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Abstract

This paper describes a stochastic short sea shipping problem where a company is responsible
for both the distribution of oil products between islands and the inventory management of those
products at consumption storage tanks located at ports. In general, ship routing and scheduling
is associated with uncertainty in weather conditions and unpredictable waiting times at ports.
In this work, both sailing times and port times are considered to be stochastic parameters.
A two-stage stochastic programming model with recourse is presented where the first stage
consists of routing, loading and unloading decisions, and the second stage consists of scheduling
and inventory decisions. The model is solved using a decomposition approach similar to an
L-shaped algorithm where optimality cuts are added dynamically, and this solution process is
embedded within the sample average approximation method. A computational study based on
real-world instances is presented.

Keywords: Stochastic programming; Maritime transportation; Inventory routing; Uncertainty;
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1 Introduction

Maritime transportation is characterized by high levels of uncertainty. In practice, operational
plans are often adjusted due to factors such as changing weather conditions, port congestions,
or mechanical problems at port. A plan that minimizes the transportation and port costs based
on expected sailing and port times may not necessarily be good, as it does not account for the
consequences resulting from delays. Hence, in most practical situations it will be beneficial to
consider the possibility of delays when trying to minimize costs.

In this paper we study a maritime inventory routing problem occurring at the archipelago of
Cape Verde. A deterministic variant of this problem was solved to optimality in [3] for short time
horizons. Heuristics for the same problem with time horizons up to 6 months were developed in [4].
The deterministic methods assume known and fixed sailing times, but the planner needs to face the
uncertainty associated with the ships sailing between ports. This may somehow be circumvented by
the inclusion of safety stocks or by artificially increasing the sailing times to compensate for delays.
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The ports are used by several independent shipping companies, and limited coordination between
the various operators can result in heavy port congestion. This may come from limited capacities
in the inner port area, at berths, and of pipes and other important equipment for performing the
(un)loading operations. Here, we explicitly consider uncertainty in both sailing times between ports
and waiting times at ports.

In the problem considered, a heterogeneous fleet of ships is transporting several oil products
between supply and consumption storage tanks. These tanks are located close to or at ports, and
a particular port might have both supply and consumption storage tanks for various products.
Inventory management is only considered for the consumption storage tanks because these tanks
have limited capacity, and it is important that these tanks do not run empty. In contrast, unlimited
capacity and supply of products are assumed for the supply storage tanks. By taking the uncertain
sailing times and port waiting times into account, the objective of the planning is to design cost
efficient ship routes and schedules including determining the number of visits to each port and the
(un)loading quantities at each visit.

The purpose of this paper is to describe a stochastic programming model with recourse where
the routes and the quantities to load and unload must be fixed a priori, that is, before actual
values of the uncertain parameters are revealed, while the schedule of the loading and unloading
operations can be adjusted according to the observed sailing and port times. In addition, the paper
contributes with a solution method that combines the use of the sample average approximation
method with a decomposition procedure resembling an L-shaped method [11, 17]. For a given set
of scenarios, the corresponding two-stage model is solved to obtain a candidate solution. This is
repeated for several different sets of scenarios to obtain several candidate solutions. To choose the
best solution, these candidate solutions are evaluated for a larger and independent set of scenarios.
To solve the two-stage model for a given set of scenarios, the problem is decomposed into a master
problem and one subproblem for each scenario, where the second-stage decisions are considered
in the subproblems. We show that feasibility of the second stage is always guaranteed when the
solution obtained for the first-stage is feasible. Then we show how to derive optimality cuts from
the subproblems that are added dynamically to the master problem. As far as we know, this paper
describes the first stochastic programming model and approach for solving a maritime inventory
routing problem with uncertain sailing and port waiting times.

The remainder of this paper is organized as follows. In Section 2 we describe the real problem.
Relevant literature is reviewed in Section 3. Then, in Section 4 we present a scenario-based math-
ematical formulation for the problem. The solution approach based on decomposing the problem
is discussed in Section 5. In Section 6 we describe how the stochastic sailing and port times have
been modeled, and how scenarios have been generated. Section 7 contains a computational study
based on real-world instances, and in Section 8 we present the main conclusions of this work.

2 Problem description

In Cape Verde, fuel oil products are imported and delivered to two specific islands and stored
in large supply storage tanks, see Figure 1. From these islands, fuel oil products are distributed
among all inhabited islands using a small heterogeneous fleet of ships. The two circled islands in
Figure 1 are served by a different ship and may therefore be disregarded. Products are stored in
separate consumption storage tanks with limited capacity. Some ports have both supply tanks for
some products and consumption tanks for other products. As the capacities of the supply tanks

2



are very large compared to the total consumption over the planning horizon, the inventory aspects
for these tanks can be ignored. The driving force in the problem is the need for fuel oil products
in the consumption storage tanks. If the demand is not satisfied, the backlogged demand will be
penalized by a cost.

Not all islands consume all products. Consumption rates are assumed to be constant over the
time horizon. Each port can receive at most one ship at a time, and in some ports there exists a
minimum time interval between the departure of one ship and the arrival of the next ship.

Figure 1: Supply and demand for fuel oil products at several islands in Cape Verde.

Each ship has a specified capacity, fixed speed, and cost structure. The cargo hold of each ship
is separated into several cargo tanks. The products cannot be mixed, so we assume that the ships
have dedicated tanks for the particular products. The ships are either sailing, waiting outside a
port or operating. Here, operating is the common term for loading and unloading.

At port, we consider set-up times for the coupling and decoupling of pipes and operation times
which depend on the amount loaded or unloaded. Minimum and maximum unloading quantities
can be derived based on properties of the ships and the inventories. The maximum unloading
quantity is imposed by the consumption tank capacity and by the ship cargo tank capacity.

The traveling times depend upon the weather conditions and are considered stochastic. The
uncertain time parameter at port is mainly related to the time from arrival to start of operation.
Hence, a specified waiting time before start of service is defined as stochastic, while the operation
times are deterministic.

The inter-island distribution plan consists of routes and schedules for the fleet of ships, and
describes the number of visits to each port and the quantity of each product to be loaded or
unloaded at each port visit. This plan must satisfy the capacities of the ships and consumption
storage tanks while minimizing the sailing and port costs as well as the expected penalty costs
of backlogged demand. There is great flexibility in the route pattern of a ship, such that a ship
may load in several successive ports as well as performing unloading operations in succession. The
quantities loaded or unloaded are variable as well as the number of visits at each port. The problem
described here will be referred to as a stochastic maritime inventory routing problem (SMIRP), and
a scenario-based stochastic programming model for the problem is given in Section 4.
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3 Literature review

The amount of literature on maritime transportation optimization has increased steadily over the
last decades, as evidenced through the recent survey in [13]. Despite being a transportation mode
that is heavily influenced by uncertainty, most of the literature on maritime routing and scheduling
involves solving static and deterministic problem variants. However, some contributions exist, and
we describe some that are considering problems close to the stochastic maritime inventory routing
problem of this paper.

An inventory routing problem with uncertain demands and sailing times was solved heuristically
by Cheng and Duran [12]. Rakke et al. [28] and Sherali and Al-Yakoob [30, 31] introduced
penalty functions for deviating from the customer contracts and the inventory limits, respectively.
Christiansen and Nygreen [14] introduced soft inventory levels to handle uncertainties in sailing
and port times, and these levels were transformed into soft time windows.

