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Abstract

This thesis investigates the leptokurtic properties of the Markov-switching jump diffusion LIBOR market

model. To this end we specify a numerical scheme to obtain forward LIBOR rate forecasts. This scheme

is obtained by letting the parameters in a jump diffusion LMM, specified under a marked Poisson point

process, be dependent on an underlying continuous time Markov chain. The objective is then to see

whether adding a Markov-switch component will significantly affect the kurtosis of a forecast distribution

and whether the counterparty risk is captured more accurately. Further, an ordinary log-normal LIBOR

market model is implemented in addition to a jump diffusion LMM such that the results can be properly

compared. Procedures for calibrating the MSJD to market data is described in detail. Finally, crude forms

for backtesting is done for the risk measure potential future exposure, in addition to considerations on

kurtosis.
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Sammendrag

I denne masteroppgaven undersøker vi egenskapene til en Markov-switching jump diffusion LIBOR market

model i kontekst av leptokurtose. Vi spesifiserer en numerisk metode for å simulere fremtidige distribusjoner

av forward-renter. Dette gjøres ved å la parameterne i en jump diffusion LMM, speisifsert under en marked

Poisson point prosess, være avhengig av en underliggende Markov-kjede. Målet med oppgaven er å se om

Markov-switching jump diffusion LIBOR Market-modellen p̊avirker kurtosen i LIBOR-renter tilstrekkelig, og

om den kan fange motpartsrisiko mer nøyaktig. For å undersøke dette, implementerer vi ogs̊a en log-normal

LMM, i tillegg til en jump diffusion LMM for å sammenligne modelloppførselen. Prosedyrer for kalibrering

for å kunne simulere med modellen er beskrevet i detalj. Til slutt utfører vi en grov backtesting, der vi ser

p̊a motpartsrisiko p̊a historiske tidspunkter, i tillegg til kurtose.
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1 Introduction

Late fall 2016 the outstanding notional amount in the over-the-counter (OTC) derivatives market totaled

just short of 500 trillion USD [1]. In comparison, the total market capitalization of the global stock market

was 65 trillion USD [2]. Of the derivatives in the OTC market, 79 % of them was on interest rates. With

these numbers, the need for models that manage to capture some of the dynamics of these interest rates is

clear [3]. However, derivatives on interest rates are especially difficult to model, compared to other financial

instruments, since a whole family of underlyings has to be modeled. Thus interest rate modelling presents

some unique challenges for researchers in mathematical finance [3].

Over the years, several different mathematical models for describing interest rate dynamics have been

proposed. The first widely used methods were so-called one-factor models, where only the rate of shortest

maturity determine the evolution of the whole yield curve. Interest rates of different maturities can be

calculated from market prices on instruments such as bonds. Thus, the theoretical yield curve from a

one-factor model will most likely contradict the current market prices [4]. In the late 1980’s, there was a

break-through as Heath et al. introduced a multi-factor model based on instantaneous forward rates (HJM)

that was able to reproduce the yield curves quoted in markets [5]. Later came the LIBOR market model

(LMM) based on the same principle as the HJM model, the absence of arbitrage, but using simple rates [5].

Here, the diffusion is often assumed constant, which results in the model producing log-normal forward rates.

This assumption means that calibration from Black’s formula [6] to market prices can be done with ease. As

stated in the book of Glasserman [7], the LMM is gaining rapid acceptance in the financial industry.

However, the assumption of constant diffusion has been widely problematized in recent years. As pointed

out numerous times, see fore example Rebanato [5], Johannes [8] and Das [9], there is empirical evidence for

leptokurtosis in interest rates. That is, the historical distributions have fat tails, something the log-normal

LMM has been failing to properly reproduce. Further, it is also unable to reproduce skewed volatility

smiles[10]. The leptokurtic distributions observed in markets are often credited to two phenomena: Jumps in

interest rates and shifts in economic periods. Empirical evidence of jumps is presented in several papers such

as Babbs and Webber [11] and El-Jahel [12], whilst the existence of different economic regimes with different

volatilites in interest rates is put forward in Rebanoato and Joshi [13]. Hence, a natural improvement to

the log-normal LIBOR Market Model is to incorporate forms of diffusion that allows for these phenomena.

Glasserman and Kou(2003) [14] describes a market model with jumps based on marked point process.
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Further, Jamishidan (1999) [15] based on the working paper of Glasserman and Kou, defines a more general

jump process using semi-martingales [15]. Finally, to include different economic regimes, Steinrücke et al.

(2014) [16] let the parameters in the jump diffusion model be dependent on an underlying the Markov

chain.

Whereas Steinrücke et al. [16] focus on calibration and analytic pricing formulae for liquid instruments, in

this thesis we will rather investigate the forward LIBOR forecast distributions of a Markov-switching jump

diffusion LMM. The goal is then to see whether adding a Markov-switch will make the LMM reproduce

the heavier tails observed in markets more accurately. To this end we will obtain distributions of all three

variations of the LMM to evaluate the benefit of adding more complexity. Glasserman and Merner (2004) [10]

developed numerical schemes for the jump diffusion LMM using MPPs. Thus we will augment these schemes

with the Markov-switching component described in Steinrücke et al[16] to obtain forecast distributions from

a MSJD LMM. The calibration routines of Steinrücke is not directly applicable since we will not calibrate

the model to caps. Thus we propose an alternative, though highly similar routine to obtain our necessary

parameters.

Interest rates models are often used to evaluate the risk exposure associated with a portfolio of interest rate

derivatives, where the distribution tails are especially important [17]. A model is hence highly interesting

in a risk context if it is able to reproduce the tails seen in the markets more accurately [18]. A crude

backtest for the risk measure PFE will be implemented to evaluate model performance were we compare the

MSJD to the log-normal LMM and jump-diffusion LMM. Our final goal will be to forecast the risk measure

potential future exposure, as defined in the Basel documents, with all the above variations of LMM and

observe potential differences.

This thesis is divided into 8 chapters. First we state the necessary mathematical preliminaries and briefly

describe essential concepts in financial markets. Then we describe the models, their schemes and calibration

procedures in chapter 4. In chapter 5 we analyze our data and show estimated jumps and switching routines.

In chapter 6 we present the results from the backtesting and compare the forecasted potential future exposures

for a given portfolio of derivatives. Finally we present the discussion and conclusion in chapter 7 and 8.
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2 Mathematical Preliminaries

To derive the models, calibration routines and numerical schemes in this thesis we will make use of several

mathematical concepts. For the sake of rigour, this section will briefly state the key results and definitions

in stochastic processes in finance, probability measures and Bayesian hierarchical models that will be used

in this thesis. We will avoid overly theoretical and general definitions.

2.1 Stochastic processes in finance

The diffusion in the different specifications of the LIBOR market model make use of different stochastic

processes. However, they all contain the Wiener process.

Definition 2.1 (Wiener Process). A Wiener process Wt is a continuous-time stochastic process with the

following properties:

• Wt+u −Wt, u ≥ 0 is independent of Ws, s ≤ t.

• (Wt+u −Wt) ∼ N (0, u).

• W is continuous with probability 1.

Further, The wiener process can be viewed as a limit of the well-known random walk by letting the number

of steps tend to infinity and is sometimes called standard Brownian motion.

The jump-diffusion extension will in addition make use of marked point processes. Simply put, a marked

point process(MPP) associates marks to a point process. The formal definition of a general point process is

rather involved, thus we will demonstrate the concept through the Poisson point process on the real line as

this will be the most relevant for this thesis.

Definition 2.2 (Poisson Point Process). We consider the homogenous Poisson point process with

intensity parameter where λ > 0. Let N(a, b) be a Poisson random variable denoting the number of points

occurring in the interval (a, b] and n be some counting number. Then we have

P [N(a, b) = n] =
(λ(b− a))n

n!
e−λ(b−a).

In other words N(a, b) ∼ Poisson(λ(b− a)).
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Note that N(·) is integer valued and that it represents a random measure[19]. Further, the Poisson point

process has some nice properties; The number of points in each finite interval has a Poisson distributionadn

letting C and D be disjoint intervals, then N(C) and N(D) are independent random variables. Following

Johannes et al. [8] these properties yield that for a small enough interval (a, b], P (N(a, b) = 1) ≈ (b − a)λ

and P (N(a, b) = 0) ≈ 1− (b− a)λ.

We now define the marked Poisson point process used in this thesis.

Definition 2.3 (Marked Poisson Point Process). We define the marked Poisson point process as a

sequence {(τj , Xj)}j=1,2..., where τj follows a Poisson point process, and Xj ∈ R is called a mark.

The Markov-switching extension will additionally require a Markov process.

Definition 2.4 (Markov processes). A Markov process is a stochastic process that satisfy the Markov

property. The Markov property is defined as follows

P (Xt+1 | X1, . . . , Xt) = P (Xt+1 | Xt).

This imply that the history of observations, except the last, does not affect the probability of the next

observation. The Markov chain is a special case of a Markov processes. The discrete-time Markov chain

can be described by a set of random variables X1, X2, X3 . . . n, that satisfy the Markov property, where the

values of Xi form a countable set which represents the state space of the chain. To specify a discrete-time

Markov chain all you need is a n × n matrix stating the probability of moving from any pair of states and

a an initial state. The continuous time Markov chain is similarly defined where the Markov property for a

homogeneous process now becomes P (X(t + s) = j | X(s) = i) = P (X(t) = j | X(0) = 1). Instead of a

transition matrix, a continuous time Markov chain has a transition rate matrix A, also called infinitesimal

generator, where the elements qij of row i and column j satisfy the following properties

• 0 ≤ −qii <∞

• 0 ≤ qij : i 6= j ∀ i

•
∑
j

qij = 0 ∀ i

Unlike ordinary Markov models, where the states are observable, the states in a hidden Markov Model

(HMM) are unobserved, and are thereby described as hidden. However, the hidden state is observed through

another stochastic process, and inference about the hidden state is made through the observable states
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[20].

Definition 2.5 (Hidden Markov Processes). Figure 1 shows an illustration of how a first-order HMM

is constructed.

Figure 1: Illustration of a first-order hidden Markov model. X-nodes are unobservable states and E-nodes
are observable states.

There is a set of properties embedded in a HMM. Let X1, . . . , Xn be the discrete stochastic variables that

are unobserved, while E1, . . . , En are the observable variables, called the evidence. These variables equal

one of the states s1, . . . , sk. Moreover, a first-order HMM satisfies

• The first-order Markov property

P (Xt+1 | X1, . . . , Xt) = P (Xt+1 | Xt).

As described above, the history of observations, except the last, does not affect the probability of the

next observation.

• Stationary process The conditional probability P (Xt+1 | Xt) remains the same for all t. In other

words, the probability of an observation, given the previous observation, is independent of time.

• The sensor Markov assumption

P (Et+1 | X1, . . . , Xt, E1, . . . , Et) = P (Et+1 | Xt).

As long as the previous state of X is known, the previous evidence will not provide any addition

information to the probability of a future observation.

Let A be a transition matrix describing the probability of moving between the possible states. The probability
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of moving from state i to state j is then denoted aij . That is,

aij = P (Xt+1 = sj | Xt = si), where aij ≥ 0 and
∑
j

aij = 1 ∀ i, j.

Moreover, the initial state distribution of a HMM is defined as

πi = P (s1 = i), ∀ i ∈ S,

where S is the set of possible states.

There are four inference tasks of interest in HMM’s

• Filtering

The aim is to determine the probability of Xt based on the evidence e1, . . . , et: P (Xt | e1, . . . , et).

• Prediction

The probability of a future X based on the evidence e1, . . . , et: P (Xt+l | e1, . . . , et), where l is a positive

integer.

• Smoothing

Updating the probability of previous values of X based on e1, . . . , et to improve the estimates:

P (Xl | e1, . . . , et), where 0 ≤ k < t.

• Most likely path

Finding the most probable sequence x1, . . . xt based on the evidence e1, . . . , et:

arg max
X1,...,Xt

P (x1, . . . , xt | e1, . . . , et).

Central to the interest rate models described in this thesis is the concept of Martingales.

Definition 2.6 (Martingale). A discrete-time martingale is a stochastic process described by stochastic

variables X1, X2, ..., Xn where the following should hold

E(Xn+1 | X1, X2, ..., Xn) = Xn

E(|Xn|) <∞

This simply means that given a realized sequence of a martingale, the expectation of the next value is equal

to the last value in the sequence. Martingales are hence closely related to the Markov property. A process
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is semi-martingale if it can be written as the sum of local martingales.

Similarly we define the continuous time martingale

Definition 2.7 (Continous-time Martingale). A continuous time martingale with respect to the stochastic

process Xt satisfy:

E(Yt | {Xτ , τ ≤ s}) = Ys ∀s ≤ t

E(|Yt|) <∞

If P (Yt > 0) = 1 ∀t, we say the martingale is strictly positive

2.2 Bayesian Hierarchical Models

Estimating parameters when there are several levels in model can be done with Bayesian Hierarchical

models.

Definition 2.8 (Bayesian Hierarchical Models). Let x be the data, f(·) denote a probability density

function. Further, let x | θ ∼ f(x | θ), called the likelihood function, and θ ∼ f(θ), called the prior

distribution. Then, by Bayes’ rule

f(θ | x) ∝ f(xθ)f(θ),

which is the posterior distribution. This can be exploited to find joint posteriors, such as

f(θ, γ | x) ∝ f(x | θ, γ) f(θ, γ) f(θ).

One can select the prior distribution such that is in the same family as the posterior

Definition 2.9 (Conjugate Priors). If the posterior f(θ | x) is in the same family as the prior f(θ), then

the prior is conjugate.

If the posterior distribution is not parametric, one can use Markov Chain Monte Carlo methods for sampling.

A special case is called Gibbs sampling

Definition 2.10 (Gibbs Sampling). Given a joint distribution p(x1, . . . , xn) we aim to obtain samples

X(i) = (x
(i)
1 , . . . , x

(i)
n ). This can be done with the following the procedure:

• Set initial values X(i)
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• Now sample x
(i+1)
j ∀j by conditioning the joint distribution on the rest of the parameters, p(x

(i+1)
j | x̄(i)).

