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Abstract

This paper considers a tactical block scheduling problem at a major Norwegian hospital.
Here, specific patient groups are reserved time blocks for scanning at a heterogeneous set of
Magnetic Resonance Imaging (MRI) labs. The time blocks consist of several time slots, and
one or more patients from the same group are scanned in a block. A total weekly number of
time slots for each specific patient group is given through demand forecast and negotiations,
and several restrictions apply to the allocation of time blocks. Only part of the week is
allocated to blocks for the specific patient groups. The rest is classified as open time. Thus,
the MRI block scheduling problem consists of finding a cyclic weekly plan where one or more
time blocks are to be allocated to each specific patient group, by deciding the day, start
time and length, to minimise unfavourable patient group allocations, as well as allocations
of open time. For the problem, we propose an integer programming model with an objective
function that combines penalties for allocating time blocks to patient groups at unfavourable
time slots and labs, and rewards for advantageous positioning of open time slots. The aim
of the optimisation model is to facilitate the coordination of the MRI resources between
the hospital departments, that are responsible for the specific patient groups, to achieve
a fair distribution of time slots to the specific patient groups and open time blocks. The
computational study is based on the real problem as well as artificially generated instances.
Real-sized instances for our case hospital can be solved in short time. We illustrate how the
model can be used to produce Pareto optimal solutions, and how these solutions can provide
the decision makers with managerial insight.
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1 Introduction

The demand for health care services is increasing worldwide, and the demand for MRI (mag-
netic resonance imaging) scans is no exception. According to the Organisation for Economic
Collaboration and Development (OECD) [19, 20], the number of MRI scans performed in west-
ern countries has increased dramatically in the last decade (see Figure 1). The number of MRI
scans has grown at a higher rate than the number of MRI units, indicating a better utilisation of
the MRI units by time. However, the pressure on good utilisation of such facilities is increasing
because the MRI units are often major bottlenecks for the patient flow at hospitals.

Several external factors influence operations management decision making at public hos-
pitals [27]. These external factors include budgetary targets, demographic changes, medical
technological advances, and public’s increased access to information. Public hospitals need to

*corresponding author (anders.gullhav@iot.ntnu.no)



60,000 ‘ ‘ 16

—o— Examinations
= Units 115
52,500 |- -1 14
E |13
£ &
g k=
g 45,000 |- 119 7
< —_
: -
— P
~ B
= 11
37,500 | -1 10
19
30,000 8

| | | | | | |
2007 2008 2009 2010 2011 2012 2013
Years

Figure 1: MRI scans and MRI units per 1,000,000 inhabitants. The numbers are based on data from
OECD [19, 20]

adjust to the changes in these factors, and governmental regulations and requirements often
drive this change. Governments also impose direct requirements on public hospitals and other
public health care providers to increase their efficiency, such as defining guidelines for maximum
waiting times for examination and treatment [27]. Diagnostic imaging departments often have
a large impact on these patient throughput times because an MRI scan is more often one of
several health care services in a patient pathway. Utilising the existing capacity more efficiently
is the key to improving patient flow because imaging diagnostic facilities typically represent
large investments with tight budgetary limits.

The development in the demand for health care services in general, and MRI diagnostics in
particular, is also experienced by St. Olavs hospital, one of Norway’s major hospitals. The MRI
unit is part of the Clinic of Radiology and Nuclear Medicine, and functions as a hub for many
patients at the hospital. MRI has replaced many of the diagnostic tasks previously performed by
clinical staff, which means that more patients flow through this unit than before. In addition, the
Norwegian government has tightened requirements for patients’ waiting times, the time between
a scan request and the scan (also referred to as access time in the literature). These developments
clearly increase pressure on the MRI unit as a scarce resource at the hospital. Thus, the need
for utilising the existing resources more efficiently is critical. The utilisation of resources for a
health care provider depends on sophisticated processes for planning and scheduling to avoid
under-utilisation, staff overtime and long patient waiting times. Hence, improving planning and
scheduling processes at the Clinic of Radiology and Nuclear Medicine is believed to increase the
efficiency and performance at large parts of the hospital.

To reduce the vast complexity of the entire set of health care services required by all patients
and to improve service management, clinical pathways (also called integrated care pathways [6])
have been developed for groups of patients sharing similar symptoms or diagnoses. Essentially,
a clinical pathway prescribes which health care services should be performed, in which sequence,
and by whom. By introducing clinical pathways, St. Olavs hospital aims to improve the quality
of its care, utilise their resources better, avoid mistakes and reduce uncertainty. Some of the
larger clinical pathways that include MRI scanning as one of the health care services are classified
as patient groups. In addition, other patients are grouped in the schedules due to some specific



requirement, such as cardiology (heart) patients where a radiologist needs to be present during
the scan.

Hans et al. [13] propose a holistic framework for planning and control for a health care
provider, which consists of four managerial areas, combined with a hierarchical decomposition
of decision-making levels. Figure 2 illustrates the combinations of managerial areas and decision-
making levels, and presents examples of planning and control functions for each combination.
This paper considers the managerial area resource capacity planning. Strategic decisions involve
dimensioning of resource capacities, while online operational decisions are related to the execu-
tion of the health care delivery process. Between them are the tactical and offline operational
decisions, which involve the planning and organisation of the execution of health care delivery
processes. They are based on more aggregated information and forecasts than the online oper-
ational level, and the planning horizon is longer. Specifically, good decision support regarding
the block scheduling (also referred to as block planning) and appointment scheduling processes
for the MRI unit should provide a basis for better utilisation of the existing MRI resources.
In short, block schedules are high-level cyclic plans where time blocks are reserved for specific
patient groups at the different MRI labs. These plans must allow for factors such as the techni-
cal differences between the MRI labs, equipment requirements, and staff capacities. Moreover,
appointment scheduling relates to the patient-to-appointment assignment based on the defined
block schedule [16].
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Figure 2: Framework for health care planning and control [13]

Today the block and appointment scheduling for the MRI unit is done manually at St.

Olavs hospital. The current and future expected number of MRI scans, as well as strict new
governmental regulations for waiting times, makes the assignment of patients to different MRI
labs at particular times a highly complex task. Therefore, St. Olavs hospital has realised the
need for decision support for these planning issues.

In this paper, we consider the block scheduling problem for MRI labs. The hospital has
a given number of MRI labs, and the block scheduling problem is to develop a cyclic weekly
schedule where specific patient groups are reserved time blocks at the different MRI labs. Such
a weekly schedule is normally repeated for half a year and up to a year. The specific patient
groups that have reserved time blocks are typically patient groups belonging to a certain clinical
pathway, which have strict deadlines for diagnostics and treatment. For instance, in Norway
some of the different clinical pathways for cancer care have deadlines for diagnostics in the range
of five to seven days. A time block consists of a number of time slots, and the length of each
time block is part of the decision problem. Before the block schedule is constructed, the weekly
number of time slots for a specific patient group is fixed and decided through negotiations and



forecasted demand. The weekly demand for examinations is uncertain and varies from week to
week, so the specific patient groups with strict deadlines are typically allocated more time slots
than the expected demand to hedge against uncertainty. This strategy will lead to time blocks
not being fully utilised all the time. Hence, unused time slots are released to other patients at
the latest on the day before, so that the released time slots can be utilised. Each specific patient
group might be allocated several time blocks of different lengths at different labs in the weekly
schedule. Depending on the length of the block, one or more patients from a specific patient
group can be assigned to a particular block.

