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Abstract
The amount of data in the world is increasing rapidly. One common operation on large
datasets is one-to-all comparison, where the goal is to compare one object to all the other
objects in the set. This thesis investigates the possibility of approaching the problem
using human–computer collaboration.

To this end, the human-guided filtering model (HGFM) is proposed. The model
provides a general framework for one-to-all comparison, where cluster analysis is used
to group similar objects together. Through the help of a human domain expert, the
contents of irrelevant clusters can be removed from the process.
An implementation of the model is demonstrated, and tested over a series of experi-

ments. During these experiments, it is shown that the model can reduce the size of the
dataset with up to 80 % before comparison takes place, creating ample opportunity for
saving both time and computational resources.
In light of the model’s apparent potential, several directions for future research is

proposed at the end of the thesis.
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Sammendrag
Mengden data i verden øker hurtig. En vanlig operasjon på store datasett er én-til-alle-
sammenligning, hvor målet er å sammenligne ett objekt med alle de andre objektene i
settet. Denne oppgaven undersøker mulighetene ved en tilnærming til problemet tuftet
på menneske–maskin–samarbeid.
Med dette mål for øyet, foreslås the human guided filtering model (HGFM) – den

menneske-ledede filtreringsmodellen. Modellen tilbyr et generelt rammeverk for én-til-
alle-sammenligning, hvor klyngeanalyse brukes til å gruppere lignende objekter sam-
men. Ved hjelp av en menneskelig domeneekspert, blir innholdet i irrelevante klynger
ekskludert fra prosessen.
En implementasjon av modellen blir demonstrert, og testes gjennom en rekke eksper-

imenter. Eksperimentene viser at modellen kan redusere størrelsen på datasettet med
inntil 80 % før sammenligningen finner sted. Dette gir anledning til å spare både tid og
beregningsressurser.
I lys av modellens tilsynelatende potensiale, foreslås flere retninger for videre forskning

ved oppgavens slutt.
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1 Introduction
This chapter will introduce the thesis, including its goals and the motivation behind it.
It will then present a set of research questions that are to be investigated throughout
the report, as well as the methodology used to research them. Lastly, an outline of the
remaining report will be given.

1.1 Background and Motivation

The amount of data in the world is increasing rapidly. It is estimated that by 2020, the
digital universe will house more than 40,000 exabytes – 40 trillion gigabytes – of data.
An emerging problem is our inability to process all of this data fast enough. The heaps
of data that remains unprocessed has been referred to as the Big Data Gap, and the gap
is growing [1].
A large portion of the world’s data pool consists of human-produced text. As of 2017,

over 31 million messages are sent through the social network Facebook every minute
[2]. With this in mind, it is clear that we cannot rely on increased computational
power alone if we want to fill the Big Data Gap. To tackle the issue, we will need
new techniques designed for faster data processing as well. One such technique that
has seen widespread use over the last years, is the MapReduce programming model,
which utilizes a parallel, distributed algorithm to manage data clusters [3]. This thesis
will explore an alternative approach to the problem, by investigating the effectiveness of
human–computer collaboration (HCC).

1.1.1 Why Human–Computer Collaboration?

In 1997, IBM’s Deep Blue defeated world chess champion Garry Kasparov. After his
loss, Kasparov commented on Deep Blue’s playing style, calling it both deeply intelligent
and creative, suggesting it could have been aided by a human chess player. William
S. Cleveland, Professor of Statistics at Purdue University, has since asked the following
question: Why was Kasparov so obsessed with the notion that IBM was cheating, allowing
a Grand Master to alter moves of Deep Blue? His answer: He knew that he had no
chance to beat a combination of the extraordinary tactical power of the machine learning
algorithms and the strategic power of the human [4].

While it is unlikely that Deep Blue was actually aided by humans, this thought exper-
iment underlines the fact that a human–machine combination can be extremely power-
ful. While existing algorithms have proven to be adept at solving a number of different
problems, they still lack the ability to easily tap into and utilize contextual knowledge
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1 Introduction

unrelated to what they have been explicitly exposed to. Even with recent advances in
machine learning, humans still have the upper hand when it comes to knowledge and
reasoning.
By combining the strengths of humans and computers, it is possible to revise the

decisions made by the computer programs. This could support algorithms when dealing
with unknown data, or save them from committing errors that are obvious to the human-
eye, but invisible to the computer. This is not limited to the world of strategic games
like chess, but extends to virtually any application where humans have understanding.
There are two possible advantages of human–computer collaboration: As pointed out

above, it can lead to improved decision-making. It can also be applied to save time, by
having a human expert review the problem and make sub-decisions that are intuitive to
the human, but complex and time-consuming to the algorithm. This thesis will mainly
investigate the latter option. Whether the data set is too large or the computational
resources are simply lacking, introducing a human element could make the problem more
manageable.

1.1.2 Textual Similarity

A common task when processing human-produced text, is the act of measuring textual
similarity – given two texts, how much alike are they? Similarity on a surface-level is
referred to as lexical similarity, while deeper similarity related to meaning is referred
to as semantic similarity. Previous applications of textual similarity include automatic
essay grading [5], automatic evaluation of machine-translated texts [6], and plagiarism
detection [7].
In the context of the ever-growing collections of digital data, plagiarism detection is a

particularly interesting problem. The more texts we produce, the more texts we have to
search through in order to ensure that plagiarism has not occurred. We formalize this
issue as the one-to-all comparison (OTAC) problem. Given one document, we want to
find all similar documents in a potentially large collection of documents.
In classical information retrieval (IR), there are several methods for document com-

parison that can be employed to measure textual similarity. Well-known approaches
include simple Boolean models and the vector space model (VSM) [8]. While effective at
calculating lexical similarity, utilizing classical methods like these alone would eventu-
ally become impractical for OTAC, given a large enough document base. This thesis will
research if human–computer collaboration can be used as a more time-efficient approach
to the OTAC problem.

1.1.3 Use-Case – The NTNU Course Catalogue

When the Norwegian University of Science and Technology (NTNU) merged with several
other educational institutions in early 2016, they became Norway’s largest university.
This resulted in a heavily extended course catalogue, with more than 4,000 different
courses. In several cases, you would want to compare a course to the university’s entire
course catalogue. For example, a professor might want to find similar courses to his own

2
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at other campuses, or future exchange students could be looking for fitting NTNU courses
based on courses from his or her home university. Such scenarios are all OTAC problems,
where the goal is to compare a single document to the entire document collection and
find the best matches.

1.2 Research Goals and Questions

The overarching goal of the thesis is to explore the potential of saving time on the OTAC
problem through the means of human–computer collaboration. To this end, the human-
guided filtering model (HGFM) is proposed as a novel method for one-to-all comparison
on large datasets. The model provides a stepwise framework for filtering out irrelevant
data before the actual comparison takes place. This is done by augmenting standard in-
formation retrieval methods with machine learning cluster analysis, and adding a human
domain expert to the process.
An implementation of the model will be applied to the NTNU course catalogue, making

it possible to find similar courses given an input course. The results should shed light
on the usability of the model, as well as its limitations.

1.2.1 Research Questions

The thesis will attempt to answer the following research questions:

RQ1 How much time can be saved by filtering datasets using HGFM?

RQ2 How large portions of the dataset can be filtered out, and how does it affect the
output quality?

RQ3 How important is the choice of clustering algorithm to the overall results of the
model?

1.3 Research Methodology

In order to answer the aforementioned research questions, a series of experiments will be
conducted. Using the NTNU course catalogue as a dataset, the results of the HGFM will
be compared to the results of traditional information retrieval algorithms. The various
algorithms will be compared with respect to both relevancy of retrieved documents,
and time efficiency. Focus will be placed on determining if HGFM can speed up the
comparison process, and how the possible speed-up affects the quality and relevancy of
the retrieved data.

1.4 Report Structure

The following section will introduce the remaining chapters of the thesis in order.

3



1 Introduction

1.4.1 Background

This chapter will give the reader the necessary background to understand the concepts
discussed later in the report. This includes models for document representation, a
presentation of relevant preprocessing techniques, an overview of classical textual sim-
ilarity measures, algorithms for cluster analysis, and metrics for output evaluation in
information retrieval.

