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Abstract 

Generalized Planar Fault Energy (GPFE) curves are widely used to evaluate the deformation behavior 

of metals and alloys. In the present work, a systematic analysis of the microscopic plastic deformation 

mechanism of face-centered cubic Al in comparison to Cu was conducted based on GPFE curves 

generated via first-principles calculations. Focus has been put on the effects of Mg impurities in terms 

of local concentration and local atomic arrangement nearby the deformation plane, upon the GPFE 

curve of Al, with the aim to investigate the twinnability of Al-Mg alloys subjected to plastic deformation. 

It is found that Mg exhibites a Suzuki segregation feature to the stacking fault of Al, either intrinsic or 

extrinsic. Mg atoms residing in the stacking fault plane can decrease the intrinsic stacking fault energy 

ISFE and enhance the twinning propensity of Al. However, the ISFE value does not decrease 

monotonically with increasing Mg concentration in the alloy, and a continuous twinnability increase 

with increasing Mg content is not observed. It is also seen that different local concentrations and 

atomic configurations of Mg atoms in the vicinity of deformation plane could yield a large variation 

of ISFE and the twinning propensity of Al. It is proposed that Mg alloying cannot substantially 

enhance the twinning propensity of Al alloys.  

Keywords: Generalized Planar Fault Energy (GPFE), ISFE, Suzuki segregation, twinnability, Al-Mg 

alloys 

 

 

 

 

 

 



1. Introduction 

With a good combination of formability, high specific strength, weldability and corrosion 

resistance, aluminium alloys are widely applied in transportation sectors. In order to further increase 

the strength of aluminium alloys, various severe plastic deformation (SPD) strategies such as equal 

channel angular pressing (ECAP) [1, 2], high pressure torsion (HPT) [3, 4], dynamic plastic 

deformation (DPD) [5] have been applied to attain ultra-fine-grained (UFG) or even nano crystalline 

structures. Nevertheless, most of the UFG or nano structured metals and alloys processed by SPD 

methods possess poor ductility. It has been found that the nano twin structures can significantly 

increase the strength without sacrificing the ductility of metals, e.g. Cu alloys [6, 7]. However, 

deformation twinning is difficult to occur in coarse grained Al alloys during plastic deformation. This 

has been attributed to the high intrinsic stacking fault energy ISFE and a high ratio between unstable 

twinning fault energy UTFE and unstable stacking fault energy USFE. Promisingly, Mg has been 

reported to be a potential alloying element to reduce ISFE in Al [8]. By using the Layer Korringa Kohn 

Rostoker methodology, Schulthess et al. [9] calculated the ISFE of disordered Al-Mg alloys and 

showed a nearly linear decrease of ISFE with increasing Mg content (below 40 at.% Mg). Though 

different in quantity, the ISFE values of different Al-Mg alloys, determined by different experimental 

methods also showed that ISFE decreases significantly with increasing Mg content in the alloys, e.g. 

for a Al–3.59 at.% Mg alloy, ISFE has been determined as low as 54 mJ/m2 [10], which is even 

comparable to that of pure Cu. By fitting the experimentally determined ISFE values, Morishige et al. 

[10], proposed an empirical equation to address the Mg concentration effect on ISFE in Al-Mg alloys.  
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                               Eq. (1) 

where *
Mgx denotes the solubility limit of Mg in Al matrix, k  is a dimensionless constant, and 0  

signifies the stacking fault energy in pure Al. This equation predicts a further reduced ISFE at a Mg 

concentration of 5.30 at.% to 29.2 mJ/m2. With the low ISFE character, Al-Mg alloys with high Mg 

contents do exhibit some special deformations behaviors. For instance, unlike the wavy glide in pure 

Al and most other Al alloys, Al-Mg alloys show a planar glide behavior [11, 12] during plastic 

deformation. By the high strain rate DPD technique, a significant fraction of incoherent twin 

boundaries could be generated in a coarse grained Al-7 wt.% Mg alloy [13]. However, coherent 

deformation twins have rarely been observed in Al-Mg alloys, except for under some extreme 

conditions. For instance, Gray [14] observed deformation twinning in Al–4.8 wt.% Mg alloy 

subjected to shock loading (strain rate ~107 s-1) at a low temperature of -180C. Then a question arises: 

can Mg addition dramatically decrease ISFE and therefore make twinning the dominant deformation 



mechanism in Al-Mg alloys? Due to the difficulty in accurate determination of ISFE through 

experiments [15], further investigation with more reliable methods are needed to calculate the Mg 

concentration effect on ISFE of Al-Mg alloys.  

Fortunately, we can turn to first-principles calculations which were proved to be a powerful 

tool in many research fields [16, 17], to accurately quantify this material parameter based on the 

concept of Generalized Planar Fault Energy (GPFE), firstly put forward in 1970s by Vítek [18], which 

actually represents the energy penalty per area induced by the rigid shift of two parts of the crystal via 

the displacement vector f [19]. To be specific, f is mostly set along the <112> direction in {111} slip 

planes for fcc metals. Four typical energy points would be encountered along the GPFE displacement 

path, with the first three extremal points indicating USFE, ISFE, UTFE, and the last point as the twinning 

fault (two-layer micro twin) energy TFE, which is also interpreted as the extrinsic stacking fault 

energy ESFE [20]. Extensive efforts have been dedicated to the investigation of GPFE curves to probe 

the propensity for formation of dislocations, twinning nucleation, as well as the deformation 

mechanisms in nano crystalline (nc) materials, eg. nc Al, Ni and Cu [8, 19-38]. It is showed that ISFE 

alone is not a fully adequate parameter to evaluate the twinnability of metals and alloys. Particularly, 

the incorporation of GPFE curves with analytical models can help to comprehend and predict many 

experimental phenomena associated with dislocations, such as Peierls stress [21, 22], deformation 

twinning stress [26, 37] and plastic deformation regimes [20, 38] etc. All these works validate the 

high efficiency of GPFE in describing nucleation, formation of dislocations, as well as the 

competition between different deformation regimes.  