For each specific patient group, one department is responsible for the patients in the group.
This department schedules the appointments for their patients. This means that the hospital
decentralises the appointment scheduling and detailed planning of each patient’s health care
services for the specific patient groups. The decentralised scheduling facilitates the operational
planning at the different departments, and is particularly beneficial for patients belonging to
a clinical pathway where the various health care services need to be coordinated in time. As
experienced in the study by Van Sambeek et al. [25], a high percentage of blocks in a weekly
schedule increases the waiting time for MRI scans. Therefore, only around 30% of the weekly
block schedule consists of blocks belonging to the specific patient groups at St. Olavs hospital at
present. The rest of the time slots are denoted open (or unallocated) time slots. The centralised
appointment planners have the responsibility for all patients who do not belong to the specific
patient groups and can allocate these patients to open time slots. Because of this decentralised
appointment scheduling policy, the manual appointment scheduling task for the planners has
been more manageable.

In short, the block scheduling problem considered consists of allocating one or more blocks
to each specific patient group and deciding the day, start time and length of each block to
minimise unfavourable patient group allocations as well as open block allocations, while the
total number of time slots for each specific patient group is given. The optimisation model is
supposed to facilitate the coordination of the MRI resources between the hospital departments
that are responsible for the specific patient groups. The aim it to produce a fair distribution
of time slots to the specific patient groups and open time blocks and resolve conflicts in cases
where several departments want to be allocated the same time slots at the same MRI labs for
their patient groups.

The purpose of this paper is to present an integer programming model for an MRI block
scheduling problem with a partially decentralised appointment decision policy. The model is
based on a planning problem at St. Olavs hospital, but the model is general and should therefore
be useful at other hospitals as well. We introduce multiple objective functions with penalties
for unfavourable block lengths and spread of blocks for the specific patient groups and rewards
for advantageous positioning of open time slots. The multiple objective functions are combined
to form a single objective. We are not aware of any existing mathematical model for MRI block
scheduling, so our contribution to the literature is a first integer programming model for this
type of problem where the length and start time of each block are variables. In addition, several
blocks on the same day and MRI lab can be reserved for the same patient group. Furthermore,
the model is intended to be used as an active tool in the development of a new block schedule at
St. Olavs hospital, and can also become an important element in a future portfolio of decision
support tools at the MRI unit at St. Olavs hospital. The computational study provides some
useful managerial insight to a sensible setup of a new block schedule and shows that the model
can solve instances of considerably larger size in reasonable time.

The remainder of this paper is organised as follows. Section 2 gives a related literature
review. The block scheduling problem is described in Section 3, while Section 4 presents the
mathematical formulation of the problem. Extensive computational results are reported and
discussed in Section 5, followed by some concluding remarks in Section 6.



2 MRI planning and related literature

As described in the introduction, MRI planning belongs to the managerial area resource capacity
planning according to Hans et al. [13], and a variety of problems discussed are relevant for MRI
planning at different planning levels, ranging from strategic to operational. The Operations
Research (OR) literature on MRI planning is particularly scarce with just a few studies reported.
Fortunately, there are some similarities between operating room planning and MRI planning.
Therefore, we will give a brief literature review and relate the literature within operating room
planning to MRI planning. See the excellent surveys on operating room planning and scheduling
by Cardoen et al. [8] and Guerriero and Guido [12], as well as the more recent ones focusing
on achievements, challenges and pitfalls by Samudra et al. [21] and trade-offs between electives
and emergencies by Van Riet and Demeulemeester [24]. In this section, we will mention some
problems and literature on each of the strategic, tactical, and operational levels. We limit
ourselves to the OR literature with a focus on optimisation-based solution approaches. However,
our focus is the tactical planning level as the block scheduling problem belongs to this level.

At the strategic level, the problems range from case mix planning and capacity dimensioning
to workforce planning. Case mix planning concerns choosing the best composition and volume
of patients in a hospital, see the recent survey by Hof et al. [14]. Relevant issues within MRI case
mix planning would be to determine which patient groups to treat and block schedule as well
as the number of time slots for each patient group. A related issue concerns decisions regarding
which patient groups to handle at the hospital and which ones to outsource to the private market
due to limited MRI capacity. Capacity dimensioning is another main strategic problem where
both the number of MRI labs and their characteristics must be decided.

Regarding tactical planning, block (or master) scheduling is one of the main planning prob-
lems. The MRI block scheduling problem has several similarities to the master schedules used
for surgery planning. Several of the contributions which developed master surgery schedules
base their approach on (mixed) integer programming models, e.g. [2, 3, 5, 7, 15, 18, 22, 23].

Traditionally, the lengths of the blocks are fixed. However, more recent papers include a
variable length of the blocks. However, the model of Belién et al. [3] does not give the start time
of each block. This is taken into account in Mannino et al. [18], where they generate a priori all
daily patterns, which are sets of continuous time slots within one day. This is a useful approach
for their problem with relatively few time slots each day. They operate with time slots of 2
hours, while a typical time slot for MRI labs is 15-30 minutes. Herein, we therefore present an
innovative integer programming model with binary variables giving information about the start
time and block length for a block belonging to a (patient group, day, MRI lab) combination.

The uncertainty in surgery duration is a complicating factor that is considered in several
mathematical programming models. See for instance [2, 3, 7, 15, 18, 23]. However, the duration
of an MRI scan for a given patient has limited uncertainty compared to surgery duration, so
this issue is disregarded in our study.

As described in Mannino et al. [18], numerous objectives have been used: balancing patient
queue lengths among different patient groups, minimising the changes to existing master sched-
ules, levelling the resulting bed occupancy, maximising operating room utilisation, minimising
operating room or staff costs, and maximising profit. None of these objectives are reasonable to
use in our case, for various reasons. The number of time slots allocated to each patient group
is fixed in advance, so the modelling of resource utilisation or the patient queue lengths is not
meaningful. Moreover, the costs of operating the labs can be assumed to be sunk as long as
time blocks are allocated during normal working hours. Instead of using the objectives that
are typically used in the master surgery scheduling literature, we use a non-monetary objective
function based on preferences, which penalises and rewards the positioning and lengths of the
blocks. As in some of the papers mentioned above [3, 7, 23], we operate with multiple objective
functions.

Guerriero and Guido [12] introduce the term modified block scheduling, and this concept has



some similarities with the planning policy at St. Olavs hospital. In modified block scheduling,
only some portion of the schedule is allocated to certain patient groups, and this increases
the flexibility of the schedule. For the rest of the time, capacity is scheduled at a later stage
when demand is more certain. The open time slots in the MRI block scheduling problem are
managed by the centralised planners, who release these time slots gradually for different urgency
classes and perform the appointment scheduling. Van Sambeek et al. [25] performed simulation
experiments to examine the effects of reducing the number of blocks in MRI planning. The
study showed that block reduction lead to a significant decrease in access time.

An integrated strategic and tactical master surgery scheduling approach is described by
Fligener [11] where an integer programming model provide both the optimal allocation of how
many (strategic) and what (tactical) operation room blocks to assign to each medical specialty.
The study includes considerations on the impact on the downstream resources such as intensive
care units and general patient wards. Further applications of the model include analysis of the
value of flexible resources and the simulation of specific resource expansions. Fiigener et al. [10]
also consider a master surgery scheduling problem with regards to multiple downstream units.
Both exact and heuristics algorithms are proposed to solve the problem.

Another tactical problem concerns decisions related to the number and position of scheduled
appointments combined with the appointment scheduling. This is relevant both for a hospital
department or primary care having both non-scheduled walk-in patients and scheduled patients
with an appointment. The challenge is to match capacity with patient requests and provide as
few appointment slots as necessary. Wiesche et al. [28] present a mixed integer programming
model (MIP) where the minimum number of appointments scheduled for a weekly profile is
determined. The demands related to the number of urgent patients, inter-arrivals and service
times are uncertain. Therefore, the optimal appointment schedule from the MIP is evaluated
by a comprehensive stochastic simulation model.