1.4.2 Related Work

This chapter will provide an overview of related work from relevant fields. This includes
previous attempts at human–computer collaboration, as well as conventional ways of
doing similarity measurement on big data.

1.4.3 Data

The Data chapter will introduce the dataset used to develop and test the human-guided
filtering model. This includes a presentation of document features, how documents can
be compared, a list of shortcomings tied to the dataset, and some descriptive statistics.

1.4.4 Model and Implementation

This chapter will introduce the human-guided filtering model. The rationale behind the
model will be presented, before each component of the model is described in detail. A
concrete implementation of the model is then presented. The selection of algorithms and
technology in the system is explained and justified. A brief manual on how to use the
system is given last.

1.4.5 Experimental Setup

After presenting the model, this chapter will describe the setup of the experiments which
will be conducted on the implementation. It will also cover the methodology used when
developing and testing the system.

1.4.6 Experiments and Results

This chapter will document the results of the planned experiments. This includes the
HGFM implementation’s performance on the NTNU course catalogue, as well as the
performance of conventional IR algorithms for later comparison.

1.4.7 Discussion

This chapter will discuss the results of the conducted experiments. It will evaluate the
performance of the implementation, by comparing it to the performance of non-human-
guided IR algorithms.
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1.4 Report Structure

1.4.8 Conclusion

Based on the findings of the previous chapters, this last chapter will draw a conclusion.
It will review the stipulated research questions and answer them in accordance with the
discussed results. The thesis is concluded with a list of proposals for future work based
on this study.
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2 Background
The human-guided filtering model goes through two separate phases, each with a number
of steps. These are summarized below.

Indexing Phase

1. Document Preprocessing

2. Clustering

3. Labeling

Comparison Phase

1. Human-Guided Cluster Selection

2. Similarity Measurement

The model bears the structure of a classical information retrieval IR system, with
an additional element of machine learning in the form of cluster analysis. This chapter
will provide a theoretical background for the relevant methods and techniques. This in-
cludes ways of representing documents and preprocessing them, as well as algorithms for
clustering and textual similarity assessment. Finally, standard measures for information
retrieval evaluation will be covered.

2.1 Document Representation

In order to process a document, its features must be condensed and represented in
some way. This section will present the simple bag-of-words model, as well as the tf–idf
extension.

2.1.1 The Bag-of-Words Model

As the name implies, the bag-of-words (BoW) model represents a document as a bag
containing its individual words. In mathematics, a bag, also known as a multiset, is
defined as a set where multiple instances of an element is allowed. Similar to a regular set,
the order of the elements does not matter. As a consequence, BoW is a representational
model that disregards the document’s order of words, relying only on term frequency.
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Given a set of documents, each document will be assigned a vector. The elements of
the vector each corresponds to a distinct word in the document collection, and represents
its frequency in the given document. Consider the two documents below.

a) John is a baker, not a cook.

b) Mary is married to a baker. Mary has a husband named John.

Using the BoW model, each document would be assigned the following vector represent-
ation:

john is a baker not cook mary married to has husband named
Va = [ 1 1 2 1 1 1 0 0 0 0 0 0 ]
Vb = [ 1 1 2 1 0 0 2 1 1 1 1 1 ]

Being fairly simple, the model has some major drawbacks [9]. Disregarding the order
of words means that different documents might map to the same vector, as long as the
words are the same. An example of this, is "toy dog" and "dog toy". A toy dog is
obviously not a dog toy, but their bags of words are the same. Another weakness is the
model’s obliviousness to semantics. Each word is treated as completely separate from
every other word, even when their meaning is close.

2.1.2 tf–idf

Term frequency–inverse document frequency (tf–idf) is a weighting metric for terms in
a document collection. Its main purpose is to provide a weighting that reflects not only
the frequency of a term in a single document, but also takes the frequency of the word
in the overall collection into account [10].
tf–idf weighting can be used to extend the BoWmodel of document representation [11].

In its unweighted form, BoW representation will treat each word equally, independent of
its use in the rest of the document collection. This will create the illusion that common
terms, such as stopwords, are important to the document. By weighting each term
using tf–idf, terms will be ranked based on how discriminatory they are, placing less
importance on stopwords and other common words in the corpus.
Mathematically, tf–idf is defined as

tf–idf(t, d,D) = tf(t, d) · idf(t,D),

where tf(t, d) is the term frequency of term t in document d, and idf(t,D) is the inverse
document frequency of t in document collection D. There are several variations of how
to calculate term frequency and inverse document frequency [12]. Common approaches
to term frequency include binary counting, raw counting and logarithmic scaling. The
inverse document frequency is often logarithmically scaled. No matter the exact cal-
culation, the general idea is that the idf should offset the frequency of words that are
common in the corpus.
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While tf–idf, like BoW, is blind to semantics and fails to address word order, it has
seen wide usage as a term weighting metric [13]. In conjunction with BoW, it ensures
that a term’s relative importance is taken into account during processing.

2.2 Document Preprocessing

When performing IR-related operations on a document, it is common for the document
to go through some kind of preprocessing first. This often involves condensing the full
text into a collection of terms that are descriptive of the document, known as index-
terms. Preprocessing of documents is usually divided into five primary steps [14]:

1. Lexical analysis

2. Stopword elimination

3. Stemming

4. Index-term selection

5. Thesauri construction

The first four steps are relevant to the thesis, and the following subsections will explain
them in detail.

2.2.1 Lexical Analysis

At its rawest form, a document is essentially just a byte stream. The process of lexical
analysis is concerned with converting this stream of characters into tokens – strings
with an associated meaning. This makes it possible to further process the data, for
example by removing tokens identified as stopwords. During lexical analysis, one has
to consider a number of elements, namely how to deal with punctuation, hyphens and
similar characters, and how to treat numbers.

2.2.2 Stopword Elimination

Some words are more common than others. The most common words in a given lan-
guage are known as stopwords, and the stopword elimination step seeks to remove them.
The rationale behind this, is that the final index-terms should be descriptive of their
particular document. Common words can by definition be found in many documents,
and will therefore have a low discrimination value. One way of performing stopword
elimination, is to use a predefined list.

9
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2.2.3 Stemming

Stemming is the act of reducing a word to its root form. For instance, both ”fishing”
and ”fished” should be reduced to ”fish”. When searching or comparing documents,
stemming is useful because it allows us to bypass the fact that words can be represented
on different forms.

2.2.4 Index-Term Selection

After having performed lexical analysis, stopword elimination and stemming, one is
left with a term list containing the index candidates. As the name implies, index-term
selection is the process of actually selecting the indices. This can be done either manually
or automatically, each with its set of strengths and weaknesses. There are a number of
things to consider during selection, making the choice hard. One approach is to weight
each term by their relative descriptiveness, for example by calculating their tf–idf values.

2.3 Textual Similarity

Textual similarity approaches can be categorized into three different types: String-based
similarity, corpus-based similarity and knowledge-based similarity [15]. While the first
type measures lexical similarity, the latter types measure semantic similarity. This thesis
is mainly concerned with string-based similarity.
String-based similarity can be either character-based or term-based. Character-based

similarity compares strings using their individual characters as units, while term-based
comparison will use words. The subsequent sections will describe some common string-
based similarity measures.

2.3.1 Character-Based Similarity Measures

This section presents two character-based similarity measures.

Jaccard Similarity Coefficient

The Jaccard similarity coefficient, also known as the Jaccard index, is a simple similarity
measure coined by Paul Jaccard [16]. Given two sets A and B, their Jaccard index is
defined as the size of their intersection divided by the size of their union.

J(A,B) = |A
⋂
B|

|A
⋃
B|

The Jaccard index of two strings can be calculated by treating the characters of each
word as sets. Consider the strings "one" and "ten". Because they share two out of four
different letters, their Jaccard index equals 1

2 .
Although simple, the Jaccard similarity’s biggest advantage over other string-based

similarity measures, is that computations on sets can be performed relatively fast. The
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above example illustrates its main weakness; it does not take the character order into
account. A consequence of this, among other things, is that anagrams will be treated as
equal strings.

Levenshtein Distance

The Levenshtein distance is a string similarity measure, defined as the minimal number
of character operations required to transform one string to another [17]. There are three
such operations: Insertion, deletion and substitution. Formally, for strings a and b:

leva,b(i, j) =


max(i, j) ifmin(i, j) = 0,

min


leva,b(i− 1, j) + 1
leva,b(i, j − 1) + 1
leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise.

