, and such nests were omitted

from the calculations.

Nests were monitored daily from nest building

until 6 days of incubation to allow estimates of dis-

appearance of own eggs from nonparasitized nests.

Eggs were marked with permanent ink in the

sequence they were laid. Clutch size was estimated

from completed, nonparasitized clutches. Nests

used to calculate recognition errors and clutch size

were different from those used to calculate rejec-

tion rate of experimentally added, non-mimetic

eggs.

The disappearance of eggs from nonparasitized

nests was estimated in eight study populations

(Table 1): (1) great reed warblers Acrocephalus arun-

dinaceus in Apaj, Hungary (1998–2007); (2) great

reed warblers in Embalse del Hondo, Alicante, Spain

(1995–2006); (3) reed warblers Acrocephalus scir-

paceus in Embalse del Hondo, Alicante, Spain (1995–

2006); (4) marsh warblers in Zlatia, Bulgaria (2002–

2009); (5) olivaceous warblers Hippolais pallida in

Zlatia, Bulgaria (2001–2009); (6) chaffinches in Stjør-

dal, Norway (1999–2001); (7) bramblings Fringilla

montifringilla in Tana, Norway (2003–2004); and (8)

corn buntings in Zlatia, Bulgaria (2002–2009). All

these species are known to be parasitized by common

cuckoos to various extents (Moksnes & Røskaft,

1995). Data on clutch sizes, parasitism rates, and

rejection rates of experimentally added, non-mimetic

eggs were retrieved from the literature for the same

populations from which we obtained data on the dis-

appearance of eggs (Moksnes et al., 1991; Moksnes,

Røskaft & Solli, 1994; B�artol et al., 2002; Mosk�at &

Honza, 2002; Stokke et al., 2002, 2004; Antonov

et al., 2006a,b, 2007a,b; Antonov et al. 20094 ; Hauber,

Mosk�at & B�an, 2006; Mosk�at et al., 2008a,b,c, 2009;

Avil�es et al., 2009; Vikan et al., 2009, 2010, 2011). A

few data from unpublished studies were also

included; in the Spanish reed warbler population

(number 3 in the list above), rejection data of non-

mimetic eggs refer to experimentally added eggs

painted pale blue (i.e. resembling eggs laid by cuck-

oos utilizing redstarts Phoenicurus phoenicurus;

Brooke & Davies, 1988).

ESTIMATE OF PARASITISM RATE BALANCING MAXIMUM

RECOGNITION ERRORS ESTIMATES

We acknowledge that the response to a parasitic egg

may be conditional/plastic (Brooke et al., 1998; Lind-

holm & Thomas, 2000; Soler, Mart�ın-Vivaldi &

Fern�andez-Morante, 2012). Furthermore, we realisti-

cally assume that host egg rejection behaviour has a

genetic basis (Mart�ın-G�alvez et al., 2006). In the

absence of parasitism, the frequency of rejecters in

the population may decline as a result not only of

recognition errors, but also other costs related to

maintaining specific traits or because of stochasticity

(Lahti, 2005, 2006). In populations experiencing par-

asitism above a certain threshold level, selection will

likely lead to rejecters producing more offspring than

acceptors because rejecters escape the costs of para-

sitism. We use the model presented by Davies & de

Brooke (1989b) to derive the mean reproductive suc-

cess of acceptor and rejecter pairs (RSacceptor and

RSrejecter) and the corresponding balancing para-

sitism rate, p*. Let p be the parasitism rate (proba-

bility of a host nest being parasitized). The mean

reproductive success of acceptor pairs (both sexes are

acceptors) is:

RSacceptor ¼ Fð1� pÞ þ cðF � 1Þp ð1Þ

where F is the mean host clutch size and c is the

proportion of host young reared together with a par-

asitic chick (0 ≤ c ≤ 1). Typically, for evicting brood

parasites such as Cuculus cuckoos, c = 0 (but see

also Rutila, Latja & Koskela, 2002), whereas, for

non-evicting parasites, c can be larger. We assume

that cuckoo females remove one host egg from the

nest when parasitizing the nest (Davies, 2000), even

though the removal of more than one egg is not

uncommon (Øien et al., 1998). The mean reproduc-

tive success of rejecter pairs (at least one breeding

individual is rejecter), where all parasite eggs are

rejected is:

