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Abstract
As the world is becoming more digital, an increasing amount of data is generated that
could provide industries with valuable insight to make their products or services better
for customers as well as employees. To unlock this value, the data is captured and
stored, and Machine Learning techniques are applied to extract the knowledge. With
the emergence of Internet of Things, increasing quantities of data are available in real-
time. The industry is missing a unified tool to exploit the relationship of historical
and real-time data, and as a consequence, systems have been “glued” together for the
two separate tasks. To address the issues of glueing multiple systems together, in this
project we investigate how we can implement existing Machine Learning frameworks,
such as WEKA, with existing Big Data Management System, e.g. AsterixDB. The main
goal is to enable Machine Learning and Data Mining methods on a large scale, both
for historical, stored data, and for streaming, real-time data. This unlocks the power
to view historical data and real-time data in context of each other, and to continuously
improve the Machine Learning techniques by training on the accumulated new arrival of
data, and have the algorithms adapt as the data evolves. Experiments with 100 million
records show that this implementation scales gracefully for historical data, and at the
same time imposes minimal overhead to AsterixDB when processing streaming data.
The solution achieves a processing throughput of up to 10’000 records a second, and
scales well with the distribution of the cluster.
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Sammendrag
I takt med at verden digitaliseres genereres også en økende mengde data som kan gi
næringer og virksomheter verdifull innsikt som vil gjøre produktene og tjenestene de-
res bedre for både forbrukere og ansatte. For å kunne nyttiggjøre seg av denne verdien
blir dataene fanget opp og lagret og maskinlæringsteknikker tas i bruk for å hente ut
kunnskap. Med fremveksten av Tingenes Internett blir stadig mer data også tilgjengelig
i sanntid. Bransjen mangler et helhetlig verktøy for å utnytte forholdet mellom histo-
riske data og sanntidsdata og som en konsekvens av dette har systemer for de to ulike
oppgavene blitt «limt» sammen. For å adressere problemet med å lime sammen flere
systemer, undersøker vi i dette prosjektet hvordan vi kan integrere eksisterende maskin-
læringsrammeverk, som WEKA, i eksisterende BigData systemer, som AsterixDB, for å
muliggjøre maskinlæring og datagruvedrift i stor skala, både for historiske lagrede data
og for strømmende sanntidsdata. Dette gjør det mulig å se historiske data og sanntids-
data i kontekst av hverandre og kontinuerlig forbedre maskinlæringsteknikker ved å trene
modeller med nye data og la algoritmene tilpasse seg etterhvert som dataene utvikler
seg. Eksperimenter med 100 millioner poster viser at denne implementasjonen skalerer
godt for historiske data, samtidig og medfører minimal belastning på AsterixDB når
datastrømmer håndteres. Løsningen oppnår en prosesseringskapasitet på opptil 10’000
poster i sekundet, og skalerer godt med antall noder i systemet.
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1 Introduction
This chapter first describes the background and motivation for this project, then defines
the primary goal and associated research questions. The approach taken will be described
and the contributions identified, before presenting an outline of the following chapters.

1.1 Background and Motivation

Today data is generated from everything. Every website you visit, every post you share
in social media, every step you take with an activity tracker, every time you swipe your
access card, shop on the Internet, or when you leave a blood sample at the hospital,
data are gathered and stored. We know this data is valuable, and we are getting skilled
at storing this amount of Big Data. Still, the potential hidden in this data is just barely
explored (Elgendy and Elragal, 2014). A large portion of this data remains unexploited.
We are becoming quite sophisticated at extracting unknown information from data

with the help of Machine Learning (ML). These approaches learn and train them selves
to classify, find outliers and patterns, predict future outcome, and make suggestions.
Businesses and corporations have started to use these methods of ML on the increasing

amount of Big Data, but common for a majority of them is that the tools are specialized
for solving a specific purpose, or to work within a specific domain (Low et al., 2012).
This motivates the implementation of a general platform for performing ML algorithms
on Big Data.
In the jungle of frameworks and tools for Machine Learning and Data Mining (MLDM)

on Big Data, there already exists a few approaches that have been adopted by the
industry and has become de facto tools. However, as the world evolves new requirements
arise and these tools struggle to keep up. Among the challenges are the need to support
real-time queries with advanced capabilities. Specialized tools have emerged to cope
with these challenges, but there remains a gap between processing of real-time data and
stored data.

1.2 Goals and Research Questions

The main motivation of this project is to fill the gap between ML platforms designed for
stored Big Data and those designed for streaming Big Data. The primary question we
seek an answer for can be formulated as follows:

Can Machine Learning scale to both stored Big Data and streaming Big Data?
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1 Introduction

Based on this main research question, three subquestions can be derived to guide the
research of the project, and define its scope.

Research Questions:

1. Which Big Data platform can handle streaming data, and support parallel execution
of user code?

2. How can Machine Learning be implemented into such a platform?

3. How does the implementation scale with increasing amount of data?

1.3 Approach

1.3.1 Research Method

This study started with a literature review of existing systems and research for Big Data
and methods of streaming data, to examine current state-of-the-art systems and ap-
proaches, with their possibilities and limitations. Further, the use of ML methods in, or
in combination with, such systems were examined. A suitable ML library was identified
and implemented in an existing Big Data platform. The solution was tested against a
benchmark considered industry standard, and results of the comparative experiments
were evaluated.

1.3.2 Scope and Limitations

This research develops a tool to investigate the use of the generic ML framework WEKA
in an existing Big Data platform, called AsterixDB. The specific ML task of sentiment
analysis on Twitter feeds will be conducted to be able to reason about the effect of the
implemented methods. Because of resource limitations, experiments in this thesis are
performed on a single computer only, simulating cluster nodes with processor cores.

1.4 Contributions

Current state-of-the-art approaches is a patchwork of specialized systems, glued together
to solve the challenges of ML in real-time on Big Data. These assembled systems make
it hard to reason about data consistency, scalability and fault-tolerance. The main
contribution of this work is the study of integrating a ML framework with an existing
Big Data system. This reduces the number of moving parts needed to handle streaming
Big Data.

This research will also conduct a comparative study of the implemented solution to
an industry standard of Spark and Cassandra, in terms of their ability to handle ML on
large scale streaming data.

4



1.5 Thesis Structure

1.5 Thesis Structure
The remainder of this report is structured as follows: Chapter 2 describes the concepts
of Big Data and ML, and introduces a specific ML task and domain. Related research
and frameworks are investigated in Chapter 3. The architecture of AsterixDB data feeds
and the implemented solution is presented in Chapter 4, and Chapter 5 summarizes the
setup and execution of the experiments performed, along with their results. Chapter 6
gives an evaluation and discussion of the results and implementation, while Chapter 7
presents a conclusion and points out directions for future work.
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2 Background Theory
This chapter describes the concepts of Big Data, streaming data and Machine Learning
(ML), and introduces specific systems for each. Then a specific ML task and domain is
presented.