This edit-distance approach is more computationally taxing than calculating the Jac-
card index. However, it mends several weaknesses of Jaccard, by taking both character
order and repetition of letters into account.

2.3.2 Term-Based Similarity

This section presents two term-based similarity measures.

The Boolean Model

The Boolean model of information retrieval is a simple method of comparison based
on Boolean algebra [18]. By considering the index-terms of a document, the document
can be compared to other documents through a query. Each comparison will result
in either a match or a mismatch. Consequently, the results of this model cannot be
ranked. Additionally, it does not utilize any term-weighting like tf–idf. Still, it has the
advantages of being both simple and intuitive.

The Vector Space Model

A widely-applied term-based approach to document comparison is the vector space model
(VSM) by Salton et al [8]. Documents are represented as vectors in a bag-of-words fash-
ion, where each dimension corresponds to a term in the global corpus. Each term value
says something about the term’s frequency in the document, and is usually weighted.
One common weight is the tf–idf value. Using these vector representations, it is pos-
sible to compare the documents by calculating the cosine of the angle between them.
Formally:

cos θ = d1 · d2
|d1| |d2|

,
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where d1 · d2 is the dot product and |d1| |d2| is the product of the vector lengths [19].
The relation between the document vectors, terms and angle is illustrated in Figure 2.1.

Figure 2.1: Visualization of the vector space model [20].

2.4 Data Clustering
Clustering, also known as cluster analysis, is the act of categorizing objects into groups,
where objects in the same group are similar to each other. These groups are called
clusters.

There are several algorithms for cluster analysis, with approaches ranging from stat-
istical machine learning to neural networks. This section will present one particular
algorithm relevant to the thesis, as well as a method for cluster visualization.

2.4.1 k-Means Clustering

The k-means machine learning approach to clustering was first introduced by MacQueen
in 1967 [21], while the standard algorithm was presented by LLoyd in 1982 [22]. Clus-
tering is performed by minimizing the objective function
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arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖
2 = arg min

S

k∑
i=1
|Si|VarSi,

where x is the set of observations, S is the cluster set, and µ is the mean of points of its
corresponding set. Lloyd’s algorithm achieves this by iteratively calculating new means
as centroids for each cluster.

2.4.2 Cluster Visualization

One way of visualizing clusters, is through Voronoi diagrams. A Voronoi diagram divides
the plane into several regions referred to as Voronoi cells. Each cell is defined as a convex
polygon with a generating point, so that every other point in the polygon is closer to
that particular generating point, than to any other. Formally, this can be defined as

Rk = {x ∈ X | d(x, Pk) ≤ d(x, Pj) for all j 6= k},

where (Rk)k∈K is the tuple of cells forming the diagram. K denotes the cell indices. X is
the metric space, and d its distance function. Pk is defined as a site with a set of points
so that no point is any closer to another site [23].
Intuitively, when visualizing clusters, each cell of the Voronoi diagram represent a

cluster. The diagram type is especially fitting for the k-means approach to clustering,
as the centroids naturally serve as generating points. An example of a Voronoi diagram
can be seen in Figure 2.2.

2.5 Output Evaluation
This section will present some common metrics for evaluating the output quality of an
IR system.

2.5.1 Precision and Recall

Precision and recall are performance measures used to calculate the quality of the out-
put of an information retrieval system. Both measures assume binary classification —
documents are either relevant or irrelevant to the query. The precision of a result set is
defined as the fraction of retrieved documents that are relevant.

precision = |{relevant documents} ∩ {retrieved documents}|
|{retrieved documents}|

The recall value is defined as the fraction of relevant documents that are retrieved.

recall = |{relevant documents} ∩ {retrieved documents}|
|{relevant documents}|

Precision and recall are complementary, meaning they should always be presented
together. It is trivial to achieve a high recall value alone, simply by retrieving a high
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Figure 2.2: An example of a Voronoi diagram. Generating points are marked with a
cross.

number of documents. Similarly, one can achieve a high precision value by retrieving
very few, but highly probable relevant documents.
The importance of each metric varies with the objective of the system. In cases where

it is important to retrieve all relevant documents, one can perhaps afford a lower precision
to the benefit of a higher recall value. In other cases, like in web search, the number of
relevant documents is so high that the recall value has little to no meaning. One would
rather focus on retrieving a subset with the most relevant documents, and optimize the
precision to avoid false positives [24].

2.5.2 F-Measure

The F-measure, also known as the harmonic mean, is a way of combining precision and
value into a single value.

F = 2 · precision · recall
precision + recall

It is 0 when no relevant documents are retrieved, and 1 when all of the retrieved docu-
ments are relevant. This makes it a suitable measure of the system’s overall performance,
as well as an indicator on whether the compromise between precision and recall is good
[25].
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2.5.3 Mean Average Precision

Precision and recall are calculated based on the whole list of documents retrieved. The
average precision takes the order into account as well, by looking at the precision at
each recall-level (i.e. the positions where a relevant document is retrieved). The average
precision is the mean of these precisions. The mean average precision (MAP) is the
average precisions across a set of queries:

MAP =
∑Q

q=1 AP(q)
Q

,

where AP (q) is the average precision of query q, and Q is the number of queries [26].
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3 Related Work
The following chapter will present previous work related to the thesis. This includes
a review of human–computer collaboration through the years, as well as conventional
ways of doing similarity assessment on big data.

3.1 Human–Computer Collaboration

This section will present various attempts at human–computer collaboration. It will
begin with some early research, before moving on to more recent studies.

3.1.1 Early Approaches

In this day and age, it is not obvious that humans are able to increase the performance
of well-developed algorithms. Still, studies seem to indicate that a human–machine
combination outperforms both humans and machines alone. One early study on the
matter was conducted by Krolak et al. in 1971 [27]. Here, a man–machine approach to
the NP-hard travelling salesperson problem was proposed. The machine was responsible
for organizing and suggesting possible solutions to the problem. The human would
then use its eyes and problem solving skills to pick the best option. The results were
promising, solving large datasets faster than conventional algorithms at the time.

Since then, man–machine approaches has been attempted at various domains. In 1988,
Long et al. proposed a system for evaluating visual clinical research data in medicine
[28], and Sargeant et al. proposed a similar system for free-text grading in 2004 [29].
While the benefit of including a human in the process varies from case to case, all the
aforementioned studies identifies situations where their solution outperform conventional
approaches in some way.

3.1.2 Formalism

Because human–computer collaboration is a broad term, the amount of formalism tied
to the field is limited. One attempt at defining the field more formally was done by
Terveen in 1994 [30]. Terveen identifies two major approaches to human–machine collab-
oration: The Human Emulation Approach and the Human Complementary Approach.
The former approach draws from the field of artificial intelligence. Both the human and
the computer are seen as rational agents with goals to complete. Collaboration occurs
when agents communicate in order to reach their goals. Here, the parts can be assumed
to have symmetric abilities, both being able to reason and complete their designated
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tasks. The Human Complementary Approach, however, assumes asymmetric abilities.
The human and the computer have separate strengths and weaknesses, and collaborate
by dividing responsibility and exploiting each others strengths.

3.1.3 Human-Guided Machine Learning

Recently, so-called human-guided machine learning has branched out into its own field.
This is a type of human–computer collaboration where the human aids the machine
learning algorithm during the learning process. Holloway et al. trained a machine learn-
ing model using human engineered features instead of regular data [31], while Amershi
et al. used human-guided machine learning to achieve fast and accurate network alarm
triage [32]. Both parties achieved promising results. The Association for the Advance-
ment of Artificial Intelligence (AAAI) held its first workshop on the topic in February
2017 [33].