A classical appointment scheduling problem with given slots available for appointments is a
planning problem at the operational level. Several appointment scheduling studies are reported
in the literature. Vermeulen et al. [26] describe an operational adaptive and flexible approach
for appointment scheduling for a CT (Computed Tomography) unit consisting of several CT
scanners. Simulation experiments showed that their approach of adaptive capacity allocation
improved the performance of scheduling patient groups with different characteristics, and the CT
capacity was used efficiently. Bhattacharjee and Ray [4] present a case study for appointment
scheduling of patients to an MRI lab of the Radiology department at a hospital situated in
eastern India. The patient flows in the system are modelled using discrete-event simulation
where several appointment scheduling policies are analysed and evaluated.

3 The MRI block scheduling problem

To prepare for the mathematical formulation of the MRI block scheduling problem, we will
here give a detailed description of the problem. First, we describe important characteristics
regarding the patients requiring MRI scans, the MRI labs, the time aspects and the blocks as
well as restrictions and relationships between these. Finally, we give an example to ease the
understanding of the problem.

There exists a set of specific patient groups requiring MRI scans, such as prostate cancer
patients, thorax (breast, lung, heart) patients, arthrography patients, upper gastro patients,
etc. Here, a patient group consists of patients sharing certain medical characteristics or belong
to the same clinical pathway. Additionally, patients can belong to the same group if they
require coordination with specialised resources and personnel (general anaesthesia, radiologists
present, a contrast medium injected into the joint area to help highlight structures of the joint
for arthrography patients etc.) or that incur high setup costs. In addition, some MRI patients
do not belong to any of the specific patient groups.



The hospital has a given number of MRI labs, or in short labs, which perform MRI scans.
The MRI labs are heterogeneous, in terms of technical properties, the competence of the staff
associated with the lab and the geographical locations. Furthermore, the labs might have dif-
ferent opening hours, and can have pre-allocated time slots to research or other activities that
make them unavailable for scheduling at given times during a week. This heterogeneity influ-
ences the capabilities and preferences for examining the different patient groups at the different
labs. For instance, a specific patient group requiring a neuro (head) MRI scan might preferably
be allocated to an MRI lab with a high magnetic field strength (3 Tesla). Another technical
limitation might be that patient groups requiring a specific coil for setting up the magnetic field
could only be allocated to labs equipped with this type of coil. Moreover, some patient groups
require specialised staff, such as medical specialists and nurse anaesthetists, who are strategi-
cally located at or close to specific labs. For some patient groups, it is practical to limit the
number of labs to which the patient group can be allocated, even if the specific patient group
can be allocated to a greater number of labs.

The block schedule is a weekly plan that is repeated for a longer time horizon. Each week is
divided into a set of days, and each day is divided into a homogeneous set of time slots. Before
the block schedule is constructed, each patient group has been assigned a given number of time
slots for scans each week, and this number is typically set higher than the expected weekly
demand for the patient group to hedge against uncertain and variable demand. We denote a
set of consecutive time slots allocated to the same patient group a time block. The length of a
time block for a specific patient group is chosen so that several different sets of scans for this
group will fit in the block. This means that a time block can serve one or more patients from
one patient group. There is a minimum and maximum length of a time block for each patient
group. For some patient groups, there is a preference towards allocating time blocks that are
long enough to contain multiple scans to ensure a smooth operation of the MRI labs with same
personnel and equipment. Although long time blocks might be efficient, some patient groups
should be allocated time slots on multiple days during a week due to requirements of the clinical
pathway and other resources required. Therefore, there is a minimum number of days in which
each specific patient group should be allocated a time block.

In addition to the preferences for scanning specific patient groups in specific labs, the depart-
ments responsible for a patient group might have preferences on what times of the week or day it
is desirable to be allocated time slots. This could be due to dependencies and coordination with
other departments, personnel or other hospital resources. For instance, some patients need an
MRI scan before brain surgery, and children often need to be placed under general anaesthesia
before the scan starts and should therefore be assigned blocks in the morning.

The appointment scheduling is not directly considered in this research work. However, the
block schedule should also allow for subsequent planning of appointments for patients who do
not belong to the specific patient groups. To ease the work of the operational planners, one
should ensure that there is a minimum level of open slots (or unallocated slots) during a day
and possibly during the hours in the middle of the day. It is also important that the open time
slots are consecutive to a certain degree, so that there is enough time to allocate appointments
in the open time slots.

Finally, the block scheduling problem consists of designing a weekly allocation of favourable
time blocks to specific patient groups as well as allocating beneficial open time slots with regards
to the time of the day, the spread over days, the length of the blocks, and MRI labs. The main
decisions for each patient group as well as for the open time are to decide the number of blocks,
the start time and the length of each block.

Figure 3 illustrates a possible block schedule for a particular MRI lab. The planning horizon
is five days and each day is divided into 16 time slots. Five different patient groups are scheduled
for this MRI lab. Patient group 2 has only one block, while patient group 3 has four blocks of
equal length. At the end of the day, there is one hour of open time slots that might be used



for patients with high urgency. We see that patient groups 1, 4, and 5 have blocks of different
lengths. Patient group 4 has two blocks assigned on the same day. Otherwise, the blocks for a
specific patient group are spread over several days (except patient group 2 with just one block).
There is also a preference for some open time slots in the middle of the day, and we can find
such slots on Tuesday and Thursday. The open time slots are also spread over all days in the
week. The department responsible for patient group 3 has typically negotiated the same time
blocks four days a week due to other health care services for this patient group before and
after the scan. We see that some departments want short time blocks spread over several days,
while other departments prefer longer time blocks, such as for patient groups 1 and 5, due to
longer scans and the specialised staff and equipment required. Nearly half of the time slots are
allocated to the specific patient groups, and this number is higher than the present average rate
at the hospital.

Monday  Tuesday = Wednesday Thursday Friday
08:00 Open Open Open Patient Open
08:30 group 2
09:00
09:30 Patient Patient Open
10:00 group 1 group 4 Patient
10:30 Patient group 5
11:00 Open group 1
11:30
12:00 Patient Open
12:30 group 5
13:00 Open Patient Open
13:30 P &
14:00 Patient Patient Patient Patient
14:30 group 3 group 3 group 3 Open group 3
15:00 Open Open Open Open
15:30

Figure 3: Example of a weekly block schedule with five patient groups on an MRI lab

4 Mathematical formulation of the MRI block scheduling prob-
lem

This section presents the mathematical formulation of the block scheduling problem described
in the previous section. We start by listing the sets, parameters and variables of the model,
before we proceed with explaining the objective function and constraints.

4.1 Sets

The different sets used in the model are given below.



set of patient groups, indexed by p

set of patient groups that cannot be allocated time blocks at multiple labs simul-
taneously

set of time block length alternatives for patient group p, indexed by b
set of time block length alternatives for allocation of open slots

set of MRI labs, indexed by m

set of MRI labs available for patient group p

set of days in the planning horizon (one week), indexed by d

set of days in the planning horizon to which patient group p can be allocated a
time block

set of days in the planning horizon for which MRI lab m is available
set of days in the planning horizon for which MRI lab m is available for patient

group p
set of available time slots for patient group p at day d

set of available time slots at MRI lab m at day d

set of available time slots at MRI lab m at day d where it is possible to start time
block alternative b for patient group p

set of available time slots at MRI lab m at day d where it is possible to start open
time block alternative b

To ease the exposition of the model, we denote the tuple of an MRI lab, day and time slot
(m,d,t), m € M,d € DM t € T2 a lab-time slot in the following. In Section 3, we discussed
the requirement for having enough consecutive open time slots. This requirement is handled
indirectly in the specification of the set BC defining the possible lengths of an open time block.
For instance, if a total length of consecutive open time slots of less than one hour is forbidden,
all lengths of open time blocks defined by B? should be at least one hour.