2.1 Big Data

The term Big Data occurs in multiple industries with different definitions. One of the
most acknowledged definitions is from Douglas (2001), which introduces 3 characteristics:
Volume, Velocity and Variety, concerning the scale at which data is produced and
stored, the speed of which it is generated and processed and the structure and nature of
the data. Today we often include two more V’s in the definition: Variability and Value,
concerning changes in the datas structure and what values it brings the organization (Fan
and Bifet, 2013).
The increasing value of Big Data and its adoption by companies and organization has

inspired the emerge of different tools and frameworks to work with and manage Big Data.
One of these, to which this project puts particular attention, is AsterixDB (Alsubaiee
et al., 2014).

2.1.1 AsterixDB

Apache AsterixDB is a scalable, open source Big Data Management System (BDMS).
It was initiated by a team of faculty, staff and students at UC Irvine and UC Riverside
to fill a need in the market for an open source parallel database system, and is now
developed as an Apache project. AsterixDB distinguishes it self from other Big Data
analytic platforms by both storing and querying the data, and the projects mantra is
“One size fits a bunch” (Alsubaiee et al., 2014), meaning that they are aiming for a
wider range of use cases than other Big Data technologies address to today.
AsterixDB has a flexible NoSQL style data model based on JSON called Asterix

Data Model (ADM), and an expressive and declarative query language based on SQL
called Asterix Query Language (AQL). Its shared-nothing architecture involves a central
Cluster Controller (CC) and a set of worker nodes referred to as Node Controllers (NCs).
It has built-in mechanisms to handle streaming data called Data Feeds, which allows

continuous ingestion into datasets from external sources, and the feature User Defined
Function (UDF) allows users to define their own processing of the data. This can be
defined either alongside the query with AQL or as a library written in Java. The UDF is

7



2 Background Theory

then invoked as a function with the record to process as parameter (Grover and Carey,
2015).

2.1.2 Spark

Apache Spark is another tool for processing large-scale data. It started as a research
project at UC Berkeley with the goal of designing a programming model to support
iterative algorithms, interactive data mining and streaming applications. Spark offers
an abstraction called Resilient Distributed Datasets (RDDs) which are datasets stored in
memory between queries (Zaharia et al., 2012). These are exposed through Application
Programming Interfaces (APIs) in Java, Scala and Python, and are instantiated by
developers through transformations (e.g., map and filter). Actions are then applied to
the RDD in order to return results (e.g., count, collect, save). RDDs are fault-tolerant
without replication, because each RDD remembers how it was built to rebuild itself.
Spark computes RDDs lazily and the optimal pipeline of the transformations applied
can be found.
Spark is strictly a processing engine, and does not persist data for use outside of

the current session. To be able to compare Spark to AsterixDB the data would need
a separate system for offline persistence. A candidate for achieving this is Cassandra,
described next.

2.1.3 Cassandra

Apache Cassandra is a distributed storage system for large amounts of data (Laksham
and Prashant, 2010). It was developed at Facebook and designed to handle high write
throughput. Benchmarking with other key-value stores shows that it scales linearly, and
achieve the highest throughput of the systems tested (Rabl and Gómez-Villamor, 2012).
This result makes Cassandra a good candidate for persistence after spark.
The Spark Cassandra connector1 provides easy database access to Cassandra from

Spark in Java.

2.2 Streaming Data

Streaming data is conceptually different from traditional stored data, and requires new
models and algorithms to interact with. Streaming data arrives in tuples, often in such
a rate that it is impractical to store the entire stream. This means that arriving data
must be processed immediately or it is lost forever. Processing capacity is constrained
by available physical storage (e.g., main memory) often referred to as the working space
of the stream processor. In addition, stream processors may have larger offline storage
for archival purposes, with much higher I/O-delay than the frequency of arriving data
(Rajaraman and Ullman, 2011).

1https://github.com/datastax/spark-cassandra-connector
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2.2 Streaming Data

There are two main categories of queries in a streaming system: standing queries and
ad-hoc queries. The former are questions that are asked for every incoming record in
the system. Examples include “What is the maximum value seen so far?”, or “Notify
me when the temperature is above 30 degrees”. The latter type of queries are questions
asked once about the current state of the stream. Examples are “How many unique users
have visited the website the last month?”, or “What is the average temperature for the
last 12 hours?”. This requires that the stream processor keeps some state of previously
seen records, e.g. the last moth of users or the last 12 hours of the temperature.
One approach for keeping a state of the stream is sliding windows. This means that

the stream processor keeps the recent n records of the stream, or records arrived within
the last t time units, in working space dropping any older records. To be of any value the
stream processor must have a notion of what kind of ad-hoc queries it needs to handle
beforehand. If the rate of arriving records is high the window will quickly exhaust the
working space. To mitigate this it is common to either keep a sample of the stream
or use an estimate to answer the query. This reduces the space requirements for the
window and allows for grater values of n and t. An alternative to the sliding window
is a decaying window, keeping more of the recent elements and less of the older, and a
tumbling window, isolating sequential series of time or elements.

2.2.1 AsterixDB feeds

The AsterixDB Data Feed is a component to support continuous flow of data from an
external source into persistent and indexed storage of AsterixDB (Grover and Carey,
2015). It works by instantiating a Feed Adapter using AQL in the AsterixDB interface,
and connecting it to a dataset. There are different feed adapters for different datasources,
and they are either pull-based or push-based. When started, the feed adapter connects
to the data source, receives records, parses and translates them into ADM-objects and
stores them incrementally. The feed adapters works as pluggable components in the
system and allows for building cascade networks of feeds. The output of one stream can
be used as the input to another, meaning that the system can fetch the data once, and
perform multiple computations on it.
Data can arrive in the feed faster than what AsterixDB can process, and each feed has

an associated ingestion policy describing the behavior in such case. The built-in policies
are basic, spill, discard, throttle and elastic. The basic policy buffers any excess records
in memory until the system is ready to process them, the spill policy saves excess records
to disk while the discard policy simply drops the records altogether. The throttle policy
will randomly filter out records to regulate the rate of arrival and the elastic policy will
scale the AsterixDB cluster out or in to adapt to the rate of arrival.
When instantiating a feed adapter the user can provide custom code for preprocessing

of the data by the means of an UDF. This function will be applied to each record prior
to persistence. This allows users to interact with the stream in real-time.
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2.2.2 Spark Streaming

The motivation behind Spark Streaming was to reduce costs of fault recovery and slow
nodes in traditional distributed steam processing models (Zaharia et al., 2013). The core
of Spark Streaming is the processing model called discretized streams, or D-Streams. It
structures a streaming computation as a series of stateless, deterministic batch compu-
tations on small time intervals. Each of these batch computations, or tasks, may run on
any node in the cluster, and their state is stored in memory using Sparks fault-tolerant
data structure RDD. Each task can be recomputed deterministically and allows for par-
allel recovery. Spark Streaming is based on the Spark processing engine and consists
of a master-component, which schedules tasks and track the D-Stream lineage, worker
nodes, which receives data and execute tasks, and a client library, used to send streaming
data into the system. Spark Streaming is now included in Spark as a library.