Agra et al. [5] solved a full-load ship routing and scheduling problem with uncertain travel times
using robust optimization. Halvorsen-Weare and Fagerholt [15] considered weather conditions that
affect both sailing speeds and the loading and unloading operations for supply vessels servicing
offshore installations, and proposed various heuristic strategies to achieve robust weekly voyages
and schedules. Heuristic strategies for obtaining robust solutions with uncertain sailing times was
also discussed by Halvorsen-Weare et al. [16] for the delivery of liquefied natural gas. None of the
aforementioned papers described the use of stochastic programming to model uncertain sailing and
port times.

Considering the literature on non-maritime transportation optimization, some researchers have
developed models and exact solution methods for vehicle routing problems (VRPs) with uncertain
travel times. Considering a VRP with stochastic travel times and service times, Laporte et al.
[25] presented a chance-constrained formulation as well as two recourse formulations. The recourse
problem was solved to optimality for up to 20 nodes and 5 scenarios using an integer L-shaped
method. The VRP with stochastic travel and service times was also studied by Kenyon and
Morton [21], considering stochastic programming models that minimized the expected completion
time or maximized the probability of completing the routes within a given deadline. An integer
L-shaped algorithm was used by Teng et al. [34] to solve a time-constrained traveling salesman
problem with stochastic travel and service times with up to 35 nodes. Taş et al. [33] studied a
VRP with stochastic travel times and soft time windows, solved by branch-and-price. Although
these papers present stochastic programming models for routing problems with uncertain travel
times and service times, they do not consider heterogeneous fleets, a variable number of visits, and
inventory constraints.

Other researchers have focused on heuristic solution methods for VRPs with uncertain travel
times. A stochastic model for one particular version of the VRP with stochastic travel times
was presented by Lambert et al. [24], and a heuristic solution method was proposed. Ando and
Taniguchi [7] used a genetic algorithm to solve a VRP with time windows and stochastic travel
times. A tabu search was used by Russell and Urban [29] to solve a VRP with soft time windows
and stochastic travel times. Li et al. [27] presented both a chance-constrained model and a recourse
model for a VRP with time windows and stochastic travel and service times. The authors proposed
a tabu search for solving the two versions of the problem. Lei et al. [26] considered a capacitated
VRP with stochastic service times, which was solved using a variable neighborhood search heuristic.
Taş et al. [32] used tabu search to solve the VRP with stochastic travel times and soft time windows
as defined in [33]. Again, neither of these papers considered heterogeneous fleets, a variable number
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of visits, and inventory constraints.
The literature on non-maritime inventory routing problems (IRPs) also address uncertainty,

which is considered as one of the main directions for future research by Andersson et al. [8].
However, the uncertainty is typically found in the demand of the customers. For example, Kleywegt
et al. [22, 23] and Adelman [1] created infinite horizon Markov decision process (MDP) formulations
where the state was represented by the inventory levels at customers. The authors solved these
MDP problems heuristically. Hvattum et al. [19] and Hvattum and Løkketangen [18] also solved
the same problems heuristically, but using an approximation of the demand uncertainty based on
scenario trees. Bertazzi et al. [10] used a dynamic programming formulation to describe a finite
horizon problem with stochastic demands, which was solved using a hybrid roll-out algorithm.
Aghezzaf [2] considered an IRP with uncertain demand and uncertain travel times, and coupled
Monte Carlo simulation and a non-linear mixed-integer programming to find robust solutions.

4 Mathematical Model

In this section we introduce a two-stage stochastic programming model with recourse for the SMIRP.
The routes and the quantities to load and unload are determined in the first stage. However, the
schedule of the loading and unloading operations can be adjusted in the second stage. Thus, the
inventory level variables are also allowed to change according to the realization of the stochastic
parameters. In the following we first describe the variables and constraints related to the first stage
in Section 4.1, and then the variables and constraints related to the second stage in Section 4.2.

4.1 First stage

First we model the routing and the loading and unloading constraints.

Routing constraints:

Let N denote the set of ports and V denote the set of ships. Each ship v ∈ V must depart from its
initial position in the beginning of the planning horizon. In order to distinguish between visits to
each port we consider an ordering of the visits according to the time of visit. The ship paths are
defined on a network where the nodes are represented by a pair (i,m), where i is the port and m is
the mth visit to port i. A direct ship movement (arc) from port arrival (i,m) to port arrival (j, n) is
represented by (i,m, j, n). Ship paths are illustrated in Figure 2. For instance, ship 2 leaves origin
O2 and sails to port 4 (for the first visit to this port), then sails to port 2 (for the second visit to
this port, since the first visit was made by ship 1), and sails to port 1 for its first visit. Finally, the
ship sails to port 3 (for the second visit to port 3, since the first visit was made by ship 1) before
it ends at its destination.

We define SA as the set of possible port arrivals (i,m), SAv as the set of port arrivals that may
be visited by ship v, SX as the set of all possible ship movements (i,m, j, n), and set SXv as the set
of all possible movements of ship v. The set of ships that can visit port i is denoted Vi.

For the routing we define the following binary variables: ximjnv that is 1 if ship v sails from
port arrival (i,m) directly to port arrival (j, n), and 0 otherwise; xOimv that indicates whether ship
v sails directly from its initial position to port arrival (i,m) or not; wimv is 1 if ship v visits port
i at arrival (i,m), and 0 otherwise; zimv is equal to 1 if ship v ends its route at port arrival (i,m),
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Figure 2: Example of ship routes where each node represents a visit. The first label indicates the
port and the second label indicates the visit number. The solid arcs indicate the path of ship 1,
while the dotted arcs constitute the path of ship 2.

and 0 otherwise; zOv is equal to 1 if ship v is not used and 0 otherwise; yim indicates whether a ship
is visiting port arrival (i,m) or not. These variables are included for ship 1 in Figure 2.∑

(i,m)∈SAv

xOimv + zOv = 1, v ∈ V, (1)

wimv −
∑

(j,n)∈SAv

xjnimv − xOimv = 0, v ∈ V, (i,m) ∈ SAv , (2)

wimv −
∑

(j,n)∈SAv

ximjnv − zimv = 0, v ∈ V, (i,m) ∈ SAv , (3)

∑
v∈Vi

wimv = yim, (i,m) ∈ SA, (4)

yi(m−1) − yim ≥ 0, (i,m) ∈ SA : m > 1, (5)

xOimv, wimv, zimv ∈ {0, 1}, v ∈ V, (i,m) ∈ SAv , (6)

ximjnv ∈ {0, 1}, v ∈ V, (i,m, j, n) ∈ SXv , (7)

zOv ∈ {0, 1}, v ∈ V, (8)

yim ∈ {0, 1}, (i,m) ∈ SA. (9)

Equations (1) ensure that each ship either departs from its initial position and sails towards another
port or the ship is not used. Equations (2) and (3) are the arc flow conservation constraints, ensuring
that a ship arriving at a port also leaves that port or ends its route. Constraints (4) ensure that
only one ship visits port (i,m) if yim is equal to one. Constraints (5) state that if port i is visited
m times, then it must also have been visited m− 1 times. Constraints (6) - (9) define the variables
as binary.

6



Loading and unloading constraints

Let K represent the set of products and Kv represent the set of products that ship v can transport.
Not all ports consume all products. Parameter Jik is 1 if port i is a supplier of product k; −1 if
port i is a consumer of product k, and 0 if i is neither a consumer nor a supplier of product k. For
each port i consuming product k, the demand rate is given by Rik. The quantity of product k on
board ship v at the beginning of the planning horizon is given by QOvk and Cvk is the capacity of the
compartment of ship v dedicated to product k. Minimum and the maximum unloading quantities
of product k at port i are given by Q

ik
and Qik, respectively. Parameter T is the length of the

time horizon.
To model the loading and unloading constraints, we define the following binary variables: oimvk

is equal to 1 if product k is loaded onto or unloaded from ship v at port visit (i,m), and 0 otherwise.
In addition, we define the following continuous variables: qimvk is the amount of product k loaded
onto or unloaded from ship v at port visit (i,m); fimjnvk denotes the amount of product k that
ship v transports from port visit (i,m) to port visit (j, n), and fOimvk gives the amount of product
k that ship v transports from its initial position to port visit (i,m).

