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Background: Amyloid beta 1–43 (Aβ43) may be a useful additional biomarker for
diagnosing Alzheimer’s disease (AD). We have investigated cerebrospinal fluid (CSF)
levels of Aβ43 in patients with early-onset AD in contrast to levels in late-onset AD.
For comparison, in addition to the ‘core’ biomarkers, several other analytes were also
determined [YKL-40, neurofilament light (NF-L), glial fibrillary acidic protein (GFAP), and
progranulin].

Material and Methods: Cerebrospinal fluid samples were obtained from patients with
early-onset AD (age ≤ 62, n = 66), late-onset AD (age ≥ 68, n = 25), and groups
of cognitively intact individuals (age ≤ 62, n = 41, age ≥ 68, n = 39). Core CSF AD
biomarkers [amyloid beta 1–42 (Aβ42), total tau, phosphorylated tau] were analyzed, as
well as levels of Aβ43 and other analytes, using commercially available enzyme-linked
immunosorbent assays.

Results: Cerebrospinal fluid Aβ43 was significantly reduced in early-onset AD compared
to late-onset AD (14.8 ± 7.3 vs. 21.8 ± 9.4 pg/ml, respectively), whereas the levels
of Aβ42 in the two AD groups were not significantly different (474.9 ± 142.0 vs.
539.6 ± 159.9 pg/ml, respectively). Aβ43 and all core biomarkers were significantly
altered in patients with AD compared to corresponding controls. NF-L was significantly
increased in early-onset AD compared to younger controls, an effect not found between
the older groups. Relationships between the Aβ peptides and tau proteins, YKL-40,
NF-L, GFAP and progranulin were also investigated without finding marked associations.
However, age-associated increases in levels of tau proteins, YKL-40, NF-L and GFAP
were found with respect to age in healthy controls. Results for these other analytes were
similar to previously published data. Aβ43 did not improve diagnostic accuracy in either
AD group compared to Aβ42.
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Discussion: Cerebrospinal fluid Aβ43, but not Aβ42 levels, varied significantly with age
in patients with AD. If CSF levels of Aβ peptides reflect amyloid deposition in brain, the
possibility arises that there is a difference between Aβ43 and Aβ42 deposition in younger
compared to older brain. However, the level of Aβ43 in CSF shows no improvement over
Aβ42 regarding diagnostic accuracy.

Keywords: early-onset Alzheimer’s disease, biomarkers, tau, YKL-40, neurofilament light, glial fibrillary acidic
protein, progranulin

INTRODUCTION

Alzheimer’s disease (AD) is often separated according to age,
whereby onset prior to age 65 years is considered to be early-onset
AD, while onset from an age of 65 years (which is much more
common) is termed late-onset AD. Although the pathological
burden of amyloid plaques and neurofibrillary tangles has been
shown to be greater in early-onset AD than in patients with
late-onset AD (Ho et al., 2002; Marshall et al., 2007), imaging
studies have indicated the global burden to be similar between
the two groups (Rabinovici et al., 2010), though sometimes
with variation in regional anatomical distribution of amyloid
(Ossenkoppele et al., 2012; Cho et al., 2013). Such putative
differences in the distribution of amyloid pathology have not
been found to alter levels of the core cerebrospinal fluid (CSF)
biomarkers for AD; amyloid beta 1–42 (Aβ42), total tau (t-tau)
and phosphorylated tau (p-tau) protein, in early- compared to
late-onset AD (Bouwman et al., 2009; Chiaravalloti et al., 2016).
Additionally, several studies have shown no correlation between
the core biomarkers and age in AD patients (Bouwman et al.,
2009; Mattsson et al., 2009; Popp et al., 2010).

However, healthy individuals display increased AD pathology
with increasing age (Savva et al., 2009). Older control individuals
have been found to have decreased CSF Aβ42 levels compared
to younger controls (Bouwman et al., 2009), and the level was
negatively correlated with age (Popp et al., 2010). Conversely,
CSF t-tau and p-tau correlate positively with age in healthy
elderly individuals (Blomberg et al., 2001; Glodzik-Sobanska
et al., 2009; Jaworski et al., 2009; Alcolea et al., 2015).