2.3 Machine Learning

Machine Learning (ML) is a field of study including construction of algorithms that can
learn from and make predictions on data (Mitchell, 1997). This is used for Data Mining
(DM), the process of automatically extracting meaningful information from data (Witten
et al., 2011). The purpose of this is to unlock the values mentioned earlier.
ML can be supervised or un-supervised. With the supervised approach, a classifier is

trained with annotated data, meaning that the documents in the training set is given
a pre-defined category label. The unsupervised approach does not require this human
intervention, and uses other means of classification, like clustering.

2.3.1 Open Source Machine Learning Libraries

There are many ML libraries available today2. To be able to use the library for the
purpose of this project, two requirements emerge. First, it should be feasible to imple-
ment in Java. AsterixDB is based on Java and provides UDF for code written in Java.
Second, it should be flexible. The intention of using ML in this setting is to provide
general DM on Big Data. The library should not be specialized to one specific ML task.

Waikato Environment for Knowledge Analysis (WEKA): WEKA is a collection
of machine learning algorithms for data mining tasks (Hall et al., 2009). It is an open-
source project written in Java by a team at the Machine Learning Group at the University
of Waikato. WEKA aims to provide a collection of ML algorithms and data preprocessing
tools to researchers. It ships with a WEKA-client to explore data ad hoc, and an API
to extend and use the toolkit in other applications.

2Gate, RapidMiner, MOA, Spark, R, KNIME and Hadoop (among others)
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2.3.2 Spark Machine Learning Library

Spark MLlib started as a project to make ML more accessible to non-experts (Kraska
et al., 2013). It quickly became a part of Spark as Spark lacked a suite of robust
and scalable learning algorithms (Meng et al., 2016). Spark is designed with iterative
computations in mind and enables efficient implementations of ML algorithms. MLlib
ships with common ML algorithms, interfaces for feature transformation and pipeline
construction and APIs for Java, Scala and Python.

2.4 Task and Domain
This section outlines a chosen task and domain to conduct the project within.

2.4.1 Sentiment Analysis

Sentiment analysis, or opinion mining, has been chosen as the area to perform DM in
this project, specifically with the task of classifying the polarity of a given text to be
either positive or negative. It is one of the most active research areas in natural language
processing and DM, and interest in the subject has spread from computer science into
other sciences and industries, which makes it a natural task to apply in this study.
Sentiment analysis is concerned with finding people’s opinions towards entities such

as products or services (Liu, 2012). The focus of this project is not sentiment analysis.
This is only a chosen task of DM and will work as an aid for testing the implemented
ML method.

2.4.2 Twitter

Twitter has been chosen as the domain for this project, and the ML methods will be
performed on data from the Twitter universe. Twitter is one of the most popular mi-
croblogs today, with 313 million active users a month3. Each user can follow other users,
and post Tweets for their followers to read. Each Tweet can be at most 140 characters,
which makes them short and to the point, and therefore extensively used for sentiment
analysis. Twitter makes portions of its data available for consumers, and is ideal for this
research.
In the Twitter-domain there exists certain special characters that express informal

metadata about the text and authors. These characters are # and @. The former are
called a hashtag, and often denotes a topic of the tweet. The latter are called a tag and
is used to mark other users. In addition to these, links are often present in Tweets and
is identified simply by starting with www or http.

3As of November 30, 2016 according to https://about.twitter.com/company
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3 Related Work
This chapter will investigate the state-of-the-art approaches towards Machine Learning
(ML) and stream processing.

3.1 Related Research and Frameworks

ML techniques on large scale data is not a new phenomenon, and Amatriain (2013)
points out Recommender Systems (RSs) as the mainstream application for this type of
Data Mining (DM). This is how Spotify makes suggestions on what songs a user would
probably enjoy, and LinkedIn recommends people for a user to connect with. Both
Spotify and LinkedIn (and many other large scale companies like Facebook, Amazon,
Twitter, and Yahoo!)1 uses the Hadoop2 ecosystem as the underlying platform for
distributed computing, with different tools for DM (SPARK, R, MAHOUT, MOA)3.
As the sophistication of Machine Learning and Data Mining (MLDM) techniques

escalates, there is an increasing need to execute these algorithms in parallel. Low et al.
(2012) identifies that different research groups repeatedly solves this issue for individual
domains, and that there is a need for a general high-level abstraction. They focused on
graph structured computation in parallel and extended the GraphLab4 framework for
this problem.
Research has advanced regarding the volume of Big Data, but the velocity of the

data is an increasingly urgent issue. Data arrives at high speed and the analysis to be
performed on the data are often time sensitive. Twitter experienced in 2013 that the de
facto analysis platform Hadoop did not scale to meet their time requirements regarding
the velocity of data (Mishne et al., 2013). They were building a “related query suggestion
engine” to suggest trending queries to users in real-time. This required the system to
detect a trending query within 10 minutes, and they started to implement the system
using Hadoop. Twitter soon discovered that there were too many bottlenecks keeping
Hadoop from fulfilling the time requirement. MapReduce-jobs could take tens of seconds
only to start up on a large cluster.
A challenge when working with social media data, like microblogs, is that the queries

often requires indexing of both real-time and historic data (Magdy, 2016). One approach
to the real-time data problem is continuous queries, where a query is registered a priori,

1https://wiki.apache.org/hadoop/PoweredBy
2https://hadoop.apache.org
3Different Data Mining tools: http://spark.apache.org, https://www.r-project.org, http://

mahout.apache.org, http://moa.cms.waikato.ac.nz
4GraphLab: https://turi.com
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and incoming data is processed upon arrival. The query then returns incremental results
as new records arrive in the stream. Several Data Stream Management Systems (DSMSs)
and Stream Processing Engines (SPEs) provides this functionality, but they lack indexing
and querying of historical data.
Big Data Management Systems (BDMSs) has emerged as a concept to handle the

multiple challenges of Big Data. Alsubaiee et al. (2014) describes some of the criterions
of a BDMS to include a semistructured data model with support for varying data types,
a full query language with support for a range of different queries, an efficient parallel
query runtime, automatic indexing, continuous data ingestion and to be scalable with
increasing volume of data. AsterixDB5 is categorized as such a system. MYRIA6 is
another BDMS with a distributed, shared-nothing architecture. It is also provided as a
cloud service (Big-Data-as-a-Service). Myria’s goal is for users to upload their data and
for the system to help them be self-sufficient data science experts on their data. To the
best of our knowledge, Myria has no streaming support.
One promising approach to the problem of combining real-time and historical data

is the work done with Big Active Data (BAD) by Carey et al. (2016). They are ex-
tending AsterixDB to become a platform for what they call active data, concerning the
ever changing and arriving data. BAD can be thought of as a descendant of Event-
Condition-Action rules and triggers. The system they are designing will leverage from
BDMS with scalability, parallel data analysis, flexible data model, a declarative query
language and include concepts from DSMS for real-time data analysis. They envision a
Publish/Subscribe-pattern where there is a high number of sources of data, and an even
higher number of subscribers who desire notification involving both incoming data of
interest and changing state of historical data.
In an attempt to benefit from SPEs and BDMSs, several systems has been “glued”

together to get the best of both worlds. Grover and Carey (2015) compared continuous
data ingestion in AsterixDB to Storm7 + MongoDB8, a popular approach in the
community. Storm is used for streaming and processing of streams, while MongoDB
is used for persistence. In their evaluation, Grover and Carey (2015) concluded that
AsterixDB outperformed the “glued” solution in terms of both performance and user-
experience.
Another combination of systems considered state-of-the-art is Spark Streaming9 +