Here x̄(i) represents all observations except x
(i)
j . Repeating this procedure k times will produce k samples.

If the conditional joint distribution p(x
(i+1)
j | x̄(i), ) is parametric, the procedure is straightforward.

The samples can be used for parameter estimation through Monte Carlo estimation. First we define:

Definition 2.11 (Central Limit Theorem). Let X be a random variable with mean µ <∞ and variance

0 < σ2 < ∞. Consider the independent, identically distributed random sample X of size n. Then, the

central limit theorem provides that

lim
n→∞

1

n

n∑
i=1

Xi ∼ N
(
µ,
σ2

n

)
.

That is, the sample mean of X approaches the normal distribution with mean µ and variance σ2/n.

Definition 2.12 (The Weak Law of Large Numbers). Let X1, . . . , Xn be independent, identically

distributed random variables with mean E(Xi) = µ and variance Var(Xi) = σ2 < ∞. Furthermore, let

X̄n = 1/n
∑n
i=1Xi. The weak law of large numbers then states that

lim
n→∞

P (|X̄n − µ| < ε) = 1, (2.2.1)

for every ε > 0.

We are now ready to define Monte Carlo simulation. The idea behind Monte Carlo methods is the relationship

between probability and volume [7]. More precisely, an event is one of the possible outcomes in a sample

space, and the probability of a specific event is its volume relative to the sample space. Monte Carlo

simulations are thereby performed by drawing random samples from a given sample space and then find the

fraction of outcomes that fall in a given set as an estimate of the volume of the set. By the weak law of large

numbers, equation (2.2.1), this estimate will converge to the true value as the number of draws increases.

Moreover, the central limit theorem from equation (2.11) indicates the error made in from this estimation

when a finite number of samples are drawn.

Definition 2.13 (Monte Carlo). To illustrate Monte Carlo simulations, consider the integral

α =

∫ 1

0

f(x) dx, (2.2.2)

for an arbitrary function f(x). This coincide with the expected value of f(U), with U being uniformly
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distributed from 0 to 1. Let U1, . . . , Un be independent, uniformly distributed samples from [0, 1]. The

estimated mean of f(U) is

α̂n =
1

n

n∑
i=1

f(Ui). (2.2.3)

Provided that f is integrable in the interval [0, 1], the weak law of large numbers from equation (2.2.1)

ensures that

lim
n→∞

α̂n → α, (2.2.4)

with probability 1. Moreover, assume f is twice integrable and define

σ2
f =

∫ 1

0

(f(x)− α)2 dx, (2.2.5)

and the quantity α̂n − α to be estimation error. The error will approach a zero-mean normal distribution

with standard deviation σf/
√
n as n grows. Even though σf can be difficult to access, it might be estimated

by the unbiased sample standard deviation

Sf =

√√√√ 1

n− 1

n∑
i=1

(f(Ui)− α̂n)2. (2.2.6)

Hence, the function f evaluated at U1, . . . Un estimates α and additionally provides the estimation error.

The LMM specifications contain the derivative of continuous-time stochastic variables. Itô’s lemma relates

small changes in a function of a random variable to the small change in the random variable itself and is

typically used to find the necessary derivatives in interest rate models.

Lemma 2.1 (Itô’s Lemma). Consider a smooth function f of a random variable G, where G is described

by a stochastic differential equation

dG = a(X, t)dX + b(G, t)dt. (2.2.7)

By applying Itô’s lemma, f(G) can be expressed as

df = a
df

dG
dX +

(
b
df

dG
+

1

2
a2 d

2f

dG2

)
dt. (2.2.8)

Finally we formalize kurtosis.
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Definition 2.14 (Kurtosis). Kurtosis can loosely be desribed as a measure of how heavy the tails of the

respective distribution is. More formaly it is defined as the fourth standardized moment of a random variable.

Kurt[X] =
E[(X − µ)4]

(E[(X − µ)2])2

A distribution is leptokurtic if it has greater kurtosis than the normal distribution, which has a kurtosis of

3.

2.3 Probability measures

Central in the derivation of interest rate models is the concept of changing probability measures to obtain

different dynamics.

Definition 2.15 (Probability measure). Let µ denote a function, if µ satisfy the following, it can be

considered a probability measure

• µ must return results in the unit interval [0,1] where 1 is returned for the whole interval and the empty

set for 0.

• µ must satisfy the property of countable additivity where all countable collections of {Ei} of pairwise

disjoint sets we have that µ

(⋃
i∈I

)
=
∑
i∈I

µ(Ei)

Two measures might be considered equivalent.

Definition 2.16 (Equivalent measures). Let µ, θ be two signed measures where µ, θ → R. The measure µ

is considered equivalent to θ if they are absolutely continuous with respect to each other: µ� θ � µ

Grisanov’s theorem describes how the dynamics of a stochastic process is changed when the measure is

changed to another equivalent measure. We will state the theorem in relation to the Wiener process due to

the relevance in finance.

Theorem 2.2 (Grisanov’s theorem). Let t be a Wiener process and let Xt be a measurable process where

a natural filtration Ft is adapted to Wt with X0 = 0. Now define E([X]t) = exp (Xt − 0.5[X]t). Further if

E(X)t is a strictly positive martingale, then we can define a probability measure Q such that the Radon-Nikodyn

derivative is

dQ

dP
|Ft= E(X)t

The measure Q for each t restricted to the fields t is now an equivalent measure to P restricted on Ft.
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Finally we define the Radon-Nikodym derivative in the

Definition 2.17 (Radon-Nikodym Derivative). Given a measurable space (X,Σ) and a σ-finite measure ν

that is absolutely continuous with respect to a similar measure µ on the same space, then there exists a

measurable function f : X[0,∞) such that

ν(A) =

∫
A

fdµ (2.3.1)

where A ⊂ X is some measurable space.
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3 Introducing Interest Rate Modelling and Risk Management

In this section we will give a brief introduction to interest rate modelling and risk management. Further we

will state basic concepts from finance and the necessary preliminaries related to interest rate derivatives and

relate the theory of probability measures to its applications in mathematical finance.

3.1 Interest Rates and Financial Instruments

The most elementary notion in this thesis is interest rates.

Definition 3.1 (Interest Rate). Interest, sometimes referred to as yield, is the cost of borrowing capital

or the compensation for setting money at the disposal of others. The simple interest rate refers to the cost

as a fraction of the amount of capital borrowed that has to be paid at the when the loan ends while the

compounded interest rate can be defined more mathematically: Given a deposit of 1, n interest payments

and an annual rate of r/n. At time t, the deposit’s value after T years equals

C(t) =
(

1 +
r

n

)n(T−t)
.

Many models make use of the continuously compounded rate where the value is obtained by letting n→∞

giving

C(t) = er(T−t), (3.1.1)

As the interest rate may vary during the time period, we let

C(t) = e
∫ T
t
r(τ) dτ . (3.1.2)

An example of a widely used interest rate is The London Interbank Offered Rate (LIBOR).

Definition 3.2 (LIBOR). The London Interbank Offered Rate represents the average of interest rates

estimated by each of the leading banks in London that it would be charged were it to borrow from other

banks. LIBOR is quoted daily in several currencies for several maturities.

The LIBOR rate is a reference rate, meaning that is often used as an benchmark to determine the prices of

certain financial instruments.
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Definition 3.3 (Financial Instrument). Financial instruments are loosely defines as monetary contracts

between a certain numeber of parties. They can often be traded in a market.

We will mainly focus on one such type of instrument called derivatives.

Definition 3.4 (Derivatives). A derivative is a contract where the value is derived from an underlying.

The underlying may refer to several entities such as stocks or interest rates. An interest rate derivative simply

refers to a derivative with a reference rate as underlying. The most basic and widely traded derivatives are

often called ”vanilla”- derivatives. The term ”exotic” would refer to the opposite.

One of the most basic and widely traded interest rate derivatives is the interest rate cap. In general, caps

are traded to reduce risk exposure regarding upward movements in interest rates.

Definition 3.5 (Cap). An interest rate cap is a contract that generates yield when the interest is above an

agreed strike price. Cap contracts agrees upon a certain interest rate reference, such as the 6-month LIBOR.

Additionally, the contract also contains a notional value and payment times. A Cap is a portfolio of caplets.

That is, the total lifespan is divided into subsequent time periods, where each period has a related caplet.

The payment of caplet number i, Ci, at its maturity Ti is given by

Ci(r, Ti) = Nαi max(rR(Ti)− rS , 0), (3.1.3)

where N is the notional value, αi is the day count fraction corresponding to period i, rR is the reference rate

and rS is the strike rate. The holder often receives the payment at the end of the period, i.e. at time Ti+1.

Since a Cap consists of caplets, its payout is dependent on the level of the reference rate at several points

in time in the future. If the strike rate is set equal to today’s forward rate, the caplet is said to be ”at the

money” (ATM). That is, the total lifespan is divided into subsequent time periods, where each period has a

related caplet. The payment of caplet number i, Fi, at its maturity Ti is given by

Ci(r, Ti) = Nαi max(rR(Ti)− rS , 0),

where N is the notional value, αi is the day count fraction corresponding to period i, rR is the reference rate,

and rS is the strike price. The holder receives the payment at the end of the period, i.e. at time Ti+1.

The opposite of a cap is a floor, which obtains its payout from the following equation

Fi(r, Ti) = Nαi max(rS − rR(Ti), 0).
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Another important financial instrument in this thesis is bonds.

Definition 3.6 (Bonds). A bond is a fixed-income contract paid in advance. The issuer of the bond receives

a payment, called notional, from the now holder of the bond. The contact then yields a predetermined amount

to the holder at a given date called the maturity date. Further, a bond may be coupon-bearing, meaning

that it also pays cash dividends at fixed times. Without these intermediate coupon payments, the bond is

called a zero-coupon bond. Major governments usually issue bonds with a fixed set of maturities, e.g. 5-year,

10-year and 30-year bonds.

From a more pragmatic perspective, the issuer of the bond received a loan from the holder, equalling the

notional, that is paid back with interest at the maturity date. The majority of bonds are possible to trade

in a secondary market and the prices of bonds issued buy large governments are quoted daily. Often the

annual interest rate on the bonds is quoted rather than the prices. If you were to plot the different yields of

the bonds of different maturities quoted on the same day, you would obtain a yield curve, also called term

structure. The prices of the bonds can be obtained from the yields.

Definition 3.7 (Zero Coupon bond). Let Z(t;T ) denote the value of a zero-coupon bond at time t and

F be its face value. Z(t;T ) must satisfy

Z(t;T ) = Fe−
∫ T
t
r(τ)dτ , (3.1.4)

where the interest rate r is supposed to be known at all times t < T .

These bond prices are often seen in the context of forward rates.

Definition 3.8 (Forward rates). A forward rate is the interest rate for borrowing or lending at a future

time[7]. More specifically, Let fr(t, T1, T2) denote a forward rate based on simple interest, which is set at

time t and applies in the time interval [T1, T2]. The forward rates can be calculated using the prices of zero

coupon bonds

fr(t, T1, T2) =
1

T2 − T2

Z(t, T1)− Z(t, T2)

Z(t, T2)
, (3.1.5)

Proof : If a loan of 1 is taken out at T1 and repaid at T2, the amount repaid at T2 is 1+fr(t, T1, T2) ·(T2−T1).

This loan could be replaced by buying and issuing zero-coupon bonds. Let Z(t, T1) and Z(t, T2) be the price

of zero-coupon bonds bought at time t and maturing at time T1 and T2, respectively. The lender needed 1

at T1, which can be attained by buying the zero-coupon bond Z(t, T1). However, to make this payment, an
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amount k of the zero-coupon bond Z(t, T2) are issued. The following must hold

kZ(t, T2)− Z(t, T1) = 0 ⇐⇒ k =
Z(t, T1)

Z(t, T2)

As this construction was made to reproduce the loan described above, the payment at T1 is 1 and 1 +

fr(t, T1, T2) · (T2 − T1) at T2. Thereby,

k = 1 + fr(t, T1, T2)(T2 − T1).

Inserting the ladder expression for k yields equation 3.1.5

The above definition of forward rates introduces an important concept in interest modeling: By quoting

prices for bonds with maturity T1 and T2, the market indicate an interest rate applying between the dates

T1, T2. Suppose you obtain the forward rate applying in the window from 3 to 4 years in the future using the

bond prices quoted in the market to day. This forward rate should represent the markets prediction for the

1-year interest rate occurring in 3 years. This interest rate is particularly interesting if you have a portfolio

of interest derivatives which payout are directly dependent on the rate set in this exact window. However,

interest rate derivatives are dependent on reference rates and not directly on bond prices. An idea is thus to

use the forward rates calculated from bond prices as a proxy for future LIBOR rates[5]. These proxies are

called the forward LIBOR rates.

Definition 3.9 (Forward LIBOR rates). Let δ denote the accrual period of a LIBOR rate, which is often

fixed. Equation (3.1.5) for forward LIBOR rates L(t, T ) becomes

L(t, T ) =
1

δ

Z(t, T )− Z(t, T + δ)

Z(t, T + δ)
. (3.1.6)

From the above discussion the distinction between the LIBOR rates and the forward LIBOR rates should

be clear. In this thesis we will almost exclusively refer to the forward LIBOR rates and the context should

make it clear.

3.2 Stochastic interest rate models and change of Numeraires

Interest rates are often assumed to be stochastic[5]. Arguably the simplest and most general way of modelling

the future course of the interest rate r(t) is by treating it as a random variable following a random walk
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described by

dr = w(r, t) dX + u(r, t) dt, (3.2.1)

where w(r, t) and u(r, t) are functions explaining the behaviour of the short rate r(t) [21]. Models on this

form are hence one-factor short rate models since they use a univariate stochastic variable. The short rate

is the interest rate received by the shortest possible deposit. One of the most common one-factor models for

short rates is the Vasicek model.