Amyloid beta 1–43 (Aβ43), compared to Aβ42, has an
additional threonine at the C-terminal through an alternative
γ-secretase cleavage of amyloid precursor protein (APP), and is
generally considered likely to be even more aggregation-prone
than Aβ42 (Jarrett et al., 1993; Saito et al., 2011; Conicella and
Fawzi, 2014), though recent kinetic experiments in vitro dispute
this (Chemuru et al., 2016). Aβ43 has been hypothesized to play a
role in AD pathogenesis despite its low concentration in human
brain tissue, and found to be frequent in both neuritic and diffuse
extracellular plaques in both familial and sporadic AD (Welander
et al., 2009; Keller et al., 2010; Sandebring et al., 2013). In an APP-
expressing transgenic mouse model, Aβ43 has been found to be
the first amyloid peptide to deposit in brain (Zou et al., 2013),
perhaps seeding subsequent Aβ42 deposition (Conicella and
Fawzi, 2014). Moreover, knock-in mice bearing the pathogenic
presenilin-1 R278I mutation demonstrated overproduction of
Aβ43, impaired short-term memory and acceleration of amyloid-
β pathology (Saito et al., 2011). Aβ43 correlates positively with

age in patients with AD (Bruggink et al., 2013), and correlates
closely with CSF Aβ42 both in patients and control individuals
(Bruggink et al., 2013; Lauridsen et al., 2016). As far as we know,
no study as yet has compared CSF levels of Aβ43 in early-onset
AD with late-onset AD.

We have therefore investigated Aβ43 and Aβ42 in CSF from
well-characterized cohorts of patients with early- and late-onset
AD. The cut-off between these subtypes of AD has been accepted
as 65 years of age, but in the present study we excluded patients
with age at onset in the 5-year period 63–67 years to highlight
potential age differences. Thus only patients with early-onset
AD ≤ 62 years of age, or patients with late-onset AD who were
aged ≥68 years were included.

In addition to the Aβ species in CSF from these two subgroups
of patients with AD and corresponding control groups, levels of
t-tau and p-tau were also determined. For further comparison,
levels of several other analytes that have been investigated with
respect to AD, and to age, were also assessed. These included
two other cytoskeletal intermediate filaments; neurofilament light
(NF-L) (Petzold et al., 2007; Vagberg et al., 2015; Olsson et al.,
2016) and glial fibrillary acidic protein (GFAP) (Vagberg et al.,
2015; Wennstrom et al., 2015), found, respectively, in neurons
and glia, YKL-40 (also known as chitinase 3-like protein 1),
a protease secreted mainly by astrocytes and considered a
marker for gliosis and neuroinflammation (Craig-Schapiro et al.,
2010), and progranulin, a growth factor believed to have anti-
inflammatory and neuroprotective abilities (Jing et al., 2016).

MATERIALS AND METHODS

Subjects
Study patients were ethnic Norwegians referred to the
Department of Neurology, St. Olav’s Hospital (Trondheim
University Hospital) by general practitioners, and diagnosed by a
neurologist. Some patients were initially diagnosed with amnestic
mild cognitive impairment (aMCI, n = 14) according to the
International Working Group on Mild Cognitive Impairment
criteria (Winblad et al., 2004), but all later developed AD within
the next 2 years. Patients with AD were diagnosed according
to the NINCDS-ADRDA criteria (McKhann et al., 1984), final
total n = 91, whereof 66 were aged ≤62 years at onset (early-
onset AD) and 25 were aged ≥68 years at onset of symptoms
(late-onset AD).

As controls, CSF samples were obtained either from non-
demented elderly volunteers (n= 35) recruited from societies for
retired people or caregivers not genetically related to the patient,
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or from samples stored in the Neurological Research Biobank at
the hospital (n = 45). These latter individuals had been referred
to the clinic for suspected neurological conditions, but none was
subsequently found. Of the total 80 control individuals, 41 were
aged ≤62 years, and 39 were aged ≥68 years. For the control
groups, CSF cell count, glucose and protein were within standard
physiological limits.

The neurological examination performed on most study
participants included the Mini Mental State Examination
(MMSE) (Folstein et al., 1975). MMSE was performed on all
patients, but for many control individuals there had been no
reason to carry out an MMSE during the clinical work-up,
and where MMSE was available, the minimum score was 28.
For the same reason, APOE genotype was not available for
most younger controls. The demographic data are shown in
Table 1.