Using GPFE calculated by Density Functional Theory (DFT), Muzyk et al. [8] predicted a 

reduced ISFE and UTFE/USFE with one Mg atom substituting an Al atom at the deformation plane in a 

48-atom Al matrix, thus concluded that Mg alloying can promote twinning in Al. However, a more 

detailed investigation of the Mg concentration effect on GPFE in Al-Mg alloys is missing.  A 

systematic study on the effect of the concentration and the local arrangement of Mg atoms in the 

vicinity of the deformation plane on the twinning tendency of Al-Mg alloys is also needed. In light of 

the above considerations, first-principles calculations are thus initiated with the aim to investigate the 

impurity effect of Mg on the GPFE of Al, so as to probe the twinnability and deformation behavior of 

Al-Mg alloys.  

 

2. Computational methodology 

All the calculations in the present work were performed based on the first-principles plane 

wave pseudopotential method as implemented in the highly-efficient Vienna ab initio simulation 

package (VASP) [39, 40]. Electron–ion interactions were treated with the full potential frozen-core 



projector augmented wave (PAW) method [41, 42]. The Generalized Gradient Approximation (GGA) 

of Perdew–Burke–Ernzerhof (PBE) [43] was selected to describe the exchange–correlation functions. 

A cutoff of 350 eV was employed in all the calculations to insure the total energy differences were 

less than 1 meV/atom. Following the Monkhorst-Pack scheme [44], a k-points sampling of 13×7×1 

together with the linear tetrahedron method including Blöchl corrections [45] was adopted for the 

reciprocal-space energy integration in the Brillouin zone (BZ). The convergence criteria of 10-6 eV 

and 10-4 eV/Å were employed for electronic self-consistency and ionic loop, respectively, in the 

relaxation process. 

To find the energetically favorable distributions of Mg in the Al matrix, a 48-atom supercell 

as illustrated in Fig. 1(a) was adopted to investigate the binding energy of Mg-Mg pairs in the Al 

matrix. By setting Mg at different positions (see Fig. 1(a) and Table 1) for substitution, the binding 

energies of Mg-Mg pairs at different neighboring state can be evaluated in terms of the following 

equation: 

                
46 2 48 47 1

2b Al X Al Al XE X X E E E                                     Eq. (2)    

Specifically,  46 2Al XE ,  47 1Al XE ,  48AlE  are DFT total energies of the supercell with two Mg atoms at 

different neighboring positions, with one Mg impurity, and without any defects, respectively. Note 

that a positive Eb value indicates attractive interaction of the pair. Table 1 lists the predicted Eb of Mg-

Mg pairs at different neighboring distances in the Al matrix. It shows that Eb of 2nd nearest neighbor 

(2nn, 2nn') and 4th nearest neighbor (4nn, 4nn') have significantly higher values than the other 

arrangements, suggesting that Mg atoms prefer to form clusters with two atoms locating at the second 

or fourth nearest neighbor lattice site of each other. This binding feature is similar to what was found 

previously for Si and Mn solutes in Al [46]. 

In the calculation of GPFE curve, a perfect stacking sequence of 12 (111) planes 

(ABCABCABCABC) containing 96 atoms was constructed. A slab model containing a vacuum 

spacing of 15 Å along the <111> direction as shown in Fig. 1(b) was established to inhibit the 

interactions between stacking faults. Energies were calculated for different configurations obtained by 

displacing half of the crystal in reference to the other along the 112   direction within (111) planes 

(see Fig. 1(b)). To obtain the whole GPFE curve, two separate displacing operations of the slab model 

along the 112   direction had to be enforced. In each operation, the final displacement distance was 

the Burgers vector of a partial dislocation, which is 
0 / 6a , with a0 as the lattice constant of the Al 

crystal. In the first displacing step, layers numbered as 1–6 in one-half of the crystal were displaced to 

form a stacking fault. In the second, based on the previously formed stacking fault configuration, 

layers numbered from -1 to -5 in the lower part of the crystal were displaced in the opposite direction. 

A conjugate-gradient relaxation algorithm was adopted to attain the equilibrium state of different 



configurations. The atomic positions were selectively allowed to relax in the direction perpendicular 

to the stacking fault plane. Energies of the different configurations along the GPFE curve were 

calculated using Eq. (3) [47]: 
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   ,                                              Eq. (3) 

in which  faultedE f


 is the total energy of the supercell with a fault vector f


, perfectE  represents the 

total energy of the perfect stacking slab, and A is the area of the fault plane. 

 

3. Results and discussion 

3.1 GPFE curves of Al in comparison to Cu 

Table 2 collects the calculated values of GPFE in the present work, including USFE, ISFE, 

UTFE, and TFE of Al, as well as ISFE/USFE,  UTFE/USFE  and  UTFE‐USFE, in comparison with previous 

calculation and experimental results. As indicated in Table 2, the experimentally determined values of  

ISFE are scattered and vary widely from 135 to 200 mJ/m2, due to the limited accuracy of 

experimental methods [48]. ISFE for Al evaluated from first-principles calculations shows a more 

narrow range, varying from 122 to 164.2 mJ/m2. In general, three first-principles based approaches 

have been adopted to evaluate ISFE, (i) direct approach, which is the direct estimation of the energy 

penalty between the perfect stacking and the stacking fault structures; (ii) slab shear deformation, a 

commonly used approach to determine the GPFE, which is enforced via the rigid relative 

displacement of two parts of a slab configuration; (iii) alias shear deformation, including pure alias 

shear and simple alias shear, originally proposed by Jahnátek [29]. Different approaches may provide 

slightly different ISFE. Besides, the different pseudopotentials as used in the calculations (cf. Table 2) 

could be another reason to account for the variation of ISFE for Al obtained by first-principles 

approaches. Other methodologies for calculating ISFE or even GPFE include Molecular Dynamics 

(MD) [20], (Modified) Embedded Atom Method ((M)EAM) [33], Tight Binding (TB) [49] etc. These 

methods have predicted a larger variety range of ISFE of Al, from 95.4 to 170.0 mJ/m2. It is worth 

noting that GPFE evaluated by MD and (M)EAM strongly depends on the atomic potentials used in 

the simulations. The as-predicted ISFE of Al, 142.4 mJ/m2 in the present work, is close to the average 

of values from first-principles calculations. This quantity identifies Al as a high stacking fault energy 

(SFE) material. We found excellent agreement between the present work and that of Hunter [36], who 

used the same approach and pseudopotential as in the present work.   