Casandra10. Here, Spark Streaming is a library for Spark used to process streams,
and Apache Casandra is used for persistence. Pääkkönen (2016) compared this combin-
ation to AsterixDB for stream processing of semi-structured data and concluded with
AsterixDB achieving higher throughput and lower latency than the “glued” solution.

5https://asterixdb.apache.org
6http://myria.cs.washington.edu
7http://storm.apache.org
8https://www.mongodb.com
9http://spark.apache.org/streaming

10http://cassandra.apache.org
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3.2 Related Methods to Handle Streaming Data

The MapReduce programming model makes it possible to easily parallelize a number of
common batch data processing tasks and operate in a large cluster without worrying
about system issues like failover (Dean and Ghemawat, 2008). These systems typically
operate on static data by scheduling batch jobs. In stream computing the paradigm is
to have a stream of events that flow into the system at a given data rate over which the
application have no control. The streaming paradigm dictates a very different architec-
ture than the one used in batch processing. In an attempt to create the “Hadoop” for
streaming data, several methods and systems have emerged.

S411 addresses the need for a general-purpose distributed stream computing platform
(Neumeyer et al., 2010). It is based on the Actors model, a model of concurrent com-
putations in distributed systems (Agha, 1986). Here actors is the universal primitive
which messages are exchanged through. Upon receiving a message, an actor can make
local decisions, create more actors, send more messages, and determine how to respond
to the next message it will receive. Actors can keep local states, but only communicate
with each other through messages. In S4, the actors are called Processing Elements and
the messages are events. All nodes in S4 are homogenous, there is no centralized control.
S4 assumes nodes are not added or removed from a running cluster, and it accepts loss
of data in case of a failure.
Another system based on the Actors model is Apache Flink12. It is built on the philo-

sophy that real-time analytics, batch processing and iterative and interactive algorithms,
like ML and graph processing, can be expressed and executed as pipelined fault-tolerant
dataflows (Carbone et al., 2015). It achieves this by providing two Application Program-
ming Interfaces (APIs) on top of the streaming dataflow engine, a DataSet API and a
DataStream API. This allows for both early approximate results and delayed accurate
results in the same operation. The distributed dataflow runtime supports exactly-once
state consistency through checkpointing. The process model of Flink consists of a Flink
Client, Job Manager and multiple Task Managers, and all remote procedure calls are
asynchronous messages through the actor model.
A similar system is IMB’s Stream Processing Core (Amini et al., 2006). This

system is derived from the subscription model, and users can “subscribe” to existing
streams of data, without recompiling the processing flow-graph. It allows for users to
submit continuous inquiries, expressed as processing flow graphs evaluated over a stream
of data, and results of the evaluation is streamed back to the user continuously.
One of the latest additions to stream processing is Heron13, Twitters successor for

Apache Storm. It was designed to resolve issues related to scalability, debug-ability,
manageability, and sharing of cluster resources with Storm, and it does so by changing
the underlying architecture, but keeping the same API for backwards compatibility
(Kulkarni et al., 2015). Heron can run on top of several resource schedulers, and relies

11http://incubator.apache.org/s4
12https://flink.apache.org
13https://twitter.github.io/heron
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on ZooKeeper14 for coordination. Heron manages the lifecycle of stream-processing
entities called topologies which are directed acyclic graphs of spouts and bolts. Spouts
generate the input tuples and bolts do the computation.
While Storm used a thread-based computation model, Heron uses a process-based

computation model. Each Heron Instance is a Java Virtual Machine process with two
threads, a task execution thread responsible for carrying out the work of a Spout or Bolt,
and a gateway thread for communicating data and results between the task execution
thread and the associated Stream Manager. The Stream Manager is responsible for
routing the tuples and lives in a container alongside multiple Heron Instances. Several
containers can run in parallel and is controlled by a single Topology Master.

Aurora15, Borealis16 and Telegraph17 were among the pioneers of streaming data-
bases and concepts of streaming data, such as windows and incremental operators. They
are designed with a continuous operator model. In this model the processing is performed
by a pipeline of operators with an initial source- and a final sink-operator. In between
are continuous operators which processes the streaming data one record at a time before
passing it on to the next operator in the pipeline. The operators are preassigned to
worker nodes in the cluster. Since the operators are statically assigned to worker nodes
it makes it difficult to recover quickly from failing nodes, and static allocation can also
result in uneven workloads and bottlenecks.
Borealis, which is the only distributed system of the three mentioned, solves the fault-

tolerance through replication. The technique involves keeping a duplicate operator on
another node in the cluster, and is a resource expensive approach. AsterixDB tackles the
fault-tolerance problem with a combination of operator replication and upstream backup,
which involves buffering and replaying records in the case of a consequent node failure.
This is only necessary if at-least-once semantics are required. AsterixDB mitigate load
balancing by having worker nodes report resource statistics regularly.

Spark Streaming18 addresses the fault-tolerance issues with a different processing
model called discretized streams (Zaharia et al., 2013). The stream is divided into batches
and dynamically scheduled and executed on the worker nodes. This model allows for
parallel recovery, since the batches are stateless and deterministic.

14https://zookeeper.apache.org
15http://cs.brown.edu/research/aurora
16http://cs.brown.edu/research/borealis
17http://telegraph.cs.berkeley.edu
18http://spark.apache.org/streaming
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4 Feed Ingestion in AsterixDB
with Machine Learning

This chapter presents the architecture of AsterixDB feeds and the implemented system.
It begins with the feed components and concepts, then presents a high-level overview of
the implemented system before describing the different components in further detail.