Sampling of CSF
Cerebrospinal fluid was collected with patients lying on their side,
and lumbar puncture carried out at the level L4/L5 or L5/S1.
The first 2.5 mL CSF was used for routine clinical investigation.
Aliquots of CSF were collected directly into polypropylene

cryovials (Corning) immersed in ice-water. No samples used
in this study were contaminated by blood, and so were not
centrifuged. All samples were frozen within 30 min of lumbar
puncture and stored at −80◦C until analysis. Ten samples were
thawed and then frozen again before core biomarkers were
analyzed. One freeze-thaw cycle has previously been shown to
not significantly affect core biomarker results (Le Bastard et al.,
2015).

ELISA Assays
Cerebrospinal fluid samples were analyzed using ELISA
monoplex kits according to the manufacturers’ instructions
[Aβ43 (IBL), Aβ42 (Innogenetics), t-tau (Innogenetics), p-tau
(Innogenetics), NF-L (UmanDiagnostics), YKL-40 (Bio-Techne,
CSF diluted 1:400), GFAP (BioVendor) and progranulin
(Adipogen Life Sciences, CSF diluted 1:15)]. Samples were
thawed in ice-water prior to analysis, and all samples were
analyzed in duplicate. Cross-reactivity for Aβ42 in the Aβ43
ELISA was given as <1%. Although this would contribute
slightly to measurements for Aβ43, it would be a constant for
both control and patient groups. Aβ43 was reported to have 50×
less affinity than Aβ42 for the antibodies in the Aβ42 kit.

TABLE 1 | Demographic and CSF biochemical data.

Controls age ≤ 62 Early-onset AD age ≤ 62 Controls age ≥ 68 Late-onset AD age ≥ 68

Total n 41 66 39 25

Gender (female/male) 21/20 37/29 23/16 15/10

Age at inclusion (y) 57 (47–62) 61 (51–67)A
∗∗

71 (68–84) 76 (71–84)B
∗

Age at onset (y) N/A 58 (47–62) N/A 73 (68–82)

Duration (y) N/A 3 (1–11) N/A 2 (1–5)

MMSE score 29 (28–30) 24 (10–30)A
∗∗

29 (28–30) 23 (12–29)B
∗∗

12 63 33 25

APOE genotype (% with an ε4 allele, total n genotyped) 37.5 74.2# 45.2 72.2#

8 62 31 18

Aβ43 (pg/ml) 38.0 ± 14.6 14.8 ± 7.3A∗∗C∗∗ 45.8 ± 13.7 21.8 ± 9.4B∗∗

37 50 23 24

Aβ42 (pg/ml) 844.9 ± 220.9 474.9 ± 142.0A∗∗ 967.5 ± 247.2 539.6 ± 159.9B∗∗

31 64 36 25

t-tau (pg/ml) 246.5 ± 99.5B∗ 767.8 ± 485.5A∗∗ 348.0 ± 166.8 646.9 ± 418.6B∗

32 64 37 25

p-tau (pg/ml) 42.6 ± 18.1B∗∗ 98.1 ± 39.5A∗∗ 60.8 ± 20.8 98.8 ± 51.4B∗

32 64 37 25

YKL-40 (ng/ml) 139.1 ± 55.6B∗∗ 206.0 ± 97.4C∗ 237.3 ± 73.2 287.3 ± 109.8

38 45 34 23

NF-L (pg/ml) 567.2 ± 190.0B∗∗ 1497.8 ± 814.5A∗∗ 1381.4 ± 1419.3 1882.0 ± 2122.2

41 51 39 24

GFAP (pg/ml) 1227.5 ± 475.3B∗ 1889.8 ± 1072.1A∗ 1786.8 ± 608.3 2210.8 ± 903.1

13 14 25 21

Progranulin (pg/ml) 4844.2 ± 1349.8 4855.3 ± 1395.5 5358.8 ± 977.1 5403.6 ± 1064.9