3.2 Similarity Assessment on Big Data
As this thesis proposes a novel way of doing similarity measurement on big data, the
conventional methods should be introduced first. This section will give an overview of
how big data processing is handled in large system, as well as a specific approach to
similarity assessment.
Chapter 1 mentioned the MapReduce framework [3]. Today, this is the de facto

standard in big data processing [34]. The programming model allows for processing of
large amount of data with a parallel, distributed algorithm on a cluster of computers.
Apache Hadoop is one of the most popular implementations of the model.
In 2014, Zadeh and Carlsson proposed a method of doing large-scale similarity as-

sessment using MapReduce [35]. Their paper and algorithm was called Dimension In-
dependent Matrix Square using MapReduce (DIMSUM). The DIMSUM algorithm com-
putes all-pairs similarity, meaning it finds the similarity of every document pair in the
collection, with the criterion that their similarity have to be above a certain criterion.
The algorithm has a probabilistic approach, using sampling to focus the computational
effort on the pairs that are above the similarity threshold. The research was done in
collaboration with Twitter, and managed to improve the performance of a particular
batch job or theirs with 40 %.
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4 Data
As established in Chapter 1, the NTNU course catalogue will serve as a dataset for
the development and testing of the human-guided filtering model. There are several
properties linked to the catalogue and its courses that makes it suited for the purpose
of this thesis. First and foremost, it is a sizable collection of human-produced text.
Secondly, there are several concepts tied to a course that humans intuitively understand,
making them a fitting test-bed for human–computer collaboration.

This chapter will formally introduce the notion of a course, including key features
and how they are tied to each other. It will also explain the thesis’ definition of similar
courses, and how similarity assessments of courses can be objectively judged. A brief
statistical overview of the dataset is given at the end.

4.1 Courses

Formally, courses are the building-blocks of a study program. They all have a unique
identification code, as well as a non-unique name. Each course has a set curriculum,
defining the topics of the course. The curriculum is described by two chunks of text:
Academic content and learning outcome. Each course is administrated by a depart-
ment, i.e. The Department of Computer Science. A course’s corresponding department
will naturally say something about its topic, although the lines can get blurred. For
example, The Department of Mathematical Sciences has a course on supercomputers.
Each department belongs to a faculty. There are 8 faculties at NTNU, and 56 depart-
ments. While course code and department are structured values, other features are
human-generated text, and as such, highly unstructured.
An overview of course features can be seen in Table 4.1. An example of a course

instance can be seen in Table 4.2. Experiments in this thesis has been conducted on
course data gathered through IME’s Data API for courses1.

4.2 Comparing Courses

For this thesis, two courses will be classified as similar if they teach some of the same
content. In other words, similar courses will have similar curricula. Here, the textual
similarity of courses will be assessed using course names, academic content and learning
outcome.

1http://www.ime.ntnu.no/api/
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Feature Description Structured
Code A unique identifier for the course, with an alphabetical

prefix related to its field of study.
Yes

Name The name of the course. No
Academic content A description of the course’s curriculum. No
Learning outcome The skills and knowledge the student will aquire from

the course.
No

Department The university department responsible for the course. Yes
Credit reduction A list of courses that will result in a reduction of cred-

its if you have passed them earlier.
Yes

Table 4.1: The features of a course data object.

Feature Value
Code TDT4100
Name Object-Oriented Programming
Academic content Basic algorithms and data structures, constructs and control flow in

object-oriented languages. Modularization and re-use. Standard ap-
plication programmers interface (API). Unit testing, error detection
and tools for this. Object-oriented design. Use of class, sequence and
collaboration diagrams in the UML. Use of design patterns. Java is
used as implementation language.

Learning outcome The students will have skills in programming, training in usage of
relevant programming methods and tools, Also knowledge and un-
derstanding of usage areas, restrictions and underlying theory.

Department The Department of Computer Science
Credit reduction IT1104 7.5 credits

SIF8005 7.5 credits
TDT4102 5.0 credits
[...]

Table 4.2: An instance of a course data object.

In order to measure the performance of the system, an objective labeling of similarity
is needed as judge. For this purpose, the course credit reduction feature will be used.
At NTNU, each course has a list of courses deemed so similar, that students who have
passed the course will have their gained course credit reduced if they pass any of the
courses on the list. This is done in order to prevent students from obtaining easy credit
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using knowledge from courses they have already passed. When analyzing the results of
the human-guided filtering model on a given course, the system will be judged based on
how many courses in the credit reduction list of the given course are present in the set
of retrieved courses.

4.3 Data Quality

This section will present some flaws in the dataset that one should be aware of when
working with it.

4.3.1 Lacking Descriptions

While most courses at NTNU have extensive descriptions, some do not. In some cases,
descriptions are short or non-existing. This is problematic in cases where two courses
have a credit reduction relation, but one or both of the courses have lacking descriptions.
Such scenarios will likely result in a false negative, where while the courses are similar,
the assessment system do not have the necessary grounds to judge them similar. Table
4.3 shows an example where this is the case. Here, neither courses have any description
beside their name.

Code PPU4241 PPU4941
Name Education: Teaching English -

Full Time
Education: Teaching English -
Teaching Practise Excluded

Academic content — —
Learning outcome — —
Department Department of Teacher Educa-

tion
Department of Teacher Educa-
tion

Table 4.3: Similar courses with lacking descriptions.

4.3.2 Missing Credit Reductions

The credit reduction system, while widespread, does not extend to all courses at NTNU.
Some courses that clearly have overlapping curriculum, does not have a credit reduction
relation. This phenomena is especially frequent in courses from the other educational
institutions NTNU merged with in 2016, which have yet to be completely processed
and adapted into the system. A consequence of this, is that an IR system would be
likely to retrieve false positives. Table 4.4 shows an example of two courses where their
descriptions suggest they are highly similar, but no credit reduction relation exists.
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IMT2282 TDT4186
Operating Systems Operating Systems

– System calls, processes and threads,
how they can be synchronized and how
they can communicate.

– CPU - scheduling algorithms.

– Memory management:Virtual memory,
swapping, paging and segmentation.

– File systems: Implementation, backup,
consistens and performance.

– IO systems: Polling, interrupt and
DMA. interrupt handlers, drivers,
device independant layer, disk systems
and timers.

– Deadlocks: Detection and recovery, pre-
vention and avoidance.

– Virtualization.

– Security: Access Control and Malware

– Programming in C,

– Bash, PowerShell

The topic will establish definitions, prin-
ciples, frameworks and architectures for
modern operating systems. The topic
will focus on processes, thread sys-
tems, synchronization, CPU schedul-
ing, memory management, file systems,
input-output units, deadlock manage-
ment, multi-processor systems and secur-
ity. Important examples will be WIN-
DOWS, UNIX, ANDROID & MAC OS.

Department of Information Security and
Communication Technology

Department of Computer Science

Table 4.4: Excerpt of courses with similar content, but no credit reduction relation.

4.4 Statistical Overview

During the study year of 2016/2017, NTNU offers 4,611 different courses. Out of these,
857 have a credit reduction relation to one or more courses. Table 4.5 displays an
overview of the average length of each textual feature. Because academic content and
learning outcome both describe the contents of the course, they have been concatinated
into a single feature called curriculum. Throughout the thesis, curriculum will be used
as a replacement for the above features.
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Feature Average character count Average word count
Name 33.53 4.36
Curriculum 1 056.71 150.41

Table 4.5: Statistics on length of textual course features.
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5 Model and Implementation
This chapter will present the human-guided filtering model (HGFM). It will cover the
purpose of the model, its way of working, as well as the motivation behind the concept.
The chapter will then go on to describe an implementation of the system, which will be
the focus of the experiments of this thesis.

5.1 The Human-Guided Filtering Model

The human-guided filtering model is a novel way of comparing the objects of large
datasets. More specifically, it is designed to solve the one-to-all comparison (OTAC)
problem. The intuition behind the model, is the idea that domain experts should be
able to quickly reduce the size of the dataset by manually filtering out irrelevant data.
This should ideally allow for faster comparison.

Because some data is filtered out of the process before the comparison takes place, the
results of the model could possibly be worse than the results of one-to-all comparison
with no filtering. A good HGFM implementation will minimize the deterioration of the
results, while maximizing the time saved.
The model is divided into two different phases, each with a number of steps.

Indexing Phase

1. Document Preprocessing

2. Clustering

3. Labeling

Comparison Phase

1. Human-Guided Cluster Selection

2. Similarity Measurement

The OTAC problem asks the following question: Given a set of data and an additional
document (either in the set or outside), which documents in the dataset are most similar
to the input document? In its first phase, HGFM will process the data and divide it
into clusters. Each cluster will be given a short human-readable label or description. In
the second phase, a document is given for comparison. A domain expert will pick the
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clusters that are most likely to be relevant to the document in question. Conventional
similarity measurement will then be employed on the contents of the selected clusters.
Each phase and step is mostly independent, allowing for several different implement-

ations depending on the nature of the dataset to be compared against. The following
sections will present the parts of the system in detail.

