
Medical Procedural Training in Virtual
Reality

Tarald Gåsbakk
Håvard Snarby

Master of Science in Computer Science

Supervisor: Frank Lindseth, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

TDT4900 Master’s Thesis
Spring 2017

Medical Procedural Training in Virtual Reality

Tarald Gåsbakk
Håvard Snarby

Coordinator: Frank Lindseth
Co-coordinator: Ekaterina Prasolova-Førland

Co-coordinator: Aslak Steinsbekk

June 25, 2017

Abstract

Virtual reality tools have seen a large increase in interest over the last few years.
Educators have been early adopters of such tools, and research have shown
that students enjoy training in a virtual world using virtual reality devices.
New tools for interacting with the virtual world, like the controllers offered by
virtual reality products like HTC Vive and Oculus Rift opens for more immersive
applications. In addition, the usage of real world medical imaging in virtual
applications is a good way to further peak the users interest and involvement.
This thesis explores the possibilities such hardware and data usage opens for
a procedural training application in virtual reality, and the research question
was worded as follows: Which functionality are required to create an application
using general purpose virtual reality equipment for medical procedural training
supported by imaging data. In order to answer, an application where users are
guided through a neurosurgical pre operation phase was implemented, and tested
on two occasions. A video presenting the core functionality may be found here
https://goo.gl/5djsSd. The feedback and observations from user tests showed
that users were quickly able to interact sufficiently in the virtual environment.
Observations also shows that it is indeed possible to utilize real world medical
data to support a learning applications. We conclude that it is indeed possible
to create a learning application using general purpose virtual reality equipment
supported with real world medical imaging.

https://goo.gl/5djsSd

Sammendrag

Verktøy for virtuell virkelighet har opplevd en stor interesseøkning de siste årene.
Pedagoger har vært tidlig ute med å utnytte slike verktøy, og forskning viser
at studenter liker å trene i en virtuell verden. Nye verktøy for å interaktere
med en virtuell verden, som kontrollerne tilbudt av HTC Vive og Oculus Rift
åpner for applikasjoner som gir brukere en bedre følelse av innlevelse. I et
tillegg kan integrering av medisinske bildedata fra den virkelige verden gi bruk-
erne en mer virkelighetsnær opplevelse. Denne tesen utforsker mulighetene slik
maskinvare og bruk av data tilbyr for prosedyretrening i virtuell virkelighet, og
forskingsspørsmålet som ble undersøkt hadde følgende ordlyd: Hvilke funksjon-
aliter kreves for å konstruere en applikasjon som bruker generelle verktøy for
virtuell virkelighet til å gjennomføre medisinsk prosedyretrening supplementert
med medisinske bildedata. For å svare på dette ble en applikasjon konstruert,
hvor brukerne går gjennom en pre-operativ fase av en nevrokirurgisk operasjon.
Denne applikasjonen ble testet ved to anledninger. En video som presenter
kjernefunksjonaliteten i applikasjonen kan sees her https://goo.gl/5djsSd.
Tilbakemeldinger og observasjoner tilegnet igjennom brukertesting av applikasjo-
nen viser at brukerne klarer å interaktere med den virituelle verden med liten
opplæringstid. Det ble også observert at medisinske bildedata bygde godt opp
under scenariene i applikasjonen. Vi konkluderer derfor at det er mulig å lage
en læringsapplikasjon ved å bruke generelle verktøy for virtuell virkelighet som
er underbygget med medisinske bildedata.

https://goo.gl/5djsSd

Glossary
ACS-Panel Panel showing the axial, corronal and sagital view of an MRI(see MRI).

37

HMD Head mounted display. 16

MRI Magnetic resonance imaging. 4

OR Oculus rift. 17

PUN Photon unity network. 72

Vive HTC Vive. 18

VR Virtual reality. 1

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Problem description . 3
1.3 Research questions . 3

2 Background 4
2.1 Previous work . 4
2.2 Terminology and concepts in virtual reality development 6

2.2.1 User interaction and immersion 7
2.2.2 Development with game engines 9
2.2.3 Serious games . 14

2.3 Virtual Reality Headset/Head Mounted Display (HMD) 16
2.3.1 Oculus Rift (OR) with Oculus Touch 17
2.3.2 HTC Vive (Vive) . 18
2.3.3 Samsung Gear VR . 19
2.3.4 Google Cardboard . 20
2.3.5 VR - sickness . 20

2.4 Thesis goals and objectives . 20

3 Equipment, Methods and Implementation 22
3.1 Equipment, tools and frameworks . 22

3.1.1 Head mounted displays . 22
3.1.2 Game engines . 22
3.1.3 Tools and framework for virtual reality development 22

3.2 Methods . 23
3.2.1 Scenarios . 23
3.2.2 Evaluation . 24

3.3 Implementation . 25
3.3.1 Changes based on specialization project 25
3.3.2 Constructing the environment 27
3.3.3 User interaction . 30
3.3.4 Real world medical imaging 34
3.3.5 State and persistence . 39

4 Results 42
4.1 Application and scenarios . 42

4.1.1 Gear and scenario selection 42
4.1.2 Neurosurgical scenario . 44
4.1.3 Gynecology scenario . 52
4.1.4 Explored functionality . 54

4.2 Evaluation . 59
4.2.1 Technoport . 60
4.2.2 Medical simulation centre - network conference 60
4.2.3 Neurosurgical ultrasound seminar 61

5 Discussion 64
5.1 Interaction and immersiveness with general purpose VR equipment . 64

5.1.1 Controller design . 64
5.1.2 User-controller interaction . 65
5.1.3 Interaction with VR environment 65

5.2 Using real world medical imaging . 66
5.2.1 Imaging extracted from videos 66
5.2.2 Raw volume data . 67
5.2.3 Medical imaging interaction 67

5.3 Research outcome . 67

6 Conclusion and Future Work 69

7 Appendix 72

A Networking functionality 72
A.1 Introduction and choice of framework 72
A.2 Implementation . 73
A.3 Networking results and discussion . 76

B Setup of HMD 77
B.1 HTC Vive Setup . 77
B.2 Oculus Rift + Touch Setup . 77

C How to build and run Unity projects 79

D Using Volume Viewer 80

E User feedback 82

F Video presentations 84

List of Figures
1 VR popularity and investment . 2
2 Showing Gestalt principles . 8
3 Working with Unity . 10
4 Difference between UnityScript and C# 11
5 The lifecycle of Monobehavior source: [1] 13
6 Graphics rendering in Unity, source: [2] 14
7 Development structure on serious game, source: [3] 16
8 Oculus Rift with Oculus Touch . 17
9 The HTC Vive equipment . 19
11 Layout of the hospital . 27
12 An illustration of the animator view in Unity 29
13 Presentation of the animation view in Unity 30
14 Illustration of the game panel . 33
15 Snapshot from ultrasound video . 35
16 The ultrasound machine used in the application 36
17 Workflow for ultrasound applications 37
18 An illustration of the implemented navigation system in the application 39
19 Flowchart describing the flow distribution of solutions 41
20 Snapshots of the main menu . 42
21 Illustrating the turn on controller message 43
22 Showing the different hand gestures in the application 44
23 Preview of the three cases . 45
24 An overview of available equipment for task 3 47
25 Illustration on how the horizontal torus is used 48
26 Illustration on how the vertical torus is used 48
27 Representation of the equipment located over the game panel 49
28 Examples of how to shave and mark the patient 49
29 Obscuration of solution button . 49
30 Solutions to the three cases . 50
31 Use of navigation system and ultrasound 51
32 Guiding the patient to a ultrasound room 52
33 Representation of the ultrasound room in the gynecology scenario . . 53
34 An image of the ultrasound system in the gynecology scenario 53
35 Beginning of ultrasound examination 54
36 Illustration of how the ultrasound machine works 54
37 Illustration of the surgical equipment needed for opening head 55
38 Views from different platforms . 56
39 Views from different platforms . 57
40 Illustration of interaction with human body 58
41 An image showing the video system 58
42 Presentation on different ways of interacting with the MR model . . . 59
43 Chart created based on feedback from medsim 61
44 Number of seconds untill first teleport and case selected 63
45 Number of seconds taken to find tumor in the ACS-Panel 63

46 Average and standard deviation for aspect one and two 63
47 Illustration of the PhotonView script in Unity 74
48 Image of the HTC Vive equipment in box 77
49 Questionnaire used to gather feedback part 1 82
50 Questionnaire used to gather feedback part 2 83

1 Introduction

1.1 Motivation
Practical experience is an essential part of medical education on all levels. The need
for students to have experience with the hospital environment, patient communication
and practical skills with tools and apparatus at the end of their studies are paramount.
Traditionally, students have been placed in practice and clinical rotations in a hospital
setting, but due to an increased number of students, as well as an increase in the need
of expertise in interprofessional communication and collaboration, have set limitations
for how much practice a student will get during their education. With the goal of
remedying these challenges, the medical world have looked to 3D technology to support
its struggles [4] [5] [6].

Virtual Reality(VR) tools have traditionally been expensive and largely unpractical
for personal use, but in the early 2010s, this took a drastic turn. With the launch
of gear like Oculus Rift, HTC Vive, and Samsung Gear VR, the technology got
significantly cheaper, more portable, and demanded less computing power than ever
before. This have lead to a new dawn for the use of VR in education [7]. Figure 1a
shows Gartner’s hype curve for 2016. As seen on the Figure, VR is in the state of
Slope of Enlightenment, which means that the interest of VR will steadily increase
and stabilize over the next couple of years, according to Gartner. The hype cycle
correspond well to Figure 1b, which illustrates the investments in VR technologies over
the past six years. In 2016, Augmented Reality (AR) got public notice by Microsoft’s
announcement of their Hololens. In addition, the company Magic Leap have gotten
a substantial amount of investors and attention in their coming AR equipment. As
Figure 1c shows, almost 50% of the total investment of the first quarter of 2016 was
dedicated to AR. Although the biggest investments on the market are on AR, the
technology and equipment is still in its infancy. Microsoft has just recently released
its product for developers, but have not yet announced a consumer version [8]. Magic
Leap’s product is not available for developers yet.

1

(a) Gartner’s hype cycle [9]

(b) Investment of AR and VR over the
last six years [7]

(c) Overview over investment
in VR [7]

Figure 1: VR popularity and investment

While the main reason for the great popularity of VR have been due to the great
possibilities offered in personal and business use, educators have found it interesting
as well. A multitude of projects have been developed with different combinations
of gear and software to make training applications for several different professions.
Examples that educational applications are proven to be effective can be found
in crisis training [10], general education [11], engineering studies [12] and medical
education [13] [14]. Edgar Dale an educationist states that the human brain remembers
10% of what it reads, 20% of what it hears, and 90% of what it does. By using the
VR tools, the learning has the potential to be four times as effective as listening or

2

reading [15]. The present state of research shows that while plentiful of applications
have been made utilizing low cost HMDs, there are limited sources on procedural
training using general purpose HMDs and controllers like the Oculus Touch.
The motivation for this project is to further increase the knowledge on educational
applications by using new general purpose hardware. The interest topics of discussion
is how this new hardware can improve the development process and re-usability of
training applications, and how to best enhance such applications so that they provide
high relevance in the real world.

1.2 Problem description
In order to asses the possibilities offered by HMDs, a VR educational system will
be developed. The system will be built around a medical training scenario, which
describes a problem that is difficult to prepare for using traditional methods of medical
training. The thesis will also explore ways of implementing natural physical interaction
using general purpose controllers that may act as interfaces into the virtual world. In
addition, the thesis will also explore how the usage of real world medical data may be
implemented in an natural way so that they naturally fit into a training scenario.

1.3 Research questions
The main goal of this thesis is to explore new functionality and possibilities that
will improve the user’s experience and learning potential using general purpose VR
equipment. Based on this, research question has been generated for this thesis:

RQ: Which functionality are required to create an application using gen-
eral purpose virtual reality equipment for medical procedural training sup-
ported by imaging data.

The main research question is further divided into two sub questions:

RQ 1: Can real world medical imaging data be utilized to support training in virtual
reality.
RQ 2: How do users experience using an application with general purpose virtual
reality equipment for Medical Procedural Training

Data handling
In this master thesis, medical data from real cases and patients have been used. These
are limited to the MR and ultrasound images, which have been approved for usage in
this thesis and have been made anonymous.

3

2 Background
In this chapter the necessary background information needed for understanding the
rest of the paper will be presented, including previous work conducted in the field
of study. In addition the scenarios implemented in the application will be described.
Following is essential concepts and terminology for creating virtual reality applications.
Lastly, an examination on the different general purpose head mounted displays will be
presented.

2.1 Previous work
The usage of VR tools have proven to be beneficial in a number of educational appli-
cations. In general education, high school students have shown improvements in their
understanding of material that is not easily visualized [11]. In medicine, simulation
and VR tools have been gradually more recognized as a valuable asset for improving
the skills of surgeons [16] [17]. Even though its usefulness is well documented, the
implementation of VR in educational programs have been slow. In the past, such
devices and technology have been costly to implement, time consuming to use and
limited in their areas of use. After the breakthroughs of cheap and publicly accessible
VR gear have lead to an increase in popularity and democratization of VR technology,
which in turn leads to more applications made to the platforms. Educators should
be aware and utilize this surge of interest to develop immersive learning applications
that offers great possibilities of interaction [7]. The educational applications using
low cost HMD may be divided into four main categories: communication training,
procedural training, visualization, and interactive visualization. The following sections
will describe these in more detail, with a focus on medical educational examples.

Procedural training
Procedural training in medical and surgical education have become increasingly diffi-
cult to practice in the traditional See one, do one, teach one framework, even though
its value is still well documented [18]. However, due to patient safety concerns and time
constraints on seasoned surgeons, VR simulators have been looked to as an alternative
teaching method with advantages like easily available repetetive training, training on
unusual cases and skill level maintenance [19]. A prime example of such an simulator is
the NeuroTouch neurosurgical simulator [20], which have been implemented and tested
at multiple hospitals in USA. The simulator consist of two parts, NeuroTouch Plan
and NeuroTouch Sim. The NeuroTouch Plan consists of using Computed Tomography
(CT) and Magnetic Resonance Imaging (MRI) data to create 3D model of the a
human head, with the ability to examine the brain for preparation of neurosurgery.
An example of usage is removal of tumor. Once the tumor is located the users define
the surgical corridor. Once the surgical corridor is defined, the user is moved to the
NeuroTouch Sim part, where the users perform the surgery based on the planning
performed in the first part.

Even though the surgeon simulators have come a long way in preparing surgery
students for a multitude of different surgeries, they are still not as widely implemented

4

as one would have believed them to be given their apparent success in literature.
Stefanidis et al. argues that simulators today are complex to construct and implement,
as well as being perceived expensive. He argues that cost effectiveness and a more
effective development process is needed for simulators to achieve greater success. [21]

Multiple alternatives to simulators have been explored after the initial massive suc-
cess of Oculus Rift and HTC Vive. Some of the early explorations made, used self
made devices to simulate hand controllers and give haptic feedback. Buń et al. have
experienced with low cost head mounted display accompanied by a haptic device
to give procedural training to factory workers, like the specialist that operate glass
moulding machines [22]. Other systems have used more general purpose input devices.
At Japitur College of Engineering in India, Mathur [23] have developed an surgeon
trainer using Oculus Rift with the low cost input device Razer Hydra [24]. The users
of the systems are using the headset to view the virtual world, and the controllers
to interact with it from a stationary sitting position. The findings presented shows
that users of the system feels immersed in the scenario and may train independent of
supervision. It is also argued that similar applications have great potential.

Virtual Medical Coaching is a company heavy invested in VR procedural training [25].
They have developed an educational VR application called X-Ray Trainer. The goal
of the application is to teach radiologist how to perform the complex tasks such
as taking X-Ray images and analyze them. They also state that they are working
on creating procedural training for taking Magnetic Resonance(MR) and Computed
Tomography(CT) scans [26].

Communication training
While most educational applications have been made to train single users, some efforts
have been done lately in terms of collaboration and communication in VR [27] [28].
These researches show that communication may be achieved in virtual reality in a man-
ner that allows the users to collaborate efficiently on different tasks. Pan et al. have
constructed a VR medical training scenario where a general practitioner is faced with
an increasingly aggressive patient. The result of the study shows that immersive VR
tools are an effective way of training medical professionals in their communication skills.

VirSam (Virtual communication in education), a local collaboration project between
the university and the hospital in Trondheim to create a virtual environment for
nurse and medical students to practice on interprofessional communication skills. The
target platform for the environment is Second Life (SL). SL has received appreciation
for being a suitable platform for creating educational content in a virtual environ-
ment [29] [30] [13]. The extendability of SL makes it possible for developers to create
customized and closed environment where users can perform the given task. VirSam
has developed two different scenarios to be played in SL to improve inter professional
collaboration. These scenarios have also been implemented and tested in VR using
Oculus Rift [31]. The results shows that users generally like the VR experience.
However problems that are tied together with the platform, like no hand interaction
and movement that causes most user to experience VR sickness, makes the experience

5

sub optimal.

Interactive visualization
The introduction of HMD have opened for multiple new ways to present complex
imagery, and the development of 360 degree videos allows people to immerse them-
selves into new scenarios and situations. One example of an application using the
new technology is the We are Alfred system developed by Embodied labs. In this
application you are watching the world from the point of view of an aging man, who
is suffering from visually and hearing impaired. From a test conducted on first year
medical students in New England, the application was found to increase empathy,
knowledge of macular degeneration and hearing loss as well as shifting keywords
associated with older people and aging from words like slow and frail to misunderstood
and frustration [32].

In order to take visualization one step further, several actors have used models in VR
and made users able to interact with them. In medical education, the most common
implementations of such functionality is to create interactive models of the human
body. Hamrol et al. [14] and Moro et al. [33] have implemented an interactive virtual
experience where students may learn about the body by seeing and manipulate it
in an virtual world. Both studies reports benefits for the learning outcomes of the
students when using VR tools, as well as reporting that students are greatly enjoying
the teaching experience. This intriguing way of implementing learning applications
have also caught the eye of commercial actors. Two examples of such applications
made are The Body VR and 3D Organon anatomy [34] [35]. In The Body VR you are
able to load a 3D-model, either from their database of already implemented models or
your own, and view them in a fully interactive environment. You might slice open
different parts and manipulate the volume in different ways. 3D Organon Anatomy is
an application that ships a human body model with fully detachable parts that the
user can interact with. In addition to being able to take apart the body parts and
view them independently, the application also provides an informative lexical text on
each part.

