
A Deep Learning Ensemble Approach to
Gender Identification of Tweet Authors

Per-Christian Berg
Manu Gopinathan

Master of Science in Computer Science

Supervisor: Björn Gambäck, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

A Deep Learning Ensemble Approach to
Gender Identification of Tweet Authors

Per-Christian Berg
Manu Gopinathan

Master’s Thesis in Computer Science
Supervised by Björn Gambäck
Spring 2017

Data and Artificial Intelligence Group
Department of Computer Science
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology

Abstract
Author profiling is a field within Natural Language Processing, in addition to being a
sub-field of the broader research area concerning authorship analysis, and aims to clas-
sify personal traits of authors, such as gender and age, based on their writing style.
It is of growing importance with applications within fields such as forensics and mar-
keting for identifying characteristics of perpetrators and customers, respectively. The
emergence of social media platforms, such as Twitter, has resulted in a major increase
in textual user-generated content publicly available for linguistic studies. Additionally,
the informal language present in tweets provides linguistic material reflecting people’s
everyday usage of language.

Though representation learning using deep learning has shown much promise, most of
the work within author profiling research in recent years has been based on the combin-
ation of expensive manual feature engineering, representations such as Bag of Words,
and traditional machine learning methods exemplified by Support Vector Machines and
Logistic Regression. In this thesis we show that better gender-identifying feature rep-
resentations of English tweets can be learned using deep learning approaches.

We propose three classification systems, focusing on different granularities of text: a
character-level Convolutional Bidirectional Long Short-Term Memory (LSTM), a word-
level Bidirectional LSTM using Global Vectors (GloVe), and a more traditional document-
level system utilizing a feedforward network and Bag of Words of n-grams as first-level
representation. Furthermore, we propose using stacking to leverage the individual pre-
dictive powers of the sub-models in a combined effort. The experiments reveal that the
word-level model outperforms the other sub-models, as well as the baseline models con-
sisting of Logistic Regression, Naïve Bayes and Random Forest. The best performance is
achieved by combining the character-level and word-level models, while the document-
level model dampens the combined performance.

i

Sammendrag
Forfatterprofilering er et felt innenfor språkteknologi og har som mål å predikere per-
sonlige egenskaper ved forfattere, for eksempel kjønn og alder, basert på deres skrivestil.
Mulige bruksområder for forfatterprofileringssystemer inkluderer kriminaletterforskning
og markedsføring for å identifisere henholdsvis gjerningsmenn og kunder. Det siste tiåret
har sosiale medier, som Twitter, opplevd en kraftig vekst i brukerbase. Dette har ført
til en enorm økning i brukergenerert tekstlig innhold som er offentlig tilgjengelig for
forskning innenfor lingvistikk. I tillegg gjør det uformelle språket i “tweets” det mulig å
studere hverdagsbruk av språk.

Selv om dyp læring har vist seg å være fremragende for å lære representasjoner av tekst,
viser det seg at mesteparten av arbeidet innenfor forfatterprofilering de siste årene har
basert seg på en kombinasjon av manuell utplukking av tekstegenskaper, representasjons-
læring med modeller, som Bag of Words, og tradisjonelle maskinlæringsmetoder, f.eks
støttevektormaskiner (SVM) og logistisk regresjon. I denne masteroppgaven påviser vi
at dyp læring kan brukes til å utarbeide representasjoner av tekst som har bedre evne
til å fange opp kjønnsbaserte karakteristikker.

Vi foreslår tre klassifiseringssystemer som behandler tekst på ulike granularitetsnivå-
er: en Convolutional Bidirectional Long Short-Term Memory (LSTM) på tegn-nivå, en
Bidirectional LSTM på ord-nivå som bruker Global Vectors (GloVe), og et mer tradisjo-
nelt system på dokument-nivå som bruker et feedforward nettverk og Bag of Words med
n-grams som initiell representasjon. Videre, foreslår vi å ta bruk stacking for utnytte
de ulike modellenes individuelle prediktive evner i en kombinert innsats. Eksperimen-
tene viser at modellen på ord-nivå oppnår bedre resultater enn de andre submodellene
og baseline-modellene. Det beste resultatet blir oppnådd ved å kombinere modellene på
tegn-nivå og ord-nivå, mens modellen på dokument-nivå bidrar negativt.

ii

Preface
This thesis was written by Per-Christian Berg and Manu Gopinathan, during the spring
of 2017, as a part of the Master of Science (MSc) degree in Computer Science at the
Department of Computer Science (IDI) at the Norwegian University of Science and
Technology (NTNU). We would like to thank Björn Gambäck for valuable guidance and
meticulous feedback throughout the course of this thesis. In addition, we would like to
thank Brede, Mette and Liv for cleaning our apartment while we were busy finishing the
thesis.

Per-Christian Berg
Manu Gopinathan

Trondheim, 11th June 2017

iii

Contents
1. Introduction 1

1.1. Background and Motivation . 1
1.2. Goals and Research Questions . 2
1.3. Research Method . 3
1.4. Contributions . 3
1.5. Thesis Structure . 4

2. Machine Learning Methods 7
2.1. Logistic Regression . 7
2.2. Support Vector Machines . 8
2.3. Naïve Bayes Classifier . 10
2.4. Random Forests . 10
2.5. Deep Learning . 12

2.5.1. Historical Review and Definition 12
2.5.2. Feedforward Neural Networks . 13
2.5.3. Recurrent Neural Networks . 16
2.5.4. Long Short-Term Memory Networks 18
2.5.5. Convolutional Neural Networks . 19
2.5.6. Autoencoder . 23

3. Text Representation 25
3.1. Part-of-Speech Tagging . 25
3.2. N-grams . 25
3.3. Term Frequency-Inverse Document Frequency 26
3.4. Bag of Words . 27
3.5. Word Embeddings . 28

3.5.1. A Historical Review of Word Embeddings 28
3.5.2. Word2vec . 29
3.5.3. Global Vectors (GloVe) . 31

3.6. Stylometric Features . 32
3.6.1. Lexical Features . 32
3.6.2. Syntactic Features . 33
3.6.3. Structural Features . 33
3.6.4. Content Specific Features . 33
3.6.5. Semantic Features . 34

v

Contents

4. Related Work 35
4.1. Studies on Language and Gender . 35

4.1.1. Early Studies . 35
4.1.2. Modern Studies . 37

4.2. State-of-the-Art . 38
4.2.1. Pre-Processing . 39
4.2.2. Feature Extraction and Representation 41
4.2.3. Classification Models . 42

5. Data 45
5.1. Data Collection . 45
5.2. Characteristics . 46

5.2.1. Internet/Twitter Terms . 47
5.2.2. Emoticons . 47
5.2.3. Tweet Length . 48
5.2.4. POS-tags . 48
5.2.5. Sentiment Analysis . 49

6. Architecture 53
6.1. Text Pre-Processing . 53
6.2. Word-Level System . 56

6.2.1. Text Representation . 56
6.2.2. Feature Extraction and Classification Model 56

6.3. Character-Level System . 60
6.3.1. Text Representation . 60
6.3.2. Feature Extraction and Classification Model 60

6.4. Document-Level System . 63
6.4.1. Feature Extraction . 63
6.4.2. Feature Representation . 64
6.4.3. Classification Model . 65

6.5. Stacking Models . 67

7. Experiments and Results 69
7.1. Experimental Plan . 69
7.2. Model Building . 72

7.2.1. Character Level Model . 72
7.2.2. Word Level Model . 77
7.2.3. Document Level Model . 81

7.3. Validation Set Results . 90
7.4. Test Set Results . 91

8. Evaluation and Conclusion 103
8.1. Evaluation . 103
8.2. Discussion . 107

vi

Contents

8.3. Contributions . 110
8.4. Future Work . 111

Bibliography 113

A. Artificial Neural Network Theory 121

B. Libraries, API´s and Hardware 123

C. Special Words and Abbreviations 125

D. Additional Experimental Results and Figures 129

vii

List of Figures
2.1. Logistic Regression architecture . 8
2.2. SVM hyperplane seperation . 9
2.3. Diagram of XOR function . 9
2.4. Decision tree example . 11
2.5. Sigmoid function . 14
2.6. Multilayer perceptron . 15
2.7. RNN architecture . 16
2.8. RNN architecture unfolded over time . 17
2.9. BRNN architecture . 17
2.10. LSTM memory block . 18
2.11. The process of convolution in CNN . 20
2.12. CNN architecture adapted for NLP . 22
2.13. Autoencoder architecture . 23

3.1. POS tree structure . 26
3.2. Bag of words feature vectors . 27
3.3. Word2vec architecture . 29
3.4. Word2vec Skip-gram architecture . 30
3.5. Word2vec embeddings of different countries and capitals in vector space . 31

5.1. Dataset distribution by gender . 46
5.2. Frequency of internet terms among gender. 48
5.3. Frequency of emoticons used among gender. 49
5.4. Distribution of total words in every tweet categorized by gender. 50
5.5. Distribution of total characters in every tweet categorized by gender. . . . 50
5.6. Distribution of part-of-speech tags categorized by gender. 51
5.7. Frequency of tweets with respect to sentiment and gender 51
5.8. Word cloud of sentiment-indicative terms in tweets by both genders . . . 52

6.1. Coarse outline of the author profiling architecture. 54
6.2. The first level of text filtering of data. 55
6.3. Flowchart of the word-level system . 58
6.4. Architecture of the word-level classifier . 59
6.5. Flowchart of the character-level system . 61
6.6. Architecture of the character-level classifier 62
6.7. Architecture of the document-level classifier 65
6.8. Flowchart of the document-level system 66

ix

List of Figures

7.1. Validation loss comparison of a subset of character-level models 73
7.2. Training and validation loss for the convolutional bi-directional LSTM. . . 75
7.3. Validation loss of character-level model . 75
7.4. Comparison of a subset of word-level models 78
7.5. Training and validation loss of word-level model. 80
7.6. Validation loss with regularization of word-level model 80
7.7. Training and validation loss with reduced dimension size 88
7.8. Validation loss with regularization of document-level model 89
7.9. Prediction confidences of each sub-model 96
7.10. Individually graphed prediction confidences and error rate of each model . 98

D.1. Frequency of POS tags among gender. 129
D.2. Frequency of stopwords among gender. 130
D.3. Visualization of GloVe word embeddings 133
D.4. Subset of word embedding clusters . 134

x

List of Tables
3.1. Bag of words vocabulary. 28

4.1. Replacement of twitter specific syntax . 40
4.2. Classification models used by top 10 contestants in PAN shared task . . . 44

5.1. Overview of PAN datasets . 46

7.1. Validation loss for different kernel sizes in character-level model 74
7.2. Ablation study of pre-processing in character-level system 76
7.3. Validation loss for different vocabulary sizes in the word-level model. . . . 78
7.4. Ablation study of pre-processing in the word-level system 79
7.5. Validation loss for initial document-level models 82
7.6. BoW experiments with vocabulary size and n-grams 83
7.7. TF-IDF experiments with vocabulary size and n-grams 84
7.8. Terms in the vocabulary with high dissimilarity score 85
7.9. Most frequent terms in the vocabulary . 85
7.10. Validation loss comparing different vocabularies 85
7.11. Ablation study of pre-processing in document-level system 86
7.12. Validation loss for different dimension using autoencoder 87
7.13. Validation loss of combination of topologies 89
7.14. Validation scores for the character-level system. 90
7.15. Validation scores for word-level system. 90
7.16. Validation scores for document-level system. 91
7.18. Test scores for character-level system. 91
7.17. Overall test performance for each model 92
7.19. Test scores for word-level system. 92
7.20. Test scores for document-level system. 92
7.21. Test scores for stacking systems with average confidence 94
7.22. Test scores of character and word-level system using average confidence . 94
7.23. Test scores of stacked systems with majority 94
7.24. Test scores of stacked systems using maximum confidence 94
7.25. Test results by only using females in training set 95
7.26. Test results by only using males in training set 95
7.27. Number of correct and incorrect predictions by models when 100% confident 99
7.28. Sample of tokens in predicted tweets with 100% confidence 99
7.29. Samples of tweets predicted correctly with 100% confidence 100
7.30. Samples of tweets predicted incorrectly with 100% confidence 100

xi

List of Tables

7.31. Samples of tweets predicted correctly with 0% confidence 101

C.1. List of stopwords. 126
C.2. Abbreviation of a set of POS tags used with NLTK tagger module. 127
C.3. Abbreviation of all POS tags used with NLTK tagger module. 128

D.1. Test scores with character and document-level 131
D.2. Test scores with word and document-level 131
D.3. Test scores of Logistic Regression. 131
D.4. Test scores of Naïve Bayes. 131
D.5. Test scores of Random Forests. 132

xii

Acronyms

Adam Adaptive Moment Estimation
ANN Artifical Neural Network

BoW Bag of Words
BPTT Backpropagation Through Time
BRNN Bidirectional Recurrent Neural Network

CBOW Continuous Bag-of-Words
CNN Convolutional Neural Network
CPU Central Processing Unit

GloVe Global Vectors
GPU Graphics Processing Unit
GRU Gated Recurrent Unit

HTML Hypertext Markup Language

LR Logistic Regression
LSA Latent Semantic Analysis
LSTM Long Short-Term Memory

ML Machine Learning
MLP Multilayer Perceptron

NB Naïve Bayes
NER Named Entity Recognition
NLP Natural Language Processing
NLTK Natural Language Toolkit

PCA Principal Component Analysis
POS part-of-speech

ReLU Rectified Linear Unit
RF Random Forest
RNN Recurrent Neural Network

xiii

Acronyms

SVM Support Vector Machine

t-SNE t-Distributed Stochastic Neighbor Embedding
TF-IDF Term Frequency-Inverse Document Frequency

URL Universal Resource Locator

VADER Valence Aware Dictionary and Sentiment Reasoner

XML Extensible Markup Language

xiv

1. Introduction
The advent of social media has resulted in a massive boost in the volume of user-
generated data available. This data is useful for different analytical purposes in a wide
range of domains. Twitter is one such social networking service, specifically a microb-
logging service. It rapidly gained worldwide popularity after its creation in 2006 and
provides a public online medium for sharing news, ideas, opinions and other forms of in-
formation. With approximately 300 million monthly active users1, an enormous number
of tweets are produced every day. An important detail about tweets is that they are often
written colloquially, giving insight into how the authors express themselves in an every-
day manner. Linguists have taken advantage of this great amount of informal textual
data to study and discover various social aspects of language. For example, Gonçalves
and Sánchez (2014) built a corpus of geotagged Spanish tweets and discovered the ex-
istence of two superdialects independent of nationality, one used in urban cities and
another one more prominent in rural areas. However, this thesis will focus on another
demographic aspect of language in tweets, namely the difference between male and fe-
male writing. In this endeavour, deep learning architectures will be utilized to construct
text classification systems that predict author gender. This problem falls within the area
of author profiling, which encompasses a myriad of traits. However, this thesis will be
constrained to the aspect of gender.

1.1. Background and Motivation
Unlike the problem of author identification, where the task is to purely identify the true
author of a text, the goal of author profiling is to acquire information about an unknown
author based on the text. This information can be in the form of characteristics and
traits. A few examples include gender, age and various personality traits. A key feature
of author profiling is that it studies how linguistic traits are shared by different people.
There are many application areas for these types of classifications, such as forensic lin-
guistics and marketing.

Forensic linguistics is a branch of applied linguistics which encompasses several areas,
where author identification is one. However, direct identification of an author based on
a text can prove to be difficult if one does not possess any known texts by the unknown
author. It can be trivially assumed that to be able to correctly identify the author of a
text, one must have previously sampled writings by said person to form a basis for the

1https://about.twitter.com/company

1

1. Introduction

identification. In this case, identifying characteristics to develop a profile of the author
can be more useful as this is possible even when you do not have previously sampled
text by the person. This can aid, for example, criminal investigations in eliminating a
suspect or narrowing down the list of suspects. From a marketing perspective, it can be
useful for companies to classify the different types of people who either like or dislike
their products, based on articles and reviews on the web. Author profiling, combined
with sentiment analysis, can prove useful for this.

The field of Natural Language Processing (NLP) is highly relevant for the task of au-
thor profiling as it is concerned with the interactions between computers and human
language, including their ability to understand and process it. In recent years, deep
learning methods have gained tremendous popularity because of their state-of-the-art
results across the board, NLP inclusive. Despite this, deep learning can be considered
a minority within the set of popular methods used for author profiling. This is under-
pinned by the observation that traditional NLP representations, such as Bag of Words,
and other classification methods, e.g., Support Vector Machines (SVMs), represent the
majority of approaches taken for author profiling in recent years. This will be apparent
when state-of-the-art approaches, submitted to PAN, are presented in Section 4.2. PAN
is an annual series of workshops and shared tasks on digital texts forensics, where author
profiling is one of the categories. To explore its capabilities in the field of author pro-
filing, deep learning will have an integral part in the gender classification architectures
implemented as a part of this thesis.

1.2. Goals and Research Questions

Goal Predict the gender of tweet authors based on linguistic differences.

The goal of this thesis is to establish which characteristics of English tweets best distin-
guish the gender of the author. This is for the purpose of performing gender classification
of novel tweet samples and deep learning will be used in this effort. The objective consists
of several steps which are described in the research questions below.

Research Question 1 What does the literature establish as the most useful gender identi-
fying linguistic traits?

To understand which aspects of texts are helpful for distinguishing genders, a review
of several studies related to this will be made. This will provide a broad overview of
previously identified findings in different textual genres and aid the process of choosing
textual features to focus on in the architecture.

Research Question 2 How can texts be represented in deep learning systems to capture
meaningful information?

2

1.3. Research Method

Deep learning systems are designed to work with numerical values. Therefore, tweets
need to be represented in a manner that reflects this constraint. A sub-goal of the thesis
will be to explore different representations of texts, at different levels of granularities.

Research Question 3 What types of deep learning models are viable for processing and
classifying tweets?

To describe deep learning as one method would be thoroughly inaccurate. It is rather a
family of different Artifical Neural Network (ANN) models that can be combined to solve
representation and classification problems. Understanding how the various ANN models
work in NLP is an important part of being able to construct effective representation
learners and classifiers.

Research Question 4 Can multiple deep learning architectures be used in combination
to recognize different characteristics of tweets?

The development of different classification architectures may result in the separate mod-
els excelling at identifying different characteristics of the texts. This can be a con-
sequence of a specific design decision or a combination of these, with regards to the
choice of features, representation and classification model. Therefore, we will explore
the use of combined models to leverage the predictive abilities of the individual models.

1.3. Research Method
To achieve the goal of this thesis, a combination of methodologies will be used. A study
of literature concerning the field of author profiling and deep learning will provide a vital
foundation for the development of text representations and model architectures. This is
mostly relevant for Research Questions 1–3. Additionally, a thorough statistical analysis
of the dataset used for model training, will provide insight into possibly relevant features.
Regarding Research Questions 3 and 4, the construction of the models will be subject
to a large degree of experimentation, and for the most part quantitatively evaluated. In
addition. the models will be compared to each other and to baseline models, represented
by Logistic Regression, Naïve Bayes and Random Forest. Qualitative analysis will be
performed by examining correctly and incorrectly predicted tweets, to perhaps be able
to observe any trends.

1.4. Contributions
We contribute to author profiling research with a review of studies on linguistic gender-
based differences in tweets and a study of the current state-of-the-art approaches. Ad-
ditionally, we present three separately developed classification systems based on deep
learning. These systems are also combined to produce ensemble models, utilizing the
concept of stacking. Except for the document-level model, the constructed models out-
perform the baseline models. The classification systems can be summarized as follows:

3

1. Introduction

1. A Convolutional Bidirectional LSTM model processing tweets at the character-level,
representing these as one-hot vectors. This model achieves an F1-score of 0.592.

2. A Bidirectional LSTM model using pre-trained GloVe word embeddings to process
tweets at the word-level. This model achieves an F1-score of 0.604.

3. A feedforward model which processes tweets at the document-level. This model
focuses more on feature engineering, for which it is developed using more tradi-
tional NLP methods and Bag of Words is used as tweet representation. This model
achieves an F1-score of 0.585.

4. Several ensemble models, using aggregation functions, to combine the three sep-
arately trained sub-models for collaborative predictions. The best ensemble model
is the result of combining the character-level and word-level models, producing an
F1-score of 0.613.

The results produced by these models provide a clear indication of how models based on
expensive feature engineering prove inferior to well-constructed models that implicitly
learn representations. Our experiments show that well-defined representations of text
allow for better learning of gender-specific features, by ANNs, as opposed to manually
handpicking features. With ANNs, interpretation of results is challenging. We provide a
qualitative analysis of the models, showing that the level of confidence the models have
in their predictions is connected to their success rate.

The code to our implementation is publicly available at: https://github.com/perchrib/
masters_thesis

1.5. Thesis Structure
Chapter 2 presents and explains the basic concepts of the machine learning methods
that are used in our research, or in reviewed literature related to our work.

Chapter 3 introduces various methods and concepts used in Natural Language Pro-
cessing to represent text, such as Bag of Words (BoW) and word embeddings.

Chapter 4 provides a broad overview of the development in gender-based linguistic
studies, in addition to the state-of-the-art methods for author profiling based on PAN
Shared Task submissions.

Chapter 5 presents the datasets of tweets used to train and evaluate the classifica-
tion models. This is followed by an analysis of the training set, which provides the basis
for several architectural decisions.

Chapter 6 describes the architectures of the gender classification systems developed.

4

https://github.com/perchrib/masters_thesis
https://github.com/perchrib/masters_thesis

1.5. Thesis Structure

Chapter 7 describes the experiments conducted to build and evaluate the systems,
and the corresponding results.

As a conclusion to the thesis, Chapter 8 will address the research questions with an
evaluation and discussion of the profiling systems, along with potential future work.

5

2. Machine Learning Methods
This chapter and the next cover relevant theory, within the scope of this project, in the
fields of machine learning and Natural Language Processing (NLP), respectively. This
serves as an introduction to terminology and methods that are used in our research
and in the reviewed literature related to our work. In most of today’s work on text
classification, some form of machine learning algorithm is used. While Section 4.2 will
discuss the state-of-the-art techniques, this chapter will describe the basic concepts of
the most commonly used supervised learning methods. The topic of deep learning has
been given a separate section as a result of a more elaborate review.

2.1. Logistic Regression

Logistic Regression (LR) is practically a single layer neural network (described in Sec-
tion 2.5.2) with only one neuron, in addition to the input layer. Despite the name, the
method is used for linear binary classification rather than regression. The model takes
a vector x with dimension size n as input. The number of dimensions corresponds to
the number of features in x. Given the input features xi ∈ x where i ∈ 1, ..., n, Logistic
Regression defines a mapping to y = f(xn;wn), which the model learns by updating
the weights wi ∈ w where i ∈ 0, ..., n. This is done iteratively to find the optimal values
for the weights in w. The search for optimal values is done by minimizing a maximum-
likelihood loss function, defined as the negative log-likelihood, to find the model’s error
using gradient descent. Logistic Regression uses the sigmoid function σ(z) (also called
the logistic function), shown in Equation (2.1), as activation function. The sigmoid func-
tion holds the property that for any given value z in R, the output is in the interval [0, 1].
The output value represents the model’s classification confidence in binary classification,
where a value closer to 0.0 indicates the first class, while a value closer to 1.0 indicates
the other class.

σ(z) = 1
1 + e−z

(2.1)

Figure 2.1 displays how the model works, in accordance with Equation (2.2). The model
takes a feature vector x and does element-wise multiplication with the weights w, before
the weights are updated with respect to the error of the output. w0 is a special value
called the bias and is multiplied with a fixed constant x0, which is set equal to 1.0 in
the feature vector x. The interpretation of the weights and bias is further discussed in
Section 2.5.2 about ANNs. In the case of binary classification, the error is calculated
with a loss function, which measures the difference between the correct label y = {0, 1}

7

2. Machine Learning Methods

and the predicted output label ŷ = [0, 1]. For multiclass classification, a generalized
version of Logistic Regression exists, called Multinomial Logistic Regression.

y = f(xn;wn) = σ
(
wTx

)
= σ

(N∑
i

wixi

)
(2.2)

Figure 2.1.: Logistic Regression architecture.

2.2. Support Vector Machines
The Support Vector Machine (SVM) is a widely used algorithm for classification prob-
lems, as will be shown in Section 4.2 about state-of-the-art. It has undergone multiple
methodological iterations, but the currently used standard is the one presented by Cortes
and Vapnik in 1995. The SVM is a binary linear classifier which, given a spatial repres-
entation of the training data, will construct a model that maps new data onto the same
space for classification. The algorithm tries to find the optimal hyperplane to divide the
data of two classes. A hyperplane is a subspace of one dimension less than the ambient
space. Figure 2.2 illustrates this in a two dimensional setting. The points closest to the
hyperplane are called the support vectors. The space between the hyperplane and either
support vector is known as the margin. When classifying new data, they will be mapped
to this space and end up on either side of the hyperplane. There are multiple possible
hyperplanes that can divide the training set, but not all of them will generalize well to
new data. An optimal hyperplane will be as far away as possible from all data points,
while still correctly dividing the data. This is because of the increasing probability of
misclassification if the hyperplane is close to data points of either class. A slack variable
is tuned to balance bias and variance. With small slack values, the margin can be larger
and allow for errors when fitting the training data. This could result in a better gen-
eralized model and solve slightly non-linear problems. Many problems are, in fact, not

8

2.2. Support Vector Machines

linearly separable, as exemplified by the XOR function illustrated in Figure 2.3. To deal
with this, the SVM can be kernelized, which means that the original data is projected
to a space of higher dimension, where it becomes linearly separable. The SVM is thus
trained on the data in the higher dimensional space.