Definition 3.10 (Vasicek). The Vasicek model describes the evolution of the interest rate by the following

equation

drt = α(b− rt) dt+ σdWt, (3.2.2)

where rt is the interest rate at time t, σ is the volatility, dWt is a wiener processs, b is the long-run mean

level, α is the speed of reversion.

Further assuming that α and b are positive constants, this model is clearly mean reverting. The Vasicek

model can thus be shown to satisfy two nice properties for short rate models: Always positive, and mean

reverting[21]. The definition of the one-factor short rate model does not include forward rates calculated

from bond prices. Hence as discussed in Wilmot [21] the theoretical yield curve from a one-factor model

will most likely contradict the current market prices. The parameters may, though, be fitted to an observed

yield curve [21].

In contrast to short rate models, one of the main principals in modern interest rate models such as the LMM

is the absence of arbitrage [3].

Definition 3.11 (Arbitrage). Arbitrage is the possibility of an instantaneous risk-free profit and often

arise due to price differences in markets.

Since efficient markets are supposed to be free of arbitrage, it is natural to impose the same property on the

model[3]. In the context of interest rate modeling, absence of arbitrage implies that the model should be

martingale under the chosen numeraire[7].

Definition 3.12 (Numeraire). An asset with strictly positive prices that denominate other assets.

Here asset can refer to any financial instrument. This means that the when choosing a numeraire, we also

choose the discount factor to be dependant on the asset chosen as numeraire. The theory of measure changes

now demonstrates its utility. Choosing an asset Sd as numeraire involves defining a new probability measure
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PSd
using the original measure Pβ together with the Radon-Nikodyn theorem.

dPSd

dPβ
=
Sd(t)

β(t)

/
Sd(0)

β(0)
(3.2.3)

Here Sd(t)/β(t) is assumed to be positive martingale and thus dividing by the initial values defines a change

of measure [7].

When estimating parameters straight from empirical data the term ”real-world”measure is often used [7].

The ”physical” measure refers to the same concept. If the bond of shortest maturity is used as numeraire,

the measure is called the ”spot” measure. If any of the other bonds maturing at a later time Tf is used as

numeraire, the measure is called the ”forward” measure. A LIBOR market model is usually specified to be

martingale, and thus free from arbitrage, under one of these measures [5].

3.3 Volatility and Risk Measures

In finance, the term volatility with respect to an instrument usually refers to the variance of the price of the

respective instrument.

Definition 3.13 (Volatility). Loosely defined volatility is the annualized variance of the price of a financial

instrument.

The concept of implied volatility is central in financial mathematics and arises when the price of a derivative

is a function of the volatility of the underlying. A classic example of this is Black’s formula [6] for pricing

an interest rate cap. Given all other parameters is known, we can simply solve the formula with respect to

the volatility.

Definition 3.14 (Implied volatility). Implied volatility is the volatility found by using a pricing formula

that contains volatility as one of the variables.

Thus implied volatility is a function of current market prices on the respective derivative. These prices

often reflects investors predictions of future volatility [5]. There will often be events, political etc., that will

change the volatility of a market. By simply looking at the historic volatility for the last 2 years, say, you

will marginalize these recent events. However, if the derivative is highly liquid, recent market prices will

reflect these events, thus the implied volatility will also reflect these events. This is why implied volatility is

often preferred to historical when forecasting future derivative prices [3].
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Closely related to volatility is the notion of risk. In finance, managing risk is central. The Basel Committee on

Banking Supervision provide regulations and for Banks and trading desks regarding risk exposure[22].

Definition 3.15 (Basel Committee). The main role of The Basel Committee on Banking Supervision is

setting capital adequacy requirements where the required capital is dependent on the level of risk exposure.

Procedures for calculating risk exposure is outlined in many of their documents.

Two types of risk defined in the Basel documents that is relevant for this thesis is market risk and counterparty

risk.

Definition 3.16 (Market Risk). Market risk is the risk associated with future losses arising from movements

in market prices [22].

Thus there will be market risk associated with a portfolio of assets and and derivatives on assets. Further

counterparty risk is defined as

Definition 3.17 (Counterparty Risk). The risk associated with a counterparty defaulting and not

fulfilling their contract.

When evaluating levels of risk exposure, measures of risk is needed. There are certain properties that are

desirable in a risk measure.

Definition 3.18 (Coherent Risk Measure). Let Z1, Z2 ∈ S where S is the set of all stochastic processes.

Further let the function φ : S → R define a coherent risk measure. Then φ satisfy the following properties

• Monotonicity: ∀Z1, Z2 ∈ S where Z2 ≤ Z1, then φ(Z1) ≤ φ(Z2). This is best explained with a

portfolio of in the money call options. ”in the money” call options mean that the strike price is lower

than the market price of the underlying. If the options in Z1 has a lower strike price than the ones

in Z2, meaning they are expected to have a higher yield, then the risk associated with Z1 should be

lower than the one associated with Z2

• Translation Invariant: Let λ be a risk-free yield, ∀Z1 ∈ S and ∀λ ∈ R then φ(Z1 + λ) = φ(Z1)− λ

• Subadditive: ∀Z1, Z2 ∈ S we have that φ(Z1 +Z2) ≤ φ(Z1)+φ(Z2). This means that adding portfolios

will never generate higher risk.

• Positive Homogeneous: ∀Z1 ∈ S we have that φ(cZ1) = cφ(Z1) for a positive constant c.

A common risk measure defined in the Basel documents is ”Value at Risk”(VaR).
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Definition 3.19 (Value at Risk). If η(t) represents the portfolio value at time t, then

V aRα(η) = inf{x ∈ R : P (η < −x) ≤ 1− α}

Put simply; VaR is the smallest number x such that the probability that the portfolio value η exceeds -x is

at least α. VaR does, however, not have the sub-additive property, meaning that it does not give the proper

incentives to diversify a portfolio.

Another risk measure defined in the Basel documents is ”Excpected Shortfall”(ES).

Definition 3.20 (Expected Shortfall).

ESα = E[−η : η > V aRα] =
1

α

∫ α

0

V aRα(η)

The expected shortfall is simply the expectancy of the values at risk. In contrast to VaR, ES is a coherent risk

measure. The final risk measures from the Basel documents we define is the potential future exposure(PFE)

and expected exposure(EE)

Definition 3.21 (Potential Future Exposure). The potential future exposure is the exposure of a

portfolio over its entire lifetime calculated at some level of confidence. PFE(t) is thus a function of time.

The upper quantile of the portfolio value is used.

The risk represented by PFE(t) is due to a counter party that might default its debt, thus it is considered a

part of counterparty risk. This measure can be explained more intuitively by an example. Consider an asset,

say a stock, that follows a stochastic process similar to the Wiener process. Then the estimated maximum

value will naturally rise the further into the future you forecast, since the variance of the Wiener process

increases. Calculating potential future exposure associated with a portfolio consisting of such a stock at a

specific time t would be very similar to the calculating the Value at Risk where the opposite tail is used.

PFE(t) should for this portfolio be a strictly increasing function of time. If however, a portfolio consisting

of an instrument such as an interest rate cap is considered, then the exposure related to individual caplets

will gradually disappear at certain future time points. An ATM cap will typically have a rising PFE(t) in

in the beginning as uncertainty rise, and a declining PFE(t) at the end as most of the caplets have rolled off

and no longer represent exposure. Expected exposure (EE) is similar to PFE(t) but measures the expected

counterparty exposure.
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Stochastic interest models are often backtested where one consider how well the model determine exposure

[23].

Definition 3.22 (Backtesting Risk Measures). Let the respective dataset contain observations from the

time interval [A,F ] and let the Portfolio P consist of interest rate derivatives. Backtesting risk measures

on a stochastic interest model involves calibrating the model using historic data from a period [B,C] where

A ≤ B < C then using the model to forecast the value of P into the interval [D,E] where C < D < E ≤ F .

The quantiles predicted for the value of P by the model for the interval [D,E] is then compared to the

historic prices of the derivatives. Statistical tests then may be used to determine if the quantiles given by

the model seems to fit the actual observations[18].

One of the simpler methodologies for backtesting VaR is based on the binomial distribution and uses the

test statistic

Z =
x−Np√
Np(1− p)

Here x is the number of failures N the number of observations and p = 1−VaR level, where VaR level is given

by the model. Further x is a failure when it is below the VaR level. There are several more sophisticated

way of testing VaR like Christoffersen’s test where the dependency between consecutive days is taken into

consideration.

We now outline some challenges linked to backtesting risk measures on interest rate models. First, consider

a portfolio of stocks and a stochastic model for stock prices. The portfolio would then contain objects that

was directly modeled by the model and the VaR level predicted by the model is directly comparable to

the observed stock prices. Now consider a portfolio of interest rate derivatives. An interest rate model

do not model the prices of derivatives directly, they are after all derived prices. The type of instrument

contained in the portfolio would most likely change the estimated VaR-level, thus obscuring the back-testing

procedure; you are in fact backtesting both the portfolio and the model. Further, consider backtesting the

measure PFE(t) stated at different points ti where i = 1 . . .M . As stated above, PFE(t) equals VaR when

conditioned on t, hence one could imagine a procedure involving the test statistic for VaR above at all ti [18].

However, since the estimated VaR levels of the different time points would be correlated, finding the proper

statistic, and thus determining if x failed or not, is not straight forward. The exact testing procedures of

risk measures linked to portfolios of derivatives used by banks is rather involved [23].

In this thesis backtesting is done using PFE as risk measure. We consider a crude version based on the
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book of Wedong [23] and the paper by Ng [17]. A portfolio of caps and floors is considered such that both

downward and upward interest movements are under different stressed periods where the significance of the

results will then be discussed.
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4 LIBOR Market Models

In this chapter we derive the LMM variations, their respective numerical schemes and describe calibration

procedures. Due to the close relation between the LIBOR market models, we will start with the log-normal

LMM, add jump diffusion, and finally consider the Markov-switching jump diffusion. This way we gradually

increase the model complexity and facilitate thorough understanding. First, we motivate the models by

briefly outlining the history of LIBOR market models.

While there exist several interest rate models, variations of the LIBOR Market Model (LMM) are some of the

most commonly used [7]. In the literature, as discussed by Rebonato [5], the name LIBOR market model is

actually slightly ambiguous. For the sake of rigour, we will use the same definition as given in Glasserman’s

book [7]: ”LIBOR market models are based on simple rates, and describe the arbitrage-free dynamics of the

term structure of interest rates through the evolution of forward rates.”

4.1 Log-normal LMM

Before introducing the elemental dynamics in the LIBOR market models, we recall equation (3.1.6) where

the forward LIBOR rates are defined through zero-coupon bonds

L(t, T ) =
Z(t, T )− Z(t, T + δ)

δZ(t, T + δ)
,

where L(t, T ) is the forward LIBOR rate at time t with a maturity of T + δ. In the remainder of this thesis,

the set of maturities are fixed to

0 = T0 < T1 < · · · < TM < TM+1,

where the distance between all maturities are equal. That is, δ = Ti+1 − Ti, for i = 0, . . . ,M . The most

common notation for forward LIBOR rates is letting Ln(t) be the forward LIBOR rate at time t with

maturity at Tn. Equation (3.1.6) is rewritten by applying the same notation for zero-coupon bonds

Ln(t) =
Zn(t)− Zn+1(t)

δZn+1(t)
, 0 ≤ t ≤ Tn, n = 0, . . . ,M. (4.1.1)
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The constraints on t and n implies that forward LIBOR rate Ln(t) is not valid for t > Tn. More explicitly,

after its maturity, Ln(t) expires. Hence, as time increases, the number of valid forward LIBOR rates will

decrease. In the paper by Brace, Gatarek and Musiela [24], these forward rates are assumed to follow the

simple dynamics

dLn(t)

Ln(t)
= µn(t) dt+ σn(t)ᵀdW(t), 0 ≤ t ≤ Tn, n = 1, . . . ,M, (4.1.2)

where W(t) is a d dimensional standard Brownian motion and σn(t)ᵀ, µ(t) ∈ Rd. Hence, equation 4.1.2

represents coupled stochastic differential equations , with drift and diffusion. This specification is also called

the log-normal LMM since it results in the forward rates being log-normally distributed.

We will now briefly outline how to derive the arbitrage-free drift term of the log-normal LMM, based on

Glasserman’s book [7]. We start by finding a suitable numeraire asset for the forward LIBOR rates. Consider

the following investment strategy: spend 1 on buying 1/Z1(0) zero-coupon bonds today which matures at T1

(at time t = 0), at T1 spend the resulting cash on zero-coupon bonds Z2(T1) maturing at T2, and proceed in

the same manner. The strategy generates a simple interest of Li(Ti) for every time interval [Ti, Ti+1]. Hence,

when only considering times coinciding of maturities, the cash flow by the investment strategy C(Tn), at

time Tn, is given by

C(Ti) =

n−1∏
j=0

(1 + δiLj(Ti)), (4.1.3)

where δi = Ti+1−Ti and n = i+ 1, . . . ,M + 1. This relationship defines the numeraire asset is based on the

bond with the shortest maturity, hence it induces the the spot measure in the LMM.

In order to make the LMM dynamics defined in equation (4.1.2) free from arbitrage under the spot measure,

we invert equation (4.1.1) with respect to the zero-coupon bond prices at maturity dates

Zn(Ti) =

n−1∏
j=i

1

1 + δLj(Ti)
, n = 1, . . . ,M. (4.1.4)

The zero-coupon bond prices need to be martingales when normalized by the numeraire asset [7]. Hence, we
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divide equation (4.1.4) by equation (4.1.3)

Dn(Ti) =

n−1∏
j=i

(1 + δLj(Ti))
−1

i−1∏
j=0

(1 + δLj(Tj))

, n = 1, . . . ,M.