37 38 8 21

Demographic data are given as the median (range) for continuous variables, CSF biochemical data are given as the mean ± SD, with the number of analyses. Statistical
analysis was performed with pairwise group comparisons of log-transformed analyte levels between controls and AD patients aged ≤62 years (age-adjusted), and
between controls and AD patients aged ≥68 years (age-adjusted), as well as between younger and older groups of controls, and younger and older groups of patients
with AD. ASignificantly different to younger controls, Bsignificantly different to older controls, Csignificantly different to late-onset AD patients. ∗p < 0.01, ∗∗p < 0.001.
# Increased frequency of the APOE ε4 allele in patient compared to control groups (p = 0.001). AD, Alzheimer’s disease; N/A, not applicable; MMSE, Mini Mental State
Examination; APOE, apolipoprotein E; y, years; Aβ, amyloid beta; t-tau, total tau; p-tau, phosphorylated tau; NF-L, neurofilament light; GFAP, glial fibrillary acidic protein.
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Statistical Analysis
Statistical analyses were carried out using SPSS version 24 (IBM)
and Stata version 13.1. Due to multiple testing, p-values < 0.01
were considered statistically significant. Distribution of gender
between groups and the distribution of the APOE ε4 allele
between groups were assessed with Pearson’s χ2 (chi-square)
test. Differences in age at inclusion between patients with
early- or late-onset of AD and respective control groups,
as well as for MMSE scores and duration of disease, were
assessed with the independent samples Mann–Whitney U-test
for pairwise comparisons of groups. CSF analyte levels were
log-transformed to approximate a normal distribution. Analyte
levels were compared for younger and older participants within
control and AD patient groups using t-tests for independent
samples. However, when comparing analyte levels between
controls and AD patients it was necessary to adjust for
age because patients were significantly older than controls in
both age groups. Analyte levels for the group of younger
controls were therefore compared with those of early-onset
AD patients, and older controls with those of late-onset AD
patients using linear regression and adjusting for age at inclusion.
Correlations between analytes, or between analytes and age
at inclusion, were calculated with Pearson’s r. Associations
are only tentative as both type 1 and type 2 errors can
occur even employing a significance level of p < 0.01 as in
the present study. Patterns as a whole have been considered
more informative than individual correlations. To investigate
potential differences in diagnostic accuracy, receiver operating
characteristic (ROC) curves were made for Aβ43 and Aβ42, and
the area under each ROC curve (AUC) was calculated. Youden’s
index was found to determine where the sum of sensitivity and
specificity was maximized. AUC was compared between Aβ43
and Aβ42 for controls and AD patients in corresponding groups
[DeLong method (DeLong et al., 1988)]. Levels of analyte ratios
were compared between groups, but overall did not separate
groups more clearly than single analytes, and are therefore
not considered further. Ratio data are given in Supplementary
Table S1.

Ethics Statement
The study was conducted according to the Helsinki Declaration.
Written, informed consent was obtained from all patients
or suitable proxies, and from all control individuals. The
Neurological Research Biobank has been licensed by the
Norwegian Directorate for Health Affairs, and the research was
approved by the Regional Committee for Medical Research Ethics
(approval 2010/226 REK Midt, 2013/467 REK Midt, 2013/150
REK Sør-Øst).

RESULTS

When comparing participant groups, there were no significant
differences in the distribution of gender. The median age
at inclusion in both younger and older control groups was
significantly lower than for corresponding patient age groups.
There was no significant difference in the duration of disease

between the two patient groups. No significant differences were
found in MMSE scores between individuals in the respective
control or patient groups. Both patient groups had significantly
lower median MMSE scores than their respective control group.
There was increased frequency of the APOE ε4 allele in combined
patient compared to combined control groups (p = 0.001)
(Table 1).

Cerebrospinal fluid levels of the various analytes are shown
in Table 1, and scatter plots for amyloid peptides are shown
in Figure 1 and in Supplementary Figures S1A–F for the other
analytes. Additionally, correlations between CSF levels of Aβ

peptides and other analytes, and between Aβ peptide levels and
age were calculated. CSF Aβ43 was significantly decreased in
patients with early-onset AD compared to late-onset AD, but
no significant difference was found between the two patient
groups for Aβ42. There were highly significant reductions in
the levels of both Aβ43 and Aβ42 in CSF of patients with AD
compared to controls. No significant differences in levels of
Aβ43 or Aβ42 were found between the two control groups. Both
CSF Aβ43 and Aβ42 were excellent at separating corresponding
controls from patients in the AD groups, with AUCs of 0.93
or better and no significant difference in AUCs between Aβ43
and Aβ42 (Table 2). Aβ43 and Aβ42 correlated significantly
with each other in all four participant groups (r = 0.58–0.85,
p ≤ 0.006).