The loading and unloading constraints are given by:

fOimvk +
∑

(j,n)∈SAv

fjnimvk + Jjkqimvk =
∑

(j,n)∈SAv

fimjnvk, v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (10)

fOimvk = QOvkx
O
imv, v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (11)

fimjnvk ≤ Cvkximjnv, v ∈ V, (i,m, j, n) ∈ SXv , k ∈ Kv, (12)

0 ≤ qimvk ≤ Cvkoimvk, v ∈ V, (i,m) ∈ SAv , k ∈ Kv : Jik = 1, (13)

Q
ik
oimvk ≤ qimvk ≤ Qikoimvk, v ∈ V, (i,m) ∈ SAv , k ∈ Kv : Jik = −1, (14)∑

k∈Kv

oimvk ≥ wimv, v ∈ V, (i,m) ∈ SAv , (15)

∑
(i,m)∈SAv

∑
v∈V

∑
k∈Kv :Jik=−1

qimvk ≥
∑
i∈N

∑
k∈K:Jik=−1

RikT, (16)

oimvk ≤ wimv, v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (17)

fimjnvk ≥ 0, v ∈ V, (i,m, j, n) ∈ SAv , k ∈ Kv, (18)

fOimvk ≥ 0, v ∈ V, (i,m) ∈ SAv , k ∈ Kv, (19)

qimvk ≥ 0, v ∈ V, (i,m) ∈ SAv , k ∈ Kv : Jik 6= 0, (20)

oimvk ∈ {0, 1}, v ∈ V, (i,m) ∈ SAv , k ∈ Kv : Jik 6= 0. (21)

Equations (10) are the load flow conservation constraints. Equations (11) determine the quantity
on board when ship v sails from its initial position to port arrival (i,m). Constraints (12) guarantee
that the ships’ tank capacities are not exceeded. Upper bounds on the quantities loaded at the
ports are imposed by constraints (13), while constraints (14) impose lower and upper limits on
the unloaded quantities. Constraints (15) ensure that if ship v visits port arrival (i,m), then at
least one product must be (un)loaded. To prevent extreme situations at the end of the planning
horizon with full storages at the supply side and empty consumption storage tanks, thereby avoiding
transportation costs, constraints (16) ensure that the sum of delivered goods should not be less
than the sum of the consumption over the entire horizon T . Constraints (17) ensure that if ship

7



v (un)loads one product at visit (i,m), then wimv must be one. Constraints (18)-(21) are the
non-negativity and integrality requirements.

4.2 Second stage

Now we present the second stage model where the variables can be adjusted to the scenario. The
set of scenarios Ω will be indexed by c.

Time constraints

To keep track of the inventory level it is necessary to determine the start and end times of operation
at each port arrival. We define the following parameters: TQik is the time required to (un)load one
unit of product k at port i; TSik is the set up time required to operate product k at port i. Tijvc
is the sailing time between port i and j by ship v for scenario c; TOivc indicates the sailing time
required by ship v to travel from its initial position to port i for scenario c; TBi is the minimum
interval between the departure of one ship and the next arrival at port i; TWimc is the waiting time
at port arrival (i,m) for scenario c. The parameter µi denotes the maximum number of visits at
port i. For each scenario c we define start time timc and end time tEimc variables for port arrival
(i,m). Variables t+ic give the remaining time from the end of the last visit at port i until time T for
scenario c, when this visit occurs before time T. Notice that due to the stochastic time parameters,
the start time of a visit might appear after the end of the planning horizon T.

Assuming that a ship v travels from (i,m) to (j, n) under scenario c and loads product k using
vessel v, Figure 3 shows the parameters involved when calculating the time variables for node (j, n).

TWjnc TSjk TQjkqjnvk

tEimc tjnc tEjnc

Tijvc

Figure 3: Illustration of the parameters involved when calculating start and end times for node
(j, n).

The set of time constraints is as follow:

tEimc ≥ timc +
∑
v∈V

∑
k∈Kv

TSikoimvk +
∑
v∈V

∑
k∈Kv

TQikqimvk, (i,m) ∈ SA, c ∈ Ω, (22)

timc − tEi(m−1)c − T
B
i yim ≥ 0, (i,m) ∈ SA : m > 1, c ∈ Ω, (23)

tEimc +
∑

v∈Vi∩Vj

Tijvcximjnv + TWjncyjn − tjnc ≤M(1−
∑

v∈Vi∩Vj

ximjnv), (i,m, j, n) ∈ SX , c ∈ Ω, (24)

∑
v∈V

TOivcx
O
imv + TWimcyim ≤ timc, (i,m) ∈ SA, c ∈ Ω, (25)

t+ic ≥ T − t
E
iµic, i ∈ N, c ∈ Ω, (26)

timc, t
E
imc ≥ 0, (i,m) ∈ SA, c ∈ Ω, (27)

t+ic ≥ 0, i ∈ N, c ∈ Ω. (28)
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Constraints (22) define the end time of service at port visit (i,m). Constraints (23) impose a
minimum interval between two consecutive visits at port i. Constraints (24) relate the end time
of port visit (i,m) to the start time of port visit (j, n) when ship v sails directly from port (i,m)
to (j, n). The big-M constant, denoted by M was set to 2T, since the start time of a visit can
occur after time T. These constraints are a stronger version of the usual family of constraints
tEimc + Tijvc + TWjnc − tjnc ≤ M(1 − ximjnv) defined for each v ∈ V. Constraints (25) ensure that if
ship v travels from its initial position directly to port visit (i,m), then the start time is at least
the sailing time between the two positions plus the waiting time at port visit (i,m). Constraints
(26) together with (28) determine the time gap between the last visit to port i and time T. The
continuous time variables are declared as non-negative in (27) and (28).

Inventory constraints

The inventory constraints are considered for each port i consuming product k (Jik = −1). They
ensure that the inventory levels are kept within the corresponding bounds, and link the inventory
levels to the unloaded quantities.

For each consumption storage tank for product k at port i, the minimum Sik, the maximum
Sik, and the initial SOik inventory levels are given.