A more specialized application for virtual interaction with medical data is the Dextro-
scope [36], which is made to support surgical evaluation and decision making. The
system uses preoperative images in combination with segmentation of critical anatomic
structures to present a information-fused 3D model on a stereographic display. The
user can inspect and manipulate the model using application specific hardware. The
hardware consist of an ergonomic handle with used for manipulation of the model and
a stylus shaped instrument.

2.2 Terminology and concepts in virtual reality development
When developing applications for regular users, it is of grave importance that the
interfaces the users interact with are easy to understand and well constructed. This
fact is even more prevalent in virtual reality applications, as the technology is new

6

enough that one should expect the users to have limited, or even no, experience with
it. Developing virtual reality applications is a complex task by nature. Stereoscopic
rendering and strict performance limitations gives additional challenges to developers
compared to developing classically rendered virtual worlds. In this section, the readers
will be introduced to terminology and concepts regarding user design and development
of virtual reality applications in a game engines.

2.2.1 User interaction and immersion

The design and implementation of computer artifacts with a user interface that is
both easy and efficient to use is well researched. In this section, a collection of the
most important and relevant theories regarding user interface design will be presented
and explained.

Usability
Usability is best defined through ISO 9241-11: the extent to which a product can
be used by specific users to achieve specified goals with effectiveness, efficiency and
satisfaction to the context of use. What is worth noting in this definition is that
usability is not a constant, but is derived from variables such as the goals and physical
and social context of use. For example, a system made with high usability for computer
science students might have low usability for nursing students.

When developing a system, it is important to make the system understandable. The
users should be able to learn how the system works with as little effort as possible. If
the system is created with a constant focus on usability, it is more likely that the user
understands the advantage of using it and is more likely to use it in the future.

Affordance
A term that is central in interaction design is affordance. According to Norman [37],
affordance describes the relationship between an object and the action that can be
performed on the object. The use of affordances reduces the learning curve of the
system. An example of affordance is handle on a cup, which provides an obvious
affordance for holding.

Gestalt principles
When constructing user interfaces, it is useful to keep Gestalts principles [38] in mind.
They explain how the human brain categorizes and creates meaningful assumptions
based on what they observe.

The principle of proximity explains how humans organize everything into groups and
subgroups. The principle explains that objects close together is often perceived as a
group, giving them the same functionality. Figure 2a shows how the bobbles on the
figure is perceived as a group.

The principle of similarity states that objects with the same shape or characteristics
belong in a group and share the same functionality. Figure 2b illustrates the effect

7

of the principle. The shapes on the figure is perceived as five groups based on the
different coloring.

(a) Gestalt principle of proximity
(b) Gestalt principle of sim-
ilarity

Figure 2: Showing Gestalt principles

Usability testing
When developers work on a system for a long time, they get to know it intimately,
and understands exactly how said system works. This often leads to construction of
complex user interactions that are obvious and understandable for the developers, but
less so for the target users. To ensure the quality in terms of usability and functionality,
the system needs to be tested by people not involved in the development. There
are multiple different tests that can be performed on a system to assert usability of
different artifacts.

The main goal when conducting usability tests is to get feedback from the target users.
There are two types of feedback: quantitative and qualitative. A common method
of gathering quantitative feedback is through Likert scale, which is a questionnaire
where the answers to the questions is a rating between 1 and 5. Qualitative feedback
is gathered through interviews or recordings.

Feedback
For learning to take place, the user needs to get feedback from their actions. There are
different ways of giving feedback that should be used based on the type of learning.

Instant feedback gives the user feedback whenever an action is made. According to Jan
Cannon Bowers [39], the use of instant feedback and dynamic difficulty has shown to
increase learning. The difficulty on a level is adjusted based on the users performance.
If the user makes correct decisions, the game will become more difficult. Likewise, the
game becomes easier if the user makes mistakes. The balancing of difficulty makes it
possible to challenge the user, but also give them the feeling of accomplishment. If a
game becomes too hard or too easy, the user will lose interest.

Even though instant feedback is good in many ways, the feedback may also be a
hindrance to the user. The continuation of feedback may disturb the concentration

8

of the user. In addition if the user receives negative feedback, the user might be
discouraged or stressed resulting in more mistakes.

Another way of giving feedback is post game feedback. Instead of receiving feedback
in real-time, the feedback is presented after a level or game session is completed. The
feedback should consist of some positive and negative comments. Screen capturing
of the game play is a good way of teaching the user where they made good and bad
choices. For the learning to be most efficient, a facilitator should be present to point
out these choices for the user while watching the video. If the game learning activity
contains collaboration, it is beneficial for the users to meet after the session to discuss
the actions performed during session. A facilitator should be present to control the
discussion and give objective feedback.

Immersiveness
The term immersiveness indicates how immersed a user is when playing a game. Im-
mersion makes users forget about the real world, and enables them to be fully engulfed.

The more a game resembles reality, the more immersed the user becomes. Attributes
that affect immersiveness includes graphics, physics, sounds and user input. Graphic
helps the user see similarities between the game and the real world. Physics also plays
an important role in the degree of immersion for a user. Actions that breaks with
physics often disturbs the feeling of immersiveness. If, for instance, the user walks
through a wall, it will ruin the similarity with reality. user movements also helps the
feeling of immersiveness. The better control the user has over the movement, the more
immersed they become.

2.2.2 Development with game engines

A game engine is a software framework designed specifically for development of games.
Developers use game engines to speed up the development process by abstracting
core processes such as sound, physics, logic and graphics rendering. Previously, game
engines were exorbitantly priced, resulting in most game making companies building
their own from scratch. In recent years, the major game engines have been released
with payment plans taking royalty fees if the game generate income beyond a certain
threshold instead of payment upfront. This have given small companies the oppor-
tunity to create low cost games. As game engines matured, they have become more
user-friendly, making them more inviting for novice game developers.

It was decided to use Unity3D [40] commonly known as Unity as the game engine
for development of the application. Compared to other game engines, Unity falls into
the category of a young one. First released in 2005, it was mainly aimed at OS X,
but have since then extended its support to 21 different platforms. The Unity engine
does not possess the graphical capabilities that Unreal Engine [41] and Cryengine [42]
boasts, but have had a greater focus on the ability for games to run on a variety of
platforms. When it comes to pricing, Unity offers a completely free plan for businesses
that makes less yearly revenue than $100 000. The Unity asset store is one of the

9

main features of Unity. The vast amount of community made content, like models or
animations, helps new developers get a kick start for their projects.

Unity’s editor uses the view illustrated in Figure 3. Unity boasts a solid documentation
for developers to ease the learning curve. The code in the documentation is written
for C# and UnityScript. In addition, Unity offers video tutorials to further help
developers understand the complex view and methods applicable. Once defined, the
functionality of the script can be easily added to GameObjects by dragging the script
onto the GameObject’s inspector view. This easy way of adding functionality to
GameObjects makes it easy for the developer to add and edit functionality to multiple
objects at once. Another great feature implemented in Unity is the ability to edit the
variables of a script in the inspector view in the Unity editor, instead of opening a
text editor. This is done by declaring public variables in the script-class.

Figure 3: Working with Unity

Scripting in Unity
There are mainly two programming languages utilized to create scripts in Unity,
namely C# and UnityScript. UnityScript is a scripting language created by Unity.
The syntax is similar to the popular interpret language JavaScript, however there are
some differences between the languages [43]. The script automatically derives from
Monobehavior. It is possible to have several classes inside one script in UnityScript, but
it is most common to only have one class per script. The developers have the option to
skip the class declaration when the script only contains one class. The filename of the
script will act as a class declaration. This is done to save developers from extensive
typing. Figure 4 illustrates this example. On the left side the UnityScript file for a
dog is shown. The same script is written in C# on the right side. When using C#
in Unity, one has to explicitly derive the script from MonoBehaviour, which is the
base class all scripts derive from, and contains the core functions needed to make the
scripts work. Figure 5 illustrates the lifecycle of the Monobehavior class.

10

Figure 4: Difference between UnityScript and C#

In the initialization step of a script’s lifecycle consist of three methods, namely Awake,
OnEnable and Start. The Awake method is the first method to be executed in the
script, and is always called. It is used to initialize variables or game state before
the game starts. Awake is executed after the scripts has been loaded into the game,
making it safe to instantiate other GameObjects or scripts in this script. OnEn-
able is called whenever the GameObject is active. If the GameObject starts active,
OnEnable will be executed after Awake. Start is similar to Awake in the regard that
both initialize variables. The difference between the two methods is that the Start
method only executes if the GameObject is active. This makes it possible to delay
the initialization of code until it is needed. The Start and Awake method is only ex-
ecuted once, but the OnEnable method is called whenever the GameObject is activated.

At the beginning of each iteration in the lifecycle when the game has started, the
physics engine is called. FixedUpdate is an update method that is called every physics
step. The time between FixedUpdate are consistent, making it independent on frame
size. The method is used to update GameObjects influenced by physics, such as
rigidbodies. The OnCollisionXXX and OnTriggerXXX methods are also under the
physics part. onCollisionXXX detects if the script’s GameObject is colliding with
another GameObject. The OnTriggerXXX detects if the GameObject is colliding
with a trigger. A trigger is a sensor that sends a message to the GameObject when
touching something (triggered).

Before the game logic is handled, the step for detecting and handling user input is
performed. This step looks for input from users such as button pressed or mouse
clicked. An example of method called during update is OnMouseDown.

There are two methods for updating non physics elements, namely Update and La-
teUpdate. Update is the most common update function. It is called once per frame,

11

making it dependent on frame size. The input events from the previous step is handled
in the update method, and it is responsible for moving non-physical GameObjects.
The LateUpdate method is called after the update method. Any calculations in the
update method will then be completed, making it possible for LateUpdate to use
the calculations. An example where LateUpdate is useful is implementation of a
third person camera. The user’s movements and rotation is calculated during the
update method, and the camera adjusts to the users new position and rotation in the
LateUpdate method.

When the script has completed it’s task, and is no longer needed, it will enter the
decommissioning step of the lifecycle. OnApplicationQuit, OnDisable and OnDestroy
are three methods used for disabling the script. The OnApplicationQuit method
is executed on all GameObjects before the application is quit. OnDisable disables
the script, causing the script to stop the update loop and wait until the OnEnabled
method is called. OnDestroy is a method used for removing the GameObject and its
components from the game.

12

Figure 5: The lifecycle of Monobehavior source: [1]

13

Prefabs
When developing GameObjects that are used multiple times in a scene, editing these
items can be time consuming. Unity presents a solution to the problem with a tool
called prefab. Prefabs are blueprints for GameObjects and may be spawned as many
times as needed in a scene. All changes done to the prefab will be done to it’s instances.
It is also possible to override components inherited form the prefab in each of its
instance.

Figure 6: Graphics rendering in Unity, source: [2]

Mesh
Meshes are the main graphics primitive of Unity. Aside from Unity Asset Store plugins,
Unity does not include 3D modelling tools. Instead, Unity have made it easy to import
and implement 3D models to Unity projects. The imported 3D models are rendered
through meshes. Figure 6 shows how the different graphics components are related.

Materials
Materials define the looks of all surfaces in a scene. The material defines everything
from the surface structure to its color and how it reflects light.

Shader
Shaders are small computer program used to mathematically calculate the color of
each pixel in the scene based on the material configuration and lighting.

2.2.3 Serious games

In an learning appliacation where the user is supposed to play through a scenario, it
is useful to learn from serious games what makes this types of applications successful.
A game where the main objective is to learn is called serious game. A serious game

14

should contain the common game features making a game fun and addictive in addition
to the learning aspect. Bing Gordon argues that traditionally games are defined by
story, arts and software [3]. Figure 7 illustrate the requirements for developing a
serious game. The development team needs people with expert competence on the
field to create the educational part. The design team is responsible for implementing
the serious part in collaboration with the field experts.

Thomas W. Malone [44] performed studies on serious games for determining the factors
for an educational game to be fun. There are three determining factors for making
educational games fun, namely Challenge, Fantasy and Curiosity.

Challenge
In order to make an educational game challenging, it must provide a goal. The more
obvious and clear the goal is, the more compelling the game is for the users. The users
should also get the feeling of getting closer to achieving the goal.

The game should also have uncertain outcomes. If the outcome of the game is certain
beforehand, the users will become tired of playing. Malone lists four ways to make
the outcome of the game uncertain:

• Variable difficult level

• Multiple level goals

• Hidden information

• Randomness

Fantasy
In computer games, there are two types of fantasy, intrinsic and extrinsic. intrinsic
fantasy is dependent on the users skill and the skill is also dependent on the fantasy.
A dart game where you pop balloons is a good example of intrinsic fantasy. The skill
affects the fantasy by throwing the dart towards the balloons and pop them if they hit.
The fantasy affect the skill by showing the user how their shot was, if it was either
too high or low, and then the user can adjust their next shot based on the feedback
from the fantasy. In extrinsic fantasy, the skill is affecting the fantasy, but not the
other way round. An example of a game which use extrinsic fantasy is a racing game,
where the cars accelerate or decelerate based on the answers on math questions.

Curiosity
Curiosity is a main motivator for learning. Curiosity is divided into two categories,
Sensory curiosity and Cognitive curiosity. Games can affect our sensory curiosity
through use of audio and visual effects, and cognitive curiosity can be trigger by
limiting the information that is presented to the users in such a way that they will be
interested in finding out more.

15

Figure 7: Development structure on serious game, source: [3]
.

Steam VR
To encourage developers to create virtual reality applications, Valve developed a
plug-in package called Steam VR [45]. The plug-in contains scripts for basic actions
such as head tracking and controller input. Valve states that the plug-in is only an
example on how the implementation can be done and encourages developers to edit
the plug-in to suit their needs. Valve also gives advice on good and bad practices.
Disabling head tracking to give a static view and changing the field of view (how far
the person can see) are examples of what Valve advice against. They say that these
actions will lead to motion sickness due to break with reality.

Virtual Reality Toolkit (VRTK)
Steam VR were criticized for their lack of documentation for their package, and
developers raised issues about the usability of it. In response, an open source project
called VRTK was initialized by a developer known as TheStoneFox [46]. The project
contains scripts, prefabs, examples and videos on how to use the package created in
the project.

2.3 Virtual Reality Headset/Head Mounted Display (HMD)
This paper explores the possibilities of creating an immersive learning environments.
As Klevland discovered, a VR headset is preferable over the usual desktop in order to
achieve an immersive and engaging experience [47]. Earlier attempts have been made
at constructing a HMD, as the VFX1 Headgear, but the success has been limited due
to the restrictions on technology at the time [48]. In 2012, a crowdfunding raised
enough money for Oculus Rift to become a reality, and from that point on, multiple
actors have acquired an interest in the field. Before presenting the different HMDs,
some details about HMD needs to be explained.

16

Stereoscopic rendering
Stereoscopy is the art of creating illusion of depth. This illusion is the main strength
of HMDs, namely virtual 3D. To achieve this, one has to split the visualization into
two different viewports, which represents each eye of the human body.

Render latency
Render latency is the delay between each frame of the visualization. High latency is
unpleasant to view, so render latency should be as low as possible. John Carmack
studied the effect of render latency and concluded that a latency of 50 milliseconds
will feel responsive, but still laggy [49]. He argues that developers should strive to
achieve 20 milliseconds or less. High render latency will make the user uncomfortable,
which may lead to dizziness or motion sickness. The strain on the eyes with a high
latency might also lead to headaches.

Head tracking
A common feature of the HMDs are that they have some way of calculating the
position and rotation of the headset. Both Vive and Rift uses accelereometers and a
gyroscope to assist the calculation, but their main reference calculation is done quite
differently. While the base stations of OR tracks the position of the headset and sends
it directly to the computer, Vive uses the basestations for reference points. This means
the basestation does not communicate any information to the computer directly, but
their placement are used by the headset to calculate its position relative to theirs. One
of the biggest drawbacks of cheaper headsets like Google Cardboard and Samsung
Gear VR is the lack of the basestations, which makes the position calculation severely
limited.

2.3.1 Oculus Rift (OR) with Oculus Touch

Figure 8a illustrates the OR hardware, consisting of a remote controller, a sensor,
the HMD and a xbox controller. The OR headset also comes with a mounted music
device. The remote controller on the left on the Figure is used to make it easier to
navigate in the virtual world.

(a) The OR equipment (b) The Oculus Touch

Figure 8: Oculus Rift with Oculus Touch

It is also possible to extend the immersive feeling by buying Oculus Touch, Oculus’s
own controllers. They were developed at a later stage than the headset itself, and can

17

be bought separately. The controllers enables hand tracking, similar to that of the
Vive controllers. The controllers are shown on Figure 8b.

OR is easy to transport and setup time is minimal. It is possible to mount it and
run within minutes. To run OR applications, a computer with great processing power
is needed to support the resolution provided by the headset. The recommended
specifications for a computer running OR are:

• NVIDIA GTX 970 / AMD Radeon R9 290 equivalent or greater

• Intel i5-4590 equivalent or greater

• 8GB+ RAM

• Compatible HDMI 1.3 video output

• 2x USB 3.0 ports

• Windows 7 SP1 or newer

2.3.2 HTC Vive (Vive)

After OR received online appreciation and attention, Steam developed and displayed
prototypes of a similar headset. They later paired with HTC to produce the headset [50].
There are two main differences between Vive and OR: the room setup and the
controllers. Figure 9 shows the Vive equipment. It consist of two cameras to track
user movement, a HMD and two game controllers to enable user interaction.
In order to play, one needs to define a space that is at least 1.5 meters times 2 meters.
This is called the play area. The user can move physically in the dedicated play area.
If the user moves towards an edge on the play area, they will receive a warning in the
form of virtual walls. The movement implementation works well for tasks that requires
limited movement, such as a shooter game where users shoots and ducks behind
cover. Normal practice for movement that exceeds the play area range is teleportation.
Teleportation is usually implemented so that users can use the controllers and point
and click where they want to travel.

18

Figure 9: The HTC Vive equipment

Vive significantly differ from OR is the room setup. It takes effort to correctly set up
the base stations. As explained in Appendix B, the base stations needs to be placed
diagonally and in a high place to track the play area properly. The base stations needs
to be synced with each other, and the headset needs to be connected to the computer.
The computer requirements to run HTC Vive is considerable. The recommended
specifications for Vive are:

• NVIDIA GeForceTM GTX 1060 or AMD RadeonTM RX 480, equivalent or better

• Intel i5-4590 equivalent or greater

• 4 GB+ RAM

• 1x HDMI 1.4 port, or DisplayPort 1.2 or newer

• 1x USB 2.0 port or newer

• Windows 7 SP1 or newer

2.3.3 Samsung Gear VR

The Samsung Gear VR is a mobile virtual reality headset. It works by inserting a
compatible Samsung smartphone into the headset and show images through it. The
headset is made in collaboration with the founders of OR.

