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Abstract

Flood frequency analysis (FFA) concerns prediction of the magnitude and
corresponding frequency of extreme flood events. Extreme floods can be the
result of various hydrological processes. In Norway, rainfall and snowmelt are
considered to be the two main flood generating processes. The use of mixture
models, to account for these different flood generating processes, are investi-
gated for catchments in Norway. For the case of annual maximum series (AMS),
a two-component mixture of Gumbel distributions is fitted, by assuming that
the mixture weights are both known and unknown. Subsequently, for peaks over
threshold (POT) series a two-component mixture of exponential distributions
is considered. Again, the two cases of known and unknown mixture weights
are studied. When assuming that the mixture weights are known, these are
given by the precalculated proportion of rainfall and snowmelt contributing
to each flood value. The mixture models are compared to the generalized ex-
treme value (GEV) distribution and the Gumbel distribution for AMS, and to
the generalized Pareto (GP) distribution and the exponential distribution for
POT. Maximum likehood is used for parameter estimation, and for the mixture
models with unknown weights the maximum likehood estimates are obtained by
the expectation maximization (EM) algorithm. The predictive performance of
the models are compared using various scoring rules. In addition, the stability
of the models are compared. We found that although the scoring rules are not
always able to differentiate between the models, the Gumbel distribution and
the exponential distribution, for the case of AMS and POT respectively, often
give the most reliable and stable estimates. The mixture models estimated
by the EM algorithm occasionally give unexpected results and seem unfit for
practical use in FFA.
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Sammendrag

Flomfrekvensanalyse omhandler prediksjon av stgrrelse og korresponderende
frekvens for ekstreme flommer. Ekstreme flommer kan veere resultatet av ulike
hydrologiske prosesser. I Norge er regnnedbgr og sngsmelting regnet som de
to dominerende flomgenererende prosesser. Bruk av blandingsmodeller, for &
ta hensyn til disse ulike flomgenererende prosessene, er undersgkt for vassdrag
i Norge. For modellering av arlig maksimumsserier (AMS), ser vi pa en to-
komponent Gumbel-fordeling hvor vi antar at komponentenes vekter bade er
kjent og ukjent. Videre, for modellering av flommer over en bestemt terskel
("peaks over threshold”, POT), undersgker vi en to-komponent eksponential-
fordeling. Ogsa her vurderer vi tilfellet med kjente vekter og ukjente vekter.
Nar vi antar at vektene er kjent, er de gitt ved kalkulert andel regnnedbgr
og sngsmelting som bidro til hver enkelt flomobservasjon. Blandingsmodel-
lene sammenlignes med en ”generalized extreme value” (GEV) fordeling og en
Gumbel-fordeling for AMS, og med en ”generalized Pareto” (GP) fordeling og
en eksponentialfordeling for POT. Parameterene til de ulike modellene er es-
timert ved ”maximum likelihood”. For blandingsmodellene med ukjente vekter
maksimeres likelihood ved bruk av ”expectation maximization” (EM) algorit-
men. Prediktiv ytelse for modellene sammenlignes ved bruk av ulike ”scoring
rules”. I tillegg er stabiliteten til de ulike modellene studert. Resultatene viser
at selv om ”scoring rules” ikke alltid kunne skille mellom modellene, sa gir
ofte Gumbel-fordelingen og eksponentialfordelingen, for henholdsvis AMS og
POT, palitelige og stabile estimat. Blandingsmodellene estimert ved EM al-
goritmen gir noen uventede resultater, og kan derfor ikke anbefales til bruk i
flomfrekvensanalyse.
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1 Introduction

Predictions of magnitude and corresponding frequency of extreme flood events are
important for safety and risk assessments when designing structures close to rivers,
such as bridges, dams, roads and railways. If a structure cannot withstand what is
expected, lives are at stake as well as economic losses. The design flood for a structure
is defined as the most extreme flood which that structure is required to withstand,
in terms of the frequency of occurrence. A precise estimate of the magnitude of the
design flood is desired, since both underestimation and overestimation leads to ex-
cessive costs. In the case of overestimation, the initial building costs could be much
higher than necessary. On the other hand, if the design flood is underestimated, re-
building costs, in addition to costs when not operating, will occur more frequently
than expected.

Design floods are often specified by the return period p. By the p-year flood we
mean a flood that on average occurs every p years. Dam safety regulations in Norway
require the estimation of the 500- and 1000-year flood, depending on the individual
dam safety class (Lovdatal |2009). Buildings and infrastructure should resist or be
protected from floods with 20, 200 or 1000 year return period, depending on the
consequence of a flooding, according to building regulations in Norway (TEK 10)
(Lovdatay, 2010). Gauging stations in Norway commonly have about 100 years or less
of recorded data. The estimation of extreme floods thus requires extrapolating far
outside the range of recorded flow data.

Flood frequency analysis is a statistical approach to estimate the magnitude of such
extreme floods. When a sufficient amount of historical flood data is available at the
site of interest, a local analysis, which involves fitting a probability distribution to
the given discharge series, can be applied. Otherwise a regional analysis must be per-
formed, which uses discharge series from the same region in addition to hydrological,
meteorological and geographical covariates to estimate the underlying distribution.
Here we only consider local analysis, and therefore only study gauging stations in
Norway where sufficient historical data are available.

Annual maximum series (AMS) and peaks over threshold (POT) are the most com-
monly used methods for flood frequency analysis. They differ in the way the flood
series are constructed, and thus they apply different distributions to model the data.
In the AMS approach, a distribution is fitted to a series of annual maximum flood
values. |Fisher and Tippett| (1928) formed the theoretical basis for AMS, by show-
ing that the limiting distribution of block maxima of identically and independently
distributed (iid) random variables belongs to the generalized extreme value (GEV)



family of distributions. Later, (Gumbel, |1945) applied this theory to floods. Alterna-
tively, POT selects all mutually independent flood peaks above a chosen threshold.
A series of such flood peaks is modelled by the generalized Pareto (GP) distribution
(Pickands| [1975). POT series are also referred to as partial duration series (PDS).

The GEV distribution have a location, scale and shape parameter, while the GP dis-
tribution have a scale and a shape parameter. When setting the shape parameter
of these distributions to zero, the Gumbel and exponential distribution, respectively,
are obtained. These distributions are also frequently used in FFA. For small sample
sizes, distributions with less parameters are often preferred (see e.g. Midttgmme et al.|
2011). In general, a distribution with more parameters is more flexible, which implies
that it is also more likely that the estimation procedure overfits the data. For AMS,
Cunnane, (1989) showed that the Gumbel distribution is effective for small samples,
while the GEV distribution is preferred for sample sizes greater than 50. For the case
of POT series, Rosbjerg et al.|(1992) concluded that the exponential distribution is
preferable to the theoretical correct generalized Pareto distribution, for small sample
sizes and moderately long-tailed exceedance distributions.

One of the challenges with the AMS approach to extreme value modelling is that
every yearly maximum might not be an extreme flood value. In addition, some years
could have more than one extreme value, such that one leaves out valuable informa-
tion when only considering one peak each year (see e.g. Lang et al. 1999). Peaks
over threshold modelling addresses these problems by considering only peaks that ex-
ceeds some threshold. Thus low yearly maximum values might not be included in the
analysis, and more than one peak from years with high flood values can be included.
However, the simplicity of the AMS method makes it popular compared to POT.
POT has the advantage of including more data in the analysis, but it requires the
selection of a threshold and some criteria to define consecutive peaks as independent.

The data set used in our analysis is provided by The Norwegian Water Resources and
Energy Directorate (NVE), and a chosen threshold is given for each POT series in
the data set. NVE’s method for threshold selection is based on a high quantile for
each station. The quantile is adjusted such that 2-6 flood peaks are included each
year (Engeland et al., [2016]), which resulted in the use of the 98 percent quantile
as the threshold. This agrees with current recommendations in the literature. For
instance, |Cunnane| (1973) recommends to include at least 1.65 floods each year, while
FEH) (1999)) suggests to include 2-6 flood peaks each year. To assure that the flood
peaks are independent, NVE used a criteria for independence based on |[Lang et al.
(1999). Two consecutive flood peaks must be separated with at least three times the
time-to-rise and the discharge value must have decreased to 2/3 of the last flood peak.
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AMS and POT have been compared in a variety of studies, see e.g. |Bobée and Ras-
mussen| (1995), [Ferreira and de Haan (2015) and Bezak et al. (2014)) for extensive
reviews and comparisons of the two approaches to FFA. Cunnane (1973) compared
return level estimates for AMS and POT, and found that if the POT series contains
at least 1.65 times the records as the AMS, then the sampling variance of the p year
flood is smaller for POT. Similar results was stated by Madsen et al.| (1997). They
found that for the case of maximum likelihood estimation, the POT approach yields
more efficient estimators for the p-year flood. A study by |Caires (2016) agrees with
these results, and in addition concludes that the performance of the two methods
are similar for large sample sizes (over 200 years). Overall, it seems that the POT
method is preferable for small sample sizes, as long as the average number of thresh-
old exceedances each year is greater than 1.65.

When applying the GEV and GP distributions, an assumption is that the flood values
arise from the same distribution. In reality, this assumption may not be justified as
a flood event can be the result of various hydrological processes (see e.g. |Alila and
Mtiraoui, 2002)). In Norway, rainfall and snowmelt are considered to be the two main
flood generating processes (FGP), which can cause an extreme flood either alone or in
combination (Engeland et al., [2016]). Various attempts to take FGP or seasonal vari-

ations into considerations when modelling flood data have been made by e.g. Rossi
et al.| (1984), Waylen and Wool (1982) and Evin et al.| (2011]).

Mixture models are commonly applied in cases where the data is considered as arising
from multiple sub populations instead of one homogeneous population. They provide
an efficient and flexible modelling tool, able to estimate e.g. multiple modes. Since
it is assumed to be two dominating FGP in Norway, it is natural to consider mix-
ture models with two components. For this reason, we investigate the use of mixture
models with two components, mimicking rainfall and snowmelt, for the case of both
AMS and POT data. Mixture models require the estimation of more parameters, and
to limit the amount of parameters, we consider only mixtures of the Gumbel and the
exponential distribution.

We estimate the parameters of the proposed mixture models both by assuming that
the mixture weights are know and not known. For the case where the weights are
known, they are given by the proportion of accumulated rainfall and snowmelt, re-
spectively, in a time frame before each discharge value. When assuming that we do
not know the mixing proportions, the weights will be estimated simultaneously with
the other parameters by the Expectation Maximization (EM) algorithm (Dempster
et al., [1977). The resulting models are compared to each other as well as to the



traditional models for FFA.

To estimate the parameters of the GEV, Gumbel, GP and exponential distribution,
a number of different methods are available. NVE’s guidelines for flood estimation in
Norway suggest to use the method of L-moments, maximum likelihood estimation or
a Bayesian analysis (Steinius et al., 2015). See e.g. |[Landwehr et al.| (1979), Engeland
et al.| (2004), Hosking et al| (1985) and Gubareva and Gartsman| (2010 for com-
parison and discussions of the commonly used parameter estimation methods. We
apply the method of maximum likelihood estimation, such that the same estimation
approach is used for the traditional models and for the mixture models.