Listing 4.1: Query statements involved with initiating a feed
create dataset DATASET(type) primary key ID;
create feed FEED using ADAPTOR (

("parameter"="value")
);
connect feed FEED to dataset DATASET
using policy POLICY
apply function LIBRARY#FUNCTION;
start feed FEED;

4.1 The AsterixDB Data Feed Adapter
Initiating a feed is done through the AsterixDB web interface by a query. The As-
terix Query Language (AQL) compiler fetches the involved components, feed, adaptor,
policy, function, and target dataset, and translates the connect feed-statement into
a Hyracks job (Grover and Carey, 2015). This results in a dataflow referred to as the
feed ingestion pipeline. The pipeline involves intake-, compute- and store-steps, where
each step is performed by a Hyracks data operator that can run in parallel across nodes
in the AsterixDB cluster. The intake step creates an instance of the adaptor to ingest
and transform incoming data to Asterix Data Model (ADM)-records. The compute step
applies any library function to each record, and the store step places the records in the
target dataset and updates indexes accordingly.
In addition to the data operators, there is a data connector component, which repar-

titions the output from the operators to make them available for consuming operators,
and a feed joint component, which is placed on operators to provide access to data flow-
ing along the pipeline. The joints are used to build cascading networks and allows data
to be routed along multiple paths simultaneously.
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Figure 4.1: The components of the Feed Ingestion Pipeline

An AsterixDB cluster is composed of a manager node, the Cluster Controller, and a
set of worker nodes, the (Node Controllers. The manager node hosts a Central Feed
Manager (CFM) responsible for scheduling feed ingestion pipelines by mapping each of
the operators to a worker node. Each worker node hosts a Feed Managers (FMs) that
periodically reports back resource statistics to the CFM to monitor load distribution.
Each pipeline operator may define a degree of parallelism. For the intake operator,

this is determined by the adaptor, meaning that multiple intake operators can run in
parallel. The CFM will run a single intake operator instance if no constraints is provided.
The compute operators do not provide any constraints, and the CFM will initially match
the level of parallelism imposed by the store step. To cope with increasing arrival rate
of data, new resources can be added to the cluster to scale out the system, and the
feed ingestion pipeline may be re-structured, dependent on the ingestion policy. The
parallelism of the store operators are predetermined by the nodegroup that holds the
partitions of the dataset.
A pipeline can be congested in two ways: by an increasing arrival rate of data, and by

an expensive User Defined Function (UDF). The system is congested when an operator
lacks resources to process the data at a rate grater than, or equal to, the rate it is
arriving at, hence causing a bottleneck in the pipeline. Local policies exists to determine
how to handle queuing records, they may be buffered in memory or spilled to disk, for
delayed processing, sampled or discarded altogether. This remains hidden from any
upstream operators that will continue to receive and send data. A global strategy is to
spawn multiple compute operators on idle nodes, or on nodes with low loads, to process
expensive UDFs. This is made possible by the stateless and parallel nature of UDF itself,
and activated in the elastic policy.
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Runtime exceptions can occur in UDFs and could halt the entire dataflow. Every
compute operator is wrapped by a MetaFeed operator, that acts as a sandbox envir-
onment. An exception thrown by the core of the compute operator is caught by the
MetaFeed operator which removes the conflicting record from the input and resumes the
core compute operator. In other words: the exception generating record is discarded.
When a node falls out of the cluster it is detected as “dead” through a heartbeat

mechanism. Each operator in the pipeline receives a notification about the failure and
saves its current state and contents of its buffers. The intake operator buffers all new
incoming records and ceases to forward them upstream. A new pipeline is constructed
using the same mechanism as when scaling due to congestion. New operators are placed
alongside the old ones, and enter a “hand-off” from the old operators. Operators from
the dead node may be scheduled to run on any other node, as all operators can co-exists
on worker nodes in the cluster. The “in-flight” records of the dead node would be lost,
as there is no hand-off from the dead node. To mitigate this, AsterixDB provides an
optional at-least-once semantics, achieved by giving all records a tracking ID at intake
and buffer them until an acknowledgment is returned from persisting the record. Upon
timeout the record is replayed. The loss of an intake operator node will lead to lost
records. Some sources allows retrieval of past records from a live feed, but if this is not
possible multiple intake operator nodes can run in parallel to ensure higher availability
of feed intake.
The loss of a store operator is equivalent to the loss of a data partition. AsterixDB

currently does not support data replication, so this would lead to an early termination of
the feed. If the store operator node rejoins the cluster it undergoes a log-based recovery,
to ensure consistent state of all partitions, and the feed ingestion pipeline is rescheduled
(Grover and Carey, 2014).

4.2 System Overview

The implemented solution of Machine Learning (ML) is designed to be installed in an
AsterixDB cluster as an external library. It will then be used as a function processing
all incoming data in an adapter, or applied on every record of a dataset. The model will
be trained offline, in advance of installing the library.

4.2.1 Training the Model

The model is trained in an offline process. Given a dataset with annotated data, the Text
Analyzer extracts the predefined features for each entry in the dataset. This is sent to
the classifier, along with the associated class label, which builds and stores the model.
The Classifier takes a desired classification algorithm as parameter, for example J48,
Naive Bayes, or Support Vector Machine.
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Figure 4.2: A high-level overview of the system

4.2.2 Using the Model

The library is packaged with the trained model and installed into the AsterixDB cluster.
Each record in the feed or dataset is processed by the UDF where the Text Analyzer
extracts the features and sends them to the Classifier. The Classifier then uses the
model to classify each record and returns a new record with the class-attribute attached.
The records must be of the same datatype as the model was trained with.

Listing 4.2: Example of an input, and accompanying output, record
input = { "text": "I love AsterixDB =)" }

output = { "text": "I love AsterixDB =)",
"class": "positive" }
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4.3 System Components
This section describes some of the components shown in Figure 4.2 in further detail.

4.3.1 Text Analyzer Component

Multiple steps are involved with classifying a text, and the first component the text
meets in the system is the Text Analyzer. This components job is to prepare the raw
text for the Classifier. It consists of multiple steps in a pipeline. The first step is
a Tokenizer to turn the raw text into a vector of tokens, along with the frequency of
each token. This will also remove any stop words. Next, stemming is applied to the
tokens, through the Stemmer. This alternative is optional, and any chosen stemmer can
be supplied. The final step is the Feature Extractor. Here the different features are
retrieved from the tokens, and saved as numeric values.

Raw text Tokenizer Stemmer Feature
Extractor Classifier

Text Analyzer

Figure 4.3: The steps of the Text Analyzer component

Features: The nature of metadata in Twitter described in Section 2.4.2 is used to
extract features from the record. In addition to these, a simple sentiment lexicon lookup
is used to give a coarse hint about the sentiment. All together, four different numeric
values are used as features for building models and classifying a record. These are:

• Number of topics

• Number of tags

• Number of links

• A sentiment score

The topics, tags and links are simply counted in each record, and the sentiment score
is calculated by occurrence of a token in a sentiment lexicon. The lexicon consists of two
lists of words, positive and negative, where the words in each list are manually assembled
to express positive or negative sentiment (Hu and Liu, 2004). If a token exists in the
positive list, the sentiment score increases with 1, whilst if it exists in the negative list,
the sentiment score decreases with 1. If the token is not present in any of the two
lists, the sentiment score remains unchanged. When the token is categorized as a topic,
meaning a preceding hashtag, the author wanted to emphasis this word (Efron, 2011),
and the sentiment score calculation above can be scaled with any given factor.
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4.3.2 Classifier Component

An Instance Holder is created with the same number of attributes as there are features.
The value of these attributes are set according to the feature values extracted from the
raw text. The Instance Holder is then used as input to the Instance Classifier
to either train the model or to determine the class of the instance. When training,
the Instance Holder also sets the class-value, and the Classifier takes the desired
classification algorithm as input.
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Figure 4.4: The steps of the Classifier component during training
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Figure 4.5: The steps of the Classifier component during classifying
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5 Experiments and Results
This chapter consists of the planning, setup and results for the experiments conducted.
It will present a baseline, along with the dataset, metrics and methodology used.