The reason these glasses is worth mentioning is the advantage of great portability
and availability these kinds of systems offer compared to OR and Vive. Anyone
with a compatible Samsung phone may buy these glasses cheaply when compared to
the competing hardware. The portability aspect of the glasses is backed by the fact
that users do not need a high-end computer to run applications on the glasses, the
smartphone itself is sufficient. This opens for uses not easily achieved by the other
systems discussed, such as presenting virtual representations of illnesses to patients or

19

learning games to children in hospitals. The lack of processing power comes with the
obvious cost of reduced framerate, resolution, and complexity of the applications.

2.3.4 Google Cardboard

A cheaper version of a VR HMD is Google’s cardboard. The physical gear needed to
use this system is exactly what it sounds like, a cardboard frame you can put your
device in and mount on your head. The rest of the system lies within the application
Cardboard which may be acquired in the Google Play Store. The application takes care
of splitting the view and managing headtracking based on the phones accelerometer.

The main reason to buy one of these systems compared to the others mentioned is
the price. If you currently own a sufficiently new Android based smartphone, the
cost of transforming it to a VR-HMD becomes just short of NOK 100. Compared to
the other headsets mentioned, Cardboard falls short in terms of heat management,
interaction, build quality and processing capabilities.

2.3.5 VR - sickness

As presented in an earlier study [47], participants of virtual reality experiments often
experience physical discomfort when using head mounted displays. The symptoms
users experience is parallel to the symptoms of classic motion sickness, but with the
key difference of the user being stationary.

A relevant theory relating to cybersickness is the ”Sensory Conflict Theory“ [51]. The
theory is based on the premise that discrepancies between the senses which provides
information about the body’s orientation and motion cause a perceptual conflict which
the body does not know how to handle. A number of other factors that are not directly
related to this theory and are more connected to technological flaws. These factors
include low resolution, high latency and screen flickering.

There have been performed research into ways to lessen the discomfort while playing in
VR. La Viola [51] considers triggering the nerves, either trough platforms or through
electrical stimulation, making them believe there is a correlation between sensations
experienced by the eyes and the rest of the body. Later research have looked into
using a fake nose in the field of view of the application, which have had some effect
without disturbing the experience [52]. A later research considers limiting the field
of view in the VR-application and have proven the method to be efficient in some
applications [53]. In 2015, the inventors of OR published a blogpost with a list of 11
methods they experienced lowered the discomfort when using HMDs. The methods
varies from using abrupt 90 degree turns to closing ones eyes when body movement is
not user controlled [54].

2.4 Thesis goals and objectives
The use of simulators in medical education has shown potential. NeuroTouch has given
the users the ability to use real world medical data to prepare for and perform surgery.

20

However, according to Stefanidis et al. [21], the success of simulators have been limited
due difficulty of complex, customized equipment needed to use the simulators. The
equipment is costly and requires a vast amount of time and resources to develop. The
application created by Buń et al. [22] uses general purpose VR device such as Vive
and OR, but is also reliant on customized hardware such as the haptic device. The
first research question in this thesis therefor asks whether or not it is possible to create
a procedural training application using only general purpose VR equipment like the
Vive and OR with accompanying controllers. An advantage of only relying on general
purpose equipment is the ability to create several applications for the same device,
resulting in reduced cost for developing applications in addition to space required for
the hardware. Furthermore, the users of the application does only need to learn how
to use one type of hardware, instead of different types used in simulators.

There are already been developed multiple learning applications to support com-
munication, and interactive visualization training for general puprose VR equip-
ment [32] [34] [35] [31]. However, there have not yet been many learning applications
developed for procedural training using general purpose VR equipment. The ability
to track hand and head movements as well as rotation, makes it possible to create
an immersive, educational application where the user can perform procedure training
with the use of hands and give tactile feedback on actions.

The use of medical data in learning applications will further increase the educational
benefit gained, by letting the user know that they are working on real data. Rudolf
et al. assessed the value of real world medical data in their VR application [55],
concluding that although hard to implement, real world medical data could have
immense benefit in a VR learning application. The first research question therefore
considers how such data could be implemented in virtual reality training, and how
users should interact with it.

With the abovementioned state of literature, and given the information gained in the
background chapter, the specified research questions were defined as follows:

RQ 1: Can real world medical imaging data be utilized to support training in virtual
reality.
RQ 2: How do users experience using an application with general purpose virtual
reality equipment for Medical Procedural Training

21

3 Equipment, Methods and Implementation
The implementation of well designed educational applications in virtual reality for
usage with a HMD requires developers to be able to understand and utilize a plethora
of tools, frameworks, and evaluation methods. In this chapter, these tools, frameworks
and methods will be presented in detail as well as the implementation of the application.

3.1 Equipment, tools and frameworks
Considering vast amount of readily available equipment, tools and frameworks available
for developers in any project, a proper conscious process to select the ones that would
fit the thesis was required. In this section, the reader is introduced to the process of
selecting equipment, tools and frameworks used in the project.

3.1.1 Head mounted displays

In this project, multiple HMDs have been considered as targeted platforms. To answer
the research questions defined in the introduction section, it was decided to work with
HMDs supporting devices for hand as well as head tracking. The ability to track
the hands in a virtual environments opens the ability for the developers to develop
a more immerse and interactive application. In the specialization project, both OR
and Vive was examined to determine the best suitable hardware for implementing the
application. The Vive was considered to be a superior device due to OR’s lack of hand
tracking. However, during early phases of the this project, Oculus Touch [56] was
released. Oculus Touch is Oculus’s own hardware for tracking hand movement. The
introduction of the Oculus Touch made it possible to develop an application compatible
for both the Vive and the OR. Due to the limitations in interaction compared to
Vive and OR, Samsung Gear VR and Google Cardboard have not been targeted as
development platforms in this thesis.

3.1.2 Game engines

During the specialization project, research on what game engine would be most
beneficial for development of a VR application was conducted. Unity, Unreal and
CryEngine was studied, all three being well established software and providing the
necessary tools for answering the research questions. In the end, Unity was chosen
based on the excellent documentation, the vast amount of user created content and
the fact that C# [57] is the main programming language used for development, which
is known by both writers of this thesis.

3.1.3 Tools and framework for virtual reality development

In addition to a game engine, further tools were needed for image handling, construct-
ing and editing 3D models, developing scripts and version control tools.

Construction and manipulation of 3D models
Unity does not support creation of 3D models in its editor. To compensate for the

22

lack of a model editor, Unity have sophisticated software allowing importation of 3D
models from external sources in a variety of file formats. Unity supports manipulation
of 3D models by changing the rotation and scale values. If more advanced manipula-
tion is needed, such as addition and removal of vertices, nodes and meshes, a more
sophisticated tool was required. For this tasks Blender [58] and 3ds Max [59] were used.

Scripting and programming tools
Unity itself does not contain a way to manipulate scripts within its editor, so a 3rd
party editor is needed. Most text-editors will have the necessary tools to edit the
scripts, but two editors have implemented extensions to work particularly well with
Unity, namely MonoDevelop [60] and Visual studio 2017 [61]. Both of these tools
ships extensions for code completion, auto compilation and proper error handling for
Unity, which made them mandatory for efficient development.

Photo editing software
Many of the meshes on the different panels, buttons and figures needed to be ma-
nipulated, or created from scratch. Unity does not offer a photo editing software,
so a third party software had to be selected for this task as well. The tool used in
this project was a freeware photo editor named Paint.net [62], which offer superior
simplicity given its strong coverage of necessary functionality.

3.2 Methods
In this section, the reader is introduced to the details of the scenarios that was
implemented and the methods for gathering feedback from the user tests.

3.2.1 Scenarios

In order to ease the development and ensure the quality of educational applications,
it is important to have a clear understanding of the high level goals. Scenarios was
implemented to supply these goals. One was a gynecology scenario implemented for
the earlier iteration of the VUH, while the second was a neurology scenario developed
with feedback from the department of neurology at st. Olavs hospital. Both scenarios
focuses on giving users procedural training tasks related to pre surgery.

Neurology
In the neurology scenario, the users are playing out some of the first steps performed
during neurosurgical removal of a brain tumor. The scenario is split into three tasks:

1: Pre-operative planning
The students are expected to use a panel consisting of the axial, coronal and sagittal
view of MRI from a patient to locate the tumor and mark the middle of it (target).
When the user have marked the patient, they click the solution button to compare
with the correct solution.

23

2: Patient positioning, shaving and marking the entry point of the craniotomy
The patient is to be positioned correctly on the surgical bed, and the head of the
patient needs to be correctly rotated to ensure proper access to the tumor and optimal
conditions for ultrasound acquisition. When the patient is laid correctly, the patient
needs to be shaved in order to get access to the point of operation. When the patient
is shaved, the user marks the point of surgical entry. After marking the point of entry,
the user clicks on the solution button to get the correct setup.

3: Navigation and ultrasound acquisition
When the point of entry is marked, the student is expected to confirm its position
by using the navigation tools to locate the actual position of the tumor. When the
position is correct, The last task is to gather ultrasound imagery in order to get a
better view of the tissue above the tumor.

Gynecology
The gynecology scenario focuses on interaction between members in a medical team.
It is divided into three tasks.

1: Meet and talk with the patient
The user enters the room where the patient and her husband is located. The user asks
a couple of questions to the patient to help diagnosing the patient.

2: Move the patient to the ultrasound machine
The user explains to the patient that an ultrasound is needed to confirm the diagnosis,
and asks the patient to follow into a room where the ultrasound should be conducted.

3: Perform ultrasound
An ultrasound examination is performed to further help diagnosing the patient. The
user needs to guide the user from the patient’s room to the ultrasound room, and then
perform the ultrasound examination when they reach the room. The users should
be able to detect abnormalities in the ultrasound, which they should conclude that
surgery have to take place.

3.2.2 Evaluation

In pursuance of acquiring valuable and relevant feedback on the application made in
this project, several tests were constructed. In order to get the most out of the tests,
they had to be carefully planned and executed.

Test setup
The setup itself presented two challenges. The first one being the complexity of the
VR gear. For Vive, the mounting proved too complex to do efficiently and the testing
on it was therefore limited to already assigned rooms with the gear was pre-mounted.
OR gave more flexibility, as the base stations did not need to be mounted at height
but rather stands in front of the user. Compared to the Vive, the OR hardware offered

24

movement in a manageable timeframe, and were therefore chosen as the go to device
for the test setup outside the lab. Another challenge for testing the application was
the need for sufficient high-performing hardware and direct connection between the
headset and the computer’s graphical processing unit. The requirements excludes
most laptops, which practically means a powerful desktop computer is needed to run
the tests. The software requirements for running the application is found in Appendix
B.2.

Test subjects
To get the most relevant feedback, it is important that the group of testers are potential
users of the system. In this thesis, the testers have consisted of one, or both, of two
groups; namely trained medicals and technology experts. The trained medicals were
consulted for assessing the training value of the application, as well as helping to review
the user interface and interactions for non-technological savvy users. The technology
experts were consulted to give additional constructive feedback for the application
and could give feedback regarding best practices and further improving user interaction.

Test execution
When executing tests in virtual reality, it is imperative that the test subjects get
proper time to familiarize themselves with the gear. Explaining how the head-mounted
display works, as well as explaining the controllers and the buttons that lies on them
are crucial to make the tests efficient. Furthermore, to not get frustrated or distracted
by the sensation of VR, a supervisor is present at the test to tell the user where to go
and what buttons to press to interact with the system.

Feedback
The feedback acquired in these test were split into two parts, quantitative feedback
through questioners, found in Appendix E and qualitative feedback through observa-
tions and post testing interviews. The interviews have mostly been used to improve
the application while the quantitative feedback have been used to assess the value of
the application in relevance to the research questions.

3.3 Implementation
In order to get a better understanding on how the different part of the final scenarios
were implemented in VR, a high level description will follow. Note that there will be
a minimal amount of source code in this section, but it is readily available for reading
at the Github repository [63].

3.3.1 Changes based on specialization project

Based on knowledge and feedback gathered from the specialization project, the team
decided to make changes for the new project. The changes concerns both the user
interaction, visual presentation of the virtual world and architectural decisions. The
different choices are explained in the following subsection.

25

User interaction and virtual world
Insights gathered from the specialization project showed that the more buttons the
users could use on the controllers, the more confused they were.

To reduce the confusion, and increase consistency, which again increases the learning
curve of new users, the mapping on the controller changed. The sliding movement
scheme, interaction laser and room change functions used in the specialization project
were completely removed. The controllers’ trackpad only have one functionality,
namely teleporting. The removal of the other functionalities made it possible to
remove the interaction with the menu button, leading to a decrease in number of
buttons the user needs to learn and keep track of in game.

To account for the changes in controller mapping, changes also had to be made in
the virtual world. Instead of having several scenes with small rooms, the decision to
have fewer scenes with more content was made. This made it possible to constrain the
user from moving between the scenes by mistake being able to control the sequence of
events the user faces.

SteamVR
In addition to providing helpful scripts for handling VR, SteamVR also included
materials, shaders and textures used to create The Lab [64], Valve’s own VR game.
These assets were used to further enhance the VR experience. Figure 10a and Figure
10b illustrates the difference between VRTK teleportation assets and SteamVR. The
new teleportation is more pleasing to look at than the old one. In addition, the
teleportation beam is an animation going from the controller, to the destination,
giving the impression of moving towards the targeted area. Another benefit of the
new teleport is the ability to see the play area (the allocated space you are allowed
to move in the real world) which makes it easier for the user to keep track of where
in the play area they are located. The visualization of the play area also reduce the
possibility of teleporting into a wall, which was experienced in the specialization project.

(a) Old teleportation (b) New teleportation

26

3.3.2 Constructing the environment

Multiple different designs and scene layouts were explored during development. The
final design was inspired by the VirSam project, as it closely simulates the operation
hall at St. Olavs, and could lead to greater sence of immersiveness for the users. In
this subsection, the implementation of the scene, in addition to the placement of
interactable and static objects will be described.

Figure 11: Layout of the hospital

Hallway and rooms
The models for the hallway and rooms were gathered from the designer of the Vir-
Sam project. They were modelled from pictures of a operating hall at the Eastern
Nevrologial centre at St.Olavs, making it ideal for us to create a familiar environment
for neurogical surgeons. The entire model had to be rescaled to an appropriate value
for VR in order to work.

The hallways, doors, windows, and equipment had to be placed in accordance with the
real room. The hospital modelled in SL was diligently used to inspire the placement
of the models.

Operation rooms
Operation room one, the room furthest to the right with equipment in it, viewed

27

in Figure 11 was designed to be used for the operation part of the gynecology case.
Most of the models are from the VirSam project, making it look very similar to the
operation room in SL. The room is used to show the ability of creating a operational sce-
nario where the surgical nurse gives the surgeon the correct equipment at the right time.

Operation room two is used to store proof of concept models which is either not
relevant to the scenario or too cumbersome for non-technical personnel to use. The
GameObjects are not rendering until the user presses the button outside the room.
The models contained in the room is resource demanding, so they are not rendering
until the button outside the room is pressed to improve in game performance, resulting
in less latency which again reduces the potential for VR sickness.

Operation room three is used to perform the neurosurgery scenario. All GameObjects
inside the room is interactable, making it possible to move the furniture around the
room to create a surgical environment.

Animation
Animating human figures is a common task in game development, and Unity smartly
provides developers with a sophisticated system called Mecanim, a framework for
animating rigged models, which means models containing a certain set of interlinked
joints and bones. Developers may create one animation and reuse it on other models
that fit the humanoid rigging criteria. Most of the models coming from the asset store
were already optimized humanoid animations, and left us with the task of defining
the models as optimized for Mecanim animations and add the required animation to
them.

The task of controlling and displaying an animation can be divided into two separate
tasks. The first is choosing what animation is to be played, the second is to actually
play the clip. In order to handle this, Unity provides the tools animator controller and
animation clip. The animator controller is edited through its own editorial view, where
it is possible to graphically set up states and variables that swaps the states. Figure
12 shows the animator controller view. The boxes in the view is a representation of
the different states in the controller. The green box is the initial state of the controller.
The orange box indicates the default state, in other words the most active state.
The arrows between the boxes indicates the possibility of moving from one state to
another. By clicking on the arrows, it is possible to edit the transaction time between
the two states in addition to what conditions must be met for the transaction to be
possible. For instance, for the transaction between the state Grounded to Airborne
to be fulfilled, the variable OnGround must be false. The variables are changed in
scripts attached on the animating GameObject.

28

Figure 12: An illustration of the animator view in Unity

Animation clips are the smallest building blocks of animation in Unity. Each animation
clip represents isolated pieces of motion, such as run, walk, and jump. These clips are
handled by a state machine such as the animator controller to present lively animation
at the appropriate times. In Unity, it is possible to both import animation clips from
external sources or create them in Unity’s editor. Unity has a dedicated view for
creating animation clips called Animation View. When a GameObject is selected in
the scene, its animation clip is shown in the animation view. If the GameObject does
not have an animation clip yet, Unity asks if the user wants to create a new animation
clip.

Figure 13 shows the animation view when the microscope GameObject is selected. The
developer can select which properties to be changed by clicking on the Add Property
button. In this example, the position of the microscope is added to the property
list. The timeline illustrates the duration of the clip. As seen on the Figure, the
clip is 1 minute and 30 seconds long. The diamond shaped markings on the timeline
represents key frames. The user can edit the values of the properties at the key frames.
In this example, there are only two key frames for each property, namely start and
end position. The GameObject will move between the start and end position with
constant speed during the clip. The red line illustrates where the GameObject is in
the animation clip. It is possible to drag the red line between the frames to inspect
how the GameObject moves frame by frame. When the animation clip is completed,
the play button can be pressed to see the result.

29

Figure 13: Presentation of the animation view in Unity

If the GameObject is suppose to move in a predictable manner, it is beneficial in
terms of performance to create animation clips instead of applying translation on
GameObjects at runtime. This allows one to set up complex movement by planning
their exact movement in a what you see is what you get - manner in contrast to have
to estimate them mathematically in scripts.

Non playable characters
In order to make the hospital environment more immersive and life like, a multitude
of non-playable characters were put into the environment and forced to behave in
manners that are expected from their character type.