We define the nonnegative continuous variables simkc and sEimkc indicating the inventory levels
of product k at the start and at the end of port visit (i,m) for scenario c, respectively; sTikc is the
inventory level of product k, above the minimum stock level for port i at the end of time T or at
the end of the last visit if this occurs after T, for scenario c; rimkc and rEimkc indicate the backlog
of product k at the start and at the end of port visit (i,m) for scenario c, respectively; and rTikc is
the amount of product k below the minimum level for port i at the end of time T or at the end of
the last visit if this visit occurs after T , for scenario c.

mm m + 1 m + 1 m + 2m− 1. . . . . .

qVm qVm+1 qVm+2

dm−1 dm dm dm+1 dm+1 dm+2

sEi,m+1

rEi,m+1
ri,m+1

si,m+1sEim

rEim

sim

rim

sEim

rEi,m−1

Figure 4: Inventory balance flow for each event represented by a node (start of a visit m, represented
by a node with label m, and end of a visit, represented by m) for a given port i and a given product
k (omitted from the nodes and from the variables for simplicity). For the start of visit m, the
inflow from the ships is given by qVm =

∑
v∈V qimvk. The demand at the start of visit m, represented

in the figure by dm, is given by the consumption between the end-time of the last visit and the
start-time of visit m, Rik(timc− tEi(m−1)c). The demand at the end of visit m, denoted by dm is the

consumption between the start-time of visit m and the end-time of visit m, Rik(t
E
imc − timc).
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The inventory constraints for the consumption storage tanks are as follows (see Figure 4):

si1kc = SOik −Rikti1c + ri1kc, i ∈ N, k ∈ K : Jik = −1, c ∈ Ω, (29)

sEimkc + rimkc = simkc + rEimkc +
∑
v∈V

qimvk −Rik(tEimc − timc), (i,m) ∈ SA,

k ∈ K : Jik = −1, c ∈ Ω, (30)

simkc + rEi(m−1)kc = sEi(m−1)kc + rimkc −Rik(timc − tEi(m−1)c), (i,m) ∈ SA : m > 1,

k ∈ K : Jik = −1, c ∈ Ω, (31)

sEiµikc + rTikc = rEiµikc + sTikc +Rikt
+
ic + Sik, i ∈ N, k ∈ K : Jik = −1, c ∈ Ω, (32)

simkc, s
E
imkc ≤ Sik, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω, (33)

simkc, s
E
imkc, rimkc, r

E
imkc ≥ 0, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω. (34)

sTikc, r
T
ikc ≥ 0, i ∈ N, k ∈ K : Jik = −1, c ∈ Ω. (35)

Equations (29) calculate the inventory level of each product at the first visit. Equations (30)
calculate the inventory level of each product when the service ends at port visit (i,m). Equations
(31) relate the inventory level at the start of port visit (i,m) to the inventory level at the end
of port visit (i,m − 1). Constraints (32) are the inventory balance constraints at time T, or at
the end of the last visit if this visit occurs after time T , for each product. When the last visit
occurs before T, the inventory level at the last visit needs to be adjusted by the consumption until
time T . Additionally the quantity below the lower bound Sik is penalized as backlogged demand.
Hence, these constraints penalize situations where the storages are below the lower inventory limit
at the end of the planning. Constraints (33) ensure that the capacities of the depots are not
exceeded. Finally, non-negativity requirements (34), and (35) are imposed on the inventory and
backlog variables.

4.3 Objective function

The objective is to minimize the sailing, setup and operating costs plus the penalty for backlogged
demand. The storages at both the supply and consumption tanks belong to the same company, so
there exists no inventory holding costs in any storage tank. In order to avoid extreme inventory
levels in the end of the planning horizon, we included constraints (16).

The sailing cost of ship v from port i to port j is denoted by CTijv, while CTOoiv represents the
sailing cost of ship v from its initial port position to port i. The operating cost of product k at
port i is denoted by COik. The penalty cost for backlogging of product k at port i is denoted CPik.
The objective function is as follow:

z = min
∑
v∈V

∑
(i,m,j,n)∈SXv

CTijvximjnv +
∑
v∈V

∑
(i,m)∈SAv

CTOoiv x
O
imv +

∑
v∈V

∑
(i,m)∈SAv

∑
k∈Kv |Jik 6=0

COikoimvk+

∑
c∈Ω

1

|Ω|

 ∑
(i,m)∈SA

∑
k∈Kv |Jik=−1

CPik(rimkc + rEimkc) +
∑
i∈N

∑
k∈Kv |Jik=−1

CPikr
T
ikc

 . (36)

The objective function (36) consists of five main terms. The three first terms minimize the sailing
and port operation costs. Then the backlogged demand for each port visit is penalized. Finally we
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penalize, for each product unloaded in a port, the difference between the lower inventory limit and
the actual inventory level for the last visit or time T if the last visit is earlier.

5 Solution approach

Since the complete model is too large to be solved efficiently, it is decomposed into a master problem
and one subproblem for each scenario, following the idea of the L-shaped algorithm [11]. Let the
problem (1) - (36) be re-written as:

z = min C(X) +
∑
c∈Ω

1

|Ω|
H(X, c)

s.t. (1)− (21)

where
C(X) =

∑
v∈V

∑
(i,m,j,n)∈SXv

CTijvximjnv +
∑
v∈V

∑
(i,m)∈SAv

CTOoiv x
O
imv

+
∑
v∈V

∑
(i,m)∈SAv

∑
k∈Kv |Jik 6=0

COikoimvk

and

H(X, c) = min
∑

(i,m)∈SA

∑
k∈K|Jik=−1

CPik(rimkc + rEimkc) +
∑
i∈N

∑
k∈Kv |Jik=−1

CPikr
T
ikc

s.t. (22)− (35),with Ω = {c}.

The master problem consists of the first stage, but with iteratively added variables and con-
straints to reflect the recourse costs. The subproblems consider fixed first stage decisions, and are
solved for each scenario to supply optimality cuts to the master problem.

The problem (1) - (36) has relatively complete recourse, since feasibility in the second stage is
guaranteed if the inventory levels do not exceed the capacities of the inventories. Hence, for each
feasible solution to the first stage, the second stage has always a feasible solution (it suffices to
delay the unloading when necessary). The details for solving the problem are given in Section 5.2.
To solve problems with a large number of scenarios, the sample average approximation method is
used as described in Section 5.1.

5.1 Sample average approximation method

To solve the SMIRP with many scenarios, we apply the sample average approximation method
as in [9]. First we consider M separate sets of scenarios. Each set of scenarios, i ∈ {1, . . .M}
contains a small number of m scenarios, {ci1, . . . , cim}. The model (1) - (36) is solved for each set
of scenarios i using a decomposition approach. Let Xi denote the obtained first stage solution.
The M candidate solutions X1, . . . , XM , are then compared using a different, and much larger, set
of n scenarios {ĉ1, . . . , ĉn}. The best solution is given by X∗ = argmin{zn(Xi) : i ∈ {1, . . . ,M}}
where zn(Xi) = C(Xi) + 1

n

∑n
j=1H(Xi, ĉj).

11



With the first stage solutions X1, . . . , XM being obtained, the optimal values are denoted zim =
zm(Xi) = C(Xi)+ 1

m

∑m
j=1H(Xi, cij). The average value over all sets of scenarios, z̄m = 1

M

∑M
i=1 z

i
m

is a statistical estimate for a lower bound on the optimal value of the true problem.
For the larger set of n scenarios, which can be regarded as a benchmark scenario set representing

the true distribution (see [20]), the cost zn(Xi) of each solution Xi, i ∈ {1, . . . ,M} is computed
as well as X∗ = argmin{zn(Xi) : i ∈ {1, . . . ,M}}. The best value, zn(X∗), is a statistical
estimate for an upper bound on the optimal value. The estimated optimality gap (GAP) is given

by GAP (%) = zn(X∗)−z̄m
z̄m

× 100(%).
When employing a scenario generation method it is desirable that no matter which set of

scenarios is used, by solving the two-stage model, one obtains approximately the same value for
the optimal solution. This is named as stability requirement conditions in [20]. Here we evaluate
stability, following [9], by computing the variances:

σ̂2
zn(X∗) =

1

(n− 1)n

n∑
j=1

(
C(X∗) +H(X∗, ĉj)− zn(X∗)

)2
, (37)

σ̂2
zm =

1

(M − 1)M

M∑
i=1

(zim − z̄m)2, (38)

where σ̂2
zm

is the variance between samples and σ̂2
zn(X∗) is the variance within the larger sample.