5.1.1 The Indexing Phase

The indexing phase is concerned with preprocessing and clustering the data. It is also
tasked with giving each cluster a human-readable label. The phase is independent of
the actual comparison, and should only be performed once per dataset. By storing the
clusters, an arbitrary number of comparisons can be performed later.
Below is a presentation of the phase’s three steps: Document preprocessing, clustering

and labeling. Figure 5.1 displays a diagram of the phase.

Figure 5.1: The steps of HGFM’s indexing phase. Preprocessing is omitted.
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Document Preprocessing

First, data should be preprocessed as needed. Depending on the data, this could mean
normalization, transformation, feature extraction, etc. Generally, the documents should
be preprocessed in such a way that they fit the concrete algorithms used for the sub-
sequent steps.

Clustering

During this step, cluster analysis is performed on the dataset, so that the domain expert
later can select the most relevant clusters for further processing. Because the clusters will
be inspected by a human, it is essential that the number of clusters are at a manageable
level. For the model to work, the human must be able to go through all the clusters.
The optimal number of clusters is relative to the resources of whoever is performing the
comparison.

Labeling

The last step of the indexing phase involves giving each cluster a human-readable label.
Ideally, it should be short and concise, so that a human is quickly able to determine
what kind of documents the cluster contains. Erroneously labeled clusters will lead the
human to either include irrelevant documents in further steps, or exclude relevant ones.
Exclusion of relevant documents would be especially fatal to the overall performance of
the system.
Labeling techniques can range from simple to advanced. Intuitively, the features used

to cluster the documents in the first place should provide a fitting basis for a label. Some
documents will have features which makes summarizing and describing the contents of a
cluster trivial. In other cases, it might be necessary to perform actions such as keyword
extraction, in order to discover common factors of the documents in the clusters.

5.1.2 The Comparison Phase

In the comparison phase, a document is given as input. A human domain expert is then
tasked with selecting the clusters thought to contain data relevant to the input. The
input is compared to the contents of the chosen clusters, and the most similar documents
are returned.
Below is a presentation of the phase’s two steps: Human-guided cluster selection and

similarity measurement. Figure 5.2 displays a diagram of the phase.

Human-Guided Cluster Selection

In this step, a human domain expert will have to inspect the input document and
available clusters, and decide which clusters will be included in the final step of the
process. For this step to be successful, there are two main requirements: First and
foremost, the labeling done during the indexing phase must be adequate, so that each
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Figure 5.2: The steps of HGFM’s comparison phase.

cluster contains what the human expects them to contain. Secondly, the human must
be familiar enough with the domain to be able to do the cluster selection swiftly and
accurately.

Similarity Measurement

Finally, the documents of the selected clusters will be compared to the input through
conventional similarity measures. At this point, the document collection should be
significantly smaller than it originally was, allowing for a more time-efficient comparison
than if all documents were to be compared against.
The output of this step should be a ranked list of the documents most similar to the

input document. This is the final output of the human-guided filtering model.

5.1.3 Remarks

As has already been explained, an implementation of the model is highly dependent
on the properties of the data to be compared against. As such, much consideration
should be put into choosing fitting algorithms for each step. The general nature of the
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model means there are no guarantees on the quality or the efficiency of the comparison.
Therefore, experimenting with the workings of each step is crucial to the final outcome.
It should also be noted that for HGFM to perform one-to-all comparison faster than

a brute-force approach, the human-guided cluster selection step must be less time-
consuming than simply comparing against the documents excluded by that step. If
this cannot be achieved, applying the model is meaningless.

5.2 Implementation

In order to test and demonstrate the human-guided filtering model, a system implement-
ing the model has been developed. The project’s source code can be found on GitHub1.
This section will describe the specifics of the implementation, both in regards to the
selection of algorithms for each step of the model, and in regards to technological de-
cisions. It also contains a brief manual on how to use the system. Methodology used
during development is discussed in Chapter 6.

5.2.1 System Overview

When implementing HGFM, five major choices has to be made, one for each step of the
process:

– What kind of preprocessing is needed?

– Which algorithm for cluster analysis should be used?

– How should the clusters be labeled?

– Who should perform the cluster selection?

– Which similarity measurement algorithm(s) should be used to compare the docu-
ments?

This section will give an overview of the system by answering these questions.

Preprocessing

Preprocessing is performed on the curriculum feature of each course, in order to extract
a list of 30 index-terms. In the implementation, the Python module Natural Language
Toolkit (NLTK) is central to this. First, the text is tokenized using NLTK’s pre-trained
Punkt tokenizer. Stopwords are then removed using a list of stopwords by Porter et
al [36]. Terms are stemmed using the Snowball stemmer, and index-terms are finally
selected by calculating the tf–idf values for each term and picking the 30 terms with the
highest discrimination value. The full preprocessing process is exemplified in Figure 5.3.

1https://github.com/AudunLiberg/CourseComparator
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5 Model and Implementation

Figure 5.3: Preprocessing of a sentence as done in the HGFM implementation.

Cluster Analysis

In order to examine the importance of the clustering step, two different clustering al-
gorithms have been implemented. The first is a simple baseline clusterer, which does not
rely on any machine learning. Instead, it simply clusters courses based on the faculty
they belong to.

The second clustering algorithm implemented, is k-means. The implementation util-
izes the Python library scikit-learn to achieve this, building on their "Clustering text
documents using k-means" approach [37]. Documents are represented in a bag-of-words
fashion, and terms are weighted using tf–idf. The algorithm is set to produce 10 clusters,
which during testing proved to provide a natural division of courses, without being too
much for the human domain expert to handle.
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5.2 Implementation

Cluster Labeling

Each of the two clustering algorithms implemented have their own labeling scheme. The
baseline clusterer, where each cluster equals a faculty at NTNU, creates labels using the
name of the respective faculties. The clusters from the k-means approach, are labeled
by identifying the ten most frequent index-terms from the courses inside.

Human Domain Expert

The researcher himself will serve as the domain expert during the experiments. As a
longstanding student at NTNU, he is believed to possess adequate knowledge about the
various courses at the university. Although sufficient for this preliminary study of the
model, more research should be done on the human domain expert’s effect on the overall
performance of the system. An in-depth study on this is proposed as future work in
Section 9.3.2.

Similarity Measures

Similarity will be computed by looking at each course’s name and curriculum features.
Two sets of similarity measures will be used. One is simple, but computationally fast.
The other uses more advanced techniques, which are slower, but should yield better
results. These sets will be referred to as the simple and the advanced similarity measure
sets, respectively. When retrieving results, courses with a similarity of 0.05 or higher are
returned.
The simple set consists of two measures: Jaccard similarity on course names, and the

Boolean similarity model on the curriculum feature. The queries of the Boolean model
are formed so that two documents are similar if they have at least 15 equal index-terms
(out of 30). Otherwise, their similarity is 0. The final similarity is a vote between the
measures, with each measure weighting 50 % each.
The advanced set consists of two measures: Levenshtein distance on course names,

and VSM-computed similarity on the curriculum feature. The final similarity is a vote
between the measures, with each measure weighting 50 % each.

5.2.2 Technology

The system has been implemented using the Python 3 programming language. Table
5.1 lists various libraries the project depends on, as well as their use.

2http://www.nltk.org/
3http://scikit-learn.org/
4https://docs.python.org/3/library/pickle.html
5http://docs.python-requests.org/en/master/
6https://docs.python.org/3/library/shutil.html
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5 Model and Implementation

Library Description
NLTK2 An NLP library providing interfaces to various corpora and lexical re-

sources, including stemmers, tokenizers and stopword lists. The system
makes use of the stopwords and punkt packages, which should be down-
loaded upon first run.

scikit-learn3 A machine learning toolkit used for implementing k-means clustering.
pickle4 A module for storing ("serializing") objects, allowing the system to cache

courses and clusters between runs.
requests5 An HTTP library for downloading courses from the web.
shutil6 A module for operating on files. Used to manage cache.

Table 5.1: Python libraries used in the implementation of the system.