Patients
In the hallways outside the operation rooms there were placed patients in beds who
were animated uniquely. One patient writhes, clearly in significant pain, while another
is shifting his laid-down position in timed intervals.

Surgical nurses
Two surgical nurses are also roaming in the hallways. They move randomly over great
enough distances to simulate conscious movement. The script HallwayAiController
was used to implement the movement. The script takes six locations as input and the
method FindRandomTargets decides which point the nurse should move to next. To
calculate the movement paths, Unity’s integrated navigation mesh and agent func-
tionality was used. The mesh is a collection of all points in the scene that navigation
agents are allowed to move upon, and the agent uses the A* algorithm [65] to calculate
the next point in a least cost path towards the target location. In order to make it even
more realistic, some points were placed inside rooms that are not used in the case itself.

Models
Most models used in the scenarios was contained in packages bought from the Unity
Asset store, namely Operating Room [66] and Hospital Room [67]. The rest of
the models were gathered from the VirSam project and online. If models needed
refinements, or were not found, the modelling tools Blender and 3ds Max was used for
creation and manipulation of models.

3.3.3 User interaction

The application supports two types of playing modes. The first mode, VR mode, is
played by using either Oculus Rift or HTC Vive. The second mode, desktop mode, is

30

played in standard desktop mode. The user selects mode in the main menu of the
application.

The camera on the desktop user is set in third person, making it possible for users
to see their avatar when playing. The avatar is a surgeon, reused from the surgery
room package purchased. The user moves by using the wasd - or the arrow keys. It is
possible to increase the movement speed of the avatar by holding down the shift key.
The avatar also have animation to simulate movement. The hospital room package
purchased contained an animation controller, which corresponds to standard Unity
humanoid avatars. It is possible to make humanoid 3D models into standard Unity
avatars, making it possible to reuse the animation controllers on other models. The
doors in the hospital opens whenever the users get close to the door, enabling the
users to move freely around the hospital.

The VR user model consists of a head and two hands. The users are only able to
see the head of other users, and not their own. The hands are used to increase the
user’s sense of presence in the world. There are four animation clips attached to the
hands that responds on different button clicks. The camera on the head of the VR
user is controlled by the Player script included in the Steam VR package. The script
automatically sets the field of view on the camera to correspond to the field of view
that is available in the HMD currently in use (usually 110). Although sufficient for
VR, a field of view of 110 is too large for a regular computer monitor. This was a
problem when testers and developers wanted to spectate users, as parts of the VR
users view was not shown on the monitor used for spectating. The nature of the
application made it important to allow spectating, because it makes it easier for the
instructors to help the users perform the required actions to complete the tasks in the
cases. Additionally, it can be used to give users a quick preview of what is required to
complete the tasks. To remedy the field of view issue, an extra camera was added to
the application. The camera was mounted with the script CopyHead which copies
the position and rotation of the head. The camera works independently of the Steam
VR application, meaning the field of view could be set manually. Tests conducted
revealed that the field of view of 60 is sufficient to give the spectators the same view
as the VR user. To make the desktop camera to display on the monitor and the VR
camera to display on the VR monitor, the attribute Depth had to be edited on the
cameras. The VR device displays the camera with the lowest depth number, and the
monitor displays the other. The VR camera was given the value -1 and the monitor
camera the value 1.

Interactable
The Interactable script is responsible for alerting other scripts and other GameObjects
whenever an interactable GameObject is within the controllers reach.

Grip button
The grip button was utelized for picking up items in the application. The script Move
Items is added as a component to all GameObjects that the user should be able to pick
up, and contains methods for receiving the notifications from the Interactable script.

31

The methods OnHoverBegin and OnHovedUpdate is executed when the controller is
within range. These two methods checks every update cycle if the user presses the
grip button. In addition, it highlights the grip button on the controller touching the
GameObject, giving the user a clue of how to interact with the GameObject. If the
grip button is pressed, the OnAttachedToHand method is executed, which tells the
system that this item is picked up by this user with the controller where the button was
pressed. A notification is sent to the Networked Items script to alert other users that
the owner of the GameObject have changed. OnDetachFromHand is executed when an
item is dropped. Networked Items is again notified about the change. An example of a
GameObject using this script is the marker pen used for marking the operation corridor.

Trigger button
When the user needs to interact with GameObjects in any other way than picking them
up, the trigger button was used. It is difficult to create a generalized script to take
care of all usage of the trigger button, since the interaction with the environment differ
from GameObject to GameObject. Smaller scripts customized to each GameObject
was developed instead. An example of a unique case is the marker pen, which had a
script developed called Draw With Pen. The script checks whether or not the user is
holding the pen, and if the user is holding it, the script checks if the user is pressing
the trigger button. When both these conditions are met, the pen spews ink when
moved. Another example is the interactions with panel buttons. All buttons on the
panel uses the same script, Game Panel Buttons which looks for user interaction. The
script has the two methods OnHoverBegin and OnHovedUpdate to receive notifications
from the Interactable script when a controller is in contact with the GameObject.
When the methods is called, they look for the trigger button to be pressed. If the
trigger button is pressed, the script will determine which button was pressed, based
on the name of the GameObject.

Game Panel
The game panel was created to have all the necessary equipment needed to perform
task number three and four in the neurosurgery scenario easily reachable for the
user. If the user is not satisfied with its position in the room, the user can move the
panel by placing a hand to the base of the panel and press the grip button. When
the user is satisfied with the location, they release the grip button. The panel will
automatically settle on the floor when the user releases the grip button. Figure 14
gives an illustration of the buttons on the game panel. The buttons are designed with
Gestalts principle in mind. Gestalts principle of proximity is used to convince the user
that there are four groups of functionality. The spacing between the buttons give an
indication of grouping. The principle of similarity is used to further convince the user
of the intended grouping. The torus buttons to the top left have the same shape and
background color. Similarly, the buttons Reset Patient and Reset Ink both have the
same white background in addition to the black border. The buttons for controlling
patient position all have the same shape, which is distinctly different from the other
buttons. The Solution button, located in the top left also differentiate itself from the
other buttons by its shape. It is significant smaller than the other buttons, and have
a different background color than its neighbors.

32

Figure 14: Illustration of the game panel

The buttons on the panel have a script Game Panel Buttons for handling the interac-
tion with the user. The user presses the trigger button to interact with the button.
The four buttons on the bottom of the panel takes care of patient positioning. Each
button represents a position the patient can be placed in. When a button is clicked,
the patient will spawn on the operation table. A clicking sound will be played to
indicate to the user that a button has been interacted with.

At the top left on the panel, are placed two buttons with torus images. The first
one represents a horizontal torus and the latter vertical torus. If the user presses the
horizontal torus button, a horizontal torus will be spawned over the patient’s head on
the operation table. The script Head Controller attached on the Torus, gives the user
the ability to move the patient’s head. To rotate the head, the user moves a hand to
the red indicator on the torus and press the trigger button. The head rotator script
sends a message to the script HeadRotator, located on the patient’s head to tell it to
move identical to the torus.

33

3.3.4 Real world medical imaging

The integration of real world medical data have the ability to help developers create a
more realistic and immersive application. In the gynecology scenario in the VirSam
project, the physician would look at a frozen screen and vocally declare the state of
the ultrasound. If the users could perform the ultrasound procedure themselves, the
application would feel much more realistic. It was therefore decided to explore the
possibility of creating mixed reality. Mixed reality is defined by a mixture of real
data combined with virtual ones. In this case, the user is in a virtual world, but
the medical data presented to the user is taken from the real world. Two methods
were implemented to create the mixed reality environment. The first method was to
create an ultrasound machine where the user could perform ultrasound on a patient.
When the user moved the probe, the image on the ultrasound machine would update
accordingly. The second method was to load and render raw medical data processed
through the Volume Viewer asset purchased.

Ultrasound
The ultrasound machine works by mapping positions of the ultrasound (US) probe in
the application to real ultrasound images. The ultrasound images are frames extracted
from an ultrasound examination video. A snapshot of the video clip is illustrated in
Figure 15.

FFMPEG was used for extracting frames from the video. FFMPEG [68] is a tool for
doing a vast variety of imaging and video manipulations. The program is used from
the command line, and the syntax for extracting frames is as follows:

ffmpeg − i <input f i l e > −s s <start_time> −t <durat ion> <fi le_output_regex>

The command used for extracting the necessary frames was as follows:

ffmpeg − i v id .mp4 −s s 0 0 : 0 0 : 1 1 . 0 00 −t 0 0 : 0 0 : 0 8 . 0 00 img_us%3d . jpg

The last part of the file name, %3d, is a regular expression that defines the last part
of each frame extracted to be enumerated by 3 digits on the tail. The output images
will be named, img_us001, img_us002 and so on.

34

Figure 15: Snapshot from ultrasound video

Using video data
In order to present the correct data, movement of the probe is restricted in one
direction and follows a path constructed from a Bezier curve. Once the ultrasound
starts, a script attached to the probe makes sure that it follows the Bezier curve every
time the Update() function is called. Implementation of the Bezier curve was handled
by the external library "BansheeGZ". Their GameObject, "BGCurve", allows for
modelling the curve in 3D space.

The script DragDrop determines when the ultrasound probe is in the correct position
to start the machine. Once it is in the correct place, a message is sent to the Image-
Handler script to start calculating which image to show. Picking the correct image was
done by splitting the Bezier-curve in 80 parts in one direction of a plane orthogonally
placed on the curve. The number 80 comes from the fact that it was exactly 80 pictures
extraced from the video, but the formula should work for any number of pictures.
The formula for determining the number of the current picture can be defined as follows:

img_num =
Npics ∗ (xp − x0)

x1 − x0

(1)

Where img_num is the current image number, Npics is to total number of pictures, xp

is the current x-position of the probe, x0 is the start position of the bezier-curve and
x1 is the end position.

Figure 16 shows the ultrasound machine used in the project. The screen provided
with the machine was too small to make out subtellties in the image, so a larger
screen had to be constructed. A quad was chosen as a GameObject for presenting the
images, given its format and low performance impact on the world. The components
Canvas, RawImage and ImageHandler was added on the GameObject to make the
image visible. The RawImage component handles the rendering of the mesh, while
Canvas is a support class that simply allows RawImage to be rendered for the cameras
in the game world.

35

Figure 16: The ultrasound machine used in the application
.

When the correct image number is calculated, the image to the corresponding number
is retrieved and placed on the RawImage to be shown on the quad. Figure 17 illustrates
the workflow for making the ultrasound machine.

36

Figure 17: Workflow for ultrasound applications
.

Using raw medical data
The asset Volume Viewer Pro purchased on Unity Asset Store made it possible
to load and interact with medical data. The asset provided a prefab containing
the necessary scripts for loading and displaying a 3D model of the MR data. The
prefab also contained three cameras for recording the model in axial, coronal and
sagittal (ACS-Panel) view. For the asset to work, parameters in the Unity editor
had to be edited. The procedure for using the asset is further explained in Appendix D.

The loader script included in the asset package was limited to only load data at startup.
It was crucial for the application that the models could be changed at runtime to play
the different cases. To satisfy this requirement, a customized loader was created called
Load Volume Button.

Interacting with the data
It was crucial to implement an interface for users to interact with the data in VR.
Shaders from the asset, which generated slices from the volume based on a plane
normal vector and an offset from the centre were used to create the ACS-Panel. Each
axis is displayed on a screen, making it possible for the user to interact with the
data. When the user interacts with one screen, the two others will update accordingly.

37

The two main types of interaction with the data is through use of touch and the use
of sliders. The user can interact with the panel by pressing the grip button on the
controller. When the user presses the button, the hand animation will close all fingers,
except the index finger on the hand. When the user touches the screen with the index
finger, the panel will update. The script SlicerInteract looks for trigger event between
the finger and panel. When the event is fired, the script uses the position of the
hand, and the position of the panel to calculate the new value to update the views.
Equation 2 shows the mathematical calculations for converting positions into vector
positions between 0 and 1. The endPositionX refer to the end of the screen the hand
is touching. The width is the width of the screen and handPosX indicates the hand
position at the trigger event. The same calculation for the y vector can be found in
Equation 3.

x =
endPositionX − handPosX

width
(2)

y =
endPositionY − handPosY

height
(3)

The second way of interaction is through the use of the sliders, which are located
next to the screens. Each screen have two sliders, corresponding to the x- and y
axis. The user can interact with the sliders by moving their hands to the red slider
indicator, press the trigger button on the controller, then move the indicator. The
script MRSliders translate the indicators position to a two dimensional vector between
0 and 1, and send it to the IntersectionSlicer script, to update the views.

Each screen have a horizontal and a vertical line. When the user interacts with the
screen, the lines will update to illustrate where the user is interacting. In addition to
the screens, there are sliders to adjust the brightness and the contrast of the images.
They function in the same way as the sliders for the images.

Navigation system
The medical data was also used to create a navigation system, used in the last task
of the neurology scenario. The users uses the navigation system by holding the
MR-Wand in the patients head. The MR-Wand is used to simulate the navigation
pointer used in the real world implementation of the system simulated. The MRI on
the ACS-Panel will update based on the MR-Wand’s position in the head. It tracks
in three dimensions, making it possible to find the depth of the tumor as well as its
location.

The Navigation system is case specific, meaning that each case needed a customized
solution. The users are not able to use the system until after they have pressed the
solution button. Each case has a hidden panel on the patients head. Case number two
uses the sagittal view, as seen on Figure 18a. Figure 18b shows what the user can see
when playing. The MR-Wand is the white wand with the blue tip, illustrated in both
images. The script MR Scan Helper is placed on the MR-Wand and detects when the
wand collides with the panel. It calculates where on the panel the wand is hitting,

38

and sends the values to the IntersectionSlicer script. To give the navigation system
three dimensional tracking ability, the depth of the wand also needs to be taken into
consideration. The script calculates the depth by taking the distance between the tip
of the MR-Wand and the panel. The navigation system displays the images on the
ACS-Panel located above the operational table.

(a) Navigation system panel visible (b) Navigation system panel hidden

Figure 18: An illustration of the implemented navigation system in the application

3.3.5 State and persistence

As the applications complexity increased, the need for a centralized management of
the game states increased in kind. Given the number of objects that would either be
spawned or destroyed, visible or hidden and the discrete stages of the neurosurgery
scenario, a need for an easy access and manipulation of states became necessary. In
addition, the need for keeping a state grows when the users are going through the
tasks, as it is valuable to asses the progress and degree of accuracy the user have
achieved. The users should have a way to do this themselves, without the guidance of
a supervisor. To satisfy this requirement, an easy way to access, create and maintain
solutions to the scenarios had to be implemented. Given that neither of the developers
have medical training, there was a need for an easy way to position the patient
correctly and save the solution. There was also a need for editing the solutions at a
later time, when a surgical expert was available and could give the correct solution.
It was also implemented a way to propagate the saved solutions to other users in
case the solutions had to be updated. The implementation made it possible to easily
distribute the new solutions without editing the code itself.

State management
Through the lifetime of the application, the different states the application can be in is
managed through a singleton script called GameStateManager. By using the singleton
pattern, the developers can be certain that only one instance of the script is active at

39

all time. This makes it possible for developers to access the script and thereby the
active state in other scripts easily. The GameStateManager also handles the state,
construction and removal of important GameObject such as patient, torus and ink.

Persisting data
Laying at the core of the saving system was the idea that it should be fast and simple,
as well as intuitive for a non technical medical expert to save a state. Such a system
should therefore contain as few steps as possible to minimize the extra work needed.
The application implemented therefore contains two steps:

1. Positioning the patient and marking the solution in the correct manner for the
current scenario.

2. Pressing the Save-solution-button

The GameStateManager was used to keep track of the important GameObject for
easy access when the Save-solution button was pressed. The values saved in the
GameStateManager was:

1. The case number

2. Patient prefabs name

3. Patient’s head global rotation values

4. The solution torus’ translation, scale and rotation

These values are collected in a class marked for serialization and saved to a path that
will be safe on most systems. In windows, this path will be set to Appdata.

Loading data
When the data is loaded from file, the GameStateManager reverse engineer the saving
process to create the solution. Due to limitations in the seriazability of classes imple-
mented in Unity, it was decided to save the data as raw values instead of complete
GameObjects. Practically, this meant that GameObjects had to be spawned at run-
time and set the stored solution values to these objects.

Propagating persisted data
In order to ensure that all users in the same application have the same solution to asses
the work done, the application made sure that all users connecting to the server gets
the latest version saved. The implemented solution makes use of RPC from Photon to
check the timestamp the solution was created. The OnJoinedLobby function calls an
RPC that is received by all active clients. This RPC goes through every solution and
checks if it has outdated or updated solutions. The flow can be observed in 19.

40

Figure 19: Flowchart describing the flow distribution of solutions
.

41

4 Results
Based on the research questions, with the help of tools and methods described in the
previous chapter, an application with two scenarios was developed. In this chapter,
the application will be described in detail as well as present the evaluation gathered
during the user testing.

4.1 Application and scenarios
The final application developed became a complex system, composed of multiple
different parts. Firstly the menu and tutorials will be presented. Following is the
main part of the application, the neurology scenario, which is ready for testing and
usage with supervision. Presented thirdly is the implemented parts of the gynecology
scenario. In addition, multiple implementations of functionality that was not critical
for the scenarios was implemented, and will be presented last in this section as explored
functionality.

4.1.1 Gear and scenario selection

The first thing the user will see when starting the application is the main menu screen.
Here, the user first have to select the device they want to play with. The choices
are presented in Figure 20a. If the user selects either the HTC Vive or Oculus Rift,
the application will make certain that the device is connected and active. If the user
has not yet turned on the controller, they will be prompted to turn them on. Figure
21 shows the message the user receives when the controllers are disconnected. Both
controllers needs to be active to continue to the next step. It is important for the
scenarios that the controllers are active at start up. If the controllers are not active,
key functionality such as hand gestures will be disabled. If the user have selected VR
equipment, the application will ask the user if they want to run the tutorial scene prior
to playing the scenarios, to get a better understanding on how the system and the
buttons work. If the user do not want to go through the tutorial scene, then the last
choice the user have to perform before emerging into VR is to select which scenario
they want to play. Figure 20c illustrates the different cases the user can select. The
first scenario is the neurology scenario, which is the main focus of this application.
The second scenario is the partially implemented gynecology scenario.