4.2 Parameters

The different parameters used in the model are summarised below.

PM
Com

PT
det

Rmdt

Fy
Fil

penalty for allocating patient group p to lab m

penalty for allocating patient group p to time slot ¢ on day d

reward for allocating an open slot to lab-time slot (m,d,t)

parameter to scale the penalty for time block alternative b for patient group p
parameter to scale the reward for open time block alternative b

number of time slots in time block alternative b

number of time slots during the hours in the middle of the day that is allocated
if a time block alternative b starts at time slot ¢ on day d

number of time slots (demand) requested for patient group p

minimum number of days to which patient group p should be allocated a time
block

maximum number of distinct labs that can be used for allocation of time blocks
for patient group p

minimum number of open time slots during day d

minimum number of open time slots during the hours in the middle of day d

The length of each time block alternative b is specified by the parameter Tp, and certain
lengths are penalised by the scaling parameters a,,, for patient group p and abo for open time



blocks.

4.3 Variables

The variables of the model are listed below.

Tppmdt 1, if patient group p is allocated time block alternative b that starts at lab-time
slot (m,d,t); 0, otherwise

:Ude 1, if patient group p is allocated at least one time block at any lab on day d; 0,
otherwise

x% 1, if patient group p is allocated at least one time block at lab m on any day; 0,
otherwise

Ybmat 1, if lab-time slot (m,d,t) is the first slot for open time block alternative b; 0,
otherwise

Thus, we have two main types of variables: the xp,,q; variables indicating the allocation of
time blocks to the specific patient groups, and the yp,q¢ variables indicating the allocation of
open blocks.

4.4 Objective function

The objective function (1) represents the cost of allocating time blocks to the specific patient
groups on the MRI labs, and the reward of maintaining open time blocks at favourable time
slots. These costs are not monetary values. Instead, they are based on considerations that
reflect the preferences of the departments that are responsible for the patient groups and the
preferences of the management and planners of the MRI unit.

t+Tp—1
min z = Z Z Z Z Z Qph <TbC]]:mM =+ Z C;g;) Tpbmdt
T=t
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The objective function can be regarded as a combination of multiple objective functions.
Basically, the term including the z,p,q; variables penalises time allocation to patient groups in
undesirable lab-time slots, which is a sum of two terms. The coefficients C’f,é\/[ and ng are
penalties for allocating patient group p to lab m, and penalties for allocating patient group p
to time slot ¢ of day d, respectively. These penalties are given values so that a smaller value is
preferable. Moreover, the term including the yp,,4: variables rewards the allocation of open time
blocks to the desired lab-time slots. We want all the variables in the objective to have positive
coefficients. For that reason, we also use smaller positive reward values R,,q; for lab-time slots
we prefer to be open. Moreover, the penalty and reward coefficients are assumed to be given
values on the same scale, e.g. between 1 and 10. Both the penalty and reward terms contain
a factor, oy, and abo, indexed by the time block alternative b, which purpose is to enable the
decision maker to scale the penalty or reward for certain time block lengths. For instance, for
specific patient groups that cause a significant setup cost before the first scan in a block, it is
beneficial to allocate long blocks that allow several similar scans in a row, and thus one would
like to give long time block lengths smaller values on the «,,;, parameter. The o, parameter is
set according to the piecewise linear function in Figure 4a, based on the time block length T} and
parameter T'. Similarly, longer open time blocks might be preferred over very short open time
blocks. However, it might not be beneficial to have very long open time blocks. Thus, based
on the time block length 73, and two parameters T and T, the al? parameter is according to
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the piecewise linear function in Figure 4b. However, it is not reasonable to penalise completely
open days, so the scaling parameter corresponding to a full day has the same value as the value
between the break points. The minimum value of the scaling parameters should be greater than
0, and here we have set this value to 1.

0 T Full day O T T Full day
To Th

(a) The scaling factor a,, is set based on a piecewise (b) The scaling factor af is set based on a piecewise

linear function with a breakpoint 7. linear function with breakpoints T, T', and a full day.

Figure 4: Piecewise linear function for setting the scaling factors based on the time block length T

4.5 Constraints

The block scheduling model contains different kinds of constraints which are structured in three
groups: allocation and scheduling constraints, demand constraints, and requirements for open
time slots. These groups are discussed accordingly, before we conclude the model by stating the
variable definitions. In the constraints, we assume that the variables are only defined for the
index combinations as specified in the variable definitions (12) - (15), and thus, the variables
are not necessarily defined for all time slot indices summed over.

4.5.1 Allocation and scheduling

To obtain a valid schedule without conflicts one must ensure that a lab-time slot (m,d,t) is
allocated to at most one patient group. This is specified in equations (2) which state that a
time slot is either used by a patient group or set to be open, and which also prevent overlap
of two or more time blocks. Moreover, constraints (3) avoid allocation of time slots to different
labs simultaneously for patient group p € P° C P. Some patient groups have a strict limitation
on the number of labs they can be allocated to, even if several labs can possibly be used for
an MRI scan. The binary variable mpMm is forced by constraints (4) to take value 1 if patient
group p is allocated a time block on lab m. Specifically, if a:%l equals 0, patient group p cannot
be allocated time blocks on lab m at any time. Conversely, if a:%l equals 1, the constraints
for the combination of p and m are redundant. Constraints (5) ensure that the number of labs
allocated to patient group p is within the upper limit. Due to the penalties for long open time
blocks in the objective function, one must prevent two open time blocks from being adjacent.
This is ensured by constraints (6). An analogous set of constraints for the xppmq variables is
not required, as we do not directly penalise long time blocks for patient groups.

t t
Z Z Z Tpbmdr T Z Z Yomdr = 1, m6M>d6D%7teTn% (2)

peEP beBp T=t—Tp+1 beBO T=t—Tp+1
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4.5.2 Time block demand

Constraints (7) ensure that each specific patient group is allocated a given number of time slots.
Furthermore, some patient groups have a lower bound on the number of allocated days during
a week, and we use :L‘p% to keep track of the days where patient group p is allocated time blocks.
Constraints (8) force the allocation of a positive number of time slots to patient group p if xl?d
is 1. Otherwise, the constraints are redundant. The lower bounds on the number of days are
ensured by constraints (9).

Z Z Z Z Tyxppmar = Np, pEP (7)

beBy me ML deDS,, teTH

> > uma—py >0, peP,deD) (8)

beBp meMf te TR

S aly>LD, pep (9)
deDF

4.5.3 Allocation of open time slots

A block schedule should also ensure a sufficient number of open time slots during the day,
especially during the hours in the middle of the day. Constraints (10) guarantee a minimum
number of open time slots during each day, while constraints (11) ensure a minimum number of
open slots during the hours in the middle of each day.