The term Dn(Ti) is called the deflated zero-coupon bond price. As argued by Jamshidian [25], the deflated

zero-coupon bond prices must be positive, which is shown by Glasserman [7] to impose the following

expression for the drift

µn(Ln(Ti), Ti) =

n∑
j=η(ti)

δLj(Ti)σn(Ti)
ᵀσj(Ti)

1 + δLj(Ti)
. (4.1.5)

Consequently, the LMM dynamics under the spot measure reads

dLn(Ti)

Ln(Ti)
=

n∑
j=η(ti)

δLj(Ti)σn(Ti)
ᵀσj(Ti)

1 + δLj(Ti)
dt+ σn(Ti)

ᵀ dW (Ti), n = 1, . . . ,M. (4.1.6)

The function η(t) represents the index of the rate maturing next. It can be chosen to be left- or right

continuous, where Glasserman and Zhao [26] recommends using right-continuous for smallest discretisation

error.

4.1.1 Simulation

To simulate from the dynamics of the log-normal LMM, we discretize equation (4.1.6). As shown by

Glasserman and Zhao [26], there are various ways to discretize the dynamics, but in this thesis we choose an

ordinary Euler scheme. Moreover, we choose to apply the scheme on log(Ln(t)) rather than Ln(t). A more

detailed discussion on this topic can be found in Glasserman’s text book [7], we note however that using the

logarithm of the forward rates ensure that they stay positive. We obtain

L̂n(Ti+1) = L̂n(Ti) exp

([
µn(L̂n(Ti), Ti)−

1

2
||σn(Ti)||2

]
(Ti+1 − Ti) +

√
Ti+1 − Tiσn(Ti)

ᵀ Zi+1

)
, (4.1.7)

for n = 1, . . . ,M . Zi+1 is a standard Brownian motion, σn(Ti) is the volatility factor of maturity n at

maturity date Ti, and µn(Ti) is defined by equation (4.1.5). The simulations are initialized using equation
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(4.1.1) for t = 0, that is

L̂n(0) =
Zn(0)− Zn+1(0)

δZn+1(0)
,

for n = 1, . . . ,M .

Note that due to the properties of the Wiener process, using the scheme 4.1.7, one can scale the time grid

without increasing the discritization error [7]. For example, if you aim to price a cap, you only need each

forward rate at its maturity, i.e. Li(ti) . Then your time grid could only consist of points at T1 . . . TM since

all the time points in between the maturities are skipped by simply scaling the variance.

4.1.2 Parameter estimation

Common for all our models is that only the parameters related to diffusion is estimated from data. The drift

is completely determined from the no-arbitrage condition as seen in the previous section. We now state the

volatility structure that will be used throughout the thesis.

The σn(t) in equation (4.1.2) is called the volatility factors. Following [7], we assume σn(t) to be constant

between tenor dates, i.e. σn(t) remains constant for t ∈ [Ti, Ti+1]. In a one-factor case, σn(t)ᵀ ∈ R, the

volatility structure looks like [7]



σ1(T0)

σ2(T0) σ2(T1)

...
...

. . .

σM (T0) σM (T1) . . . σM (TM−1)


This structure can be interpreted in the following manner. When t ∈ [0, T0), L1(t) has volatility σ1(T0),

whilst for t ≥ T0, L1(t) has expired. Further, L2(t) has a volatility of σ2(T0) for t ∈ [0, T0) and σ2(T1) for

t ∈ [T0, T1). The same structure applies for the rest of the remaining maturities and for all relevant times.

This is the rationale behind the lower triangular shape.

Moreover, we let the volatility factors be stationary, causing the σn(t) to depend merely on the time to

maturity. That is, the difference between n and t meaning σn(t) = σ(n− t) [7]. For instance, let t = T3 and
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n = 5. Then, σn(t) = σ5(3) = σ(5− 3) = σ(2). The volatility structure then reads



σ(1)

σ(2) σ(1)

...
...

. . .

σ(M) σ(M − 1) . . . σ(1)


.

Hence, when t ∈ [T0, T1), L1(t) behaves as the LIBOR rate of the lowest maturity, while L2(t) has the

properties of a LIBOR rate of the second lowest maturity, and so forth. Once the time reaches T1, L2(t)

inherits the volatility σ(1). In the same manner, L3(t) gets σ(2) as volatility, and so forth.

In this thesis, the correlation between all forward rates are taken into consideration, causing σn(t)ᵀ ∈ RM .

We now state the relation between the covariance of the forward rates, and the volatility factors

Cov(Li, Lj) = σi(t)
ᵀσj(t). (4.1.8)

The correlation then becomes

Cor(Li, Lj) =
σn(t)ᵀσj(t)

||σn(t)|| ||σj(t)||
(4.1.9)

For the log-normal and jump-diffusion LMM we will weight the covariance- and correlation matrix such

that more recent observations becomes more prominent. The notion of focusing on more recent data when

forecasting with LMM is described in Rebonato [5]. To obtain the weighted matrices, a technique called

exponentially weighted moving averages will be used. Let li,k be the log-returns of forward rate i at time k,

that is li,k = log(Li(tk+1)/Li(tk)). As discussed in [27], the weighted matrix is given by

Σi,j =
1− λ

1− λN
N−1∑
k=0

λk(li,N−k − l̄i)(lj,N−k − l̄j)

where l̄i = 1
N =

N∑
k=1

li,k.

The smoothing parameter λ determines the weighting and can be chosen by the practitioner. It is usually

between 0.75 and 0.97 and in this thesis we will use λ = 0.94 [27]

Since the drift in our model is completely determined by arbitrage arguments, we only need to estimate the

volatility factorsσn, for n = 1, . . . ,M . The volatility factors describe the variance of the log-returns. Hence,
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we calculate the historical correlations and covariance between the log-returns, and then estimate σn from

equation (4.1.8) and (4.1.9). The system of equations is solved by a built-in numerical optimization routine

in MATLAB.

4.2 Jump diffusion LMM

We now follow Glasserman and Kou [7] and Glasserman and Merner [10], and introduce the jump diffusion

LMM. Intuitively, the interest rate dynamic posed in this section is based on the same principles as that

of the log-normal LMM where additionally random jumps is allowed to occur of a random magnitude. We

start out with a general description and gradually state the model assumptions.

The jumps can be represented through a marked point process as described in definition 2.3. We thus have

a sequence of tuples {(τj , Xj)}j=1,2..., where τj is a time point, and Xj denotes a jump mark. Note that τj

is not yet assumed Poisson as in definition 2.3. Further, we stress that the magnitude of the jump is not the

same as the mark Xj , however they are related through the map h(·). Similar to [10] we define the jump

magnitude J(t) occurring at τi to be given by a map h(·), which translates the mark to a jump magnitude

in R

J(t) =

Nt∑
j=1

h(Xj). (4.2.1)

Here, Nt, similarly to 2.2, is the number of marks in the time interval (0, t]. We let Nt have deterministic

arrival rate λ̂(t). Note thatNt is not necessarily a Poisson process under the desired measure and is considered

a general counting process for the time being. Further, we let the marks Xj be independent, with each having

the probability density function g(x). The intensity of the ith MPP is defined as νi(x, t) = gi(x)λ̂i(t). For the

next sections it is important to distinguish between the intensity of a MPP and the corresponding intensity

of the actual jump. We will need M marked point processes to model rates of M different maturities. We

thereby define, as in [10], the jump term for the nth forward rate to be

Jn(t) =

r∑
i=1

N
(i)
t∑

j=1

Hni(X
i
j).

We are now ready to augment the dynamics of equation (4.1.2) as in [14]

dLn(t)

Ln(t−)
= αn(t) dt+ γn(t) dW (t) + dJn(t), 0 ≤ t ≤ Tn n = 1, . . . ,M, (4.2.2)
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where t− denotes the left limit in time. Intuitively, Ln(t−) represents the level of the rate just before it may

jump. The arbitrage-free drift term will now have to incorporate the jump diffusion as well. Under the spot

measure, Glasserman and Kou [14] shows the general drift to be given by

αn =

n∑
j=η(t)

δγj(t)
ᵀγn(t)Lj(t−)

1 + δLj(t−)

−
∫ ∞

0

r∑
i=1

Hni(L(t−), x, t)

n∏
k=η(t)

1 + δLk(t−)

1 + δLk(t−)(1 +Hki(L(t−), x, t))
νi(x, t) dx,

(4.2.3)

where η(t) is defined as the index of the next maturity when you are at time t. More formally,

η(t) = inf{j ≥| Tj ≥ t}

The purpose of η(t) becomes clear when t is not equal one of the maturing dates. When t is equal one of the

maturing dates this parametrization is equivalent to the Musiela parametrization used for the log-normal

LMM.

So far, the jump diffusion model is quite abstract and difficult to simulate due to the presence of the marked

point processes that is not necessarily Poisson. We therefore introduce some assumptions that enables us to

formulate the dynamics without MPPs. First we define In(t) to be the set of MPPs that can affect the rate

Ln(t) at time t. For instance, for t = 4, the LIBOR rate L3(4) has expired and is not affected by any of the

MPPs any more; hence I3(4) = {}. Now, let the translation from marks to jump magnitudes be

Hni(x) =


x− 1, i ∈ In(t)

0, otherwise.

(4.2.4)

This simply imply that the mark x, at a jump time τ , is translated into an actual jump size of x− 1. This

applies for all the rates affected by that MPP. We additionally impose that the ith MPP is Poisson with rate

λ̂i(t), and the mark distributions gi(x) are log-normal. Following Glasserman and Kou [7], it can be shown

from here that the arbitrage-free dynamics of equation (4.2.2) and (4.2.3), under its own forward measure,

may be written as

dLn(t)

Ln(t−)
= −λnmndt+ γn(t) dW (t) + d

 Nt∑
j=1

Yj − 1

 0 ≤ t ≤ Tn n = 1, ...,M. (4.2.5)
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Here, Yj has probability density distribution fn, and Nt is Poisson distributed with rate λn. We follow [10]

and let the jumps be log-normally distributed, imposing

fn(an, sn) ∼ exp
(
N (an, s

2
n)
)
. (4.2.6)

This notation highlights the relation between the log-normal and the normal distribution, where an is the

mean and s2
n is the variance of the corresponding normal distribution. To lighten the notation we will denote

the first moment of the log-normal distribution as mn + 1 =
∫∞

0
xfn(an, sn) dx. From equation (4.2.5), we

see drift has become −λnmn. This is the same as E[
∑Nt

j=1(Yj − 1)] and subtracting this term clearly keeps

the forward LIBOR rates Ln(t) martingale under its own forward measure.

Considering a single forward rate Ln(t) the dynamics of equation (4.2.5) bears a lot of intuition. First of

all, there is no abstract marked point processes involved, and the jumps are sampled directly through Yj .

The jump term
∑Nt

j=1(Yj − 1) is simply found by summing over all the jump magnitudes for the jumps that

occur. Finally, part of the assumption is that the arrival of jumps are Poisson. We thereby have a model

which seems quite tractable in terms of simulation. However, now considering the multifactor case, as shown

in Glasserman [7], when the jumps are Poisson for all the rates under their own forward measures, as in

equation (4.2.5), they cannot all be Poisson under the same forward measure. This is problematic when

pricing derivatives, since they may require each forward rate to be comparable [16]. This is why we made

the effort of formulating the MPP in the first place: Glasserman and Kou [7] showed that by constructing a

thinning process from a random Poisson measure, we are able to sample from our desired MPPs. In other

words, we aim to reintroduce the MPPs in our dynamics and then specify how to make these tractable by

stating a Poisson thinning process.

We start by assuming the following relation between the intensity of the MPPs and the intensities in the

actual jumps ∑
i∈In(t)

νi(y, t) =

n∏
k=η(t)

1 + δyLk(t−)

1 + δLk(t−)
λnfn (4.2.7)

In other words, we are relating the abstract MPP intensities as described above to the intensity in the

nth forward rate. To make our jump diffusion comparable to the log-normal LMM, we aim to obtain the

equivalent of a Musiela parameterization. To this end we state that λn(t) = λn+1−η(t), fn(t) = fn+1−η(t)

and γn(t) = γn+1−η(t). Under this specification, it is seen from equation (4.2.7) that In(t), the set of which
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MPPs Ln is sensitive to, becomes

In(t) = {n+ 1− η(t), n+ 2− η(t), . . . ,M}

. Applying Theorem 3.1 in Kou [7] now enables us to state the dynamics of the jump diffusion LMM

dLn(t)

Ln(t−)
=− λn+1−η(t)mn+1−η(t) dt+

n∑
j=η(t)

δγn(t)ᵀγn(t)Lj(t−)

1 + δLj(t−)
dt

+ γn+1−η(t) dW (t) + d

 M∑
i=n+1−η(t)

N
(i)
t∑

j=1

(Y
(i)
j − 1)

 , 0 ≤ t ≤ Tn, n = 1, . . . ,M.

(4.2.8)

Here, N
(i)
t is the intensity of the ith MPP and Y

(i)
j − 1 is the translated jump magnitude. Observe that the

last term in equation (4.2.8) implies that if the rate Lk jumps, then all rates maturing earlier also jump.

Since N
(i)
t is not Poisson, we are still not able to simulate the dynamics. This motivates the introduction of

Proposition 4.1 from [7], which enables the use a Poisson random measure to simulate equation (4.2.8). The

dynamics are rewritten

dLn(t)

Ln(t−)
=− λn+1−η(t)mn+1−η(t) dt+

n∑
j=η(t)

γn(t)δγj(t)
ᵀLj(t−)

1 + δLj(t−)
dt

+ γn+1−η(t)(t) dW (t) +

∫ ∞
0

∫ 1

0

(y − 1)

M∑
i=k+1−η(t)

θi(y, u, L(t−), t) p(dy × dx, dt)
(4.2.9)

where p(dy × dx, dt) is a Poisson random measure with intensity λ̂0f(y). λ̂0 is related to the jump rate

via λ̂0 = λ1(2 + m1). Furthermore, f(y) = f1(y)+yf1(y)
2+m1

where f1(y) has mean m1 + 1 and variance s1.