(a) Select device (b) Tutorial prompt (c) Select scenario

Figure 20: Snapshots of the main menu

42

(a) Both controllers turned off (b) One active controller

Figure 21: Illustrating the turn on controller message

Tutorial
First time users of HMD often need to spend some time getting used to the environ-
ment. In order to give the users a helping hand in learning how the equipment and
software works, a tutorial with vocal instructions was developed. A video presentation
of the tutorial may be found in Appendix F. In this tutorial, the users performs basic
tasks to learn how to use the controllers and interact in the virtual world. First,
the users are prompted to press the grip button. When the user presses the grip
button, colorful drawings will appear in the air. When the user moves the controller,
the drawing extends. The drawing functionality is developed to encourage users to
test out the functionalities the application offers. In addition, by having a fun or
engaging feedback from pressing the button, the user will easier distinguish between
the different buttons. After pressing the grip button, users are instructed to use
the teleport function. After successfully doing so the first time they are told to do
it three more times. The next step is to familiarize the user with interacting with
objects in the virtual world. It was decided to use a longbow with arrows in this
example. The Steam VR package already contained the model and scripts for the
equipment. The reason for choosing the bow and arrow was that it forces the users
to use both hands with different items simultaneously, as well as using multiple buttons.

Becoming familiar with the hands
Having gone through the tutorial, the users needs to familiarize themselves with the
hand gestures. The users have four different hand gestures they can perform. The
first is presented in Figure 22a. This is the default, and is used when the user is not
interacting with any buttons on the controller. The second gesture is performed when
the user press the grip button, as illustrated on Figure 22b. When the user press the
trigger button, the index finger will close, as shown in Figure 22c. When both the
trigger and the grip button is pressed, the fingers will close to form a fist, illustrated
on Figure 22d. These hand gestures are created to make it understandable for the
user which button performs which activity.

43

(a) Default hand
gesture

(b) Grip button
pressed

(c) Trigger button
pressed

(d) Both grip and
trigger button
pressed

Figure 22: Showing the different hand gestures in the application

4.1.2 Neurosurgical scenario

The scenario is divided into several tasks. A video presentation may be found in
Appendix F.

Task 1: Choosing case and becoming familiar with the operation room
The user has three different cases to chose from. The user places his hand over the
case button he wants to play, and press the trigger button. The button will turn
yellow and a preview of the brain with the tumor will be presented on the panel over
the buttons. This makes it possible for the users to view which case they want to play
before committing to a case. The three cases are presented in Figure 23. When the
user is certain of what case they want to play, they press the button once more. The
button will then turn green, indicating that it is the active case. An illustration of a
selected case is shown in Figure 23d. If the user presses one of the other buttons, they
will turn yellow and show a preview of the case. The green button will remain green
until a new case is selected.

44

(a) Case 1 (b) Case 2

(c) Case 3 (d) Selected case

Figure 23: Preview of the three cases

After selecting a case the user needs to locate and move to operation room three. The
user moves by teleportation, which is done by pressing the trackpad button. When
the button is pressed a teleportation beam is created. The beam is used to aim at the
location of the user wants to travel, and when the button is released, the user will
be teleported to the target location. In addition to the beam, the users will be able
see where in their play area they are located, allowing them to plan how far they can
walk in the physical space without exiting it.

When the user locates operation room three, they should familiarize themselves with
the equipment and their usage in the room. The controllers will act as a guide for the
users, and indicate when an object is interactable. Whenever the controller touches

45

such an object, the controller on the hand hovering over the object will turn to a
translucent yellow. The button the user needs to press to interact with the object will
turn a darker shade of yellow to make it distinguishable. In addition, the controller
hovering over the object will make a slight vibration, making it easy for the user to
comprehend which controller they have to use to interact with the object. The script
detecting controller collision with an object can only detect one controller, mean-
ing that if both controllers collides with an object, only one can be used for interaction.

Task 2: Locate the tumor
When the user is well acquainted with operation room three and the equipment within,
the user will commence to study the MR scan of the given case. The MR scan of
the case can be viewed on three panels in the operation room. The panels shows
the axial, the coronal and the sagittal view of a human head generated by the MR data.

The user has two ways of interacting with the panels. When the user interacts with
one panel, the two other panels adjust to the changes made in the panel the user is
interacting with. The first way of interaction the user can perform on the panel is
through the sliders on the sides. Each panel have two sliders for manipulating the view
in vertical- and horizontal axis. The user moves a hand to the slider point and press
and hold down the trigger button to start sliding. The colored lines on the panel will
move to indicate where the user is interacting. The second way the user can interact
with the panel is through touch. When the user presses the grip button, all fingers
except the index finder will close, making the user able to point. The user can point
with the index finger at the panels where they want the focus to be. When the user
touches the panels, the images and colored lines will update to accommodate for the
changes. The user also have the ability to change the brightness and contrast of the
images by using the sliders located under the coronal view.

When the user have located the tumor, they can confirm it by pressing the solution
button next to the panels. The solution button toggles between the correct solution
and the solution the user has presented. The solution differentiate itself by having a
red torus around the tumor. When the user is certain of where the tumor is located,
they move on to the next step.

Task 3: Patient positioning
The information acquired from studying the MR scan should be sufficient for the
user to position patient correctly for operation. Figure 24a shows the equipment the
user have at his disposal. The panels over the table represents the axial, coronal and
sagittal view of the MR data. The panels update when the user interacts with the
panels in task 2, allowing the user to see the tumor when working at the operation table.

46

(a) Operation room (b) The game panel

Figure 24: An overview of available equipment for task 3

The game panel is used for initial and large scale patient positioning. Figure 24b
illustrates the game panel. Four buttons with image of a patient shows the different
positions the patient can be placed in. Patient position is chosen by holding a hand
over one of the buttons and press the trigger button. When the user presses the
button, a sound is played to make the user understand that something has happened.
The selected patient will spawn on the table. Figure 25a shows the patient spawned
when the user presses the first button. It is possible to change position by clicking
on one of the other buttons at any time. When the user is satisfied with the body
position, they have to rotate the head into correct position.

To rotate the patient’s head the user have to spawn a torus, which is done by clicking
on the torus buttons on the game panel. There is a horizontal and vertical torus
for rotating the head across the two axis. Figure 25b illustrate the spawning of a
horizontal torus around the patient’s head, and the vertical torus is presented in
Figure 26. To rotate the patient’s head, the user places a hand on the red marker on
the torus, and press the trigger button. As illustrated on the Figure, the controller
turn a translucent yellow when the hand is in contact with the red marker. Figure
25c shows the result of rotating the patient’s head 90 degrees.

47

(a) Patient lying on table (b) Horizontal torus (c) Horizontal torus turned

Figure 25: Illustration on how the horizontal torus is used

(a) Vertical torus (b) Vertical torus turned

Figure 26: Illustration on how the vertical torus is used

When the user is satisfied with the positioning of the patient, the patient’s head needs
be shaved. To accomplish this, the shaving razor has to be used. The razor is located
over the game panel, illustrated in Figure 27. The user picks up the razor by holding
a hand over the razor and pressing and holding the grip button on the controller. The
shaving procedure is performed by moving the razor back and forth over the patient’s
head for a couple of seconds. The result of the barbing can be viewed in Figure 28a.
If the user wants to make adjustments to the patient’s position before proceeding, the
user can press the Reset Patient button. The button reconstructs the patient’s hair,
making it possible to rotate the head again.

The last step of the task is marking where the point of entry is. The user marks the
patient by picking up the black pen illustrated in Figure 27. The user picks up the
pen by pressing the grip button, and can draw with it by pressing the trigger button.
Figure 28b shows how the marking of a patient works. If the user is not satisfied with
their drawing, they can remove the drawing by pressing the Reset Ink button on the
game panel.

48

Figure 27: Representation of the equipment located over the game panel

(a) Barbered patient (b) Marked patient

Figure 28: Examples of how to shave and mark the patient

After performing the marking, the task is complete. Before moving on to the next
task, the user must check with the solution to see if their assessment were correct. The
user can toggle between the solution and their own creation by pressing the solution
button on the game panel. The solution button is located at the top left of the panel.
The button is significantly smaller than the other buttons, and the text is only visible
from a certain angle. It is presented in this manner to prevent users from clicking the
button by mistake when performing the task. When the user works with the task, the
text on the button is not visible as shown in Figure 29a. The text is however visible
when the user leans forward and looks at the game panel from a different angle, as
illustrated in Figure 29b.

(a) Solution button text not
visible

(b) Solution button text vis-
ible

Figure 29: Obscuration of solution button

49

Solutions for the three different tasks can be seen in Figure 30. The red torus on the
patient’s head indicate where the user should have marked the patient in each case.
When continuing to the next task, the user works from the solution on each case.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 30: Solutions to the three cases

Task 4: Ultrasound and Navigation system
When the patient is positioned correctly, the next task is to verify the position of the
tumor. This is done in two steps. The first step is verification by use of the navigation
system. To use the navigation system, the user has to pick up the MR-Wand, the
white wand with a blue tip, and place it over the patients head. The ACS-Panel above
the operation table updates based on where the pen is located on the head. It tracks
in three dimensions, meaning that it is possible to point the marker inside the head to
determine how deep inside the head the tumor is located. Figure 31a illustrates how
the MR-wand is used to locate the tumor. The ACS-Panel shows that the tumor is in
the centre.

The second step is verification by ultrasound. In neurosurgery, it is not sufficient
to only rely on the MRI when performing an operation. Firstly, the MRI are not
completely accurate. The inaccuracy of the scans can become close to a centimeter.
In addition, once the operation has started, the brain might move around, making the
tumor move as well. To remedy these issues, ultrasound is used complementary to
the MRI during operation. Ultrasound scans are performed in intervals to determine
the position of the tumor and critical brain tissue. These scans are compared with
each other throughout the surgery. In the last task, the user has to perform the first
ultrasound scan. To perform the scan, the user picks up the ultrasound probe and
move it to the point of entry on the head. If the tumor in observed at the assumed
location the user has completed the scenario. The performing of ultrasound is shown
in Figure 31b.

50

(a) Case 1

(b) Case 2

Figure 31: Use of navigation system and ultrasound
51

4.1.3 Gynecology scenario

The initial scenario to be implemented for this thesis was the already established
gynecology case from VirSam [69]. However, due to lack of medical knowledge on
the subject as well as limited use of interaction in the scenario, the focus switched to
neurology.

The original scenario is divided into three scenes, meeting the patient, leading the
patient to the ultrasound room and performing ultrasound examination.

Task 1: Meeting the patient
In the beginning of the scenario, the nurse enters the room where the patient and her
husband is waiting. The patient is not feeling well, and is clutching her stomach in
pain. The husband is in distress and looks to the nurse for confirmation. Figure 32a
illustrates when the nurse enters the room, and Figure 32b shows that the husband
looks at the nurse.

Task 2: Guiding the patient to the ultrasound room
After asking the patient a couple of questions, the nurse tells the patient to follow them
to the ultrasound room, for an ultrasound examination. When the patient reaches the
ultrasound room, she lies on the bed and awaits the examination. The ultrasound
room is presented in Figure 33.

(a) Nurse enters the patient
room (b) Nurse is next to patient

(c) Patient walks to ultra-
sound room

Figure 32: Guiding the patient to a ultrasound room

52

Figure 33: Representation of the ultrasound room in the gynecology scenario

(a) Picking up ultrasound probe (b) Blue silhouette of ultrasound probe

Figure 34: An image of the ultrasound system in the gynecology scenario

Task 3: Performing the ultrasound examination
The last task is to perform the ultrasound examination. The user picks up the up the
ultrasound probe by holding a hand over the probe and press the grip button. The
controller hovering over the probe will turn yellow, indicating that the GameObject
can be interacted with. This is showed in Figure 34a. When the user picks up the
probe, a blue silhouette of the probe will illuminate over the patient where the user
should place the probe, as illustrated in Figure 34b. When the probe reaches the
silhouette, the ultrasound machine begins transmitting images to the television screen
behind the bed. The scan is projected on the screen to give the user a sufficient view

53

of the ultrasound scan. Figure 35 and Figure 36 shows how the probe works. The
goal of this tasks is to locate and identify the abnormalities in the patient’s uterus.
The user should be able to identify the rings in the ultrasound images, which may be
observed in Figure 36a. These black rings indicates extrauterine pregnancy, and the
patient needs to be taken to the operating room and be prepared for surgery.

Figure 35: Beginning of ultrasound examination

(a) Black rings illustrated on ultrasound (b) End of ultrasound scan

Figure 36: Illustration of how the ultrasound machine works

4.1.4 Explored functionality

In the process of implementing the scenarios, multiple explorations were conducted
to assess the possibilities and functionalities that might be attractive and useful in
learning applications using general purpose VR. In order to make the most out of

54

the scenarios however, the functionality implemented into them needed to be strictly
streamlined and carefully designed to keep the users from distractions. In this section,
we will explain functionality implemented that were either too distracting for the
users or no longer useful in the final application. A link to the video presenting this
functionality may be found in Appendix F

Incision of scalp and looking through microscope
The next step in the neurosurgery scenario would be to make an incision of the scalp.
The surgical equipment located between the MR-Wand and the black marker presented
in Figure 37 is used to open the patient’s head. The user grabs the item and place it
over the patient’s head. Ideally, the hole in the patient’s head would appear where the
item touched, but it was not fully developed. Removing part of the head is a tedious
task, requiring external modelling software to manually remove vertices and edges
in the model. It was concluded that this step was not essential for the educational
application, so focused was changed after creating one hole. A brain was placed inside
the head, allowing the users to see the brain when opening the patient. The hole in
the patient’s head can be viewed in Figure 38b

The microscope above the operating table can be used to get a closer view of the
opening created. The user grabs the handles on the side of the microscope and pulls
it down. When the height of the microscope is at a satisfactory level, the user can put
their head in the ocular to view with the microscope. Figure 38a illustrates how the
microscope looks when it is pulled down. The image is a static one, meaning head
tracking and rotation is disabled. As mentioned in the background section, Valve
advises against disabling head tracking and rotation, because it breaks with immersion
and result in VR sickness. Users complained about feeling nauseous after trying the
microscope, so the development of the microscope stopped.

Figure 37: Illustration of the surgical equipment needed for opening head

55

(a) Illustration of the microscope over the
operational table

(b) Presentation of what the user sees in
the microscope

Figure 38: Views from different platforms

Collaboration and multi-user possibilities
Giving users the ability to connect to each other was an important functionality to
implement. Currently, it is possible to connect users using OR, Vive and desktop
together in the same instance of the application. While the users using VR devices
will be represented as a head with hands, the desktop user will have a full bodied
avatar. Users on a desktop will be able to move around and observe all interactions
taking place, but will not be able to interact with objects. This way, the desktop
users are considered observers while the VR users are considered actors. The details
conserning implementation of such functionality may be found in Appendix A.

56

(a) VR user viewed on desktop (b) Desktop user viewed in VR

Figure 39: Views from different platforms

Assisting surgeon
A task to be performed during the gynecology scenario was to go through with the
surgery. The initial goal was to make one user play as the surgeon and another as the
surgical nurse. The main responsibility of the surgical nurse, was to give the surgeon
the right tools at the right time. As an early prototype, a non playable character
was developed to control the surgeon. The surgeon had animations for requiring and
retrieving items from the user. The user picks up the items and place them in the
hand of the surgeon. The development of the gynecology scenario stopped, hence no
further improvements on this functionality was made.

Interactive body models
Inspired by the multiple visualization applications, offering interactive exploration
of the body, the team implemented an interactable body, where body parts can be
taken apart in VR. The model used was found on the internet [70], and rescaled to
feasible values to use in VR. Then the different pieces was placed correctly according
to each other in a VR environment and programmed to be interacted with. The
implementation gained no educational benefit, as the model rendered too poorly to
represent human anatomy. In addition an application used for education on such a
specific level should have a framework developed around it, like the ability of editing
the colors of the pieces as well as having some textual information about each piece.
The anatomy model is presented in Figure 40

57

(a) Anatomy (b) Anatomy taken apart

Figure 40: Illustration of interaction with human body

Video tutorials
The development team was encouraged to develop a video system for looking at
tutorials. The result is shown in Figure 41. The videos are located on an external
server, making it possible to add videos to the application independently of Unity.
The user can move between videos by pressing the forward and back button. The
preview image shows what the tutorial is about. The user plays a video by holding a
hand over the play button and press the trigger button. The system is fully functional,
but the tutorial videos were not created. The short amount of time each participant
had to go through the cases made the developers chose to instruct during the sessions
instead. There are currently two videos on the server. The first video is showing how
case number one is played, and the second shows the explored functionality.

(a) Master thesis video played in the
application

(b) Tutorial video played in the appli-
cation

Figure 41: An image showing the video system

Interactive MR model
The volume viewer package purchased contained a prefab for creating a 3D model of
the loaded medical data. Advanced tools for manipulating the 3D model was also

58

included. The tools were translated and re-implemented in VR and was experimented
with during the user evaluations. A control panel for handling the manipulation was
implemented. The panel consists of a number of sliders for changing values such
as brightness, contract and scale. In addition the panel made it possible to remove
black and white background noise on the model with the use of sliders. The panel
supported navigation of the model in two different modes, color planes and exclusion.
The color planes mode made it possible to see where the ACS-Panels slices was on the
model. When the user interacted with the ACS-Panel, the color panel on the model
changed accordingly. The exclusion mode added the ability to remove parts of the
model, making it possible to look inside the head of the person. The removal of the
parts are conducted by using the ACS-Panel. The interactions can be seen in Figure 42.

(a) The MR gener-
ated human head

(b) Color panel
used for ACS-
Panel (c) Ability to see inside the head

Figure 42: Presentation on different ways of interacting with the MR model

It was concluded, however, that the initial skill required to utilize this functionality was
all to high, as well as causing some latency problems. The functionality is something
we deem worthy of more exploration, and it is easy to appreciate the value of such
functionality if it could assist in getting students to better visualize what they are
trying to learn.

4.2 Evaluation
To assess the value of the application and to answer the research questions, the
application had to be tested and evaluated. In this chapter, the results from user
testing will be presented. The tests are separated into the different times they were
acquired and presented in chronological order.

59

4.2.1 Technoport

In march, 2017 the project was presented on a stand at Technoport [71]. We presented
the project basis and technology to the interested participants at the exposition, and
used the arena for getting feedback to the project as well as observing user patterns.
Following is a short summary of the observations

Input devices
Only the Vive controllers were used during the specialization project, resulting in
key mapping based on what felt natural on those controllers. During the exposition,
OR was used with its newly released controllers, Oculus Touch due to the ease of
transportation and setup. Overall, the controllers are much the same, however one
small difference caused some trouble. On the Vive controllers, there is a touchpad.
Most users that tested the specialization project had no problems understanding that
it was clickable. The Oculus Touch however, has a joystick. The first few users had so
much trouble understanding the possibility of pressing down this button, that they
eventually gave up.