Figure 2.2.: SVM example. Data points of a two dimensional classification problem,
separated by a hyperplane.

Figure 2.3.: The XOR function exemplifies a non-linear function.

9

2. Machine Learning Methods

2.3. Naïve Bayes Classifier
Naïve Bayes is a family of probabilistic classifiers based on Bayes Theorem, which states
the probability of an event based on prior knowledge. There are different varieties of
Naïve Bayes classifiers, but they are all based on the assumption of conditional inde-
pendence between features. In practice, this means that the classification contribution
of a feature is the same regardless of prior knowledge of other features. This could be
considered a drawback of the algorithm, as one can usually assume that text features
rarely are completely independent of each other. Nevertheless, the Naïve Bayes classifier
has proven itself for practical application.

Assume that a document D is represented as vector of features F = (f1, ..., fn). The
probability that the document belongs to a particular class Cj is given by Equation (2.3).

P (Cj | D) = P (Cj | F) = P (Cj)P (F | Cj)
P (F) (2.3)

Since the values of F are given at the time of classification, P (F) is constant and can
be disregarded. Normally, the chain rule would have to be applied to compute the
probability of a feature fi, given the other features (fi+1, ...fn) and class C. However,
because of conditional independence between features, given a class C, the probability
of a feature is simplified, as shown in Equation (2.4).

P (fi | fi+1, ..., fn, Cj) = P (fi | Cj) (2.4)

Thus Equation (2.3) can be transformed to Equation (2.5)

P (Cj | f1, ...fn) = P (Cj)
n∏

i=1
P (fi | Cj) (2.5)

Naive Bayes uses this probability model, along with the maximum a posteriori decision
rule, which constitutes a likelihood function that chooses the option that maximises the
probability. The actual Naive Bayes classifier is thus described by Equation (2.6). The
classification y is decided by maximising the product of conditional probabilities.

y = argmax
k

P (Cj)
n∏

i=1
P (fi | Cj) (2.6)

2.4. Random Forests
Random Forests (Breiman, 2001) is an ensemble learning method, which means that
multiple algorithms or model instances, each of which is considered a weak learner, are
combined to construct a strong learner and obtain better classification accuracies. As
the main idea with Random Forests (RF) is to utilize multiple decision trees, it is helpful
with a short review of how these work. A decision tree is a model which predicts the

10

2.4. Random Forests

Figure 2.4.: Decision tree for whether or not to go on a ski trip based on weather
conditions.

target class based on a number of input attributes. Each interior node corresponds to
an attribute, while the leaf nodes can take on the values of possible classification cat-
egories. The edges of the tree cover the possible values for each attribute, thus leading
to a prediction. This forms a conditional rule-based construct. An imperative part of
creating a decision tree is the choice of attributes and the order in which they appear
in the tree. Preferably, the number of attributes used to construct the tree should be
minimal. The primary idea is to iteratively pick an attribute with a preference for the
one which is able to partition the input samples the best way possible with respect to
the classification categories. To choose the best attribute, metrics such as Gini Impurity
or Information Gain (entropy) can be used. The details of these methods will not be
covered here, but simply put they provide a measure for what can be considered the best
possible split, conditioned by attributes that have already been picked along the current
branch of the tree. Figure 2.4 illustrates how a decision tree may look like. This part-
icular tree is for deciding whether or not to go on a ski trip, based on weather conditions.

Traditional decision trees are deterministic and are particularly prone to overfitting
as they can learn irregular patterns when based on a large feature set. The Random
Forest method uses the mode of multiple decision trees to reduce the resulting variance
to combat overfitting. Random Forests use an ensemble algorithm called bootstrap ag-
gregation (Breiman, 1996), or bagging, to construct the different decision trees. With
this method, each decision tree is constructed from a randomly sampled subset of the

11

2. Machine Learning Methods

training data and each tree gets a vote which contributes to the prediction produced by
the Random Forest. In the context of ensemble methods, the decision trees represent
the weak learners, and the Random Forest constitutes the strong learner.

2.5. Deep Learning
This section is divided into several subsections as a result of its key position in this
project and the level of depth it will be described in compared to other machine learning
methods. Following is a brief historical review and a description of the deep learn-
ing concept, before the rest of the section describes different types of Artifical Neural
Network (ANN) models that are relevant to this project.

2.5.1. Historical Review and Definition

As pointed out by Deng et al. (2014), there are numerous overlapping definitions of deep
learning. Based on these definitions, it can be broadly described as a sub-field of machine
learning, which utilizes multiple layers of non-linear information processing techniques
to learn complex relationships between data and create high-level abstract representa-
tions of these. These days, however, as stated by artificial intelligence researcher Michael
Jordan of UC Berkeley (Gomes, 2014), the term is very commonly used as a rebranding
of ANNs in general.

From a historical perspective, the meaning of deep learning has seemingly changed
along with the development of ANNs through the decades. Goodfellow et al. (2016)
identified three waves of deep learning development. From the 1940s to 1960s, deep
learning was related to cybernetics and the initial development of linear models in the
early days of ANNs, e.g., the single-layered perceptron described in Section 2.5.2. The
discoveries of Minsky and Papert (1969), concerning the perceptron’s inability to solve
non-linear problems, led to a temporary stagnation of the development in the field. The
research during the 1980s–1990s related deep learning to increased focus on connection-
ism. Primarily, this concept suggested that a large number of computational units could
solve more complex problems when connected together to form a network. Other im-
portant concepts that arose during this time period was the backpropagation algorithm,
briefly described in Section 2.5.2, and distributed representations of input data, i.e.,
input should be represented by many different features which in turn are present in a
large number of possible inputs. In the modern sense, these characteristics describe an
ANN in a nutshell. Simply put, it is a layered network of neurons, which is trained to
approximate a classification function by being fed labeled input data for a large number
of iterations. The different neurons recognize different features of the input and activate
accordingly to contribute to the classification. Largely due to the high computational
cost of ANNs, the level of difficulty for training them, and the advent of other simple
and efficient classifiers, such as the Support Vector Machine, researchers of the field were
yet again discouraged.

12

2.5. Deep Learning

The third wave of deep learning is the one we are currently experiencing. As stated
by Goodfellow et al. (2016), this renewed appreciation of ANNs began as Geoffrey Hin-
ton published his work on an alternative form of neural network, called Deep Belief
Networks (Hinton et al., 2006), showing that they could be efficiently trained using a
certain approach. However, this topic is outside the scope of this review. Another im-
portant catalyzer of the deep learning development in the most recent decade has been
due to larger and faster computational hardware, enabling more complex network struc-
tures, in addition to the utilization of GPUs to drastically increase the speed of ANN
training when compared to using CPUs. After its resurgence, deep learning has proven
itself as a viable approach in various fields, e.g., speech recognition, image recognition
and Natural Language Processing, which is a primary focus point of this project.

This subsection concludes with a short discussion about the brain analogy often used to
explain ANNs, based on aspects put forth by Goodfellow et al. (2016). While the earliest
work within the field may have tried to model the information processing capabilities of
the human brain, which consists of a network of neurons, it may be more correct to say
that the human brain serves as an inspiration for deep learning research. The current
lack of rigorous understanding of how the brain functions does not justify stating that
deep learning models are supposed to simulate the inner workings of the brain.

2.5.2. Feedforward Neural Networks
The feedforward network was the first type of neural network developed. To develop a
sense of basic understanding and intuition for ANNs, this subsection will be slightly more
technically descriptive than the remaining sections of other network types. Depending on
the architecture, the feedforward network can be of varying complexity. In its most basic
form, it is known as a perceptron and was formally introduced by Rosenblatt (1961). The
perceptron was the first ANN model that could learn a classification function given input
samples from each classification category. The perceptron consists of one neuron, which
can take several input values and output a single binary output value, corresponding to
the classification, based on Equation (2.7).

y =
{

1, ∑
wixi + b > 0

0, ∑
wixi + b ≤ 0

(2.7)

The input is multiplied with the weights and a bias is added. If the result is above the
value of 0, the perceptron activates, or “fires”, and outputs a 1. Otherwise, it outputs a
0. One can say that, the activation function of a perceptron corresponds to the use of a
Heaviside step function. In practical terms, the weights can be viewed as the importance
of each input value, while the bias is a measure of how easy it is for the perceptron to
“fire”, because larger values increase the chance of activating the perceptron. The weights
and bias are learned parameters, which are intizialized to some value at the beginning
of training. When passing through training samples, these parameters are updated to

13

2. Machine Learning Methods

improve the corresponding output. Optimally, a small change in the parameters should
result in a small change in the output because then one can gradually close in on the
optimal values. Only outputting binary values makes this difficult because a small change
in parameters could result in large changes in the behaviour of the network as a whole.
For example, the network could improve at recognizing class 1, but become a lot worse
at recognizing class 2. Thus, it is more common to use sigmoidal neurons, in the final
output, to get smooth output values that can be gradually adjusted by making small
changes to the weights and bias. By sigmoidal, we refer the use of a sigmoidal activation
function, i.e., a function with a characteristic S-shaped curve as illustrated in Figure 2.5.
The term sigmoid function is often used to refer to a special case of the logistic function,
as shown in Equation (2.1), but there are other functions, such as tanh and softmax, that
have S-shaped curves and can be characterized sigmoid as well. To avoid this confusion,
we use the term “sigmoidal” when referring to functions with S-shaped curves in general,
and “sigmoid” when addressing the logistic function. The output of a sigmoidal neuron

Figure 2.5.: The logistic function is a sigmoidal function.

is shown in Equation (2.8), where σ corresponds to the use of a sigmoidal function.

y = σ(
∑

wixi + b) (2.8)

As previously mentioned, the limitations of the perceptron were brought to light by
Minsky and Papert (1969), who showed that a single perceptron was incapable of learn-
ing non-linearly separable functions, such as XOR. This changed with the development
of the backpropagation algorithm (Werbos, 1974), which resulted in the possibility of
training Multilayer Perceptrons (MLPs). Such networks contain multiple layers of sev-
eral perceptrons, or sigmoidal neurons, where each layer of neurons is fully connected
to the next layer of neurons. The general construction is as shown in Figure 2.6, with
one or more so-called hidden layers between the input layer and the output layer. This
allowed for solving the more complex non-linear problems. To update learned weights

14

2.5. Deep Learning

and bias, the single-layer perceptron uses the delta rule, a gradient descent based learn-
ing rule. Simply put, it computes the update value based on the amount of error, also
known as loss, between the desired output and the perceptron’s actual output. The back-
propagation algorithm is a generalization of this rule, enabling weight and bias updates
of multiple layers of neurons. After a training sample has been passed through each
layer of the network, the amount of error for each output neuron is computed according
to a loss function. The error values are then propagated backwards to each neuron in
the network. More specifically, the backpropagation algorithm uses gradient descent,
or a variant of gradient descent, which functions as an optimizer to compute the par-
tial derivatives of the loss with respect to each weight and bias parameter. Nowadays,
optimizers are based on Stochastic Gradient Descent (SGD). We defer the explanation
of SGD to Goodfellow et al. (2016, p. 286). Furthermore, this allows each neuron to
gradually correct their weight and bias parameters according to the amount of error
imposed. The appropriate loss function depends on the type of activation used in the
output layer. For categorical classification, it is usual to use the sigmoid function or
the softmax function, when the problem is no longer binary, i.e., there more than two
classification categories. The softmax is another special case of the logistic function.
The number of output neurons equals to the number of classification categories, and the
output values form a probability distribution over the categories.

Figure 2.6.: A Multilayer Perceptron with one hidden layer. The two output neurons
correspond to the number of classification classes.

The MLP is what one commonly refers to when using the term feedforward network,
even though any neural network which is not recurrent (described in Section 2.5.3), can
be denoted as a feedforward network. The common characteristic is that the data flows

15

2. Machine Learning Methods

in one direction, from the input neurons towards the output neurons.

2.5.3. Recurrent Neural Networks
Recurrent Neural Networks (RNNs) hold the properties of regular feedforward networks,
in addition to allowing cyclical connections. While feedforward networks assume inde-
pendence between the input values, RNNs are designed to process sequential information
as they possess a memory of previous calculations in the networks’ internal state. The
output is thus produced by considering the input values as dependent of each other
(Graves, 2012). This is especially useful in NLP where the order of words in a text
sequence has a direct impact on the semantics of the text as a whole. For example,
when creating a text generator by learning to predict the next word in a text sequence,
a memory of previous words is of considerable value.

Figure 2.7 shows an example of an RNN with three input units and two hidden units.
The cyclical connections in the hidden layer represent the recurrent property of the net-
work in form of memory, as the calculations at each time step are sent to the next time
step. If the network is used to process a sequence of words, each time step would corres-
pond to performing the same operations on each word in the sequence, with information
about previous words kept in memory.

Figure 2.8 illustrates more closely how to think of the cyclical connections of an RNN as
the network is unfolded over time. Each recurrent neuron represents a layer of units in
itself. Equation (2.9) illustrates how the hidden state h(t) at each time step is dependent
on the previous state h(t−1) and the current input x. The hidden state corresponds to
the network’s memory. θ represents the parameters that are being learned to produce
the best output.

Figure 2.7.: A simple RNN network with two recurrent hidden neurons.

16

2.5. Deep Learning

Figure 2.8.: Recurrent network unfolded over time. Image used with permission by
Goodfellow et al. (2016).

h(t) = f(h(t−1),x(t);θ) (2.9)

Unlike in feedforward networks, the loss in RNNs depends on the outputs from the hidden
neurons to themselves in the next time step, in addition to the regular forward-moving
outputs. Therefore, a modified version of the backpropagation algorithm, called Back-
propagation Through Time (BPTT) (Werbos, 1990), is used to accommodate this detail.

As a means for accessing future information to add more contextual value, and to avoid
the short-coming of the RNN with regard to assigning too much weight to the inputs last
in the sequence, Bidirectional Recurrent Neural Networks (BRNNs) were introduced by
Schuster and Paliwal (1997). The general concept consists of feeding the training samples
to a pair of separate hidden layers. One layer processes the sequences in a regular fash-
ion, while the other layer is fed each sequence in reverse order. These are then connected
to the same output layer, yielding information about past and future sequence values at
each time step. This process is illustrated in Figure 2.9.

Figure 2.9.: An unfolded BRNN over three time steps.

17

2. Machine Learning Methods

2.5.4. Long Short-Term Memory Networks

A weakness of the RNNs, described in Section 2.5.3, is that they have difficulties with
handling dependencies when the number of layers and time steps increase, i.e., as the
length of text sequences increases (Bengio et al., 1994). In such cases, signals from
textual terms decay over time. The so-called vanishing gradient problem was formally
identified in 1991 as a negative effect on the gradient updates when many small-valued
numbers are multiplied together, exponentially decreasing the values as they are passed
to the front of the network (Hochreiter, 1991). This results in slow training of certain
parts of the network, typically those closest to the input layers. To handle this, the Long
Short-Term Memory (LSTM) was introduced by Hochreiter and Schmidhuber (1997).
The LSTM is an improvement of the regular RNN as it is more capable of learning
long-term dependencies. Practically speaking, this makes the LSTM useful for cases
where there is a great distance between words in a text that are contextually related.
Related to the vanishing gradient is the exploding gradient, which occurs as numbers
of large magnitudes are multiplied together to exponentially increase the gradients, as
the name implies. The LSTM architecture is composed of special units called memory

Figure 2.10.: Diagram of LSTM memory block with one cell, illustrating how the gates
are connected to the input, output and the memory cell. The dashed lines
represent “peepholes”. The final output from the block is the output from
the memory cell multiplied with the output gate.

18

2.5. Deep Learning

blocks instead of the regular RNN neurons. These blocks contain one or more memory
cells, in addition to three multiplicative gates: an input gate, a forget gate and an out-
put gate as shown in Figure 2.10. The memory block uses these units to store temporal
states of the network. The multiplicative gates can be either open or closed and are
used to control the flow of information through the memory cells. They allow the cells
to store and access information over long periods of time. An important feature of the
LSTM is that there are no activation functions used on the recurrent aspect of the cells,
thereby countering the vanishing gradient phenomena because the values are not iter-
atively squashed. If the input gate remains closed, the activation of the cell will not be
overwritten by any new input and will thus be available for a longer time period. The
forget gate effectively controls which input should be stored for later access or forgotten.
With regards to a more detailed discussion of RNNs and LSTMs we recommend Graves
(2012).

There exist multiple variants of the LSTM, which have been introduced over the years.
With each performance increasing model, the LSTM standard has been updated as well.
For example, the forget gate was not initially present in the original model. Early on,
peephole connections from the the gates to the memory cells were introduced as well,
allowing the gates to inspect the cell states (Gers and Schmidhuber, 2000). Quite re-
cently, Gated Recurrent Units (GRUs) were introduced by Cho et al. (2014), essentially
merging the input gate and forget gate to a single update gate. The purpose was to
produce similar results in a more efficient manner.

2.5.5. Convolutional Neural Networks
The Convolutional Neural Network (CNN) (Le Cun et al., 1989) is a type of feedforward
neural network which differs from the traditional variant structurally and computation-
ally. Traditional feedforward networks, with their fully connected layers, are prone to
the curse of dimensionality and scale poorly for higher dimensional problems, e.g., high
resolution images. Thus, as the number of connections and parameters increase in deep
neural networks, they tend to have issues with overfitting and decreased ability to gen-
eralize (Siriwardhana, 2016). In addition, the fully connected nature of the layers results
in many wasteful connections, which is expensive. The CNN overcomes many of these
issues. It is biologically inspired by how the visual cortex of animals are organized and
how they respond to stimuli in overlapping areas of the visual field, known as receptive
fields. Therefore, CNNs are viable for computer vision and image processing by design.
While the RNN makes more intuitive sense for NLP, the literature displays competitive
results with CNNs. What follows is a brief explanation of how CNNs work on images,
before explaining how it can be used for NLP.

Convolutional Neural Networks for images use the pixel intensities of the images as
input. The neurons of the hidden layer are connected to regions of the image, as shown
in Figure 2.11 where each hidden neuron is connected to a 5x5 pixel region of the im-
age. These regions correspond to local receptive fields, as mentioned earlier, and are

19

2. Machine Learning Methods

Figure 2.11.: Illustration of how a CNN convolves a region of of input values to a single
value. Image from Nielsen (2015). Used under the Creative Commons -
Attribution-NonCommercial 3.0 Unported Licence.

commonly called filters. The second image in Figure 2.11 shows how the second neuron
is connected to a slightly different region of the image by sliding the receptive field one
pixel to the right. The mapping from the input layer to the hidden layer is often called a
feature map. In contrast to the traditional feedforward network, the entire hidden layer
of neurons has shared parameters, which results in each hidden neuron learning the same
feature, e.g., an edge in different parts of the image. Thus, CNNs are invariant to the
location of features. This is quite useful for, e.g., classification tasks where we do not
care where in the image an object is located, but only its actual presence. By using more
filters, other simple features can be learned and later hidden layers can build on simple
features from previous layers to learn more complex shapes and objects. To be able
to summarize the most important features, it is also common to use a form of pooling
layer after the convolution layer. Max-pooling is commonly used and entails selecting
the highest values from the convolution. The number of selected values depends on the
specified pooling size.

20

2.5. Deep Learning

When the input is text instead of image pixels, the representation and structure of
the convolutional turns out to be a bit different. Instead of having a receptive field
sliding over pixel intensities, we now have words or characters instead, i.e., some form of
textual tokens. Typically, the text is represented as a matrix where each row is a token,
represented as a vector, and the number of columns is defined by the dimensionality of
the token vectors. This vector can be a word embedding produced by, e.g., word2vec,
which will be presented in Section 3.5.2, or a one-hot vector. In one-hot representations
the size of the vectors equals the size of the vocabulary and only one element has the
value of one, while the others are zero. Each index of the vector representation corres-
ponds to a word or character, depending on the granularity, in the vocabulary. Thus the
representation satisfies the condition of uniquely representing each token in the vocab-
ulary. This ensures spatial representations of text, which CNNs can process.

Figure 2.12 illustrates how a CNN can interpret the sentence “I like this movie very
much!”. Each row in the left-most matrix corresponds to the vector representation for
each word. The next set of matrices represent filters, with different number of rows. The
size defines how many tokens are in the receptive field, i.e., how many words to consider
when identifying patterns. In the figure, filters of size 2, 3 and 4 are used. Thereafter,
feature maps are developed using the filters, before the 1-max pooling layer uses the
highest value of each feature map to summarize the most important features. Pooling
serves multiple purposes. It is a way of summarizing a set of values and thus reducing
dimensionality and at the same time it offers a generalizing effect. A vector produced
by concatenating the pooled values can represent the sentence as a feature vector. The
last step in a neural network heavily depends on the application and what sort of output
is desired. As previously mentioned, softmax activation is commonly used for classific-
ation problems, because a probability distribution over the classification classes can be
developed. This is exemplified in the figure as the last step, where softmax is used as
activation, with the feature vector as input.

21

2. Machine Learning Methods

Figure 2.12.: Convolutional neural network for NLP. Image used with permission by
Zhang and Wallace (2015).

22

2.5. Deep Learning

2.5.6. Autoencoder
An autoencoder is an Artifical Neural Network that is trained to copy its input to its
output. This makes the autoenoder a unsupervised learner since it uses the correct out-
put is the input itself. Autoencoders have been in the field of deep learning for decades
and was first introduced by LeCun in 1987. The network contains two parts: an encoder
and a decoder. The encoder processes the input vector x, using a function f , resulting
in f(x) = h, where h is represented in a lower dimension than the input vector x. The
decoder attempts to reconstruct the original representation from the encoded represent-
ation, using a function g, such that g(h) = r . If x = r, it means that the autoencoder
is able to perfectly reconstruct the input from the produced encoding, though this is
not considered especially useful (Goodfellow et al., 2016, p.494). Autoencoders are de-
signed to produce incomplete copies, thus forcing them to focus on extracting the most
important features and learn useful properties of the data. This quality makes them
suitable for dimensionality reduction and feature learning, but recently they have been
useful in generative models as well (Goodfellow et al., 2016, p.494). Usually, we are only
interested in the encoder for further use, and the decoder is typically discarded.

Figure 2.13 shows an example of how an autoencoder can be structured. It illustrates
an autoencoder with two hidden layers, in addition to the hidden layer representing the
encoding. It can also be constructed with only the encoding layer, with no additional
hidden layers. The output represents the decoding.

Figure 2.13.: Illustration of how an autoencoder can be structured. The deep autoen-
coder model contains two hidden layers, in addition the encoding layer.
The output layer represents the decoding.

23

3. Text Representation
To process text for various purposes, the text needs to be represented in a way that is
computationally feasible and interpretable. This chapter covers methods used in Natural
Language Processing for this very purpose. The first part of the chapter covers language
processing concepts, such as n-grams and part-of-speech tagging, in addition to statistical
methods, such as a Term Frequency-Inverse Document Frequency (TF-IDF) and Bag of
Words. Thereafter, a review of the neural language model development of the last decade
is provided. Often known as vector space models, these are now commonly known as
word embeddings in relation to deep learning. The last section introduces the concept
of stylometric features with regards to author profiling.

3.1. Part-of-Speech Tagging
Part-of-speech (POS) tagging is the process of categorizing words of a document into
a particular part-of-speech, based on the context of adjacent words. The term part-
of-speech is also known as word class or lexical category; these word classes can be,
e.g., ‘nouns’, ‘verbs’, ‘adjectives’ and ‘adverbs’. POS-tagging has several applications
in linguistics, e.g., when translating a sentence from one language to another and the
grammatical structure of the languages differs. POS-tagging may also be used to resolve
word ambiguity where a word may fit into several word classes, unless the context can
be derived from the surrounding words. Besides ambiguities in natural language, the
performance of a POS tagger also depends on how the tagger is trained on a treebank
and what kind of corpus is used. The domain of Twitter poses additional challenges
to POS-tagging since users often express themselves in a imprecise way by using slang
words and abbreviations. Figure 3.1 exemplifies an interesting case where the correct
POS tag is also dependent on the surrounding sentences to provide the context, because
multiple tags may be appropriate, even given the surrounding words of the sentence.
In the sentence “I made her duck”, the word “duck” presents lexical ambiguity as it
can refer to both the animal and the action of literally ducking. In this case, the NLTK
POS-tagger categorizes the word as “NN”, which is the abbreviation for a singular noun,
but it could also have been correctly tagged as a verb.

3.2. N-grams
In Natural Language Processing, an n-gram is a consecutive sequence of words (word
n-gram) or characters (character n-gram) with a length n, called the window size. When

25

3. Text Representation

(a) (b)

Figure 3.1.: Two different parse tree structures for the same sentence, exemplifying lex-
ical ambiguity. The POS-tags are in blue, while the words from the sentence
are in green.

n = 1, it is called a unigram, which only contains single terms. Similarly, it is called a
bigram when n = 2 and a trigram with n = 3. The principle is the same for n > 1, with
the n-gram containing n co-occurring elements of a text. N-grams have multiple usages,
including spell checking, word breaking and text summarization. In text classification,
it has proven to be a viable part of feature extraction, as we will see in Section 4.2.2.
Figure 3.2 shows the final feature vectors where each element in each vector represents
how many times a word occurs in the specific sentence. The vector indices correspond
to a key in the vocabulary shown in Table 3.1 where keys are mapped to every unique
word in the total amount of sentences. It is worth mentioning that the Bag of Words
model does not consider the order of how words are structured in a sentence, but rather
treat all words or tokens as a set of elements.

3.3. Term Frequency-Inverse Document Frequency
Term Frequency-Inverse Document Frequency (TF-IDF) is a method, or perhaps more
accurately a metric, which is used for measuring the importance of a term in a document
and assigns a weight to the term with respect to the document. This has served Inform-
ation Retrieval applications such as ranking documents given a query of keywords, but
the method has also found its way to text classification.