Finally,

θi(y, u, L(t−), t) =


1,

i−1∑
j=1

νj(y, L1(t−), ..., LM (t−), t) ≤ uf(y)λ0 <
i∑

j=1

νj(y, L1(t−), ..., LM (t−), t)

0, otherwise,

(4.2.10)

where u is uniformly distributed between 0 and 1. Requiring all νj ≥ 0, only one of the MPPs can be non-zero

at the same point in time. As discussed in Glasserman [7], this is needed for a meaningful process. Keeping

the intensities non-zero yields restrictions on the parameter set. In Glasserman and Kou[14] they sate a

simple way to check these restrictions by assuming that sn+1 < sn, i.e. that the jump variance decrease as
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maturity increase.

4b2n

(
dn − log

(
λn+1

λn

))
≥ max(c2n, (cn − 1)2), (4.2.11)

where

bn =
1

2

(
1

s2
n+1

− 1

s2
n

)
, cn =

an
sn
− an + 1

sn+1
, dn = −1

2

(
a2
n

s2
n

−
a2
n+1

s2
n+1

)
+ log

(
sn+1

sn

)
.

To conclude, this section demonstrates that the jumps can be represented by M MPPs with Poisson arrival

rate. Further, the the intensity of the MPPs are related to the intensity of the jump. This means we can

estimate the jump arrival rate and jump mean from historical data, then estimate the MPPs from these

parameters, and finally use the MPPs to forecast the jump term again through a thinning measure.

4.2.1 Simulation

As stated by Glasserman and Merener [10], there is no way of generating exact sample paths for the model

in equation (4.2.9). Hence, we briefly follow [10] to develop a numerical scheme that are can handle the

combination of both standard diffusion and jumps. The following dynamics are considered

dX(t) = a(X(t)) + b(x(t)) dW (t) +

∫
E

c(X(t), z) p(dz, dt) (4.2.12)

where W (t) is scalar Brownian motion, and p(dz, dt) represents a Poisson random measure on E× [0, T ]. Its

intensity is λ0h(z), and the jump marks z are distributed with h(z) as its probability density function. The

idea is now to construct solutions to equation (4.2.12) at a set of discrete points in time {τi}. Derivation

of the first order Euler scheme can be found in [10]. We merely state the result here, where the scheme

reads

L̂n(t−i+1) = L̂n(ti) exp[ân(ti)(ti+1 − ti) + γk(ti)(Wti+1
−Wti)], (4.2.13)

where âk(ti) is defined as

ân(ti) = −λn+1−η(ti)mn+1−η(ti) −
1

2
γn(ti)

2 −
M∑

j=η(ti)

δjγk(t)ᵀγjL̂j(t
−
i )

1 + δjL̂j(t
−
i )

. (4.2.14)

As can be seen from the left limit t−i+1 above, this scheme is without the jumps. Actually, if λ0 = 0, then

this scheme is identical to the log-normal scheme from equation (4.1.7). After calculating the rates without
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regarding jumps, we are ready to incorporate the jumps

L̂n(ti+1) = L̂n(t−i+1)

1 +

∫ ∞
0

∫ 1

0

(y − 1)

M∑
j=n+1−η(ti)

θj(y, u, L̂(t−i+1), t−i+1)p(dy × du, ti+1)

 , (4.2.15)

where θj denotes a marked point process (MPP). The double integral is found by the thinning procedure

outlined in in equation (4.2.10). However, as pointed out in Glasserman and Merener [7], the notation for

the thinning process is obscuring a quite simple simulation routine.

We now quickly describe how we use equation (4.2.13) and (4.2.15) in practice. At each time step we firstly

apply equation (4.2.13) to find ti+1 L̂n(t−i+1), for n = 1, . . . ,M . That is, the rates without jumps. Now we

sample a jump path J, i.e. we sample a vector J of 1’s and 0’s, indicating jump or no jump, respectively.

By the MPP construction, this path is Poisson with intensity λ0. When ∆t = τi+1 − τi is sufficiently small,

the probability of more than 1 jump becomes negligible, and we have P (Ji = 1) ≈ λ0∆t [8].

We briefly pause to point out the implications of this detail. In a log-normal LMM, ∆t is usually set equal

to the accrual period, due to the properties of the Wiener Process, see equation (2.1). There is simply no

gain in simulating the process between the maturity dates in equation (4.1.6). This logic is, however, not

applicable for the jump diffusion LMM, since the probability for more than one jump between maturity

dates is most likely significant. That is, we focus on daily time increments for the jump diffusion LMM when

utilizing the scheme from equation (4.2.15).

Continuing on the thinning process. After the jump path J is acquired, we sample a mark y from the

distribution

f(y) =
f1(y) + yf1(y)

2 +m1
,

whenever Ji = 1. Firstly, we recognize that f(y) is a mixture of two distributions. We therefore sample

from Z1 = f1(y) with probability (2 + m1)−1 and from Z2 = yf1(y) with probability (1 + m1)(2 + m1)−1.

Remembering from equation (4.2.6) that f1 is log-normally distributed, it is shown in APPENDIX that

Z2 = yf1(y), y ∼ exp (N ) where the first moment is E[Z2] = E[Z1] + Var[Z1] and Var[Z2] = Var[Z1].

After we have sampled a jump y from f(y) for each jump time, the actual thinning starts. We begin with

computing all the partial sums needed in equation (4.2.10), i.e. Si =
∑i
j=1 µj for i = 1 . . .M which can

be found by using 4.2.7. Now, if Si−1 < uf(y)λ0 < Si, where u ∼ U(0, 1), the jump is accepted and all

rates maturing at Ti and earlier will accept the jump y. If uf(y)λ0 > sM , the jump is rejected. Using this
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thinning process, the integral in equation (4.2.15) is replaced with y. That is L̂k(ti+1) = L̂k(t−i+1) y. This

concludes the simulation procedure, where we have followed Glasserman and Merener [7] to demonstrate

how to simulate the LMM with jump diffusion under the spot measure using the forward specification of

jump arrivals.

4.2.2 Parameter estimation

The procedure for estimating the parameters in equation (4.2.8) is involved. We cannot estimate the diffusion

with the same routine as in the previous section, since it does not distinguish between what is standard

diffusion and what is jump diffusion. Further, we also need to estimate the jump mean and variance, in

addition to the arrival rate of jumps. Similarly to Steinrücke et al. [16], we start by following the dynamics

given in Johannes et al. [8]

dSt = µSt dt+ σSt dWt + d

 Nt∑
j=1

Sτj−(exp(Zj)− 1)

 ,

where St ∈ Rk, Wt is a vector standard Brownian motion and σσᵀ = Σ ∈ Rk × Rk. Here, Σ is the

covariance matrix for the diffusion. Nt is a Poisson process with constant rate λ and the jump sizes Zj ∈ Rk

are multivariate normal, with mean µJ and covariance matrix ΣJ . Estimating the parameters in equation

(4.2.2) captures the movements of correlated asset prices with jumps. This means that the arbitrage-free

requirement of the log-normal LMM given in equation (4.2.3) is not imposed. However, Steinrücke et al.

[16] proposes to apply the dynamics in order to estimate the jump diffusion only and discard the estimated

drift as it does not meet the arbitrage-free requirements.

Moreover, the forward specification of the jump diffusion LMM given in equation (4.2.8) does not explicitly

require the correlation between jumps, i.e. there is no correlation matrix for jumps. Additionally, we

have imposed restrictions for the jump parameters given in equation 4.2.11. Hence our procedure will be

the following: Use the one-dimensional case of equation (4.2.2) to estimate the jump parameters of each

historical forward rate separately. Now if the assumption in 4.2.11 is not kept, a reasonable adjustment

of the parameter must be made. The assumption in (4.2.11) given by [10] that the variance and intensity

is higher for lower maturities is not arbitrary. As we will see in the data analysis section, the log-returns

of shorter maturities is significantly more fluctuating. Thus, even though we have no guarantee that our

parameter estimation will yield variances and intensities that are strictly decreasing for higher maturities,
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we may assume that they are downward trending. Thus we argue that in the context of comparing the

forecast distributions of the Jump diffusion LMM with other models, a potential slight adjustment of the

jump parameters will not invalidate our results.

Even though the jumps in the rates are assumed to be uncorrelated in equation (4.2.8), the rates themselves

are assumed to be correlated similarly to the log-normal case. Consequently, using the one-dimensional

version of equation (4.2.2) for parameter estimation leaves us with no proper estimate of the diffusion term

σn(t). In their calibration routine, Steinrücke et al. [16] corrects their estimate of the implied volatility

by removing the diffusion that is attributed to jump diffusion. Similarly, if we remove the points from the

historical data that is estimated to represent jumps, the resulting log-returns of the series would represent

the ordinary diffusion term. Now, we could simply estimate the covariance matrix from the new data set and

calculate σn(t) in equation (4.2.8) for n = 1, . . . ,M the same way we did for the log-normal model. From

this discussion it is clear that we only need to estimate the following parameters from equation (4.2.2): The

jump path J, the jump arrival rate λ, the jump mean mJ and the jump variance vJ .

The jump path J is simply a vector of 0’s or 1’s for each time point in our data, indicating jump and no jump,

respectively. The main difference between the estimation procedure above and the procedure presented in

Steinrücke et al. [16] regards the diffusion. In this thesis we are not calibrating to a specific instrument, and

will therefore not concern ourselves with implied volatilities.

We are now ready to state the Bayesian hierarchical model for the estimation in the dynamics of equation

(4.2.2). Again, we closely follow Johannes et al. [8] and Steinrücke et al. [16]. Solving the differential

equation in equation (4.2.2), we can write

log

(
St
St−1

)
= µ+ σ(Wt+1 +Wt) d

 Nt∑
j=1

Zj

 ,

where the term µ represents the drift after integration. As Johannes et al. [8], we consider this model over

a small time frame, and as pointed out in the previous subsection, when the time step is sufficiently small,

the probability of more than 1 jump becomes negligible. We thereby obtain P (Jt = 1) ≈ λ0∆t. Solving this

differential equation one can write

Yt ≡ log

(
St
St−1

)
= µ+ σ

√
∆t εt + JtZt, (4.2.16)
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where εt is standard normal. The changes in diffusion is given by the properties of the Wiener process, see

equation (2.1), where the variance is proportional to the time step.

Our dynamics are now appropriately simple and the rest of the section will specify how to estimate the

parameters in equation (4.2.16), in addition to the jump path J and the jump sizes Z. As proposed in [8],

the procedure is carried out in the following Gibbs sampling steps, where k is the iteration index

1. Sample Θ(k) from p(Θ | Y,Z(k−1),J(k−1))

2. Sample Z(k) from p(Z | Y,Θ(k),J(k−1))

3. Sample J(k) from p(J | Y,Θ(k),Z(k))

In order to perform step 1, we firstly apply equation (4.3.7) and obtain

p(Θ | Y,Z,J) ∝ p(Y,J,Z | Θ) p(Θ), (4.2.17)

Furthermore, we assume the parameters of Θ are a priori independent which yields

p(α̂, δ2,mJ , v
2
J , λ) = p(α̂) p(δ2) p(mJ) p(v2

J) p(λ)

Following Johannes et al. [8], we have that p(µ, σ|J, Z, Y ) , p(µj ,Σj |J, Z) and p(λ|J) characterizes p(Θ|X,Y ),

while p(Zt|Θ, Jt, Yt) and p(Jt|Θ, Zt, Yt) characterize p(J, Z|Θ, Y ).

The input data of the estimation procedure will be a vector of observed historical rates, transformed according

to equation (4.2.16). From equation (4.2.16), we know that the observations in Y are independent conditional

on J, Z. Also, they are normally distributed, and we attain the likelihood

p(Y | Θ,J,Z) =

T∏
t=1

φ(yt, µ+ JtZt, σ
√

∆t),

where φ(a, b, c) is defined as the normal density function evaluated at a, with mean b and variance c.

The prior distributions of the parameters of Θ are chosen to be conjugate [8]. The details of the priors and

their hyperpriors are found in [16], and we will only show the main results here. For α̂, we choose a normal
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prior distribution. By assuming α̂ is conditionally independent of the jump parameters, we get

p(α̂ | Y, δ2,J,Z) ∝ p(Y | δ2,J,Z) p(α̂), (4.2.18)

producing a normal distribution. Next, the prior distribution of δ2 is inverse-gamma [16]. As δ2 is also

assumed to be conditionally independent of jump parameters, the posterior distribution becomes

p(δ2 | α̂,Y,Z,J) ∝ p(Y | δ2,J,Z) p(δ2), (4.2.19)

which is inverse-gamma distributed.

The jump size mean mJ variance v2
J are assumed to be dependent only on each other the jump path and

the jump sizes. More precisely, only the jump sizes at times which jump occurs. We attain

p(mJ | v2
J ,Z,J) ∝ p(Z | mJ , v

2
J) p(mJ), (4.2.20)

and

p(v2
J | mJ ,Z,J) ∝ p(Z | mJ , v

2
J) p(vJ), (4.2.21)

where the likelihood has independent observations that are assumed normal [16]. Thus,

p(Z | mJ , v
2
J) =

T∏
t=1

φ(Zt,mJ , v
2
J), (4.2.22)

where φ is still the normal density function. The jump mean is assumed to have a normal distribution as

its prior, while the variance prior distribution is inverse-gamma [16]. The posteriors are thereby normal and

inverse-gamma, respectively.

The last parameter is the jump arrival rate λ. The probability of a jump in a time interval is λ, and the

jumps are assumed to arrive independently [16]. Let NJ denote the number of jumps in the jump path J.

The probability of having NJ jumps over T time steps is therefore

p(J | λ) = λNJ(1− λ)T−NJ
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Using equation (4.3.7), we obtain

p(λ | J) ∝ p(J | λ) p(λ), (4.2.23)

where the prior distribution p(λ) is chosen to be beta, yielding a beta posterior [8].

Moving on to step 2, we start by using equation (4.3.7) as in [16] yet another time

p(Zt | Y,Θ,J) ∝ p(Yt | Zt,Θ, Jj) p(Zt | Θ). (4.2.24)

The likelihood is still normally distributed, and together with a normally distributed prior for Zt, the

posterior is normal.