YD > Titpmar > Fa, deD (10)

O O
beBO meMteT0 |

Z Z Z Tbgtybmdt > Fc{—lv deD (11)

O O
beBO meMteT0O |

4.5.4 Variable definitions
All variables are defined as binary in (12) - (15).

Tppmat € {0,1}, pEP,beBy,me M deDS, .t €T (12)
zhy €{0,1}, peP,deDf (13)
ahl €{0,1}, peP.meMl (14)
Yvmdt 6{0’1}5 bEBO,mEM,dED%,tEE?nd (15)
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4.6 Use of the optimisation model in the planning process

As described in the introduction, the block scheduling process is performed manually at St.
Olavs hospital today. In brief, the planners at the MRI unit discuss and negotiate the schedule
with the departments that are responsible for the different patient groups, and they try to find
a good compromise. However, in such processes, some departments typically end up with better
schedules due to their ability to negotiate, and the resulting schedule can be sub-optimal.

The block scheduling model can improve the planning process. Instead of creating a schedule
based on informal discussions between the MRI unit and the departments, the model requires
the departments to put numbers on their preferences, i.e., the penalty parameters C’fnjl\/[ and
C’;l:tp. Similarly, the planners at the MRI unit should put numbers on the rewards for open slots,
R,.q:- This parameter collection process is certainly an important step in the planning process,
and should be formally managed.

Thus, the goal of the optimisation model is to coordinate the shared MRI resources and
avoid conflicts among the various departments responsible for the specific patient groups. When
constructing a block schedule, it might be desirable to discuss solutions with different emphasis
on the objective function terms, that is, investigate the trade-off between allocating favourable
lab-time slots to the patient groups versus maintaining open time blocks at appropriate lab-time
slots. This can be done by introducing weight parameters in the objective function, and running
the model with different weights. Alternatively, one could take a formal approach to construct
an approximate Pareto front as we do in Section 5.5. In light of this, one can view the model
as having at least two objectives: one that optimises the schedule of the specific patient groups,
and one that optimises the schedule of the open time blocks.

5 Computational study

The purpose of the computational study is to illustrate the scalability and functionality of the
optimisation model of the MRI block scheduling problem, and discuss how the model can be
used to provide managerial insight for the decision makers at the hospital. First, we describe
the test instance used in this section, and discuss implementation details.

5.1 Test instances

We have performed experiments using both real data provided by St. Olavs hospital, and
artificial data which have a structure that reflects the real-world instances. To be able to test
the model on multiple instances of different sizes, we have designed an instance generator with
randomness controlled by a seed to construct the artificial data. This generator is constructed
to generate test instances that have the structure and characteristics of the real data. Due to
confidentiality, all the results presented in this computational study are based on the generated
test instances.

Currently, the real instance at St. Olavs hospital consists of 16 specific patient groups in the
block schedule, and 6 MRI labs with available time slots for the specific patient groups between
08:00 and 16:00. In total, the block schedule covers about 30% of the available time slots on
the 6 MRI labs, and the rest are open time slots. Furthermore, some of the labs are open in
the evenings on week-days, and in emergencies it is possible to open labs at night and during
weekends. However, no specific patient group is currently allocated time blocks in the evenings
or weekends.

In the instance generation, we constructed cases with 16, 32 and 48 patient groups, and 6
and 12 MRI labs, which are available for time blocks during the specified opening hours from
08:00 to 16:00. In these cases, the opening hours are divided into time slots of either 15 minutes
or 30 minutes. There can be several types of scans with different durations for each patient
group. For each patient group, we randomly draw a typical duration of a scan to be an integer
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number of time slots. When using 30-minute slots, the typical duration is drawn to be either 1
or 2 time slots with equal probability, and when using 15-minute slots, the typical duration is
drawn to be an integer between 2 and 5 time slots. Moreover, the cases are constructed with
different amounts of total patient group demand, where approximately 30%, 50% or 70% of the
available time slots during the opening hours are to be allocated to specific patient groups. The
total patient group demand is distributed among the patient groups, where the demand from
each patient group, N,, is randomly drawn from a uniform distribution with mean equal to
the total demand divided by the number of patient groups, but that must be a multiple of the
typical duration of a scan. Thus, the sum of the demand from each patient group is close but
not necessarily equal to the total patient group demand. Moreover, one fourth of the patient
groups can only be allocated time blocks on one lab (U;w = 1), while the other patient groups
do not have this requirement. The minimum number of days a patient group should be allocated
time blocks, LpD , is randomly drawn from a uniform distribution between 1 and 3. The time
block alternatives for the patient groups B, are specified with all lengths that are multiples of
the typical scan duration up to the minimum of a full day and NN,. The scaling factor ayy is
set based on a piecewise linear function (cf. Figure 4a) where the break point T is equal to
0.75N,/ LZ? . The open time block alternatives B are specified from a minimum length of time
slots corresponding to one hour and up to the number of time slots in a day. The scaling factor
abO is defined with a valley between break points 7' = 3 hours and 7' = 5 hours.

The minimum amounts of open time slots during a day Fy (and during the middle of the
day F f ) are identical for all days, and set equal to the number of time slots on all labs in a
day (during the middle of the day) minus the number of time slots corresponding to the total
patient group demand divided by 2. Thus, if the number of time slots on all machines during a
day is 96 (e.g., 16 slots/day and 6 MRI labs) and the total patient group demand is 30%, Fy is
set to [96 - (100% — 30%)/2] = 34.

The structure of the penalties and rewards C;W , ng, and R,,; was obtained from dis-
cussions with the managers of the MRI unit at St. Olavs hospital. In the instance generation,
we randomly generate values for the penalties and rewards, in the range [1,10], that have this
realistic structure. For instance, for a patient group, the feasible labs are graded on the scale
from 1 to 10, which results in coefficients C’;,]IV[ . Some labs might also be equally good for a
given patient group. Moreover, it is typical that a department responsible for a patient group
has some preferred days during the week that fit well for the time blocks. In addition, a depart-
ment may prefer time blocks between specific hours, e.g., between 10:00 and 12:00, to conform
with other activities at the department. This is reflected in the C’fg coeflicients.

In the following, we distinguish between the notions case and instance. The number of
patient groups, MRI labs and time slots per hour, in addition to the total patient group demand
specify a case. Based on the seed, the instance generator produces different data, which are
referred to as instances. For each case, we have generated five test instances. The test instances
are labelled based on the case and seed, according to the structure mM _pP_qQ_tT_sS, where M
denotes the number of labs; P denotes the number of patient groups; Q denotes the total patient
group demand; T denotes the number of time slots per hour; and S denotes the seed used in the
generation.

5.2 Model implementation

We have implemented the optimisation model of the MRI block scheduling problem in FICO
Xpress Mosel 4.0. All experiments are run on a CentOS 6.8 machine with a dual core 3.0
gigahertz Intel E5472 Xeon processor and 16 gigabytes of memory, using the MIP solver of
FICO Xpress Optimization Suite 8.0. The MIP solver has utilised up to 8 threads in the tree
search. In all experiments, we have given the MIP solver a maximum run time of 3 hours.

To speed up the solution process, we directed the MIP solver to prioritise to branch on the

M

T, variables since these binary variables are important in the solution structure. If a single
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(4). Moreover, only a few of the a?pMm variables can be one, cf. constraints (5). Thus, we also
directed the MIP solver to select the branch and bound node of the up branch, before the down
branch.