A term can be any token, such as a word or an n-gram. The higher the value of the
weight, the more important is the term with respect to the document. Equation (3.1)
shows how TF-IDF is calculated for a term t in a document d. TF-IDF combines the
term frequency with the inverse document frequency, which is a measure of how much
information the term actually provides with respect to how common the term is across
all documents.

26

3.4. Bag of Words

TF -IDF (t, d) = TF (t, d)× IDF (t, d) (3.1)

IDF (t, d) = log Nd

1 +DF (d, t) (3.2)

The term frequency TF (t, d) is, as the name implies, the number of times the term
occurs in the document, while the inverse document frequency IDF (t, d) is calculated
as shown in Equation (3.2). Nd is the total number of documents and DF (d, t) is the
number of documents d containing term t. Essentially, TF-IDF assigns higher values
to terms that occur many times within a small number of documents, discriminating
these documents from the rest given these identifying terms. A term is assigned a
lower value when it occurs few times in a document or if it occurs a large number of
times across all documents. In these cases, the term has no discriminating value for
extracting important information about any document. In fact, the inverse document
frequency was introduced to counter the effect of assigning very common terms high
importance (Spärck Jones, 1972). Stopwords, such as “a”, “the” and “was” serve as
common examples.

3.4. Bag of Words
Bag of Words (BoW) is a model for representing text or documents as numerical feature
vectors. The main part of creating a feature vector using the BoW model is to:

• Create a vocabulary of unique tokens.

• Create a feature vector for every document or text and count the number of times
each word occurs in the given text.

To illustrate how the bag of words model works, consider these three sentences:

1. Swimming is very refreshing

2. Ice tea tastes very very good

3. After swimming, ice tea is refreshing

A vocabulary from these sentences is illustrated in Table 3.1, which stores all different
words with unique keys.

1 =
[
0 0 0 1 1 1 0 0 1

]
2 =

[
0 1 1 0 0 0 1 1 2

]
3 =

[
1 0 1 1 1 1 0 1 0

]
Figure 3.2.: Sentence 1, 2, 3 as feature vectors.

27

3. Text Representation

Key Word
0 after
1 good
2 ice
3 is
4 refreshing
5 swimming
6 tastes
7 tea
8 very

Table 3.1.: Bag of words vocabulary.

3.5. Word Embeddings
In 1957, the British linguist John Rupert Firth famously coined the saying “you shall
know a word by the company it keeps”, referring to how the semantics of a word depends
on its context. This is relevant for the topic of word embeddings as it describes the
concept in a nutshell. Word embeddings revolve around mapping linguistic terms from
a space with an infeasible high dimension, as with one-hot vectors, to a continuous
vector space with much lower dimension. Thereafter, the embeddings can be used for
other tasks, such as classification problems. This research area falls under the general
area of distributional semantics, which is based on the notion of the Distributional
Hypothesis (Harris, 1954), stating that that linguistic terms with similar distributions
in text have similar meanings. This section will give a short historical introduction to
word embeddings, before describing a few of the leading embedding methods.

3.5.1. A Historical Review of Word Embeddings

Studies within distributional semantics have been ongoing since the end of the 1980s
with Latent Semantic Analysis (LSA) (Deerwester et al., 1990). While this approach
mainly focused on document level representation, the new wave of distributed linguistic
representations in the 2000s presented studies of word-level representations. This started
off with Bengio et al. (2003), who coined the term “word embedding” as they used a feed-
forward network (see Section 2.5.2) to learn distributed low-dimensional representations
of words. With the addition of faster computers, the quality of word embedding research
improved as well. An issue with the previously mentioned work was the computational
complexity of the softmax function (see Section 2.5.2), which requires one neuron, in
the output layer, per word in the vocabulary. This poses an issue when the vocabulary
size is large. Collobert and Weston (2008) improved upon the work of Bengio et al.
by avoiding the use of the expensive softmax function and rather using an alternative
loss function. This work produced promising results with properties characterizing word
embeddings today, e.g., semantically and syntactically similar words occurring close to

28

3.5. Word Embeddings

each other in vector space. However, word embeddings did not gain serious traction
before Mikolov et al. (2013a) introduced word2vec.

3.5.2. Word2vec
Word2vec (Mikolov et al., 2013a) is an unsupervised word embedding technique which
builds on previous work mentioned in Section 3.5.1, using feedforward networks (see
Section 2.5.2) to train word embeddings. The following description will serve as a way
to build intuition about the process, rather than going into the overly technical details.
Mikolov et al. (2013a) further lowered the computational cost of word embedding train-
ing, compared to Collobert and Weston (2008), by removing the non-linear hidden layer
altogether, replacing it with a linear projection layer, though some literature often refer
to this layer as a hidden layer. Thus, this method, which has proven to be quite effective,
is surprisingly shallow, i.e., not a deep neural network with many non-linear layers. It
is also window-based, which will be illustrated momentarily. The original paper pro-
posed two different, but related, architectures for training word embeddings. Both are
illustrated in Figure 3.3.

• Continuous Bag-of-Words (CBOW): Based on the context words, i.e., the sur-
rounding words within a specified window-length, the current word is predicted.
The window-length specifies the number of words to consider before and after the
current word. The model is named after the Bag of Words model (see Section 3.4)
because it does not care about the order of the words; only its presence within the
window-length. It is continuous as the vector consists of continuous real values.

• Continuous Skip-gram: Similar to CBOW, but given the current word, the sur-
rounding context words, within a specified window-length, are predicted.

(a) CBOW (b) Skip-gram

Figure 3.3.: Architecture of CBOW and the Skip-gram model. Figure used with permis-
sion by Mikolov et al. (2013a).

29

3. Text Representation

Figure 3.4.: The word2vec Skip-gram model. The number of neurons in the input layer
is equal to the number of words in the vocabulary. It is is represented as
a one-hot vector in this figure. The number of neurons in the linear layer
corresponds to the desired number of features in the words embeddings. The
output layer consists of probabilities for each word in the vocabulary, in the
context of the current word.

For the sake of brevity, and because the models are similar, only the Skip-gram variant
is considered in the rest of the description of word2vec. Essentially, the model consists of
an input layer, one linear layer and an output layer, all of which are fully connected. The
input layer takes a word as input, in the form of a one-hot encoding. Thus, the input is
the same size as the number of words in the vocabulary. This is illustrated in Figure 3.4.
The output layer uses the softmax activation function and consists of a neuron for each
word in the vocabulary as well, representing the probabilities of these words occurring in
the context of the current word. Even though the network is trained to predict context
words, the output layer is disregarded at the end of training. The word embeddings are
then extracted by retrieving the learned weights of the linear layer. This layer consists of
an n×m weight matrix, where n corresponds to the number of words in the vocabulary
and m is the number of neurons in the linear layer. The number of neurons in the linear
layer corresponds to the dimensions of the word embeddings, which practically means
the number of features in the embeddings. Typically, the dimension size is tuned for the
desired complexity and results. Since one-hot vectors are used as input, each word has
its own corresponding column in the weight matrix of the linear layer, representing the
word embedding. This is a result of all but one value being zero in the input and the
resulting multiplications with zero in the linear layer.

30

3.5. Word Embeddings

Figure 3.5.: Word2vec embeddings of different countries and capitals in vector space.
This illustrates how semantically and syntactically similar words are as-
signed similar embeddings. Figure used with permission by Mikolov et al.
(2013b).

As described, word2vec explicitly trains the network to recognize the context of words,
which results in the impregnation of syntactic and semantic information in the embed-
dings. Since similar words are assigned similar probabilities of contextual words, their
word embedding vectors will also be similar. This is reflected in vector space, where
similar words will be located close to each other, as illustrated in Figure 3.5. An issue
with the “vanilla version” of word2vec described in this section is that it is still com-
putationally expensive, with the fully connected layers, if the vocabulary is large. This
results in a large number of weight parameters. To handle this, Mikolov et al. (2013b)
followed up with improvements not long after the original paper, to increase the quality
of the embeddings and the speed of training by the use of subsampling and negative
sampling. However, this will not be covered here.

3.5.3. Global Vectors (GloVe)

Before concluding this section, another embedding method will be briefly described. In-
spired by the development in the vector representation of words, such as the work done
by Mikolov et al. (2013a), GloVe (Pennington et al., 2014) was developed at Stanford.
The motivation was making the properties of the embedding model more explicit by com-

31

3. Text Representation

bining traditional statistical methods used in methods such as Latent Semantic Analysis
(Deerwester et al., 1990), and the more recent approaches exemplified by word2vec.
Specifically, GloVe utilizes the statistical method matrix factorization and the idea of
context windows used in word2vec. Arguing that word2vec does not utilize statistical
information about the document corpus, GloVe makes use of this in the form of global
co-occurrence counts of words. The co-occurence value of a word w1 with respect to
another word w2 is defined as how often w1 appears in the context of w2, within a
specified context window size. The method then proceeds by training on the non-zero
elements of the co-occurrence matrix, in contrast to word2vec where the input consists
of one-hot vectors which are sparse by nature. GloVe has been described as a prominent
method alongside word2vec. Compared to neural network models, such as word2vec,
GloVe exemplifies a method which is more transparent with respect to interpretation,
while still capturing meaningful semantic substructures in the embeddings.

3.6. Stylometric Features
Within the field of authorship studies, stylometry is the statistical analysis of variations
in writing style between authors.1 An example of such style is the frequent use of
emoticons or a particular part-of-speech. Many stylistic aspects are deliberate by the
author, while there may also be subconscious elements in play. By identifying specific
stylometric features of different authors or groups of people, it can be easier to distinguish
between them based on their produced text. This section serves as a basic introductory
passage, briefly touching upon various stylometric features that have been used in the
literature, as summarized in various surveys on authorship analysis techniques (Reddy
et al., 2016; El Bouanani and Kassou, 2014). Some aspects will be further described and
discussed in Section 4.2.2, where the state-of-the-art in feature engineering for author
profiling purposes is described.

3.6.1. Lexical Features
Lexical features are derived from considering a text as a series of sentence producing
tokens, where a token can be a word, punctuation mark or number. The advantage of
lexical features is that they only require a tokenizer and can be applied to any corpus in
any language (El Bouanani and Kassou, 2014). Simply put, the features of this category
revolve around the author’s preferences with regards to words, which are depicted by the
text’s vocabulary. Many typical lexical features are based on simple concepts, e.g., total
number of words, frequency of words, and average length of words. Different features
aid in identifying different linguistic traits of the author. Traits as vocabulary richness
can be measured with features like the number of words only appearing once or the ratio
between the size of the vocabulary and the total number of tokens in the text. However,
the value of measures such as these depends on the length of the text. This is due to
the difficulty in getting a good measure of vocabulary richness if the text is short. Other

1https://en.oxforddictionaries.com/definition/stylometry

32

3.6. Stylometric Features

traits, such as an author’s idiosyncrasy can be measured by various features like spelling
errors (Koppel and Schler, 2003) and the use of slang. The latter has, not surprisingly,
proven to be useful in profiling (Prasath, 2010).

3.6.2. Syntactic Features

As the choice of words are context-dependent with regard to topic, the length of words
tend to vary from one text to another, as do the length of texts in general. Thus, the
lexical features can vary, even in texts by the same author, which can lead to some
unreliability. On the other hand, authors tend to have particular syntactic styles which
reappear in their texts and this can prove to be a more reliable indicator of authorship
than lexical features (Stamatatos, 2009). However, acquiring syntactic features can be
more challenging as they are language-specific and require accurate tools. Function
words have been shown to be useful in representation of syntactic features as they are
used to structure sentences. A simple way of acquiring syntactic information is to use a
part-of-speech tagger and compute frequencies of different types of function words, but
for more useful features it is necessary to study how words are combined to produce
sentences.

3.6.3. Structural Features

The structural composition of texts can provide useful information about the author
as people can have individual preferences with regard to, e.g., paragraph composition.
Examples of features that have been explored in the literature are average length of
sentences, total number of paragraphs, number of sentences per paragraph, and average
length of sentences in terms of characters (Reddy et al., 2016). The intuition behind
using features like these lies in being able to infer if the author’s style consists of complex
or simple sentences and text structure. It has been shown that such features can be used
to discriminate between gender and age groups. The set of possible structural features
is large and, with the substantial growth of text in social media, further exploration has
been done in the use of features such as the number of URLs and HTML tags, and the
number of emoticons. In regards to tweets, domain specific features have been used,
such as the number of hashtags (Giménez et al., 2015) and mentions.

3.6.4. Content Specific Features

The idea behind using content specific features for classifying, e.g., gender is that indi-
viduals of the same gender tend to have similar interests. Thus, features related to the
topic of the text could aid in classification of gender (Reddy et al., 2016). Clearly, this
is a feature that generalizes individuals based on gender, but it may carry factual value.
This also applies to age as people tend to write about different topics in different stages
of life, which is naturally related to age. People in their teens or twenties tend to write
about their life related to school and studies, while people of older age groups, who may
be married and have children, tend to write more about things related to this. One way

33

3. Text Representation

of acquiring such features is to define content specific keywords and study the frequency
of these in text.

3.6.5. Semantic Features
Studies show that various authorship classifications can be improved by using semantic
information combined with other features (Stamatatos, 2009). A common method is
mapping semantically similar words to concepts with basis in the assumption that words
with similar meanings will appear in similar texts. Methods such as LSA (Deerwester
et al., 1990) and word2vec (Mikolov et al., 2013a) are used to construct vector repres-
entations of text, where semantically related words are close in vector space. Word2vec
will be explained further in the next section. Removal of stop words, i.e., words that
contribute little discriminative value, has been a common method to reduce noise. How-
ever, with regard to analysis of tweets, it appears that removing stop words could have
negative effects on the classification accuracy (Saif et al., 2014).

34

4. Related Work
This chapter will present a review of gender-based linguistic research. In addition, a
study of the current state-of-the-art approaches in author profiling will be presented,
with emphasis on gender prediction.

4.1. Studies on Language and Gender
To get a broad overview of the development in gender-based author profiling, this section
will present research from as far back as the 70s and move on till present day. This way
one will get an impression of how the state of society has possibly influenced language and
how some linguistic aspects and observations may have changed over time. This section
will mainly focus on linguistic elements identifying gender and sociolinguistic aspects
connected to them, while leaving out processing methods and classification models for
later sections.

4.1.1. Early Studies
Credited to Wayne Dickerson, the word “genderlect” was coined by Kramer (1974). The
term is a based on the words “gender” and “dialect” and describes the possibility that
men and women may have a particular gender-based style of speech. The relationship
between language and gender has been extensively studied over the years. Most of the
early work focused mostly on spoken language, but based on the observations they could
very well apply to and be useful for analyzing written language as well. Language and
Woman’s Place (Robin Lakoff, 1973) is often regarded as a highly influential publica-
tion, which put attention on how men and women express themselves differently. This
article mainly focused on how inequality between men and women is reflected in their
use of language. Lakoff stated that women experience linguistic discrimination through
the way they are taught to use language and that it is caused by a bias in our culture
against women as rational individuals. Girls are taught to talk like “ladies” from an
early age and are criticized as unfeminine if they express themselves differently. This is
exemplified through the choice of certain word types by men and women. Men tend to
use a limited set of color-words, while women’s vocabulary of colors is more nuanced,
e.g., purple, lavender, mauve. Another example is the use of swear-words. In a situation
where a man might say “shit”, Lakoff claimed that it was more acceptable for a woman
to say something like “oh, dear”. This is viewed as an indication of men being allowed
to express themselves more strongly, while women are restricted to weaker expressions
of feelings, reinforcing men’s position of strength.

35

4. Related Work

On the aspect of syntax, Lakoff asserted that women make more frequent use of hedges,
words used to lessen the impact of an utterance (“kind of”, “it could be that”), and the
closely related phenomena of tag questions, which are questions that consist of a state-
ment with a certain word sequence, the tag, at the end, turning them into questions.
For example, “You’re John” is a normal statement, while “You’re John, aren’t you?” is
a tag question. Lakoff related this to how women are imposed this form of insecurity
during childhood. Additionally, it is noted that women in general are more polite and
make more use of intensifiers, such as “so”, e.g., “That is so sad”. As the publication is
more than 40 years old, the relevance of the particular examples could be questionable,
because they relate to the situation in the US at that time. Additionally, little statistical
evidence is provided for some of the presented points. Lakoff does in fact assert that her
data is mostly collected through introspection and her claims are mostly based on her
own intuition. The takeaway is rather the peculiar dissimilarities that could be present
in modern usage of language by males and females, and that they could be occurring
from an early age.

Haas (1979) provided a literature review of the studies made in the 70s, where many of
Lakoff’s points reappear, e.g., that men are more prone to using indecent language and
women tend to use more intensifying adverbs. Additionally, the difference in preferred
topics is addressed. The study upheld the stereotype that men talk more about topics
such as business, politics, sports, cars and legal matters, while women have a preference
towards social life, family, books, food and lifestyle. Bodine (1975) made an important
remark about specifying language features of each gender. She pointed out that there is
a distinction between gender-exclusive and gender-preferential features, i.e., it is hard to
find features that can exclusively identify gender, because even though some linguistic
styles are exhibited to a greater degree by women, it does not mean that a man saying,
e.g., “Oh my god, that wall is terribly aquamarine” is an impossible occurrence. It is
more correct to say that some linguistic styles occur more commonly with one of the
genders. Such overlap of individual linguistic peculiarities, makes identifying gender-
specific characteristics more troublesome.

It is worth pointing out that, as with most things, linguistic features are largely de-
pendent on the period of time and the culture. The way people speak and what is
regarded as normal can change over time as certain styles can become more acceptable
with either gender. Based on the sentence “The wall is mauve”, Robin Lakoff (1973)
stated that “(...) if the man should say [the sentence], one might well conclude he was
either imitating a woman sarcastically, or a homosexual, or an interior decorator.” Had
the material been contemporary, it could have been deemed a rather strong reaction to
what seems like a plausible sentence for either gender at the present time.

While Lakoff (1973) mainly focused on the spoken language, the differences in writ-
ten language between males and females started to become a topic of interest a few

36

4.1. Studies on Language and Gender

years later. Mulac et al. (1990) examined impromptu essays by primary- and secondary
school students, specifically fourth, eighth and twelfth graders. This was to investigate
dissimilarities and, if present, see if they adhered to gender role stereotypes. At the time,
these were regarded as men being perceived as more confident, dominant and aggressive.
Women were more affectionate, sympathetic and literate. In the study, 19 features were
used and their capabilities of differentiating between genders were explored. Based on
these features, Mulac et al. were able to accurately classify the gender of approximately
85% of the students overall. However, only some features were consistent across all age
groups. Boys were in general more judgmental and girls made greater use of filler words
(“Well...”) and phrases related to emotions. For primary school students, female writing
style showed greater sense of literacy, with more elaborate sentence compositions by use
of, e.g., adverbs, while male writers wrote more informally with greater amount of con-
tractions (“didn’t” instead of “did not”). Females seemed to soften their sentences more
with hedges supporting the notion of greater politeness and less dominating behavior,
as also proposed by Robin Lakoff (1973). Additionally, Robin Lakoff and Mulac et al.
seem to agree on the early occurrence of gender-linked linguistic differences. The set of
differentiating features consisted of other variables for secondary school students than
for primary school students, indicating a correlation with age when classifying gender.
This adds an extra layer of complexity to the task, as it means that a linguistic feature
of gender does not necessarily persist as a marker across age groups. In accordance with
Bodine (1975), Mulac et al. (1990) also remarked on the fact that discriminating features
were sex-preferential, rather than sex-exclusive.

4.1.2. Modern Studies
As presented, early studies on language and gender were predominantly on speech and
informal writing. Argamona et al. (2003) investigated the phenomena in formal texts.
They analyzed a corpus containing both fiction and non-fiction, identifying lexical and
syntactical differences with regard to gender. It was found that females seemed to make
more use of negations, e.g., ‘not’, and pronouns, while males had a larger amount of
determiners, phrases that provide contexts to nouns, such as ‘a’, ‘the’ and ‘several’. This
was viewed as an indication of women being more “involved” in their writing, while
male-authored texts had linguistic features characterized as “informational”. Especially
the more frequent use of first and second person pronouns by female authors could indic-
ate a desire to form a relationship with the reader. The greater use of determiners and
quantifiers suggested that males provide more specification in their texts. In a related
publication by Koppel et al. (2002), it was revealed that the inclusion of both fiction
and non-fiction as genres had an impact on the classification accuracy. Training on both
fiction and non-fiction together resulted in a lower classification accuracy of a test set
containing fiction, than when training only on a dataset containing fiction. The opposite
seemed to be true as well. Additionally, training purely on fiction and then testing on
non-fiction resulted in an accuracy of 50% which is the same as random guessing. This
exemplifies another layer of complexity for classifying gender. As style of writing can
change with respect to genre, the linguistic markers do not necessarily persist across

37

4. Related Work

genres.

A new domain opened up for studying language and gender at the beginning of the
21st century. With the increased popularity of blogs, an abundance of public data be-
came available. Schler et al. (2006) retrieved all blogs available at blogger.com one day
to put together a corpus containing 1.4 million blog entries from 37,500 blogs, adding
up 295 million words. In comparison, Argamona et al. (2003) used a corpus containing
600 documents, comprising 25 million words, and Mulac et al. (1990) had only 96 essays
in their possession. With the introduction of the social media genre, new challenges and
characteristics appeared as well. Blog posts are usually shorter in nature, compared to
formal publications. Additionally, the language can be quite informal with the use of
emoticons and blog words/Internet slang, such “lol” and “u” (‘you’). These types of
words were used as features, along with hyperlinks, and it turned out that women made
more frequent use of blog words, while there was a higher occurrence of hyperlinks in
posts by men. Supporting the findings of previous literature not based on social media
(Argamona et al., 2003), females made more use of pronouns and negations, while males
made greater use of articles, a sub-group of determiners, and prepositions. These find-
ings also cohere with the previously mentioned aspects of men being more informational
in their writing, as women appear more involved and personalize their texts. Putting
aside these style-based features (see Section 3.6), the content was found to also support
these observations and some stereotypes about gender. Men seemed to write more about
politics and technology, whereas women favored topics related to family, relationships
and lifestyle.

More recent studies have made similar observations to the previously mentioned re-
search. Garimella and Mihalcea (2016) also analyzed blogs, to identify semantic and
psycholinguistic word classes that characterize each gender. The word classes used in
their study were composed of multiple words related to the broader category. They
found that some of the dominant word classes for women were sweetness, touch, sour-
ness and texture, interpreted as women’s greater sense of world perception. In addition,
there were the word classes related to family and lifestyle. Top word classes for men
were those related to religion, sports, science and work. This study also went more
in-depth to identify differences in semantic usage by performing a gender-based word
sense disambiguation, i.e., they looked into if polysemous words, words with multiple
meanings/senses, were used by men and women differently in terms of the chosen sense.
However, the results indicated that the chosen word senses were mostly similar.

4.2. State-of-the-Art
PAN is an annual series of shared tasks on digital texts forensics. The name stems from
the early days, when it was an abbreviation for “International Workshop on Plagiarism
Analysis, Authorship Identification, and Near-Duplicate Detection”. In recent years, this
has changed to “International Workshop on Uncovering Plagiarism, Authorship, and So-

38

4.2. State-of-the-Art

cial Software Misuse”, though the workshop is commonly simply known as PAN. Since
2007, they have hosted numerous tasks within plagiarism detection, author identifica-
tion, author profiling, and vandalism detection. Relevant to our project is the author
profiling task, which has been hosted four times since 2013. The topics have mostly
been gender and age. The workshop motivates research in this field and is likely to have
accelerated the development and performance of such systems.

This section describes the state-of-the-art within author profiling, with focus on gender
classification of tweets. Most work done in this field appear to follow a general systematic
approach, which can be structured into four procedures:

• data collection

• pre-processing

• feature extraction

• model building

Data collection is the process of retrieving and annotating texts to construct a dataset for
training and testing a profiling system. The datasets used in this thesis will be described
in Chapter 5. As we did not perform any annotation of data, and the datasets used were
pre-annotated, data collection will not be further described in this section. Textual pre-
processing consists of preparing and cleaning the text by removing or replacing words
and characters that presumably contain no valuable information for inferring gender and
may cause obstruction. Feature extraction is the task of extracting useful information
from the text and creating a numerical representation, which can be fed to a classifier.
In recent studies, this step varies a lot between researchers, some use standard natural
language processing techniques such as part-of-speech (POS) tagging or Bag of Words
(BoW), others create their own heuristics or embeddings that fit the dataset. The last
step is developing a classification model. Machine learning is commonly used for the
task. To the extent of our knowledge, there are no known approaches for bypassing
the need of a labeled dataset. Therefore, supervised learning seems to be the only used
method.