5.2.3 Usage

The system is started from the command line, by running the file cc.py. By providing
a course code as argument, a list of the course catalogue’s most similar courses will be
returned.

python cc.py TMA4100.

During runtime, the user will be prompted to perform cluster selection. This is depicted
in Figure 5.4. For more elaborate instructions on use, including flags which can be used
to replicate the thesis’ experiments, consult the project’s readme on GitHub.

Figure 5.4: Screenshot of cluster selection in practice.
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6 Experimental Setup
In order to answer the research questions stipulated in Chapter 1, a series of experiments
will be conducted. This chapter will describe the methodology behind the work, as well
as the setup for the experiments.

6.1 Preparation

To prevent overfitting during development, courses with credit reduction relations were
used to create two sets: A development set with 10 courses, and a validation set with
20 courses. The courses in these sets were chosen at random, and can be found in
Appendix A. During the experiments, the system will be tasked with finding the most
similar matches to these courses from the full course catalogue of about 4,600 courses.

The validation set was held back until development was done and the experiments
began. Results from both sets are provided when describing the experiments.

6.2 Experimental Setup

The experiments are conducted in two rounds: Comparison with and without filtering.
This section will describe how these experiments will be carried out, what data will be
collected, and how it will be presented.

6.2.1 Experiments With Filtering

In these experiments, the implementation of the human-guided filtering model will be
tested. The model consists of two phases, and the experiments will cover results from
both. The indexing phase is responsible for clustering the data and giving each cluster
a label. During the experiments, the system will be tested using two different clustering
algorithms: The baseline clusterer and the k-means clusterer. The distribution of courses
withing each cluster will be documented, as will the labels given to each cluster. As
mentioned, the researcher will serve as the domain expert for the experiments.
In the comparison phase, the human selects relevant clusters based on the input, and

the contents of those clusters are compared to the input. The time taken by the human
to pick the clusters, as well as the time taken to do the actual comparison, will be
documented.
Finally, similarity will be calculated using algorithms from the simple and advanced

measure sets, as described in the previous chapter. Using the credit reduction list to
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assess the relevancy of each retrieved course, precision, recall, F-measure and MAP will
be calculated.

6.2.2 Experiments Without Filtering

In order to measure the time saved by employing the human-guided filtering model,
comparisons will also be done using the same similarity algorithms as described above,
but without human-involvement. This entails using the same dataset with the same
preprocessing, but with no filtering. Precision, recall, F-measure and MAP will be
calculated as before, in order to observe how the filtering affects the output quality.
Time used comparing will also be documented, making it possible to measure if using
the model saves time.

6.3 Computer Hardware
Because time-measurement is an important part of the experiments, the specifications
of the computer hardware used to run the experiments is documented in Table 6.1. This
is done to put the results into context, and to ensure reproducibility.

Hardware Model
Motherboard GIGABYTE GA-Z77X-D3H Z77 S-1155 ATX IVY
CPU INTEL CORE I5 3470 3.2GHZ 6MB S-1155 IVY
RAM CORSAIR 8GB DDR3 XMS3 INTEL I5/I7 PC12800 1600MHZ
SSD OCZ AGILITY 3 2.5" 120GB SSD SATA/600 MLC

Table 6.1: The computer hardware used to run the experiments.
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7 Experiments and Results
This chapter will present the results of the conducted experiments. The first section is
concerned with documenting the results of the two implemented approaches to clustering
and labeling. The second section is focused on the comparison phase of the process,
including human-guided cluster selection and similarity measurement. The third and
final section documents the results of similarity measurement without any filtering.

7.1 Clustering and Labeling

Two clustering algorithms were implemented, each with a corresponding labeling scheme.
The first is known as the baseline algorithm, the second is k-means clustering.

7.1.1 Baseline Clustering Results

The baseline clusterer simply clusters courses based on their associated faculty, and
labels them with the name of that faculty. There are eight faculties responsible for
courses at NTNU, in addition to the Education Quality Division, which is responsible
for two more courses, summing up to nine clusters. These are summarized in Table 7.1.

# Size Label
1 295 Faculty of Economics and Management
2 758 Faculty of Information Technology and Electrical Engineering
3 248 Faculty of Architecture and Design
4 496 Faculty of Natural Sciences
5 960 Faculty of Engineering
6 501 Faculty of Medicine and Health Sciences
7 672 Faculty of Social and Educational Sciences
8 679 Faculty of Humanities
9 2 Education Quality Division

Table 7.1: The clusters and labels of the baseline clusterer.
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7.1.2 k-Means Clustering Results

The k-means approach divides the dataset into ten different clusters. The resulting
Voronoi diagram can be seen in Figure 7.1. Table 7.2 shows the number of courses
within each cluster, as well as the associated labels.

Figure 7.1: Voronoi diagram for the k-means clustering algorithm.

# Size Label
1 649 design system build architectur læringsutbytt control simul energi product engin
2 886 manag polit social læringsutbytt psycholog busi polici cultur market perspect
3 311 nurs patient care health ill medic diseas clinic profession acut
4 1,014 mathemat statist equat model numer linear method data differenti analysi
5 187 educ teach part teacher time full practis exclud physic theori
6 460 research methodolog scienc qualit scientif candid question thesi disciplin literatur
7 313 project special report mileston work chosen combin manag search literatur
8 273 thesi supervisor must supervis academ page depart scientif report approv
9 106 inform see expert teamwork www.ntnu.no/eit http cours web technolog site
10 412 languag norwegian text grammar european music literari cultur vocabulari histori

Table 7.2: The clusters and labels of the k-means clustering algorithm.
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7.2 Comparison Phase

7.2 Comparison Phase
This section will present the results of the experiments on the steps in the comparison
phase of the model. This includes human-guided cluster selection and similarity meas-
urement. The same experiment has been repeated on both clustering approaches. For
statistics on the number of courses filtered for the different clustering approaches, see
Table 7.3.

Development Set Validation Set
Clusterer Total Courses Avg. Filtered % Avg. Filtered %
Baseline 4,611 3,775 0.82 3,577 0.76
k-Means 4,611 3,702 0.8 3,477 0.75

Table 7.3: Average number of courses filtered out before comparing for the different
clustering algorithms.

7.2.1 Comparison on Baseline Clusters

The output results of comparison after filtering on the baseline clusters can be seen
in Table 7.4. Time spent by the human on cluster selection and time spent on the
comparison itself can be seen in Table 7.5.

Development Set Validation Set
Comparison Type Prec. Recall F1 MAP Prec. Recall F1 MAP

Simple 0.18 0.35 0.217 0.4 0.07 0.4 0.112 0.358
Advanced 0.08 0.517 0.135 0.429 0.13 0.583 0.194 0.539

Table 7.4: Output results from comparison on courses filtered using the baseline clusters.

Development Set Validation Set
Comparison Type S. Time (s) C. Time (s) S. Time (s) C. Time (s)

Simple 87.3 0.5 179.8 1.3
Advanced 81.4 13.3 162.6 30.6

Table 7.5: Average cluster selection (S.) and comparison (C.) times when using baseline
clustering.
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7.2.2 Comparison on k-Means Clusters

The output results of comparison after filtering on k-means clusters can be seen in Table
7.6. Time spent by the human on cluster selection and time spent on the comparison
itself can be seen in Table 7.7.

Development Set Validation Set
Comparison Type Prec. Recall F1 MAP Prec. Recall F1 MAP

Simple 0.125 0.557 0.187 0.503 0.167 0.55 0.231 0.6
Advanced 0.14 0.617 0.203 0.583 0.14 0.733 0.214 0.602

Table 7.6: Output results from comparison on courses filtered using the k-means clusters.

Development Set Validation Set
Comparison Type S. Time (s) C. Time (s) S. Time (s) C. Time (s)

Simple 106.2 0.8 187.6 1.4
Advanced 97.8 10.8 183.5 30.6

Table 7.7: Average cluster selection (S.) and comparison (C.) times when using k-means
clustering.

7.3 Comparison Phase Without Filtering

This section documents the results of the above experiments without any filtering.