User interaction difficulties
Most testers at the exposition confirmed the theory that user who test VR for the
first time spend much time get used to the sensation of VR and the controllers. This
means that they will spend some time being non-productive, and some time spent
simply observing should be taken into account for first time users.

4.2.2 Medical simulation centre - network conference

During the 2017 Network Conference [72], held at the Medical Simulation Centre at
st. Olavs hospital, we presented the project to volunteering participants on a stand.
With instructions from us, the participants got to go through the core parts of the
system to try out the functionality. The scenario was mostly implemented, but not yet
robust enough to leave the testers on their own. At the end of the test, participants
were asked to fill out a short survey asking core questions about the functionality and
their experience in the virtual world.

Setup and execution
This test was conducted using one OR, as well as one laptop for testing the network
functionality. The original plan was to get two users using OR and two users using
laptops, but due to technical difficulties, most users got to test with one OR only.
Before and during the tests, the participants were carefully instructed by one of the
developers. The tests usually lasted between 5-15 minutes per person.

The test subjects
The individuals participating in this tests was technical and medical experts from
different parts of Norway. It was clear from discussion that they were already interested
in simulation in medical practice and was excited to try out the application. The total
number of participants was 12.

60

Findings
After a participant had tested the system, he or she would be asked to fill out a survey
constructed by the developers. The participants were also encouraged to give feedback
in free form.

The results are shown in Figure 43. All questions were posed in a manner that should
be answered on a likert scale from 1, strongly disagree, to 5 strongly agree.

Figure 43: Chart created based on feedback from medsim
.

4.2.3 Neurosurgical ultrasound seminar

In June of 2017, the application presented in this article was invited to present at the
9th annual course in ultrasound in Neurosurgery [73]. The application was used as one
of four stations on which the participants should explore the simulation possibilities
and get a first hand experience with different equipment and concepts regarding
ultrasound in neurosurgery.

The focus on this test was shifted from what was already established in earlier user
tests. Instead of focusing on whether the users are able to interact with the VR gear
and the virtual environment, observations were made on how the users interacted with
the medical equipment and the medical data.

Setup and execution
OR was used as the HMD in this presentation. Moving from earlier experiences, it
was decided to make use of three base stations, rather than two. This leads to a less

61

disruptive experience for the testers, as they will no longer get disconnected from the
application if they are rotated away from them.

The execution was a three step process for each test subject. Firstly, in order to give
the testers an overview of the application and make them ready for the tasks they
were supposed to execute, a quick walk through was given by one who was comfortable
with the application and VR. Secondly, they were given a quick introduction to
the controller and the different buttons they needed to use in order to manipulate
the virtual world. Lastly, they were given the headset and guided through the scenario.

Test subjects
The test subjects in this execution was mainly surgeons in training or surgeons who
wanted to expand their knowledge in ultrasound guided neurosurgery. The age of the
participant ranged from late twenties to sixties. None of the testers hade used a HMD
prior to the tests.

Findings
The data gathered in this test was made by observation, post test talks and a video
recording of all subjects in the application. In order to asses the value of the application,
four aspects of interest were closely watched:

1. How quickly the testers became familiar with the environment.

2. How quickly were the testers able to locate the tumor in the ACS-Panel.

3. How well they were able to position the patient and marking him correctly.

4. How well they were able to interact with the medical data using the MR-Wand
and ultrasound probe.

Due to the different nature of the aspects, they were evaluated differently:

1. Number of seconds from start of test until first teleport and until the case was
chosen.

2. Number of seconds between first attempt to interact with the panel and until
the tumor was marked correctly.

3. How close to the correct solution the tester managed to position and marked
the patient.

4. Did the tester manage to locate the tumor with the MR wand and ultrasound
probe.

Results
Aspect one can be viewed in Figure 44, and two can be viewed in Figure 45. In Figure
46 the average and standard deviation is listed.

62

Figure 44: Number of seconds untill first teleport and case selected
.

Figure 45: Number of seconds taken to find tumor in the ACS-Panel
.

Figure 46: Average and standard deviation for aspect one and two
.

Placing the patients correctly proved mostly to be successful. Only two out of the
nine participants had crucial errors in their placements or markings. The rest of the
participants had the patient mostly correctly placed. All those who got the time to
test the MR wand and ultrasound were able to use those tools and locate the tumor.

63

5 Discussion
The application presenting the neurosurgical scenario and extended functionality was
tested on two occasions, both during and after the development was finished. The
feedback gathered presents interesting findings to the usefulness of the application. In
this chapter, we will discuss these findings and assess them in regards to the related
work and the research questions.

5.1 Interaction and immersiveness with general purpose VR
equipment

The second research question for this thesis concerned how the user experienced using
the general purpose VR equipment. The feedback from the users that have tested the
scenario with such equipment gives an indication of users having little trouble with
navigating and interacting with the virtual environment. Multiple implementation
choices have been taken when developing the interaction system in order to make the
interaction as well functioning as possible. The different choices and reflection around
these will be presented in this chapter.

5.1.1 Controller design

Compared to highly specialized hardware to interface user interaction with the virtual
environment [20] [22], or to the stationary experience used in others [23], the Vive
controllers and Oculus Touch provides quite a different experienced. While it is hard
to implement functionality like force feedback, naturally restricted movement and
natural haptic feedback, the controllers have proven highly useful in other areas. It is
important to notice that the scenario implemented in this thesis had limited need for
force feedback and naturally restricted movement. The general purpose controllers
are formed to rest naturally in the hands, and have a multitude of buttons easily
available for users. Both controllers are wireless, and encourages users to move within
a small physical area. This crafts a sensation of room space which further increases
the immersed sensation in the applications.

While the controllers have many similarities, some important differences is worth
noting. The Vive controller are large, have a touchpad and have buttons that does
not stick out of the controller with tactile feedback on press. The Rift controllers are
small in comparison to the Vive controllers, and feels more naturally in the hands of
the user, as they are tailored for left and right hand. In addition, the buttons on the
Rift controller are all standing out slightly in order to make them easier to hit.

The tests conducted have revealed that users take more naturally to using the touchpad
on the Vive over the joystick on OR Touch when teleporting, but finds it significantly
easier to find and click the buttons on the Touch. Additionally, the touch controllers
lay better in the hands and feel more natural, so for novice users it seems more
beneficial to use the Oculus Touch system.

64

5.1.2 User-controller interaction

In order to make new users familiar with the unusual interface, virtual hands were
implemented and programmed to animate in a manner simulating physical movements
of the fingers. One example is pushing in the trigger button that lies under the index
finger, will make the index finger bend in the application. An added benefit from the
hands was our ability to change the proper button terminology, like trigger button
and grip button, to the more relatable names of the fingers closest to the button when
instructing them to new users. In addition, a short and to the point introduction to the
proper hand and finger placement on the controllers made users more confident when
putting on the headset, further shortening the start up time. As shown in Figure 43
from the test performed at MedSim, there was largely a consensus that the interaction
with the controllers were not difficult. It is important to notice however, that all the
tests in this thesis have been conducted with the developers precent. Without proper
guidance, the result might have been significantly different. A proposition to further
ease the learning curve is to keep all interaction with the environment to one button,
but this have not yet been tested.

5.1.3 Interaction with VR environment

When the users have acclimated themselves to the virtual environment and the feel
and usage of the controllers, they want to explore the virtual world to saturate
their curiosity. Feedback gathered from tests conducted in the specialization project
made it clear that users had trouble finding out which items could interact with,
and which buttons they had to press to interact with it. They would preferred to
interact with all objects in one way or another. Remedying this, it was decided to
consciously implement design constructed to set apart interactable items from non
interactable ones. Corresponding with the teachings of Gestalts, items that could be
used by pressing the trigger button differentiated themselves from other objects by
shape and color, often quadratic and red. In the test conducted on the neurosurgeon
course, two measurements for how quickly the users were able to learn the system
was used. The first measurement was the time it took users to teleport for the
first time, the second being the time it took them to correctly teleport to the case
selection panel and select a case. For the most part, users wants to move fast and
explore, so a short amount time is spent before they teleport for the first time. The
average time users spent before choosing the case was 1:24 minute, with a standard
deviation of 38 seconds. The findings that users need some time to become familiar
with the VR gear is to be expected. For complete novices in VR, problems with
understanding how to aim the teleport beam, how close to button controllers need
to be, and what button to click are problems developers need to account for. Even
so, the large difference between the users in the time used could indicate that the de-
sign and way of presenting the usage of the controllers might only appeal to some users.

A recurring concern with VR applications have been VR sickness, which may leave
users unable to further use the application. In this project, a key concern in numerous
design decisions have been to minimize the sensation of nausea and strain on the users.
The guidelines from the inventors of OR [54] have been followed to reduce VR sickness.

65

The most important to note here are the continuous focus on performance, as John
Carmack [49] argues, poor performance could lead to latency and screen flickering.
In addition, the implementation of the teleport functionality removes all discrepancy
between a users physical and virtual movement. The result can be seen in the MedSim
result section, where only one participant reported discomfort during the test.

5.2 Using real world medical imaging
The first research question asks whether or not real world medical imaging can be
utilized to support training in virtual reality. From the literature, the use of real
world medical data is perceived as having big potential, but difficult to implement [55].
Evaluations on the application developed shows that it is indeed possible to utilize
real world medical data to support a learning applications. One tester announced on
the surgical seminar that the navigation system and the ultrasound implementations
made it feel like he was working on a real patient. The user did not look at the patient
when performing the navigation, instead he was only looking at the screen of the
apparatus.

The integration of real world medical data in applications using HMD equipment with
controllers have shown considerable potential. Being able to interact with models
and imagery of the human body in a fully immersive virtual environment enables
attendance of the application to explore the data in a new way. Being set in a more
structured educational activity, the usage of real world imagery really shines. One of
the major difficulties with earlier applications in VR have been the lack of immersion
caused by not having proper procedures to execute, but rather having to imagine
the procedures performed. This break with a real scenario not only caused a halt
in immersion, but also made participants unsure of how to proceed. Thus, utilizing
medical imagery to recreate apparatus and scenes that are known and familiar in the
scenario will help users perform already existing scenarios, as well as opening new
training scenarios focusing more on interaction and interpretation of medical data.
In the Neurology scenario described in results 4.1.2, the learning experience is focused
around maneuvering and interpreting medical data, and applying this interpretation
to properly complete a given task. The user should also use their knowledge to confirm
the data after the task is completed to their satisfaction.

5.2.1 Imaging extracted from videos

Creating the ultrasound machinery from videos using frames proved to be an efficient
manner to integrate the data into the application. The approach removes the need
for to correctly place and rotate a volume, and the pipeline for extracting the data
in real-time is straight forward and understandable. The application limitations to
having a proper volume to read from, like the rotating the plane in any manner, or
reading data along a axis that is not predefined.

66

5.2.2 Raw volume data

The implementation of a volume loader system proved to be more time consuming
than using video frames and their position. Multiple factors needs to be in order to
use such a system in a learning application. There is a need for making sure that the
user of the system viewing the volume has control over the tools in a manner that is
familiar to them and is still natural to interact with in virtual reality. The amount
of implementation work required to make proper use of these data in a meaningful
manner is also considerable compared to using the video data. This is also reported
in literature on VR applications with similar functinoality [74]. Even so, the outcome
provides value for the time spent implementing. Firstly, the implementation presented
in this thesis with the ACS-Panel as the prime example provides the users with some
exploration possibilites. Secondly, the developers have a larger degree of freedom to
implement interaction with the data that closely resembles the real world interaction.
The final positive outcome is the ability to increase visualization of the problem. In
the neurology application, a teacher could help students to understand the brain
better by illustrating it with the model with the complete model of the head loaded.
This would not only increase their understanding of the challenge at hand, but could
possibly also increase their understanding of similar visualizations in the future.

5.2.3 Medical imaging interaction

The data used in this application was complex in themselves, and proper use and
interpretation of MRI and ultrasound images is a field of study in itself. Therefore, it
was paramount that the interaction with the data was as similar to the real world
interaction as possible, or manipulated as intuitive as possible where this is not
achievable. From the user tests, we can see that the average tester spent an average of
just under a minute to properly locate the tumor in the ACS-Panels. Having the ability
to use finger pointing and the sliders, the ACS-Panels was made to simulate desktop
computer and touch screens on the laboratory gear used in surgery respectively. This
enabled the testers to interact in a way that was familiar to them. Interaction with the
MR-Wand and the ultrasound probe was mostly a success. Some needed assistance on
how to use one, or both, but most understood they were supposed to use the gear as
they would do in real life. A main issue with the ultrasound probe was the inability
to rotate the probe and get a proper rotated view, but the testers had walked through
the proper rotation of the probe in the lecture so most did not notice this flaw.

5.3 Research outcome
The goal of this thesis was to determine key functionality features needed to develop a
medical learning application using general purpose virtual reality equipment supported
by real world medical imaging. This is defined by the main research question (RQ).
The development and implementation of the neurosurgical scenario gave valuable
insights into answering the question. Firstly, for the user should be able to move freely
in the virtual environment and interact with it by using physical movements. The
use of physical movements inside the application immerses the user on a higher level
than traditionally application can. The increase of immersiveness has the potential

67

to increase the learning curve by making the application entertaining as well as edu-
cational. The use of models to represent the users during playtime further improves
the immersive feeling. The hands is a good example of important models to have in
the application. The animations on the hands further increased the user’s awareness
on how to interact with the virtual environment, resulting in reduced time needed
to be proficient in the application. Another important factor for making a learning
application in VR is reducing the amount of VR sickness experienced when playing.
If the users gets uncomfortable or feel nauseous while using the application, they
will not benefit from using the system, and would rather not use it at all. Several
measures have been taken into reducing the common pitfalls in the field of VR sickness,
including focus on low latency and consistent movement scheme. The movement
scheme is designed in such a way that all types of movement feels natural. Users can
move physically as long as they are in their play area. If they want to travel over
longer distances, the teleportation function is used.

Another important factor to take into consideration when creating learning applica-
tions is how the flow of the scenario should be. It is critical that the users know at
all times what actions needs to be performed in order to proceed to the next task.
Objects not directly connected to the task at hand, should be hidden or removed
to reduce the amount of distractions in the world. First time VR users can easily
be distracted by the sensation of VR. It is also important to give users feedback on
performance on the different tasks. The ability to toggle between the solution and
their own answer on a task as well as receive comments on the solution can further
increase the learning outcome from the application.

The integration of real world medical imaging in the virtual world has shown great
potential. The medical data made it possible to develop tasks, forcing the users to use
their deduction skills to find solutions. The second task in the neurosurgical scenario,
the users needs to use their hands to interact with the ACS-Panels by touching it
with the index finger, similar to how it is interacted with in the real world.

68

6 Conclusion and Future Work
In this thesis, virtual hospital environments designed for general purpose VR equip-
ment have been developed to assess its value in an educational setting. The equipment
gives end users the ability to use physical movements to interact with the environment.
When users are given the power to interact in such a way, they become more involved
and engaged. The initial setup and introduction to VR might be time consuming.
However, it have been shown that with a well designed user interface, and with careful
guidance, it is achievable to have complete novice users interact with the virtual world
with some degree of proficiency after minutes. The design of educational applications
is a complex tasks, and one way to solve this is to design such an application after
a set of tasks that each bring educational value preferably in collaboration with an
expert. This is why the application in this thesis have been centered around scenarios
with a clear structure and learning goals.

Integrating real world medical data further increased the sense of immersion the user
felt when playing the scenario and gave them an exciting new way to interact with
MRI and ultrasound images. The integration itself is not arbitrary, and will give
marginal educational benefit if not carefully planned and executed. In this thesis, we
have shown that users should interact with the data in a way that closely resembles the
actual usage in the real world for the usefulness to fully shine through. In this thesis,
a scenario where users were forced to use their knowledge of MRI and ultrasound in
order to complete a given task properly through experimentation and analysis with
the data was implemented. Construction of these types scenarios needs to be done
in collaboration with experts in the given field, as multiple subtle nuances that de-
velopers miss or overlook might disrupt or even break the experience for their end users.

Collaboration and communication skills are made possible in application by adding a
networking layer. Interaction between users in an virtual world, especially when both
are using a HMD, offers great learning possibilities and is unquestionable engaging.
However, the networking capabilities were not properly tested in this thesis. Time
constraints on the user tests, in addition to the sheer amount of testing areas and gear
needed made it difficult. The users that got to experience duo-user play through of
the neurology scenario at MedSim did however enjoy it.

Based on experimentation and exploration in this project, multiple avenues of fu-
ture work have been discovered, discussed and even partly implemented for testing
purposes. This section is dedicated to list and discuss recommendations for future work.

Improved volume interaction
Moving forward with the integration of medical data in the application, there are two
implementations that are highly desirable. The first one is to create a more realistic
ultrasound probe by using raw medical data. The probe should have the ability slice
the data at a random angle and offset, simulating free hand ultrasound.

The second way of interacting with the data that could prove useful, and was asked

69

for in tests with surgeons, is the ability to view the navigation markers position on
the ACS-Panel that is positioned above the bed. Such functionality will immerse the
user further as well as opening for more complex scenarios.

AI-Controlled personnel and patients
Further exploring the goal of a training scenario being low maintenance and easily
accessible, it was discussed that a implementation of participants in the scenarios
being replaced by artificial intelligence. The core idea is to have implemented patients
and personnel that might step in for users and perform a believable act in their roles.
Early exploration in this project proved this concept to fall out of the scope, and the
exploration is therefore considered future work. In order to make such an application
work, one should however have some core concepts implemented.

In order for an AI to simulate conscious decisions, it should respond to voice commands
or keywords. There already exists tools making this possible, but there is an overhead
setting them up, and in their current state, they are only usable in English. Unity
ships itself with a voice recognition tool that is quite simple to set up and get working.
The problem with this software is the quality of the recognition, especially when
considering any recognition of more than a few commands. The limitations lies in the
system it is abstracted from, which is Windows’ own personal helper Cortana, which
is designed to recognize and respond to simple commands.

However, speech recognition is a field of heavy focus for large companies presently.
Both Google [75] and Amazon [76] provides cloud based recognition software, which is
the same software they use in their representative interactable home solutions, Google
Home and Amazon Echo.

The AI should respond in a natural manner to voice input from the user. In its current
state, human simulation is still a hard problem in computer science, and given the
scripted nature of the scenarios, it is possible to hard-code behaviour and responses to
simulate a conscious decision.