In total, we compare 4 different models for AMS, namely GEV, Gumbel and a two-
component mixture of Gumbels with both known and unknown mixture weights,
and 4 different models for POT, GP, exponential and a two-component mixture of
exponentials with both known and unknown mixture weights. The comparison is
performed based on estimates from AMS and POT series at 228 gauging stations in
Norway. The models for AMS and POT are compared using a 10-fold cross valida-
tion. We apply different proper scoring rules (Gneiting and Raftery, 2007) as loss
functions in the cross validation procedure. For a few chosen catchments in Norway,
we compare return level estimates obtained by AMS and POT.

This thesis is structured as follows. Section |2/ describes the data used in our analysis,
while Section [3| provides the theoretical background for the AMS approach to flood
frequency analysis along with the proposed mixture models for AMS modelling. This
section also presents the general theory of the EM algorithm. Similarly, Section
provides the theory behind POT modelling and presents the two mixture models we
investigate for the POT data. The methods used for validation are introduced in
Section [f] with various scoring rules given in Section [5.1] and the cross validation
procedure explained in Section [5.2] Section [f] provides the results, where the results
for AMS and POT modelling are given in Section [6.1]and [6.2], respectively. In Section
[6.3] we compare return level estimates at different locations for the AMS and POT
models. At last, a discussion and conclusion is given in Sections[7] and [§] respectively.



2 Data

2.1 Flood observations

All data used in this analysis are provided by NVE’s database Hydra II. This database
provides flood data in the form of annual maximum series (AMS) and peaks over
threshold (POT). A total of 530 gauging stations are included in the data set, where
266 of these stations are still in use. We only consider stations where both the AMS
and POT series have at least 30 records, as it is recommended to instead apply a
regional analysis when limited data is available (see e.g. Midttgmme et al., 2011)).
This results in a total of 228 gauging stations used in our analysis. Figure [I] presents
histograms of the length of the AMS (left) and POT (right) series from these stations.

Length of annual maximum series Length of peaks over threshold series
2 3 -
5 o a o
g @ g © 7
3 >
o o o o _|
9 N 9 <
— N
o o -
[ l l l l l | [ l l l l l l |
30 40 5 60 70 8 90 0 50 100 150 200 250 300 350
Length (year) Length

Figure 1: Histograms showing the length of the annual maximum series, to the left,
and the peaks over threshold series, to the right, used in our analysis.

Both the AMS and POT data set are constructed based on daily average discharge
values, given in the units m?3/s from various catchments in Norway. The AMS ap-
proach to flood frequency analysis (FFA) considers only each yearly maximum of these
daily average values. Alternatively, the POT method considers all discharge values
above a chosen threshold that in addition is considered to be mutually independent.
A threshold is included for each POT series in the data set, as described in Section

2.2 Flood generating process

An extreme flood can be the result of a number of different events (either alone
or in combination), such as extreme rainfall, snowmelt and landslide. In Norway,
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snowmelt and rainfall are considered to be the two main flood generating processes
(Engeland et al., 2016). By assuming that only rain and snowmelt contributes to
flooding, NVE have estimated the proportion of rainfall and snowmelt, respectively,
that contributed to each flood. This is represented by a number between 0 and 1,
which indicates whether rainfall (1) or snowmelt (0), or a combination of the two, is
the flood generating process for a specific flood peak. This variable, "Flood gener-
ating process (FGP)”, is included in the data set for both the AMS and POT data.
The FGP is estimated based on a time frame before a flood peak, by calculating the
accumulated rainfall and the accumulated snowmelt in the period (Engeland et al.|
2016).

Average proportion of rainfall for AMS data  Average proportion of rainfall for POT data

m [0.9 1] m [0.9 1]
m [0.8,0.9) m [0.8,0.9)
m [0.7,0.8) m [0.7,08)
m [0.6,0.7) m [06,0.7)
m [0.5,0.6) m [0.5,0.6)
m [0.4,0.5) m [0.4,0.5)
@ [0.3,0.4) @ [0.3,0.4)
@ [0.2,0.3) @ [0.2,0.3)
@ [0.1,0.2) @ [0.1,0.2)
o [0,0.1) o [0,0.1)

Figure 2: The average of the FGP value at each catchment for the AMS (left) and
POT (right) data. 1 corresponds to a rainfall being the flood generating process,
while 0 corresponds to snowmelt.

The average FGP value, where 1 and 0 corresponds to rainfall and snowmelt respec-
tively, for each catchment used in our analysis are plotted on a map of Norway in
Figure[2] From this figure we see that the coastal catchments are dominated by rain-
fall, while in the inland and northern parts of Norway we find catchments that are
more influenced by snowmelt. The two plots in Figure [2| have the same pattern, as
many of the flood peaks are included in both the AMS and POT series.

In our analysis, we only estimate the proposed models based on data where we have
values for FGP, in order to make the models using the FGP variable comparable to
those that do not use this variable.



2.3 Explorative analysis for three gauging stations

To illustrate the data in the data set, we take a detailed look at three specific catch-
ments, Bulken, Atnasjo and Krinsvatn, which demonstrate various trends in the flood
values. The location of these catchments are shown in Figure [3] below. Bulken is lo-
cated in western Norway, an area dominated by rainfall. Atnasjg is located 701 meters
above sea level in the inland and central part of Norway, where rainfall is less domi-
nating. North of Atnasjg we find Krinsvatn, 87 meters above sea level. Krinsvatn is,
similarly to Bulken, located on the coast and dominated by rainfall.

Location of catchments

B Atnasjg
@ Krinsvatn

Figure 3: A map of Norway giving the locations of the catchments used in our analysis.
Bulken, Atnasj¢g and Krinsvatn are highlighted in red, blue and green, respectively.

Table 1] below presents information about the size of the three catchments, and in
what period the flood data have been recorded. In addition, the length of both the
AMS and POT series, and the number of observations that also have a corresponding
FGP value, for each catchment are given. Summary statistics of the flood data from
the same catchments are given in Table [2] More specifically, it provides the mean,
median and standard deviation (SD) of both the AMS and POT series, where the
observations with no corresponding FGP value are removed from each series.



Table 1: Detailed information about three catchments, Bulken, Atnasjs and Krins-
vatn. nams and npor denotes the length of the AMS and POT series respectively,
while the number in parentheses represents the corresponding number of observations
with a FGP value in the data set.

Catchment Area (km?)  Period  naus (FGP) mnpor (FGP) Threshold
Bulken 1092.04  1892-2015 124( 8) 298 (172) 253.91
Atnasjo 463.2  1917-2015 99 (61) 153 (87) 47.15
Krinsvatn 206.61 1916-2015 100 (65) 367 (204) 69.66

Table 2: Summary statistics for the AMS and POT series from the three catchments,
Bulken, Atnasjo and Krinsvatn.

AMS POT
Catchment Mean Median SD Mean Median SD
(m?/s) (m®/s) (m’/s) (m?/s) (m?/s) (m?/s)
Bulken 369.19 372.47 99.00 329.71 305.45 71.50
Atnasjo 70.49 65.34 26.53 68.47 62.08 22.15

Krinsvatn ~ 136.15  121.99  52.72 107.26 98.88  39.50

For the three catchments, Figure [4] and 5| gives the flood values and FGP values
plotted against the day of year for the AMS and POT series, respectively. Bulken is
dominated by rainfall floods throughout the year, except for in the summer months
when snowmelt also contributes to flood peaks. Flood peaks from Atnasjg are mainly
obtained in the summer. Both rainfall and snowmelt floods, in addition to a mixture
of the two, are found in this period. Krinsvatn is, similarly to Bulken, dominated by
rainfall floods with a few snowmelt and mixture floods in the summer. The trend in
the FGP values for each catchment does not depend on whether the data is given in
the form of AMS or POT series.
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Figure 4: In the left plots, the annual maximum series from the catchments Bulken,
Atnasjp and Krinsvatn respectively, are plotted against the date each flood event
occurred. They are plotted in polar plots, where 360 degrees represents one year.
The magnitude of the flood values are given in the units m?/s. Similarly, to the
right, the corresponding FGP values for each catchment are plotted against the

date.
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Figure 5: In the left plots, the peaks over threshold series from the catchments
Bulken, Atnasjg and Krinsvatn respectively, are plotted against the date each flood
event occurred. They are plotted in polar plots, where 360 degrees represents one
year. The magnitude of the flood values are given in the units m3/s. Similarly,
to the right, the corresponding FGP values for each catchment are plotted against
the date. 10



3 Modelling of annual maximum series

3.1 The generalized extreme value distribution

Consider the block maximum
Y, = max(Xy,..., X,),

where Xi,...,X,, is a series of identically and independently distributed random
variables. In our context, the X;’s denotes the daily average flood values, and Y,, the
yearly maximum of these. That is, we apply a block maximum period m of one year.
This is commonly used in FFA, since a year is considered long enough to assume that
the maximum values are independent of each other.

We are interested in the distribution of the annual maximum Y,,. Below, we follow
the derivation described in |Coles (2001)). For the original derivation, see [Fisher and
Tippett| (1928). If the distribution of X; is known, e.g. P(X; < z) = G(z), then the
distribution of Y,, is given by

P(Yy < 2)=P(X; < 2) - P(X;n < 2) = G™(2).

However, we do not know the distribution of the daily average flood values. |Coles
(2001) instead looks for a limiting distribution of G™(z) when n — oco. For a nor-
malization of Y;,, ¥2=t= where {a,, > 0} and {b,,} are sequences of some constants,

Coles| (2001)) states that if
Ym - bm
P(—gy) — F(y), as m — o
Um

where F'is a non-degenerate distribution function, then F' is a member of the general-
ized extreme value (GEV) distribution family. Note that this does not imply that the
limit must exists. However, if the limit exists it belongs to this distribution family,
which is given by

fen (- e et
F) {exp(_exp(_%)) if g0, @

with support 1+&(y —p)/o > 0 ;where p € R, 0 > 0 and £ € R are the location, the
scale and the shape parameter, respectively. The special case £ = 0 in equation ([1)
is called the Gumbel distribution.
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When modelling AMS by the GEV distribution, one assumes that the flood values
are independent and identically distributed. By only considering the block maximum
, with a sufficient block period, the independence criteria is satisfied. In addition,
it is assumed that all annual maximum discharge values at a specific location have
the same stationary distribution, as it has not been possible to detect a clear climate
change signal in the observed magnitude of annual flood events (Wilson et al.| |2010)).

The shape parameter £ determines the tail behaviour of the GEV distribution. When
¢ > 0, the distribution is bounded from below by y = p — o/, and when £ < 0 it is
bounded from above by y = p—o /€. In the case where £ = 0, there are no restrictions
on y. Thus in practice, if ¢ is negative, there is a finite maximal value for the annual
maximum flood, while if ¢ > 0 the maximum flood can be infinitely large.