5.1 Goals with experiment
The goal stated in Chapter 1 asked if Machine Learning (ML) can scale to both stored
and streaming Big Data. To determine this the experiments must be designed to measure
how the implemented method handles increasing volume and velocity of data. The goal
is to investigate if the implemented method can match an industry standard baseline in
terms of high volumes and arrival rates of data.
It is worth noting that the accuracy of the classification is not the focus of this ex-

periment, since the work done only concerns scaling ML to Big Data, not making the
model and classification algorithms optimal for any given problem.

5.2 Baseline
Spark was chosen as the baseline for comparison. It has become an widely adopted
tool for data analysis and robust libraries for both stream processing and ML has been
developed by a large open-source community.
The baseline program was written using Spark’s Java Application Programming Inter-

face (API) and works simmilar to the AsterixDB solution. First, a JavaStreamingContext
is created with a batch size of 1 second, and 0.5 seconds in turn. Next, the streaming con-
text is connect to a socket to create a JavaReceiverInputDStream. Every input in this
stream is transformed into a dataframe and passed through a series of transformation.
The input is turned into tokens, stopwords are removed, features are extracted through
a custom User Defined Function (UDF), and the dataframe is finally transformed by
the model. The model is trained in an offline step, and stored for online classification.
When the input has been classified it is written to Cassandra.
Spark version 2.1.1 is used in this evaluation, along with Spark Cassandra Connector

version 2.0.0 and Cassandra version 3.10.

23



5 Experiments and Results

5.3 Evaluation Methodology

This section presents the dataset, metrics, and approach for the experimental evaluation.

5.3.1 Dataset

Training data: The model was trained with data from Sentiment1401. This dataset
consists of 1’600’000 Tweets, annotated with positive and negative sentiment. It was
gathered by Go et al. (2009) using the Twitter Search API2, with queries for positive
and negative emoticons. This distant supervision method automatically annotates large
amount of data, without human labor, using emoticons as noisy labels, and is shown
to achieve good accuracy. The data was stripped for anything but the content of the
Tweet and stored in separate files for positive and negative. The model was then trained
several times with a subset of these files to discover the minimum amount of training
data required for sufficient accuracy. Testing the model revealed that the accuracy con-
verged with 5000 positive and negative Tweets individually. The test data was manually
collected by Go et al. (2009) and contains 77 negative Tweets and 182 positive Tweets.
As mentioned earlier, the accuracy is not the main focus and will not be measured.

Test data: To perform the experiment with sentiment classification of Twitter statuses
a dataset was collected using the Twitter Streaming API3. The API delivers a small per-
centage of all traffic passing through Twitter in realtime, and approximately 10 million
unique Tweets were gathered. The records were stripped for anything but the text field,
as shown in listing 5.1.

Listing 5.1: Format of the collected Tweets
{ "text": string }

Data Generator: To simulate a Twitter-stream, a dedicated Data Generator4 was
developed in Node.js5 which will read the collected data and output the Tweets on a
socket at a configurable rate of Tweets per second.
The Data Generator is set to stop emitting records if it discovers backpressure from

the receiving socket, and will pause if there is more than one million outstanding records
in the stream, giving the receiver time to catch up. This functionality is present to limit
the memory consumption of the Data Generator.
The Data Generator can operate in two modes, as a client or as a server.

1http://help.sentiment140.com
2Read more about the Twitter search API here: https://dev.twitter.com/rest/public
3Read more about the Twitter Streaming API here: https://dev.twitter.com/streaming/public
4Data generator: https://github.com/thormartin91/twitter-stream
5Node.js: https://nodejs.org/en/
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5.3.2 Evaluation Metrics

To investigate wether ML classification in the AsterixDB platform can scale to large
quantities of Big Data, the classification algorithm will be applied to different amount
of records in the dataset and the time it takes to classify them should be measured.
For each query performed in the AsterixDB browser interface, it returns the execution

time. This would give the amount of time spent processing the query before returning
the record, and thus ignoring the network delay between the server and the client and
ignoring the browser loading time on the client. The experiment will also explore the
response time from AsterixDB to the client.

To evaluate the scalability of the system, the experiment will measure the maximum
arrival-rate of records the system can successfully process and store. The rate of
incoming records will increase until the system is fully saturated. This will be repeated
for an increasing number of nodes in the cluster to explore how the maximum arrival-rate
evolves with a scaling cluster.

5.3.3 Experiments

Two categories of experiments will be performed to evaluate different aspects of the
system. The first experiments investigates how the classification scales with increasing
volume of offline, historical data, while the second experiments explores the streaming
aspect and how the system handles increasing arrival rate, or velocity of data. The
AsterixDB version 0.9.2-SNAPSHOT as of 19th of May was evaluated.
In the first set of experiments, each query were given 2 “warm-up” runs without

recording any metrics, then they were executed 5 times each and the average execution
time, or response time, was reported. The different amount of Tweets were achieved by
loading smaller subsets of the total Tweets into the cluster.
These experiments were performed on a MacBook Air mid-2012 with the following

hardware:

• 2 GHz Intel i7 with 2 physical cores and hyperthreading

• 8 GB DDR3 1600 MHz RAM

First, AsterixDB’s user interface in the browser was used to create and load the data-
set and perform all queries. Each query is packed in the count()-statement to keep the
returned result to one printed line in the browser. The query is shown in listing 5.2.

Listing 5.2: Query performed on the different datasets
count(

for $x in dataset Twitter
return testlib#classifyText($x)

);
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Next, an experiment was performed with an API-client called Postman6. In this ex-
periment, two different requests was posted to the AsterixDB API and the response
time was measured. The first query is identical to the query performed in the browser
interface (listing 5.2) except that response time is measured instead of execution time.
A typical response from the API for this query is shown in listing 5.3.

Listing 5.3: Response from the API when using count()

[ 10,000,000 ]

In the second query, the count()-statement was removed. This query was posted
with a HTTP parameter called mode=asynchronous, which makes AsterixDB perform
the classification, but return a handle to the results instead of the actual results. This
is to keep the payload equal in size for all queries. A typical response is shown in list-
ing 5.4. This handle can be used to pick up the results on a different endpoint of the API.