RSrejecter ¼ ðF � DFÞð1� pÞ þ ðF � DF � 1Þp ð2Þ

where DF denotes recognition errors expressed as

the number of host eggs lost by rejecters. Because

only rejecters are likely to commit recognition errors,

we need to take egg rejection rates within the popu-

lation into account when calculating DF as:
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DF ¼ ½Proportion of host eggs lost from unparasitized

nests in population� ½Mean clutch size in population�=

½Egg rejection rate in population� ð3Þ

At equilibrium (RSacceptor = RSrejecter), we obtain

the parasitism rate, p*, that balances the benefit of

rejecting parasite eggs with the cost of rejecting own

eggs in nonparasitized nests (recognition errors) as:

p� ¼ DF=ððF � 1Þ=ð1� cÞÞ ð4Þ

In some species, host individuals show phenotypic

plasticity in their responses against parasites [based

on social cues: Campobello & Sealy (2011); personal-

ity: Avil�es & Parejo (2011; and perception of risk of

parasitism: Welbergen & Davies (2009)] and para-

sitic eggs, and hosts will more likely reject eggs if

they experience additional cues other than the egg

itself, such as observing a cuckoo in the vicinity of

the nest (Moksnes et al., 2000). Furthermore, the

ability of individuals to reject parasitic eggs usually

depends on the contrast between own and foreign

eggs (i.e. egg mimicry) (Davies, 2000; Spottiswoode &

Stevens, 2010). Hence, from Eqn 3, we obtain four

estimates of DF; assuming that (1) all (RE1), (2) 50%

(RE2), (3) 25% (RE3), and (4) observed % (RE4) of

individuals in the population are able to reject for-

eign eggs (where RE is the recognition error5 ). The

estimate RE4 is based on the rejection of experimen-

tal non-mimetic eggs in the specific study population

(Table 1). We acknowledge that these four estimates

only represent crude attempts to take phenotypic

plasticity into account in our calculations but, first,

we aim to keep our calculations as simple as possi-

ble, and, second, we lacked reliable quantitative esti-

mates of phenotypic plasticity. By calculating four

estimates, at least some of the phenotypic plasticity

present at the individual level in specific populations

is taken into account.

RESULTS

Disappearance of eggs from nonparasitized nests was

most pronounced in great reed and reed warblers (7–

7.4%). In the remaining species, eggs disappeared in

only 0–0.9% of the nests (Table 1). Individuals in the

populations included in our analyses experienced 0–

16.7% loss of own eggs in nonparasitized nests

depending on how rejection abilities were considered

(RE1–RE4) (Table 1). Calculations of parasitism

rates that would balance the costs of recognition

errors (provided that all eggs lost were a result of

erroneous egg rejection) show considerable variation

among species (range 0–23.3%) (Table 1). Because

only rejecters are assumed to erroneously reject own

eggs, and our estimate of recognition errors is one

fixed value per population, the cost of recognition

errors and the corresponding balancing parasitism

rate will be higher when fewer individuals are classi-

fied as rejecters (Eqn 3). Hence, within particular

populations, estimates of recognition errors and bal-

ancing parasitism rates will generally be higher

when considering the rejection of mimetic eggs than

non-mimetic eggs because the rejection rate for

mimetic eggs in the population is generally lower

than for non-mimetic eggs. If we assume that all

individuals have the ability to reject eggs (100%

rejection rate), estimates of both recognition errors

and balancing parasitism rate can be regarded as

minimum estimates.

The balancing parasitism rates are generally in

the magnitude of 0–1.2%, except in great reed and

reed warblers, where it may reach 7.7% and 23.3%

respectively, depending on calculation of the propor-

tion of individuals that are able to reject parasitic

eggs. In seven of the eight study populations,

observed parasitism rates are equal to or higher than

those required to balance the costs of making recog-

nition errors, indicating that egg rejection abilities

should evolve and be maintained, which is in accor-

dance with the high rejection rates of non-mimetic

eggs generally found in the present study. Hence,

recognition errors should not be important as oppos-

ing selection pressure in these populations. The only

exception among these seven populations is the corn

bunting population, which experiences a rather high

parasitism rate but still only rejects non-mimetic

eggs at an intermediate level. The remaining popula-

tion, Spanish reed warblers, experiences a para-

sitism rate that is lower than the ones required

maintaining rejection behaviour with all four esti-

mates of recognition errors (Table 1).

DISCUSSION

Perceptual errors may cause costs that could oppose

the evolution or maintenance of apparently optimal

adaptations such as those involved in co-evolutionary

arms races. Such costs may act as opposing selective

pressures against the evolution of host defences

against brood parasitism, as outlined in the evolu-

tionary equilibrium hypothesis (Rothstein, 1982a;

Lotem et al., 1995; Davies et al., 1996). In the pre-

sent study, we have shown that the magnitudes of

such errors are generally low across eight different

host populations of the common cuckoo, even with

our overestimated rates of recognition errors.
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Furthermore, our estimates of recognition errors are

comparable to those obtained from other species

(Marchetti, 1992, 2000; Lotem et al., 1995).