Finally, in step 3, we exploit the fact that Jt can either be 0 or 1. Hence, as presented in [16], the posteriors

are

p(Jt = 1 | Θ, Zt, Yt) ∝ p(Yt | Jt = 1,Θ, Zt) p(Jt = 1 | Θ)

p(Jt = 0 | Θ, Zt, Yt) ∝ p(Yt | Jt = 0,Θ, Zt)P (Jt = 0 | Θ),

(4.2.25)

where p(Jt = 1 | Θ) = λ and p(Jt = 0 | Θ) = 1− λ.

The parameter estimation procedure can now be summed up in the following steps

1. Sample the hyperpriors a0, b20, f0, g0, aJ,0, bJ,0, fJ,0, gJ,0, u0, w0.

2. Sample priors

• α̂(0) ∼ N (a0, b
2
0).

• δ2(0) ∼ IG(f0, g0).

• m
(0)
J ∼ N (aJ,0, bJ,0).

• v2
J

(0) ∼ IG(fJ,0, gJ,0).

• λ(0) ∼ B(u0, w0).

The remaining steps are repeated for k = 1, . . . , R

3. Sample the parameters of Θ(k)

• Sample α̂(k) ∼ N(a(k), b2(k)).

• Sample δ2(k) ∼ IG(f (k), g(k)).
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• Sample m
(k)
J ∼ N(a

(k)
J , b

(k)
J ).

• Sample v2
J

(k) ∼ IG(f
(k)
J , g

(k)
J ).

• Sample λ(k) ∼ B(u(k), w(k)).

For details on the hyperpriors, see Steinücke et al. [16].

4. Sample Z
(k)
t ∼ N(R

(k)
j , S2

j
(k)) for t = 1, . . . , T .

5. Sample Jt for t = 1, . . . , T using equation (4.2.25).

The first RB iterations are discarded. The estimated values of α̂, δ2, mJ , v2
J , λ, Z and J are set to the

respective average values over the remaining iterations. For J, the average value is rounded to the closest

integer.

For a verification of the implementation of this procedure, see Appendix B.

4.3 Markov-Switching Jump Diffusion LMM

Finally we consider the Markov-switching jump diffusion LIBOR market model derived by Steinrücke et

al. [16] where all the parameters of a general jump-diffusion LMM switches between states according to a

Markov chain. We start by briefly summarizing their result.

Jamishidan (1999) [15] considers a generalized version of the jump specification in Glasserman and Kou [14]

using semi-martingales. From Jamishidan they obtain the existence of the the following dynamics under the

terminal measure QN

dLn(t)

Ln(t−)
=

n∑
j=i+1

δγj(t)
ᵀγn(t)Lj(t−)

1 + δLj(t−)
+ σn(t)ᵀ dWN (t)

−
∫
E

ψn(t, z)

 N−1∏
j=i+1

(
1 +

δLn(t−)ψn((t, z)

1 + δLn(t−)

)
− 1

 νN (dt, dz)

+

∫
E

ψn(, t, z)(µ− νN ) (dt, dz),

(4.3.1)

where they have assumed the following

• Wt standard Brownian motion
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• Integer-valued random measure µ on R+ × Rk

The terminal measure QN is simply the measure induced by using the bond of highest maturity as numeraire.

Further E is a euclidean space, µN is the compensator of the random measure µ under the terminal

measure and ψi(t, z) and γn(t) some deterministic functions as in Belomestny and Schoenmakers (2011)

[28]. It is noted that the random measure associated with a MPP with time-homogeneous arrival rates is

integer-valued(see [19]). Thus the semi-martingale allows for the MPP specification of a jump process that

follow a standard Brownian motion, demonstrating the that semi-martingales are the more general process,

as stated in Jamishidan [15]. Steinrücke et al. [16] states that the framework in Jamishidan [25] now allows

for the parameters ψi(t, z) and γn(t) to depend on the continuous-time homogeneous finite Markov chain

with associated infinitesimal generator A taking values in E = {e1, . . . , eM} and obtain

dLXn (t)

LXn (t−)
=

n∑
j=i+1

δγj(t,Xt−)ᵀγn(t,Xt−)Lj(t−)

1 + δLj(t−)
+ σn(t)ᵀ dWN (t)

−
∫
E

ψn(Xt−, t, z)

 N−1∏
j=i+1

(
1 +

δLn(t−)ψn(Xt−(t, z)

1 + δLn(t−)

)
− 1

 νNXt−
(dt, dz)

+

∫
E

ψn(Xt−, t, z)(µ− νNXt−
) (dt, dz),

(4.3.2)

Note that the only difference between equations (4.3.2) and (4.3.1) is that the parameters in (4.3.2) depend

on a markov chain. To make the dynamic above sufficiently tractable and ease developing Fourier pricing

formulae, they further state that

• The spot WQ Wiener process and the compensated jump measure µ− νQXt−
are independent given X

• The only source of randomness volatilities dependent on the underlying Markov chain, meaning that

the volatilities are state dependent.

• The state dependent jump compensator νQXt−
(dt, dz) of µ is predictable by a jump intensity λ(Xt−)Q

and a jump marker distribution kQ(Xt−, z) through the relation

νQXt−
= kQ(Xt−, z)λ

Q(Xt−) dt

• The function ψn(t,Xt−, z) is predictable and state dependent. For t < Tn, we set ψn(t,Xt−, z) = 0.
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Now they propose the model (4.3.2) exists under the measure change from QN to Qi+1. That is, similar to

the specification in (4.2.5), they consider the rates free of arbitrage under their own forward measure. The

new semi-martingale specification of the LIBOR rates become

dLXn (t)

LXn (t−)
= dWi+1(t) +

∫
E

ψn(Xt−, t, z)(µ− νNXt−
) (dt, dz) (4.3.3)

Remember that in the equation (4.2.5), Wt is defined as standard Brownian and Nt is Poisson with constant

rate λn. Hence the random variable Nt has an associated integer-valued measure, see [19]. Thus (4.2.5)

fulfills the assumptions in (4.3) and the parameters can be state dependent on an underlying continuous-time

homogeneous Markov chain. Further we note as in Steinrücke [16] that this is the only source of randomness

in the parameters.

We rewrite 4.2.5 for clarity

dLXn (t)

LXn (t−)
= −λXt−

n mXt−
n dt+ γn(t)Xt− dW (t)n+1 + d

NXt−∑
j=1

Y
Xt−
j − 1

 0 ≤ t ≤ Tn n = 1, ...,M.

(4.3.4)

Further Steinrücke et al. [16] shows that a measure change from Qi+1 to Qi does not affect the underlying

Markov chain. Thus as in section 4.2 the measure of equation (4.3.4) can be changed to the spot martingale

dLn(t)

Ln(t−)
=− λXt−

n+1−η(t)(t)m
Xt−
n+1−η(t)(t) dt+

n∑
j=η(t)

γn(t,Xt−)δγj(t,Xt−)ᵀLj(t−)

1 + δLj(t−)
dt

+ γn+1−η(t)(t,Xt−) dW (t) +

∫ ∞
0

∫ 1

0

(y − 1)

M∑
i=k+1−η(t)

θ
Xt−
i (y, u, L(t−), t).

(4.3.5)

The definitions of all the terms are identical to what was presented in 4.2.1. However, we elaborate the state

dependency for the thinning process more explicitly to avoid ambiguity. The state dependent θi is defined

as

θ
Xt−
i (y, u, L(t−), t) =


1,

i−1∑
j=1

ν
Xt−
j (y, L1(t−), ..., LM (t−), t) ≤ uf(y,Xt−)λ

Xt−
0 <

i∑
j=1

ν
Xt−
j (y, L1(t−), ..., LM (t−), t)

0, otherwise.
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Here,

λ
Xt−
0 = λ

Xt−
1 (2 +m

Xt−
1 ) and f(y,Xt−) =

f1(y,Xt−) + yf1(y,Xt−)

2 +m
Xt−
1

.

Moreover, the state dependent compensators follow

∑
i∈In(t)

νi(y, t) =

n∏
k=η(t)

1 + δyLk(t−)

1 + δLk(t−)
λXt−
n fn(Xt−).

The function fn(Xt−) is as described in subsection 4.2.1, but is now state dependent through

fn(Xt−) ∼ exp
(
N
(
aXt−
n , sXt−

n

))
.

For the mark y, the state dependency is not made explicit. Nevertheless, it is sampled using the same

approach as in subsection 4.2.1, given the state dependent jump parameters.

4.3.1 Simulation

The simulation procedure for 4.3.5 is rather similar to the procedure used for simulating jumps. Given a

state Xt, in the Markov chain at time t. Then we have a set of parameters associated to that state ΘXt
=

(volatility factors, jump intensities, the jump means and the jump variances), similar to Steinrücke[16]. To

find the LIBOR rates at time t+1 the exact same procedure as in (4.2.15) can be used where the parameters

are given by ΘXt
. Hence the we assume that the parameter set ΘXt

applies between t and t+ 1. Now the

state of the Markov chain might change between the times t + 1 to t + 2. Thus to obtain Xt+1, similar to

Steinrücke [16], given the infinitesimal generator A of the continuous time Markov chain, we sample this

Markov chain where the transition matrix C∆t is approximated by C∆t ≈ exp(A∆t). Here ∆t is as usual

our time step. For this discrete time Markov chain to to be a reasonable approximation of the continuous

time Markov chain, the time step has to be small enough such that the probability for changing state more

than once during ∆t is negligible. Note that all the maturities are under the same regime at all times.

To summarize the steps:

• Set the initial state X0 equal to the state of the last known historical date

• For each future time steps T

– Sample next state Xt conditioned on Xt−1 using transition matrix C∆t.
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– Use parameter set ΘXt together with equation (??) to simulate the LIBOR forward rates ∆t time

ahead. Repeat for all maturities that have not expired.

The steps are repeated using Monte Carlo iterations, and the rates are saved for each iteration. Further

more we choose to model the economy by two regimes, thus using two states in the Markov chain.

4.3.2 Parameter estimation

The strategy for estimating the parameters in this frame work follows that of Steinrücke [16]. We split our

data set according to which regime they belong to, state 1 or state 2, and then we simply run the same

parameter estimation as described in the jump diffusion section on each of these data sets. Thereby the

parameter sets theta1 and theta2 is obtained. Hence we start by classifying the historical data in to the

two regimes. To this end, following Steinrücke et al. [16] a Markov-switch algorithm is constructed using a

hidden Markov model together with a one-factor Vasicek model where additionally the transition matrix C

is estimated. Steinrücke et al. [16] argues that historical caplet volatilities is a good proxy for the state of

the economy. They associate each historical caplet volatility to either a regime 1 or 2 and then they take

the average over all these states to obtain a single time series containing 1’s and 2’s indicating which state

the economy is in. This series is termed the over all most likely path. Then they use the over all most likely

path to split the historical forward LIBOR rates. Then finally the jump parameters are estimated using the

log-returns of the forward rates as in section 18. As discussed earlier, Steinrücke et al [16] do not find the

volatility factors using historic LIBOR rates, rather they use the caplet prices to find implied volatility and

thereby calibrate the model to interest rate caps.

In this thesis we will use a similar procedure as Steinrücke et al. [16]. However, we will not calibrate the

model any specific instrument as different instruments will be priced with the same algorithm. Thus, to split

the data set we would rather use the Markov switch algorithm on the historic log-returns as these represents

the volatility in our specification. Similar to Steinrücke [16] we find the overall most likely path by averaging

the estimated paths of all maturities and then round to either 1 or 2. The jump parameters is found the

same way as in Steinrücke [16] where the only difference is that the data is split on log-returns and not cap

volatilites. We now do the same procedure as with jump diffusion where we remove the identified jumps from

all the time series before the covariance and correlation matrix for each state is found. Note that EWMA has

not been used this time. The volatility factors for all maturities for each state is calculated by the numerical

procedure in MATLAB. Finally, we note that the initial state of our Markov chain is already given by the
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last state of our over all most likely path. Thus, the algorithm works somehow similar to the EWMA where

the last historic volatility is weighted.

The Markov-Switch algorithm

The derivation of the Markov-switch algorithm is inspired by the work of Frühwirth-Schnatter from 2006

[29] and Steinrücke et al. from 2013 [16]. We construct a first-order hidden Markov model as described in

section 2.5, with two possible states. State one represent low volatility, whereas state two represent high

volatility. The historical rate data represent the evidence, while the corresponding volatility level is the

hidden state.

The main idea is to consider a Vasicek model as defined in equation (3.2.2). However, as there are two

possible states, the parameters involved in the model need to be calibrated for both states. Consequently,

two parameter sets are to be determined. In order to perform the calibration, equation (3.2.2) is approximated

at the discrete, equidistant time points t0 < t1 < · · · < tN , where the distance is denoted as ∆t. The process

is furthermore discretized using an Euler scheme

rj = rj−1 + αXt−1
(bXj−1

− rj−1)∆t+ σXj−1
N (0,∆t),

where the subscript Xj−1 indicates the state of X at time point j − 1. By introducing the variables

γXj−1 = αXj−1bXj−1∆t and δXj−1 = 1 − ∆t αXj−1 , the discrete state-dependent version of the Vasicek

model reads

rj = γXj−1
+ δXj−1

rj−1 +N (0,∆t σ2
Xj−1

). (4.3.6)

As Frühwirth-Schnatter points out in her book on finite mixture and Markov-switching models [29], there

are three main problems to asses in order to make Markov-switching models useful. Firstly, the number

of possible states in the HMM needs to be determined. Next, the parameter sets for the possible states

are to be estimated. The transition matrix indicating the probability of moving between the states must

be estimated in this step as well. The last problem is to estimate the sequence of the hidden states of the

HMM needs to be determined. Since the number of states is already chosen, the last two steps makes up

the Markov-switching algorithm that is applied throughout the thesis.

We chose a Bayesian approach to estimate the parameters, in line with the theory of Bayesian hierarchical

models. Let Θ = (θ1, θ2) denote the parameter sets for state 1 and state 2, respectively. Furthermore,

r = r1, . . . , rN be the N historical interest rates, and X = X1, . . . , XN be the sequence of the hidden states
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of the HMM. That is, X is a sequence consisting of 1’s and 2’s, indicating the state at the time. Lastly, let

C be the transition matrix containing the probabilities for moving between the states.