Due to the piecewise linear structure of the o,y and abO parameters that has a flat part where
the parameters have equal values, the solver might find multiple solutions with equal objective
function value and quite similar structure. To speed up the solution process, we suggest to
perturb the oy, and ag) parameters so that these similar solutions have slightly different objective
function values. The perturbation scheme is chosen so that the optimal solution is unchanged.
Initial experiments showed that both the branching prioritisation and the perturbation had
positive effect on the solution times, and thus, the results presented in this section are obtained
using both techniques.

variable is branched to zero, many wpynq; variables are forced to zero through constraints

5.3 Model scalability

Here, we present detailed results from the experiments with test instances discussed in Sec-
tion 5.1. While the instances that resemble the real problem at St. Olavs hospital are the
mb6_pl6_q30_t2 case, it is valuable to test the model on larger instances to assess its scalabil-
ity. For the instances with time slots of 30 minutes, Table 1 shows the number of variables,
constraints, and visited nodes in the branch and bound tree, in addition to the solution time,
objective function value and relative optimality gap'. The results reveal that almost all instances
are solved to optimality within three hours, and that most of the smaller instances are solved
within 90 seconds. All instances of the size of the real problem are solved within one minute.
Two of the largest instances are not solved to optimality, but the optimality gaps are less than
one percent, and in practice, these small gaps are of no significance. We also see that the solver
requires a certain amount of time, and needs to visit a large number of branch and bound nodes
to solve the larger cases. Thus, the complexity of the problem seems to grow exponentially with
the problem size, given by the number of variables and constraints. Regarding the optimal ob-
jective function value, it remains around the same region for the instances with an equal number
of MRI labs (and thus, time slots). For the instances with six labs, the objective function values
are roughly between 1300 and 2300, while the objective function value for the instances with 12
labs is roughly in the area from 3200 to 3600.

While 30-minute time slots might be appropriate in tactical decision problems, such as this
block scheduling problem, there certainly exist cases where 15-minute slots are preferable and
more reasonable. In case the typical duration of a scan for a patient group is 45 minutes or
75 minutes, which is not unusual in an MRI context, one need a time resolution of 15 minutes
to model all possible time block lengths. Table 2 presents the same type of results as Table 1
for the test instances with time slots of 15 minutes. In comparison to the number of variables
and constraints for the instances with time slots of 30 minutes, we can see that the numbers of
variables and constraints are roughly doubled. Generally, we also see an increase in the solution
time, and three instances are not solved to optimality. Still, most of the solution times of the
smaller instances are below 10 minutes, and the optimality gaps of the unsolved instances are
less than one percent. However, we would like to note that solution times of some hours are
rarely an issue for tactical decision problems with a planning horizon of several weeks, such as
the problem studied here. Therefore, the computational complexity should not be a barrier if
one constructs block schedules with 15-minute time slots. Similarly to the way the objective
function values increased with the number of MRI labs in Table 1, we also see an increase in the
objective function value when the number of time slots per hour is increased to four. However,
this does not imply that a given instance from Table 1, e.g., m6_p16_q50_t2_s1, results in a better
solution than the corresponding instance in Table 2, m6_p16_q50_t4_s1. The objective function

!The relative optimality gap is defined as (Objective function value of best solution - best bound)/best bound.
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Table 1: Results from experiments with test cases with time slots of 30 minutes.

Instance # Variables # Constraints # Nodes Solution Objective Gap (%)
time (s) function
value
m6_pl6_q30_t2_sl 29,335 15,084 1,782 76 1,712.6
m6_pl6_q30_t2_s2 23,005 12,931 261 49 1,882.0
m6_pl16.q30-t2_s3 31,019 17,924 46 39 1,691.1
m6_pl16-q30-t2_s4 21,059 12,766 114 21 1,789.3
m6_pl6_q30_t2_s5 22,275 11,705 1 8 1,720.8
m6_pl6_q50_t2_s1 34,239 16,834 31 49 1,671.1
m6_pl6_q50_t2_s2 26,564 14,361 1 35 1,878.9
m6_pl6_-q50-t2_s3 35,555 20,418 1 43 1,644.2
m6_pl6_q50_t2_s4 24,406 14,141 49 31 1,864.3
m6_pl6_q50_t2_s5 26,433 12,821 3 23 1,698.6
m6_pl6_q70_t2_sl 35,671 17,143 87 69 1,889.6
m6_pl6_q70_t2_s2 27,903 14,809 11 50 2,288.1
m6_pl6_q70_t2_s3 36,934 21,542 109 70 2,087.6
m6_pl6_q70_t2_s4 25,626 14,326 265 70 2,225.9
m6_pl6_q70_t2_s5 27,880 13,202 1,461 67 1,994.9
m6_p32_q30_t2_sl 30,268 19,560 90 41 1,647.4
m6_p32_q30_t2_s2 31,402 17,408 229 31 1,678.0
m6_p32_q30-t2_s3 31,670 19,804 899 55 1,558.8
m6_p32_q30_t2_s4 31,252 16,967 1,121 44 1,647.7
m6_p32_q30_t2_s5 30,107 17,013 71 34 1,632.3
m6_p32_q50_t2_sl 40,336 24,251 287 57 1,520.7
m6_p32_q50_t2_s2 40,848 21,079 15 66 1,607.6
m6_p32_q50_t2_s3 43,022 25,968 661 90 1,360.3
m6_p32_q50-t2_s4 39,946 20,816 1 31 1,542.8
m6_p32_q50_t2_s5 39,892 21,085 438 62 1,501.4
m6_p32_q70_t2_sl 47,723 27,979 1 55 1,427.6
m6_p32_q70_t2_s2 48,942 24,546 705 97 1,610.4
m6_p32_q70-t2_s3 51,100 30,115 2,039 148 1,278.0
m6_p32_q70_t2_s4 47,908 23,879 1,041 108 1,523.3
m6_p32_q70_t2_s5 47,369 24,187 50 76 1,424.1
m12_p48_g30_t2_sl 93,127 46,644 3,839 481 3,528.4
ml2_p48_q30-t2_s2 84,539 42,536 24,221 1,243 3,543.6
m12_p48_g30-t2_s3 91,060 50,575 26,702 1,834 3,589.8
m12_p48_q30_t2_s4 83,737 43,419 3 111 3,513.6
m12_p48_g30-t2_s5 82,294 39,794 40,790 2,649 3,545.7
m12_p48_g50_t2_s1 146,221 69,494 1 267 3,217.2
m12_p48_q50_t2_s2 130,287 61,450 108,716 10,033 3,231.3
m12_p48_g50_t2_s3 143,900 77,891 21,997 2,609 3,164.8
ml12_p48_g50_t2_s4 131,177 63,571 189 340 3,283.8
m12_p48_g50-t2_s5 126,535 57,017 2,661 469 3,182.1
ml2_p48_q70_t2 sl 174,918 80,575 5,983 2,690 3,362.8
m12_p48_q70_t2_s2 152,940 70,237 2,869 1,018 3,315.4

ml12_p48_q70-t2_s3 170,701 89,618 18,219 10,800 3,153.9 0.35
m12_p48_q70_t2_s4 157,256 74,454 7,649 5,490 3,515.6

m12_p48_q70_t2_s5 148,585 65,807 13,174 10,800 3,452.3 0.47

value is not directly comparable across instances with different numbers of time slots.

5.4 Evaluating the solution quality

The goal of the optimisation model is to coordinate the MRI resource between the hospital
departments that are responsible for the specific patient groups and the planners at the MRI
unit, according to their preferences. However, the objective function does not directly measure
how satisfied each department responsible for a specific patient group is with their allocated
time blocks, and how satisfied the planners at the MRI unit are with their allocated open time
blocks. Below, we introduce a way to measure the solution quality from the viewpoint of each
department and the planners at the MRI unit.

With ZII,D denoting the total penalties of the time blocks of patient group p, and gf and
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Table 2: Results from experiments with test cases with time slots of 15 minutes.