Listing 5.4: Response from the API when using mode=asynchronous

{ "handle": [51,0] }

In the next series of experiments the velocity of the data is of interest. These ex-
periments will investigate the rate at which records can be processed by the system
for varying rates of incoming data, and will make use of the Data Generator for data
ingestion.
For different amount of nodes in the cluster, a given rate of Tweets per second will

be ingested in the system for a duration of 5 minutes. The rate at which records are
processed will be reported by a Statistics component in the UDF. The system will
scale with 2, 4, 6 and 8 nodes and the ingestion rate will be 5’000, 10’000 and 15’000
records a second. Spark will run with one Executeor, scaling the available cores.
AsterixDB has different adapters for ingesting data, and can act as a socket server or

a socket client. Both will be explored in the experiments.
These experiments were performed on a Dell OptiPlex 9020 with the following hard-

ware:

• 3.4 GHz Intel i7 with 4 physical cores and hyperthreading

• 16 GB DDR3 1600 MHz RAM

6https://www.getpostman.com
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The figures 5.1 and 5.2 show the timelines of communication between the involved
components of both AsterixDB and Spark, and the listing 5.5 shows the Asterix Query
Language (AQL) statement for the experiment. For each node and arrival rate, the
experiments will be performed twice where the first run is a “warm-up” before datatypes,
datasets, and the feed is dropped and recreated.

DataGenerator AsterixDB Statistics

Listen Start cluster Start

Create feed

Start feedConnect

Tweets Report

Loop

Figure 5.1: Communication timeline for AsterixDB experiments

DataGenerator Spark Cassandra Statistics

Listen Start cluster Start Start

Create
data structures

Open socketConnect

Tweets
Write

Report

Loop

Figure 5.2: Communication timeline for Spark experiments
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Listing 5.5: AQL for streaming data experiments.
use dataverse feeds;

drop feed SocketFeed if exists;
drop dataset TestDataset if exists;
drop type TextType if exists;

create type TextType as open { text: string };
create dataset TestDataset(TextType) primary key text;
create feed SocketFeed using socket_adapter (

("sockets"="127.0.0.1:10001"),
("address-type"="IP"),
("type-name"="TextType"),
("format"="adm")

);

connect feed SocketFeed to dataset TestDataset
apply function testlib#classifyText
using policy Basic;
start feed SocketFeed;

5.4 Results
This section presents the results of the experiments.
Figure 5.3 shows the result of running queries from the browser on the dataset from

1 million up to 10 million records. The 10 million records dataset took approximately
1.5 GB on disk. To see what happens when the dataset approaches the size of the main
memory available on the machine, the dataset was duplicated to achieve greater size.
This means that a record will appear multiple times in the dataset, but each record was
given a unique ID. A 50 million records dataset was generated, which took approximately
8 GB on disk (the size of the available memory), and a 100 million records dataset was
generated, which took approximately 16 GB on disk. The results are displayed in the
figure 5.4. The red line is the regression line from the experiment with 10 million records,
to compare with the trend of these results.
In figure 5.5 the response times from the the API client is shown. The blue line shows

the the execution time for comparison. The red line shows the response time posting
with the count()-statement. The green line shows the response time when posting
without the count()-statement, and with the mode=asynchronous parameter.

Next, the results from the streaming data experiments are presented. This will show
the reported Tweets per second, along with times for when backpressure occurred and
when all Tweets were finally ingested.
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Figure 5.6: AsterixDB classification for
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Figure 5.7: AsterixDB classification for
10’000 Tweets per second, using
socket-client adapter.
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Figure 5.8: AsterixDB classification for
15’000 Tweets per second, using
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Figure 5.10: AsterixDB classification for
10’000 Tweets per second,
using socket-adapter.
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Figure 5.11: AsterixDB classification for
15’000 Tweets per second,
using socket-adapter.
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Figure 5.12: AsterixDB baseline for 5’000
Tweets per second, using
socket-client adapter.
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Figure 5.13: AsterixDB baseline for 10’000
Tweets per second, using
socket-client adapter.
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Figure 5.14: AsterixDB baseline for 15’000
Tweets per second, using
socket-client adapter.
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Figure 5.15: AsterixDB baseline for 5’000
Tweets per second, using
socket-adapter.
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Figure 5.16: AsterixDB baseline for 10’000
Tweets per second, using
socket-adapter.
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Figure 5.17: AsterixDB baseline for 15’000
Tweets per second, using
socket-adapter.
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Figure 5.18: Spark classification for 5’000
Tweets per second with 0.5
second batch size.
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Figure 5.19: Spark classification for 10’000
Tweets per second with 0.5
second batch size.
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Figure 5.20: Spark classification for 15’000
Tweets per second with 0.5
second batch size.
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Figure 5.21: Spark classification for 5’000
Tweets per second with 1
second batch size.
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Figure 5.22: Spark classification for 10’000
Tweets per second with 1
second batch size.
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Figure 5.23: Spark classification for 15’000
Tweets per second with 1
second batch size.

Cores
#

Backpressure
after

Finished
at

2 None 305 s
4 None 414 s
6 None 304 s
8 None 302 s

35





6 Evaluation
This chapter will evaluate the performed experiments and give a discussion of the results.

6.1 Evaluation

10 million records take about 1.5 gigabyte of storage and could easily fit in main memory
of the cluster. To see how the the processing scales to Big Data, an experiment would
have to be performed, where at least the dataset would not fit in main memory. This is
shown in figure 5.4.

One query in the offline experiments, figure 5.3, wraps the result in a count()-
statement. The reason for this is to keep the body of the returned results equally large for
all queries and lightweight, and avoid printing 10 million records in the browser interface.
The consecutive experiment was coined to see what impact the the count()-statement
had on the execution time.
There are larger deviations for the query with the mode=asynchronous parameter,

and it is not unlikely that they are caused by other processes on the machine. For this
experiment, the client and AsterixDB executed on the same machine. Section 7.2 makes
suggestions for isolating the experiments further.
Notice that in both the queries to Spark and to AsterixDB for sreaming data experi-

ments, the processing rate is reported to the Statistics component without knowledge
of the process of persisting the records. It is not possible to gain this insight without
altering the source code of the underlying systems, and we can only report the rate as
observed in the User Defined Function (UDF). For this reason persistence is treated as
a “black-box” and the records is assumed to be persisted once submitted by the UDF.
The experiments were conducted with only one Cassandra instance. Scaling this

number would require a layer between Spark and Cassandra to coordinate consistency,
handle indexing and partitioning. It is likely that this would cause overhead regarding
the throughput of persistence and section 7.2 makes suggestions for further investigation.
The Data Generator was executed on the same machine as both the AsterixDB cluster

and the Spark cluster. This leads to less overhead in terms of network delay, but will
also require it to share resources with the cluster. A backpressure mechanism was imple-
mented into the Data Generator to avoid flooding the stream with outstanding records.
The resource usage of the Data Generator was closely monitored and never exceeded
6 % memory consumption and 10 % CPU execution time. The average values of resource
consumption for the Data Generator was 1.6 % memory and 4.8 % CPU.
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6 Evaluation

6.2 Discussion of Results

As seen in figure 5.3, the time it takes to process the records increases with the amount of
records to process. This is expected, and the rate at which the execution time increases
is what is interesting. Although the line is not perfectly straight, it is evident that the
increase is linear. It takes the same amount of time to process a record, independently of
how large the dataset is, at least for a dataset of the size used. The points that deviate
from the straight line is probably caused by other processes on the computer fighting for
resources. Additional experiments are proposed in Section 7.2.
When looking at the regression line from the offline experiment on the larger dataset,

figure 5.4, the execution time for 50 million and 100 million records indicate that the
processing scales O(n).