Since the objective is to use the data r to obtain estimates for the parameters Θ, the transition matrix C

and the sequence of hidden states X, we will focus on finding the posterior distribution p(Θ, C,X | r). As

Steinücke et al. [16], we use a Bayesian MCMC method. Let p(Θ, C) be the prior of the joint distribution

of Θ and C. Applying equation (4.3.7), with p(r | Θ, C,X) being the likelihood, we obtain the posterior

distribution

p(Θ, C,X | r) ∝ p(r | Θ, C,X) p(X | Θ, C) p(Θ, C). (4.3.7)

We continue as demonstrated in [16] and [29] by augmenting the data. That is, treating the hidden sequence

X as unknown, which will allow for Gibbs from the posterior distribution. We simplify the posterior by

assuming the parameter sets Θ and the transition matrix C to be independent [16]. Then the prior from

equation (4.3.7) becomes

p(Θ, C) = p(Θ) p(C).

Moreover, the two parameter sets are assumed to be independent conditional on the hyperparameters. Let

ω denote the set of hyperparameters, where ω is the same for both states [29]. Thereby, the joint probability

distribution of the parameter sets and the hyperparameters become

p(θ1, θ2, δ) ∝ p(δ) p(θ1 | δ) p(θ2 | δ). (4.3.8)

From the Vasciek model in equation (4.3.6), the collection of the parameter sets becomes

Θ = (θ1, θ2) = ({γ1, δ1, σ
2
1}, {γ2, δ2, σ

2
2}).

The most common way of estimating these parameters is to first condition on knowing the sequence X [29],

which is also the case for the transition matrix C. Applying equation (??) for the distribution of (Θ, C)

then yields the posterior distribution

p(Θ, C | X, r) ∝ p(X, r | Θ, C) p(Θ, C).

44



Repeating this for the likelihood distribution p(X, r | Θ, C), the posterior takes the form

p(Θ, C | X, r) ∝ p(r | X,Θ, C) p(X | Θ, C) p(Θ, C). (4.3.9)

As Steinrücke et al. [16] argues, a next state j+ 1 will only depend on the transition matrix C and the state

j. Thus, p(X | r)

p(X | Θ, C) = p(X0 | C)

2∏
s=1

C
Ns,1(X)
s,1 C

Ns,2(X)
s,2 , (4.3.10)

where Ns,j(X) is the number of transitions from state s to state j in the sequence X, and p(X0 | C) indicates

the steady state probability based on C. For the likelihood distribution p(r | X,Θ, C), we obtain

p(r | X,Θ, C) =

N∏
j=1

p(rj | θXj−1), (4.3.11)

where the subscript of θ indicates the state at time j − 1. The dependency on C and the other states than

Xj−1 is removed as the probability of an observation rj will follow the Vasicek model from equation (???).

The same argument determines the form of equation (4.3.11). As observation rj is assumed to be normally

distributed with mean γm + δmvj−1 and variance σ2
m∆t, if Xj−1 = s, the likelihood reads

p(r | X,Θ, C) =

N∏
j=1

1√
2πσ2

Xj−1
∆t

exp

(
−

(rj − γXj−1
− δXj−1

rj−1)2

2σ2
Xj−1

∆t

)
. (4.3.12)

Lastly, most of the parameters considered independent [16]. Also, the initial state X0 is assumed to be

independent of the parameters, making

p(γ, δ, σ2, C,X0) ∝ p(γ, δ) p(δ) p(C) p(X0). (4.3.13)

Now, equation (4.3.9) only needs priors for Θ and C in order to be tractable. The prior for the transition

matrix is chosen to be Dirichlet [29], [30], with number of transitions between the different states as argument.

Row s of C reads

(Cs,1, Cs,2) ∼ D(es,1, es,2),

where es,j is the prior number of transitions from state s to state j. Following [29], the rows of C are assumed
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independent a priori, making them the a posteriori independent by letting

Cs,1, Cs,2 | X ∼ D(es,1 +Ns,1(X), es,2 +Ns,2(X)), (4.3.14)

where Ns,j(X) is the number of transitions from s to j in the sequence X.

For a detailed derivation of the priors distributions of the parameters Θ, see Steinrücke et al. [16]. The

idea is to choose priors that are conjugate priors for the likelihood distribution p(r | Θ, C,X) [29]. The pair

(γs, δs) is chosen to be have a bivariate normal distribution, while σ2
s has an inverse gamma prior distribution.

That is,

p(γs, δs) ∼ N (µ0,Σ0)

p(σ2
s) ∼ IG(f0, g0),

where µ0, Σ0, f0 and g0 are also defined in [16]. As all priors are conjugate to the likelihood, we obtain the

following posteriors

γs, δs | X, σ2
s ∼ N (µs,Σ)

σ2
s ∼ IG(fs, gs)

(4.3.15)

where s = 1, 2. Again, µs, Σ, fs and gs are defined in [16]. Hence, we now have a way of estimating the

parameters Θ and C.

The final step is to estimate the unknown sequence X. As explained in subsection 10.5.6 of [29], the estimation

is done through a single-move Gibbs sampler. The samples are drawn from p(X | Θ, C, r), and state number

j makes use of the other states. By applying equation (??), we attain the following relationship

p(Xj | X−j ,Θ, C, r) ∝ p(r | X,Θ, C) p(X | C), (4.3.16)

where X−j = (X1, . . . , Xj−1, Xj+1, . . . , XN ). The likelihood p(r | X,Θ, C) is calculated using equation

(4.3.12), and for p(X | C) we utilize equation (4.3.10). By inserting this into equation (4.3.16) and

disregarding all proportionality constants, the situation is simplified

p(Xj = s | X−j , θs, C, r) ∝ p(rj | rj−1, θs, C)CXj−1,sCs,Xj+1
. (4.3.17)

The states are sampled sequentially from j = 0 to j = N , implying that Xj+1 is not known when estimating

p(Xj | Xj−1,Θ, C, r). Since we are using a MCMC approach, we find Xj+1 from the previous Monte Carlo
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iteration. Hence, equation (4.3.17) takes the following form for iteration k > 0,

p(X
(k)
j = s | X(k−1)

−j , θ(k)
s , C(k), r) ∝ p(rj , | rj−1, θ

(k)
s )C

(k)

X
(k)
j−1,s

C
(k)

s,X
(k)
j+1

(4.3.18)

There are two edge cases for which this expression does not hold. At j = 0, Xj−1 does not exist, and at

j = N , Xj+1 is not available. Thus,

p(X
(k)
0 = s | X(k−1)

−0 , θ(k)
s , C(k), r) ∝ p(S0 = s | C)C

(k)

s,X
(k−1)
j+1

p(X
(k)
N = s | X(k−1)

−N , θ(k)
s , C(k), r) ∝ p(rN | rN−1, θ

(k)
s )C

(k)

X
(k)
N−1,s

.

(4.3.19)

Now we have all the ingredients needed for the Markov-switch algorithm. The Markov-switch algorithm is

summarized

1. Set hyperparameters µ0, Σ, f0, g0, e1,1, e1,2, e2,1, e2,2.

2. Sample priors for s = 1 and s = 2

• (γ
(0)
s , δ

(0)
s ) ∼ N (µ0,Σ0)

• σ2
s

(0) ∼ IG(f0, g0)

• (C
(0)
s,1 , C

(0)
s,2 ) ∼ D(es,1, es,2)

3. Set an initial sequence X(0) by sampling from C

The following steps are repeated for k = 1, . . . , R, and for s = 1, 2

4. Sample row s of the transition matrix C(k) using equation (4.3.14) with X(k−1)

5. Sample (γ
(k)
s , δ

(k)
s ) using equation (4.3.15) with X(k−1) and σ2

s
(k−1)

6. Sample σ2
m

(k) using equation (4.3.15) with r, X(k−1), γ
(k)
s , δ

(k)
s

7. Sample X(k) using equation (4.3.18) and (4.3.19) with the updated parameters Θ(k) and C(k).

The first RB are considered as burn-in iterations and are disregarded. The parameter values are set according

to

θ̄j =
1

R−RB

R+RB∑
k=RB+1

θ
(k)
j , (4.3.20)

where θj is one of the parameters in Θ and θ
(k)
j is the sampled value for the parameter for Monte Carlo
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iteration k. The same procedure is applied to estimate the most likely sequence X, where the result is rounded

to the closest integer. The transition matrix C is estimated based on X in the following manner

Ci,j =

∑N−1
n=1 I(Xn = i) I(Xn+1 = j)∑N

n=1 I(Xn = i)
, i, j ∈ {1, 2}, (4.3.21)

which concludes the Markov-switching algorithm.

A verification of the robustness of the algorithm and a verification of the implementation is found in Appendix

B.
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5 Data Analysis

The data set used in this thesis contains daily US treasury bond rates with different maturities. This data

is provided by the US treasury and is publicly available. The first rates are given at 02.12.1990 and the last

are given at 15.06.2017. The maturities quoted in the market are one, two, three, five, seven and ten years.

In order to obtain forward rates at an annual basis, we apply linear interpolation. That is, we get the rates

having maturity of four, and six years from interpolating. This section will present and discuss behaviour of

the forward LIBOR rates in the context of jumps and shifting periods.

5.1 Historical LIBOR rates

We begin by focusing on the full data set, and give a complete data analysis. Firstly, we use the provided rates

to price zero-coupon bonds, using equation (3.1.4), given a face value of 1 and assuming constant interest

rate between the tenor dates. Next, we apply the zero-coupon bond prices to find historical forward LIBOR

rates through equation (3.1.6), where the accrual period is set to 1. This is repeated for all maturities and

for all historical rates. The historical forward LIBOR rates are shown in Figure 2, and descriptive statistics

of the rates are presented in Table 1. Further, the volatility observed during the last 500 trading days are

found using the EWMA technique described in section 4.1.2. The corresponding covariances and correlations

between the log-returns of the rates are presented in table 5 and ??, respectively.

Table 1: Descriptive statistics of the historical forward LIBOR rates and their log-returns.

Maturity Mean (%) Variance (%)
Log-returns

mean (%)

Log-return

variance (%)

1Y 3.8913 0.0639 -0.0248 0.1905

2Y 4.2796 0.0541 -0.0223 0.1220

3Y 4.6739 0.0462 -0.0201 0.0548

4Y 5.1186 0.0435 -0.0182 0.0553

5Y 5.2469 0.0378 -0.0182 0.0344
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Figure 2: Historical forward LIBOR rates in the US market. The vertical lines indicate the end of period I,
II, III and IV, respectively.

We first observe from figure 2 that the time series are far from stationary, where the volatility seem to

vary and the rates from time to time have sudden large hikes and drops. Furthermore, the rates seem to

follow each other rather closely, which is also seen from the correlation matrix in Table 3. Here, the rates

of higher maturity have greater correlations. Table 1 shows that the variance of the rates tends to decrease

with increasing maturity. The mean however is higher for the higher maturities. The same applies for the

variance of the log-returns, while the means of log-returns are close to zero.

Considering the vertical distance of the rates at a fixed time point gives a yield curve. The shape of these

yield curves is assumed to have significant macro economic implications [4]. During the period 2002 to

2005 the forward rates operate at rather different levels giving an upward sloping yield curve implying that

investors demand lower yields on short term investments. In macro economy this is considered a sign that the

current economic regime involves stability and growth econ˙theory From 2005 to 2008 the rates are almost

the same giving a flat or even inverted yield curve implying investors consider the short term investment
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riskyecon˙theory This coincides with the well-documented financial crisis that There has also been a slight

spike in recent times, specifically the autumn of 2016. The spike happened the same day as election day in

the US, and articles, e.g. economist attribute the change of presidents for the rise in interest.

Table 2: Covariance matrix of the log-returns of the historical forward LIBOR rates.

1Y 2Y 3Y 4Y 5Y

1Y 0.00190 0.00079 0.00072 0.00064 0.00045

2Y 0.00079 0.00122 0.00059 0.00052 0.00042

3Y 0.00072 0.00059 0.00055 0.00054 0.00035

4Y 0.00064 0.00052 0.00054 0.00055 0.00034

5Y 0.00045 0.00042 0.00035 0.00034 0.00034

Table 3: Correlation matrix of the log-returns of the historical forward LIBOR rates.

1Y 2Y 3Y 4Y 5Y

1Y 1.00000 0.52001 0.70078 0.62624 0.55414

2Y 0.52001 1.00000 0.72189 0.63696 0.64818

3Y 0.70078 0.72189 1.00000 0.98680 0.80373

4Y 0.62624 0.63696 0.98680 1.00000 0.78002

5Y 0.55414 0.64818 0.80373 0.78002 1.00000

Table 4: Covariance matrix estimated via EWMA for the log-returns of the last 500 historical forward
LIBOR rates.

1Y 2Y 3Y 4Y 5Y

1Y 0.00061 0.00029 0.00031 0.00030 0.00022

2Y 0.00029 0.00068 0.00040 0.00039 0.00034

3Y 0.00031 0.00040 0.00038 0.00041 0.00026

4Y 0.00030 0.00039 0.00041 0.00044 0.00027

5Y 0.00022 0.00034 0.00026 0.00027 0.00028
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5.2 Economic states

We now represent the different economic regimes. The Markov-switching algorithm described in section 4.3.2

is applied at the log returns of the historical LIBOR rates of all maturities. Thus we obtain five paths of

states describing the historical economic states. As described in the last section an overall most likely path

across all maturities is found by taking the average and then round. The resulting overall most likely path

for the whole data set is presented in Figure 3 together with the historical log-returns of the forward LIBOR

rates for all maturities.
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Figure 3: Log-returns with the overall most likely path.