Several European passerines regarded as suitable

common cuckoo hosts show strong rejection of experi-

mentally added eggs (Davies & de Brooke, 1989a;

Moksnes et al., 1991; Mosk�at, Szentp�eteri & Barta,

2002; Honza et al., 2004; Lov�aszi & Mosk�at, 2004;

Proch�azka & Honza, 2004; Rutila et al., 2006; Sama�s

et al., 2011) (Table 1). Such species are often charac-

terized by having a low intraclutch variation in egg

appearance (Øien, Moksnes & Røskaft, 1995; Soler &

Møller, 1996; Stokke, Moksnes & Røskaft, 2002b)6 ,

reducing the risk of making recognition errors and

enhancing the rejection of even moderately mimetic

parasitic eggs (Stokke et al., 2007; Mosk�at et al.,

2008a). Furthermore, several species may retain

rejection behaviour in the absence of parasitism

(Underwood, Sealy & McLaren, 2004; Lahti, 2006;

Medina & Langmore, 2015), and even after specia-

tion events (Bolen, Rothstein & Trost, 2000; Roth-

stein, 2001; Peer & Sealy, 2004), indicating that

opposing selective pressures for egg rejection, such

as recognition errors, are negligible in these species.

Even with the existence of recognition errors, rejec-

tion behaviour may be retained without apparent

interspecific parasitism for several reasons. First,

there may be unaccounted benefits to egg rejection

behaviour, such as resistance to intraspecific brood

parasitism, that maintain rejection behaviour and

even cause it to increase in frequency (Grim et al.,

2011; Sama�s et al., 2011). Second, interspecific para-

sitism may still occur at a low rate without research-

ers being able to detect it. Hence, parasitism by

cuckoos laying non-mimetic eggs (i.e. from a gens

with another main host) may happen from time to

time but, because such eggs would be ejected quickly,

the host population appears to be nonparasitized.

Such ‘accidental’ layings are not uncommon (Capek,

1896; Chance, 1940), and the rate at which such

events occur may be sufficient to retain rejection

rates, as is apparent from the balancing parasitism

rates reported in the present study. For example,

Moksnes & Røskaft (1995) found 76 cuckoo eggs in

chaffinches stored in European museums and, out of

58 000 cases of cuckoo parasitism from Europe col-

lected by B. G. Stokke, 325 cases were recorded in

chaffinch nests scattered all over Europe (unpubl.

data7 ). The balancing parasitism rates estimated for

chaffinches and bramblings in the present study are

equal to zero, indicating that occasional parasitism

by cuckoos is sufficient to retain high rates of egg

rejection. Third, the retention of egg rejection in

these species may be caused by immigration of rejec-

ters from other populations that suffer high para-

sitism rates (Soler et al., 2001). Hence, there are

reports of chaffinches being utilized regularly by

common cuckoos in the European parts of Russia

(Malchevsky, 1960), and bramblings are favoured

hosts in parts of Fennoscandia (Vikan et al., 2011).

On the other hand, our results also indicate that

perceptual errors may be influential for the evolution

of egg rejection in some cases. Hence, one of our

study populations experiences parasitism rates lower

than the balancing parasitism rates. Reed warblers

in Spain experience a parasitism rate of 2.0%, which

is slightly lower than the calculated balancing para-

sitism rate (2.9–23.3%). In this population, egg rejec-

tion abilities should therefore deteriorate with time,

based on our current estimates of recognition errors,

provided that there is no immigration of rejecters

from other populations, or as long as there are no

large fluctuations in parasitism rate among years.

Several studies have focused on the influence of

recognition errors in reed warblers, although support

for the importance of errors has been ambiguous

(Davies & de Brooke, 1988; Davies et al., 1996; Røs-

kaft et al., 2002a; �Capek et al., 2010). This species

shows marked spatial variation in egg rejection

related to parasitism pressure in the specific popula-

tion (Lindholm & Thomas, 2000; Stokke et al., 2008),

indicating that there could be opposing selective

pressures working against egg rejection in popula-

tions experiencing no or low parasitism. Alterna-

tively, temporal variation in parasitism (Brooke

et al., 1998) may also lead to the same pattern, with

fluctuations in selective pressures depending on the

current costs of parasitism. Furthermore, reed war-

blers have substantial intraclutch variation in egg

appearance (Stokke et al., 1999; 2002b) and are par-

asitized by cuckoos laying mimetic eggs (Davies & de

Brooke, 1988), making the recognition of parasitic

eggs error prone. In such cases, hosts may rely on

conditional stimuli in perceiving the risk of para-

sitism (Rothstein, 1982a; Davies & de Brooke, 1988,

1998; Stokke et al., 2005, 2007). Hence, reed war-

blers are more likely to reject parasitic eggs when

they observe a cuckoo close to the nest, indicating an

increased risk of parasitism (Davies & de Brooke,

1988; Moksnes, Røskaft & Korsnes, 1993; Moksnes

et al., 2000). However, a recent study disclosed that

the presence of a cuckoo does not necessarily lead to

an increased risk of making recognition errors

(�Capek et al., 2010). Careful investigations of reed

warbler nests by utilizing video recordings should be

undertaken to determine unambiguously if disap-

pearance of eggs is a result of the erroneous rejection

of own eggs.