The estimated variance of the estimated optimality gap is

σ̂2
G = σ̂2

zn(X∗) + σ̂2
zm .

5.2 Optimization process

To solve the model (1) - (36) for a set of scenarios Ω, we first solve to optimality a master prob-
lem including only one scenario. Since the problem has relatively complete recourse, the resulting
values for the first stage decision variables are feasible for the complete problem with all scenarios.
However, we need to check whether the solution is optimal for the complete model. To do that we
check, for each scenario, whether there is backlogged demand when the deliveries are made as early
as possible. If such a scenario with backlogged demand is found, we add to the master problem
additional variables and constraints (which are implied by the time constraints and inventory con-
straints) enforcing the backlogged demand to be counted in the objective function. Then the revised
master problem is solved again, and the process is repeated until all the optimality constraints are
satisfied. Hence, as in the L-shaped method, the master problem initially disregards the recourse
cost, and an improved estimation of the recourse cost is gradually added to the master problem
by solving optimality subproblems and adding the corresponding cuts. The algorithm may also be
terminated if the additional recourse cost added in an iteration is less than a given small amount
ε. A formal description of this process is given below.
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Algorithm 1 Optimization procedure for an input set of scenarios Ω.

1: Choose a scenario c ∈ Ω
2: Solve the master problem for scenario c
3: while There are new violated optimality cuts and a change in the objective function greater

than ε do
4: Add all the violated optimality cuts
5: Solve again the master problem with the new cuts
6: end while

Next we explain how separation of constraints imposing backlog for each scenario (optimality
cuts) is done in each iteration.

The backlog variables are bounded as follows:

rimkc ≥ Riktimc − SOik −
∑

n≤m−1

∑
v∈V

qinvk, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω, (39)

rEimkc ≥ Rikt
E
imc − SOik −

∑
n≤m

∑
v∈V

qinvk, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω, (40)

rTikc ≥ Rikt
E
iµic +Rikt

+
ic + Sik − SOik −

∑
n≤µi

∑
v∈V

qinvk, i ∈ N, k ∈ K : Jik = −1, c ∈ Ω. (41)

Constraints (39) - (40) are implied by (29) - (31) (adding alternately (31) and (30) from (i,m) to
(i, 1) and then (29)), and from the non-negativity requirements on the inventory variables (34).
Constraints (41) are implied by (29) - (32) and by (35).

The minimum backlog occurs when the time variables timc and tEimc are set to the earliest feasible
times. Once these variables are defined, separation over (39) - (40) is trivial since the right hand
side is fixed. So we focus now on finding tight bounds for the time variables. First observe that the
starting and ending times of each operation are established either from the (maximum) inventory
levels (inventory constraints) or from the duration of the several operations the ships perform (time
constraints). In the first case we need to ensure that the inventory capacity is not exceeded. Hence
we have:

timc ≥
SOik +

∑
n≤m−1

∑
v∈V qinvk − Sik

Rik
, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω, (42)

tEimc ≥
SOik +

∑
n≤m

∑
v∈V qinvk − Sik

Rik
, (i,m) ∈ SA, k ∈ K : Jik = −1, c ∈ Ω. (43)

Constraints (42) and (43) follow from (29) - (31), (33), (34) (adding alternately (31) and (30)
from (i,m) to (i, 1) and then (29), and then lower bounding the backlog variables from the non-
negativity requirements (34) and the inventory variables from the storage tank capacity constraints
(33)). For a given feasible solution for the first stage, the right hand sides of (42) and (43) are
constant.

For the second stage, the time variables are determined from the time constraints (22) - (25).
For a feasible solution of the first stage, and for each scenario, most of the constraints (22) - (25) are
not tight and many variables do not need to be considered. We can see that the tEimc-variables are
bounded by (22) while the timc-variables are bounded by (23) (from the end time of the previous
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visit to the same port), by (24) (from the last ship operation), and by (25) (from the origin). These
cases can be represented in a network G = (N,A,W ), where N is the set of nodes, A is the set of
arcs and W is the set of weights. The set of nodes P is given by the origin of each ship, represented
by Ov, a node (i,m) representing the starting time of each port visit and a node (i,m) representing
the end time of the visit. Each arc in A corresponds to a routing variable set to one. That is, there
is an arc from node Ov to node (i,m) if xOimv = 1, and there is an arc from node (i,m) to node (j, n)
if ximjnv = 1 for some v. The arcs have weights TOivc + TWimc and Tijvc + TWjnc, respectively. There is

an arc from node (i,m) to node (i,m) with weight
∑

k∈Kv T
S
ikoimvk +

∑
k∈Kv T

Q
ikqimvk, and there is

an arc from node (i,m) to node (i,m+ 1) with weight TBi . Finally, we consider an arc from Ov to
each node visited by ship v. The weight from Ov to (i,m) is given by the right hand side of (42)
and the weight from Ov to (i,m) is given by the right hand side of (43).

The weight of each path from one origin to a node gives a lower bound for the time variable
corresponding to that node. Hence the earliest time associated to a node corresponds to the weight
of the longest path from one origin to that node (one can always establish an artificial origin which
is linked to all ship origins Ov and with null weight). Since the graph is acyclic, finding the longest
path to each node can be done in polynomial time. However, for this particular graph, it is easy
to derive a linear labeling correcting algorithm.

The time variables can then be restricted using these paths or sub-paths. For each (sub)path

Π
(i,m)
(j,n) , from visit (j, n) to visit (i,m) of a ship v, we define the set of nodes (port visits) as N (Π

(i,m)
(j,n) )

and the set of arcs as A
(

Π
(i,m)
(j,n)

)
. Let (iv,mv) denote the first visit of ship v after leaving the origin.

If the earliest time for a visit (i,m) ∈ SA is determined only by the schedule of operations for
a given ship v ∈ V , then timc and tEimc are restricted as follows:

timc ≥
∑

(`,u)∈N (Π
(i,m)
(iv,mv)

)

TW`uc +
∑

(`,u)∈N (Π
(i,m)
(iv,mv)

)\{(i,m)}

∑
k∈K

(
TS`ko`uvk + TQ`kq`uvk

)
+TOivvc +

∑
(`,u,t,w)∈A(Π

(i,m)
(iv,mv)

)

T`tvc

−T

1+ | A(Π
(i,m)
(iv ,mv)) | −x

O
ivmvv −

∑
(`,u,t,w)∈A(Π

(i,m)
(iv,mv)

)

x`utwv

 , (44)

tEimc ≥
∑

(`,u)∈N (Π
(i,m)
(iv,mv)

)

TW`uc +
∑

(`,u)∈N (Π
(i,m)
(iv,mv)

)

∑
k∈K

(
TS`ko`uvk + TQ`kq`uvk

)
+TOivvc +

∑
(`,u,t,w)∈A(Π

(i,m)
(iv,mv)

)

T`tvc

−T

1+ | A(Π
(i,m)
(iv ,mv)) | −x

O
ivmvv −

∑
(`,u,t,w)∈A(Π

(i,m)
(iv,mv)

)

x`utwv

 . (45)

Validity of (44) and (45) is implied by (22) - (24). In Appendix 1 we provide a list of the remaining
inequalities defined for each possible subpath.
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The overall separation procedure for each iteration works as follow:

Algorithm 2 Separation procedure

1: Construct the network G = (N,A,W )
2: Determine the longest path from the origin to each node
3: Associate the corresponding time variables to each node
4: Set the backlog variables to the minimum value using (39)-(41)
5: for each node do
6: if the corresponding backlog variable has a value strictly greater than its value in the current

solution then
7: add inequalities belonging to (39)-(41) determining its value
8: add time constraints (42)-(45) corresponding to the weight of the longest path
9: (Use subpaths of each ship that are not contained in other subpaths of the same ship in

the critical path)
10: end if
11: end for

Example 5.1. Consider an instance with 2 ships, v1 and v2, and 3 ports and assume that there
is only one scenario. Hence we omit the corresponding scenario index from all variables and
parameters. Let the paths resulting from the first stage solution be xO11v1

= x1132v1 = 1 and
xO21v2

= x2131v2 = x3112v2 = 1. Assume the weights of the arcs are those given in Figure 5. For

instance, TB1 = TB3 = 0.5,
∑

k∈K

(
TS1ko11v1k + TQ1kq11v1k

)
= 1 and T13v1 = 6.