A significant positive association between Aβ42 and age at
inclusion was found in younger controls (r= 0.55, p= 0.001) and
in early-onset AD (r= 0.38, p= 0.002). For older controls a trend
was found for a negative correlation (r = −0.42, p = 0.012), but
this was lost in late-onset AD. For Aβ43, a positive correlation
with age at inclusion was found in the early-onset AD group
(r = 0.43, p = 0.002), but the association was not significant in
the other three participant groups.

Results for t-tau and p-tau were similar in nature, and both
correlated with each other in all groups (r = 0.76–0.93, all
p < 0.001). Their levels were significantly increased in patients
compared to the corresponding control group, but there was
no difference between patients with early- or late-onset AD.
However, the older control group had significantly higher levels
of the tau species compared to younger controls (Table 1).
Associations between tau proteins and Aβ peptides were found
only in younger controls (r = 0.43, p = 0.016 to r = 0.52,
p= 0.003), not older controls or either AD group.

YKL-40 was not significantly increased in patients compared
to the respective control group. However, a significant increase
was found between early- and late-onset AD, as well as between
younger and older controls. There was a pattern for a relationship
between the Aβ peptides and YKL-40 in younger controls
and early-onset AD, but correlation coefficients were low (all
r = 0.33–0.44, p < 0.05 except for Aβ43 and YKL-40 in early-
onset AD, p= 0.003).

A highly significant increase in the level of NF-L was found in
early-onset AD compared to younger controls, but this difference
was lost between late-onset AD and older controls. There was
no difference between the two groups of patients, but older
controls had significantly higher levels of NF-L compared to
younger controls. Levels of GFAP in patients with early-onset
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FIGURE 1 | (A,B) Amyloid levels in cerebrospinal fluid. Scatter plots for all four participant groups with median lines added for each group. Values for the mean ± 1
SD are given in Table 1. Statistical analysis was performed with pairwise group comparisons of log-transformed analyte levels between controls and AD patients
aged ≤62 years (age-adjusted), and between controls and AD patients aged ≥68 years (age-adjusted), as well as between younger and older groups of controls,
and younger and older groups of patients with AD. (A) Aβ43, (B) Aβ42. ∗∗Significantly different at the p < 0.001 level. AD, Alzheimer’s disease; Aβ, amyloid beta;
EOAD, early-onset AD; LOAD, late-onset AD.
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TABLE 2 | Diagnostic accuracy of β-amyloids for the separation of controls and
patients.

Age ≤ 62 years Age ≥ 68 years

CSF Aβ43 AUC: 0.96
Sensitivity: 96%
Specificity: 89%

AUC: 0.94
Sensitivity: 79%
Specificity: 100%

CSF Aβ42 AUC: 0.93
Sensitivity: 92%
Specificity: 84%

AUC: 0.93
Sensitivity: 84%
Specificity: 94%

Aβ, amyloid beta; AUC, area under the receiver operating characteristic curve.

AD were significantly higher than in younger controls. Older
controls also had significantly increased levels compared to the
younger controls, but no significant differences between the
patient groups were found. No significant group differences in
progranulin levels were found in this material.

DISCUSSION

The most interesting result in this study is that the reduction in
CSF levels of Aβ43 was more marked in early-onset compared
to late-onset AD, and therefore seems to be age-related. This
difference was not found for Aβ42. As expected, there was
a clear and highly significant reduction in the concentration
of both Aβ43 and Aβ42 in the CSF of the patient groups
compared to corresponding controls. However, the data do not
suggest that Aβ43 has better diagnostic accuracy for AD than
Aβ42.

The increased deposition of parenchymal Aβ species in the
AD brain has been suggested as the reason for the reduced
amounts of Aβ peptides measured in CSF (usually Aβ42), based
on the idea that less may be available for passage over the brain-
CSF barrier (Fagan et al., 2006). Recent results from imaging
studies showed that although CSF Aβ43 is strongly associated
with cerebral amyloid deposits, even at early stages of clinical
cognitive impairment (subjective cognitive decline and MCI),
there were no relative differences in deposition between Aβ42
and Aβ43. Aβ43 therefore provided no diagnostic improvement
over the established marker Aβ42 (Almdahl et al., 2017). Also
in the present study comparing early- and late-onset AD versus
the corresponding control group, no improvement to diagnostic
accuracy was found for Aβ43 compared to Aβ42.