Both the 3-parameter GEV distribution and the simpler 2-parameter Gumbel dis-
tribution are commonly used to to model AMS. The Gumbel distribution have the
advantage of ease of fit, but is not as flexible as the GEV distribution. We consider
the use of both these distributions, in addition to a mixture of Gumbels given in
Section 3.2l below.

The parameters of the GEV and Gumbel distributions at each catchment are es-
timated using maximum likelihood. The complexity of the support of the GEV
distribution makes the likelihood maximization not straightforward. Therefore we
make use of the ismev (Heffernan and Stephenson, 2016)) package in R (R Core Team,
2016), which have implemented procedures for ML estimation of the extreme value
distributions. We apply the function gev.fit for the GEV distribution and gum.fit
for the Gumbel distribution.

3.2 Mixture model

In this thesis we want to investigate the use of mixture models in FFA. For the case
of AMS, we consider a mixture of Gumbel distributions. The density of a Gumbel
random variable is given by

f(y;/t,a):%eXp {— (%Jrexr)(—%))] (2)
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where 1 and ¢ > 0 denotes the location and scale parameter, respectively (see e.g.
Coles, [2001)). A finite mixture of k& Gumbel distributions can be written as

fly; 0) = ijfj(y;uj,dj)a (3)

k
E Wy = 1,
J=1

with each w; > 0. f;(y; pj,0;) denotes the Gumbel distribution given in (2)) with
location f1; and scale 0;, and w; denotes the mixture weight of the jth component.

In cases where mixture models are considered, the number of components is often un-
known and the problem also involves estimating k. In Norway, as described in Section
2.2] rainfall and snowmelt are considered to be the main flood generating processes.
This yields the natural selection of two components for the mixture model, and in
the following we therefore only consider the case of k = 2.

We consider both the case where the mixture weights are known and the case of
unknown weights. The FGP variable included in the data set provides a natural esti-
mate for the mixture weights. For the case of given mixture weights, the parameters
0 = (p1,01, p2,02) are estimated using maximum likelihood, described in Section
below. When the mixture weights are assumed to be unknown, the parameters
0 = (w1, p1, 01, pi2, 02) are estimated by maximizing the likelihood in an iterative pro-
cedure, using the EM algorithm given in Section [3.2.2]below. Only one of the mixture
weights needs to be estimated, as wy = 1 — wy.

3.2.1 Maximum likelihood estimation with known weights

Here we assume that the weights w; and ws of the mixture distribution in Equa-
tion (3), with & = 2, are known and given by the FGP. Given a sample of annual
maximum flood values, y = y1, ..., y,, with corresponding weights wy 1,...,w;, and
Wa1, .. .,wsy, the likelihood is

L(y;0) = [ [ D wiifi(wis 1 ), (4)

i=1 j=1

where 8 = ((u1, 01, ft2, 02)) denotes the parameters to be estimated. By taking the
logarithm of ({]), we obtain the log likelihood function, I(y;8), given by
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I(y;0) = log(L(y; 0)) = Z log Z wji f(Yis 113, 05) (5)

The parameters @ are estimated by optimizing the log likelihood in Equation us-
ing constrOptim in R, with the constraints o; > 0 and o9 > 0.

3.2.2 Expectation Maximization (EM)

The Expectation Maximization (EM) algorithm, introduced by Dempster et al. (1977)),
is a procedure for maximum likelihood estimation of parameters in problems with in-
complete or missing data. That is, when some part of the data is not observable,
such that the observed data represents an incomplete data set. The idea of the EM
algorithm is to associate the incomplete data problem with a complete data prob-
lem for which the maximizing the likelihood is more straightforward. The algorithm
estimates the parameters of the proposed model by maximizing the likelihood in an
iterative procedure. It is applicable in a wide range of problems, (see e.g. Meng and
Pedlow), 1992)), and is commonly used for estimating parameters of mixture models.

Here we give a general formulation of the algorithm, similar to the one by McLach-
lan and Krishnan (1996). Let y = (y1,...,¥,) denote a random sample from the
observable random variable Y, with distribution fy(y;@). Here 8 = (64,...,04) € Q
denotes the parameters and 2 denotes the parameter space. Further, assume that
there is some unobservable data, z, with random variable Z, such that x = (y, z)
denotes the complete data. Let fy z(y, z;0) denote the distribution of the complete
data.

The estimation task is to maximize the likelihood of the complete data, L.(x;8), or
equivalently, maximizing the log-likelihood [. = log L.(x; ). Since the log likelihood
of the complete data is unobservable, its expectation given the observed data y is
instead considered. Given the current parameter values 8) let

Q(G, O(k)) = E@(k) [lC<X; 0)|Y] ’

denote this expectation. Here Egx) denotes the expectation with parameters 0%k
In each iteration of the algorithm there are two steps, the Expectation step (E-step)
and the Mazimization step (M-step), thereby the name Expectation Maximization. In

its general form, the algorithm is as follows. Firstly, initial values for the parameters
must be chosen. Then, for each iteration k, do the following two steps
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e E-step Compute the expected likelihood of the complete data, given the observed
data,
Q(6,0™) = By [lo(x: 6)]y].

e M-step Maximize this expected likelihood with respect to the parameters 8. That
is, choose 0%+ € O such that

QO"Y:0M) > Q(6;6") v #eq.

The two steps above, the E-step and the M-step, are repeated until some convergence
criteria is reached.

Note that k& in this section, and throughout the rest of this thesis, represents the iter-
ation. In Section k was used to denote the number of components in the mixture
model, but as we only consider two components in this study, we use the number 2
instead of k where it is applicable.

To detect convergence of the algorithm, a stopping criteria must be chosen. This
stopping criteria can be based on the change in the likelihood or the change in the
parameters after an iteration. The parameter estimates depend on the choice of
stopping criteria as well as the choice of starting parameters (see e.g. [Seidel et al.,
2000). Although it is not clear which stopping criteria is best to apply, one based
on the change in the likelihood is most frequently used. The relative change in the
log-likelihood provides a dimensionless measure of the change, and is therefore a
suitable stopping criteria when comparing different estimation methods. The relative
difference is given by
|log L(y; 0"*") —log L(y; 8")|
[log L(y; 6")| |

Dempster et al.| (1977)) have shown that the log-likelihood of the incomplete data is
non-decreasing in each iteration. That is,

log L(y; 8%tV) > log L(y; 0™).

Thus, the log-likelihood sequence nearly always converges (see e.g [Wu, |1983)). The
likelihood may have several local or global maxima and stationary points, such that
the EM algorithm can converge to a local maximum or a stationary point instead of
the desired global maximum, depending on the starting values for the parameters.
Its sensitivity to starting values is a drawback of the EM algorithm. To overcome
this problem, it is recommended to try several runs of the algorithm with different
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starting points, as small perturbations from a saddle point will cause the algorithm
to diverge away from this stationary point (see e.g. McLachlan and Krishnanl 1996)).

3.2.3 EM algorithm for a mixture of Gumbel distributions

Consider the mixture of two Gumbel distributions,

Fr(y;0) = wifi(y: 1y, 0)), (6)

J=1
W1 + Wy = 1.

where 0 = (wq,ws, i1, fi2, 01, 09) and wy, ws > 0. This can be formulated as an incom-

plete data problem, where in our context y = (y1, ..., y,) denotes a vector of observed
annual maximum flood values. We introduce Z as a hidden state variable, such that
z = (z1,...,2,) denotes the missing data vector. Each z; is a two-dimensional in-

dicator vector with first and second element equal to one/zero if the observation y;
did/did not arise from the first and second mixture component, respectively. That is,

zi; = 1, if y; belongs to the jth component,
zi; = 0, if y; does not belong to the jth component.

The log-likelihood of the complete data, = (y, z), can now be written as

10(07 Z) - Z log fY,Z(yiv Zis 0)
=1

= _log (f2(2:0) friz(uil=:; 0))

n

2
- Z ZIOg (w; fi(yas g, 05)) 7

i=1 j=1

= Z Z 25 10g (w; i (vis 1y, 05)) -

i=1 j=1

As z is unobservable, the log-likelihood of the complete data can not be computed.
Instead the EM algorithm considers the conditional expectation of [.(8, Z) given the
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complete data and current parameter values 8%, where Z now is considered to be a
random variable. The conditional expectation is given by

Q(6,0") = Ee(k>[ (0,2)]y,0")

= ZZP zij = Uy, 8%)) logw; f; (ys; 115, 95)

=1 j=1
n 2
k
:Zzhgj)logwjfj(yi;ujﬂj),
i=1 j=1

where we define hgf) to be the probability that y; belongs to component j, given the
current parameter estimates. That is, hz(.f) = P(z; = 1|yl, ) In the E-step we need

to compute hzj , in order to obtain the expected complete log-likelihood, (8, o )
In the M-step we maximize this with respect to 6.

With f;(yi; 115, 0;) being the Gumbel distribution given in , we have

-3 ey [ (A5 e (- 222) )|

=1 j5=1

R

i=1 j5=1

To maximize this with respect to 6, we write

s 0(0,0) = gy 3 i 2 (1 s (= 12 )
] ; ]

=1 j=1 J

Yi — My Wi
- ¢ (-2 o],
argmm;; { +eXp 7, + log 0]}

subject to 2521 w; = 1. The Lagrangian for this problem becomes

L= Zih( [ —l—exp(—@)—i—logwj—logaj]—A(iwj—l), (7)

i=1 j=1 J j=1

where A\ is the Lagrange multiplier constant. By evaluating the partial derivatives
of L with respect to pj, 0;, w; and A, we obtain the following expressions for the
parameters which optimize the expected log-likelihood of the complete data,
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o Dby X by
- n 2 - ) (8)
Zizl Zl:l hi n

A closed form expression for o; is not obtained. The optimal estimate of ¢, in each
iteration could be estimated numerically, and then used to obtain pu;. Instead, we
choose to optimize the expression in Equation ([7)) with respect to p; and o}, using
the estimate for w; in Equation , for j = 1 and j = 2 separately. This optimization
is performed using optim in the R package stats (R Core Team), 2016]).

Wi

g

p;j = ojlog [1 — Z hij exp _yi
i=1 J

The E-step consists of updating the expression for () with the new parameter esti-
mates, which requires the calculation of hgﬁl), 1=1,...,n, j = 1,2. The updated
hi; is given by

B Z (s = ilys 00 = w; f(y; 1y, 05) Ci-12
J (% | ) wi f(y; p, 1) + wa f (y; pa, 02)

In an effort to overcome the problem of the algorithm converging to stationary points
or local maxima, we run the algorithm with 100 different randomly generated start-
ing values. The parameter estimates are given by the run that resulted in the largest
likelihood. Random starting values for p; and ps are obtained by sampling from a
normal distribution with mean and standard deviation equal to the sample mean and
standard deviation of y, respectively. Similarly, different starting values for o; and
0o are generated by sampling from a normal distribution with mean and standard
deviation equal to the standard deviation and 1/10 of the standard deviation of y,
respectively. For oy and o9, the absolute value of the random starting values are used,
to assure that the conditions o7 > 0 and o9 > 0 are satisfied. The initial value of w;
is sampled from the uniform distribution on [0, 1] in each run of the algorithm.