Turning to Cu, the GPFE obtained in the present work together with previous theoretical and 

experimental results are summarized in Table 3, the parameters ISFE/USFE, UTFE/USFE,  and UTFE‐USFE  are 

also included. Experimentally determined values of ISFE lies in the range of 42-78 mJ/m2, exhibiting a  

much smaller variation than that of Al. The present work yields a calculated value of 40.5 mJ/m2 for 

ISFE, which is close to the median value of the determined ISFE via first-principles calculations, 

varying from 33.0 to 50.0 mJ/m2. This classifies Cu as a low SFE material. ISFE of Cu evaluated via 

other methodologies including MD [20], (M)EAM [33], Morse Potential [50] etc. yield values 

between 20.6 to 70.8 mJ/m2, again bearing a large variation. As indicated in Table 3, best agreement 

can be found between present work and the results by Asadi et al. [33] and Hunter [36]. It is worth 

noting that one should be careful with direct comparison between the GPFE from first-principles 

calculations and experiments, since experimental measurements are usually carried out at room 

temperature while first-principles calculations refer to 0 K. 

The GPFE curve in fcc metals characterizes the energy penalty to displace the (111) planes 

relative to neighboring (111) planes along the 112   direction. Many works done before confirm 

that ISFE alone is not sufficient to understand the underlying mechanisms of deformation processes 

[20, 38]. Instead, several features of the full GPFE curves are needed to determine the plastic 

deformation mechanisms of materials, and to predict the propensity for formation of stacking faults, 

nucleation of dislocations and deformation twins. It is generally believed that three distinct 

deformation mechanisms exist in fcc metals: twinning (TW), stacking faults (SF), and full slip (FS) 

[38]. To compare the deformation mechanism in Al and Cu, their GPFE curves, including TW, SF 

and FS, are shown in Fig. 2(a) and (b), respectively. The first extremal point along the GPFE curves 

of Al and Cu indicates USFE, i.e. the energy barrier which has to be overcome to nucleate a leading 

partial dislocation (usually from a grain boundary). An intrinsic stacking fault will be left behind after 

the nucleation of leading partial dislocation. The second energy extremal point defines the intrinsic 

stacking fault energy ISFE. After the nucleation of a leading partial dislocation, a competition exists 

between the three possible deformation mechanisms. The pre-deformed crystal can nucleate a trailing 

partial dislocation to form a full dissociated dislocation (FS), or nucleate a twin partial dislocation in 

an adjacent plane to form a two-layer micro twin (TW), or nucleate another leading partial dislocation 

in a non-adjacent plane to form another stacking fault (SF), which is actually the successive 

generation of stacking faults. The third energy extremal point along the TW deformation mode is 

interpreted as UTFE, corresponding to the energy barrier to nucleate a twinning partial dislocation. 

After the nucleation of twinning partial dislocation, a two-layer micro-twin or equivalently an 

extrinsic stacking fault will be created, of which the configuration energy is identified as TFE or ESFE, 

correspondingly.   



In recent years, different parameters have been proposed to predict the predominant 

deformation mechanism especially twinability in metals, based on GPFE. Rice [51], Tadmor and Hai 

[52] developed important criteria which have been widely accepted and employed to evaluate the 

deformation mechanism competition between FS and TW, based on ISFE/USFE and UTFE/USFE.  A 

deformation mechanism by FS is more energetically favorable if the values of ISFE/USFE are close to 

unity; on the contrary, when these parameters are far from unity, formation of partial dislocations and 

twins would be expected. In addition, Tadmor and Bernstein [53, 54] proposed another approximate 

criterion to evaluate the twinnability, which quantifies the propensity of fcc metals to undergo 

deformation twinning based on the number and strength of active twinning systems in terms of USFE, 

ISFE and UTFE: 
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                                             Eq. (4)     

A larger  indicates an increased tendency for twinning. A simpler expression to evaluate 

twinnability is δ = UTFE‐USFE, i.e. a smaller δ means increased susceptibility for twinning.           

Based on the GPFE of Al and Cu and the above criteria, it is possible to analyze the 

competition between FS, TW, and SF in Al and Cu. As can be seen in Fig. 2(a) and (b), it is difficult 

to activate the SF deformation regime in both Al and Cu, since the energy barrier is higher for SF 

formation than that of FS and TW. It follows in Table 2 and 3 that Cu has a much smaller ISFE/USFE 

value than Al, and therefore has a larger tendency to nucleate leading partial dislocations during 

deformation. A negative correlation should be expected for UTFE/USFE  and a, since a high propensity 

for deformation twinning is characterized by a large (small) a (UTFE/USFE). Indeed, this is exactly what 

is seen in the case of Cu. Along the GPFE curves of Al and Cu in Fig. 2(a) and (b) it is evident that 

after the nucleation of a leading partial dislocation it is much easier for Al to emit a trailing partial 

dislocation to form a complete perfect dislocation, thus entering the ‘perfect dislocation’ - FS 

deformation regime. A higher value of UTFE‐USFE  for Al means a larger energy barrier for twin 

nucleation, which hinders the pre-existing stacking fault configurations to enter the twinning 

deformation regime. Cu is on the other hand displaying a much smaller UTFE‐USFE, so that deformation 

twinning is much more energetically probable. Recently, Jo et al. [38] proposed the intrinsic slip 

barrier, defined as d=ISFE/(USFE‐ISFE), to classify the deformation characteristics of materials. For fcc 

metals having 0<d<2, both twinning and FS can be activated during plastic deformation, while for 

metals possessing d>2, deformation will be governed by FS. Based on the GPFE obtained in the 

present work, we obtain a d value of 0.335 for Cu, implying a combined deformation regime of TW 



and FS. While the corresponding value for Al, is d =4.07, which means that FS will be the dominant 

deformation mechanism – all consistent with the analysis based on a and  UTFE/USFE.   