4.2.1. Pre-Processing
Pre-processing can be viewed as various steps taken to prepare the text for optimal ex-
traction of features. This is done by structuring and filtering the text by removing parts
of the text that can be viewed as noise. Pre-processing is an important first step and
can be viewed as the foundation to the system as it has a direct impact on the value
of the features used to represent the text and the performance of the model. Burger
et al. (2011) kept the pre-processing simple, with tokenization to separate words with
non-alphanumeric characters as separators. This could be because of their use of only
simple n-gram features from the tweet text itself. Recent work from the PAN workshop
shows that participants make more elaborate approaches to pre-processing the text that

39

4. Related Work

are quite similar to each other. Due to how the dataset is made available by PAN,
which is in the form of XML files containing tweets surrounded by HTML tags, parti-
cipants usually clean and remove these markup tags in order to obtain the plain text
(Ashraf et al., 2016; Bilan and Zhekova, 2016; Liebeck et al., 2016). From an intuitive
perspective, working with plain text is favourable as the markup tags are not actually
parts of the tweet content. Lemmatization and stemming were used by Bougiatiotis and
Krithara (2016) and Deyab et al. (2016), but did not lead to an improvement in the
classification results. A reason for this could be that tweets are short in nature and
limited discriminative information is available. Thus, if the use of, e.g., specific verb
tenses could be indicative of gender and have a positive impact on classification, lem-
matization and stemming will generalise these words and hence eliminate this positive
effect. On the other hand, these methods could contribute positively depending on the
term space. If the vocabulary of word embeddings is limited, which was not the case for
the previously mentioned authors, it could be more valuable to have an embedded word
in its root form rather than not having it at all.

Other pre-processing methods include removing punctuation marks and numbers before
lowercasing the whole text (Bougiatiotis and Krithara, 2016). Removing stop-words is
typical (Deyab et al., 2016), with the supporting argument that they are too common
to be indicative of gender. The majority of today’s solutions replace unique URLs and
Twitter specific terms, such as mentions and hashtags, with common identifying tags.
Markov et al. (2016) additionally replaced numerical digits and distinguished between
URLs referring to pictures and textual hyperlinks. Table 4.1 exemplifies this technique.
The underlying argument is that specific URLs and numbers do not help classify gender,
and that it is more advantageous to only capture the occurrence of these. Additionally,
if word embeddings are used, the vocabulary can be further limited to a computationally
feasible size. Liebeck et al. (2016) chose to altogether remove the previously mentioned
terms, i.e., URLs, hashtags and mentions. They reasoned with keeping the classifier
genre-neutral, i.e., not overfitting to tweets, for the purpose of being able to classify
texts from other social media as well, though one could say that these terms are likely to
appear in other social media. On the other hand, the authors claimed that hashtags and
mentions may be useful for differentiating genders. Therefore, it could be interesting to
investigate the classification value of terms, such as hashtags and mentions, which has
not been extensively explored in today’s solutions.

Twitter Specific Syntax Replace With
#hashtag #
@mention @

www.youtube.com URL
pic.twitter.com/vYpLShlHs7 PIC

Table 4.1.: Replacement of twitter specific syntax

40

4.2. State-of-the-Art

4.2.2. Feature Extraction and Representation

Before a document can be fed into a classification model, it needs to be represented
somehow. As a computational convenience, this frequently means creating a vector rep-
resentation of the document, which the classification model can work on. Optimally, this
vector would contain the key features for successfully classifying all texts. Section 3.6
describes various types of stylometric features that have been used in the literature.
Following is a review of features used by some of the best performing teams of PAN
Author Profiling 2016, representing state-of-the-art. The features used by each paper
are not thoroughly described, for the sake of brevity, as there is some overlap.

Most work on author profiling seem to represent documents by using a combination
of stylometric features and one can see some level of conformance with early studies.
Among other features, op Vollenbroek et al. (2016) used frequencies of function words,
part-of-speech, average word and sentence length, capital letters, and proportion of
unique words across all documents of a user to measure vocabulary richness. Reflecting
the age of social media and the increased use of Internet language, the proportions of
emoticons and out of dictionary words, i.e., slang and misspelled words, were also used.
Frequencies of n-grams seem to be common. Different forms of n-grams can character-
ize different aspects of a document, e.g, word n-grams for content and part-of-speech
n-grams for writing style (op Vollenbroek et al., 2016; Liebeck et al., 2016). With re-
gard to the importance of each feature, it seems that it is usually the combination of
features that results in the discriminatory power and thus it is difficult to assess the in-
dividual contribution. Based on work done by Lopez-Monroy et al. (2013) from PAN 13,
second order attributes were explored by op Vollenbroek et al. (2016) and Bougiatiotis
and Krithara (2016). The concept is slightly convoluted computationally, but the main
idea is creating profiles based on terms/tokens that are more common for a gender and
representing documents as a vector where each value contains its relationship to each
profile. Thus, the occurrence of some terms counts more towards a gender. As men-
tioned, Burger et al. (2011) only used n-gram features from the tweet text itself, but they
also tried utilizing any available information from the Twitter profiles for comparison,
such as full name, screen name and user descriptions. The study concluded that (not
very surprisingly) the full name and screen name were most informative, but interest-
ingly enough the tweets were more gender descriptive than self-written user descriptions.

Similar to word embeddings (see Section 3.5.2), there have been efforts to create em-
beddings of tweets based on the raw text content, although these have not been used
for author profiling. Dhingra et al. (2016) constructed a character-level neural net-
work, taking raw text as input, for classifying hashtags of tweets. Similar to one-hot
word vectors, the characters were processed as one-hot character vectors. They used
Bidirectional Gated Recurrent Units (GRU; similar to an LSTM) in their model. By
being bi-directional, the input was processed in reverse as well. The idea, as described
in Chapter 3, is that each textual element is connected to both previous and future
text in the sequence, and bidirectional networks are better capable of capturing this

41

4. Related Work

dependency. The motivation behind the design of this model was capturing the out of
vocabulary words that commonly occur in tweets, which word-level models usually end
up skipping since they can only process words that are present in the embedding diction-
ary. Character-level models are, in this case, only restricted by the known characters,
which results in far less ignored input. However, semantic and syntatic structures of text
have to be learned from scratch, as opposed to when word-level models are used.

One can say that representations with hand-picked stylometric features are more “en-
gineered” than those constructed by neural networks from the text’s near-natural form.
More precisely, these representations are based on preliminary statistics indicating which
linguistic features are the best classification markers, such as pronouns and determiners
in some cases. An implication of this is that different profiling attributes, e.g., gender,
age and personality traits, may not be associated with the same features. Thus, pro-
filing becomes a separate task for each classification attribute, where feature extraction
should ideally be performed separately. With representations of documents created by
feeding a neural network characters or words, one relies on the model’s capabilities of
identifying features of the terms, such as part-of-speech. This makes it harder to control
and interpret the representation, as it is more difficult to understand which features or
word usage dominate the classification, but it may also result in a representation that
captures linguistic information that one could miss with traditional statistical means.
This would be a result of the model extracting underlying intrinsic properties of the
terms, from the way they are used in the text. In summary, a key difference between
traditional feature engineering and using a deep learning model to extract features from
text is that by traditional means you have to explicitly investigate the value of part-
icular features, while with deep learning one delegates this responsibility to the model.
Another possible advantage of the deep learning way is that by continuously feeding a
model new texts, when available, it could adapt to new writing styles. Additionally, it
may be difficult for traditional methods, such as n-grams, to match recurrent networks’
abilities of capturing long-term dependencies (see Section 2.5.4), for which the n-gram
size would have to grow substantially.

4.2.3. Classification Models
Author profiling is being approached as a machine learning problem by the majority, as
with many other text classification problems these days. To get an idea of the types
of models being used for author profiling, Table 4.2 contains the top 10 contestants of
PAN Author Profiling 2016. Evidently, a popular choice is the Support Vector Machine
(SVM), which can be considered the current state-of-the-art model for author profiling.
However, there are a few instances of other approaches. Ashraf et al. (2016) tested differ-
ent tree-based methods, including Random Forests, which was also used by Pimas et al.
(2016). These methods were seemingly only explored for the sake of exploration, as the
papers did not comment on the rationale behind the use of Random Forests and other
tree algorithms. Even though it is a trivial observation, it is worth pointing out that
the overall results are not only determined by the classification model, but rather as the

42

4.2. State-of-the-Art

sum of choices made with regards to model, features and pre-processing. Nevertheless,
the results were not as promising compared to other models, which is why they are not
on the list in Table 4.2. Liebeck et al. (2016) actually tried multiple methods, Random
Forest being one of them, but found Logistic Regression to be superior. Agrawal and
Gonçalves (2016) used the method called stacking, where a combination of various clas-
sifiers were used instead of a single one. This allowed them to explore the strength of
multiple classifiers, such as SVM, Naïve Bayes and Logistic Regression, and simultan-
eously reduce the error imposed by each classifier. As with Random Forests, stacking
falls under the category of ensemble learning methods, because the classification is an
aggregate of the sub-classifiers.

Compared to the amount of SVM models being used, there are few mentions of deep
learning based models for author profiling. In Table 4.2 there is only one occurrence
of neural networks (Dichiu and Rancea, 2016). This team used both SVMs and simple
neural networks, i.e., networks containing a small number of hidden nodes and layers,
which were deemed competitive against the SVM. The lack of PAN participants utiliz-
ing deep learning is surprising, as it has shown promising results for other NLP tasks.
Zhang et al. (2015) showed promising results with their character-level convolutional
neural networks, when compared to traditional methods, such as Bag of Words with
TF-IDF (see Chapter 3) and bag of n-grams with TF-IDF, and deep learning models
using pre-trained word embeddings. In a way, feature extraction and classification be-
come parts of the same model because the tweet representation is made implicitly in the
neural network. The models were tested by performing topic and sentiment classification
on various datasets. A trend in the results seemed to be that traditional methods were
best on small datasets of hundreds of thousand of samples, but when the size grew to
several millions, the character level networks performed better. Additionally, it could
be that deep networks were better at processing raw informal user texts, i.e., those
containing misspellings, emoticons and expressing unfiltered thoughts, but the authors
deferred this conclusion to further experiments. If this is the case, it could be useful for
the task of profiling tweets, as they definitely go under the category of raw informal texts.

Parts of the discussion in the previous subsection also applies to classification mod-
els. SVMs and neural networks are more difficult to interpret than traditional machine
learning techniques, such as decision trees and Random Forests, which by nature provide
an intuitive understanding of what the classification is based on. SVMs can seem to be
easier to use than neural networks. Libraries like Scikit-learn provide easy access to off-
the-shelf SVMs, where few initial parameters must be specified before execution. Neural
networks can seem more suitable for more complex problems with larger datasets, but
the challenge lies in constructing the optimal model with the right topology and para-
meters, where a large amount of time has to be put into trial and error. Neural networks
are also prone to overfitting and to getting stuck in local optimas, while SVMs always
find a global solution (Burges, 1998). The difference in usage complexity may partially
be a reason for the high popularity of SVMs.

43

4. Related Work

Team Model Type
Busger et al. Support Vector Machine
Modaresi et al. Logistic Regression
Bilan et al. Support Vector Machine
Markov et al. Support Vector Machine
Bougiatiotis & Krithara Support Vector Machine
Dichiu & Rancea Support Vector Machine and Neural Networks
Devalkeneer Restricted Boltzmann Machine
Bayot & Gonçalves Support Vector Machine
Gencheva et al. Support Vector Machine
Agrawal & Gonçalves Stacking: Bayesian Logistic Regression, Naïve Bayes, SVM

Table 4.2.: Overview of classification models used by top 10 contestants at PAN 2016
(Rangel et al., 2016).

44

5. Data
With supervised learning, the aim is to infer a classification function based on labeled
training data. In this context, it is assumed that the training data is representative
of the possible data for the given classification. An appropriate representation of this
data is critical for the model’s ability to estimate an accurate function. Therefore, it is
beneficial to obtain an overview of the presence and absence of specific features to avoid
wasting time searching for non-existing characteristics.

The following chapter will present the datasets that will be used to train and evalu-
ate the models of this thesis. Additionally, a statistical analysis of the training set will
be provided, with regard to certain stylometric aspects, based on the material presented
in Section 3.6, about stylometric features, and Chapter 4, describing related work. This
provides an overview of the tendencies in the dataset, with respect to the characteristics
of each gender, and a foundation for the feature engineering process. The findings will
be displayed and explained through visualizations. Furthermore, they will be used to
justify any omission or inclusion of features in the classification systems, with emphasis
on the document-level system, where feature engineering is an integral step.

5.1. Data Collection
The datasets used in this thesis are collected from two different sources. The training
data, of which a fraction is withheld for validation purposes, is composed of a collec-
tion of datasets provided by PAN1 for shared tasks in recent years, while the test set
is collected from Kaggle2, though it is provided by CrowdFlower3. Table 5.1 displays
the number of tweets in the training set from the different years, summing to a total of
655,268 tweets. Figure 5.1 shows the distribution of the number of tweets and authors by
gender. We see that the number of authors is approximately equally distributed across
genders, while there a larger number of tweets by male authors than female authors.
To be more precise, the male fraction represents 54% of the training set, while 46% of
the tweets are written by females. This detail introduces a minor bias to the training
process. It also entails that the number of tweets per author is non-uniform as well,
which was verified to be true.

1http://pan.webis.de/
2Kaggle is crowdsourcing platform for predictive modelling and analytics competitions. Dataset:
https://www.kaggle.com/crowdflower/twitter-user-gender-classification

3CrowdFlower is a data mining and crowdsourcing company.

45

5. Data

The test set contains 12,727 tweets, of which 52% are authored by males. As the tweets
in this set are supposed to represent unseen observations, they are excluded from the
data analysis.

Year Samples
PAN 2014 132,696
PAN 2015 13,862
PAN 2016 212,413
PAN 2017 296,297

Total 655,268

Table 5.1.: Overview of the number of tweets, from each PAN dataset, used for model
training

(a) (b)

Figure 5.1.: Distribution of total tweets and authors in the dataset divided by gender.
Figure 5.1(a) displays a total of 359,098 tweets by male and 303,678 tweets
by female. Figure 5.1(b) displays a total of 1,931 male authors and 1,917
female authors.

5.2. Characteristics
This following section will present the actual data analysis of the training set and will
cover the following points:

• Frequencies of Internet terms, such as hashtags and URLs

• Frequencies of specific emoticons

• Lengths of tweets, with respect to characters and words

46

5.2. Characteristics

• Sentiments using Valence Aware Dictionary and Sentiment Reasoner (VADER)
(Hutto and Gilbert, 2014)

• Frequencies of part-of-speech (POS) tags

When studying frequencies of terms to discover trends, with respect to multiple classes,
a skewed dataset poses difficulties for interpreting the results, as we need to keep in
mind that some classes are represented to a larger extent. In our case, the majority
class represents tweets by male authors. To compensate for the imposed imbalance, the
frequency counts among female authors are scaled by a factor f = 1.1711, in the presen-
ted plots. f is calculated using Equation (5.1). Some of the figures use a logarithmic
scale to be able to see the differences between low magnitude frequencies. The figures
should make it clear when this is the case. The use of a logarithmic scale makes it more
difficult to visually see the ratio between the male and female frequencies, but this will
be clarified when it occurs.

f = total number of male tweets
total number of female tweets (5.1)

5.2.1. Internet/Twitter Terms
In the domain of informal social media texts, it is usual to encounter URLs, images
and emoticons. Images, in this context, are URL references to images. In addition, we
have hashtags and mentions, which are phenomenons popularized by Twitter to describe
the theme of the tweet and mentions of other users, respectively. As mentioned, only a
frequency study was conducted. Therefore, each instance of Internet terms are general-
ized to the corresponding category, disregarding the specific content of, e.g., hashtags.
The frequencies are displayed in Figure 5.2. The histogram shows that the overall fre-
quencies of URLs and mentions are quite uniform, with respect to gender, while females
have more frequent use of hashtags and emoticons. Also, males reference images in their
tweets more often; twice as much, to be more specific, but the frequency is low compared
to the size of the dataset.

5.2.2. Emoticons
A more detailed study was made on the use of emoticons. Figure 5.3, on page 49,
shows the distribution of different emoticons that were detected in the dataset (note the
logarithmic scale). Overall, the frequencies are surprisingly low, with respect to the size
of the dataset. Nevertheless, the histogram shows that the most significant difference
in usage frequency is represented by the heart emoticon (“<3”). This is used almost
three times more in tweets by females compared to the tweets written by males. It is
also one of the more overall frequently used emoticons. Given the magnitudes, the set
of emoticons for which there is a large gap between male and female frequencies include
“:)”, “:-)”, “;)” and “;-)”. For these the differences constitute more than 25%. The
rather low overall frequencies indicate that the use of emoticons as features is of little

47

5. Data

Figure 5.2.: Frequency of internet terms among gender.

use. However, since there are a few emoticons which do differ, it may be worthwhile to
explore this.

5.2.3. Tweet Length

As previously shown in Section 4.2.2, various studies mention using structural features,
such as the length of texts, to distinguish between genders. Figures 5.4 and 5.5, on page
50, visualize the distribution of tweets with respect to the number of characters and
words, for each gender. They show that in the domain of tweets, the length provides
little value for determining gender. In both figures, we see that the distributions are
nearly identical for each gender. We find that there are 12 tokens in a tweet, on average,
by both genders. Similarly, there are on average 66 characters in tweets, by both genders.

5.2.4. POS-tags

From the previous PAN shared tasks, we observed that participants used counts of part-
of-speech tags as features (op Vollenbroek et al., 2016; Liebeck et al., 2016). The NLTK
Taggers package4 was used to perform POS-tagging on our training set. Figure 5.6, on
page 51, displays the distributions of the most basic POS tags. The results of more
advanced tagging procedures, with a larger number of POS categories, can be viewed in
Appendix D. A description of each tag abbreviation is included in Appendix C. Regard-
less of the tagger complexity, the POS-tag distribution between genders is quite uniform.

4http://www.nltk.org/api/nltk.tag.html

48

5.2. Characteristics

Figure 5.3.: Frequency of emoticons used among gender.

5.2.5. Sentiment Analysis
Sentiment analysis is a field within NLP aiming to identify opinions in text. In this
context, a text can either be neutral or polarized, i.e., positive or negative. Using sen-
timent analysis on a gender-annotated dataset can reveal if tweets by either gender are
more polarized, either positively or negatively. Sentiment analysis is a complex field on
its own and we did not attempt to develop a separate system for this. For this, the
NLTK library.5 was used to access VADER (Hutto and Gilbert, 2014). Figure 5.7, on
page 51, displays the sentiment results and shows that the predicted sentiments provide
virtually no indicators of gender. The grand majority of tweets have been classified as
neutral, for which the frequency among males is slightly higher than for females. We
also see that the frequency of positive tweets among females is somewhat higher than
for males, while the distribution of tweets predicted as negative is identical for both
genders. Given these results, the only motivation for using sentiments to predict gender
is if they provide predictive value in combination with some other feature.

To see if there are any differences in the usage of sentiment-indicative words, as defined
by VADER, word clouds are constructed based on the most frequent positive and neg-
ative words, with respect to each gender. These are displayed in Figure 5.8 on page 52.

5http://www.nltk.org/_modules/nltk/sentiment/vader.html

49

5. Data

Figure 5.4.: Distribution of total words in every tweet categorized by gender.

Figure 5.5.: Distribution of total characters in every tweet categorized by gender.

50

5.2. Characteristics

Figure 5.6.: Distribution of part-of-speech tags categorized by gender.

Figure 5.7.: Frequency of tweets with respect to sentiment (classified by VADER), and
gender.

51

5. Data

(a) male positive (b) male negative

(c) female positive (d) female negative

Figure 5.8.: Word cloud of most frequent sentiment words classified as positive or negat-
ive. Figures 5.8(a) and 5.8(b) show the most frequent sentiment-indicative
words which occur in tweets by males, while Figures 5.8(c) and 5.8(d) show
the same for females. The green color is an indication of positive terms,
while the red color is an indication of negative terms.

52

6. Architecture
In this chapter, the architecture of our gender profiling systems will be described. Sec-
tion 4.2, concerning state-of-the-art, outlined a general set of procedures for author
profiling, based on the work by others in the field. Our system conforms to these and
a coarse outline of the architecture is shown in Figure 6.1, illustrating the elements of
pre-processing, feature extraction and classification. During the course of this project,
three separate deep learning-based systems were developed, and this chapter describes
the aforementioned aspects for each of them. The different systems process text at dif-
ferent levels of granularity, these being character-level, word-level and document-level.
The pre-processing step is for the most part identical, while feature extraction and the
classification models largely differ. Therefore, the architecture of the respective systems
will be described in isolation with regards to the latter aspects. It should be noted that
the final architecture of each system is based on experiments, which are presented in the
next chapter. Therefore, this chapter will describe what the implementations support,
while specifying what is used in the final architecture when necessary. The terms model
and system will mainly be used to refer to the ANN model and the system as a whole,
respectively, but the terms are interchangable and the context should make the meaning
clear.

6.1. Text Pre-Processing
As explained in Chapter 5, the dataset used is a composition of data provided by PAN
from the last four years of the annual shared task (2014–2017). When the data was
downloaded, it was very “raw” with multiple elements of noise, which begged for a pre-
liminary high-level filtering, before the actual filtering based on the linguistic values
of terms. In addition to HTML markup tags being present, duplicate tweets were en-
countered, opening up for the possibility that the datasets overlap. A large number of
foreign symbols were removed, leaving alphanumeric characters and punctuation. Also,
even though PAN provides a set of explicitly labeled datasets in multiple languages,
implying that the English dataset only should contain tweets in English, tweets in other
languages were encountered in this dataset. This posed a problem because this project
only focused on English tweets. A closer examination, using the library “langdetect” 1,
revealed tweets in German and Dutch, among other languages. However, Spanish tweets
seemed to represent the majority of this noise, while other languages were present to
a much smaller degree. The language detection library was not 100% reliable, often

1A Python port of a Google’s language detection library.
URL: https://pypi.python.org/pypi/langdetect

53

6. Architecture

Figure 6.1.: Coarse outline of the author profiling architecture.

classifying English tweets as non-English. This issue seemed more frequent with some
languages, e.g., German, than with Spanish. Because of this unreliability, a coarse fil-
tering was deemed most appropriate. More specifically, only tweets classified as Spanish
with high confidence, by the language detector, were removed from the dataset. This
resulted in the removal of just above 8000 tweets, constituting approximately 1.2% of the
total dataset. This rather small quantity implies that if the fraction of other languages
present is even smaller, the noise imposed may be insignificant. For term tokenization,
the NLTK Tweet Tokenizer was used. The preliminary filtering process just described
is illustrated in Figure 6.2. Further details about the most important frameworks used
in this work is described in Appendix B Based on the analysis of the data, presented
in Chapter 5, and approaches found useful by others, presented in Section 4.2 about
state-of-the-art, a set of methods were chosen as possible pre-processing steps for the
main filtering process:

• Lowercasing: By not differentiating between upper-case and lower-case letters,
it is assumed that content-related features will be easier to capture.

• Replacement of Twitter/Internet terms with placeholder tags: This branch
of terms are composed of hashtags, mentions, URLs and image URLs. By repla-
cing these terms with a corresponding placeholder tag in the text, information
regarding the presence of a term of the particular type is captured, while disposing
of information related to the exact hashtag, mention, URL or image.

54

6.1. Text Pre-Processing

Figure 6.2.: The first level of text filtering of data.

• Stopword removal: Stopwords are the most common words of a language, not
providing any value for differentiating classes.

• Lemmatization: Lemmatization is the process of reducing inflected forms of
words to their root form, or lemma, and thereby treating these words as the same
term. Examples of inflected forms of words include different verb tenses and plural
forms. Unlike stemming, which simply chops of pre-defined suffixes in the hope of
performing the correct root form reduction, lemmatization takes the context into
account, identifying the meaning and the part-of-speech of the word. Hence, words
are more likely to be reduced to the correct root form. However, this increased
precision leads to a greater computational cost.

• Punctuation removal: Removing punctuations has been found useful by state-
of-the-art work.

• Emoticons removal: The data analysis revealed that there were only a couple
of emoticons which could be useful for differentiating between genders. Thus, it
could be better to just remove them, reducing noise.

• Removal of texts shorter than two characters: Tweets are shorts in nature,
making it difficult to harvest characteristic linguistic information from them. By
removing tweets that are shorter than a certain threshold, the difficult and infeas-
ibility of the problem is restricted and made more doable.

Clearly, other filtering and text modification methods could have been explored as well,
but it was decided to constrain the set of methods. Since tweets are short by nature,
there is a fine line between removing noise elements and loosing descriptive information

55

6. Architecture

as a result of removing too much. Taking this into consideration, the contributions of
the methods are evaluated. This is further described in Chapter 7.

6.2. Word-Level System
As the name implies, the word-level model processes a text by treating it as a sequence
of words. In other words, the notion of characters is disregarded and the lowest level
of tokens that exist, from the perspective of the model, are words. In this setting,
punctuation marks are also considered words. With this in mind, perhaps “token-level”
would have been a more appropriate name, but “word-level” was decided based on the use
of word embeddings in this system. The following section will describe the architecture
of the word-level system.

6.2.1. Text Representation
To represent these words as numerical vectors, pre-trained GloVe embeddings are used.
The notion of word embeddings and GloVe were described in Section 3.5. Since our
model is applied to tweets, it is desirable to use pre-trained word vectors pertaining to
this domain. Therefore, we have acquired a set of 200-dimensional embeddings, contain-
ing 1.2 million words, which have been trained on 2 billion tweets. These pre-trained
embeddings have been made available by Stanford2 for the public domain. Of this large
vocabulary, only a subset corresponding to the 50,000 most frequent words of the train-
ing set is used. The next chapter will include experiments conducted for choosing an
appropriate vocabulary size.

6.2.2. Feature Extraction and Classification Model
The flowchart in Figure 6.3, on page 58, illustrates how to the word-level system works,
after the pre-processing step. By analyzing the training set, a word index is created.
This is essentially a lookup dictionary with words as keys and a unique index as value.
This index is based on the frequency of the word in the dataset and acts as an identifier
for the word, such that the texts can be transformed to sequences of word indices before
they are fed to the Artifical Neural Network. The word index dictionary is used to create
a word embedding matrix, containing the available pre-trained GloVe embeddings. In
this matrix, each row contains a word embedding and each column corresponds to each
feature in the 200-dimensional GloVe embedding. The row indices correspond to the
word indices in the word index, i.e., row i in the embedding matrix contains the word
embedding of the term with word index i. This embedding matrix is used in the ANN
model for accessing word embeddings.