For simplicity we omit arcs with weights resulting from (42) and (43).

O1

O2

1,1 1, 1 1,2 1, 2

2,1 2, 1

3,1 3, 1 3,2 3, 2

1 0.5 1

1

1

1

5

1 0.5 1

66

Figure 5: Example of a graph G for a set of three ports and two ships.

We can see that t11 = 1, tE11 = 2, t21 = 1, tE21 = 2, t31 = 7, tE31 = 8, t12 = 14, tE12 = 15, t32 =
8.5, tE32 = 9.5.

Suppose there is backlog at nodes (1, 2) and (3, 2). In addition to inequalities (39) defining
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the lower bound on the backlog for (i,m) = (1, 2) and (i,m) = (3, 2), the following inequalities,
corresponding to the critical paths to nodes (1, 2) and (3, 2), are added to limit the time variables:

tE31 ≥
∑
k∈K

(
TS2ko21v2k + TQ2kq21v2k

)
+
∑
k∈K

(
TS3ko31v2k + TQ3kq31v2k

)
+TO2v2 + T23v2 − T (2− xO21v2 − x2131v2),

t12 ≥
∑
k∈K

(
TS2ko21v2k + TQ2kq21v2k

)
+
∑
k∈K

(
TS3ko31v2k + TQ3kq31v2k

)
+TO2v2 + T23v2 + T31v2 − T (3− xO21v2 − x2131v2 − x3112v2),

t32 ≥ tE31 + TB3 .

6 Stochastic times and sample scenarios generation

In the SMIRP, the sailing and waiting times at ports are assumed to be random, following known
probability distributions. We now describe the distributions used and how scenarios are generated
for the stochastic programming model.

For the sailing times we assume that there are three potential events that affect all the sail-
ing times simultaneously. These correspond to “good weather”, “moderate weather” and “bad
weather”. For good weather, the sailing times are obtained directly from the sailing distance and
the ship speed. For moderate weather, the sailing times are 1.5 times the corresponding sailing
times in good weather, and for bad weather the sailing times are 2.0 times those in good weather.
From the historical data for the season we are considering, a probability is associated to each event.

Contrary to the sailing times, where the weather usually affects all the islands simultaneously,
waiting times due to port occupancy depend only on the port. For each visit to each port, we
assume that the random variable indicating whether the port is occupied or not follows a Bernoulli
distribution with parameter p ∈ [0, 1] (p is the probability of the port being occupied). If the
port is occupied then the random variable W indicating the waiting time is given by a truncated
exponential distribution

F (w) =


0, w < 0,
(1− e−λw)/A, 0 ≤ w ≤ B,
1, w > B,

where A = 1− e−Bλ, and λ is such that the expected value of waiting time is 1/λ− Be−Bλ

A , and B
represents the maximum waiting time (see [6]). Parameters p, λ, and B are obtained from historical
data.

The weather events are trivially generated using the given probabilities. For each visit to each
port the waiting times are randomly generated as follows: let p ∈ [0, 1] be the probability of the
port being occupied. Generate an uniform random variable U1 ∈ [0, 1]. If U1 > p we assume that
the port is not occupied. Otherwise we randomly generate a waiting time from the truncated
exponential distribution using the inverse transformation method. The waiting time is given by

W =

{
ln(1−AU2)
−λ , if U1 ≤ p;

0, if U1 > p.
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where U2 is an uniform random variable, U2 ∈ [0, 1].
To generate the set of scenarios, Ω, we first fix the number of scenarios n =| Ω | a priori. Then

each scenario is generated separately, first by generating the sailing times at random and then by
generating a random waiting time for each port visit.

7 Computational results

In this section we report the results from the computational experimentation conducted to test
the stochastic model. All computations were performed using the optimization software Xpress
Optimizer Version 20.00.05 with Xpress Mosel Version 3.0.0, on a computer with processor Intel
Core 2 Duo 2.2GHz and with 4GB of RAM. In Algorithm 1 we use ε = 0.01. Ten real-world
instances are used in the main testing, considering two different ships, seven ports, four products,
and a time horizon of eight days. The instances differ by the initial inventory levels. Detailed
information on the instances is given in Appendix 2.

First we test the effectiveness of the decomposition method, through a comparison by solving the
full stochastic programming model directly using commercial software. Then, we test the sample
average approximation method using the decomposition method and we compute estimations of
the Value of the Stochastic Solution and the Expected Value of Perfect Information. Finally, the
scalability of this approach is tested by increasing the length of the time horizon, number of ships
and number of ports.

7.1 Effectiveness of decomposed model

To test the effectiveness of the decomposed model we compared its performance with the use of
Xpress Optimizer to directly solve the stochastic programming model with 10 scenarios. The results
are reported in Table 1. The column “Opt” gives the optimal values, the columns “Nodes” indicate
the number of branch and bound nodes, the columns “Seconds” report the running time in seconds
to solve the instance. For the decomposed model we report additionally the number of cuts added
in the column “Ncuts” and the number of iterations in the column “Iterations”, that is, the number
of times we solve the separation problem to add backlog and time constraints.

Table 1: Effectiveness of the decomposition approach
full model decomposed model

Instance Opt Nodes Seconds Nodes Seconds Ncuts Iterations
1 16210 5888 1498 3503 390 20 3
2 17610 20292 5397 16436 1061 24 4
3 18500 8495 2111 3863 434 65 3
4 17248.6 9253 1644 5377 526 78 4
5 15410 8177 2284 5356 384 18 3
6 18576.8 42774 7799 7247 854 32 4
7 15362.3 20720 4546 6658 603 45 4
8 17008 27740 5564 7558 740 28 4
9 13330 1911 362 1462 146 16 3
10 14550 46407 9200 3821 351 25 4

Average 16380.57 19165.7 4040.5 6128.1 548.9 35.1 3.6
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As expected, the running times of the decomposition method are much lower than the running
times obtained by solving the complete model. Additionally, we can see that the number of times
the separation problem is called is at most 4 and few cuts are added.

7.2 Testing different sizes of sets of scenarios

Next we follow the solution approach described in Section 5, see [9]. Each instance is solved for M
independent sets of scenarios, each set i containing m scenarios.

We conducted tests for m = 10 and m = 50. In all cases we consider M = 10 and the solutions
are evaluated using a bigger set of n = 1000 scenarios. For each value of m we give two tables
(Tables 2 and 3 for m = 10 and Tables 4 and 5 for m = 50). In the first table we present, for each
instance, zn(X∗), z̄m, GAP, σ̂zn(X∗), σ̂zm , σ̂G. In the second table we give, for each instance, the
average running time to solve the M problems (one problem for each set of scenarios of size m) using
the decomposition method, “Seconds M”, and the average time to compute zn(Xk), k ∈ {1, . . . ,M}
“Seconds n”, the average number of iterations, “Iterations”, to solve the M problems, that is, the
average number of times we solve the separation problem, and the average number of cuts (39)-(41)
added, “Cuts”.