3.2 Effect of Mg alloying on GPFE of Al and Suzuki segregation of Mg in Al  

In order to evaluate the effect of solute Mg on the GPFE curve of Al, we substituted one Al 

atom with a Mg atom in the stacking fault plane (layer 0 in Fig. 1(b), site 1 in Fig. 1(c)) in a supercell 

containing 96 atoms (Al95Mg1). This implies  an overall Mg concentration of 1.08 at.% and layer 

concentration of 12.5 at.%. The effect of this single Mg solute on USFE, ISFE, UTFE, and TFE values of 

Al are summarized in Table 4, and the corresponding GPFE curve of Al is shown in Fig. 3. It follows 

that the introduction of Mg impurity not only decreases ISFE of Al, i.e. from 142.4 mJ/m2 to 135.0 

mJ/m2, but also reduces the other three extremal energy points. This is consistent with previous 

theoretical calculations [8] and experimental measurement results [55]. Muzyk et al. [8] reported that 

alloying with Mg would increase the tendency for formation of partial dislocations and twinnability of 

Al. In the present work, we verified that Mg alloying can promote twinning due to the increased a and 

decreased UTFE/USFE,  UTFE‐USFE, compared with pure Al (as shown in Table 4). However, we do not 

see an increased tendency for formation of partial dislocations induced by Mg alloying since it has 

nearly the same ISFE/USFE as pure Al. 

In most previous simulation works evaluating the alloying effect of GPFE, the solute atoms 

are placed in the stacking fault plane. This is based on the Suzuki segregation, a well-known 

phenomenon of impurity solutes segregating towards  stacking faults. However, the detailed mutual 

interactions between solutes at different layers and stacking faults are scarcely considered. It has been 

revealed recently that the Suzuki effect is not a universal phenomenon for any elements and some 

solute elements even exhibit anti-Suzuki segregation characteristics in some alloy systems [56]. 

Actually the Suzuki segregation is practically determined by the interaction energy between stacking 

faults and solute atoms, which is defined as the energy difference between the stacking fault 

configuration when a solute atom resides in the nth atomic layer from the fault plane and the pure 

stacking fault configuration. This interaction energy can be evaluated based on the following equation 

[57]: 

   int
n Sol n Sol n

SF PS SF PSE E E E E                                        Eq. (5) 

Here, Sol n
SFE   is the total energy of the stacking fault with the solute atom residing in the nth atomic 

layer from the fault plane. Sol n
PSE   is the energy of a model with perfect stacking and one solute atom. 

SFE  and PSE  are the total energies of the stacking fault and perfect stacking configurations without 

solute atoms. It is interesting to note that int
nE  can also be interpreted as the segregation energy of 



solutes to the stacking fault; a negative value of int
nE  indicates the solute atom will prefer to segregate 

to the stacking fault. int
nE  is not limited in the stacking fault plane, and has a spatial distribution in the 

vicinity of the fault plane. This characteristic energy distribution would lead to the spatial 

concentration profile of the solutes near the stacking fault defect. The layer by layer equilibrium 

concentration of solutes in the vicinity of the stacking fault at finite temperature T can be predicted 

from the following equation [58]: 
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                                               Eq. (6) 

Here,  c n  is the solute concentration in the nth atomic layer. 0c  is the nominal concentration far 

from the stacking fault, kB is the Boltzmann constant.  

To get insight into the Suzuki effect of Mg in Al, the layer by layer interaction int
nE  between 

Mg and intrinsic as well as extrinsic stacking fault are calculated and the results are presented in Fig. 

4(a), with layers numbered according to the labelling in Fig. 1(b). It can be seen that int
nE  only extends 

a couple of atomic layers away from the stacking fault plane, i.e. two layers for intrinsic stacking fault, 

three layers for extrinsic stacking fault, and diminishes at longer distances. A negative int
nE  at the 

stacking fault plane indicates that Mg is attracted to stacking fault, either intrinsic or extrinsic, 

exhibiting a Suzuki segregation feature. The more negative the int
nE  value is, the higher tendency is 

for Suzuki segregation. Furthermore, the interaction is stronger between Mg and the extrinsic stacking 

fault than the intrinsic stacking fault, suggesting a stronger segregation tendency of Mg towards the 

former. A small energy barrier can also be seen at layers -2 and 3 for intrinsic stacking fault in Fig. 

4(a), revealing a slightly activated Suzuki segregation feature [56]. In addition to the energies barriers 

indicated in Fig. 4(a) (which only present energies of Mg residing on stable lattice sites), diffusion 

towards the stacking fault would also involve overcoming the activation energy of transition states in 

vacancy mediated diffusion [59]. This was implemented through a diffusive molecular dynamics 

technique based on the embedded-atom method by Dontsova et al. [58], which yielded results in 

reasonable correspondence with the present work.  It is interesting to see that the effective barrier for 

Suzuki segregation of Mg towards the extrinsic stacking fault is relatively large, due to the large 

energy barriers involved in moving from layers -2 and 2 to layers -1 and 1, respectively, as shown in 

Fig. 4(a). This suggests the difficulty for Mg to diffuse/segregate to extrinsic stacking fault than to the 

intrinsic to alter their energy state, due to the larger kinetic barrier. 



Figure 4(b) presents the spatial equilibrium concentration profile of Mg near the stacking fault 

as evaluated from Eq. (6) with a nominal concentration of 0c = 1% and room temperature T = 300 K. 

Local enrichment of Mg at the stacking fault region induced by Suzuki segregation is observed both 

for intrinsic and extrinsic stacking faults. As for the intrinsic stacking fault, the atomic layers 

representing the fault planes (layers 0 and 1 in Fig. 1(b)) have the highest concentration of Mg. A 

slightly decreased concentration of Mg can be seen at the planes adjacent to the fault plane. This 

behavior is in good agreement with the enrichment of Mg near the intrinsic stacking fault simulated 

by Dontsova et al. [58]. When we turn to the extrinsic stacking fault, an oscillatory concentration 

distribution with three peak concentrations of Mg near the stacking fault region is observed. It is 

worth noting that Eq. (6) is only valid at low 0c , since solute-solute interactions would be decisive for 

the local Mg distribution at high 0c .  