2https://nlp.stanford.edu/projects/glove/

56

6.2. Word-Level System

In this architecture, the input to the ANN model needs to be of fixed size. This poses a
problem since all tweets do not have the same length. Based on the word count distri-
bution of the data, displayed in Figure 5.4, a size of 15 was chosen. This is slightly more
than the average count of 12, but in return more information is covered in the longer
tweets. Tweets shorter than 15 words are zero-padded to the correct size, i.e., zero values
are appended, while longer tweets are truncated, leading to information loss. The size
of the longest tweet could have been used as the limit, to cover all words in all tweets,
but this would introduce sparsity by zero-padding and was deemed a disadvantage.

The word-level neural network architecture consists of an embedding layer followed by
a Bidirectional LSTM (Section 2.5.3 explained the notion of Bidirectional Recurrent
Neural Networks). The embedding matrix is used in the embedding layer as a lookup
table for word embeddings by index, such that the word indices can be converted to
embeddings. Figure 6.4, on page 59, illustrates the architecture of the ANN model as it
is unfolded over time. Here, each input x corresponds to each word in the text. While
the forward LSTM processes the text according to the original sequence, the backward
LSTM is fed the text in reverse sequence. Thus, information about past and future
words are made available when processing each word. Since the model is used for clas-
sification, only the output after processing the entire sequence is needed. Both LSTMs
consist of 250 memory units. The outputs from both of these are merged by concat-
enation of vectors, composing a layer with 500 neurons. This vector of values can be
considered the feature vector, or the embedding, of the tweet. To prevent overfitting,
early stopping of training is induced by monitoring the performance on the validation
set. Both regular and recurrent dropout are used to regularize the model. The likelihood
of dropping a unit is set to 0.2 in the recurrent layers and 0.5 in the merged layer. The
values were chosen through experimentation and the words of the original creators were
used as guidance (Srivastava et al., 2014). However, we were not able to experiment as
much as desired because of time constraints.

The output layer uses softmax activation, resulting in a distribution describing the
probability of each gender. To calculate prediction error during training, categorical
cross-entropy is used as loss function. As activation function in the LSTM layers, the
Rectified Linear Unit is used because of its ability to learn faster than other smoother
non-linear activation functions, such as tanh and sigmoid, which has granted it a high
level of popularity in recent years (LeCun et al., 2015). Adaptive Moment Estimation
(Adam) (Kingma and Ba, 2014) is used as optimizer. It is a gradient descent based
algorithm which keeps adaptive learning rates for each parameter and appears favorable
compared to other stochastic methods because of its faster and more accurate learning
abilities.

57

6. Architecture

Figure 6.3.: Flowchart of the word-level system outline. The pre-processing step is omit-
ted here.

58

6.2. Word-Level System

Figure 6.4.: The architecture of the word-level Artifical Neural Network model, with the
LSTMs unfolded over time. The embedding layer has been omitted in the
figure.

59

6. Architecture

6.3. Character-Level System

An obvious drawback of the word-level model is that a vocabulary of pre-trained embed-
dings are needed, in addition to the fact that it is unable to process words that do not
exist in the vocabulary. The character-level model is designed to bypass this limitation
by processing text as a sequence of characters, rather than words. A result of this is that
as long as each encountered character is known and part of the predefined vocabulary,
it can be acknowledged and processed. Several studies show that character-level models
prove effective for text classification (Zhang and LeCun, 2015; Zhang et al., 2015) and
that the produced representations are better able at capturing morphological structures
(Ling et al., 2015). This section describes the architecture of the character-level system
that was developed.

6.3.1. Text Representation

Figure 6.5 shows how the architecture of the character-level system is similar to that of
the word-level system, but the different level of tokenization granularity does introduce
differences. The character vocabulary is constructed by processing all characters in the
training set, after pre-processing, and creating a character index. Similar to the word
index in the word-level model, it is a dictionary containing a unique id for each character.
Thus, the texts can be transformed to sequences of character indices before feeding them
to the ANN. Because the character space is very small compared to the word space, it
is feasible to use sparse one-hot vectors to represent the characters.

6.3.2. Feature Extraction and Classification Model

Based on an analysis of the tweet length distribution over all tweets in the training
set, provided by Figure 5.5, in Chapter 5, a length of 100 characters is chosen as the
maximum sequence length. Tweets longer than these are truncated, while shorter tweets
are padded to the correct size. As texts, represented as character indices, are given as
input to the character-level ANN model, the characters are converted to one-hot vectors
before being further processed. The architecture is displayed in Figure 6.6, on page
62. It consists of a Bidirectional LSTM, as in the word-level model, in addition to a
preceding convolution layer with 1024 filters, i.e., feature maps, considering five words
at a time, and a max pooling layer which summarizes two values at a time from the
convolutions. The LSTMs contain 256 memory units in each direction and are merged
into a layer with 512 neurons. The penultimate layer in the model is an ordinary fully
connected layer with 200 neurons, comprising the embedding of the tweet. As before,
softmax, ReLU, early stopping and cross-entropy loss are used, along with the Adam
optimizer. Dropout is used as regularization, with a drop likelihood of 0.2 for the regular
and recurrent dropout in the Bidirectional LSTM. The likelihood of dropping a neuron
from the the convolution layer and merged layer is set to 0.5.

60

6.3. Character-Level System

Figure 6.5.: Character-level system outline. The pre-processing step is omitted here.

61

6. Architecture

Figure
6.6.:T

he
architecture

ofthe
character-levelm

odel.
T
he

one-hot
encoder

layer
is

om
itted

in
the

figure.

62

6.4. Document-Level System

6.4. Document-Level System
The document-level system is developed significantly differently than the other systems.
The feature engineering process is more explicit and the system is built supporting mul-
tiple representations, such as BoW and TF-IDF, and feature sets, which for the most
part revolve around n-grams, but the text sentiment is also briefly explored. Thus, the
development of this system has to a larger extent focused on feature extraction for finding
the best features and the representation of these features. This section will describe the
capabilities of the document-level system, which is illustrated by the flowchart in Fig-
ure 6.8, on page 66, describing feature extraction and representation methods, including
the two methods used for building the n-gram vocabulary.

6.4.1. Feature Extraction
n-grams

Section 4.2, presenting state-of-the-art, showed how n-grams, being content-specific, have
proved to be powerful for characterizing texts and that they are frequently used. There-
fore, n-grams are used as the foundation for how texts are represented in the document-
level system. In this implementation, unigrams, bigrams and trigrams are supported
and tested, but as the next chapter will show, only unigrams are worth using for this
problem domain. Since Internet terms, such as URLs, are a part of the most frequent
terms, they will be a part of the set of unigrams.

Vocabulary Construction

The document-level system has two different methods implemented for constructing the
vocabulary, using different strategies to assess the usefulness of the terms in the objective
of predicting gender. The trivial approach is extracting the n most frequent terms in
the training set and using these to represent the vocabulary. With an adequate size of
n, the vocabulary should contain enough frequent terms that characterize the texts, and
will be able to characterize new texts.

Given the problem of classifying gender, the issue with constructing the vocabulary
using the most frequent terms is that words that do not distinguish genders may be
present. This is a result of the terms being frequent with respect to the entire set of
tweets, consisting of both male and female authors, and only leads to unnecessary high
dimensionality and sparsity in the feature vectors, by terms supplying no value. While
the pre-processing methods are designed to take care of a large part of this, a method
for quantitatively measuring the gender-based dissimilarity of terms was engineered. For
each term in the training set, a dissimilarity score is calculated using Equation (6.1),
which contains the following variables:

• numTermmale: The number of times the term occurs in the entire male subset of
the training set.

63

6. Architecture

• numTermfemale: The number of times the term occurs in the entire female subset
of the training set.

• total number of termsmale: The total number of terms in the male subset of the
training set.

• total number of termsfemale: The total number of terms in the female subset of
the training set.

dissimilarity =
∣∣∣∣∣ numTerm male

total number of termsmale

− numTermfemale

total number of termsfemale

∣∣∣∣∣ (6.1)

In other words, each term’s occurrence counts in the male and female subsets of the
training set are calculated. The absolute value of the difference between these two values
constitute the dissimilarity score. The terms with the highest scores are then chosen to
be in the vocabulary. The practical implications of this procedure is that instead of
picking the most frequent words, the vocabulary is constructed using the most different
words with respect to how frequently they are used by each gender.

Sentiment

In addition to using n-grams, the use of text sentiment as a feature for predicting gender
is explored. Though the data analysis in Chapter 5 showed that the difference in the
sentiment distribution by gender is nearly neglible, we decided to investigate if the model
would be able to find a correlation between text sentiment and other features. Thus, the
document-level architecture supports the use of sentiment, predicted by VADER (Hutto
and Gilbert, 2014)3, as an additional feature in the feature vector consisting of n-grams.

6.4.2. Feature Representation
The system provides two possible core representations of the texts using the features
described, being:

• Bag of Words (BoW)

• Term Frequency-Inverse Document Frequency (TF-IDF)

As described in Chapter 3, BoW keeps the word count of each vocabulary term, while
TF-IDF normalizes this value by down-weighting terms that occur frequently in the
training set as a whole. In addition, the possibility of reducing the dimensionality of the
feature vectors using autoencoders is implemented. The number of dimensions in the
feature vectors depends on the size of the vocabulary, i.e., a large vocabulary results in
high dimensionality. Thus, using autoencoders to reduce the dimensionality can be ad-
vantageous for creating a lower-dimensional representation, reducing computation time
and memory usage, since the representations will only be a fraction of the original size,
while still retaining the information in the original representation.

3http://www.nltk.org/_modules/nltk/sentiment/vader.html

64

6.4. Document-Level System

6.4.3. Classification Model
The classifier used in the document-level system is a feedforward neural network with
three hidden layers. The size of the hidden layers, in terms of neurons, are respectively
2048, 1024 and 512, as shown in Figure 6.7. The input layer is determined by the size
of the feature vector which in turn is determined by the size of the vocabulary. As a
vocabulary size of 10,000 results in the best performance during experiments, the size
of the input layer corresponds to this value. The output layer consists of one neuron for
each gender.

As with the character-level and word-level models, ReLU is used as activation function
in all layers except the output layer, where softmax is used. Additionally, early stopping
is used, along with categorical cross-entropy to compute loss, and Adam (Kingma and
Ba, 2014) as optimizer.

Figure 6.7.: Structure of how the Artifical Neural Network at the document-level is build.
The input layer representing the x variable for each neuron that works as
a placeholder for the feature vector. The hidden layers are marked by the
variable h, and the predicted values with the variable y, representing the
nodes of each gender.

65

6. Architecture

Figure 6.8.: Overview of the document-level system representing the stages the sample
texts need to go through before the model can be trained and ready for the
classification task.

66

6.5. Stacking Models

6.5. Stacking Models
To combine the efforts of the three separately developed models, the ensemble method
called stacking is used. Stacking is a method where several learners, which are based on
different methods, are trained using the same data. The predictions of each classifier is
then used for the final prediction. It also usual to further train a model taking the pre-
dictions of the sub-models as input. However, in this implementation we have restricted
ourselves to only aggregating the predictions made by the sub-models, using different
aggregation functions and without further training a combined model. This section is
brief and describes how the sub-models are used collaboratively.

Aggregation Functions

Because softmax is used, each sub-model outputs a likelihood distribution summing to
1.0, which describes to which degree it believes the author is male or female. These con-
fidence values can be aggregated in different ways. The following aggregations are made
possible in this implementation and the results concerning the experiments conducted
with each function are presented in the next chapter.

• Majority: The prediction of each sub-model represents a vote. The class repres-
ented among the majority is used as the final prediction. The motivation behind
this method is that of three separate learners, if one model performs badly for cer-
tain types of tweets, the other two may steer the prediction in the right direction.
The disadvantage is that if two of the models perform poorly in certain areas, they
will dominate the last model, even if it is correct.

• Maximum: With regards to the likelihood distribution of each model, the most
confident model is allowed to solely dominate the prediction. This method tries to
leverage on the assumption that the more confident the model is, the more correct
it is. Thus, it is not inhibited by the same issue as majority. On the other hand, if
the most confident model is, in fact, often wrong, then this will have a prominent
negative effect on the classifications.

• Average: The likelihood distributions are averaged over the three models, with
respect to gender, resulting in a likelihood distribution that reflects each sub-
model’s prediction. This method tries to balance the advantages and disadvantages
of the two former methods. Here, each model will have a say in the final prediction,
weighted by the model’s confidence in its prediction. The more uncertain the model
is, the less it will affect the final prediction. If all models are confident of their
predictions, the final prediction is practically a majority decision. However, if two
models are quite uncertain of their predictions, while one model is very certain,
the method practically works like maximum.

67

7. Experiments and Results
As with most complex problems, the path to a well-functioning system consists of many
iterations of trial and error. This chapter will present the experiments that were con-
ducted to construct the best model for gender profiling texts. The experiments serve the
purpose of attaining the most accurate profiling system, in addition to understanding the
behavior of the models and drawing inferences about the quality of tweet embeddings.
The chapter is divided into two sections. The first section will describe the experiments
that have been conducted, while the second section will present the setup of the experi-
ments and the corresponding results.

In this project, three approaches with different foundations were explored, these being
character-level, document-level and word-level (as described in the previous chapter).
While the character-level and word-level architectures are quite similar methodologic-
ally, the document-level architecture is fundamentally different. The former two use
Artifical Neural Networks to learn tweet features implicitly, while the latter takes a
statistical approach where features are explicitly chosen before they are fed to the clas-
sifier. An implication of this is that the development patterns vary for the different
approaches. Additionally, different types of ANN models were explored for each of the
systems. As a result of this, some parts of this chapter will be split accordingly, to
present the experiments concerning each approach in a readable fashion.

7.1. Experimental Plan
An important detail about Artifical Neural Networks is that model building is a more
complex endeavour, compared to methods such as SVMs and random forests. With the
various network types, optimization methods and network topologies, i.e., the number of
layers, neurons and how these are connected, the number of possible models is endless.
Additionally, with increasing complexity in the model, the number of hyperparameters
and the possible values for these increase, along with the possibility of overfitting. It is
also the case that there are cyclical dependencies between optimal pre-processing, fea-
ture extraction and classifiers, i.e., to evaluate one of the steps, the other steps must be
held constant. A brute-force approach, trying all combinations is infeasible; therefore
assumptions have been made, and system-specific methodologies have been followed to
be able to build models in a practical manner.

The first part of the experiments concerned the matter of optimizing each of the three
sub-systems, with regards to pre-processing of text, extracting features and classification

69

7. Experiments and Results

model. For each system, we followed an approach where an initial set of topologies were
explored. The best performing one of these was chosen as the one to develop and op-
timize further. In the character-level and word-level architectures, the feature extractor
and classifier are embedded in the same ANN, and thus the experiments can essentially
be summarized as trying various neural network architectures, and tuning hyperpara-
meters, to find the one that was best able to capture gender-specific features. For the
word-level model, different vocabulary sizes were tried as well. After building appro-
priate classifiers, an ablation study of pre-processing methods was done to examine if
lowercasing and the removal or replacement of specific terms had any effect.

For the document-level model, the features needed to be defined explicitly and thus
the approach taken was slightly different from those of the character-level and word-
level systems. Because of this, a large part of the experiments was about defining the
set of features, before it could be fed to the classifier, and the set of experiments was
somewhat more elaborate. The model building process for the document-level system
was divided into three steps in the following order:

1. Construction of a base ANN and feature extraction

2. Ablation study of pre-processing methods

3. Optimization of classification model

The first step was to use a base ANN to find the best set of features and constructing
an efficient representation of these for the classifier to process. The strategy for choos-
ing features was based on the linguistic analysis presented in Chapter 5 and all of the
features explored were n-grams, except for one, which was the text sentiment. Different
vocabularies were explored based on the most frequent words and an additional method,
which measured the most distinct words with respect to usage by each gender, i.e., we
attempted to use the terms that are frequently used by one gender and not as frequently
by the other. As representation, the methods explored were Bag of Words and Term
Frequency-Inverse Document Frequency, along with various vocabulary sizes. The use
of TF-IDF was motivated by its wide usage in the literature and its foundational idea
of assigning less importance to words that occur too frequently in the training set. This
step was followed by determining the most viable methods for pre-processing the texts
by performing an ablation study. Unlike what was done for the other systems, the abla-
tion study was performed before the optimization of the classifier. This was motivated
by the increased focus on feature engineering in this approach, compared to the others.
Since the number of terms captured by this model is limited by the vocabulary size,
the choice of pre-processing methods was relatively important. Especially since many of
them are text-filtering methods that remove or keep certain types of terms. Additionally,
we attempted to optimize the representation by using an autoencoder. The last step
was to optimize the classifier, with regards to hyperparameters and regularization.

To optimize the neural network classifier in each sub-system, it was initially planned

70

7.1. Experimental Plan

to perform automated hyperparameter optimization for selected parameters, such as
the number of hidden neurons/filters/memory units, dropout rate, and other regular-
ization constants. Grid search was one alternative, but the computational cost, of the
fine-grained variant, grows exponentially with the number of parameters, as a result
of trying every combination of the possible values. This is only practical when there
are few hyperparameters. A course grid-search is a better option, since it limits the
number of searches, but since we are using ANNs, which consist of a very large number
of tunable parameters, random search was considered an even better approach. This is
reasoned by its ability to explore a larger set of values, without extra computational cost,
and faster convergence to viable hyperparameters (Goodfellow et al., 2016, p. 420-422).
With some of the models possibly training for several hours, we were unable to execute
an automated parameter optimization procedure because of time constraints. However,
the various model topologies and results of manually tuning parameters will be presented.

With the number of neural network model variations that were planned to be tried,
a base pre-processing configuration was defined as a starting point when evaluating the
initial set of models. This base step consisted of:

• lowercasing of texts

• removal of stopwords

• replacement of URLs, mentions, hashtags and image URLs (Internet/Twitter spe-
cific terms) with placeholder tags

• Removal of texts shorter than two characters

Of the pre-processing methods described in Section 6.1, lemmatization, emoticon re-
moval and removal of punctuation were left out because there was more uncertainty
related to the effects of these methods. Thus, their usage was deferred to a later point
in the model building process. Lemmatization also proved to be quite expensive com-
putationally, which is very impractical in the initial stage of exploring a large number
of neural network models.

To explore the combined power of the optimized sub-models, ensemble techniques ag-
gregating the predictions of the individual models were used, these being majority voting,
averaging the predictions, and choosing the most confident prediction. The second part
of the experiments presents the gender profiling results on the test set for each individual
system and the ensemble models. As an attempt to understand the behavior of the indi-
vidual sub-systems better, we also took a closer look at their confidence distribution, i.e.,
how confident the sub-systems were in their predictions, and if any trends were present
in the tweets they were most confident of.

71

7. Experiments and Results

7.2. Model Building

As described in Chapter 5, we had two sets of data at our disposal, one for training and
another to use as test set. The training set contained approximately 655,000 tweets,
of which 10% was used as a validation set to assess the generalization abilities of the
models. The rest was used for actual training. The main metric used to evaluate the
ANN models during optimization was the validation loss. The problem with metrics
such as precision and recall is that they only provide information about the fraction of
correctly classified data samples, but not how certain the models are of the predictions
made. As earlier described, by using softmax in the output layers of the classifiers, each
prediction contains confidence values summing to 1.0, describing the model’s estimation
of how likely it is for the sample to belong to each prediction class. In an ideal model,
the correct classes will have 100% confidence, whereas the incorrect classes will have zero
confidence. The loss value describes how much error there is in the confidence values.
Hypothetically speaking, in a binary problem, precision and recall can both have values
of 100% as long as the correct class is predicted for each sample with 0.51 confidence. In
this case, the loss value will still be somewhat high, though this is an extreme example.
Hence, for achieving the best possible generalization, the validation loss is the most ap-
propriate evaluation metric during optimization.

It should be clear to the reader that the experiments in this section concern the in-
termediate layers, i.e., the input layer and the output layer will be held constant, as
described in the architecture (Chapter 6), if not otherwise stated. The descriptions of
the various ANN topologies will therefore only consist of the intermediate hidden layers.

7.2.1. Character Level Model

Model Topology

Figure 7.1 shows the training process for a subset of the character-level neural net-
work models, after some degree of manual optimization through trial and error. The
tested model topologies are based on theoretical background presented earlier, concern-
ing ANNs and NLP, in addition to related work. The graphs illustrate the training
through the loss on the validation set per epoch. Below is a high-level description of the
model topologies. The description excludes the input layer and output layer:

• 2x512LSTM: Two LSTM layers with 512 memory units each.

• BiLSTM: One Bi-directional LSTM layer with 256 memory units in each direc-
tion.

• Conv_BiLSTM: One convolution layer with 1024 filters, one max-pooling layer,
one bi-directional LSTM layer with 256 memory units in each direction, and one
fully connected layer with 200 neurons.

72

7.2. Model Building

• 2xConv_BiLSTM: Two convolution layers with 256 filters, one max-pooling
layer, one bi-directional LSTM layer with 256 memory units, and one fully con-
nected layer with 128 neurons.

• Conv_2xBiLSTM: One convolution layer with 1024 filters, one max-pooling
layer, and two bi-directional LSTM layers with 256 memory units.

The entire set of hyperparameters of the models have been omitted at this time, as
the selected models are only meant to show the variety in types of ANNs explored
and the qualities of these, in addition to an impression of the model building process.
For regularization, dropout was used. From the graphs, it is clear that the Conv_-
BiLSTM model is superior with less loss than the other models, even though 2xConv_-
BiLSTM and Conv_2xBiLSTM are more advanced versions of the same model with
respectively more convolutional layers and LSTM layers. Figure 7.2, on page 75, shows
the training loss and validation loss for the Conv_BiLSTM model, illustrating how the
level of overfitting is rather low. Therefore, other regularization techniques than dropout
were not found necessary.

Figure 7.1.: Comparison of a subset of character-level models, showing the validation
loss for each epoch.

Filter Size

The filter size defines how many characters the filter of the convolution layer considers at
a time in its receptive field when looking for patterns. Table 7.1 illustrates how this value

73

7. Experiments and Results

Filter-Size Val Loss
1 0.605
2 0.590
3 0.568
4 0.561
5 0.557
6 0.558
7 0.570

Table 7.1.: Validation loss for different kernel sizes on the character-level convolution
layer.

affects the system, with a value of 5-6 seeming to be optimal. Providing a meaningful
interpretation of this value is difficult, but it could perhaps be related to the length of
the tweets or the average length of the words.

Regularization

Figure 7.2 shows the training loss and validation loss during training. Here we can
see that there are few overfitting tendencies during the first half of training, but this
then grows stronger and we can see that the curve of the training loss is still moving
downwards as the validation loss converges. At the point of convergence, the difference
between the loss values is not too high, but to see if the loss could be decreased fur-
ther, L1 and L2 regularization were explored. However, as Figure 7.3 shows, none of
these improved the results. It should be noted that the regularization constants were
not experimented with extensively and default values were used. The figure also shows
how the model is affected considerably by using neither recurrent dropout nor regular
dropout.

Visualizing the training loss vs the validation loss also revealed something else. The
validation loss is actually lower than the training loss at the beginning. This is very
peculiar, because it may compromise the variety of the validation set, i.e., that the
validation consists of many samples that are similar.

74

7.2. Model Building

Figure 7.2.: Training and validation loss for the convolutional bi-directional LSTM.

Figure 7.3.: Validation loss for the character-level model, with and without the use of
different regularization techniques.

75

7. Experiments and Results

Ablation Study of Pre-Processing Methods with Character-Level Model

Table 7.2 shows the combinations of pre-processing methods that were explored with
the character-level system. The results imply that most of the differences are rather
marginal, with the loss for the most part staying the same regardless of the presence or
absence of emoticons and stopwords. This could indicate that the neural network model
is able to disregard these noise terms that are equally common for each gender. The
data analysis in Chapter 5 did indeed indicate that there were no significant trends in
emoticon usage with regards to gender. There were a couple of exceptions, but the low
frequency of emoticons in the dataset is likely to weaken the benefits of these. Lemmat-
ization did not change anything significantly either, while the removal of punctuation did
cause a slight increase in loss, suggesting the model is able to recognize some patterns
in use of punctuation by each gender. What stands out the most is the improvement in
results when lowercasing is not used, promoting the model’s ability to capture the usage
of capital letters and use this as a feature for predicting gender.

Non-Base Methods Base Methods Val lossLem. R. Emo. R. Punct. R. Stop. Lower Int. tags
x x x 0.557

x x x x 0.558
x x x x 0.554

x x x x 0.573
x x 0.555

x x x x x x 0.579
x x 0.497

Table 7.2.: Ablation study of pre-processing in character-level system. The table shows
the validation loss when the various pre-processing methods are used in com-
bination or omitted. The abbreviations represent lemmatization, removal of
emoticons, removal of punctuation, removal of stopwords, lowercasing of text,
and replacement of Internet terms with placeholder tags. The base meth-
ods compose the initial pre-processing configuration used to explore various
model topologies.

76

7.2. Model Building

7.2.2. Word Level Model
Model Topology

The word-level model was developed with a similar approach as with the character-level
model. Different topologies were tested with regards to their ability to map gender-
indicative features. Figure 7.4 shows the training process for a subset of the word-
level models that were trained, with the validation loss graphed per epoch of training.
Following is a high-level description of the models to gain a basic understanding of them.
The description excludes the input layer and output layer:

• 4x512LSTM: Four LSTM layers with 512 memory units each.