3.3 Return level estimation

The return level z,, corresponding to the return period p, is the magnitude of the flood
with exceedance probability 1/p each year. Thus, for the case of AMS, it is given by
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F(z,) =1—1/p. In terms of the quantile function F~!, we obtain z, = F~*(1—1/p).
For example, the magnitude of the 1000-year flood is given by 21990 = F~1(0.999).
The quantile function of the GEV distribution is given by
. p+E[1 = (=log(q) ] ifE€#0
Fig={"" ¢ L )
p — o log(—log(q)) if £ =0,

where again, the case £ = 0 corresponds to the Gumbel distribution.

For the two-component Gumbel mixture model, an analytical expression of the quan-
tile function is not obtainable. Therefore, in order to estimate the return level for a
specific return period, we sample from the mixture model in Equation (3) and esti-
mate the quantile function by the empirical quantile function.

Return level estimates are often evaluated by plotting the return level as a function of
the return period, on a logarithmic scale. Plotting positions of the observed data are
then obtained by assigning the probability % to an observation of rank i (Hosking
et al., [1985|), where n is the number of observations.
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4 Modelling of peaks over threshold series

4.1 The generalized Pareto distribution

In the threshold modelling approach to FFA we are interested in the distribution of
events above some threshold u. That is, the distribution of Y = X — u given X > u,
with X being the daily average discharge values as defined in Section and Y now
denoting the threshold exceedance. In this section, we follow the derivation of this
distribution given in Coles| (2001). The conditional probability of X —u given X > u
can be written as

1 -Gy +u)

P(X >u+y|lX >u) = =Gl

y > 0, (10)
where GG denotes the cumulative distribution function of X.
If the distribution GG of X is known, the threshold exceedance distribution in is
also known. However, since GG is not known, it is in extreme value theory approxi-
mated. For large values of m, G™(u) can be approximated by the GEV distribution
given in Equation (I]), as described in Section [3.1] From this we have
U — -1/
mlog G(u) ~ —[1—1—5(7)} :

If w is large, nlog(G(u)) can be approximated by —(1 — G(u)), which gives

_ —-1/¢
1—G(u)%%(1+§u “) ,

o

where i, o and £ denotes respectively the location, scale and shape parameters of the
GEV distribution. Further,

1 -Gy +u)
1 —G(u)
L (14 gezee) e

S omlres) ™
—1/¢
(9"
o
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where 0 = 6 +&(u— ) (Coles, 2001). Thus the distribution of independent threshold
excesses can be approximated by

—1/¢
F(y)zl—(l—i—%) , y>0,

with support (1 + &y/o) > 0. This is known as the generalized Pareto (GP) dis-
tribution (Pickands| [1975), with parameters ¢ and . Note that these parameters
correspond to the scale and shape parameters of the GEV distribution, in the sense
that the shape parameter ¢ is the exact same, while the scale parameter o is given
by 0 =& + &(u — ). Here & and p denote the scale and location parameter of the
GEV distribution, respectively.

Similarly to how the Gumbel distribution is a special case of the GEV distribution
for £ = 0, the exponential distribution with parameter A = % is a special case of the
GP distribution when £ = 0. The exponential distribution is given by

with probability density
Fly: A) =A™, (11)

In this study, we consider both the case where a peaks over threshold series, y =
(Y1, -+, Yn), is assumed to follow the two-parameter GP distribution and when it is
assumed to follow the one-parameter counterpart, the exponential distribution.

We estimate the parameters of the GP and exponential distribution, respectively, by
the method of Maximum Likelihood (ML). The Maximum Likelihood estimators for
the GP distribution are not given in closed form, and the likelihood must thus be
maximized numerically. The optimization is performed using optim in R. The ML
estimator for the parameter A of the exponential distribution is given by the reciprocal

of the sample mean,
n

p e ——
Zi:lyi

4.2 Mixture model

Similar to how we considered a mixture of two Gumbel distributions in Section [3.2]
for modelling of AMS, we now consider a mixture of two exponential distributions
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for modelling of POT series. The probability density of a mixture of two exponential
distributions is given by

2
f(y; A, Ag) = Z fi(yi Aj)
j=1
= wl/\le_hy + WQ/\2€_>\2y, (12)

where f;(y; ;) denotes the exponential distribution in Equation with parameter
Ajand wy +wp =1, wi,wy > 0.

Again we consider two cases, one where the mixture weights are observed, and given
by the FGP, and one where they are unobservable. The former case is described in
Section while the latter is described in Section [4.2.2]

4.2.1 Maximum likelihood estimation with known weights

Here we assume that the weights w; and ws in Equation are known. Given a sam-

ple y1, ...,y of flood peaks over threshold, with corresponding weights wy 1, ..., w1,
and wa 1, ..., wsy, the likelihood is
L(y, )\17 )\2) = H (wlyi)\le_)\lyi + wg,i)\ge_)‘wi) . (].3)

i=1
By taking the logarithm of Equation , we obtain the log likelihood function,
U(y; A1, A2), given by

I(y; M1, A2) = log(L(y; A1, A2)) = Zlog (wl,i)\lei)\lyi + w2,¢>\2€7/\2yi) (14)

i=1

The parameters \; and Ay of the mixture distribution in Equation are esti-
mated by optimizing the log likelihood in Equation (14)), subject to wi + ws =1 and
w1, ws > 0, using constrOptim in R.

4.2.2 EM algorithm for a mixture of exponential distributions

Again, we consider the mixture of two exponential distributions in Equation .
Here, we assume that the mixture weights w; and wy are not known and formulate
the problem as an incomplete data problem, similar to what we did in Section [3.2.3]
for Gumbel mixture.
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Let fy(y;0) denote the distribution of Y, assumed to be the mixture in Equation
, with parameters @ = (wy,ws, A1, A2). This can be formulated as an incomplete
data problem, where in our context y = (yi,...,y,) denotes a vector of observed
threshold excesses. The missing data vector z = (zy,...,2,) is defined as in Section

3.2.3l That is,

zi; = 1, if y; belongs to the jth component,
zi; = 0, if y; does not belong to the jth component,

for j =1,2.

The conditional expectation of [.(8, Z) given the complete data and current parameter
values 8% can now be written as

Q(0,0%)) = By [1.(0, Z)|y, 0W]

n 2
k
-3y i logw; f(yis Ay),
i=1 j=1

where hgf) = P(z; = 1|y;,8%). With f;(y;; \;) being the exponential distribution
with parameter A;, we have

Q(6,0") = ZZh log (wjAje~%)

=1 j=1

n 2
=" " h [log (wiX;) — Ajwil

i=1 j=1
To maximize this with respect to 6, we write
arg;nax Q(0,0M) = arg mlnz Z hZ] Ay — log (wiA))],
=1 j=1

subject to 25:1 wj = 1 and wy,wy > 0. This gives the following updated parameter
estimates

L > hiy
A g h
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n

§ - hys

wj — i=1 ]7
n

j=1,...,2, (see e.g. Hasselblad, [1969).

The E-step consists of updating the expression for @), Q(O,H(k+1)) with the new
parameter estimates, which requires the calculation of hgﬁl), 1=1,...,n, 7 =12
The updated h;; is given by

k k
W £ 1)
k k k k)N’
D F (g M) + o foy; AT

(k+1) _ -
hij 71=12,

= p(z = ily; 0") =
(see e.g. Hasselblad, [1969)).

Again, we run the algorithm with 100 different randomly generated starting values
and choose the parameter estimates obtained in the that resulted in the overall max-
imum likelihood. Random starting values for A\; and A, are obtained by sampling
from a normal distribution with mean and standard deviation equal to the reciprocal
of the sample mean and standard deviation of y, respectively. The initial value of w;
is sampled from the uniform distribution on [0, 1] in each run of the algorithm.

4.3 Return level estimation

For threshold modelling, the m-observation return level z,, is given by the solution

of
1
P(X >x,)=P(X >u)P(X >z,|X >u) =—,
m

(Coles, 2001). Here P(X > z,,|X > u) is the estimated threshold exceedance distri-
bution, which in our case is either the GP distribution, the exponential distribution
or a two component mixture of exponential distributions. For the GP distribution,
we obtain

xm:u+%((mP(X > u)t —1),
and for the exponential distribution the m-observation return level is given by

Ty =u+ olog(mP(X > u)),

(Coles, 2001). P(X > w), the probability that a discharge value is above the chosen
threshold u, can be estimated by the sample proportion of discharge values above the
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threshold.

Plotting x,, against m on a logarithmic scale provides the same qualitative informa-
tion as return level plots for AMS modelling. However, in order to compare them
to return levels obtained using AMS modelling, it is of interest to transform these
m-~observation return levels to an annual scale. This is obtained by substituting m
for m = pn,, where p denotes the return period (in years) of interest and n, is the
number of observations per year. In our case of daily average discharge values as the
raw data, n, = 365.25 when accounting for leap years.

The p-year return level is given by

zp:u—I—

((pny - PX > ) = 1),

s Q

for the GP distribution, and by
Z, = u+ dlog (pny - P(X > u)),

for the exponential distribution. A natural estimate for n,P(X > u) is the average
number of flood peaks included in the POT series each year.

For the two component exponential mixture models, a closed form expression of x,,
is not obtainable. Instead we sample from

U+ (widie MY + wodoe M) |

1

and estimate the return level z, by the empirical quantile function at 1 — P

Plotting positions for the observed POT series, y, are obtained as in Section [3.3] but
transformed from the m-observation scale to an annual scale by m = pn,,.
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5 Validation

To compare the various models for AMS and POT, respectively, we consider a frame-
work for data-based comparison of frequency analysis methods by Renard et al.
(2013). The framework considers the predictive performance of the models, in terms
of the reliability and the stability of the forecasts. The reliability refers to the models
ability to obtain a distribution close to the unknown true distribution. This has to be
measured using observed data, since the true distribution is unknown. With stability,
we mean the models ability to give similar estimates when different data is used to fit
the model. Stable estimates of return levels are desired, since, in practice, a structure
cannot be modified whenever the estimate changes as new data is obtained. Even
though stability is an important property of a forecast, it cannot alone be used to
validate the models. A model can yield stable, but completely unreliable estimates.
Therefore, the reliability of the models are first considered.

5.1 Scoring rules

Scoring rules provide a measure of the reliability, or calibration, of a predictive dis-
tribution. They can assess both the calibration and the sharpness of a forecast. The
calibration is a joint property of the predictive distribution and the realized value,
it refers to the statistical compatibility between the two. The sharpness is a prop-
erty of the predictive distribution only and concerns the concentration of the forecast,
or the forecasts ability to separate different situations. (Gneiting and Katzfuss, [2014)).