3.3 Effects of varying Mg concentrations on the GPFE curve of Al 

To study the dependence of the GPFE of Al on the Mg concentration, different numbers of 

Mg atoms were introduced to substitute Al atoms in the Al slab matrix. Several different 

configurations were introduced, based on the binding energies between Mg atoms in Al (see Table 1) 

and the fact that the Mg-stacking fault interaction only extends a couple of atomic layers from the 

fault plane. Complete layer substitution of Mg solutes was avoided, since repulsive interactions 

encourage the Mg atoms to be spatially distributed, as evidenced in the previous section. Moreover, to 

avoid an asymmetrical impact on the GPFE, we kept the Mg atoms symmetrically distributing in the 

vicinity of deformation plane. We considered one model with 2 Mg solute atoms (Al94Mg2), four with 

3 (Al93Mg3), two with 4 (Al92Mg4) and four models with 6 solute atoms (Al90Mg6).  These models 

correspond to an overall concentration of 2.08 at.%, 3.13 at.%, 4.17 at.% and 6.25 at.% Mg, 

respectively, in bulk Al. The detailed Mg atomic occupations of these configurations are summarized 

in Table 4 with occupation numbers referring to Fig. 1(c).  

The obtained GPFE values from these simulations are listed in Table 4, and the corresponding 

GPFE curves are presented in Fig. 5. Apparently, for the Al94Mg2 model with two Mg in the 

deformation plane, ISFE is further reduced from 135.0 for Al95Mg1 to 130.9 mJ/m2. A further decrease 

of USFE, UTFE, and TFE was also observed. Still, based on ISFE/USFE, no increased tendency for 

formation of partial dislocations is predicted at this Mg concentration. However, a slightly increased 

a indicates that Al94Mg2 possesses a higher propensity to undergo deformation twinning than Al95Mg1. 

This may suggest that as more Mg segregate to the stacking fault plane, ISFE is further reduced and an 

increased tendency of twinning can be expected. 



When the nominal Mg concentration was increased to 3.13 at.%, four different configurations 

were adopted. In the Al93Mg3-1 and Al93Mg3-2 configurations, one Mg was positioned in the center of 

the deformation plane and the other two Mg atoms were residing in layers 2 and -2 as the 4nn, 4nn' of 

the central Mg atom (see column of “Occupation” in Table 4). A further increased twinning 

propensity was predicted for Al93Mg3-1, as indicated by the highest a value seen in the present work: 

0.919 (see Table 4).  Nevertheless, instead of further reduction, a slight increase was observed for ISFE 

in Al93Mg3-1, as will do for USFE and UTFE. On the other hand, Al93Mg3-2 possesses a comparable a 

value and twinnability to Al92Mg4-2. Going to Al93Mg3-3 and Al93Mg3-4, three Mg solutes was placed 

in the three layers near the fault plane, leading to reduced twinnability compared with Al. The lowest 

value of ISFE in the present work was that predicted for Al93Mg3-4, i.e. = 128.4 mJ/m2.  

 At the nominal concentration of 4.17 at.%, two configurations, Al92Mg4-1 and Al92Mg4-2 

were used. With the deformation plane being occupied with two Mg atoms in Al92Mg4-1, the extra 

two Mg atoms were set to occupy sites 5 and 7 in layers 1 and -1 (see Fig. 1(c)) as the 2nn and 2nn' to 

the Mg atoms in the fault plane. In the Al92Mg4-2 model, the extra two Mg atoms were placed in sites 

9 and 11 in layers 2 and -2 (Fig. 1b) as 4nn, 4nn' to Mg in the fault plane. As can be seen in Table 4, 

the reduced USFE in Al92Mg4-1 in comparison to that of Al93Mg3, would energetically facilitate the 

nucleation of leading partial dislocations. However, there is no further decline for ISFE at this 

increased Mg concentration, as compared to the minimum value found for Al93Mg3. The Al92Mg4-1 

model exhibits a very low a,  even less than pure Al. It also features a relatively high ISFE/USFE, 

corresponding to a high probability of entering the FS deformation regime. By contrast, a of Al92Mg4-

2 has a surprisingly high value of 0.916 (see Table 4), implying a high propensity of twinning. The 

different GPFE values of Al92Mg4-1 and Al92Mg4-2 are attributed to the different distributions of Mg 

solutes in the vicinity of the deformation plane. In addition, we find that Mg solutes residing in layers 

1 and -1 adjacent to the deformation plane would reduce twinning probability and thus favor a 

dislocation-mediated slip deformation regime.  

To investigate an even higher Mg concentration effect on the GPFE of Al, four models with a 

nominal concentration of 6.25 at.% were considered (Al90Mg6-1, Al90Mg6-2, Al90Mg6-3, Al90Mg6-4 as 

tabulated in Table 4). The results are shown in Fig. 5(e-f) and Table 4. As can be seen, only the 

Al90Mg6-2 configuration gives a relatively high twinning tendency, a = 0.906, which is still lower 

than the maximum a values achievable for Al94Mg2, Al93Mg3 and Al92Mg4 configurations. This 

clearly indicates that the twinnability of Al-Mg alloys does not increase monotonically with 

increasing Mg content in the alloy. Further reduction in ISFE at this rather high Mg concentration was 

not observed; the lowest value of ISFE = 131.8 mJ/m2 was found for the Al90Mg6-4 model, which is 

larger than the minimum ISFE of Al94Mg2 and Al93Mg3. Furthermore, Al90Mg6-1 has a ISFE parameter 



that is even higher than that of Al, which is attributed to the pronounced Mg solute repulsion between 

layer 1 and fault plane. It is worth noting that Al90Mg6-4 has the lowest USFE calculated in the present 

work (cf. Table. 4), which should facilitate nucleation of leading partial dislocations.   