Development Set Validation Set
Comparison Type Prec. Recall F1 MAP Prec. Recall F1 MAP

Simple 0.17 0.6 0.237 0.7 0.131 0.667 0.198 0.578
Advanced 0.16 0.717 0.236 0.629 0.15 0.783 0.231 0.714

Table 7.8: Output results from comparison without filtering.
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7.3 Comparison Phase Without Filtering

Development Set Validation Set
Comparison Type Time (s) Time (s)

Simple 1.4 3.2
Advanced 57.7 121.0

Table 7.9: Time spent comparing without filtering.
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8 Discussion
This chapter will evaluate and discuss the results of the performed experiments, be-
ginning with an analysis of the clustering approaches, labeling and the human-guided
cluster selection. Subsequent sections will discuss results related to time and output
quality for comparison with and without filtering.

8.1 Clustering

This section will discuss the results of the two approaches to clustering used in the
experiments. It will also review the findings of the human-guided cluster selection step.

8.1.1 Clustering Approaches

The baseline clustering approach distributed courses based on their associated faculty.
This resulted in eight clusters with sizes ranging from 248 to 960 members. The Educa-
tion Quality Division represented a ninth cluster, and was a statistical outlier with only
two courses. Each cluster was labeled with the name of the faculty it represented.

The k-means clustering approach based on the curriculum feature, was set to produce
10 clusters. These clusters ended up having from 106 to 1,014 members, meaning it
had a slightly more uneven distribution than the baseline. Each cluster was labeled
using the ten most common index-terms of its members. This revealed some noise in
the dataset, namely that some Norwegian words occurs in the course descriptions. For
example, "læringsutbytte", meaning learning outcome, is commonly used as a heading
even in English. Besides this, the index-terms seemed to represent their clusters well.
For example, one cluster was labeled nurs patient care health ill medic diseas
clinic profession acu. As one would expect, this cluster contains courses almost
exclusively about nursing and medicine.
Comparing the clusters of the two approaches, we see that their contents are quite vary-

ing. The k-means approach has some clusters dedicated to specific types of courses. For
example, the cluster labeled inform see expert teamwork www.ntnu.no/eit http
cours web technolog site consists exclusively of courses from the Experts in Team-
work series. These are interdisciplinary courses where students from various programs
collaborate on a project. All these courses have similar descriptions, but belong to dif-
ferent faculties. As a consequence, they are placed in different clusters by the baseline
approach. A similar example is the cluster labeled thesi supervisor must supervis
academ page depart scientif report approv, which mainly consists of specializa-
tion projects and master theses from various departments. The remaining k-means
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8 Discussion

clusters were focused on broader topics, such as mathematics (mathemat statist equat
model numer linear method data differenti analys). This cluster contains math-
ematical courses not only from The Department of Mathematical Sciences, but also from
the fields of economy and engineering, which are governed by different faculties.

8.1.2 Human-Guided Cluster Selection

During the human-guided cluster selection, the human had to select clusters believed
to be related to the input course. This resulted in about 75 to 80 % of the courses
being filtered out before the actual comparison took place. This goes for both clustering
approaches, despite the differences in content pointed out above.
The human found it easier to select clusters labeled with index-terms compared to

selecting faculty labels. Index-terms only require general knowledge about which terms
relate to which topic. For example, it is intuitive that the courseMathematical Approxim-
ation Methods in Physics relates most to the cluster labeled mathemat statist equat
model numer linear method data differenti analys. However, it is not intuitive
if the same course belongs to The Faculty of Information Technology and Electrical En-
gineering (which manages mathematical courses), or The Faculty of Natural Sciences
(which manages courses on physics). Detailed domain-knowledge would be needed in
this case, something the human (i.e. the researcher) lacked. This is a possible reason for
why the results of the baseline clusterer are consistently worse than the results of the
k-means clusterer in terms of recall value. This underlines the importance of having a
human that is an expert at the domain of the comparison.
The human experienced that cluster selection became easier over time. Tests results

were printed between each comparison, meaning the human had the chance to learn
from its mistakes. For example, it quickly became clear that courses with the PPU suffix
in their code belonged in the cluster labeled educ teach part teacher time full
practis exclud physic theor. In the end, the human was able to include or exclude
clusters almost immediately, only using a few seconds per case. The specific clusters
from the k-means approach, such as the Experts in Teamwork cluster, were especially
helpful. The courses in these clusters are seldom related to other courses, meaning they
could be excluded in most cases without much thought.

8.2 Performance
This section will discuss the performance of the system with respect to output quality
and running time.

8.2.1 Output Evaluation

Without any filtering, the system achieves a recall value of 0.6 with the simple similarity
measure set, and 0.717 with the advanced similarity measure set. The precision values
are at 0.17 and 0.16 respectively. It is clear that the system generally retrieves too many
courses, hence the low precision value. The naive retrieval criterion, where every course
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with a similarity of 0.05 or higher are retrieved, is probably the main reason for this.
Looking at the MAP values, they are considerably higher than the precision, confirming
that relevant documents are ranked high, and that fewer documents should have been
retrieved.
When applying filtering, the recall value sinks. This is expected, as removing po-

tentially relevant documents can only affect the recall negatively. With the k-means
clustering approach, recall diminishes with 0.05 to 0.1. It sinks even lower with the
baseline clustering, being reduced with as much as 0.25 during the experiments (simple
comparison, development set). This signifies that incorrect assumptions regarding rel-
evant clusters are being made by the human during cluster selection, resulting in the
exclusion of relevant courses. This is especially evident for the baseline clusterer, where
the human lacked detailed knowledge about the faculties.
Generally, the results cannot be described as very good, neither with nor without

filtering. This is partly due to the similarity measures, which are all fairly simple.
Better results could probably have been achieved using more modern, state-of-the-art
methods. The dataset itself also has its shortcomings, as documented in Section 4.3.
As this has nothing to do with the results of applying the model to the problem, the
lackluster results are considered inconsequential.
Finally, it should be noted that the results from the development and validation sets

are varying. Given that the number of tests run during the experiments is somewhat low
(10 for development, 20 for validation), it is uncertain if the variance is meaningful or
coincidental. As the validation set frequently scores a little higher than the development
set, there is no reason to suspect overfitting during development.

8.2.2 Time Evaluation

Filter-less comparison with the simple set of similarity measures completes the 10 tests in
the development set in 1.4 seconds. The 20 tests in the validation set were completed in
3.2 seconds. Using the advanced set of similarity measures took 57.7 and 121.0 seconds
on the same test sets. The implementation of the Levenshtein distance metric was
especially time-consuming in practice, explaining the big performance gap between the
two measure sets. While slower, the advanced similarity measure set manages to retrieve
more relevant courses, as seen above.
With the nine baseline clusters, human-guided cluster selection took around 85 seconds

on the tests from the development set, and 165 seconds on the tests from the validation
set. On the ten k-means clusters, the selection took around 100 seconds on the tests
from the development set, and 185 seconds on the tests from the validation set. As
there is one more cluster in the k-means approach, it is expected that selection using
this algorithm would take a little longer. As the filtering process excluded up to 80 % of
the courses before comparison, comparison times were cut with approximately the same
percentage.
Given the above numbers, the human-guided filtering model was not able to save

any time. Comparing with the simple similarity measures, comparison was more than
50 times slower. Comparing with the advanced similarity measures, comparison was
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about half as fast using the model. While using the model did not save any time in
this particular case, the results could have been different under other circumstances. As
the time spent on cluster selection is independent of the size of the document collection,
the number of documents is crucial to the question if time can be saved. Had there
been two or three times as many courses in the course catalogue, using the model with
the advanced similarity measures would have meant saving time. This emphasizes the
importance of considering the size of your dataset before employing the model.
Furthermore, the cluster selection step relies on the human brain, not the CPU of

the computer. As a consequence, time could have been saved if the hardware executing
the comparison had been slower. Similarly, it would have been possible to save time if
each comparison was more time-consuming. All four similarity measures used during
the experiments are fairly simple. More advanced approaches are likely to be slower,
creating a greater need for filtering.
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9 Conclusion
This thesis has introduced the human-guided filtering model, a novel way of performing
one-to-all comparison on large datasets. The model has been implemented and tested
on a dataset consisting of course descriptions from The Norwegian University of Science
and Technology. Based on the results of the conducted experiments, this chapter will
conclude the thesis. Each of the stipulated research questions will be reviewed and at-
tempted answered in accordance with the thesis’ findings. Finally, a section is dedicated
to suggestions to future work based on this study.