Consider a predictive distribution F' € F, where F is a class of probability distribu-
tions on R, and denote the realized value by y € R. A scoring rule is a function

S(F,y): F xR —=R,

that assigns a numerical score to the pair (F,y). In the literature, both positively and
negatively oriented scoring rules are used. Here we take scoring rules to be negatively
oriented, such that a lower value means a better score.

A desired property of scoring rules is propriety. A scoring rule is said to be proper
relative to the class F if

S(G,G) < S(F,G), (15)

for all F,G € F, and strictly proper if the equality in holds only for F' = G.
Here, S(F, G) denotes the expected value S(F,-) under G, E[S(F,G)]. Thus a proper
scoring rule assures that one will report its true beliefs about the predictive distribu-
tion in order to obtain the best score. All the scoring rules that we consider in the
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following are proper.

There exist a variety of proper scoring rules that penalizes and rewards different
aspects of the forecast. A simple and widely used scoring rule, proposed by |Good
(1952)), is the logarithmic score,

SYOG(F,y) = —log f(y). (16)

The logarithmic score gives a strong penalty to unlikely events. If f(y) is close to zero,
—log(f(y)) goes to infinity. This is a good quality if one wants to make sure that the
forecast does not assign zero probability to events that can occur. The logarithmic
score is local in the sense that when evaluating how good the forecast is in terms of
an observed value y, it only uses the distribution at y, f(y), to calculate the score.

Since we are estimating extreme floods, e.g. the 1000-year flood, it is of interest to
consider scoring rules that assess the predictive distribution’s ability to predict the
exceedance of a certain threshold or quantile. The Brier score and the quantile score
are examples of such scoring rules. The Brier score is defined as

S(F,y) = (pu — 1{y > u})?, (17)

where u is the threshold of interest and p, = 1 — F'(u) is the predicted probability
of y exceeding that threshold(see e.g. |Gneiting and Raftery, 2007)). In the original
formulation by [Brier| (1950) the range of the score is zero to two, while in the definition
in the maximum difference is 1 and the range is thus zero to one. This scoring rule
requires the selection of a threshold, u, which often is given in terms of a quantile of the
sample. Moreover, the quantile score evaluates how well the predictive distribution
predicts the quantile 7. This scoring rule is given by

SEFy) = Uy < FTHN)} = n)(F7H(7) —y), (18)

for a given quantile 7 (Gneiting and Raftery, |2007)).

Skill scores are often used instead of scores when comparing various models. For the
scoring rules we consider, the skill score can be written as

S<FT‘€f7y) _S(Fvy)
S(Frefay) 7

where F,.; is a reference model (see e.g. [Friederichs and Thorarinsdottir, 2012)). The
skill score of a distribution F' measures the relative gain of the this distribution with

SS(F,y) =
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respect to the reference distribution. Positive skill scores represent a gain in the pre-
dictive skill of the model, and a skill score of zero represents no gain in predictive skill.
Also, negative skill scores indicate that the reference distribution performs better. As
the GEV distribution and GP distribution are commonly applied for modelling AMS
and POT series respectively, they are natural to consider as reference models.

GEV(0.4, 0.1, -0.1)

< o f(y)
W Logaritric score
@ Brier store 1=0.80
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Figure 6: Various scoring rules, S(F,y), as a function of y, when F' is the GEV
distribution with parameters © = 0.4, 0 = 0.1 and £ = —0.1. For comparison, the
density function f(y) is given in the same plot, on the right y-axis. The illustrated
scoring rules are the quantile score with the quantiles 0.80 (orange) and 0.90 (red),
the logarithmic score (blue) and the Brier score with thresholds corresponding to the
quantiles 0.80 (green) and 0.90 (purple).

Figure[0] illustrates how the different scoring rules assess the performance of a predic-
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tive distribution. Each scoring rule S(F,y) is plotted as a function of the observed
value y, where F' in this example is the GEV distribution with parameters p = 0.4,
o =0.1 and £ = —0.1. The probability density f(y) is given in the same plot. From
this plot it is clear that the logarithmic score is most sensitive to outliers. The loga-
rithmic score is optimized in the mode of the distribution F, while the quantile score
takes its lowest value at the quantile of interest and penalizes deviations in the upper
tail. Similar to the quantile score, the Brier score penalizes deviations in the upper
tail. When integrating the Brier score over all thresholds, or the quantile score over
all quantiles, the continuous ranked probability score (CRPS) is obtained (see e.g.
Friederichs and Thorarinsdottir, 2012)). Thus evaluating the Brier and quantile score
over all threshold and quantiles, respectively, gives the same score, but as Figure [0]
shows, these scoring rules are not identical for one specific quantile and the threshold
corresponding to that quantile.

To obtain standard error estimates of the average scores, we apply bootstrapping.
For a vector of scores s = (sy,...,s,) obtained by a model at a specific catchment,
we repeatedly sample n values from this vector. For each sample, the average score
is calculated. In total, we resample from the score vector 1000 times, and estimate
the standard error by the standard deviation of the 1000 average score estimates.

5.2 Cross validation

When applying scoring rules to assess the predictive performance of the various mod-
els, we need out-of-sample observed data, or test data, to obtain an average score
for each model. To obtain such out-of-sample validations, it is common to divide the
data into a training set, used to obtain the model, and a test set, used to validate the
models. Ideally, one would like to test the models on large amounts of data, as well
as having sufficient amounts of data to train the models. The selection of the test
set size involves a bias-variance trade-off. We want to minimize the testing bias by
reserving a sufficient proportion of the sample to training, such that the estimated
models are as close as possible to the models obtained using the entire sample. In
addition, we want a sufficient amount of data for testing, in order to minimize the
testing variance. For small sample sizes, a k-fold cross validation is commonly applied
to achieve this trade-off.

Cross validation is a technique for assessing the performance of a predictive model
on an independent data set. It dates back to the 1930s (Larson, 1931)), and an early
description of the method can be found in Mosteller and Tukey| (1968). The idea of
cross validation is to leave out a small part of the data set, to be used for testing,
while the remaining data is used to fit the model. This is performed repeatedly, such
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that the model is tested on a large amount of data while not having to reserve all
this data for testing at once. There exist several versions of this method. Examples
are the leave-one-out or leave-p-out cross validation, where one or p observations is
allocated to testing in each round.

k-fold cross validation divides the data into k equal sized subsets and, in turn, uses
each subset as the test data while the remaining subsets are used to train the proposed
models. The predictive performance of each model can thus be validated using the
respective test set for each round of the cross validation. We apply this method,
with & = 10, and use various scoring rules, presented in Section [5.1] to assess the
performance of each model, on each of the 10 test sets. Below is a description of how
we proceed to obtain scores of the various models.

e Randomly divide the sample into 10 equal sized subsets. Let y;, i = 1,...,10,
denote the subsets and n; denote the length of each subset.

e For each subset i, do the following.

— Estimate the parameters of the models, F};, using the other nine subsets.
Here, j = 1,...,4 denotes the four models we consider for either the AMS
or POT approach.

— Use the current subset y; = (¥i1,...,¥in;) @s a test set, to obtain scores
for each of the models obtained in the step above. That is, calculate the
following average scores

* ni [ SLOG(Fj,yu), forj=1,...,4.

* nl, L SB(F;, ya), for j = 1,...,4 and for each of the thresholds u
corresponding to the quantiles 7 = 0.80, 7 = 0.90 and 7 = 0.95 of the
sample.

* %Z?:l Sgs(Fj,yu), for j = 1,...,4 and for each of the quantiles
7 =0.80, 7= 0.90 and 7 = 0.95.

e Average the scores obtained for the test set y;, © = 1,...,10, for each scoring
rule.

To test for a difference between the average score of two models, we apply a paired
t-test to vectors of scores from each model. The t-test is performed using t.test in R.
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5.3 Stability of return level estimates

To evaluate whether return level estimates of the various models depend heavily on
the sample used to estimate the models, we compare return level estimates obtained
when repeatedly leaving out one year of data from the AMS and POT series. This is
done for a catchment in the following manner.

Let yams denote the annual maximum series, with length nang, and ypor the peaks
over threshold series with length npor. For each observation in yamg, we estimate
the parameters of the four AMS models by leaving out this observation. Similarly, for
ypor We leave out the number of observations corresponding to one year each time,
to obtain nayg different parameter estimates for each of the POT models. That is,
on average we leave out npor/nams observations for each estimate. The different
parameter estimates for each model are used to obtain different return level estimates
for a specific return period.

In our study, we consider the return levels corresponding to the return periods p = 100

and p = 1000. The variance and magnitude of the estimates are assessed visually by
analysing boxplots of the return level estimates based on different samples.
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6 Results

6.1 Annual Maximum Series

In order to evaluate which of the four proposed models for AMS that overall performs
the best, we look at histograms of the model that is ranked as the best model for
each of the 228 catchments in the dataset. We consider the three different scoring
rules presented in Section [5.1] That is, the logarithmic score, the Brier score and the
quantile score. For the Brier score we consider the thresholds corresponding to the
quantiles 7 = 0.80 and 7 = 0.90. The same quantiles are considered for the quantile
score. The resulting histograms are given in Figure [7]

From Figure [7| we see that the logarithmic score assigns the best score most often
to the Gumbel distribution. For the Brier and quantile score, there is a less obvious
winner among the models, especially for the Brier score with 7 = 0.80. With 7 = 0.90,
the Brier score gives the best score to the two mixture models most times. According
to the quantile score, the EM mixture model and the Gumbel distribution perform
well compared to the other models. The results presented in the histograms can
indicate either that which model is considered to be the best among the four models
depend on the scoring rule and the catchment, or that there is not much difference in
the performance of the models. To get a better understanding of how the scores varies
among the catchments, we study a portrait diagram of the model which obtained the
best score at each catchment, in Figure [§]
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Figure 7: Histograms of the number of catchments at which each model performs
the best out of the four models, when the logarithmic score, the Brier score and the
quantile score are used as the scoring rules in the cross validation. For the Brier score
and the quantile score the quantiles 7 = 0.80 (left) and 7 = 0.90 (right) are used.
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Figure 8: Portrait diagram of the best POT model at each catchment. A tile in the
grid corresponds to one catchment. The lower half of the tile gives the best model
according to the logarithmic score, SYO¢ while the upper left and upper right part
gives the best model when the Brier score, S, and the quantile score, S¥°, with

7 = 0.90 are applied, respectively. The catchments are sorted, from the upper left to
the lower right corner, by the increasing value of the average FGP at each catchment.