Improved feedback system
Moving forward with this application, it should be a natural iteration to implement
some kind of automatic feedback and a score system. Today, the application provides
an expert-set solution for the scenarios, and the user may asses his or her success in
the scenario based on the solution. While this solution is valuable in itself, it is really
the minimal valuable product. During development, the team came up with different
ideas for more complex feedback systems.

Following the theories about serious games, the users will be more invested in the
application if there is some sort of numerical feedback that in a meaningful way grades
the performance of the user. Implementing such functionality would require to a
consultant with expertise in the given field who can declare what metrics should be
assessed and what weights the different metrics should have. A score system could be
visible after the user is done setting up the patient, and could be showed in VR or

70

outside. With such a metric, the developers might also set pass or fail values, giving
the users further feedback on what is expected of them.

More important in educational applications is the ability to give the users of learning
systems constructive and informative feedback. An example in our application is if
the user marks the entry point at a point in the brain where there lies a significant
amount of critical nerves, he should be informed about why the point would be bad
for the patient. Personalized feedback based on different metrics like the placement
of the torus or the angle of the neck of the patient could be generalized so that the
feedback gives the most amount of value possible.

Informational videos made by instructors could also be implemented to work with dif-
ferent types of similar applications so that instructors can record their own instruction
videos and present them to their students before or after the scenarios have been played.

71

7 Appendix

A Networking functionality

A.1 Introduction and choice of framework
In this appendix, we will discuss the implementation of networking functionality to
enable communcation and collaboration possibilities in VR applications, as well as
cross platform functionality. The possibilities offered by networking funcitonality is
exciting, and is therefor well worth exploring.

Networking framework
Instead of developing the network functionality from ground up, an already estab-
lished networking framework was chosen. The choice of framework were, however, an
important one as it would decide large parts of the software architecture. Following
is a discussion of the three most prominent alternatives and the major differences
between them.

Unity networking
Unity’s own networking module might seem the obvious choice to many. It is well inte-
grated in the Unity core and very well documented. The framework supports the most
commonly used functions, like Remote Procedure Calls (RPCs), synchronized variables,
and commands. The server technology is based on a client-server pattern, meaning
one of the clients needs to be a server or host that the rest of the clients can connect to.

Photon Unity Network(PUN)
PUN is a free tool offered through the asset store by Exit Games [77]. The networking
engine allows developers to decide whether the game application should be hosted on a
cloud server or allows one of the client to act as a host, similarly to Unity Networking.
PUN does not handle any game logic, and knows nothing of what is happening to the
game other than the variables sent over the network. This forces the programmers to
use less network traffic, ultimately leading to better network performance. This might
cause differences between the states in which the applications are in, but there are
methods to remedy this. PUN, like Unity networking, offers RPCs and synchronized
variables.

Forge Remastered
Forge remastered is also found in the Unity asset store [78], but compared to Unity
networking and PUN, costs $75. Forge uses a third approach, which strongly empha-
sizes the need for a dedicated server, which may not be a user, that the developers
need to set up and keep running themselves. The implementation however, seems to
include little to no setup and the performance is reportedly good. Forge also supports
all commands needed for this project mentioned above, but has somewhat limited
documentation compared its competitors in this comparison.

Conclusion

72

For this project, the initial cost for Forge, as well as the need of a dedicated server,
made us turn to one of the other solutions. Unity Networking was our initial choice
given the generous documentation and integration. However, some problems occurred
during testing with VR, mainly considering performance. Given that a VR application
needs to perform consistently and with low latency, our choice finally landed on PUN.
PUN proved to have good documentation and an active community, and providing a
robust performance.

A.2 Implementation
Developing an networking application in Photon Unity Networking (Photon), was a
tasks that required plentiful of implentation choices and coding. This will be described
in this chapter.

The server used in Photon can either be hosted on Photon’s cloud service, or it can be
hosted by a client. In this project, it was decided to make the first client connecting
the server, known as the Master client. Master/slave communication is used in the
project, and is a model where one device has unidirectional control over the other
clients.

The PUN is constructed in a room like manner, making it possible to create several
instances of a game in different rooms. When a user connects to PUN, they first
connect to Photon Cloud and thereafter connects to one a room. Once connected to a
room, the communication is between the master client (the client acting as the server)
and the slave client (the one joining the room).

PhotonView
PhotonView is a script component enabling communication between clients through
methods such as Remote Procedure Calls (RPCs) and OnSerializePhotonView. The
script needs to be attached to a GameObject to make it communicate through the
network. Figure 47 illustrates how the script looks when it is added as a component to
a GameObject in the Unity editor. As shown on the figure, parameters can be edited
after adding the component to the GameObject. The first parameter, Owner signifies
who owns the GameObject. The owner of the GameObject is the one communicating
to the other users about the GameObject. The parameter has three options: Fixed,
Takeover, Request.

73

Figure 47: Illustration of the PhotonView script in Unity

If the owner is fixed, that means that the master client is the only one who sends out
updates about the GameObject. The other users can only observe what the master
client is doing. If Takeover is selected, the GameObject can change owner at runtime.
This enables all users interacting with the GameObject to send updates, instead of
only the master client. The last option, Request allows users to ask for permission to
take ownership of a GameObject. The master client then either accepts or declines
the request.

The parameter View ID is a unique identifier for the GameObject. As seen on the
Figure, the ID spans from 1 to 999.

The Observe option parameter has four options: Off, Reliable Delta Compressed, Unre-
liable and Unreliable On Change. This parameter decides the transmission rate of the
GameObject. Observed Components tells PhotonView which scripts it should transmit.

Off means that no data will be sent from the GameObject automatically. This is
ideal if the GameObject needs to send irregular data transmission. It can send these
transmission through RPC. Reliable Delta Compressed will compare the data last
received by the client to the current state. If the observed data has not changed, then
no data will be sent. If for instance the position of the GameObject has changed, but
the rotation has not, only the position will be sent over the network. This method
reduces the strain on the bandwidth by only transmitting the changed data. To
be certain that all packets have been received and thus is reliable, the sender will
continue to send packages until confirmation that all packets have been received. The
new packets awaiting sending is placed in a waiting buffer until the previous packets
have been delivered. The Unreliable mode on the other hand, will not receive any
confirmation about the packages. Since the sender cannot know what data the receiver
has, the sender sends the whole state in each update cycle. Unreliable On Change will
look for changes in each update cycle. If no changes are found since last update cycle, it
will stop transmitting. If changes are detected, it will begin to transmitt updates again.

Photon Transform View
Photon Transform View is a script for synchronizing position, rotation and scale
values of a GameObject. The script needs to be placed in the Observed Components
parameter in the PhotonView script for it to synchronize the data.

74

Photon Animator View
Photon Animator View is a script for synchronizing animation over the network. It
too, needs to be added to the PhotonView’s Observe Components for it to synchronize
the data.

Remote Procedure Calls (RPCs)
Not all GameObjects are required to update all the time, but only on certain events.
Instead of transmitting unnecessary data, RPCs can be used. RPC enables developers
to create methods which are executed on certain events. An example on how a RPC
works is the interaction with a button. When a user presses the button, the method
photonView.RPC("ButtonClicked", PhotonTargets.All, buttonID); will be executed.
The first parameter describes which RPC method should run. Each RPC method
is unique and is accessed through it’s unique name. The second parameter tells
PhotonView who should receive the notification. It is possible to set the receivers to
be others, which means that the notification should be sent to all but the one who
is triggering the event, or MasterClient which mean that only the master client will
receive the notification. In this case, all users, including the one sending the message
executes the method. The last parameter on the RPC is the parameters sent to the
RPC. In this example, the buttonID will be sent.

Network Controller
The Network Controller script is responsible for network connectivity. First the user
connects to the Photon Cloud with the unique AppID of the project. Every Photon
project have their own unique AppID. When the user is connected to Photon Cloud,
it asks the server how many active rooms there are on the server. If the server has
zero active rooms, the user creates a new room with the name VirSamRoom. The user
creating the room will be the master client i.e. hosting the communication channel. If
the number of rooms is higher than zero, the user connects to the VirSamRoom. When
connecting to an already established room, the client will become a slave client. When
a new user connects to the room, their solutions to the scenarios will be compared to
the solutions of the other users already connected. This is to be certain that all users
have the same solution.

The OnJoinedRoom method is called when a user joins the room. The user is given
an unique player id which is used to identify the different users over the network.
Afterwards the method checks whether or not the user is using VR equipment. If the
user is using VR, a prefab called NetworkedVRPrefab will be instantiated. The prefab
NetworkedPlayerPC will be instantiated if the user is playing in desktop mode. The
method further sends a RPC to the other users telling them a new user has joined
with the given player- and device id. The device id determines whether or not the
user is using VR.

The NetworkedVRPrefab contains the models for surgeon hands and head. The prefab
is used to transfer user movement over the network. Each model contains three
essential scripts: Photon View, Photon Transform View and Copy VR Controller

75

Script. The last scripts mimics the position and rotation of the GameObjects corre-
sponding to hands and head, making it possible for Photon Transform View to send
the position and rotation of the user over the network to other users. Similarly, the
NetworkedPlayerPC prefab has a script called Copy Desktop controller Script. The
prefab also have the Photon Animator View to synchronize animation over network.

Networked Items
Networked Items is responsible for synchronizing user events over the network. As
mentioned previously, every item in the application needs the PhotonView component
to communicate over the network. All interactable items have their owner property
set to Takeover, meaning any users can take ownership over the item. When a user
interacts with an interactable GameObject, the Networked Items script first declares
that the interacting user is now the owner of the given GameObject. Secondly, it
sends a RPC to tell the other users who picked up the item, and in which hand, so it
can be synchronized over the network.

A.3 Networking results and discussion
Moving away from Second Life, the network communication between users had to be
re-implemented in order to fully utilize the potential presented in the VUH framework.
The exploration and implementation of this functionality have presented new and
interesting use cases for collaboration that demands further exploration.

Actor-observer communication
With the implementation of cross-platform utilities, connecting to a session using
either VR equipment or using the desktop version there are multiple ways to play
out the neurology scenario. One way is a student walking through the scenario using
VR equipment while a teacher is present in the room from a desktop version, able to
offer advice and corrections. Another way is a teacher executing the case with student
observers that are there to learn.

Actor - actor communication
The network functionality that offers the greatest promise is the ability for two VR
users to communicate and interact with each other in the virtual world. The VR users
are able to pass items with each other, and all actions they perform in the VW will be
observed by the other actors. This offers great functionality for the neurology scenario
as well as opens for a whole new specter of applications.

In the neurology scenario, the users might give each other specific items, like the
ultrasound probe or the marker. This will allow for a sense of great immersion. Using
item transfer functionality in other scenarios opens for usage in applications that
simulates nurse-surgeon communication before, during and after a surgery.

76

B Setup of HMD

B.1 HTC Vive Setup
Figure 48 illustrates the content of HTC Vive consumer edition. The base stations
(A) are responsible for tracking user movement. It tracks both the headset and game
controllers. For best result, the base stations need to be placed diagonally in a room.
They should also be mounted high enough so they can track the whole play area,
including the floor.

Figure 48: Image of the HTC Vive equipment in box

The documentation contains a guide on how to set up the play area. It tells the user to
download and install the HTC Vive setup software from https://www.vive.com/us/
setup/. The software helps the user configure the play area in addition to a tutorial
on how the buttons on the controller works. The software also downloads the required
software to run HTC Vive: Steam software and Vive software. The user most create
an user account for HTC Vive and Steam to run VR applications. The setup software
contains gamification features making the setup feel more like playing a game than
a chore. An example of gamification used in the setup tool is when the user marks
the play area. The user is told to go to a corner in the physical room and press the
trigger button on the game controller. While holding the trigger button down, the
user has to walk to the remaining three corners in the play area. The progress of the
user is illustrated on the software tool. After the user has marked the corners, the
software calculates the size of the play area. The minimum size of the play area is 2 x
1.5 meters, and maximum is 5 meters between the base stations.

B.2 Oculus Rift + Touch Setup
Setting up OR are done much in the same way as the Vive. In the OR box, you
have the headset and one basestation that needs be connected to the computer. The

77

https://www.vive.com/us/setup/
https://www.vive.com/us/setup/

controllers are sold separately, and are therefore contained in a different box. In order
to use the controllers with the headset, you need to connect an additional basestation.
The basestations should both be placed besides the computer screen, with at least
1.5m separating them. When everything is connected, the Oculus software needs be
downloaded and installed. It should be mentioned that this software has a requirement
to be online in order for it to function properly, and updates regularly, rendering the
software useless until the it is done. A play area needs to be set up for the OR as
well, and has a strictly enforced requirement. Then, the floor needs to be calibrated
relative to the position of the base stations.

Now, you are ready to use the headset for applications made specifically for Oculus.
In order to use the applications made for this thesis, as well as applications released
for Steam, you need to install a software called Steam VR. This software will require a
setup of the room and floor calibration once more.

OR suffers from some issues when the user are facing away from the base stations, but
have implemented functionality supporting addition of more base stations. This can
be done by simply plugging in another base station and placing it so that it covers
the users when they are facing away from the two others.

78

C How to build and run Unity projects
To build a Unity project means creating an .exe file that is executable independent
of Unity. Developers builds Unity projects by clicking on file in Unity then Build
Settings. Then the developer is prompted to select which scenes to include in the
build. The scenes can be manually dragged from the project folder. The .exe file
plays the scenes in sequential order, meaning the first scene, scene 0 will be the first
scene played when running the application. In the build settings, it is possible to
set different parameters such as target platform and architecture. In this project,
the target platform is Windows. To build the project, the Build button is pressed.
The developer is then prompted to select where they want the application to be located.

The application created from building a Unity project consists of the .exe file and
_Data folder. The _Data folder contains the resources required to run the application,
such as models and scenes. To run the application, the user clicks on the .exe file.

79

D Using Volume Viewer
After importing the Volume Viewer into Unity, some project settings needs to be
edited for the package to work correctly. Firstly, VolumeViewer needs to be added
to the User Layers. This is done by clicking on the Layers button on the top right
in the Editor and click Edit Layers. Secondly, the shaders from the package needs
to be included in the build settings. The shaders are added to the build settings by
clicking Edit -> Project Settings -> Graphics. The section Always Included Shaders
shows what shaders are included. to include the VolumeViewer shaders, one first
has to increase the number of shaders included. There are in total 8 new shaders to
be added. Once the array is increased, the user drags the shaders to the open slots.
Finally, for the VolumeViewer to work, the script Volume Renderer needs to be added
to the cameras. In this the use can set how many GameObject the camera should
be able to see, usually one. After setting the number of GameObjects, an array will
appear. The last thing to do is drag the GameObject inside the open array.

80

81

E User feedback

Figure 49: Questionnaire used to gather feedback part 1

82

Figure 50: Questionnaire used to gather feedback part 2

83

F Video presentations
In the following the table, the URLs to the different videos that shows the functionality
developted in this thesis is found:

Number Name URL
1 Core functionality of thesis https://goo.gl/5djsSd
2 Main menu and tutorial https://goo.gl/gJh99h
3 Explored functionality https://goo.gl/GmniKQ

Table 1: Table of URLs

84

https://goo.gl/5djsSd
https://goo.gl/gJh99h
https://goo.gl/GmniKQ

References
[1] Unity. Execution order of event functions. https://docs.unity3d.com/Manual/

ExecutionOrder.html, 2016.

[2] Alan Zucconi. A gentle introduction to shaders. https://unity3d.com/learn/
tutorials/topics/graphics/gentle-introduction-shaders, 2015.

[3] Michael Zyda. From Visual Simulation to Virtual Reality to Games. IEEE
Computer Society, 2005.

[4] Heyden R. Sternthal E. Wiecha, J. and M Merialdi. Learning in a virtual world:
Experience with using second life for medical education. https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC2821584/, 2010.

[5] Wilson K. Morra D. Beard, L. and J. Keelan. A survey of health-related activities
on second life. https://www.ncbi.nlm.nih.gov/pubmed/19632971, 2009.

[6] Hetherington L. Boulos, M.N.K. and S Wheeler. An overview of the potential
of 3-d virtual worlds in medical and health education. https://www.ncbi.nlm.
nih.gov/pubmed/18005298, 2007.

[7] Mora C. E. Añorbe-Díaz B. & González-Marrero A. Martín-Gutiérrez, J. Virtual
technologies trends in education. EURASIA Journal of Mathematics, Science
and Technology Education, (13(2)):469–486, 2017.

[8] Sean Hollister. Why microsoft can’t say when its incredible
hololens will become a reality. https://www.cnet.com/news/
microsoft-hololens-no-release-date-kudo-tsunoda-explanation/,
2017.

[9] Gartner. Gartner’s 2016 hype cycle for emerging technologies identifies three
key trends that organizations must track to gain competitive advantage. http:
//www.gartner.com/newsroom/id/3412017, 2016.

[10] C. Li, W. Liang, C. Quigley, Y. Zhao, and L. F. Yu. Earthquake safety train-
ing through virtual drills. IEEE Transactions on Visualization and Computer
Graphics, 23(4):1275–1284, April 2017.

[11] A case study - the impact of vr on academic performance. 2016.

[12] Max Hoffmann, Lana Plumanns, Laura Lenz, Katharina Schuster, Tobias Meisen,
and Sabina Jeschke. Enhancing the Learning Success of Engineering Students by
Virtual Experiments, pages 394–405. Springer International Publishing, Cham,
2015.

[13] Fominykh M.-Hansen A. Rasmussen G.-Sagberg L.M. Lindseth F. Kleven N.F.,
Prasolova-Førland E. Training nurses and educating the public using a virtual
operating room with oculus rift. Thwaites H, Kenderdine S, Shaw J (eds.)
International Conference on Virtual Systems & Multimedia (VSMM), Hong Kong,
December 9–12, pp. 206–213. IEEE, New York, NY, 2014.

85

https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://unity3d.com/learn/tutorials/topics/graphics/gentle-introduction-shaders
https://unity3d.com/learn/tutorials/topics/graphics/gentle-introduction-shaders
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821584/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821584/
https://www.ncbi.nlm.nih.gov/pubmed/19632971
https://www.ncbi.nlm.nih.gov/pubmed/18005298
https://www.ncbi.nlm.nih.gov/pubmed/18005298
https://www.cnet.com/news/microsoft-hololens-no-release-date-kudo-tsunoda-explanation/
https://www.cnet.com/news/microsoft-hololens-no-release-date-kudo-tsunoda-explanation/
http://www.gartner.com/newsroom/id/3412017
http://www.gartner.com/newsroom/id/3412017

[14] Adam Hamrol, Filip Górski, Damian Grajewski, and Przemysław Zawadzki.
Virtual 3d atlas of a human body – development of an educational medical
software application. Procedia Computer Science, 25:302 – 314, 2013. 2013
International Conference on Virtual and Augmented Reality in Education.