Gene flow, not considered directly in the present

study, may potentially slow down the process of

evolving optimally expressed traits in particular pop-

ulations or lead to local mal-adaptation (Nuismer,
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Thompson & Gomulkiewicz, 1999). Influx of rejecter

or acceptor alleles may therefore influence the

expression of egg rejection in local populations. How-

ever, this critically depends on spatiotemporal varia-

tion in selection regimes (Duffy & Forde, 2009), such

as cuckoo parasitism and costs as a result of recogni-

tion errors, although, at present, such data are

unavailable. Gene flow could also increase the fre-

quency of rejecter alleles in nonparasitized or weakly

parasitized populations (Røskaft et al., 2002b, 2006;

Mosk�at et al., 2008b), thus causing errors to

increase. Interestingly, there is low genetic differen-

tiation among reed warbler populations in Europe,

showing evidence of extensive gene flow among popu-

lations (Proch�azka et al., 2011). The intermediate

rejection of non-mimetic eggs in reed warblers and

possibly in corn buntings may therefore be caused by

a combined effect of the costs of making recognition

errors, gene flow, and spatiotemporal variation in

the occurrence of parasitism, creating a mosaic of sit-

uations in which the opposing costs vary in relative

magnitude. Interestingly, the few studies available

on corn buntings indicate similar spatial variation in

parasitism as in reed warblers. Hence, in Italy, only

1.4% (N = 208) corn bunting nests were parasitized

(Campobello & Sealy, 2009), which is profoundly dif-

ferent from the relatively high parasitism rate at our

Bulgarian study site.

It is important to acknowledge that recognition

errors are probably rarer events than estimated in

the present study because eggs may disappear from

nests for several other reasons (Rothstein, 1982b;

Lerkelund et al., 1993; Moksnes et al., 2000; Røskaft

et al., 2002a). For example, Moksnes et al. (2000)

and Røskaft et al. (2002a) reported that cuckoos vis-

ited and partially depredated 12% of reed warbler

nests without actually parasitizing them; see also

Wyllie (1975). Furthermore, cuckoos often remove

one or two host eggs just prior to laying their own

egg (Wyllie, 1975, 1981). If the host then rapidly

ejects the parasitic egg, the loss of its own egg(s) will

appear to be self-inflicted to the observer even when

this was not actually the case. Even with daily moni-

toring of nests, such mistakes may take place, lead-

ing to overinflated estimates of recognition errors.

By using empirical data on disappearance of own

eggs from nonparasitized nests, we have shown that

costs opposing evolution of egg rejection in host spe-

cies of the common cuckoo with intermediate–high

rejection rates are generally small. Importantly, our

estimates are most probably overestimates of true

recognition errors, indicating that such costs in gen-

eral are minute compared to the high costs of para-

sitism. Recognition errors appear to be most likely in

species with specific characteristics such as a high

intraclutch variation in egg appearance, an interme-

diate and variable rejection rate, spatiotemporal

variation in occurrence of parasitism, and parasitism

by brood parasites laying eggs mimicking host eggs

at least to some extent, such as in reed warblers and

perhaps corn buntings. Future studies on the impor-

tance of recognition errors should focus on long-term

studies of ‘low’ and ‘intermediate’ rejecters at a spa-

tiotemporal scale including several populations, thus

taking gene flow into account, at the same time as

also considering phenotypic plasticity in host anti-

parasite behaviour. By this approach, we should be

able to obtain reliable estimates of variation in recog-

nition errors, rejection rates, and parasitism rates

and address the importance of the various costs for

the evolution of egg rejection. Finally, the use of

video cameras (Weidinger, 2010) would disclose the

proportion of eggs that are actually lost by erroneous

ejection of own eggs and not to other factors such as

jostling or partial predation.

Feeney, Welbergen & Langmore (2014) called for a

focus on the integration of co-evolved traits found at

various stages in the breeding cycle to better under-

stand interactions between brood parasites and their

hosts. Our findings related to the egg-stage should

be of importance for evaluating hypotheses proposing

to explain variation in the expression of defences in

hosts. Further research should focus on clarifying

how recognition errors promote selection for low intr-

aclutch variation, an important antiparasite defence

in hosts of brood parasites, because host eggs with

an extreme appearance are expected to be identified

as parasitic eggs. We also suggest that future

research should investigate how the frequency of

recognition errors might be characteristic for specific

stages of the arms race between hosts and brood par-

asites.
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