Table 2: Bounds and variances for m = 10.
Instance zn(X∗) z̄m GAP (%) σ̂zn(X∗) σ̂zm σ̂G

1 16956.8 16358.0 3.7 24.12 76.68 80.38
2 19080.3 18516.9 3.0 47.19 173.77 180.06
3 21150.9 19660.2 7.6 95.57 265.06 281.76
4 19613.9 18750.8 4.6 198.39 293.10 353.93
5 18813.2 16658.5 12.9 72.32 194.24 207.27
6 21182.1 19743.3 7.3 104.68 210.69 235.26
7 16694.8 16509.5 1.1 76.59 196.75 211.13
8 19325.2 18664.2 3.5 70.96 227.79 238.59
9 14335.6 14139.0 1.4 115.00 238.07 264.47
10 17636.8 16721.6 5.5 127.03 324.51 348.49

Average 18479.0 17572.2 5.1 93.20 220.10 240.1

Table 3: Average times, average number of iterations and average number of cuts for m = 10.
Instance Seconds M Seconds n Iterations Cuts

1 77.0 35.0 3 16.4
2 180.5 38.5 4 16.4
3 95.6 45.7 3 16.4
4 104.9 42.5 3.4 18.4
5 118.3 41.2 3 15.2
6 181.7 50.9 3 14.4
7 133.5 29.3 3 13.9
8 117.7 54.3 3.2 19.6
9 37.1 42.9 3 20.2
10 123.1 40.7 3 16.3

Average 116.9 42.1 3.2 16.7
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Table 4: Bounds and variances for m = 50.
Instance zn(X∗) z̄m GAP (%) σ̂zn(X∗) σ̂zm σ̂G

1 16498.1 16352.4 0.9 11.51 44.18 45.65
2 19080.3 18375.8 3.8 47.19 219.28 224.30
3 20839.2 19542.5 6.6 97.57 141.96 172.26
4 19401.7 18027.2 7.6 198.39 241.19 312.30
5 18490.2 16160.0 14.4 66.21 119.28 136.42
6 20177.1 19651.1 2.7 104.48 96.41 142.17
7 16358.8 16204.4 1.0 76.59 98.48 124.76
8 18148.3 18015.3 0.7 70.96 198.24 210.56
9 13877.7 13876.4 0.0 115.18 116.46 163.80
10 16875.0 16336.1 3.3 127.03 286.35 313.26

Average 17974.6 17254.1 4.1 91.5 156.2 184.5

Table 5: Average times, average number of iterations and average number of cuts for m = 50.
Instance Seconds M Seconds n Iterations Cuts

1 426.5 51.0 3.3 18.8
2 838.2 64.8 3 16.5
3 658.3 59.4 3.1 18.9
4 682.8 57.8 3 20.1
5 627.2 63.9 3 16.8
6 751.9 50.2 4.2 16.8
7 573.3 76.1 3 16.3
8 791.0 49.5 3 19.8
9 174.5 51.5 4 18.8
10 524.3 56.0 3 17.8

Average 604.8 58.0 3.3 18.1

We can see that increasing m, the cost of the selected solution (zn(X∗)) decreases in average
by 2.8%. Also, the standard deviations σ̂zn(X∗), σ̂zm , σ̂G and the gaps have a reduction. The price
to pay for the improvement of the solution and reduction of variability is an increase in the average
running times. The running time is, on average, approximately 2 minutes for m = 10, and increases
to 10 minutes for m = 50.

7.3 Importance of a stochastic approach

To evaluate the importance of the stochastic approach we compute estimations of the Value of
the Stochastic Solution (VSS) and the Expected Value of Perfect Information (EVPI). The results
are given in Table 6. In column zn(X∗) we give the corresponding value for m = 50. To compute
the VSS we solve the model with one scenario, where the stochastic parameters are set to their
expected values. We used the sample average values (considering the larger sample), which are
very similar to the theoretical expected values. Solving this deterministic model we obtain the
well known expected value solution (VSS). The cost of this solution is given in column “EVS”. In
column “VSS” we give an estimation of the Value of the Stochastic Solution which is the difference
between EVS and zn(X∗). In column “PI” we give the average value of the n = 1000 deterministic
models, one model for each scenario, and in column “EVPI” we give an estimation of the Expected
Value of Perfect Information which is the difference zn(X∗)− PI.
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Table 6: Estimating the VSS and EVPI.
Instance zn(X∗) EVS VSS PI EVPI

1 16498.1 42049.2 25551.1 16210.1 288.0
2 19080.3 33020.1 13939.8 17620.2 1460.1
3 20839.2 39871.2 19032.0 18572.6 2266.6
4 19401.7 49582.5 30180.8 17285.9 2115.8
5 18490.2 58053.6 39563.4 15461.7 3028.5
6 20177.1 41503.3 21326.2 18942.0 1235.1
7 16358.8 32256.6 16052.2 15497.8 706.6
8 18148.3 64144.0 45995.7 17023.8 1124.5
9 13877.7 41125.7 27248.0 13354.0 523.7
10 16875.0 25623.9 8748.9 15066.9 1808.1

Average 17974.6 42723.01 24763.8 16503.5 1455.7

We can see, from Table 6, that the gains for using stochastic programming instead of the
deterministic model based on expected values are in general very high. In average, the value of the
best solution is only 9% above the value of Perfect Information (PI).

7.4 Scalability study

To study scalability of the stochastic approach proposed we tested the decomposition method for
larger instances, that can be seen as future realities in Cape Verde. For these tests we used an
intermediate dimension of m = 30 scenarios. The results obtained for the 10 unmodified instances
are given in Table 7. Table 8 shows the results for modified instances where the number of ports
is increased from 7 to 9, corresponding to a situation where all the inhabited islands are considered
simultaneously in the distribution planning. The average running time and the gaps increase, but
nevertheless, each master problem was solved to optimality. One of the reported gaps is negative,
which can happen as the optimality gap is only an estimation [9].

In Table 9 we report the results for another possible future reality, where the demand rates are
increased by 50% at each port and four ships instead of two are considered. As a result, the set of
possible port visits is approximately doubled. As the problem gets harder we added a time limit
of 600 seconds to each iteration and the overall running time for each instance, and for each set
of the M = 30 scenarios, was limited to 2400 seconds. Additionally, we also needed to introduce
a new stopping criteria in Algorithm 1 by bounding the number of iterations to five, since for
the previous instances solved we observed that in general 3 - 4 iterations were enough. In this
case none of the solutions obtained are optimal, and both the running time limit of 2400 seconds
and the maximum number of iterations for the subproblems are reached. Hence, the procedure
proposed acts as a heuristic, and in these cases the estimated optimality gaps are negative and the
standard deviations are very large. As the gaps and standard deviations provide no insight, we
report the EVS, VSS, PI, and EVPI in addition to the gaps but omit the standard deviations. The
average running times given previously in columns Seconds M and the number of iterations are also
omitted since the corresponding maximum values are attained in all instances. Finally, Table 10
shows results for a situation considering a time horizon of 15 days instead of eight days. Again,
the number of possible port visits is doubled, and the problem is much harder to solve. In both
cases with an increased number of port visits, the solution method only provides feasible solutions.
Further research, including improving the mathematical model by including valid inequalities and
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test new heuristic approaches could be followed, but such lines of research are out of the scope of
this paper.