Instance # Variables # Constraints # Nodes Solution Objective Gap (%)
time (s) function
value
m6_pl6_q30_t4_sl 50,569 31,420 276 121 3,531.9
m6_p16_q30_t4_s2 43,485 27,032 12,203 684 3,826.6
m6_p16-q30-t4_s3 54,245 36,638 21 103 3,463.1
m6_pl6.q30_t4_s4 42,851 27,816 13,354 561 3,637.3
m6_p16_q30_t4_s5 41,256 26,214 1,797 159 3,548.3
m6_pl6_q50_t4d_sl 57,248 34,132 12 140 3,618.6
m6_pl6_q50_t4_s2 48,756 28,734 1,573 233 4,025.2
m6_pl6-q50-t4_s3 60,906 40,824 9 173 3,534.6
m6_pl6_q50_t4_s4 48,495 29,937 6,551 491 3,920.7
m6_pl6_q50_t4_s5 47,484 28,047 275 102 3,549.9
m6_pl6.q70_t4_sl 58,790 34,518 3 116 4,331.3
m6_pl6_q70_t4_s2 50,811 29,451 63 149 5,615.8
m6_pl6_q70_t4_s3 62,422 42,143 29 208 5,103.8
m6_pl6.q70_t4_s4 50,300 30,071 14 138 4,849.2
m6_pl6_q70_t4_s5 49,187 28,492 23 159 4,347.1
m6_p32_q30_t4_sl 55,202 37,404 7,745 564 3,208.1
m6_p32_q30_t4_s2 54,926 35,460 239 113 3,421.2
m6_p32_q30-t4_s3 54,862 39,786 331 120 3,132.7
m6_p32_q30_t4_s4 56,870 36,861 241 107 3,315.8
m6_p32_q30-t4_s5 52,759 34,235 5,569 344 3,341.8
m6_p32_q50_t4_sl 71,071 44,709 350 221 3,098.6
m6_p32_q50_t4d_s2 70,368 41,828 35 189 3,330.1
m6_p32_q50_t4_s3 71,435 49,279 109 179 2,875.1
m6_p32_q50-t4_s4 70,854 43,358 1 93 3,126.9
m6_p32_q50_t4_s5 67,412 40,697 15 121 3,038.0
m6_p32_q70_t4_sl 82,179 50,217 65 217 3,015.4
m6_p32_q70-t4_s2 81,638 47,278 2,243 779 3,452.2
m6_p32_q70-t4_s3 84,212 56,176 15 233 2,747.2
m6_p32_q70_t4d_s4 83,289 48,610 799 448 3,126.2
m6_p32_q70_t4_s5 78,999 45,377 29 196 2,944.4
m12_p48_g30_t4_sl 159,351 87,564 1,818 974 7,069.1
m12_p48_q30_t4_s2 143,599 80,678 9 583 7,144.3
m12_p48_g30_t4_s3 156,927 93,978 4,368 1,850 7,192.8
m12_p48_q30_t4d_s4 154,082 88,570 1 386 7,042.2
m12_p48_g30_t4_s5 138,933 75,695 49,471 10,800 7,161.8 0.21
m12_p48_g50_t4_sl 242,651 121,462 4 906 6,633.6
m12_p48_q50_t4_s2 216,039 109,286 396 1,527 6,675.3
m12_p48_g50_t4_s3 237,180 133,775 172 1,722 6,508.8
ml12_p48_q50_-t4_s4 230,172 121,962 155 928 6,760.4
m12_p48_g50_t4_s5 204,909 102,549 135 1,016 6,622.6
ml2_p48_q70_t4 sl 286,092 137,341 2,265 3,663 7,314.8
m12_p48_q70_t4_s2 248,693 121,892 4,793 10,800 7,175.1 0.53
ml12_p48_q70-t4_s3 278,521 151,102 1,143 4,018 6,611.7
ml12_p48_q70-t4_s4 270,408 140,402 436 2,109 7,472.2
m12_p48_q70_t4_s5 236,137 115,177 7,648 10,800 7,466.8 0.36

Zf; being the best possible (minimum) and worst possible (maximum) penalties, respectively,

for patient group p, a patient group score, sP

P

can be computed as in (16). Similarly, we can

compute an open block score, s©, based on the total rewards for allocating open time blocks, zY,
which corresponds to the second main term of (1), and z¥ and z¥ that refer to the best possible

and worst possible reward for allocating open time blocks.
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Each of the patient group scores takes a value between 1 and 10, where a score of 1 means
that the given patient group has been allocated time blocks in the best possible way for this
group, and a score of 10 means that the given patient group has been scheduled in the worst
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possible way. The open block score also takes a value between 1 and 10, and can be interpreted
in a similar fashion with regards to the allocation of open time blocks. In the evaluation of a
solution one could thus look at the scores of the different patient groups and open blocks, and
use that as an indication of the satisfaction, where lower scores indicate higher satisfaction.

In Section 5.5, we will use this score when we are to evaluate different solutions for a test
instance that is quite close to the real-world problem at St. Olavs hospital.

5.5 Managerial insight by Pareto optimal solutions

The block scheduling model is supposed to be an active decision support tool available to the
managers and planners at the MRI unit at St. Olavs hospital when developing new block plans.
In this section, we illustrate how the model can be used in the decision-making process by
searching for solutions with different qualities.

As mentioned in Section 4.6, one could have introduced weight parameters in the objective
function to obtain solutions with different emphasis on the terms in the objective function. Thus,
one could also consider the problem as a multi-objective optimisation problem.

In the process of solving a multi-objective optimisation problem in practice, one can distin-
guish between two tasks: find a set of Pareto optimal solutions; and choose the most appropriate
solution from this set. The first task is done by the optimisation software, while the second is
carried out by the decision maker. A way to obtain a set of Pareto optimal solutions is to solve
the model with different weights in the objective function. If the weights sum to one, and at
least one weight is positive, one will obtain a Pareto optimal solution. Another technique used
to obtain a set of Pareto optimal solutions, which is applied here, is to solve an optimisation
problem iteratively based on the e-constraint method [17]. The e-constraint method for solv-
ing multi-objective optimisation problems is based on minimising one of the objective functions
while the other(s) are implemented as constraints upper bounded by some value e. To find a
set of Pareto optimal solutions, one solves this single objective problem using different values
for e. Specifically, we implement this method by minimising only the first term of the original
objective function, that is given in equation (17), subject to the new e-constraint (18) and the
original constraints (2)-(15).
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When finding several Pareto optimal solutions, one can illustrate these solutions by an ap-
proximate Pareto front in the space of the objective functions, i.e., the main terms of the original
objective function (1). Here, we solve the m6_p16_q30_t2_s1 instance with e taking values in the
set of all integers between 1040 and 1665 that are divisible by 5. With € less than 1040, the
problem is infeasible, and with € larger than 1665, the e-constraint is non-binding. Since we
cannot guarantee that we have found all Pareto optimal solutions when solving the problem
with the chosen values of €, we refer to the Pareto front as approximate. Figure 5 shows the
approximate Pareto front of the m6_p16_q30_t2_sl instance, where z¥ refers to the left-hand-side
of constraint (18), and z* is the value of the objective function (17).

The optimal objective function value from the experiments presented in Section 5.3 is 1712.6
where the two main terms in the objective function are 2¥ = 480.6 and 2¥ = 1232.0. To illustrate
the differences in the solutions for different values of €, Figure 6 shows the block schedule of MRI
lab 3 when € equals 1080 and 1500, respectively. This lab is allocated slightly different subsets
of five and six of the 16 patient groups in the two different solutions. We have chosen two rather
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Figure 5: Approximate Pareto front for the m6_p16_q30_t2_s1 instance.

extreme € values, so that the different characteristics of the solutions are pronounced. The block
schedule in Figure 6a (z* = 736.7, zY = 1080.0) is produced with high emphasis on the rewards
for allocation of open blocks, while the block schedule in Figure 6b (2% = 351.0, z¥ = 1500.0) is
produced with high emphasis on the preferences for allocation of time blocks for patient groups.