[15] Next Galaxy Corp. Next galaxy partners with vr healthnet to bring
virtual reality to healthcare. http://www.prnewswire.com/news-releases/
next-galaxy-partners-with-vr-healthnet-to-bring-virtual-reality-to-healthcare-300123913.
html, 2015.

[16] T.M. Lewis, R. Aggarwal, N. Rajaretnam, T.P. Grantcharov, and A. Darzi.
Training in surgical oncology – the role of {VR} simulation. Surgical Oncology,
20(3):134 – 139, 2011. Special Issue: Education for Cancer Surgeons.

[17] U. Kühnapfel, H.K. Çakmak, and H. Maaß. Endoscopic surgery training using
virtual reality and deformable tissue simulation. Computers Graphics, 24(5):671
– 682, 2000. Dynamic Medical Visualization (special topic).

[18] Chung KC. Kotsis SV. Application of see one, do one, teach one concept in
surgical training. Plastic and reconstructive surgery., 131(5), 2013.

[19] Pelargos et. al. Utilizing virtual and augmented reality for ed-
ucational and clinical enhancements in neurosurgery. http://ac.
els-cdn.com/S0967586816303162/1-s2.0-S0967586816303162-main.
pdf?_tid=d5515564-527a-11e7-a96e-00000aacb362&acdnat=1497607497_
89518ea873cf10037093d01aa7043374, 2016.

[20] CAE Healthcare. Neurotouch. https://caehealthcare.com/
surgical-simulation/neurovr, 2017.

[21] Sevdali . Nick Paige John-Zevin Boris Aggarwal Rajesh MD Grantcharov Teodor
Jones Daniel B. Stefanidis, Dimitrios. Simulation in surgery: What’s needed
next? Annals of Surgery, 261(5), 2015.

[22] Paweł Kazimierz Buń, Radosław Wichniarek, Filip Górski, Damian Grajewski,
Przemysław Zawadzki, and l Poznan U. Possibilities and determinants of using low-
cost devices in virtual education applications. EURASIA Journal of Mathematics
Science and Technology Education, 13(2):381–394, 2017.

[23] A.S. Mathur. Low cost virtual reality for medical training. EURASIA Journal of
Mathematics Science and Technology Education, pages 345–346, 2015.

[24] Razer. Razer hydra. https://www2.razerzone.com/au-en/
gaming-controllers/razer-hydra-portal-2-bundle, 2017.

[25] Virtual Medical Coaching. Virtualmedicalcoaching - because fantastic education
doesn’t just happen. http://www.virtualmedicalcoaching.com/, 2016.

86

http://www.prnewswire.com/news-releases/next-galaxy-partners-with-vr-healthnet-to-bring-virtual-reality-to-healthcare-300123913.html
http://www.prnewswire.com/news-releases/next-galaxy-partners-with-vr-healthnet-to-bring-virtual-reality-to-healthcare-300123913.html
http://www.prnewswire.com/news-releases/next-galaxy-partners-with-vr-healthnet-to-bring-virtual-reality-to-healthcare-300123913.html
http://ac.els-cdn.com/S0967586816303162/1-s2.0-S0967586816303162-main.pdf?_tid=d5515564-527a-11e7-a96e-00000aacb362&acdnat=1497607497_89518ea873cf10037093d01aa7043374
http://ac.els-cdn.com/S0967586816303162/1-s2.0-S0967586816303162-main.pdf?_tid=d5515564-527a-11e7-a96e-00000aacb362&acdnat=1497607497_89518ea873cf10037093d01aa7043374
http://ac.els-cdn.com/S0967586816303162/1-s2.0-S0967586816303162-main.pdf?_tid=d5515564-527a-11e7-a96e-00000aacb362&acdnat=1497607497_89518ea873cf10037093d01aa7043374
http://ac.els-cdn.com/S0967586816303162/1-s2.0-S0967586816303162-main.pdf?_tid=d5515564-527a-11e7-a96e-00000aacb362&acdnat=1497607497_89518ea873cf10037093d01aa7043374
https://caehealthcare.com/surgical-simulation/neurovr
https://caehealthcare.com/surgical-simulation/neurovr
https://www2.razerzone.com/au-en/gaming-controllers/razer-hydra-portal-2-bundle
https://www2.razerzone.com/au-en/gaming-controllers/razer-hydra-portal-2-bundle
http://www.virtualmedicalcoaching.com/

[26] Henry Lane. Schools of the future – using vive to provide complete
medical imaging education in vr. https://blog.vive.com/us/2017/03/13/
schools-of-the-future-using-vive-to-provide-complete-medical-imaging-education-in-vr/,
2017.

[27] Judith Amores, Xavier Benavides, and Pattie Maes. Showme: A remote collabo-
ration system that supports immersive gestural communication. In Proceedings
of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’15, pages 1343–1348, New York, NY, USA, 2015.
ACM.

[28] Wiley; Maes Pattie Greenwald, Scott W.; Corning. Multi-user framework for
collaboration and co-creation in virtual reality. 12th International Conference on
Computer Supported Collaborative Learning (CSCL), 2017.

[29] Leslie Jarmon, Tomoko Traphagan, Michael Mayrath, and Avani Trivedi. Vir-
tual world teaching, experiential learning, and assessment: An interdisciplinary
communication course in second life. Computers & Education, 53(1):169 – 182,
2009.

[30] John Wiecha, Robin Heyden, Elliot Sternthal, and Mario Merialdi. Learning in a
virtual world: Experience with using second life for medical education. J Med
Internet Res, 12(1):e1, Jan 2010.

[31] Ekaterina Prasolova-Førland, Aslak Steinsbekk, Mikhail Fominykh, and Frank
Lindseth. Smart Virtual University Hospital: Nursing and Medical Students
Practicig InterProfessional Team Communication and Collaboration. Norwegian
University of Science and Technology, 2016.

[32] Allison K. Herrera, F. Zeb Mathews, Marilyn R. Gugliucci, and title = Co-
rina Bustillos.

[33] Christian Moro, Zane Stromberga, Athanasios Raikos, and Allan Stirling. Com-
bining virtual (oculus rift & gear vr) and augmented reality with interactive
applications to enhance tertiary medical and biomedical curricula. In SIGGRAPH
ASIA 2016 Symposium on Education: Talks, SA ’16, pages 16:1–16:2, New York,
NY, USA, 2016. ACM.

[34] The Body VR. Revolutionizing healthcare through virtual reality. http://
thebodyvr.com/, 2017.

[35] Medis Media Pty Ltd. All-in-one solution for learning clinical, topographic and
systems-based anatomy. http://www.3dorganon.com/, 2016.

[36] Kimberly Gerweck. Dextroscope R© changes the neurosurgical planning paradigm
3d virtual reality system. http://www.kunnskapssenteret.no/verktoy/
sjekkliste-for-trygg-kirurgi-who, 2006.

87

https://blog.vive.com/us/2017/03/13/schools-of-the-future-using-vive-to-provide-complete-medical-imaging-education-in-vr/
https://blog.vive.com/us/2017/03/13/schools-of-the-future-using-vive-to-provide-complete-medical-imaging-education-in-vr/
http://thebodyvr.com/
http://thebodyvr.com/
http://www.3dorganon.com/
http://www.kunnskapssenteret.no/verktoy/sjekkliste-for-trygg-kirurgi-who
http://www.kunnskapssenteret.no/verktoy/sjekkliste-for-trygg-kirurgi-who

[37] Mads Soegaard. Interaction design foundation.
https://www.interaction-design.org/literature/book/
the-glossary-of-human-computer-interaction/affordances, 2002.

[38] Mads Soegaard. Interaction design founda-
tion. https://www.interaction-design.org/literature/
book/the-glossary-of-human-computer-interaction/
gestalt-principles-of-form-perception, 2002.

[39] Jan Cannon-Bowers. Serious Game Design and Development: Technologies for
Training and Learning: Technologies for Training and Learning. IGI Global, 2010.

[40] Unity. Everything you need to succeed in games and vr/ar. https://unity3d.
com/, 2017.

[41] Epic Games. Unreal engine 4.16 released! https://www.unrealengine.com/
en-US/blog, 2017.

[42] Crytek GmbH. Why choose cryengine? https://www.cryengine.com/, 2017.

[43] Unify Community. Unityscript versus javascript. http://wiki.unity3d.com/
index.php/UnityScript_versus_JavaScript, 2014.

[44] Thomas W. Malone. What Makes Things Fun To Learn? Heuristics for Designing
Instructional Computer Games. Xerox Palo Alto Research Center, 1980.

[45] Valve. Steamvr plugin. https://www.assetstore.unity3d.com/en/#!
/content/32647, 2017.

[46] Thestonefox. Welcome to vrtk. https://vrtoolkit.readme.io/docs, 2017.

[47] Nils Fredrik Kleven, Ekaterina Prasolova-Førland, Mikhail Fominykh, Arne
Hansen, Guri Rasmussen, Lisa Millgård Sagberg, and Frank Lindset. Train-
ing Nurses and Educating the Public Using a Virtual Operating Room with Oculus
Rift. NTNU, 2015.

[48] Multiple. Vr-headsets. https://en.wikipedia.org/wiki/Virtual_reality_
headset, 2015.

[49] OculusRift-Blog.com. Virtual reality, latency mitigation. http://
oculusrift-blog.com/john-carmacks-message-of-latency/682/.

[50] Aaron Souppouris. How htc and valve built the vive. https://www.engadget.
com/2016/03/18/htc-vive-an-oral-history/, 2016.

[51] Joseph j. LaViola Jr. A discussion of cybersickness in virtual environments.
http://dl.acm.org/citation.cfm?doid=333329.333344, 2000.

[52] David Whittinghill, Bradley Zeigler, Tristan Case, and Brenan Moore. Nasum
virtualis: A simple technique for reducing simulator sickness. http://gtp.autm.
net/technology/view/70738, 2015.

88

https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/affordances
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/affordances
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/gestalt-principles-of-form-perception
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/gestalt-principles-of-form-perception
https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction/gestalt-principles-of-form-perception
https://unity3d.com/
https://unity3d.com/
https://www.unrealengine.com/en-US/blog
https://www.unrealengine.com/en-US/blog
https://www.cryengine.com/
http://wiki.unity3d.com/index.php/UnityScript_versus_JavaScript
http://wiki.unity3d.com/index.php/UnityScript_versus_JavaScript
https://www.assetstore.unity3d.com/en/#!/content/32647
https://www.assetstore.unity3d.com/en/#!/content/32647
https://vrtoolkit.readme.io/docs
https://en.wikipedia.org/wiki/Virtual_reality_headset
https://en.wikipedia.org/wiki/Virtual_reality_headset
http://oculusrift-blog.com/john-carmacks-message-of-latency/682/
http://oculusrift-blog.com/john-carmacks-message-of-latency/682/
https://www.engadget.com/2016/03/18/htc-vive-an-oral-history/
https://www.engadget.com/2016/03/18/htc-vive-an-oral-history/
http://dl.acm.org/citation.cfm?doid=333329.333344
http://gtp.autm.net/technology/view/70738
http://gtp.autm.net/technology/view/70738

[53] Ajoy S Fernandes and Steven K Feiner. Combating vr sickness through sub-
tle dynamic field-of-view modification. http://www.cs.columbia.edu/2016/
combating-vr-sickness/images/combating-vr-sickness.pdf, 2016.

[54] ALEX. Oculus rift vr motion sickness – 11 ways to prevent it! http://riftinfo.
com/oculus-rift-motion-sickness-11-techniques-to-prevent-it, 2015.

[55] Jan Egger, Markus Gall, Jürgen Wallner, Pedro Boechat, Alexander Hann, Xing
Li, Xiaojun Chen, and Dieter Schmalstieg. Htc vive mevislab integration via
openvr for medical applications. PLOS ONE, 12(3):1–14, 03 2017.

[56] XinReality. Oculus touch. https://xinreality.com/wiki/Oculus_Touch,
2017.

[57] Microsoft. C#. https://docs.microsoft.com/en-us/dotnet/csharp/csharp,
2017.

[58] Blender. Open source 3d creation. free to use for any purpose, forever. https:
//www.blender.org/, 2017.

[59] Autodesk Inc. Programvare for 3d-modellering, animasjon og rendering. https:
//www.autodesk.no/products/3ds-max/overview, 2017.

[60] MonoDevelop Project. Cross platform ide for c, f and more. http://www.
monodevelop.com/, 2017.

[61] Microsoft. Unparalleled productivity for any dev, any app, and any platform.
https://www.visualstudio.com/vs/whatsnew/, 2017.

[62] Paint.NET. Paint.net - free software for digital photo editing. https://www.
getpaint.net/.

[63] Tarald Gåsbakk and Håvard Snarby. Master’s thesis project. https://github.
com/Haavarsn/Master-Thesis, 2017.

[64] Valve. The lab. http://store.steampowered.com/app/450390/The_Lab/,
2016.

[65] Wikipedia. A* search algorithm. https://en.wikipedia.org/wiki/A*_
search_algorithm, 2017.

[66] Vertigo Games. Operating room. https://www.assetstore.unity3d.com/en/
#!/content/18295, 2016.

[67] 3D Everything. Hospital room. https://www.assetstore.unity3d.com/en/#!
/content/57399, 2017.

[68] FFmpeg. A complete, cross-platform solution to record, convert and stream audio
and video. https://ffmpeg.org/, 2017.

[69] VirSam. Gynekologicase. http://virsam.no/case_gynekologi.html, 2016.

89

http://www.cs.columbia.edu/2016/combating-vr-sickness/images/combating-vr-sickness.pdf
http://www.cs.columbia.edu/2016/combating-vr-sickness/images/combating-vr-sickness.pdf
http://riftinfo.com/oculus-rift-motion-sickness-11-techniques-to-prevent-it
http://riftinfo.com/oculus-rift-motion-sickness-11-techniques-to-prevent-it
https://xinreality.com/wiki/Oculus_Touch
https://docs.microsoft.com/en-us/dotnet/csharp/csharp
https://www.blender.org/
https://www.blender.org/
https://www.autodesk.no/products/3ds-max/overview
https://www.autodesk.no/products/3ds-max/overview
http://www.monodevelop.com/
http://www.monodevelop.com/
https://www.visualstudio.com/vs/whatsnew/
https://www.getpaint.net/
https://www.getpaint.net/
https://github.com/Haavarsn/Master-Thesis
https://github.com/Haavarsn/Master-Thesis
http://store.steampowered.com/app/450390/The_Lab/
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://www.assetstore.unity3d.com/en/#!/content/18295
https://www.assetstore.unity3d.com/en/#!/content/18295
https://www.assetstore.unity3d.com/en/#!/content/57399
https://www.assetstore.unity3d.com/en/#!/content/57399
https://ffmpeg.org/
http://virsam.no/case_gynekologi.html

[70] nerveink. Full anatomy model free download. http://www.zbrushcentral.com/
showthread.php?169189-Full-anatomy-model-free-download&p=956870&
infinite=1#post956870, 2006.

[71] David Nikel. Our story. http://technoport.no/content/306/Our-Story,
2015.

[72] Medisinsk simulatorsenter. Om oss. ://www.simulatorsenteret.no/om-oss/, 2017.

[73] Usgt. Ultrasound imaging guided treatment. http://usigt.org/, 2017.

[74] Jan Egger, Markus Gall, Jürgen Wallner, Pedro de Almeida Germano Boechat,
Alexander Hann, Xing Li, Xiaojun Chen, and Dieter Schmalstieg. Integration of
the htc vive into the medical platform mevislab, 2017.

[75] Google. Powerful speech recognition. https://cloud.google.com/speech/,
2017.

[76] Amazon. Alexa voice service. https://developer.amazon.com/
alexa-voice-service, 2017.

[77] Exit Games. Photon unity networking free. https://www.assetstore.unity3d.
com/en/#!/content/1786, 2017.

[78] Inc. Bearded Man Studios. Forge networking remastered. https://www.
assetstore.unity3d.com/en/#!/content/38344, 2017.

90

http://www.zbrushcentral.com/showthread.php?169189-Full-anatomy-model-free-download&p=956870&infinite=1#post956870
http://www.zbrushcentral.com/showthread.php?169189-Full-anatomy-model-free-download&p=956870&infinite=1#post956870
http://www.zbrushcentral.com/showthread.php?169189-Full-anatomy-model-free-download&p=956870&infinite=1#post956870
http://technoport.no/content/306/Our-Story
http://usigt.org/
https://cloud.google.com/speech/
https://developer.amazon.com/alexa-voice-service
https://developer.amazon.com/alexa-voice-service
https://www.assetstore.unity3d.com/en/#!/content/1786
https://www.assetstore.unity3d.com/en/#!/content/1786
https://www.assetstore.unity3d.com/en/#!/content/38344
https://www.assetstore.unity3d.com/en/#!/content/38344

	Introduction
	Motivation
	Problem description
	Research questions

	Background
	Previous work
	Terminology and concepts in virtual reality development
	User interaction and immersion
	Development with game engines
	Serious games

	Virtual Reality Headset/Head Mounted Display (hmd)
	Oculus Rift (or) with Oculus Touch
	HTC Vive (vive)
	Samsung Gear VR
	Google Cardboard
	VR - sickness

	Thesis goals and objectives

	Equipment, Methods and Implementation
	Equipment, tools and frameworks
	Head mounted displays
	Game engines
	Tools and framework for virtual reality development

	Methods
	Scenarios
	Evaluation

	Implementation
	Changes based on specialization project
	Constructing the environment
	User interaction
	Real world medical imaging
	State and persistence

	Results
	Application and scenarios
	Gear and scenario selection
	Neurosurgical scenario
	Gynecology scenario
	Explored functionality

	Evaluation
	Technoport
	Medical simulation centre - network conference
	Neurosurgical ultrasound seminar

	Discussion
	Interaction and immersiveness with general purpose VR equipment
	Controller design
	User-controller interaction
	Interaction with VR environment

	Using real world medical imaging
	Imaging extracted from videos
	Raw volume data
	Medical imaging interaction

	Research outcome

	Conclusion and Future Work
	Appendix
	Networking functionality
	Introduction and choice of framework
	Implementation
	Networking results and discussion

	Setup of HMD
	HTC Vive Setup
	Oculus Rift + Touch Setup

	How to build and run Unity projects
	Using Volume Viewer
	User feedback
	Video presentations