4. Discussion    

Figure 6 displays the calculated intrinsic stacking fault energy, ISFE of Al-Mg alloys with 

different Mg configurations near the deformation plane, as a function of Mg concentration. It follows 

in Fig. 6 that nearly all the AlxMgy models possess a lower ISFE than pure Al (except for Al90Mg6-1), 

which indicates that Mg alloying can tailor down the ISFE of Al, being consistent with the 

experimental results [55, 60]. However, a linear reduction of ISFE with increasing Mg concentration 

(below 40 at.% Mg) as reported by Schulthess et al. [9] is not observed. As shown in Fig. 6, ISFE 

decreases continuously with increasing Mg content up to 3.13 at.%. When the nominal concentration 

of Mg is increased to 4.17 at.% and 6.25 at.%, there is a slight increase of ISFE. Still, the local 

concentration and local atomic arrangement of Mg solutes in the vicinity of deformation plane has a 

strong influence on ISFE. A distinct Mg solute atomosphere can produce a considerable variation of 

ISFE. The largest decrease of ISFE relative to pure Al was found to be 12 mJ/m2 for the Al93Mg3-4 

model, yet this decrease is far less than the significant decreasing effect upon ISFE from Mg solutes as 

reported by Morishige et al. [10], based on an empirical correspondence between alloy composition, 

stacking fault energy and grain size of Al-Mg alloys. This reduction of ISFE is also much less than that 

those reported experimental values [55]. Thus it may suggest that Mg alloying is not so effective as 

expected in the stacking fault energy engineering of Aluminium alloys. This conclusion is shared by 

Gray [14] that Mg solutes shouldn’t drastically decrease the intrinsic stacking fault energy of Al. 

Furthermore, measurements by Kritzinger [60] also showed that an addition of 0.65 wt.% Mg to Al 

does not significantly lower ISFE. 

a and UTFE-USFE are important parameters in describing the twinnability of metals. Looking 

at the variation of a versus UTFE-USFE of AlxMgy as displayed in Fig. 7(a), one can find that an 

inverse-linear relation persists between these two parameters. As an example, the model Al90Mg6-1 

with the highest UTFE-USFE corresponds to the lowest twinnability (a), while Al93Mg3-1 with a low 

UTFE-USFE has a high a. It indicates that the higher the UTFE-USFE, the lower the twinnability 

parameter of a is, and vice versa. The close correspondence between a and UTFE-USFE presented in 

Fig. 7(a) confirms their mutual consistency as predictive parameters for the twinning propensity of fcc 

metals.    

The twinnability a of AlxMgy models is displayed as a function of Mg concentration in Fig. 

7(b). Clearly, a continuously increasing a with the Mg concentration is not observed. As can be seen, 



a increases up to the peak value at a Mg content of 3.13 at.%, while it decreases when moving to 

higher Mg concentrations. Also, it can be noted that not all the AlxMgy models possesses higher 

twinnability than pure Al. Similar to the effect on ISFE, the local concentration and local atomic 

arrangement of Mg solutes near the deformation plane have a strong influence on the twinnability, 

which consequently, produces several a values even for the same Mg concentration.  

Without considering the effect of mutual interactions of Mg solutes at higher concentrations 

upon the GPFE of Al, Muzyk et al. [8] has predicted that Mg alloying can promote twinning in Al. 

Nevertheless, we find that though under certain local arrangements, Mg solutes do increase the 

twinnability of Al. However, the highest increased twinnability found in our study (0.919 for the 

Al93Mg3-1 model) is still much less than that of pure Cu (a =1.036), which is an indication that the 

potential of enhancing the twinning tendency of Al by Mg alloying is quite limited. This may give the 

implication that Mg alloying will not play that important a role as we formerly envisage for the 

fabrication of nano twins in UFG aluminium alloys. Thereby, this limited role in enhancing 

twinnability of Mg solutes can serve to explain the fact that twinning has been difficult to achieve and 

has been scarcely reported in previous papers on Al-Mg alloys, even when subjected to various SPD 

techniques like ECAP [1, 2, 61], HPT [3], and DPD [5].  

5. Conclusion 

In the present work, GPFE curves of face-centered cubic Al were calculated using first-

principles calculations based on the slab shear methodology. A systematic analysis of the competition 

between different microscopic plastic deformation regimes (including twinning, stacking fault, and 

full slip) of Al in comparison to Cu was conducted based on the calculated GPFE curves.  

With the aim to investigate the twinnability and variation of the intrinsic stacking fault energy 

ISFE of Al-Mg alloys subjected to plastic deformation, a systematic investigation of the effect of Mg 

impurities upon the GPFE curve of Al was conducted with the aid of first-principles calculations. An 

activated Suzuki segregation behavior was established for the interactions between Mg solutes and 

stacking faults in Al, either intrinsic or extrinsic. Consistent with the previous experimental and 

theoretical reports, Mg solutes was found to decrease the ISFE of Al. However, we’ve demonstrated 

that this decreasing effect is not so significant as that determined in experiments or theoretical 

predictions, and does not increase monotonically along with increasing Mg content. Furthermore, the 

effect of Mg alloying on deformation twinning in Al depends on the local concentration and 

configuration of Mg atoms around the deformation plane. Some specific distributions of Mg solutes 

near the deformation plane enhance the twinnability of Al, but the enhancement is limited. To sum up, 

Mg alloying is predicted in the present work as not so effective in the stacking fault energy (SFE) 



engineering of Al alloys and a substantial increase of twinning propensity of Al via Mg alloying 

cannot be expected.  
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Tables 

Table 1. Binding energy (meV) for different Mg-Mg pairs at different neighboring distance in the Al 

matrix. A positive value indicates a favorable binding state. The possible occupations of Mg solutes in 

the Al matrix are as indicated in Fig. 1(a). 

Occupations Neighbors Mg-Mg 

1-2 1nn -15.9 

1-3 1nn' -13.1 

1-4 2nn 27.1 



1-5 2nn' 14.6 

1-6 3nn 7.0 

1-7 3nn' 3.7 

1-8 4nn 21.0 

1-9 4nn' 13.9 

1-10 5nn 0.6 

 



Table  2. Calculated values of the unstable stacking fault energy USFE, intrinsic stacking fault energy ISFE, unstable twinning fault energy UTFE and twinning 

fault energy TFE of Al, in comparison with previous theoretical and experimental results. The energies are in mJ/m2. 