Table 7: Computational results considering m = 30, with unmodified instances.
Inst. zn(X∗) z̄m GAP (%) σ̂zn(X∗) σ̂zm σ̂G Sec. M Sec. n It. Cuts

1 16940.0 16353.1 3.6 0.0 218.1 218.1 88.0 42.8 3 15.6
2 19080.3 18467.6 3.3 118.9 187.3 221.8 153.3 50.9 3 16.5
3 19890.5 19611.6 1.4 136.3 61.0 149.3 175.5 52.2 3 15.8
4 19376.3 18205.0 6.4 198.5 237.6 309.6 188.2 48.4 3 21
5 18746.7 16607.2 12.9 77.3 71.1 105.0 192.5 49.8 3 17.2
6 21879.4 19704.2 11.0 63.4 71.5 95.6 123.1 48.7 3.2 14.2
7 16538.3 16380.4 1.0 48.2 77.6 91.3 82.0 49.2 3 15.3
8 18648 18198.1 2.5 164.7 204.3 262.4 94.2 60.1 3.2 21.2
9 14183.2 14112.2 0.5 74.0 209.4 222.1 49.7 49.1 3 20
10 17335.5 16651.7 4.1 40.3 399.7 401.7 79.4 49.4 3 16.2

Av. 18261.8 17429.1 4.7 92.2 173.8 207.7 122.6 50.1 3.0 17.3

Table 8: Computational results considering m = 30 and 9 ports.
Inst. zn(X∗) z̄m GAP (%) σ̂zn(X∗) σ̂zm σ̂G Sec. M Sec. n It. Cuts

1 16331.1 16275.5 0.3 33.8 66 74.2 168.2 43.4 3.1 18.7
2 19821 17343.31 14.3 179.8 217 281.8 428.3 50.6 3 16.7
3 21778.1 17368.51 25.4 147.8 67 162.3 4729.8 45 3.6 26.8
4 21668.6 16699.71 29.8 150.7 162.8 221.8 1308.2 43.2 3.6 25.2
5 17387.8 16918.69 2.8 53 210.5 217.1 449.2 55.4 3.2 18.9
6 20685.8 16812.74 23.0 91.5 74.8 118.2 426.5 53.4 3.1 14.9
7 17591.1 16789.83 4.8 18.8 17.9 26 379.2 55.6 3.1 11.9
8 24740.6 23474 5.4 296.3 207.6 361.8 2038.4 39.4 4.5 34.6
9 15306.2 15476.5 -1.1 99.3 231.3 251.7 76.3 38.5 3 21.5
10 17255.3 17172.3 0.5 7.3 13.2 15.1 200.1 45 3 15.6

Av. 19256.6 17433.1 10.5 107.8 126.8 173.0 1020.4 47.0 3.3 20.5

8 Conclusions

We have presented a two-stage stochastic programming model with recourse for a maritime inven-
tory routing problem where sailing times and waiting times in port are random. The model has
relatively complete recourse, indicating that for each scenario, a feasible solution to the second
stage can always be found as long as the first stage solution is feasible. We proposed a decompo-
sition method where, for a given first stage solution, optimality is checked for the complete model
through an efficient separation method.

Ten instances based on real data from oil distribution at the Cape Verde islands are solved
using the sample approximation method. Computational tests have shown the effectiveness of the
decomposition method, and the importance of stochastic programming instead of a deterministic
approach. In addition, larger instances are tested study the scalability of the solution approach.
The instances become much harder to solve with increased demand and time horizon probably due
to the increased number of visits to each port.
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Table 9: Computational results considering m = 30, 4 ships and an increase of demand of 50%.
Inst. zn(X∗) z̄m GAP (%) EVS VSS PI EVPI Sec. n Cuts

1 20881.2 24094.7 -13.3 79305.7 58424.5 19284.3 1596.9 65 41.1
2 26410.5 43286.8 -39.0 36906.8 10496.3 20952.5 5458.0 68.6 51.3
3 30398.3 41360.5 -26.5 43685.2 13286.9 23224.1 7174.2 69.1 51.5
4 29909.3 41529.0 -28.0 86177.4 56268.1 23899.8 6009.5 70.3 60.5
5 26842.4 39513.0 -32.1 36572.7 9730.3 21661.1 5181.3 71.1 47.9
6 30115.5 55669.2 -45.9 37622.1 7506.6 26644.3 3471.2 73 60.2
7 26193.5 46872.4 -44.1 48606.5 22413.0 21580.2 4613.3 68.3 38.3
8 23560.2 24961.4 -5.6 21713.4 -1846.8 20493.1 3067.2 76 45.1
9 26365.6 50617.8 -47.9 59275.9 32910.3 21408.1 4957.5 67.9 48.9
10 26845.5 44631.7 -39.9 35867.3 9021.8 23800.8 3044.7 74.8 55.8

Av. 26752.2 41253.7 -32.2 48573.3 21821.1 22294.8 4457.4 70.4 50.1

Table 10: Computational results considering m = 30, and a time horizon of 15 days.
Inst. zn(X∗) z̄m GAP (%) EVS VSS PI EVPI Sec. n Cuts

1 44214.1 76173.8 -42.0 117381.2 73167.1 36153.5 8060.6 66.2 52.4
2 33447.2 42104.6 -20.6 57057.7 23610.5 33170.1 277.1 91.9 39.6
3 36646.7 86994.6 -57.9 95638.2 58991.5 33770.2 2876.5 81.6 44
4 32948.5 55697.3 -40.8 78427.9 45479.4 32942.1 6.4 87.4 40.6
5 37187.7 53273.1 -30.2 76047.2 38859.5 34530.0 2657.7 75.8 48.8
6 39283.3 55622.8 -29.4 92705.1 53421.8 33510.0 5773.3 79.6 53.4
7 38454.5 182426 -78.9 72285.6 33831.1 35610.0 2844.5 80.6 43.1
8 37167.2 47438.1 -21.7 44431.8 7264.6 36046.5 1120.7 74.5 49.7
9 35518.5 42995.2 -17.4 52212.1 16693.6 33185.1 2333.4 77.5 56.5
10 37810.8 87438.4 -56.8 63678.2 25867.4 36957.5 853.3 74.1 57.4

Av. 37267.9 73016.4 -39.6 74986.5 37718.6 34780.9 2487.0 78.9 48.6
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Appendix 1

The following inequalities, for each (i,m) ∈ SA, v ∈ V and c ∈ Ω, are implied by (22) - (24):

timc ≥ tjnc +
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Appendix 2

In this appendix we provide detailed information on the data used in the paper.
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Table 11: Distances, in nautical miles, between ports.
Port \ Port 1 2 3 4 5 6 7

1 0 8 48 121 142 152 133
2 8 0 44 119 130 160 130
3 48 44 0 86 88 119 92
4 121 119 86 0 37 116 144
5 142 130 88 37 0 83 121
6 152 160 119 116 83 0 61
7 133 130 92 144 121 61 0

Table 12: Ship capacities Cvk.
Ship \ Product 1 2 3 4

1 983 960 0 0
2 645 0 818 480

Other parameters:

Sailing time between i and j, for the best scenario, is given by the distance between i and j
divided by 8. TBi = 0.5, i ∈ N. QOvk = 0, k ∈ K, v ∈ V , and Qik = min{maxv∈V {Cvk}, S̄ik}.
CTijv = 10 ∗ Tijv, COik = 80 and CPik = 1. Furthermore, µi = 3 for ports with supply storage tanks,
and µi = 1 for ports which have consumption storage tanks only.
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