9.1 Review of Research Questions
This section will address the research questions listed in Chapter 1.

RQ1 How much time can be saved by filtering datasets using HGFM?

None of the conducted experiments managed to save any time by employing the model.
The human-guided cluster selection proved to be too time-consuming compared to the
actual comparison, meaning that even though a large portion of documents were filtered
out, time was lost in total. This does, however, not mean that HGFM is without
potential. Because the time spent on cluster selection is constant with regards to the size
of the document collection, there are multiple cases where time can be saved. Discussion
highlighted three such cases, where comparison time will always exceed cluster selection
time, given extreme enough situations:

• When the document collection is sufficiently large.

• When the similarity measures are sufficiently complex.

• When the computer hardware is sufficiently slow.

In our time and age, hardware is seldom the bottleneck. Exceedingly large datasets,
on the other hand, is a more likely scenario. As discussed in the introduction, the
so called Big Data Gap is growing, meaning there are an abundance of larger datasets
where the model could prove successful. There are also similarity measures that are more
computationally demanding than the simple measures demonstrated in the experiments.
Documents with a lot of features are especially resource-demanding to compare. This
suggests that HGFM could be well-suited for comparison of high-dimensional objects,
such as images or video. The Future Work section at the end of this chapter proposes
looking into such use-cases for the model.
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In conclusion, there is no theoretical bound to how much time can be saved by using
HGFM. With that said, the thesis has shown that saving time is not guaranteed. There-
fore, the size of the dataset and the complexity of the similarity measurement has to be
taken into consideration before choosing to apply the model in a system.

RQ2 How large portions of the dataset can be filtered out, and how does it
affect the output quality?

Experiments showed the dataset being reduced with as much as 80 %. Depending on
the amount of clusters selected during human-guided cluster selection, this number will
of course vary. This 80 % reduction came with the price of a 0.05 lower recall value at
best, and a 0.25 lower value at worst. If such a loss is acceptable, depends on the use of
the system being developed.
Important in deciding how much can be filtered out, and how the relevancy of the

output is affected, is the human-guided cluster selection. Intuitively, more clusters means
more accurate filtering by the human. In the most extreme case, each document is its
own cluster, meaning the human would do all of the comparison work manually. This
would, of course, be extremely time-consuming. Therefore, when choosing the number of
clusters, one should be aware of the trade-off between accurate filtering and time spent
on cluster selection.
While it is too early to draw any conclusions based on this study alone, the model does

seem to have potential for massive reductions in document collection size. In datasets
with millions of documents, being able to filter out anything close to 80 % of the set
would lessen the computational burden considerably.

RQ3 How important is the choice of clustering algorithm to the overall
results of the model?

The study has tested two different approaches to clustering. The baseline clusterer
and the k-means clusterer both managed to filter out about 80 % of the dataset before
comparison began. Human-guided cluster selection went fastest when using the baseline
clusterer, most likely due to its lower number of clusters.

The baseline approach saw the human struggling with connecting input to the relevant
clusters. For this approach, even though approximately the same amount of data was
filtered out, fewer relevant courses were retrieved. In other words, relevant courses were
removed erroneously. This underlines the importance of not only have a sound clustering
algorithm, but also a labeling scheme that communicates the content of each cluster well.
In conclusion, the choice of clustering algorithm is crucial to the overall results of the

model, affecting both cluster selection time and output quality in terms of relevance.
The number of clusters and how they are labeled are important factors.
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9.2 Final Remarks

This study has contributed to big data processing by introducing the human-guided
filtering model. The model provides a robust framework for executing human-assisted
one-to-all comparison on large datasets. The approach diverges considerably from the
conventional ways of processing big data (i.e. with distributed, parallel algorithms, as
covered in Chapter 3). With that said, the method could potentially be combined with
conventional methods. Employing the DIMSUM algorithm in the final step of the model
is one such option.
The high level of filtering seen in this thesis, makes HGFM fall into the ranks of

human–computer collaborations where neither the human nor the machine could achieve
similar results alone [27] [28] [29]. In line with recent trends in human–computer collab-
oration, a human-guided machine learning approach to the model could be interesting.
This could be achieved by augmenting the clustering step with human assistance.
Limitations of the study includes the dataset used for experiments, which proved to be

too small to achieve real time-saving. As such, the full extent of the model’s strengths
and weaknesses are probably not covered yet. Furthermore, not much emphasis has
been placed on the human aspects of the model. This includes the selection, training
and impact of the domain experts. Studies where these moments are inspected closer
are proposed in the last section of the thesis.

9.3 Future Work

This early research on the human-guided filtering model has been promising. More
work should be conducted in order to further explore its potential and limitations. This
section will summarize some particular areas of interest.

9.3.1 Experiments on Larger Datasets

The model is most useful on datasets so large that comparison on every object becomes
impractical, creating a need for filtering. The NTNU course catalogue has served to
create a functional proof of concept, but with approximately 4,600 documents, it cannot
be considered big data. In order to further assess the usability of the model, experiments
should be conducted on datasets of significantly larger proportions. A suggestion might
be the NUS-WIDE image dataset, consisting of 269,648 tagged images [38]. Comparing
images should prove more computationally heavy than comparing text. Combined with
the large size of the dataset, there should be ample opportunity of proving the model’s
time-saving capabilities.

9.3.2 Human-Centered Research

By introducing a human into the process, you also introduce several unknown variables.
Research should therefore be done to investigate the role of the human in HGFM. What
possible biases does the human bring to the table, and how will they influence the
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inclusion or exclusion of data? How are the results of the model affected by quick
thinking versus slow, methodical thinking? How much domain knowledge is needed in
order to do a good job when serving as domain expert? There are many aspects that
should be taken into consideration.

9.3.3 Cluster Selection Interfaces

Because an effective cluster selection step is integral to the model, research should be
put into discovering good user-interfaces for the process. Not all cluster labels can be
represented through a command window. For some datasets, visual labels would be
more appropriate than textual ones. In order to make the human’s job easier, multiple
approaches should be explored.
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Appendices
A Courses Used in Experiments

A.1 Development Set

• PPU4729 Teacher Education: Teaching Mathematics, Part II

• IMT3003 Service Architecture Operations

• TFY4305 Nonlinear Dynamics

• SOS8526 Cultural Sociology

• IMT1002 Introduction to engineering - computer science

• KUH2200 Topics in Modern Art: Avant-garde Strategies

• POL3516 The European Union - Rural and Regional Political Economy

• TMA4140 Discrete Mathematics

• PSYPRO4117 Mental Disorders

• NFUT0007 Norwegian for Foreigners, short courses

A.2 Validation Set

• HIST1505 Introduction to Historical Theory and Methods

• TMA4135 Calculus 4D

• FY8410 Light and Force Based Molecular Imaging

• PPU4626 Teacher Education: Teaching Chemistry - Part 1

• PSYPRO4112 Cognitive Psychology I

• PSYPRO4318 Qualitative Research Methodology

• NFUT0005 Norwegian for Foreigners, short courses

• TT3010 Audio Technology and Room Acoustics

• BARN8101 Social Studies of Children and Childhood: Research Perspectives
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• BEV8003 Signal Analysis with Matlab in Human Movement Science

• PPU4623 Teacher Education: Teaching Physics - Part 2

• SOS3007 Qualitative Research Methods

• TEP4105 Fluid Mechanics

• TGB4185 Engineering Geology, Basic Course

• KLH3101 Obesity: Epidemiology, Pathophysiology and Consequenses

• NORX1106 Dialectology and History of Language - for Exchange Students

• SOS3513 Welfare State, Family and Integration

• SØK3514 Applied Econometrics

• PSY2016 Personality Psychology II

• KULT3302 Methodes of Qualitative Research Processes II

• EXPH0005 Examen philosophicum for Medical Science and Human Movement
Science

• IMT2007 Network Security

• TTT4260 Electronic System Design and Analysis I

• KUH3011 Visual Culture

• POL2022 Petroleum Management, Political Economy and Ethics

• PSY3912 Master Thesis Learning - Brain, Behavior, Environment

• TPK5160 Risk Analysis

• PSYPRO4416 Applied and Clinical Personality Psychology

• IMT4032 Usability and Human Factors in Interaction Design

• FY8908 Quantum Optics
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