USFE  ISFE  UTFE  TFE 
ISFE/U

SFE 
UTFE/
USFE 

UTFE‐
USFE 

a (Twinnability)  Method and approach  Reference 

177.4 142.4 226.5 135.4 0.803 1.277 49.1 0.898 First-principles (FP) PAW-GGA-PBE Present work 
- 166.0 - - - - - - Experiment (Exp.) - [62]
- 135.0 - - - - - - Exp. Annealing Kinetics of Dislocation Loops [63] 

- 150.0 - - - - - - Exp. 
High-resolution transmission electron 

microscopy  [64] 

- 200.0 - - - - - - Exp. Dimensions of Stacking-Fault Tetrahedra [65]
177.0 140.2 - - 0.792 - - - FP PAW-GGA-PBE [36] 
177.0 143.0 - 147.0 0.808 - - - FP PAW-LDA [21] 
174.0 149.0 - 152.0 0.856 - - - FP PAW-LDA [25]

- 142.0 - - - - - - FP PAW-GGA-PW91 [27] 
178.0 146.0 - - 0.820 - - - FP PAW-GGA-PW91 [66] 
175.0 158.0 - - 0.903 - - - FP PAW-GGA-PW91 [23]
162.0 130.0 215.0 113.0 0.802 1.327 53.0 0.881 FP PAW-GGA-PW91 [26] 

- 122.0 - - - - - - FP PAW-GGA [28] 
- 134.0 - - - - - - FP US-LDA [28]
- 124.0 - - - - - - FP US-GGA [28] 

224.0 164.0 - - 0.732 - - - FP US-LDA [22] 
- 156.0 - 138.0 - - - - FP US-LDA [56]

169.0 134.0 - - 0.793 - - - FP PAW-GGA-PBE + Simple alias shear [29] 
169.0 126.0 - - 0.746 - - - FP PAW-GGA-PBE + Pure alias shear [29] 

- 151.0 - - - - - - FP PAW-LDA [21] 
- 161.0 - - - - - - FP PAW-LDA [21] 

225.0 158.0 - - 0.702 - - - FP PAW-GGA-PW91 [30] 
189.1 162.4 238.6 - 0.859 1.262 49.5 0.896 FP PAW-GGA-PBE [8] 
140.0 112.0 196.0 - 0.800 1.400 56.0 0.858 FP PAW-GGA-PBE [31] 
171.5 164.2 - - 0.957 - - - FP PAW-GGA-PBE [33] 
197.0 162.0 - - 0.822 - - - FP PAW-GGA-PBE [34] 
185.0 142.0 236.0 - 0.768 1.276 51.0 0.903 FP PAW-GGA-PBE [35] 
213.0 153.0 - - 0.718 - - - FP PAW-LDA [67] 

- 126.0 - 108.0 - - - - FP Augmented Plane Wave [68] 

215.0 170.0 - - 0.791 - - - FP 
Full-Potential Linear Muffin Tin Orbital 

(FP-LMTO) 
[69] 



- 164.0 - - - - - - FP FP-LMTO [49] 
- 161.0 - 151.0 - - - -  FP Kohn-Sham fucntions [70] 
- 160.0 - - - - - - FP Pseudopotential theory [71] 
- 142.0 - - - - - - FP Pseudopotential theory [72] 
- 96.0 - - - - - - Tight binding [49] 
- 154.0 - 138.0 - - - - Augmented Spherical Wave [73] 

151.3 146.0 200.0 - 0.965 1.322 48.7 0.861 Molecular Dynamics Simulation [20] 
123.9 95.4 149.7 - 0.770 1.208 25.8 0.928 Molecular Dynamics Simulation [20] 
238.0 142.2 - - 0.597 - - - Second-Nearest-Neighbor Modified Embedded Atom Method [74] 

- 128.0 - - - - - - Embedded Atom Method (EAM) [24] 
168.0 146.0 - - 0.869 - - - EAM [75] 
168.6 147.0 - - 0.872 - - - EAM [33] 
220.5 127.4 - - 0.578 - - - EAM [33] 
287.2 145.4 - - 0.506 - - - Modified Embedded Atom Method [33] 

- 124.0 - 118.0 - - - - Layer–Korringer–Kohn–Rostoker method [76] 
- 140.0 - 130 - - - - Pair Potential [77] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table  3. Calculated values of the unstable stacking fault energy USFE, intrinsic stacking fault energy ISFE, unstable twinning fault energy UTFE and twinning 

fault energy TFE of Cu, in comparison with previous theoretical and experimental results. The energies are in mJ/m2. 

USFE  ISFE  UTFE  TFE  ISFE/USFE  UTFE/USFE  UTFE‐USFE 
a 

(Twinnability) 
Method and approach  Reference 

161.5 40.5 181.4 42.4 0.251 1.123 19.9 1.036 
First-principles 

（FP） 
PAW-GGA-PBE Present Work 

- 42.0 - - - - - - 
Experiment 

(Exp.) 
Annealing Kinetics of Dislocation Loops [78] 

- 40.0 - - - - - - Exp. Transmission Electron Microscopy [79] 
- 50.0 - - - - - - Exp. Seeger relation on 111 [80] 
- 41.0 - - - - - - Exp. Weak Beam Technique  [81] 
- 45.0 - - - - - - Exp. Weak Beam Technique [82] 
- 78.0 - - - - - - Exp. - [62] 
- 35-45 - - - - - - Exp. - [83] 

163.7 38.5 - - 0.235 - - - FP PAW-GGA-PBE [36] 
181.0 41.0 200.0 40.0 0.227 1.105 19.0 1.048 FP PAW-GGA-PW91 [37] 
158.0 36.0 179.0 - 0.228 1.133 21.0 1.035 FP PAW-GGA-PBE [31] 