Monday  Tuesday = Wednesday Thursday Friday Monday  Tuesday = Wednesday Thursday Friday
08:00 Patient Patient Pat. gr. 12 'Patient Patient 08:00 Open Patient Patient Open Patient
08:30 group 9 group 12 Pat. gr. 9  &roup 10 group 10 08:30 group 12 group 12 group 9
09:00 Patient Patient 09:00
09:30 gerp i group 9 09:30
10:00 Open Open Open Open 10:00 Open Patient Patient
10:30 10:30 Patient group 11| patient group 10
11:00 11:00 group 13 Ppatient Open group 9
11:30 11:30 geup 13
12:00 Patient Open 12:00 Patient Open
12:30 group 8 12:30 Open e 1
13:00 13:00 Open [Pat. gr. 15|
13:30 13:30 Open
14:00 Open Patient Patient 14:00 Patient Patient
14:30 group 11 group 8 14:30 group 11 group 13
15:00 Patient 15:00 Patient
15:30 e 1 15:30 gieup 1l

(a) Block schedule with e = 1080. (b) Block schedule with € = 1500.

Figure 6: Block schedule of MRI lab 3 for different values on € for the m6_p16_q30_t2_s1 instance.

The differences between the solutions might affect the operation of the MRI labs. In the
operational planning, the planners at the MRI unit will schedule patients who do not belong
to one of the specified patient groups to the open blocks. Since the scans to be scheduled have
different durations, the planners are faced with a combinatorial optimisation problem where one
of the objectives is to maximise the utilisation of the open blocks. It is easier to pack long blocks
more efficiently. Thus, for the planners, it would be beneficial to have few long open blocks,
compared to many short ones. Based on this, the planners would prefer the block schedule in
Figure 6a (¢ = 1080). For the departments that are responsible for the different patient groups, a
schedule with short time blocks might lead to a less efficient operation through higher setup costs
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due to more coil changes. In the block schedule in Figure 6a, the patient groups 9 and 12 are
assigned short time blocks on Wednesdays. Moreover, in this solution, the patient groups tend
to be assigned fewer of their preferred time slots, and there are patient groups that are assigned
to their less preferred labs. These issues might also lead to worse operational performance at the
departments, which implies that they might prefer the block schedule in Figure 6b (e = 1500).

Table 3 provides a more quantitative insight into the differences between the two solutions
with € = 1080 and ¢ = 1500, in addition to the solution obtained by minimising the original
objective function (1). The rightmost columns give the patient group scores, cf. (16), of the
16 patient groups. In addition, the table presents the average patient group score and the
open block score of each solution. One can observe that the open block score and the average
patient group score vary between the solutions, which clearly indicates that the solutions are
perceived differently by the different planners at the MRI unit and the departments responsible
for the specific patient groups. In comparison to the two solutions with e = 1080 and ¢ = 1500,
the solution produced with the original objective has a smaller difference between the open
block score and average patient group score. When one puts high emphasis on the allocation
of open time blocks (e = 1080), one obtains a better open block score than in the solution
with the original objective, in sacrifice of higher patient group scores for most of the specific
patient groups. Conversely, when one puts little emphasis on the allocation of open time blocks
(e = 1500), 8 of the patient groups obtain a score of 1.00, which means that these patient groups
are given the best possible schedule, at the expense of allocating worse lab-time slots for the
open time blocks. This means that it was possible to assign half of the patient groups to their
best lab-time slots while avoiding conflicts. Moreover, the patient group scores are quite evenly
distributed in the solution obtained with e = 1500, which is not the case in the solution obtained
with € = 1080. In the latter, several patient groups have scores around and below 1.5, at the
same time as some patient groups have scores above 4.0. Due to this uneven distribution, some
departments might perceive this solution as less fair.

Table 3: Computed patient group scores and open score for three solutions of the m6_p16_q30_t2_sl
instance, produced by either minimising the original objective function (1) or minimising the altered
objective function (17) in the e-constraint method with € = 1080 or ¢ = 1500.

Open Avg. Patient group score

Solution block PG
score score 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Orig. obj. 2.11 1.61 1.96 1.52 1.37 2.80 1.46 2.52 2.19 1.35 1.38 1.13 1.17 1.24 1.30 1.38 1.63 1.37
e = 1080 1.28 251 4.75 1.52 1.51 2.20 2.29 2.98 4.63 4.81 1.41 1.73 1.00 1.89 4.11 1.89 1.65 1.85
€ = 1500 3.56 1.06 1.08 1.00 1.00 1.16 1.18 1.03 1.00 1.00 1.00 1.04 1.00 1.24 1.00 1.00 1.27 1.00

As illustrated, the block scheduling model might provide the decision maker with valuable
insight and trade-offs in the process of developing block schedules. However, while the block
scheduling model is capable of producing solutions with different characteristics, we want to
emphasise that it is up to the decision maker to select a particular solution for implementation.

6 Concluding remarks

The purpose of this paper is to present an optimisation model for an MRI block scheduling
problem, where a central motivation for the block allocation is grounded in the idea of decen-
tralising the appointment decision policy. We performed a comprehensive computational study
with different numbers of MRI labs and patient groups, and imposed both 15-minute and 30-
minute time slots. Additionally, we conducted tests with different levels of demand for the
patient groups. Using a general-purpose MIP solver, the problem could be solved to optimality
within a reasonable amount of time, even for most of the larger test instances. The case that
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resembles today’s planning problem at St. Olavs hospital is solved within one minute. While
30-minute time slots might be reasonable for tactical decision problems, there are no computa-
tional issues involved in introducing time slots of 15 minutes, and thereby allowing time blocks
of finer granularity for patient groups where this is beneficial.

The block scheduling model is intended to be an active decision support tool available to
the managers and planners at the MRI unit at St. Olavs hospital when developing new block
schedules. The model can be regarded as a multi-objective optimisation model where multiple
objectives formed by the penalty and reward coefficients are combined to obtain a single objective
function. Since the objective function has great effect on the resulting block schedule, careful
specification of the coefficients is required. Moreover, one can add weights to the different
terms of the objective function to obtain solutions with characteristics that are preferred by the
decision maker. However, this is difficult in practice, and we suggest using the model to find a set
of Pareto optimal solutions by iterative use of the e-constraint method, and thereafter, letting
the decision maker select the most suitable solution from this set. We show the usefulness of
such an approach, by illustrating and quantifying the differences between the solutions.

The work conducted in this paper relies on that the subset of patient groups to explicitly plan
for in the block schedule, and the total amount of time allocated to each such patient group have
been decided in advance. We see a potential in developing optimization-based decision support
models for these decisions. Because of the uncertain demand, different decisions on the number
of time slots allocated to the patient groups might have different operational consequences, such
as patients’ waiting times or resource utilisation. Therefore, these decisions could be evaluated,
for instance in a simulation-optimisation framework, where patient group demand in simulated.
See Fu [9] for an introduction to the topic simulation-optimisation, and Amaran et al. [1] for a
recent review of algorithms and applications. Furthermore, the unused time slots for a patient
group are released at least a day in advance, and used for patients with high urgency. However,
if there are too few patients to allocate to the released time slots, the utilisation of the labs
is reduced. The use of time blocks to urgent cases might also affect the requirements for an
optimal allocation of time blocks. Another direction for future research is to develop decision
support tools for the centralised appointment scheduling, and possibly connect this tool with
the block scheduling model.
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