In the response time experiment, figure 5.5, the same query posted through the API
and the browser had almost identical results, with the one posted through the API
slightly higher. A reason for this might be that the time recorded is the response time,
and a few milliseconds is required to transfer the results, as opposed to the execution
time in the browser query.
The results from the query without the count()-statement, and with the mode=

asynchronous parameter is also slightly higher. An explanation for this might be that
the payload in the response of this query is a few bytes larger than the other query, and
therefore the response time increases. This results also deviates much more than the
others, and before concluding with that being caused by processing overhead, further
experiments will have to be performed.

The conclusion to be drawn from the offline experiments is that on the same hardware,
scaling only the amount of data has no impact on the performance of the classification.
The throughput remains the same.
As for the streaming data experiments it is evident that the classification does not

add significant overhead to AsterixDB when comparing the plots for classification to the
AsterixDB baseline. There is notable differences for the throughput of socket-adapter
compared to socket-client adapter, both for the baseline and with classification. The
socket-adapter has a steadier throughput for all size clusters when the arrival rate is
low, and this adapter is being more actively developed of the two.

As the arrival rate increases records are pending in the stream for AsterixDB, both for
the baseline and the classification implementation. However we observe that this occurs
later when more nodes are present in the cluster, thus indicating scalable processing and
that AsterixDB performance improves with distribution.
The experiments show that the implemented solution were able to handle arrival rates

of up to 10’000 Tweets per second using the socket-adapter, in accordance with the
results of Grover and Carey (2015).
Compared to Spark, AsterixDB does not keep up with the throughput as the arrival

rate increases. This is true for both the classification implementation and the AsterixDB
baseline. Spark’s strategy of batching records proves efficient, although this strategy
inherently adds a small latency and the records will be seen in near realtime as opposed
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6.2 Discussion of Results

to closer to real-time in AsterixDB.
Spark also never caused backpressure to the Data Generator and any queueing re-

cords did not cause congestion in the stream. If Spark was prevented from processing
in a timeframe it ingested twice as many records in the next batch.
The baseline system of Spark and Cassandra was designed to ingest and store data,

and does not enable analytical queries of historical data. This is provided “out-of-the-
box” with AsterixDB.
In previous experiments, AsterixDB outperformed Spark and Cassandra in the task

of sentiment analysis with regards to throughput (Pääkkönen, 2016), which contradicts
the results of this report. There are several reasons for this. Pääkkönen performed
classification on records by reading them from Cassandra after they were persisted and
write the result back. This yields twice as many write operations and an additional read
operation for each record. Performing classification before persistence was suggested by
Pääkkönen and is the way the experiments in this report are conducted. In addition,
Pääkkönen evaluated Spark version 1.3.1, while the experiments in this report were
performed with Spark version 2.1.1. Both Spark Streaming, Spark MLlib and the Spark
Core has seen performance improvements between these versions1.
To conclude the streaming data experiments, classification in AsterixDB imposes min-

imal overhead, and the solution scales gracefully with the number of nodes in the cluster.
Nevertheless, Spark achieves greater throughput for high arrival rates.

1https://spark.apache.org/releases/spark-release-2-0-0.html
https://spark.apache.org/releases/spark-release-2-1-0.html
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7 Conclusion
This chapter presents a conclusion to the work done in this project and points out
directions for future work.

7.1 Conclusion

This project sat out to explore whether Machine Learning (ML) methods could scale
to both stored Big Data and streaming Big Data. When investigating state-of-the-art
Big Data platforms, AsterixDB proved promising for both handling streaming data with
Data Feeds and allowing parallel execution of user code with User Defined Function
(UDF). For a ML library to fit with this task it must to be general, extensible and
feasible to implement in the same programming language as AsterixDB, namely Java.
The WEKA-library fulfills all of these requirements. WEKA has been implemented
into the Big Data Management System (BDMS) AsterixDB for the purpose of ML.
Specifically, classification was performed on Twitter data to determine the sentiment
of a Tweet. Experiments with 100 million records show that the classification scaled
O(n) for historical data on a single node setup, and imposes minimal overhead while
classifying real time streaming data. The system handled throughputs of up to 10’000
Tweets per second, and scales gracefully with distribution of the cluster.

Experiments revealed that the implementation of Spark and Cassandra achieved greater
throughput than that of ML in AsterixDB, but the batching of records in Spark will
only provide near real-time processing. Also, Spark is not designed for data storage,
and the tasks of handling partitioning, indexing and replication need to be incorporated
in a Spark + Cassandra technology to achieve functionality that AsterixDB provides by
default. In addition, historical queries were not implemented or evaluated in Spark and
Cassandra.
One of the benefits of running ML on a system for both stored and streaming Big Data

is the ability to run queries on real-time and historical data simultaneously, revealing
information one might not have discovered looking at them in isolation. The historical
data can also be used to improve classification. As data arrives in the system and is
accumulated with the historical data, a classification model can be trained on this data
periodically and continuously adapt to the varying data.
An argument for using modular systems like Spark + Cassandra is that tools are

specialized to solve individual tasks and while this might be a more performance effi-
cient strategy than a “one-size-fits-a-bunch” approach, it requires developers to acquire
knowledge of a range of technologies in order to maintain the system.
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7 Conclusion

7.2 Future Work
To extend the experiments performed in this report, one can consider isolating the
experiment further by running client and cluster on different nodes. This will leave all
processing power on the cluster node to perform ML, avoiding competition on resource
usage.
Notice also that the experiments simulated cluster nodes with processor cores. An

extended experiment could investigate the effect of having separate, physical machines
for each node in the cluster. One could also vertically scale up the hardware on each
node to see how this impacts the processing.
The experiments were conducted with only one Cassandra instance, and the effect

of scaling the number of these instances could be examined to inspect how the rate of
throughput evolves.
The implementation of Spark + Cassandra did not involve the ability to run analytical

queries on historical data. Since this combination of technologies proved efficient with
regards to throughput of streaming data it would be interesting to see how the inclusion
of query functionality affects the performance, compared to that of AsterixDB.
Finally, studying the accuracy of sentiment analysis is beyond the scope of this study.

Achieving high performing sentiment analysis in the AsterixDB platform is left for future
work.
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