• Conv_BiLSTM: One convolution layer with 1024 filters, one max-pooling layer,
one bi-directional LSTM layer with 256 memory units in each direction, and one
fully connected layer with 128 neurons.

• 2x512_256LSTM: Two LSTM with 512 memory units and one LSTM with 256
memory units.

• BilSTM: One Bi-directional LSTM layer with 256 memory units in each direction.

• 3xConv_BiLSTM: Three convolution layers with 256 filters each and one bi-
directional layer with 256 neurons in each direction.

Unlike when processing characters, the convolutional bi-directional network (Conv_-
BiLSTM) did not perform as well here. In this case, the simpler bi-directional network
(BiLSTM) has a steadier training pace, converging to a lower loss value.

Vocabulary Size

The word-level model is trained using a set of most frequent words acquired from the
training set. Table 7.3 shows the impact the size of the vocabulary has on the validation
loss of the neural network model. While a size larger than 25,000 does not seem to
benefit the model significantly, a size of 10,000 and below present higher loss values.
From an intuitive perspective, as long as no adverse effects are imposed on the loss,
larger vocabularies should be preferred as they generally increase the ability to capture
more information in the text. On the other hand, they turn out to be expensive with
regards to memory. To balance this, a vocabulary size of 50,000 was deemed appropriate
for our purposes.

77

7. Experiments and Results

Figure 7.4.: Comparison of a subset of word-level models explored, showing the valida-
tion loss for each epoch.

Vocabulary Size Val Loss
5,000 0.560

10,000 0.550
25,000 0.536
50,000 0.536
88,000 0.535

Table 7.3.: Validation loss for different vocabulary sizes in the word-level model.

78

7.2. Model Building

Regularization

Figure 7.5, on page 80, illustrates the development of training loss, along with the val-
idation loss, during training. We see that after four epochs of training, the training loss
surpasses the validation loss, which starts to flatten out not long after. As with the
character-level model, this development raises the question of whether it would be pos-
sible to lower the validation loss by using regularization methods. With dropout already
incorporated, Figure 7.6, on page 80, illustrates the effects of L1 and L2 regularization
on the model. Unfortunately, the results are discouraging.

Ablation Study of Pre-Processing Methods with Word-Level Model

Non-Base Methods Base Methods Val lossLem. R. Emo. R. Punct. R. Stop. Lower Int. tags
x x x 0.536

x x x x 0.538
x x x x 0.532

x x x x 0.532
x x x x x x 0.538

x x x x x 0.534
x x 0.540

Table 7.4.: Ablation study of pre-processing in the word-level system. The table shows
the validation loss when the various pre-processing methods are used in com-
bination or omitted. The abbreviations represent lemmatization, removal of
emoticons, removal of punctuation, removal of stopwords, lowercasing of text,
and replacement of Internet terms with placeholder tags. The base meth-
ods compose the initial pre-processing configuration used to explore various
model topologies.

As Table 7.4 illustrates, the pre-processing steps seem to be even less significant for the
word-level model, with little variance in the loss values. This is reasonable behavior for
emoticons, since they are not present in the GloVe embedding dictionary. Punctuation
marks do have corresponding embeddings, but the change in loss value is relatively
insignificant, unlike the effects imposed on the character-level model. The little use of
lemmatization could be explained by the fact that the inflected forms of words are likely
to be located close to each other in vector space, thus imposing little change in the
word embeddings that are passed through the neural network. As such, the results will
practically be the same. Keeping capital letters was not explored, because the set of
pre-trained GloVe embeddings only contains lowercased terms.

79

7. Experiments and Results

Figure 7.5.: Training and validation loss of word-level model.

Figure 7.6.: The effects of L1 and L2 regularization on the word-level model.

80

7.2. Model Building

7.2.3. Document Level Model
Base Model

To be able to evaluate different vocabulary sizes and representations before optimizing
the classifier, a base classifier was chosen from a set of ANN models. Since only feed-
forward networks were used for the document-level models, this set of models could feas-
ibly be constructed in a structured fashion. This was more challenging for the character-
level and word-level models because of the wider array of ANN variants explored and the
considerably longer training time. We started simple with one hidden layer containing
one neuron, and iteratively added models to the set by increasing the number of layers
and neurons. This approach made it possible to see when the topology of the model was
too simple to learn and at what point the increased complexity did not lead to anymore
improvements. To train and evaluate the set of base models, a Bag of Words representa-
tion was used with an initial vocabulary size of the 10,000 most frequent words. This is
the simplest representation and was, with a significantly large vocabulary size, deemed
a good setup for experimenting with initial models.

Table 7.5, on page 82, shows the topologies of the models and the validation loss they
converged to. While the differences between the loss values are within a small range,
there are some pointers towards the better choices. The green row contains the model
that was used as base model in further experiments. The rows in red further show how
the increased number of neurons or layers can be of little use to improving the loss.

Bag of Words

Table 7.6, on page 83, displays the experiments conducted to find an appropriate size for
the n-gram vocabulary containing the most frequent words in the training set. Simultan-
eously, different values for n were tested, these being one, two and three, i.e., unigrams,
bigrams and trigrams. Since the size of the vocabulary determines the size of the input
vector to the model, it was considered beneficial to keep the vocabulary as small as pos-
sible provided that too much information was not lost. Therefore, different sizes were
tested to examine for each size how the validation loss was affected. For every vocab-
ulary size, six different n-gram parameters were explored. These parameters define the
range of n, e.g, (1,3) means the use of unigrams, bigrams and trigrams. From these
results we see that there is relatively little value in anything other than unigrams. The
vocabulary size was measured to be best with 10,000 terms. Vocabularies smaller than
this threshold seemed to contain less information affecting the validation loss to the
worse. There was no improvement with a larger vocabulary, which indicates that there
were few additional valuable terms to be extracted.

81

7. Experiments and Results

Topology Minimum Validation Loss
[1] 0.607
[16] 0.591
[32] 0.588
[64] 0.583
[128] 0.574
[512] 0.565
[1024] 0.555
[2048] 0.553
[4096] 0.553
[16, 16] 0.590
[32, 32] 0.583
[128, 64] 0.565
[256, 128] 0.558
[512, 256] 0.549
[1024, 512] 0.537
[2048, 1024] 0.539
[128, 64, 32] 0.568
[256, 128, 64] 0.556
[512, 256, 128] 0.555
[1024, 512, 256] 0.536
[2048, 1024, 512] 0.533

[2048, 1024, 512, 256] 0.539

Table 7.5.: Validation loss for different possible base models. The green row shows the
base model that was chosen. The models marked in red show the more
complex models with no performance increase compared to other simpler
models.

82

7.2. Model Building

Vocabulary Size N-gram Validation Loss

15,000

(1, 1) 0.539
(1, 2) 0.541
(1, 3) 0.542
(2, 2) 0.628
(2, 3) 0.632
(3, 3) 0.649

10,000

(1, 1) 0.533
(1, 2) 0.546
(1, 3) 0.550
(2, 2) 0.634
(2, 3) 0.636
(3, 3) 0.651

5,000

(1, 1) 0.560
(1, 2) 0.566
(1, 3) 0.565
(2, 2) 0.644
(2, 3) 0.645
(3, 3) 0.657

2,000

(1, 1) 0.595
(1, 2) 0.596
(1, 3) 0.598
(2, 2) 0.653
(2, 3) 0.655
(3, 3) 0.662

1,000

(1, 1) 0.622
(1, 2) 0.623
(1, 3) 0.626
(2, 2) 0.660
(2, 3) 0.662
(3, 3) 0.667

Table 7.6.: Validation loss for different vocabulary sizes and ranges of n-grams using
BoW. The grey rows represent the runs where very little learning occurred,
indicating that unigrams are imperative features. The green row shows the
best result in the experiment.

83

7. Experiments and Results

Vocabulary Size N-gram Validation Loss

10,000

(1, 1) 0.544
(1, 2) 0.543
(1, 3) 0.545
(2, 2) 0.690
(2, 3) 0.690
(3, 3) 0.690

Table 7.7.: Validation loss for different vocabulary sizes and ranges of n-grams using TF-
IDF. The grey rows represent the runs where very little learning occurred,
indicating that unigrams are imperative features.

Term Frequency-Inverse Document Frequency

With basis in the Bag of Words experiments, a less exhaustive set of tests was performed
for the Term Frequency-Inverse Document Frequency representation. Because a vocab-
ulary smaller than 10,000 terms performed poorly with BoW and minimal improvement
was observed with a size of 15,000, the tests were restricted to 10,000 terms. The results
are shown in Table 7.7 and we see that the loss values are slightly higher. By omitting
unigrams, the results are even poorer than those presented for Bag of Words.

Dissimilarity Vocabulary

As described in Chapter 6, about the architecture, a method for quantifying the gender-
based dissimilarity of terms was tried. A subset of the words with highest dissimilarity
scores are displayed in Table 7.8 and here we can see, e.g., the smiley emoticon ’:)’, which
we discovered was more frequently used by women (Chapter 5). Table 7.10 shows the
results by using this approach to construct the vocabulary, followed by using BoW and
TF-IDF as representation. Unfortunately, the results are relatively similar to those seen
before using most frequent terms. This observation begged for further investigation.
The greyed out terms in Table 7.8, constituting almost half of the displayed terms, are
also found in the set of 100 most frequent terms. A subset of the latter is shown in
Table 7.9. In this table we do see some less topic-descriptive terms, such as ’&’ and
’via’. However, further investigation revealed that the least frequent dissimilarity term
in Table 7.8, “basketball”, appeared as the 651th most frequent term. Essentially, this
implies that as long the vocabulary size is large enough, it is likely that all of the most
gender-identifying words will be captured. This substantiates that with a vocabulary size
of 10,000, both vocabularies will, for the most part, contain the same terms. Another
observation is that the performance of BoW and TF-IDF are nearly identical, which
conforms to the expected behavior because the dissimilarity formula already implicitly
diminishes the weight of terms which are too common. In addition, there was little
difference between these two representations when using most frequent terms. If the
vocabularies are practically the same, this is expected.

84

7.2. Model Building

Dissimilarity Words by Gender
love day today thank
data google happy please
credit artist help game
tanks card pace christmas
life horse :) amazing

photo news web beautiful
women painting basketball marketing
lovely man play girl

Table 7.8.: Subset of the 100 terms with the highest gender-based dissimilarity score.

Frequent Words in Vocabulary
new & via like
one today day get
good great time thanks
love people know see
back think work year
go :) best would
us first last really

need going happy make

Table 7.9.: Subset of the 100 most frequent terms

Model Vocabulary Size N-gram Validation Loss

TF-IDF 10,000
(1, 1) 0.543
(1, 2) 0.553
(1, 3) 0.555

BoW 10,000
(1, 1) 0.543
(1, 2) 0.551
(1, 3) 0.555

Table 7.10.: Validation loss for TF-IDF and BoW using a vocabulary constructed using
the most distinguishing words for each gender

Sentiment as Feature

A brief experiment was conducted using text sentiment as an extra feature. The vocab-
ulary size, and type of n-grams used, was based on the best results from the experiments
with BoW and TF-IDF, i.e., 10,000 unigrams. The resulting performance of validation
loss using sentiment as additional feature did not make any difference compared to the

85

7. Experiments and Results

initial setup. The validation loss for using sentiment as feature ended up being 0.546,
which is slightly higher than using the initial setup scoring 0.533.

Ablation Study of Pre-Processing Methods with Base Model

Non-Base Methods Base Methods Val lossLem. R. Emo. R. Punct. R. Stop. Lower Int. tags
x x x 0.533

x x x x 0.542
x x x x 0.542

x x x x 0.544
x x x x x x 0.542

x x x x x 0.545
x x 0.542

Table 7.11.: Ablation study of pre-processing in document-level system. The table shows
the validation loss when the various pre-processing methods are used in com-
bination. The abbreviations represent lemmatization, removal of emoticons,
removal of punctuation, removal of stopwords, lowercasing of text and re-
placement of Internet terms with placeholder tags. The base methods com-
pose the initial pre-processing configuration used to explore various model
topologies.

Similar to the character-level and word-level systems, the use of pre-processing methods
to filter the text for certain words made virtually no difference at all. Table 7.11 shows
the results. Our intuition was also that the use of lemmatization would increase the
model’s chance of capturing more content information since the term space would be
reduced and generalized. Since this model is to a larger extent restricted by its smaller
vocabulary, we hypothesized that lemmatization would provide more use here than for
the other models. The results, however, show otherwise.

Dimensionality Reduction with Sparse Autoencoders

A drawback of representing texts using BoW is that the size of the vectors are the same
size as the size of vocabulary. This poses a potential problem with regards to sparsity
and dimensionality. Our data analysis showed that on average, a tweet in the training
set contained approximately twelve words (see Figure 5.4). This implies that with a
vocabulary containing 10,000 terms, only twelve of the 10,000 values are non-zero on
average, i.e., 99.9% of the values in a tweet representation are zeros on average. Accord-
ing to Xu et al. (2013), such sparse representations can lead to overfitting and reduced
generalization. The authors used a dimensionality reduction technique similar to au-
toencoders to increase document classification accuracy. The minimal differences in the
results of the latter experiments also underpin the assumption that the representation

86

7.2. Model Building

could be too high-dimensional and sparse. Additionally, training would usually stop
after a few epochs because of overfitting and the lack of improvement in the validation
loss. These tendencies provided the motivation for trying dimensionality reduction of
the BoW representation with autoencoders, to represent the same information in a lower
dimension, thus increasing the possibility for better generalization.

The sparse autoencoder implemented in this experiment was inspired by the description
of sparse autoencoders in “Representation Learning: A Review and New Perspectives”
by Bengio et al. (2013, section 7.2) and from the Keras blogg.1 As it was not initially
a part of the plan to use autoencoders, not much time was allocated to optimizing this
process. Thus, only three reduction sizes were tested and the depth of the autoencoder
was not thoroughly explored. Based on Goodfellow et al. (2016, p.510), a single hidden
layer with 1,000 neurons was added between the input layer and the encoding layer.
Table 7.12 displays the results for the three different reduction sizes. Recall that the
best measured validation loss with base model was 0.533. As we can see the, the di-
mensionality reduction in all three trials seems to result in information loss during the
encoding process, since the loss increases. Figure 7.7 shows the training and valida-
tion loss, during training, when using the 300-dimensional encodings and the original
10,000-dimensional representations. We can see that, though there is information loss,
overfitting is considerably reduced. However, this could also be related to the model’s
difficulties with extracting information from the encodings.

Reduction Dimension Validation Loss
1,000 0.589
500 0.587
300 0.587

Table 7.12.: Reduction size from the original representation size and there performance in
validation loss using the base model. The reduced size are reduced from the
original represenation with BoW 10,000 most frequent terms as vocabulary.

Model Optimization

The previous experiments revealed minimal differences in gender prediction perform-
ance, using various feature extraction methods and representations. Disregarding the
insignificance of the differences, the Bag of Words representation, with a vocabulary
composed of the 10,000 most frequent unigrams, presented the best performance with
respect to validation loss. With this setup, an effort was made to optimize the base
model classifier, with regards to topology and regularization. The experiments conduc-
ted to construct the base model indicated that a model with three hidden layers seemed
to be the most viable topology. As shown in Table 7.13, trying more complex struc-
tures with four hidden layers and varying the number of neurons led to no improvement,

1https://blog.keras.io/building-autoencoders-in-keras.html

87

7. Experiments and Results

Figure 7.7.: Training and validation loss when using representations with reduced di-
mension size (dim_300), compared to using the original 10,000-dimensional
base representations.

resulting in the base model becomes the final model. Several regularization techniques
were tried on the model, but as Figure 7.8 displays, there were no further improvements
using regularization. Evidently, the use of batch normalization results in extremely poor
performance. This could be related to the level of sparsity in the representations. Fur-
thermore, the plot shows that the rest of the regularization techniques result in similar
performance to using no regularization (denoted as simply ’Base’ in the figure), until
each graph diverges. As previously mentioned, time constraints prevented us from doing
extensive experimentation with regularization parameters.

88

7.2. Model Building

Layers Minimum Validation Loss
[800, 400, 200] 0.537
[1500, 750, 375] 0.535

[1024, 2048, 1024] 0.542
[512, 512, 512, 512] 0.545
[800, 400, 200, 100] 0.546

[1024, 2048, 1024, 512] 0.543

Table 7.13.: Combination of other topologies and there performance.

Figure 7.8.: Performance on validation loss comparing regularization techniques with the
base model.

89

7. Experiments and Results

7.3. Validation Set Results
Tables 7.14 to 7.16 present the precision, recall and F1-score for the character-, document-
and word-level systems on the validation set. A brief summary2 of the score metrics is
provided for convenience, explained with respect to a classification class C :

• Precision: The fraction of relevant instances among the retrieved instances, i.e.,
the fraction of instances correctly classified as C among the instances classified as
C.

• Recall: The fraction of relevant instances retrieved of all relevant instances, i.e,
the fraction of instances correctly classified as C of all existing instances of C.

• F1-score: A measure for averaging precision and recall to get a better overall
evaluation of the system. More specifically, it is the harmonic mean of precision
and recall.

These scores are presented for each gender and the system as a whole, with the values
for the latter being identical for precision, recall and F1-score in binary classification,
using the micro-average. The micro-average is biased towards the more populated class
in the dataset. On the other hand, macro-average is biased towards the least populated
class. In our case, the choice was trivial, as the the two metrics presented similar results.

Character-Level
Female Male Overall

Precision 0.750 0.733
0.740Recall 0.652 0.815

F1-score 0.697 0.772

Table 7.14.: Validation scores for the character-level system.

Word-Level
Female Male Overall

Precision 0.702 0.722
0.713Recall 0.663 0.757

F1-score 0.681 0.740

Table 7.15.: Validation scores for word-level system.

The results correspond to the reported validation loss results, which showed that the
character-level model had less error than the word-level and document-level models, with

2A more detailed description about the metrics can be at Scikit-Learn:
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_sup-
port.html

90

7.4. Test Set Results

Document-Level
Female Male Overall

Precision 0.714 0.733
0.725Recall 0.671 0.771

F1-score 0.692 0.751

Table 7.16.: Validation scores for document-level system.

a value of 0.497. The latter two had similar amounts of validation loss, at approximately
0.540. We can also see that the models are more proficient at predicting males. In
the case of the character-level model, recall for males is considerably higher than the
precision. In addition, the precision for females is slightly higher than precision for
males. This indicates that the model is more careless when producing a prediction as
male, i.e., a higher rate of male class predictions.

7.4. Test Set Results

The following tables present the precision, recall and F1-score for the character-, document-
and word-level systems on the test set, in addition to the scores of the ensemble models,
which combine the previously mentioned sub-systems. For convenience, the overall score
for each sub-system, and each variant of stacking model, are provided in Table 7.17. Lo-
gistic Regression, Random Forest and Naïve Bayes are used as baseline models and their
scores are also included in this table. The text representation used for these models are
the same as for the document-level model. More detailed tables will be presented in the
following paragraphs.

Sub-Systems

Character-Level
Female Male Overall

Precision 0.616 0.570
0.592Recall 0.559 0.626

F1-score 0.586 0.597

Table 7.18.: Test scores for character-level system.

91

7. Experiments and Results

System Type Overall
Logistic regression 0.591
Random Forest 0.551
Naïve Bayes 0.577

Character-level 0.592
Word-level 0.604

Document-level 0.585
Average Confidence-CWD 0.610
Average Confidence-CW 0.613
Average Confidence-CD 0.598
Average Confidence-WD 0.602

Majority-CWD 0.606
Maximum Confidence-CWD 0.610

Table 7.17.: The overall test performance for each sub-system and ensemble model. The
abbreviations CWD, CW, CD and WD correspond to the sub-models
that have been combined.

Word-Level
Female Male Overall

Precision 0.613 0.593
0.604Recall 0.633 0.572

F1-score 0.623 0.582

Table 7.19.: Test scores for word-level system.

Document-Level
Female Male Overall

Precision 0.596 0.572
0.585Recall 0.613 0.554

F1-score 0.604 0.563

Table 7.20.: Test scores for document-level system.

Tables 7.18 to 7.20 illustrate the differences in performance between the three sub-
systems. Compared to the validation results, we can instantly observe a discrepancy
with the results on the test set being considerably worse that on the validation set. This
will be further addressed in the next chapter. On a larger scale, the test scores are
quite similar. The largest difference in overall performance is around 1.5%, being the
difference between the score for the word-level system and the document-level system.
However, with respect to the low magnitudes, we can still make some observations to
compare the systems.

92

7.4. Test Set Results

With regard to the individual classes, the character-level system performs better than
the others when predicting male authors, while the word-level system scores best pre-
dicting females. None of the systems turn out to be superior at classifying both genders,
though the overall performance of the word-level system is better than the other two.
The document-level system is the weaker of the three, being outperformed by the word-
level model at every single point. Though it is around 2% better at predicting females
than the character-level model, its ability to predict males is nearly 3.5% weaker. Thus,
the utility of the document-level model could be questioned. However, an important de-
tail is that these results do no indicate whether or not the separate systems are correctly
classifying the same tweets, which is the very incentive for utilizing ensemble techniques,
such as stacking.

Stacking Systems

Different variants of aggregation functions were tested for the ensemble models, these
being majority voting, averaging and maximum of individual confidences. Table 7.21
displays the scores achieved by averaging all three sub-models. As expected, the overall
system performance is higher than that achieved by the individual models alone, though
not by much. The averaged ensemble model only gained 0.6 % compared to the word-
level system, producing an overall score of 0.610.

To gain a better perspective of the contribution made by each sub-model, three ad-
ditional tests were run where the sub-models were averaged pairwise. These tests reveal
that the best performance is achieved by averaging the character-level and word-level
systems, resulting in an overall score of 0.613. Table 7.22 displays these results. Aver-
aging the character- and document-level systems produces a slight performance increase
from that achieved by the individual models alone, because of their individual ability
of better predicting males and females, respectively. However, combining the word-level
system with the document-level system actually decreases the score with 0.02%, com-
pared to the word-level model’s individual score. This is not unexpected, though, as
the word-level system achieves better scores for each metric on its own. Essentially
these results indicate that the word-level model is for the most part covering what the
document-level system is able to learn. On the other hand, the character-level system’s
ability to more accurately predict males than the word-level system is likely to be the
cause of the 1% increase in performance from the word-level model’s individual score.
From Table 7.23, we can see the slight increase in overall score achieved by granting

each sub-system a vote. The majority determines the prediction of each tweet. Even
though the overall score is increased, the F1-score for each gender is not higher than
the maximum score achieved by an individual system. This illustrates how the ensemble
model incorporates both the positive and negative aspects of the sub-models. Table 7.24
shows the results from the last aggregation function explored, where the model that is
most confident in its prediction is allowed to dominate each classification. This produced
similar, but slightly worse results than when averaging the sub-systems, indicating that

93

7. Experiments and Results

Average Confidence - All Systems
Female Male Overall

Precision 0.621 0.597
0.610Recall 0.629 0.590

F1-score 0.625 0.593

Table 7.21.: Test scores when stacking all three systems, using confidence average as
aggregation function.

Average Confidence - Character- and Word-Level
Female Male Overall

Precision 0.627 0.598
0.613Recall 0.621 0.605

F1-score 0.624 0.601

Table 7.22.: Test scores when stacking character- and word-level systems, using confid-
ence average as aggregation function.

the model most confident of its prediction is not always right. Combining only the
character- and word-level systems, with the same method, produced exactly the same
results as when averaging the two systems, which is the more desired behavior, i.e., that
the more confident a model is in its prediction, the more likely should it be that it is
correct as well. The extended score tables for some of the tests have been omitted here,
but can be viewed in Appendix D.

Majority - All Systems
Female Male Overall

Precision 0.620 0.592
0.606Recall 0.617 0.595

F1-score 0.618 0.593

Table 7.23.: Test scores when stacking all three systems, using majority as aggregation
function.

Maximum Confidence - All Systems
Female Male Overall

Precision 0.621 0.598
0.610Recall 0.632 0.587

F1-score 0.626 0.592

Table 7.24.: Test scores when stacking all three systems, using the maximum individual
system confidence as aggregation function.

94

7.4. Test Set Results

Gender Exclusive Training

One experiment was conducted where the models were only trained on one gender, but
validated and tested on both, to investigate if either gender perhaps held more charac-
teristic information in their tweets than the other. However, as Tables 7.25 and 7.26
show, this only resulted in extreme overfitting and a bias for the gender that was trained
on.

Training on Only Females
Female Male Overall

Precision 0.517 0.00
0.517Recall 1.000 0.00

F1-score 0.682 0.00

Table 7.25.: Test results by only using females in training set. The results were the same
for all three sub-models.

Training on Only Males
Female Male Overall

Precision 0.00 0.483
0.483Recall 0.00 1.000

F1-score 0.00 0.651

Table 7.26.: Test results by only using males in training set. The results were the same
for all three sub-models.

Correlation Between Confidence and Prediction of the Systems

As shown previously, combining the systems somewhat increased the prediction power
compared to that of the individual systems. The results showed that the word-level
system was best when predicting females, in addition to essentially covering what the
document-level was able to learn. Also, the character-level model was able to predict
males more accurately than the word-level system. To investigate if there was a cor-
relation between the performance of the models and how confident they were of their
predictions, a brief study was done on this very subject. Thus, we would be able to
obtain a better understanding of the behavior of the three models.