Figure [8] gives the model which obtained the lowest score at each catchment, accord-
ing to the three different scoring rules, the logarithmic score, the Brier score with a
threshold corresponding to the quantile 7 = 90 and the quantile score with the quan-
tile 7 = 0.90. The catchments are sorted by the increasing value of the average FGP,
from the upper left to the lower right corner. From the figure we see that various
scoring rules often do not agree on which model that performs the best. There does
not seem to be a particular pattern in the diagram, indicating that the model which
performs the best does not depend on the FPG variable.
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Figure 9: Maps of Norway giving the skill score of the Gumbel distribution (left), the
mixture model with known weights (middle) and the mixture model with unknown
weights (right), at each catchment, when using the logarithmic score and the score of
the GEV distribution as the reference score.

To study the difference in the average score obtained by each model at the various
catchments, we consider the skill score with respect to the GEV distribution. Figure
9] presents the logarithmic skill score of the Gumbel distribution and the two Gum-
bel mixtures at each catchment. We see that the EM mixture model receives more
negative gains compared to the other models. For the Gumbel distribution and ML
mixture, most of the positive skill scores are obtained along the coast or in northern

Norway.
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Figure 10: Maps of Norway giving the skill score of the Gumbel distribution (left), the
mixture model with known weights (middle) and the mixture model with unknown
weights (right), at each catchment, when using the Brier score with a threshold cor-
responding to the quantile 7 = 0.90 at each catchment and the score of the GEV
distribution as the reference score.

The Brier skill score, with a threshold corresponding to the quantile 7 = 0.90, for each
catchment are given in Figure [I0] Here there is less variation between the models,
compared to the results for the logarithmic score in Figure [0 In addition, the Brier
skill score does not seem to depend on the location of the catchment.
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Figure 11: Maps of Norway giving the skill score of the Gumbel distribution (left), the
mixture model with known weights (middle) and the mixture model with unknown
weights (right), at each catchment, when using the quantile score with 7 = 0.90 and
the score of the GP distribution as the reference score.

In Figure the quantile skill score at each catchment are given for the Gumbel
distribution and the two mixture models for AMS, with the GEV distribution as the
reference score. The figure shows that the ML mixture model receives a negative skill
score at more catchments than the two other models. Positive skill scores for this
model are mainly obtained along the coast. For the two other models, the largest
gains relative to the GEV distribution are also mostly found in the coastal area.

6.1.1 Detailed look at three stations

To get a better understanding of how the various models perform, we consider the
estimated models for the AMS approach at the three catchment introduced in Sec-
tion Bulken, Krinsvatn and Atnasjg. First, we evaluate return level plots from
each catchment. Secondly, we present the average scores obtained by the logarithmic
score, the Brier score and the quantile score.

Figure 12| presents the estimated return level as a function of return period, for the
four estimated models at Bulken, and the corresponding estimated parameters are
given in Table[3] From the return level plot, it looks like the GP distribution and the
mixture models are able to fit the observed data well, while the Gumbel distribution
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overestimates the return levels. The shape parameter £ of the GEV distribution is
estimated to be negative, meaning that the flood values are bounded from above.

The estimated return level as a function of the return period, for Krinsvatn, is given
in Figure[13| Here, the GP distribution fits the observed data well, while the Gumbel
distribution and the mixture model with known weights underestimate the return
levels for return periods greater that 10. The yellow line, corresponding to the mix-
ture model with unknown weights, looks quite strange. Around the return period
p = 50, the line changes shape. This is due to the large difference between the two
components of the EM mixture model, see Table d] The mixture weight of the first
component is estimated to be w; = 0.98, thus the model assigns almost every obser-
vation to this component. From p = 50, the return level function is approximately a
straight line through the largest observed flood value, 356.68 m3/s. This is also the
value of the location parameter p of the EM mixture model. It turns out that for
this catchment, the EM mixture model uses the second component to fit the largest
observation alone, and the first component to fit the rest of the data. This model
seems to be overfitting the data.

The same overfitting happens for the EM mixture model at Atnasjs. The estimated
return level as a function of the return period for this catchment is given in Figure[14],
and the estimated parameters of the four models are given in Table[5] Here, similar to
for Krinsvatn, the EM model consists of one component that models the two largest
observed values and one that models the rest of the data. Also similar to Krinsvatn,
the Gumbel distribution and the mixture distribution with known weights give lower
estimates for the return levels than the GEV distribution.

From the return level plots, we see that the EM mixture model tends to overfit the
data when the shape parameter of the GEV distribution is positive. At Bulken, the
EM mixture model also assign most observations to one distribution, but here this
distribution has a smaller location parameter than the dominating component, which
explains why wee do not see the same change in the return level function. For the
other mixture model, this overfitting problem does not occur. It uses the FGP values
as fixed weights for each observation and does not have the flexibility to assign the
largest values to one component and the rest to the other component.
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Figure 12: The estimated return level as a function of return period when the GEV
distribution (red), the Gumbel distribution (blue), the mixture model with known
weights (green) and the mixture model with unknown weights (yellow) are applied.
The black dots denotes the observed flood values.

Table 3: The estimated parameters of the four different models for the AMS from

Bulken.

Method Parameters

GEV pw=329.06 o =89.78 E=-0.14

Gumbel p =322.29 o =88.26

mix ML w; =0.71 i =312.92 o, =93.49
fo = 351.79 09 = 54.89

mix EM  w; =097 @ =333.73 o1 =75.19
fe = 167.13 09 =0.94
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Figure 13: The estimated return level as a function of return period when the GEV
distribution (red), the Gumbel distribution (blue), the mixture model with known
weights (green) and the mixture model with unknown weights (yellow) are applied.
The black dots denotes the observed flood values.

Table 4: The estimated parameters of the four different models for the AMS from
Krinsvatn.

Method Parameters

GEV pw=112.31 o =35.89 & =10.080

Gumbel p =113.88 o =36.91

mix ML  w; =0.79 pu; =11844 o0, =36.01
fo =97.85 09 =34.13

mix EM  w; =098  p; =112.47 o0, = 34.78
fe = 356.68 09 = 0.34
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Figure 14: The estimated return level as a function of return period when the GEV
distribution (red), the Gumbel distribution (blue), the mixture model with known
weights (green) and the mixture model with unknown weights (yellow) are applied.
The black dots denotes the observed flood values.

Table 5: The estimated parameters of the four different models for the AMS from
Atnasjg.

Method Parameters

GEV pw=>5845 o =17.76 ¢ =0.093

Gumbel p=59.37 o =18.39

mix ML w; =0.45 p; =56.50 o7 =15.19
fo =61.92 o9 = 20.88

mix EM  w; =0.033 p; =158.71 o7 =0.18
fo = H8.05 09 = 16.57
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To further investigate the performance of the various AMS models at the three catch-
ments, we consider the average scores obtained in the cross validation procedure
with the logarithmic score, the Brier score and the quantile score. Table [6] presents
the average score, and corresponding standard error estimates, of each model at each
catchment, when the logarithmic score is used as the scoring rule. The mixture model
with known weights receives the best score at Bulken, while the exponential distri-
bution is assigned the best score at the other two catchments. However, the scores
of each model are quite similar and the t-test concludes that there is no significant
difference in the score of the various models at each catchment, at a 95% significance
level.

The average scores for each model at the three catchments, obtained using the Brier
score with thresholds corresponding to the quantiles 7 = 0.80, 7 = 0.90 and 7 = 0.95,
are given in Table [7]] The scores of the various models at each catchment does not
seem to vary much. At Bulken, the mixture model with unknown weights receives
the lowest score for all three thresholds, while the GEV distribution obtains the best
score for all three thresholds at Krinsvatn. At Atnasjg, the EM mixture is given the
lowest score for 7 = 0.80 and 7 = 0.95, while the mixture with given weights receives
the best score for 7 = 0.90. Again, according to the paired t-test, there is no signifi-
cant difference between the scores of any of the models, at all three catchments.

Table [§] presents the average score of each model when the when the quantile score
with 7 = 0.80, 7 = 0.90 and 7 = 0.95 is applied. The model which receives the best
score depends on the quantile and the catchment. Here, there seems to be a greater
difference between the scores of the four models compared to for the Brier score, but
using the paired t-test at significance level 95%, no significant difference is found.

Table 6: Cross validation with the logarithmic score at Bulken, Krinsvatn and At-
nasjo, respectively. The best score for each scoring rule is highlighted in boldface.
Standard error estimates corresponding to each average score, obtained by bootstrap,
are given in the parentheses.

Logarithmic score

Method Bulken Krinsvatn Atnasjo
GEV 6.07 (0.13) 5.28 (0.013) 4.55 (0.12)
Gumbel  6.06 (0.12) 5.24 (0.013) 4.55 (0.13)
mix ML 6.04 (0.11) 5.26 (0.013)  4.55 (0.13)
mix EM  6.14 (0.16) 5.27 (0.014) 4.62 (0.15)

42



Table 7: Cross validation with the Brier score, with thresholds corresponding to
7 = 0.80, 7 = 0.90 and 7 = 0.95, at Bulken, Krinsvatn and Atnasjg, respectively.
The best score for each scoring rule is highlighted in boldface. Standard error esti-
mates corresponding to each average score, obtained by bootstrap, are given in the
parentheses.

Bulken
Method Brier score 7 = 0.80 Brier score 7 = 0.90 Brier score 7 = 0.95
GEV 0.17 (0.027) 0.095 (0.032) 0.050(0.024)
Gumbel 0.17 (0.028) 0.095(0.029) 0.051 (0.025)
mix ML 0.17 (0.029) 0.094 (0.031) 0.050 (0.025)
mix EM 0.17 (0.029) 0.094 (0.031) 0.050 (0.026)
Krinsvatn

Method Brier score 7 = 0.80 Brier score 7 = 0.90 Brier score 7 = 0.95

GEV 0.16 (0.031) 0.098 (0.032) 0.059 (0.028)
Gumbel 0.16 (0.031) 0.098 (0.032) 0.059 (0.028)
mix ML 0.16 (0.031) 0.098 (0.031) 0.060 (0.028)
mix EM 0.16 (0.031) 0.099 (0.032) 0.059 (0.028)
Atnasjo
Method Brier score 7 = 0.80 Brier score 7 = 0.90 Brier score 7 = 0.95
GEV 0.17 (0.027) 0.10 (0.032) 0.064 (0.030)
Gumbel 0.17 (0.025) 0.10 (0.033) 0.064 (0.030)
mix ML 0.17 (0.027) 0.10 (0.033) 0.064 (0.031)
mix EM 0.17 (0.027) 0.10 (0.033) 0.064 (0.029)
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Table 8: Cross validation with quantile score, for 7 = 0.80, 7 = 0.90 and 7 = 0.95,
at Bulken, Krinsvatn and Atnasjg, respectively. The best score for each scoring rule
is highlighted in boldface. Standard error estimates corresponding to each average
score, obtained by bootstrap, are given in the parentheses.