- 33.0 - - - - - - FP PAW-GGA-PW91 [27] 
158.0 39.0 - - 0.247 - - - FP PAW-GGA-PW91 [23] 
164.0 38.0 - - 0.232 - - - FP PAW-GGA-PW91 [66] 
180.0 41.0 - - 0.228 - - - FP PAW-GGA-PBE + Simple alias shear [29] 
186.0 37.0 - - - - - - FP PAW-GGA-PBE + Pure alias shear [29] 

- 51.0 - 54.0 - - - - FP PAW-LDA [21] 
- 53.0 - - - - - - FP PAW-LDA [21] 
- 41.0 - - - - - - FP PAW-GGA-PBE [32] 

163.0 41.3 - - 0.253 - - - FP PAW-GGA-PBE [33] 
149.0 42.0 - - 0.282 - - - FP PAW-GGA-PBE [34] 
175.0 43.0 - - 0.246 - - - FP PAW-GGA-PW91 [30] 
210.0 49.0 - - 0.233 - - - FP PAW-LDA [67] 

- 50.0 - - - - - - FP PAW-LDA [84] 
- 64.0 - - - - - - FP Full-Potential [85] 

154.1 20.6 163.3 - 0.134 1.060 9.2 1.084 Molecular Dynamics Simulation [20] 
173.1 33.5 190.0 - 0.194 1.098 16.9 1.056 Molecular Dynamics Simulation [20] 
162.6 44.4 - - 0.273 - - - Embedded Atom Method (EAM) [33] 
234.0 44.1 - - 0.188 - - - EAM [33] 
247.2 72.2 - - 0.292 - - - Modified Embedded Atom Method [33] 



- 30.0 - - - - - - Morse Potential [50] 

- 78.0 - - - - - - 
Effective Medium Theory (EMT) and Embedded Atom 

Model (EAM) potential 
[86] 

- 56.0 - - - - - - Tight Binding Linear Muffin Tin Orbital Green’s Function [87] 
 

 

 

Table  4. The effect of Mg concentration on the unstable stacking fault energy USFE, intrinsic stacking fault energy ISFE, unstable twinning fault energy UTFE 

and twinning fault energy TFE of Al. The energies are in mJ/m2. The subscript numbers in the “Occupation” column correspond to the atomic positions as 

defined in Fig. 1(c) for different Mg substitutions. 

System Mg concentration, at. % Occupation USFE  ISFE  UTFE  2TFE  ISFE/USFE  UTFE/USFE  UTFE‐USFE 
a 

(Twinnability)
Al96 0 - 177.4 142.4 226.5 135.4 0.803 1.277 49.1 0.898 

Al95Mg1 1.08 Mg(1) 168.0 135.0 211.6 119.1 0.804 1.260 43.6 0.904 

Al94Mg2 2.16 Mg(1,4) 162.7 130.9 202.2 108.3 0.805 1.243 39.5 0.910 

Al93Mg3-1 3.13 Mg(1,10,12) 167.0 133.9 203.9 103.7 0.802 1.221 36.9 0.919 

Al93Mg3-2 3.13 Mg(1,9,11) 163.5 133.6 202.8 104.8 0.817 1.241 39.4 0.909 

Al93Mg3-3 3.13 Mg(1,6,8) 156.5 132.1 213.9 142.9 0.844 1.367 57.4 0.863 

Al93Mg3-4 3.13 Mg(1,5,7) 156.3 128.4 208.7 130.3 0.822 1.335 52.4 0.876 

Al92Mg4-1 4.17 Mg(1,4,5,7) 154.7 133.9 212.7 142.4 0.866 1.375 58.1 0.857 

Al92Mg4-2 4.17 Mg(1,4,9,11) 164.6 134.4 201.3 101.9 0.816 1.223 36.7 0.916 

Al90Mg6-1 6.28 Mg(1,4,5,6,7,8) 163.2 145.5 233.6 179.9 0.891 1.432 70.5 0.837 

Al90Mg6-2 6.28 Mg(1,4,9,10,11,12) 169.3 141.0 210.7 105.3 0.833 1.244 41.4 0.906 

Al90Mg6-3 6.28 Mg(1,4,5,7,10,12) 158.8 133.9 212.3 133.1 0.843 1.338 53.5 0.872 

Al90Mg6-4 6.28 Mg(1,4,5,7,9,11) 151.6 131.8 208.4 132.1 0.870 1.374 56.8 0.870 



 

Figures. 

 

Fig 1. (a) Identification of the Al sites for substitution of Mg solutes. (b) Typical slab atomic 

configurations adopted in the present calculations including the perfect stacking, intrinsic stacking 

fault, and twinning fault configurations. A 15 Å thick vacuum layer was included in all the slab 

models. The displacement path of the GPFE along the 112   direction is also illustrated. (c) Atomic 

positions (indicated as 1-12) for possible Mg solute substitutional sites to evaluate its effect on the 

GPFE of Al. 

 

Fig 2. Generalized planar fault energy (GPFE) curves for (a) Al and (b) Cu. 



 

Fig 3. The effect of a single substitutional Mg solute on the GPFE curves of Al. The Mg solute is 

placed in the stacking fault plane. 

 

Fig 4. (a) Layer-by-layer interaction energy of a single Mg solute with  intrinsic and extrinsic stacking 

faults in Al. (b) Spatial concentration profile of Mg in the vicinity of intrinsic and extrinsic stacking 

faults in Al, , evaluated based on Eq. (7) at the nominal concentration of c0=0.01, and temperature 

T=300K. Lines are only drawn as guides to the eye.  



 

Fig 5. The effect of Mg concentration and configuration on the GPFE curves of Al. The Mg 

distributions at various concentrations near the fault plane in the perfect stacking configurations are as 

indicated. For a detailed description of the Mg configuration in all these models, please refer to Table 

4.   



 

 

Fig 6. The calculated intrinsic stacking fault energy, ISFE, as a function of the Mg concentration for 

AlxMgy models.  

 

Fig 7. (a) The linear correlation between twinnability parameter a and UTFE-USFE for AlxMgy, (b) the 

twinnability parameter a of AlxMgy models as a function of Mg concentration.  

 