Figure 7.9 visualizes the level of confidence the three models have in their predictions of
the test set. The figure can be confusing and begs for some explanation as the graphs
are smoothed out curves based on histograms for the three sub-models. This was done
to visualize and compare the sub-models. The x-axis in the graph represents the degree
of confidence, and is measured using Equation (7.1), i.e., the difference between the
model’s estimated probabilities, or confidences, for each gender. The y-axis represents

95

7. Experiments and Results

Figure 7.9.: Prediction confidences of each model where the x-axis shows the degree of
confidence. Each end-point on the x-axis (-1.00 and 1.00) represent max-
imum confidence, while 0.00 represents maximum uncertainty. The y-axis
represents a normalized measure for the number of texts so that the each
graph sums to 1.00, as a probability density.

the probability density as the fraction of the test set that had a confidence difference
equal to the value of x. The interval [0, 1] on the x-axis means that the tweet was pre-
dicted as a male, while the interval [0,−1] corresponds to the prediction as female. A
value closer to 1.00 or -1.00 corresponds to the increased confidence in the prediction,
as respectively male and female. As one gets closer to 0.00, the model is more uncertain
about its predictions. Since the y-values correspond to fraction of the test set, the area
under each curve equals to 1.00.

x = P (Male)− P (Female) (7.1)

The graph illustrates that the three models have learned to predict each gender with
varying level of confidence and when compared to the test result scores for each sub-
model, we can learn some interesting aspects. The end-points of the blue curve in the
graph show that the document-level model was more confident in its predictions than
the other models. However, this stands in contrast to the actual performance of the
model which was the less accurate of the three. Intuitively, one would expect the curve
to be lower at the end-points and higher around x = 0.00, i.e., that the model would be
less certain of its predictions, given the weak performance.

96

7.4. Test Set Results

The area beneath the green curve, which represents the word-level model, covers al-
most all of the area beneath the blue curve. This implies the same as noted earlier, that
the word-level model may be covering most of the knowledge that the document-level
model possesses. It can also be observed that the orange curve of the character-level
model is skewed to the right, indicating its higher confidence in male predictions, while
the green curve is skewed to the left. This supports the results seen earlier, where the
character-level model was superior predicting males, and likewise with the word-level
model for prediction of females. Then, adding the area covered by the orange curve
and the green curve results in spanning a wider area to the left and right. Hence, the
confidences for predicting each gender are increased, supporting the notion of superiority
when combining these models, which was also proven by the test results.

The test scores of the models showed that the accuracy of predicting the genders lie
around 60%. However, these values do not show the correlation between the predic-
tion confidences of the models to the true genders. It is desirable to have a correlation
such that high confidence implies high accuracy, and likewise for low confidence and
low accuracy. Figure 7.10, on page 98, visualizes the correlation between the prediction
confidences and the true genders. This is done by plotting the same curves as those in
Figure 7.9 along with a curve representing the fraction of these predictions that were
correct. Thus, the error can be viewed as the distance between the red line and the
confidence curve of the model. A common property of the error rate for the models is
that it increases when the model has very low confidence, i.e., gets close to zero. For
the predictions the models are most confident of, i.e., when the degree of confidence is
at -1.00 or 1.00, it is clear that the error rate is highest for the document-level model
because the distance between the curves is higher than for the other models. The word-
level is the model with least error when it is most confident. Finally, one can see that
the character-level model and the word-level model have the lowest errors for males and
females, respectively, which supports the test results.

Tables 7.29 to 7.31, on page 100 and 101, contain some concrete examples of tweets ex-
emplifying the classification abilities of the models. Tables 7.29 and 7.30 show examples
of tweets where the models were 100% confident of their predictions. The predictions
were only correct for the examples in the first table, while the latter table contains tweets
for which the predictions were wrong. The tables show that there are recurring topics
authored by both genders. Among the tweets by females, which were predicted cor-
rectly, the content is about appearance and statements showing affection. The content
in tweets by males is related to sports, such as soccer and basketball, as well as video
games. Apparently, the model has learned these stereotypical characteristics. However,
as Table 7.30 shows, neither set of of topics is gender-exclusive and both can appear as
content in tweets by the opposite gender as well. Thus, when this happens the models
tend to predict the incorrect gender.

Keeping these previous observations in mind, Table 7.28, on page 99, further underpins

97

7. Experiments and Results

(a) (b)

(c)

Figure 7.10.: The graphs of Figure 7.9 plotted individually, along with a red curve in-
dicating error rate

98

7.4. Test Set Results

these, as it lists the most frequent tokens in both correctly and incorrectly predicted
tweets with respect to the gender of the author. In the set of tokens from correctly
predicted tweets, the distinct stereotypical tendencies are present. The models show
that they are able to use these content-describing words to characterize the respective
genders, but are having difficulties when the same terms, or related terms, are used with
the opposite gender. Table 7.31 shows examples of tweets when the models are most
uncertain, but still were able to predict the correct gender. The common denominator
here is the minimal amount of content-descriptive terms. We also discovered that when
the models were 100% confident, more than 2

3 of the predictions were correct, while less
than 1

3 were incorrect as shown in Table 7.27. Corresponding to results presented earlier,
it can also be observed that the error rate of the document-level model is higher at 100%
confidence.

Model Correct Wrong Total
Char 38 12 50
Word 37 14 51
Doc 60 29 89
Total 135 55 190

Table 7.27.: Number of tweets classified as correct or incorrect by each model, when the
models are 100% confident of predicting the correct gender.

Gender Frequent Tokens
(Correct Prediction)

Frequent Tokens
(Wrong Prediction)

Male

league tina
male love
model model
season artist
soccer palette

Female

:) google
tina buseniess
makeup basketball
love player
hair scoring

Table 7.28.: Most frequent tokens in both correctly and incorrectly predicted tweets,
with respect to gender.

99

7. Experiments and Results

Model Gender Tweet

Char

F

@Michael5SOS I love it! It sounds good and feels good sorry that
I’m so cheesy

Word @TreTre0 @vonebell.. GORGEOUS DRESS by my favorite de-
signer.

Doc im finna be wearing dress clothes to work lol, i gotta go shopping
and start wearing heels

Char

M

About to play WarZone for the 1st time #Halo5 #Halo5Guardians
#Xbox https://t.co/RP9qlgSn5V

Word
@jacksmith23456 @MagicalOezil lol Yaya score 20 league goals
, second best player in the league that season and comfortably
better than Silva

Doc It’s FC Barca, and Lionel Miss-It missed the penalty.

Table 7.29.: Examples of tweets that are predicted correctly with 100% confidence by
the three different models.

Model Gender Tweet
Char

F

Often | The weeknd Siet \o/

Word My player for the month is WALTERS striker of Stokes city 4
scoring 2 own goals missed penalty and chelsea won 4-0 last week

Doc We’re not gonna be assaulted by FanDuel and Draft Kings com-
mercials during basketball season, right?

Char

M

@KissFMUK Been at sat in a hotel with liam and shane writing
work reports since 4pm, Luckily #kisstory is keeping us going!
thankyou

Word I think Lancome’s Mes Incontournables de Parisienne Makeup Es-
sentials Palette is the smartest palette https://t.co/Vx9fHFzrHw

Doc Halloween costume idea for those unknowing of what to be: any
of those food costumes WITH fishnet stockings AND heels.

Table 7.30.: Examples of tweets that are predicted incorrectly with 100% confidence by
the three different models. The gender column shows the true label.

100

7.4. Test Set Results

Model Gender Tweet
Char

F
I’ll go, I’ll go and then you go, you go out and spill the truth

Word Esmond is the dumbest man I’ve ever met.
Doc @TimWadephul @CBCMusic @Alanis thank you Tim.

Char

M

I bet the girl wearing the Star Wars hoodie is seeing a lot of action
recently

Word For the next 30 days join me in leaving the biggest impression on
this city.

Doc It’s sad how it won’t ever be the same between us.

Table 7.31.: Examples of tweets that are predicted correctly with 0% confidence by the
three different models.

101

8. Evaluation and Conclusion
8.1. Evaluation
This section will provide an interpretation and evaluation of the results presented in
the previous chapter. To provide a neat presentation of the findings, the section will be
divided according to the topics that are covered.

Pre-Processing

The results from the ablation studies showed marginal differences for most of the pre-
processing methods that were explored. This transpired to be true for all three models.
The small effects of lemmatization in the word-level model were expected because inflec-
ted forms of words are close to the root form of the word in vector space. However, the
insignificance of the method in the character-level model and the document-level model
were more surprising as the expected behavior was that it would make it easier for the
models to capture information related to the same theme or topic. The cause of this
discrepancy could have several explanations. It may be that the inflected forms of the
most gender-characterizing terms do not occur frequently enough to make an impact,
and if they do occur frequently, they are likely to be a part of the large document-level
vocabulary. It is more difficult to interpret the behavior of the character-level model as
the features it detects are embedded in the model. It could be that the short distance
between a root word and its inflected forms, measured by the number of letter changes,
makes it trivial for the model to understand that the terms are related.

Removing stopwords, as defined by NLTK, was motivated by preventing the models
from focusing on terms, which in general provide no information of value for classifica-
tion. The insignificance of this method could be explained by how ANNs can be made
robust to noise by training with noisy data, which would be the case of, e.g., including
stopwords. The reasoning is similar for the low returns of removing punctuations and
emoticons. In addition, the low frequency of emoticons in general could explain the little
impact it has to include them, even though two emoticons, the heart and the regular
smiley, had diverging distributions across genders.

Model Topology

The different topologies of the models exemplify the level of inter-connectivity in a deep
learning based architecture. Although both the character-level and word-level models
process the text as sequences, the fact that these sequences are represented differently

103

8. Evaluation and Conclusion

have a major impact on which ANN topologies work optimally for the respective models.
While the Bidirectional LSTM led to the best performance at word-level, it was the most
poorly performing character-level ANN model. By adding a convolution layer, with an
accompanying pooling layer, the performance increased considerably. A reason for this
could be that the character-level model learns representations from scratch, while the
word-level model uses pre-trained embbeddings. This implies that the character-level
model has to “work harder” than the word-level model to learn. The bidirectional nature
implies that more information has to be processed at a time. Additionally, the character-
level model could be more sensitive towards noise because it has no prior knowledge of
the text it processes. With these aspects clarified, it is understandable that a topology
containing two regular LSTMs perform better than the Bidirectional LSTM, until con-
volution is incorporated. With the use of convolution and pooling, a preliminary spatial
processing is done, summarizing the most important features. By subsequently apply-
ing sequential processing of these, with the Bidirectional LSTM, we achieve a different
desirable outcome.

The character-level model topology was tried with the word-level system, but led to
poorer results. A possible explanation for this is that the feature pooling leads to in-
formation loss, which does not occur with the use of a lone Bidirectional LSTM. However,
this cannot be stated with certainty without doing further tests. Another observation
was that more complex models, e.g., with the addition of convolutional layers, led to
poorer validation loss results, which is an indication of overfitting due to model com-
plexity.

Regularization of Models

All of the models showed signs of overfitting, begging the use of regularization to improve
generalization. Dropout proved effective for the character-level and word-level models,
but rather ineffective for the document-level model. The application of L1 regularization
on the weights did not improve the performance on any models. While L2 regularization
did reduce overfitting, this came at the cost of the validation loss, i.e., the validation
loss was also higher. It is worth mentioning that because of time constraints, we were
unable to conduct extensive experiments with the regularization parameters.

Normalization of input values is generally considered a pre-processing method, for en-
abling faster and increased capacity of learning. However, we incorporated it in the ANN
model through a batch normalization layer in the document-level model. The result of
using batch-wise normalization were discouraging, causing instantly diverging loss. Ex-
plaining why its use would affect the system as such is somewhat difficult, but could
be related the sparsity of the BoW representations, implying that normalization is done
over vectors containing mainly zeros. This is likely to meddle with the desired effects.

A peculiar observation, concerning the training of all three models, is that the valid-
ation loss is lower than the training loss during the first few epochs. It should generally

104

8.1. Evaluation

not be the case that the classification performance on data the model uses for training
is worse than the performance on unseen data. This could indicate that the validation
set is not representative of the entire tweet population and somewhat biased towards
certain tweet types. The models seem to recognize these early in training, which causes
the loss discrepancy.

Vocabulary

Based on the training set, separate vocabularies are defined in the word-level and
document-level systems, to be used during model training. Two methods were explored
to select vocabulary terms in the document-level system, these being the frequency of
terms, i.e., selecting the most frequent terms, and the use a metric to measure how dis-
tinguishing the terms are, with regard to gender. Even though the dissimilarity measure
seemed to rank the terms more appropriately, i.e., the most distinguishing terms were
given higher scores, the results showed that a sufficiently large vocabulary was able to
capture the same terms, even if ranked differently. To build the word embedding vocab-
ulary, only different numbers of most frequent terms were used. The results of both
systems promote the use of larger vocabulary sizes to capture more information. The
noise imposed by the less frequent terms can essentially be ignored, because the net-
works are able to disregard these. The most prominent restriction imposed with regard
to increasing the vocabulary size was the amount of memory needed. However, the ex-
periments also indicate that the amount of further information captured by increasing
vocabulary size decreases exponentially.

Though the element of using a vocabulary is similar for the word-level and document-
level systems, the manner in which words are represented signify an important difference.
In the BoW representation, there is no notion of similarity between words as they do
not have a vector space representation, in addition to the occurrence of terms being
regarded as independent from each other. With word embeddings, correlations between
words are captured in the vector representations. An implication of this is that low-
frequency terms can be close to other high-frequency terms in vector space. Leveraging
this form of word similarity is not possible in the BoW representation, which merely
keeps counts of words.

Shortness of Tweets

Our efforts to improve the BoW representation, in the document-level system, using
TF-IDF were rather futile. The reasoning behind using TF-IDF was to normalize the
frequency counts in the BoW representations, with regard to relevance, but the results
show minimal differences. The reason for this may be the short length of tweets. In
longer texts, it is reasonable to believe that the frequencies of words pertaining to the
topic of the document will be higher than others. With tweets being short in nature,
it is reasonable to believe that the words describing the topic of the tweet may as well
occur only once or twice, if the entire tweet is only twelve words long, as was found to be

105

8. Evaluation and Conclusion

the average. Influenced by low term frequencies in the individual tweets, TF-IDF may
not have the same effects as it has with longer texts. Related to this aspect could also
be why only unigrams seem to be useful as features, compared to bigrams and trigrams.
The likelihood of any bigrams or trigrams occuring more than a few times in the entire
tweet set can be hypothesized to be low, which is underpinned by the results.

Quantitative and Qualitative Evaluation of Test Results

The test results reveal that the overall performance of the word-level system is better
than the character-level and document-level systems, with an overall F1-score of 0.604
against 0.592 and 0.585, respectively. While the word-level model is superior on the
matter of predicting female authors, the character-level system is coincidentally better
at predicting male authors. These characteristics were leveraged to create ensemble
stacking models, which aggregate the predictions of the sub-models. Our experimental
results show that the best performance is produced combining the character-level model
and the word-level model using averaging as aggregation function, i.e., the probability
distributions over the classes of each model are averaged. This produces a F1-score of
0.613 on the test set. This is a small increase from the word-level system’s score of
0.604, but nevertheless an increase, suggesting that the character-level model’s slightly
better ability to predict males makes a contribution. Given the superiority of the other
two models, the document-level model is unable to contribute, resulting in worse scores
when combined with the other models.

Interpreting ANN classifiers is a challenging affair. To better understand the beha-
vior of the models, we examined the probability distributions of the predictions made by
the models. Ideally, if the model is confident in its prediction, i.e. the model’s estimated
likelihood of either class is close to 1.0, the given prediction should rarely be wrong.
The analysis supports the test results for the character-level and word-level models, i.e.
there is a correspondence between their high confidence predictions and their correct
predictions. On the other hand, the same analysis underpins the poor quality of the
document-level model as it is more confident than the other models, but has a higher
error rate simultaneously.

The brief qualitative analysis presented, indicate that the models are able to make
connections between tweet content words, related to certain themes and topics, and
gender. Stereotypical characteristics were found, such as males tweeting about sports
and females writing about affection and appearance. However, there is a clear indication
of the models having problems predicting tweets where these characteristics occur with
the opposite gender, i.e., a female tweeting about sports.

Dataset Quality

A comparison of the test results and the validation results reveals a discrepancy, namely
that the validation results are significantly better than the test results. Normally, one

106

8.2. Discussion

would expect these to be only moderately different, as neither the validation set or
the test set are used to train the model. Along with the earlier described observation
concerning how the validation loss is lower than the training loss during the first few
epochs of training, this clearly suggests that the validation set is not as representative of
the population of tweets as we would like. Additionally, the mentioned aspects indicate
that there is some unwanted correlation between the validation set and the training
set. This is not unlikely as the training set and the validation set were constructed by
collecting multiple PAN Shared Task datasets from the previous years, while the test set
was collected from a separate source. However, given that duplicates are removed during
construction of the datasets, it is rather peculiar if a correlation is present. In this case,
the correlation may be between tweets by the same author, as these may have certain
stylistic similarities. The likelihood of this is supported by the fact that the number of
tweets per author is not uniform. Nevertheless, we intially made the assumption that in
the case of gender prediction, all tweets are independent of each other, given that they
are not duplicates from the same source.

8.2. Discussion

The goal of this thesis was to construct a deep learning system for predicting the gender
of tweet authors based on linguistic differences. To define the necessary steps for reach-
ing this goal, four research questions were formulated. This section will address these
research questions, presenting the merits, as well as the limitations, of the work.

Research Question 1 What does the literature establish as the most useful gender identi-
fying linguistic traits?

With regards to Research Question 1, the literature presents various observations re-
garding how men and women express themselves differently in writing. These include
multiple mentions of how frequencies of certain POS categories diverge, in addition to
differing structural aspects, such as lengths of words and sentences. However, our ana-
lysis of the dataset did not support these claims for the domain of tweets. Considering
how the concept of tweets promote short burst of information, it is not all that surprising
that the distribution of tweet lengths is uniform across genders. Therefore, our focus
was turned to mainly capturing semantic and content-based features. Most studies seem
to agree that these features contribute significantly in author profiling systems, with n-
grams of content terms being popular. Our work reflects this as all of the classification
systems focus on tweet content, even though the character-level and word-level models
may implicitly capture structural elements, such as lengths of sentences, as a result of
how they process text as sequences of characters and words, respectively. Correspond-
ing to the findings of previous studies presented in Chapter 4, our models made use of
content terms to draw stereotypical connections between certain topics and genders.

107

8. Evaluation and Conclusion

Research Question 2 How can texts be represented in deep learning systems to capture
meaningful information?

On the matter of text representation, which concerns Research Question 2, multiple ap-
proaches have been explored. The implemented systems focus on the content of tweets
at different granularities, these being at the level of characters, words and the docu-
ment as a whole. Different numerical representations have been used to represent the
features of the texts. While characters are represented as one-hot vectors, pre-trained
GloVe embeddings have been used to represent words. A more old-fashioned approach
was followed for the document-level system, for which BoW representations were used.
The motivation for constructing multiple systems with different foundations was how the
particular approaches could be able to capture different aspects of the tweets, thus char-
acterizing different traits of the genders. Our results do indeed indicate that the models
have varying competence with regard to predicting instances of each gender, exemplified
by how the character-level model is better at predicting female authors than the other
models, while the character-level excels at predicting male authors. Additionally, we are
able to compare the old-fashioned architecture of the document-level model with the
more advanced architectures of the character-level and word-level models, showing that
tediously handcrafted features are outperformed by features learned by deep learning
models.

Research Question 3 What types of deep learning models are viable for processing and
classifying tweets?

Based on reviewed ANN theory and research, Convolutional Neural Networks and LSTMs
have been used in the architectures because of their viability in NLP. This pertains to
Research Question 3. With the mentioned network types requiring spatial and sequen-
tial representation of the data, respectively, they are only used in the character-level and
word-level models. In the document-level model a regular feedforward network is used
to process the BoW representations of tweets, disregarding the dependencies between
the terms. This latter aspect of the document-level model may be a major cause of the
weak performance, compared to the other models.

Research Question 4 Can multiple deep learning architectures be used in combination
to recognize different characteristics of tweets?

Pertaining to Research Question 4, the results showed that the models can be used
collaboratively to increase the predictive power, and the overall performance is better
than the performance of the baseline models. The F1-score difference between the best
stacking model and Logistic Regression, Naïve Bayes and Random Forest are respect-
ively 2.6%, 6.2% and 3.6%. Though we can observe that the models are able to learn, it

108

8.2. Discussion

can be argued that they are not accurate enough for real-world applications, consider-
ing the results. Previous studies have shown higher accuracy for texts of other genres,
but tweets, in particular, have the quality of being short by nature. The question then
arises as to if the goal of creating a model applicable for the real world, in the domain
of tweets, is unrealistic. Intuitively, one may argue that tweets are too short to extract
gender-exclusive information, or more precisely a set of characteristics providing enough
information to predict gender. The problem may be more feasible if a stricter threshold
is set for the length of tweets to be predicted, e.g., by disregarding any tweet less than
the average or median length of the dataset, though one can always argue that better
models can possibly overcome such restrictions.

Though usable results have been produced in the course of this project, there are a
number of aspects that have limited our research. The issues related to the dataset sug-
gest that it could have been further quality controlled. In addition to the points made
in the previous section, there is the fact that even though the training data obtained
from the PAN Shared Task were labelled as English, during parsing of the data we found
traces of several other languages. To further investigate if a correlation between tweets
by the same author is present, it is possible to construct a separate dataset, containing a
single tweet per author, and train a model, though this was not tested. On the matter of
selecting features based on the statistic analysis of the data, an explicit threshold should
have been defined to make the selection process more structured and rigorous.

In the case of word embeddings, GloVe was used, though other pre-trained embed-
dings could have been explored, such as pre-trained word2vec on tweets and FastText1

by Facebook. Additionally, experiments could have been conducted for determining the
optimal sequence length limit in the character-level and word-level models. Though a
limit was determined based on the average character length and word length of tweets,
it could be that the noise imposed by padding text representations can be disregarded
when compared to the extra information gained by increasing the sequence length to
maximum tweet length.

It is worth mentioning that we may have miscalculated the work involved with developing
three fundamentally different deep learning models. Thus, because of time constraints,
we were unable to perform extensive hyperparameter testing to perform a structured
optimization procedure. This may have impaired the quality of the models, including
the autoencoder for dimensionality reduction. However, the use of autoencoders was not
initially planned and this path was pursued after discovering the level of sparsity in the
document-level representations. With regard to the baseline models, it may seem odd
that Support Vector Machines (SVMs) were not used when they are clearly present in
state-of-the-art implementations. The fact is that we encountered some difficulties with
our SVM implementation, which made us leave out the model. Additionally, it should
be noted that the baseline models were not optimized. Thus, there is a form of bias

1https://research.fb.com/projects/fasttext/

109

8. Evaluation and Conclusion

when comparing the deep learning models to these.

8.3. Contributions
As a part of this thesis, three different classification systems, processing text at dif-
ferent granularities, were developed to classify gender of tweet authors. These can be
summarized as follow:

1. A Convolutional Bidirectional LSTM model processing tweets at the character-
level, representing these as one-hot vectors. This model achieved a F1-score of
0.592.

2. A Bidirectional LSTM model using pre-trained GloVe word embeddings to process
tweets at the word-level. This model achieved a F1-score of 0.604.

3. A feedforward model which processes tweets at the document-level. This model
focuses more on feature engineering, for which it is developed using more traditional
NLP methods and Bag of Words is used as tweet representation. This model
achieved a F1-score of 0.585.

Additionally, several ensemble models, utilizing stacking, were explored to combine the
predictive powers of the three separately trained sub-models. The gender predictions of
the sub-models were combined using aggregation functions, these being averaging the
predictions of the sub-models, choosing the most confident prediction and voting. The
overall best model was produced by combining the character-level and word-level models
to achieve an overall F1-score of 0.613, beating the baseline models, of which Logistic
Regression had the best result with a score of 0.587. Thus we show that deep learning
architectures can learn different aspects of tweets and be combined to collaboratively
produce higher quality predictions.

Our statistical analysis of tweets stand in contrast to previous findings in text of other
genres, where it has been shown that, e.g., frequencies of certain part-of-speech can
be considered gender-specific. The results and the development process indicate that
models based on manual feature engineering are inferior to well-constructed models that
are able to implicitly learn representations. Our experiments with the character-level
and word-level models have shown that provided well-defined representations of texts
and well-constructed deep learning architectures, better gender-specific features can be
learned, as opposed to manually handpicking features based on statistical analysis. The
latter was done for the document-level model.

With ANNs, interpretation of results is challenging, as the models make implicit ab-
stractions. We provide a qualitative analysis of the models, showing that the level of
confidence the models have in their predictions is connected to their success rate. We
have also composed a review of studies on linguistic gender-based differences in tweets
and a study of the current state-of-the-art approaches.

110

8.4. Future Work

8.4. Future Work

In addition to the results produced, we encountered several challenges during the course
of this thesis which inspired ideas that can be explored further. Additionally, with
the vast amount of possibilities within Natural Language Processing, we were forced to
prioritize the methods and some had to be omitted. Based on these aspects, this section
presents suggestions for how the conducted research can be further improved upon.

Named Entity Recognition

Named Entity Recognition (NER) is a method for identifying and classifying proper
names into predefined categories. It would be interesting to explore the use NER, for
the purpose of using frequencies of named entities as features. For simplicity, this can
be done by using existing NER systems adapted for tweets. Ritter et al. (2011) provide
a system, which is able to categorize up to 10 types of entities, these being: person,
geo-loc, company, facility, product, band, sportsteam, movie, tv-show, other.