Bulken
Method Quantile score 7 = 0.80 Quantile score 7 = 0.90 Quantile score 7 = 0.95
GEV 29.06 (4.02) 20.34 (3.07) 12.77 (2.58)
Gumbel 29.31 (3.82) 20.37 (2.65) 12.94 (1.81)
mix ML 29.96 (4.88) 20.52 (3.56) 12.63(2.44)
mix EM 28.73 (2.97) 20.25 (1.76) 12.39 (2.13)
Krinsvatn
Method Quantile score 7 = 0.80 Quantile score 7 = 0.90 Quantile score 7 = 0.95
GEV 16.89(2.71) 12.15 (2.37) 8.09 (2.01)
Gumbel 16.89 (2.71) 12.16 (2.50) 8.12 (1.96)
mix ML 16.93 (2.94) 12.46 (2.78) 8.82 (2.13)
mix EM 16.90 (2.753) 12.26 (2.54) 8.40 (2.04)
Atnasjo
Method Quantile score 7 = 0.80 Quantile score 7 = 0.90 Quantile score 7 = 0.95
GEV 8.42 (1.41) 6.64 (1.25) 4.53 (0.98)
Gumbel 8.42 (1.53) 6.56 (1.30) 4.55 (1.08)
mix ML 10.15 (2.11) 7.50 (1.98) 5.44 (1.71)
mix EM 8.36(1.55) 6.69 (1.35) 4.67 (1.33)

6.2 Peaks Over Threshold

Following the same procedure for presenting the results as for the AMS approach
in Section [6.1], we first look at histograms of the model that is ranked best at each
catchment. Again, we consider the logarithmic score, the Brier score and the quantile
score, with quantilest = 0.80 and 7 = 0.90. The resulting histograms are given in

Figure [15]
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Figure 15: Histograms of the number of catchments at which each model performs
the best out of the four models, when the logarithmic score, the Brier score and the
quantile score are used as the scoring rules in the cross validation. For the Brier score
and the quantile score the quantiles 7 = 0.80 (left) and 7 = 0.90 (right) are used.

From Figure [15| we see that, according to the logarithmic score, the exponential dis-
tribution performs the best at most locations. None of the other three models is a
clear loser. For the Brier score, the mixture of exponentials with known weights per-
forms the best at most location for both values of the threshold. When the quantile
score is used, the mixture with known weights is again ranked as the best model at
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most catchments for 7 = 0.80, while for 7 = 0.90 the GP distribution is considered
to be the best model at most catchments. For the quantile score, the best model at
each location seems to be somewhat evenly distributed among the models, especially
for 7 = 0.90. This indicates that the quantile score might not be able to differenti-
ate between the four models, or that the performance of each model depends on the
catchment. Overall, which model that is considered to be the best depends heavily
on the scoring rule used for validation.
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Figure 16: Portrait diagram of the best POT model at each catchment. A tile in the
grid corresponds to one catchment. The lower half of the tile gives the best model
according to the logarithmic score, S*©¢, while the upper left and upper right part
gives the best model when the Brier score, SZ, and the quantile score, S?°, with
7 = 0.90 are applied, respectively. The catchments are sorted, from the upper left to
the lower right corner, by the increasing value of the average FGP at each catchment.

Figure [16]| presents a portrait diagram of the model receiving the lowest average score
at each catchment, for the logarithmic score, the Brier score with a threshold corre-
sponding to the quantile 7 = 0.90 and the quantile score with the same quantile. Each
tile in the diagram represents one catchment, and they are sorted by the increasing
value of the FGP, from the upper left to the lower right. Again, there is no obvious
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pattern in the diagram.
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Figure 17: Maps of Norway giving the skill score of the Gumbel distribution (left), the
mixture model with known weights (middle) and the mixture model with unknown
weights (right), at each catchment, when using the logarithmic score and the score of
the GP distribution as the reference score.

We consider the skill score with respect to the GP distribution, to further study the
difference in the average score obtained by each model. The logarithmic skill score
of the exponential distribution and the two exponential mixture models are given for
cach catchment in Figure No obvious pattern in the skill score is seen from the
maps in the figure. Here, the dark blue dots all represent a skill score of 1. This
is obtained when the GP distribution is given an infinite score by the logarithmic
scoring rule.
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Figure 18: Maps of Norway giving the skill score of the exponential distribution
(left), the mixture model with known weights (middle) and the mixture model with
unknown weights (right), at each catchment, when using the Brier score with a thresh-
old corresponding to the quantile 7 = 0.90 at each catchment and the score of the
GP distribution as the reference score.

Figure [18 presents the Brier skill score with 7 = 0.90 of the exponential distribution
and the exponential mixture models, at each catchment. Again, it is difficult to detect
a pattern in the skill score for each model.

The quantile skill score, with 7 = 0.90, of each model relative to the GP distribution
is given in Figure [19 below. For the exponential distribution, most of the skill scores
are positive or near zero. The negative skill scores for this model are mainly obtained
in the inland and northern Norway. For the two mixture models, there are more
negative skill scores and no obvious pattern in the maps.
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Figure 19: Maps of Norway giving the skill score of the exponential distribution (left),
the mixture model with known weights (middle) and the mixture model with unknown
weights (right), at each catchment, when using the quantile score with 7 = 0.90 and
the score of the GP distribution as the reference score.

6.2.1 Detailed look at three stations

As we did for the AMS models, we now consider the estimated POT models at the
three catchments, Bulken, Krinsvatn and Atnasjg. The return level plots for these
catchments are presented in Figure 20 2I] and respectively. Estimated param-
eters for the GP distribution, the exponential distribution and the two-component
mixture of exponentials with both known and unknown weights, at these catchments,
are given in Table [9] [11] and [I0} respectively.

The results for Bulken are similar to those obtained for AMS. The GP distribution
follows the observed data well, and the other three models estimate slightly higher
return levels for the largest observations. However, here the estimated exponential
and mixture models are approximately equal, unlike the Gumbel and mixture models
for AMS at Bulken in Figure

The return level plot for Krinsvatn in Figure shows more variation between the
models than for Bulken. Here we do not see the overfitting problem for the EM
mixture model, as for Krinsvatn in the AMS approach (see Figure . A reason for
this can be that the two-component mixture of exponentials have two less parameters
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than the two-component mixture of Gumbels, which leaves it less prone to overfitting.
Results from Atnasjo in Figure [22| show the same, namely that EM mixture model
does not overfit the data at Atnasjg for POT modelling. The estimated models are
for Atnasjg quite similar, but the difference between the return level estimates of the
models increases with the return period.
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Figure 20: The estimated return level as a function of return period when the GP
distribution (red), the exponential distribution (blue), the mixture model with known
weights (green) and the mixture model with unknown weights (yellow) are applied.
The black dots denotes the observed flood values.

Table 9: The estimated parameters of the four different models for the POT from
Bulken.

Method Parameters

GP o =280.52 &= -0.063

exp A=0.013

mix ML  w; =0.70 X\ =0.013

mix EM w; =1 A1 = 0.013
Ay = 0.021
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Figure 21: The estimated return level as a function of return period when the GP
distribution (red), the exponential distribution (blue), the mixture model with known
weights (green) and the mixture model with unknown weights (yellow) are applied.
The black dots denotes the observed flood values.

Table 10: The estimated parameters of the four different models for the POT from
Krinsvatn

Method Parameters

GP o=36.17 & =20.039

exp A =0.026

mix ML  w; =0.78 \; = 0.023
Ao = 0.056

mix EM w; =0.92 X =0.029
Ay = 0.014
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Figure 22: The estimated return level as a function of return period when the GP
distribution (red), the exponential distribution (blue), the mixture model with known
weights (green) and the mixture model with unknown weights (yellow) are applied.
The black dots denotes the observed flood values.

Table 11: The estimated parameters of the four different models for the AMS from
Atnasjg.

Method Parameters

GP o=20.72 ¢£=0.028

exp A = 0.047

mix ML w; =0.52 )\ =0.061
Ao = 0.039

mix EM w; =0.82 X =0.053
A = 0.031
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Table [12] presents the results of the cross validation when the logarithmic score was
applied as the scoring rule, for the three catchments Bulken, Krinsvatn and Atnasjo.
The average scores for each model are given, and corresponding standard error esti-
mates obtained with bootstrap are shown in the parentheses. For all three catchments,
the logarithmic score judges the exponential distribution to be the best model for the
POT series. However, the scores for each model, at each catchment, are quite similar.
In fact, by applying a paired t-test to the scores of two different models, at a 95% sig-
nificance level, a difference is only detected between the exponential distribution and
the mixture model with known weights for Bulken. For Atnasjg the only significant
difference is between the scores of the two mixture models. For Krinsvatn, there is
no significant difference in the scores of various models, according to the paired t-test.

Table 12: Cross validation with the logarithmic score at Bulken, Krinsvatn and At-
nasjg, respectively. The best score for each scoring rule is highlighted in boldface.
Standard error estimates corresponding to each average score, obtained by bootstrap,
are given in the parentheses.

Logarithmic score

Method Bulken Krinsvatn Atnasjo
GP 5.34 (0.076) 4.65 (0.080) 4.08 (0.11)
exp 5.33 (0.071) 4.63 (0.073) 4.07 (0.11)
mix ML~ 5.33 (0.073) 4.64 (0.074) 4.07 (0.12)
mix EM  5.34 (0.073) 4.64 (0.076) 4.08 (0.12)

The average scores for each model at the three catchments, obtained using the Brier
score with thresholds corresponding to the quantiles 7 = 0.80, 7 = 0.90 and 7 = 0.95,
are presented in Table [I3] Here, there is not much variation in the scores for the
various models at each catchment. For Bulken, the paired t-test at significance level
95% concludes that there is only a significant difference between the score of the EM
mixture model and the other three models for 7 = 0.95. The same test detects no
significant difference between the Brier scores of the various models at Krinsvatn and
Atnasjo.
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Table 13: Cross validation with the Brier score, with thresholds corresponding to
7 = 0.80, 7 = 0.90 and 7 = 0.98, at Bulken, Krinsvatn and Atnasjg, respectively.
The best score for each scoring rule is highlighted in boldface. Standard error esti-
mates corresponding to each average score, obtained by bootstrap, are given in the
parentheses.