It is not immediately obvious why Aβ43 would be reduced
more in early-onset than late-onset AD, other than that there
is an age difference between the patient groups. However, two
studies comparing amyloid imaging in early- and late-onset AD
report regional (though not identical) differences in fibrillar
amyloid deposition (Ossenkoppele et al., 2012; Cho et al., 2013).
It is therefore possible there are age-related differences in the
topographical deposition of Aβ peptides, but whether this would
produce differences in CSF concentrations of the peptides in
early-onset compared to late-onset AD remains unclear. We did
not find a similar reduction for CSF Aβ42 in early-onset AD, and
this result is very similar to previously published data (Gronning
et al., 2012).

In healthy individuals, several studies have found little or
no correlation between age and Aβ42 levels in CSF (Hansson
et al., 2006; Bouwman et al., 2009; Mattsson et al., 2009;
Popp et al., 2010). Similarly in patients with AD, a number
of articles report no correlation between age and Aβ42 levels
(Bouwman et al., 2009; Mattsson et al., 2009; Popp et al., 2010).
Our data were similar in this respect. Even though significant
correlations between age and Aβ42 in controls and patients
were found, none were strong, and there was no pattern.
The significance of weak correlations is dependent on the number
of samples included and the significance level applied. Given that
even strong correlations do not guarantee biological relevance,
it can be questioned whether these fairly weak correlations
are sufficiently reliable to warrant speculation of underlying
physiological changes.

Generally speaking, our results for the core biomarkers
in controls and in AD, as well as the association with age,
agree broadly with previous studies (Blomberg et al., 2001;
Bouwman et al., 2009; Glodzik-Sobanska et al., 2009; Popp
et al., 2010; Alcolea et al., 2015; Chiaravalloti et al., 2016;
Olsson et al., 2016). Age is also important for other substances
analyzed in the present study. In recent years several reports
have shown that YKL-40 increases throughout middle-age in
cognitively healthy individuals, suggesting that a certain level
of neuroinflammation is physiological in normal aging (Alcolea
et al., 2015; Sutphen et al., 2015), as well as being an aspect
of AD (Wennstrom et al., 2015). The present study agrees
with the finding of increased YKL-40 levels with increased age.
There was a pattern of positive correlations between Aβ species
and YKL-40 in the younger groups. Most of the correlations
were rather weak so it is uncertain whether this represents a
physiological relationship, but tentatively agrees with previous
data indicating that markers of inflammation, including YKL-
40, and Aβ42 in normal aging and the early AD pathological
process, are related (Alcolea et al., 2015). NF-L is well known to
be increased in the CSF of patients with AD (Petzold et al., 2007;
Olsson et al., 2016), and the present results are in accordance
with this, but only in connection with early-onset AD. No
significant difference was found for CSF NF-L between late-
onset AD and older controls, which probably reflects the increase
of CSF NF-L in normal aging (Vagberg et al., 2015). Similarly,
we found an increase in CSF GFAP in patients with early-
onset AD compared to younger controls, but again perhaps
due to the increase in CSF levels of GFAP with age (Vagberg
et al., 2015), this difference was lost between late-onset AD and
older controls. The results for the older groups agree with one
study (Wennstrom et al., 2015), but not with another study
that found increased GFAP levels in AD patients compared to
controls (Jesse et al., 2009). No changes in the concentration of
progranulin in CSF from patients with AD were found compared
to controls, as previously demonstrated (Morenas-Rodriguez
et al., 2016).

Taken together, few differences were detected between early-
and late-onset AD when analyzing CSF for potential markers of
disease, even though the two groups had been clearly defined
with respect to a difference in age. When comparing patients and
controls, more differences were associated with early-onset rather
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than late-onset AD, perhaps because both patients and controls
tend to suffer more comorbidities with increasing age which
can cloud differences between patients with AD and controls.
The main strength of the present study was to employ clinically
well-defined patient and control cohorts that were large enough
to distinguish differences and similarities in Aβ43 and Aβ42.
In light of an earlier report (Lauridsen et al., 2016), future
studies should probably concentrate on examining CSF Aβ43
and Aβ42 in relation to early stages of the AD process,
including amnestic MCI, subjective cognitive decline, and
cognitively intact individuals who have a pathological pattern
of core biomarkers in CSF, or increased amyloid deposition in
brain.
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