Autoencoders

Autoencoders were used in our work to reduce the dimension of document-level feature
representations, though we barely scratched the surface of the area. This was motivated
by the amount of sparsity in the high-dimensional Bag of Words representations. By cre-
ating a compressed representation of the tweets, we hoped to increase the classification
accuracy. However, we were not able to produce lower-dimensional representations im-
proving the results and further work can be done in this area. Additionally, it could also
be worth applying autoencoders in combination with the character-level and word-level
models to produce higher quality representation of tweets.

Utilizing Tweet Specific Characteristics

Hashtags and mentions are considered term specific to the domain of Internet and Twit-
ter. In our architecture, such terms are replaced with placeholders, acknowledging their
presence, but disregarding the specific term. Since these are integral parts of the Twitter
domain, they should be leveraged for what they are worth. Being a construct designed
to describe topics of tweets, hashtags are often used and shared by a wide range of
users. Thus, it could be worth exploring the usefulness of these, with regard to predict-
ing gender. Another commonly occurring element on the Internet, tweets included, is
elongation, or repeated characters in words. In the proposed models, this could be a
source of noise, motivating the process of eliminating elongated terms by transforming
them to the corresponding dictionary words. On the other hand, it can also be the case
that elongation can be used as a feature if it happens to be gender-specific.

111

8. Evaluation and Conclusion

Training a Combined Learner

The stacking model developed as a part of this thesis only aggregated the predictions of
pre-trained models using aggregation functions with the class probability distribution as
input. However, when stacking is employed, it is common to further train the combined
learner, using a simple model. It would be interesting to optimize this process using
deep learning methods. Related to this is the possibility of merging the different deep
learning architectures into one architecture, training the sub-models and the final model
simultaneously.

Further Optimization of Models

Since we were unable to perform a structured optimization of all models, it can be
considered trivial to suggest this. In addition, it would be desirable to compare the deep
learning models with a Support Vector Machine model, which we were unable to do as
a part of this thesis. To be able to further substantiate the superiority of deep learning
methods, the baseline models should be optimized as well.

Improving Quality of Handcrafted Features

The basis of the feature engineering process in this thesis was laid out in Chapter 5,
where a statistic analysis of the training data was performed. Using these results, cer-
tain features of the tweets were disregarded, such as part-of-speech counts. An important
aspect of this is that the data analysis only showed how much such features would con-
tribute by themselves, and not alongside other features. Considering this, it is possible
to improve the feature selection process by calculating the pairwise correlation between
features, with regard to gender prediction. This implies that a feature, which shows no
potential on its own, may do so if considered together with another feature.

Prediction of other Author Attributes

In this thesis, only prediction of gender was explored, though author profiling includes
other personal attributes of authors, such as age, personality traits and native lan-
guage. Given appropriately annotated datasets, the architectures of the character-level
and word-level models should enable us to train them for predicting other author char-
acteristics, without major adjustments, though optimal performance is dependent on
hyperparameter tuning. This is a result of the models learning representations of tweets
implicitly in the ANN, without manual feature engineering.

112

Bibliography
Madhulika Agrawal and Teresa Gonçalves. Age and gender identification using stacking
for classification. In Working Notes of CLEF 2016 - Conference and Labs of the
Evaluation forum, Évora, Portugal, 5-8 September, pages 785–790, 2016. URL http:
//ceur-ws.org/Vol-1609/16090785.pdf.

Shlomo Argamona, Moshe Koppelb, Jonathan Finec, and Anat Rachel Shimonib.
Gender, genre, and writing style in formal written texts. Text, 23:3, 2003.

Shaina Ashraf, Hafiz Rizwan Iqbal, and Rao Muhammad Adeel Nawab. Cross-genre
author profile prediction using stylometry-based approach. In Working Notes of CLEF
2016 - Conference and Labs of the Evaluation forum, Évora, Portugal, 5-8 September,
pages 992–999, 2016. URL http://ceur-ws.org/Vol-1609/16090992.pdf.

Yoshua Bengio, Patrice Simrad, and Paolo Frasconi. Learning Long-Term Dependencies
with Gradient Descent is Difficult, 1994.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of machine learning research, 3(Feb):1137–1155,
2003.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A re-
view and new perspectives. IEEE - Institute of Electrical and Electronics Engineers
Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

Ivan Bilan and Desislava Zhekova. Caps: A cross-genre author profiling system, 2016.

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
O’Reilly Media, Inc., 1st edition, 2009. ISBN 0596516495, 9780596516499.

Ann Bodine. Sex differentiation in language. Language and sex: Difference and domin-
ance, pages 130–151, 1975.

Konstantinos Bougiatiotis and Anastasia Krithara. Author profiling using complement-
ary second order attributes and stylometric features. In Working Notes of CLEF 2016
- Conference and Labs of the Evaluation forum, Évora, Portugal, 5-8 September, pages
836–845, 2016. URL http://ceur-ws.org/Vol-1609/16090836.pdf.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

113

http://ceur-ws.org/Vol-1609/16090785.pdf
http://ceur-ws.org/Vol-1609/16090785.pdf
http://ceur-ws.org/Vol-1609/16090992.pdf
http://ceur-ws.org/Vol-1609/16090836.pdf

Bibliography

John D. Burger, John C. Henderson, George Kim, and Guido Zarrella. Discriminating
gender on twitter. In EMNLP - Conference on Empirical Methods in Natural Lan-
guage Processing, Edinburgh, UK, 27-29 July, 2011., pages 1301–1309. Association for
Computational Linguistics, 2011.

Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data mining and knowledge discovery, 2(2):121–167, 1998.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. In EMNLP
- Conference on Empirical Methods in Natural Language Processing, Doha, Qatar,
25–29 October, 2014., pages 103–111. Association for Computational Linguistics, 2014.

François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

Ronan Collobert and Jason Weston. A unified architecture for natural language pro-
cessing: deep neural networks with multitask learning. In Proceedings of the 25th
International Conference on Machine Learning, Helsinki, Finland, 05-09 July, 2008.,
volume 307 of Association for Computing Machinery International Conference Pro-
ceeding Series, pages 160–167. Association for Computing Machinery, 2008.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20
(3):273–297, 1995.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American society for
information science, 41(6):391, 1990.

Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foundations and
Trends® in Signal Processing, 7(3–4):197–387, 2014.

Rodwan Bakkar Deyab, José Duarte, and Teresa Gonçalves. Author profiling using
support vector machines. In CLEF - Conference and Labs of the Evaluation forum,
Évora, Portugal, 5-8 September, 2016., volume 1609 of CEUR Workshop Proceedings,
pages 805–814. CEUR-WS.org, 2016.

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick, Michael Muehl, and William W. Co-
hen. Tweet2vec: Character-based distributed representations for social media. CoRR
- Computing Research Repository, abs/1605.03481, 2016.

Daniel Dichiu and Irina Rancea. Using machine learning algorithms for author profiling
in social media. In CLEF - Conference and Labs of the Evaluation forum, Évora,
Portugal, 5-8 September, 2016., volume 1609 of CEUR Workshop Proceedings, pages
858–863. CEUR-WS.org, 2016.

Sara El Manar El Bouanani and Ismail Kassou. Authorship analysis studies: A survey.
International Journal of Computer Applications, 86(12), 2014.

114

https://github.com/fchollet/keras

Bibliography

Aparna Garimella and Rada Mihalcea. Zooming in on gender differences in social media.
In Proceedings of the Workshop on Computational Modeling of People’s Opinions,
Personality, and Emotions in Social Media, Osaka, Japan, 12 December, 2016., pages
1–10, 2016.

Felix A Gers and Jürgen Schmidhuber. Recurrent nets that time and count. In Pro-
ceedings of the IJCNN’2000 - , International Joint Conference on Neural Networks,
Como, Italy, 24-27 July 2000, volume 3, pages 189–194. Institute of Electrical and
Electronics Engineers, 2000.

Maite Giménez, Delia Irazú Hernández, and Ferran Pla. Segmenting target audiences:
Automatic author profiling using tweets. In Proceedings of CLEF - Conference and
Labs of the Evaluation forum, Toulouse, France, 8-11 September, 2015., 2015.

Lee Gomes. Machine-learning maestro Michael Jordan on the delusions of big data and
other huge engineering efforts, 2014. URL http://spectrum.ieee.org/robotics/
artificial-intelligence/machinelearning-maestro-michael-jordan-on-
the-delusions-of-big-data-and-other-huge-engineering-efforts. [Online;
accessed 03-May-2014].

Bruno Gonçalves and David Sánchez. Crowdsourcing dialect characterization through
twitter. PloS one, 9(11):e112074, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks, volume
385 of Studies in Computational Intelligence. Springer, 2012.

Adelaide Haas. Male and female spoken language differences: Stereotypes and evidence.
Psychological Bulletin, 86(3):616, 1979.

Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for
deep belief nets. Neural computation, 18(7):1527–1554, 2006.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. PhD thesis,
Diploma thesis, T.U. München, 1991.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

Clayton J. Hutto and Eric Gilbert. A parsimonious rule-based model for sentiment
analysis of social media text. In Proceedings of the Eighth International Conference
on Weblogs and Social Media, ICWSM 2014, Ann Arbor, Michigan, USA, June 1-4,
2014., 2014. URL http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/
view/8109.

115

http://spectrum.ieee.org/robotics/artificial-intelligence/machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts
http://spectrum.ieee.org/robotics/artificial-intelligence/machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts
http://spectrum.ieee.org/robotics/artificial-intelligence/machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109

Bibliography

Diederik Kingma and Jimmy Ba. A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Moshe Koppel and Jonathan Schler. Exploiting stylistic idiosyncrasies for authorship
attribution. In Proceedings of IJCAI’03 Workshop on Computational Approaches to
Style Analysis and Synthesis, volume 69, page 72, 2003.

Moshe Koppel, Shlomo Argamon, and Anat Rachel Shimoni. Automatically categorizing
written texts by author gender. Literary and Linguistic Computing, 17(4):401–412,
2002.

Cheris Kramer. Women’s speech: Separate but unequal? Quarterly Journal of Speech,
60(1):14–24, 1974.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86, 1951.

Yann Le Cun, LD Jackel, B Boser, JS Denker, HP Graf, I Guyon, D Henderson,
RE Howard, and W Hubbard. Handwritten digit recognition: Applications of neural
network chips and automatic learning. IEEE Communications Magazine, 27(11):41–
46, 1989.

Yann LeCun. Modèles connexionnistes de l’apprentissage. PhD thesis, Paris 6, 1987.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

Matthias Liebeck, Pashutan Modaresi, and Stefan Conrad. Evaluating safety, soundness
and sensibleness of obfuscation systems. In CLEF - Conference and Labs of the Evalu-
ation forum, Évora, Portugal, 5-8 September, 2016, volume 1609 of CEUR Workshop
Proceedings, pages 920–928. CEUR-WS.org, 2016.

Wang Ling, Tiago Luís, Luís Marujo, Ramón Fernandez Astudillo, Silvio Amir, Chris
Dyer, Alan W Black, and Isabel Trancoso. Finding function in form: Compos-
itional character models for open vocabulary word representation. arXiv preprint
arXiv:1508.02096, 2015.

Adrian Pastor Lopez-Monroy, Manuel Montes-y Gómez, Hugo Jair Escalante, Luis
Villasenor-Pineda, and Esaú Villatoro-Tello. INAOE’s - National Institute of As-
trophysics, Optics and Electronics participation at PAN’13: Author profiling task.
In CLEF - Conference and Labs of the Evaluation forum, Valencia, Spain, 23-26
September, 2013, 2013.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

116

Bibliography

Ilia Markov, Helena Gómez-Adorno, Grigori Sidorov, and Alexander Gelbukh. Adapting
cross-genre author profiling to language and corpus. In Proceedings of the CLEF -
Conference and Labs of the Evaluation forum, Évora, Portugal, 5-8 September, 2016.,
pages 947–955, 2016.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013b.

Marvin Minsky and Seymour Papert. Perceptrons., 1969.

Anthony Mulac, Lisa B Studley, and Sheridan Blau. The gender-linked language effect
in primary and secondary students’ impromptu essays. Sex Roles, 23(9-10):439–470,
1990.

Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

Mart Busger op Vollenbroek, Talvany Carlotto, Tim Kreutz, Maria Medvedeva, Chris
Pool, Johannes Bjerva, Hessel Haagsma, and Malvina Nissim. Gronup: Groningen
user profiling, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors
for word representation. In EMNLP - Conference on Empirical Methods in Natural
Language Processing, Doha, Qatar, 25–29 October, 2014., volume 14, pages 1532–
1543, 2014.

Oliver Pimas, Andi Rexha, Mark Kröll, and Roman Kern. Profiling microblog authors
using concreteness and sentiment, 2016.

R Rajendra Prasath. Learning age and gender using co-occurrence of non-dictionary
words from stylistic variations. In International Conference on Rough Sets and Current
Trends in Computing, Warsaw, Poland, June 28-30, 2010., pages 544–550. Springer,
2010.

Francisco Rangel, Paolo Rosso, Ben Verhoeven, Walter Daelemans, Martin Potthast,
and Benno Stein. Overview of the 4th author profiling task at pan 2016: cross-
genre evaluations. Working Notes Papers of the CLEF - Conference and Labs of the
Evaluation forum, Évora, Portugal, 5-8 September, 2016., 2016.

117

Bibliography

T Raghunadha Reddy, B Vishnu Vardhan, and P Vijayapal Reddy. A survey on author-
ship profiling techniques. International Journal of Applied Engineering Research, 11
(5):3092–3102, 2016.

Alan Ritter, Sam Clark, and Oren Etzioni. Named entity recognition in tweets: an
experimental study. In EMNLP - Conference on Empirical Methods in Natural Lan-
guage Processing, Edinburgh, UK, 27-29 July, 2011., pages 1524–1534. Association for
Computational Linguistics, 2011.

Robin Lakoff. Language and woman’s place. Language in society, 2(01):45–79, 1973.

Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. Technical report, DTIC Document, 1961.

Hassan Saif, Miriam Fernandez, Yulan He, and Harith Alani. On stopwords, filtering
and data sparsity for sentiment analysis of twitter, 2014.

Jonathan Schler, Moshe Koppel, Shlomo Argamon, and James W Pennebaker. Effects of
age and gender on blogging. In AAAI spring symposium: Computational approaches
to analyzing weblogs, Palo Alto, California, 27–29 March, 2006, volume 6, pages 199–
205, 2006.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997.

Shamane Siriwardhana. Why Convolutional Neural Networks. https://www.linkedin.
com/pulse/why-convolutioanl-neural-networks-shamane-siriwardhana, 2016.
[Online; accessed 01-May-2017].

Karen Spärck Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation, 28(1):11–21, 1972.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Efstathios Stamatatos. A survey of modern authorship attribution methods. JASIST
- Journal of the Association for Information Science and Technology, 60(3):538–556,
2009.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceed-
ings of the IEEE, 78(10):1550–1560, 1990.

Paul John Werbos. Beyond regression: new tools for prediction and analysis in the
behavioral science. Ph. D. Thesis, Harvard University, 1974.

Zhixiang Eddie Xu, Minmin Chen, Kilian Q. Weinberger, and Fei Sha. An alternative
text representation to TF-IDF and bag-of-words. CoRR, abs/1301.6770, 2013.

118

https://www.linkedin.com/pulse/why-convolutioanl-neural-networks-shamane-siriwardhana
https://www.linkedin.com/pulse/why-convolutioanl-neural-networks-shamane-siriwardhana

Bibliography

Xiang Zhang and Yann LeCun. Text understanding from scratch. arXiv preprint
arXiv:1502.01710, 2015.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. In Advances in neural information processing systems, pages
649–657, 2015.

Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide
to) convolutional neural networks for sentence classification. arXiv preprint
arXiv:1510.03820, 2015.

119

A. Artificial Neural Network
Theory

Activation Functions
ReLU

relu(z) = max(0, z) (A.1)

Softmax

softmax(z)i = ezi∑
j e

zj
(A.2)

Sigmoid

σ(z) = 1
1 + e−z

(A.3)

Tanh
tanh(z) = 2σ(2z)− 1 (A.4)

Where σ(z) is the sigmoidal function defined in Equation (A.3).

Loss Function
Cross Entropy

L(X,Y) = − 1
n

∑
x

∑
j

[y(i)
j ln aj(x(i)) + (1− y(i)

j)ln(1− aj(x(i))] (A.5)

The summations are aggregated over training samples and the individual neurons in the
output layer. X represent the input samples and Y are the true labels. a(x) is the
output of the neurons in the neural network given the input x:

a =
∑

j

wjxj (A.6)

121

B. Libraries, API´s and
Hardware

In this chapter, a brief overview is provided of the most important libraries and API´s
that were used for implementations in this work. Additionally, a specification of the
hardware utilized for model training is described.

Keras

Keras (Chollet et al., 2015), is a high-level open source API for constructing, training and
optimizing Artifical Neural Networks (ANNs). The API is written in Python and can run
on top of Tensorflow1 or Theano.2 Keras provides higher-level abstractions of complex
ANN architectures, which allows for faster and easier prototyping. It facilitates standard
feedforward neural networks, as well as more complex network such as Convolutional
Neural Networks and Recurrent Neural Networks. For this thesis, Tensorflow was used
as the backend engine.

Natural Language Toolkit (NLTK)

The Natural Language Toolkit (NLTK) by Bird et al. (2009) is a Natural Language
Processing toolkit for Python. It provides an interface to various corpora and a myriad
of libraries for tokenization, stemming and other NLP methods and models, such as Bag
of Words and Term Frequency-Inverse Document Frequency.

Scikit-learn (sklearn)

Scikit-learn (Pedregosa et al., 2011) is an open source Machine Learning library for the
programming language Python. Scikit-learn contains support a range of topics within
Machine Learning. The library has been used for constructing the base line models
respectively Logistic Regression, Naïve Bayes and Random Forests in the master thesis.

1https://www.tensorflow.org/
2http://deeplearning.net/software/theano/

123

B. Libraries, API´s and Hardware

Hardware
The Artifical Neural Network models in this thesis were trained using NVIDIA Titan X
GPUs3.

3https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/

124

125

C. Special Words and Abbreviations

C. Special Words and
Abbreviations

Stopwords

Stopwords
a do into ours too

about does is ourselves under
above doesn isn out until
after doing it over up
again don its own ve
against down itself re very
ain during just s was
all each ll same wasn
am few m shan we
an for ma she were
and from me should weren
any further mightn shouldn what
are had more so when
aren hadn most some where
as has mustn such which
at hasn my t while
be have myself than who

because haven needn that whom
been having no the why
before he nor their will
being her not theirs with
below here now them won

between hers o themselves wouldn
both herself of then y
but him off there you
by himself on these your
can his once they yours

couldn how only this yourself
d i or those yourselves
did if other through

Table C.1.: List of stopwords.

126

Part-of-speech tags
Table C.2 displays abbreviations of POS tags used with NLTK tagger module. The
example are acquired from the available webpage1 from the book “Natural Language
Processing with Python” (Bird et al., 2009, chapter 5) under the terms: Creative Com-
mons Attribution Noncommercial No-Derivative-Works 3.0 US License.2

POS-tags
Tag Meaning English Examples
ADJ adjective new, good, high, special, big, local
ADP adposition on, of, at, with, by, into, under
ADV adverb really, already, still, early, now
CONJ conjunction and, or, but, if, while, although
DET determiner the, a, some, most, every, no, which
NOUN noun year, home, costs, time, Africa
NUM numeral twenty-four, fourth, 1991, 14:24
PRT particle at, on, out, over per, that, up, with
PRON pronoun he, their, her, its, my, I, us
VERB verb is, say, told, given, playing, would

. punctuation marks . , ; !
X other ersatz, esprit, dunno, gr8, univeristy

Table C.2.: Abbreviation of a set of POS tags used with NLTK tagger module.

1http://www.nltk.org/book_1ed/
2https://creativecommons.org/licenses/by-nc-nd/3.0/us/

127

C. Special Words and Abbreviations

POS-tags
Tag Description
$: dollar
”: closing quotation mark
(: opening parenthesis
): closing parenthesis
,: comma
–: dash
.: sentence terminator
: colon or ellipsis

CC: conjunction, coordinating
CD: numeral, cardinal
DT: determiner
EX: existential there
FW: foreign word
IN: preposition or conjunction, subordinating
JJ: adjective or numeral, ordinal
JJR: adjective, comparative
JJS: adjective, superlative
LS: list item marker
MD: modal auxiliary
NN: noun, common, singular or mass
NNP: noun, proper, singular
NNPS: noun, proper, plural
NNS: noun, common, plural
PDT: pre-determiner
POS: genitive marker
PRP: pronoun, personal
PRP$: pronoun, possessive
RB: adverb
RBR: adverb, comparative
RBS: adverb, superlative
RP: particle
SYM: symbol
TO: "to" as preposition or infinitive marker
UH: interjection
VB: verb, base form
VBD: verb, past tense
VBG: verb, present participle or gerund
VBN: verb, past participle
VBP: verb, present tense, not 3rd person singular
VBZ: verb, present tense, 3rd person singular
WDT: WH-determiner
WP: WH-pronoun
WP$: WH-pronoun, possessive
WRB: Wh-adverb

“: opening quotation mark

Table C.3.: Abbreviation of all POS tags used with NLTK tagger module.

128

D. Additional Experimental
Results and Figures

Data Characteristics

Part-of-speech tags

Figure D.1.: Frequency of POS tags among gender.

129

D. Additional Experimental Results and Figures

Stopwords

Figure D.2.: Frequency of stopwords among gender.

130

Test Results

Average Confidence - Character- and Document-Level
Female Male Overall

Precision 0.613 0.583
0.598Recall 0.607 0.589

F1-score 0.610 0.586

Table D.1.: Test scores when stacking character- and document-level systems, using con-
fidence average as aggregation function.

Average Confidence - Word- and Document-Level
Female Male Overall

Precision 0.611 0.592
0.602Recall 0.636 0.567

F1-score 0.623 0.579

Table D.2.: Test scores when stacking word- and document-level systems, using confid-
ence average as aggregation function.

Logistic Regression
Female Male Overall

Precision 0.616 0.564
0.591Recall 0.538 0.641

F1-score 0.574 0.600

Table D.3.: Test scores of Logistic Regression.

Naïve Bayes
Female Male Overall

Precision 0.556 0.599
0.577Recall 0.805 0.311

F1-score 0.658 0.410

Table D.4.: Test scores of Naïve Bayes.

131

D. Additional Experimental Results and Figures

Random Forests
Female Male Overall

Precision 0.573 0.529
0.551Recall 0.502 0.599

F1-score 0.535 0.561

Table D.5.: Test scores of Random Forests.

Visualization of GloVe Embeddings with t-SNE
This section presents visualizations of the GloVe embeddings used in the vocabulary of
the word-level system. For this t-Distributed Stochastic Neighbor Embedding (t-SNE)
is used. t-SNE is a machine learning algorithm for dimensionality reduction developed
by Geoffrey Hinton and Laurens van der Maaten (Maaten and Hinton, 2008). The
method is suitable for mapping high-dimensional data to low-dimensional space, such
as 2D or 3D, for more convenient visualization. In contrast to Principal Component
Analysis (PCA), which is also a highly used dimensionality reduction method, t-SNE
is non-linear. An important aspect of dimensionality reduction is to preserve structure
and relations between data points when mapped to a lower dimension. Briefly put, t-
SNE constructs one similarity matrix for the original high-dimensional data points and
another matrix for the points in the low-dimensional map. Then it proceeds to minimize
the Kullback-Leibler divergence Kullback and Leibler (1951) between the two matrices.
This is essentially a measure of difference between probability distributions.

Figure D.3 visualizes the word embeddings of the 500 most frequent terms in the vocab-
ulary of the word-level system. The large vector space and the many data points makes
it difficult to see the relations between the terms. Therefore, Figure D.4 is provided for
convenience. Here, we can see how semantically similar terms are located close to each
other in embedding space.

132

Figure D.3.: Visualization of the 500 most frequent words in the vocabulary of the word-
level system. The high-dimensional vectors is mapped to 2-dimensional
space using t-SNE.

133

D. Additional Experimental Results and Figures

(a) (b)

(c) (d)

Figure D.4.: Subset of word embedding clusters from Figure D.3.

134

	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Machine Learning Methods
	Logistic Regression
	Support Vector Machines
	Naïve Bayes Classifier
	Random Forests
	Deep Learning
	Historical Review and Definition
	Feedforward Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory Networks
	Convolutional Neural Networks
	Autoencoder

	Text Representation
	Part-of-Speech Tagging
	N-grams
	Term Frequency-Inverse Document Frequency
	Bag of Words
	Word Embeddings
	A Historical Review of Word Embeddings
	Word2vec
	Global Vectors (GloVe)

	Stylometric Features
	Lexical Features
	Syntactic Features
	Structural Features
	Content Specific Features
	Semantic Features

	Related Work
	Studies on Language and Gender
	Early Studies
	Modern Studies

	State-of-the-Art
	Pre-Processing
	Feature Extraction and Representation
	Classification Models

	Data
	Data Collection
	Characteristics
	Internet/Twitter Terms
	Emoticons
	Tweet Length
	POS-tags
	Sentiment Analysis

	Architecture
	Text Pre-Processing
	Word-Level System
	Text Representation
	Feature Extraction and Classification Model

	Character-Level System
	Text Representation
	Feature Extraction and Classification Model

	Document-Level System
	Feature Extraction
	Feature Representation
	Classification Model

	Stacking Models

	Experiments and Results
	Experimental Plan
	Model Building
	Character Level Model
	Word Level Model
	Document Level Model

	Validation Set Results
	Test Set Results

	Evaluation and Conclusion
	Evaluation
	Discussion
	Contributions
	Future Work

	Bibliography
	Artificial Neural Network Theory
	Libraries, APIs and Hardware
	Special Words and Abbreviations
	Additional Experimental Results and Figures