Bulken
Method Brier score 7 = 0.80 Brier score 7 = 0.90 Brier score 7 = 0.95
GP 0.16 (0.018) 0.094 (0.018) 0.050 (0.015)
exp 0.16 (0.018) 0.094 (0.019) 0.051 (0.015)
mix ML 0.16 (0.018) 0.094(0.018) 0.051 (0.015)
mix EM 0.17 (0.018) 0.096 (0.018) 0.054 (0.015)
Krinsvatn

Method Brier score 7 = 0.80 Brier score 7 = 0.90 Brier score 7 = 0.95

GP 0.16 (0.015) 0.093 (0.016) 0.052 (0.014)
exp 0.16 (0.015) 0.093 (0.016) 0.051 (0.014)
mix ML 0.16 (0.015) 0.093 (0.017) 0.051 (0.014)
mix EM 0.16 (0.015) 0.093 (0.017) 0.051 (0.014)
Atnasjo
Method Brier score 7 = 0.80 Brier score 7 = 0.90 Brier score 7 = 0.95
GP 0.17 (0.024) 0.11 (0.024) 0.055 (0.024)
exp 0.17 (0.024) 0.11 (0.024) 0.055 (0.022)
mix ML 0.17 (0.024) 0.10 (0.024) 0.055 (0.023)
mix EM 0.17 (0.024) 0.11 (0.024) 0.055 (0.023)

The average quantile scores obtained in the cross validation procedure for Bulken,
Krinsvatn and Atnasjo are given in Table At Bulken, the average score of the
EM mixture model is somewhat higher than the three other scores, for each quantile
7 =0.80, 7 = 0.90 and 7 = 0.95. The paired t-test at significance level 95% reports
a significant difference in the score of the EM mixture model compared to the other
three models for 7 = 0.90 and 7 = 0.95. For Krinsvatn, the exponential model receives
the best score for 7 = 0.90 and 7 = 0.95, but there is only a significant difference
in the score of the exponential model and the EM mixture model for 7 = 0.95.
For the case 7 = 0.80, the EM mixture model achieves the lowest score. However,
no significant difference between the scores of the four models are detected. The
exponential distribution also receives the best average score at Atnasjo for 7 = 0.90
and 7 = 0.95, but there is no significant difference between the scores. For 7 = 0.80,
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the mixture model with FGP as weights is given the lowest score, and there is a
significant difference between its average score and the average scores of the GP
distribution and the EM mixture model.

Table 14: Cross validation with quantile score, for 7 = 0.80, 7 = 0.90 and 7 = 0.95,
at Bulken, Krinsvatn and Atnasjg, respectively. The best score for each scoring rule
is highlighted in boldface. Standard error estimates corresponding to each average
score, obtained by bootstrap, are given in the parentheses.

Bulken
Method Quantile score 7 = 0.80 Quantile score 7 = 0.90 Quantile score 7 = 0.95
GP 23.38 (2.14) 15.92 (1.82) 10.67 (1.51)
exp 23.38 (2.14) 15.91 (1.80) 10.60 (1.35)
mix ML 23.38 (2.23) 15.90 (1.83) 10.60(1.34)
mix EM 23.98 (2.17) 16.98 (1.76) 11.34 (1.34)
Krinsvatn

Method Quantile score 7 = 0.80 Quantile score 7 = 0.90 Quantile score 7 = 0.95

GP 12.44 (1.38) 9.52 (1.19) 6.49 (0.99)
exp 12.45 (1.39) 9.51 (1.20) 6.41(1.01)
mix ML 12.45 (1.34) 9.53 (1.13) 6.45 (0.97)
mix EM 12.44 (1.35) 9.52 (1.22) 6.46 (0.98)
Atnasjg
Method Quantile score 7 = 0.80 Quantile score 7 = 0.90 Quantile score 7 = 0.95
GP 6.98 (1.20) 5.51 (1.04) 3.92 (0.82)
exp 6.98 (1.17) 5.50 (1.00) 3.91 (0.88)
mix ML 6.95 (1.20) 5.51 (1.05) 3.93 (0.78)
mix EM 6.99 (1.17) 5.51 (1.07) 3.93 (0.83)

6.3 Return level estimates

To compare return level estimates by the various models in this study, and the sta-
bility of these estimates, we consider boxplots of return level estimates. The different
estimates for each catchment are obtained as explained in Section [5.3] For this, we
again consider the three catchments Bulken, Krinsvatn and Atnasjs. We choose to
look at the return periods p = 100 and p = 1000 for all eight models. That is, the
four models for AMS and the four models for POT.
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Boxplots of the estimated return levels at Bulken are given in Figure 23] We see
that, for both return periods, the EM mixture of Gumbels occasionally gives some
very high estimates. Such high variation in the estimates indicate that this model is
unstable. With the exception of these high estimates, this model gives return level
estimates for p = 100 and p = 1000 close to the estimates by the Gumbel distribution
and the mixture of Gumbels with known weights, for AMS, and the two mixture
models with exponentially distributed components, for POT. For these models, the
median estimate of the 100-year flood is close to the currently largest observed flood.
The GEV and GP distributions give lower estimates compared to the other models,
while the exponential distribution gives higher estimates.

For the return level estimates at Krinsvatn, in Figure we see a large variance in
the estimates by the two exponential mixture models for POT. As for Bulken, the
estimates by the Gumbel distribution and the exponential distribution are fairly sta-
ble. In contrast to Bulken, the GEV and GP models here does not give the lowest
estimates for the 100- and 1000-year floods. The median 100- and 1000-year flood
estimate by the EM exponential mixture are almost the same, which is not realistic.

Figure [25| presents boxplots of the estimated return levels at Atnasjg, for the return
periods p = 100 and p = 1000. Again, the Gumbel and exponential distributions give
the most stable estimates for both return periods. Here, the exponential distribution
and the two exponential mixtures tend to give lower return level estimates than the
other models.
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Figure 23: Boxplots of return level estimates of the 100-year (upper) and 1000-year
flood (lower) at Bulken, using the four models for AMS (red) and the four models for
POT (blue). The different estimates are obtained by repeatedly removing one year

of data from the AMS and POT series. The horizontal line gives the largest observed
flood value at Bulken.
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Figure 24: Boxplots of return level estimates of the 100-year (upper) and 1000-year
flood (lower) at Krinsvatn, using the four models for AMS (red) and the four models
for POT (blue). The different estimates are obtained by repeatedly removing one

year of data from the AMS and POT series. The horizontal line gives the largest
observed flood value at Krinsvatn.
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Figure 25: Boxplots of return level estimates of the 100-year (upper) and 1000-year
flood (lower) at Atnasjg, using the four models for AMS (red) and the four models for
POT (blue). The different estimates are obtained by repeatedly removing one year
of data from the AMS and POT series. The horizontal line gives the largest observed
flood value at Atnasjg.
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7 Discussion

When comparing the models by scoring rules, it is difficult to differentiate between
the models, both for the case of AMS and POT modelling. The model which obtained
the lowest score depends heavily on the scoring rule and the catchment considered.
Judging by the logarithmic score, the Gumbel distribution and the exponential distri-
bution give most reliable estimates, for the case of AMS and POT series respectively.
When using the Brier score and the quantile score, the best model for AMS depends
heavily on the catchment and quantile considered. This is also the case for the quan-
tile score of the POT models, while the Brier score most often gives the best score
to the mixture with known weights. However, for the three catchments we studied in
detail, there is often no significant difference between the score of each model. How
the different scoring rules lead to such different results can be understood by looking
at Figure[6] From this plot we see that the various scoring rules penalize and reward
different aspects of the predicted model.

When applying the Brier score with high thresholds or the quantile score with high
quantiles, the scores are based on small amount of data. A difference in the per-
formance of the models is easier detected by considering skill scores. For the AMS
models, the EM mixture model and the ML mixture model perform bad relative to
the GEV distribution, judging by the logarithmic skill score and the Brier skill score,
respectively. There is less difference in the skill score of the POT models.

From Figure and [13| we see that the Gumbel mixture model estimated by the
EM algorithm tends to overfit the data. This model requires the estimation of five
parameters, which might be too many parameters for the amount of data available.
We only use the observations which have a value for FGP, which from Table [I| we
see reduces the length of the AMS and POT series by about one half. It could be
of interest to investigate the performance of the EM mixture models when using all
available data. Also, to prevent unrealistic parameter estimates, as e.g. the very
small shape parameter of the second component in the EM mixture given in Table [4]
we could impose constraints on the parameters of each mixture component.

From the return level estimates at Bulken, Krinsvatn and Atnsjo we see that the
various mixture models are unstable compared to the other models. In particular,
the EM Gumbel mixture gives some very high estimates at Bulken (see Figure
and the EM exponential mixture gives unexpected results at Krinsvatn (see Figure
24]). This makes the EM mixture models unfit for practical applications. The Gum-
bel distribution and the exponential distribution obtain the most stable estimates at
these catchments.
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Of the mixture models we have studied, the ones using the FGP as mixture weights
seem to be most relevant for future use. However, these require an FGP value cor-
responding to each flood observation. As mentioned before, this requirement reduces
the amount of available flood data. In FFA the sample sizes are already considered to
be small compared to return periods of interest, and leaving out valuable data from
the analysis is not attractive.

As described in Section [3.2.2] the EM algorithm is sensitive to starting values. We
implemented a simple random initialization procedure to start the algorithm from dif-
ferent points and chose the parameters that obtained the overall maximum likelihood.
There exist several other methods to generate starting values for this algorithm, see
e.g. |Biernacki et al. (2003) for comparison of various approaches. Our implementa-
tion could have benefited from choosing a more sophisticated procedure for starting
values. However, complicating the estimation procedure would make it a less attrac-
tive model to apply.

Although the EM algorithm is widely used to estimate parameters of mixture mod-
els, it clearly has some drawbacks. Other methods could be applied to estimate the
parameters. For example, Shin et al. (2014) applied a metaheuristic maximum like-
lihood (MHML) method to fit Gaussian mixture distributions for flood frequency
analysis. They concluded that this method performed better than the EM algorithm
for small sample sizes.

In the form of mixture models, we have tried to incorporate knowledge about flood
generating processes into the modelling of flood values. When assuming that there
are two different flood generating processes, it would be natural to also consider mod-
elling the problem as e.g. a sum of two Gumbel random variables or two exponential
random variables, for AMS and POT data, respectively. Loaiciga and Leipnik] (1999)
derived the distribution of a sum of two independent Gumbel random variables, and
Nadarajah| (2008)) later generalized this result to a linear combination of Gumbel ran-
dom variables. However, the derived distribution is quite complex and involves an
infinite sum of hypergeometric functions, limiting the practical usefulness of the dis-
tribution. Efforts have been made to approximate the distribution, see e.g. Marques
et al.| (2015).

Uncertainty in the flood data have not been accounted for in this analysis. The ob-
served values from each catchment are in fact stage levels and not discharge values.
A stage-discharge rating curve is used to transform the measured stage levels to dis-
charge values. This of course implies an uncertainty in the discharge data. [Steinbakk
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et al.| (2016)) investigated the effect of ignoring this uncertainty in design flood esti-
mates and found that ignoring these features may underestimate the potential risk of
flooding. However, we followed common practice and ignored the uncertainty in the
stage-discharge estimates.

8 Conclusion

In this study we investigate the use of mixture models for both the AMS and POT
approach to FFA, and compare the performance of these models to commonly used
distributions in FFA. The GEV distribution, the Gumbel distribution and a two-
component mixture of Gumbel distributions with both known and unknown weights
are considered for modelling AMS. For the case of modelling POT series, the GP dis-
tribution, the exponential distribution and a two-component mixture of exponential
distributions with both known and unknown weights are studied. The performance
of the different models are compared in terms of the reliability of the models and the
stability of their return level estimates.

We found that the model which is considered to perform best depends on the scoring
rule and the catchment. Overall, the Gumbel distribution and the exponential distri-
bution, for the case of AMS and POT respectively, often give the most reliable and
stable estimates.
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