All the maturities seem to have comparable patterns in terms of periods of low and high volatility. Further

the overall most likely path seems to identify these periods in a reasonable manner. The transition matrix
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according to the overall most likely state path in figure 3 was estimated to

Ĉ =

0.994 0.006

0.009 0.991

 , (5.2.1)

which yields a stationary distribution of [0.608, 0.392]ᵀ. Consequently, the probability of staying in the same

state is high. However, the probability is higher for staying in state one than state two, which yields the

difference in steady state distribution. The data in state one is characterized with low volatility, and the

data of state two has high volatility as seen in figure 5. Thus the steady state vector implies that the regime

of a stable economy occurs the most, while there are slightly shorter periods of volatile regimes. This is

similar to the results seen in [16]. The two volatilities are clearly different, which testaments the different

periods documented in [12].

Table 5: Variance of the data in state one and state two.

Maturity Variance state one Variance state two

1Y 0.00027 0.00422

2Y 0.00020 0.00266

3Y 0.00013 0.00113

4Y 0.00015 0.00112

5Y 0.00012 0.00065

5.3 Existence of Jumps

The jump parameter calibration routine described in section 4.2.2 is applied to the log-returns of the historical

forward rates depicted in Figure 2. The algorithm estimates the jump times, the intensity of jumps, in

addition to the mean and the variance of the jump sizes. Figure 4 shows the data at which the algorithm

is applied, along with the estimated jumps; indicated with red circles. Moreover, the estimated parameters

from the algorithm is listed in Table ??.
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Figure 4: Log-returns of the historical forward LIBOR rates, including estimated jumps from the full data
set. The red circles indicate jumps.

Figure 4 shows that the algorithm succeeds at identifying the jumps. The frequency of jump occurrences
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seems to decrease with increasing maturity. This is also seen from the decreasing values of λ in the left of

Table 6. The same tendency is found in the jump size variance. Lastly, the mean of the jump size is small for

all maturities. All together, this supports the assumptions on the jump parameters made in 4.2.2. Moreover,

the jump variance is clearly larger than the historic volatility found in Table 5 thus when a jump occur it

should affect the interest rate in relatively large degree.

Table 6: Estimated jump mean, variance and intensity for the different data sets.

Full data set Data set state 1 Data set state 2

Maturity mJ vJ λ mJ vJ λ mJ vJ λ

1Y 0.0003 0.0292 0.0252 0.0016 0.0024 0.0295 -0.0029 0.0218 0.0465

2Y 0.0015 0.0171 0.0249 0.0045 0.0031 0.0032 0.0078 0.0147 0.0342

3Y 0.0014 0.0073 0.0220 0.0016 0.0025 0.0022 0.0074 0.0132 0.0094

4Y 0.0017 0.0073 0.0220 0.0041 0.0022 0.0015 0.0063 0.0132 0.0105

5Y 0.0032 0.0070 0.0070 0.0082 0.0002 0.0007 0.0004 0.0260 0.0021

Next, we calculate the volatilities of the log-returns after removing the identified jumps showed in Figure

4. In order to perform the calculation, we find the jump time of all jumps, for all maturities, and remove

the data points found to these times. Then the EWMA estimation is applied to find the covariance matrix,

which is shown in Table 7.

Table 7: Covariance matirx of the log-returns after removing identified jumps

1Y 2Y 3Y 4Y 5Y

1Y 0.00062 0.00027 0.00030 0.00029 0.00022

2Y 0.00027 0.00062 0.00033 0.00031 0.00030

3Y 0.00030 0.00033 0.00032 0.00033 0.00022

4Y 0.00029 0.00031 0.00033 0.00036 0.00022

5Y 0.00022 0.00030 0.00022 0.00022 0.00027

The covariance matrix in Table 5 and Table 7 are very similar. The first one is for the full data set, while

the second is for the same data set, but without jumps. The fact that they are so similar is explained by

studying the jump plots in Figure 4. Since the covariance is found by using EWMA from the last 500 days,
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and these days contains very few jumps, the data set are approximately the same. Thus, we observe the like

covariance matrices.

When simulating under the MSJD LMM model, we need two parameter sets - one for each economic state.

Therefore, we split our data set according to the overall most likely path showed in Figure 3. Next, we apply

the jump calibration routine for each of the data sets, which results in the jump parameters presented in

the center and right column of Table 6. The routine also estimates jumps as shown in Figure 5 and 6 for

state one and two, respectively. The routine clearly manages to identify the jumps for both of these data

sets too.
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Figure 5: Estimated jumps from the data in state one. The red circles indicate jumps.
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Figure 6: Estimated jumps from the data in state two. The red circles indicate jumps.

Firstly, when examining the estimated jump parameters in Table 6, we observe that the intensities of jumps,
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and the jump size variances, are greater in state two than in state one. Typically, the jump intensity of

the full data set is between the intensity of state one and two. The variance of the jump sizes, however, is

greatest for the full data set. These considerations coincides with what was expected from the construction of

the Markov-switching algorithm. Namely, the data of state one and two should have low and high volatility,

respectively. As jumps cause the volatility to rise, these will inherently, often end up in state two. Since

the full data set contains jumps from both states, it is sensible that the jump variances lie between the ones

from the split data sets.

As for the full data set, the jump means are small for both the split data sets. Also, we generally find the

pattern of decreasing variance and intensity for increasing maturity.

When finding the covariance of the split data sets, we focus on the full period in state one and two. That

is, not only the last 500 trading days of each set. However, we are also removing the jumps to find the

covariance in the ordinary diffusion of the MSJD LMM. The resulting covariance matrix for state one and

two is presented in Table 8 and 9, respectively.

Table 8: Covariance matrix of the log-returns of the data in state one, after removing jumps

1Y 2Y 3Y 4Y 5Y

1Y 0.00015 0.00009 0.00009 0.00009 0.00007

2Y 0.00009 0.00015 0.00008 0.00008 0.00008

3Y 0.00009 0.00008 0.00010 0.00011 0.00007

4Y 0.00009 0.00008 0.00011 0.00013 0.00007

5Y 0.00007 0.00008 0.00007 0.00007 0.00011

Table 9: Covariance matrix of the log-returns of the data in state two, after removing jumps

1Y 2Y 3Y 4Y 5Y

1Y 0.00190 0.00073 0.00069 0.00061 0.00044

2Y 0.00073 0.00119 0.00056 0.00049 0.00043

3Y 0.00069 0.00056 0.00060 0.00060 0.00038

4Y 0.00061 0.00049 0.00060 0.00062 0.00037

5Y 0.00044 0.00043 0.00038 0.00037 0.00042
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First of all, the variances found in both tables are significantly smaller than their respective jump size

variances. We also notice that the covariances of state one are smaller than those of state two, while the

level of the covariance matrix of the full data set without jumps is between these values. Therefore, we can

conclude that state one and two clearly have different characteristics, in terms of both ordinary diffusion and

jumps. Moreover, the full data set can be said to represent a composition of the split data sets. Consequently,

the Markov-switch algorithm together with the jump calibration routine has succeeded.
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6 Results

We begin this section with showing the results from the backtesting of potential future exposure described

in section 3, as a crude measure of model performance. Next, we simulate forward LIBOR rates using the

three models presented in section 3. Lastly, we compare the potential future exposure associated with a

portfolio of caps and floors, based on the simulations of the forward LIBOR rates. Discussion will follow

when all results are presented.

6.1 Backtesting

We have backtested the three models using historical data from the periods ending at the vertical lines seen

in Figure 2. For each period, we simulate forward LIBOR rates to estimate the potential future exposure

and compared it to the observed exposure in the market.
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(a) Period I. (b) Period II.

(c) Period III. (d) Period IV.

Figure 7: The estimated 95 % potential future exposure under all three models, in four different periods.
The green line indicates the log-normal LMM, the red line is the jump diffusion LMM and the blue line is
the MSJD LMM. Further, the purple line is the observed exposure.

6.2 Forward LIBOR rates

The three models described in section 3 are applied to forecast LIBOR rates. We choose to make predictions

five years into the future, using annually predictions. The results are found using the simulation strategies
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described in section 4.1.1, 4.2.1 and 4.3.1. All models were simulated by 30000 Monte Carlo iterations, with

the initial rates equal to the last known historical rates. The distribution of the forward LIBOR rates for the

three models are shown in Figure 8. The corresponding descriptive statistics are listed in Table 10.

When the log-normal LMM was simulated, we found the volatilities from the covariances presented in Table

5. For the jump diffusion LMM, the jump parameters from the left of Table 6 were applied for the jump

part, while the covariances from Table 7 governed the ordinary diffusion part of the process. Finally, for the

MSJD LMM, we used the estimated transition matrix of (5.2.1), the jump parameters in the middle and to

the right of Table 6, and lastly the covariances of Table 8 and 9.

Table 10: Descriptive statistics of the simulated forward rates.

Model Maturity Mean (%) Variance (%) 95 % VaR

Log-normal LMM

1Y 1.5070 0.0038 2.6660

2Y 1.7994 0.0124 3.8876

3Y 2.0735 0.0224 4.8892

4Y 2.3813 0.0413 6.0949

5Y 2.4413 0.0492 6.4337

Jump diffusion LMM

1Y 1.5196 0.0096 3.3522

2Y 1.8696 0.0346 5.1740

3Y 2.3051 0.0812 7.0648

4Y 2.7892 0.1958 9.0492

5Y 2.8942 0.2051 9.7948

MSJD LMM

1Y 1.5431 0.0085 3.1876

2Y 1.9133 0.0251 4.6322

3Y 2.2515 0.0421 5.7746

4Y 2.6338 0.0720 7.2406

5Y 2.7636 0.0885 7.6585
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Figure 8: Simulated forward LIBOR rates under the three different models. The vertical lines indicate 95
% VaR, where the colour of the lines and the distributions corresponds.

In table 11 we see the historical kurtosis caluculated from the actual 1-year US dollar LIBOR rate differenced

compared to the differenced kurtosis of the simulated forward LIBOR rate L1 for the different periods.
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Table 11: Historical kurtosis for the four periods, and the estimated kurtosis for the three models.

Period Historical Log-normal LMM Jump diffusion LMM MSJD LMM

I 4.3878 3.4700 3.1292 4.5378

II 7.7175 3.0253 21.4632 8.8913

III 7.5488 3.0460 18.0561 23.6177

IV 6.6881 3.1383 16.8138 14.8126

6.2.1 Forecasted Potential Future Exposure

The simulated of forward rates are applied to find the 95 % PFE associated with a portfolio. The results are

shown in Figure 9. The portfolio consist of three caps and three floors, all having a strike rate equal to the

mean of the last known historical rates. The maturities of the caps and floors are three, four and five years.

That is, the portfolio has pairs of caps and floors at equal rates, but with different maturities.
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Figure 9: 95 % potential future exposure from the three models.
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7 Discussion

We start by evaluating Figure 8 and Table 10 where forecast distributions have been obtained buy calibrating

to the entire data set. It is evident that the mean of the forward rates are relatively close to the rate level

for the initial rates. This is sensible considering the martingale specification. The variance of the forward

rates, increases with higher maturity. This is expected, since the further we simulate into the future, the

greater the uncertainty. Further, as seen in the Table 10, the forecast distributions under the jump diffusion

LMM yields highest variance, whilst the MSJD LMM simulations have higher variance than the log-normal

LMM simulations. This relationship is reflected in the vertical lines representing 95% VaR.

In Figure 9 one can observe the PFE related to the simulations in 8. The PFE is calculated annualy over

then entire life time of the portfolio. It is evident that the exposure profile for all models peaks towards the

center of the considered forecasting time. Also, the shapes of the profiles from the models are rather similar.

The PFE of a portfolio of caps and floors with caplets and floorlets that roll off as time goes by should have

have a shape similar to what we observe, where the risk becomes zero when all derivatives have matured.

We furthermore see that the jump diffusion LMM produces highest PFE values for all future times, and the

log-normal LMM yields the lowest PFE. Based on the high relative magnitudes of the variance and the 95 %

quantile in the forward rates in Figure 8, this result is as expected.

The PFE estimates from the full data set shown in Figure 9 are higher for the jump diffusion LMM than

for the MSJD LMM. By recalling the data analysis made in section 5, we are able to indicate the rationale

behind this relative behaviour. First of all, a higher PFE estimate is caused by higher variance. When

studying the covariance matrices from Table 7, 8 and 9, we see that the covariance matrix of the full data

set, without jumps, is closer to the covariances of state two than state one. Consequently, the ordinary

diffusion in the jump diffusion LMM is closer to the ordinary of state two of the MSJD LMM. Additionally,

the jump parameters presented in Table 6 are in most cases higher for the full data than for data set one.

Therefore, the jump diffusion LMM will have more variance than state one of the MSJD LMM. For state

two of the MSJD LMM, however, we see that the covariance matrix and some of the jump parameters are

higher than for the full data set. Still, since these parameters are sufficiently close, and that the stationary

distribution of the estimated transition matrix in (5.2.1) is towards state one, the variance of the jump

diffusion LMM is higher.

The results of a crude backtest can be seen in Figure 7 where 95% PFE is calculated by calibrating the data
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on four different periods. The dotted line then represent the actual PFE calculated using historic data in the

time interval we forecast into to. We see breaks in the estimated PFE. That is, some models underestimate

the exposure that was observed during the simulation period. This is the case for the log-normal LMM in

period II, III and IV. For the jump diffusion LMM, it underestimates the PFE in period III and IV. The

MSJD LMM, on the other hand, estimates sufficiently large counterparty risk at all these periods. This is

not in any way a rigours back test, but it demonstrates some promise for the MSJD LMM.

Further, the 95 % PFE profiles seen in Figure 7 are quite different. For period I, the PFE estimate under

the log-normal LMM is higher than for the jump diffusion LMM and the MSJD LMM. This stems from the

occurrence of many jumps during the end of this period. Remember that EWMA will be very sensitive to

the most recent fluctuations. In the jump diffusion LMM and the MSJD LMM, we calibrate the ordinary

diffusion by removing the jumps from the data set, and then find the remaining covariance. Thus, when

the jumps are removed from the most recent data, this shows to have a major effect on the jump diffusion

model. The MSJD is not as sensitive to the procedure as it doesnt use EWMA but rather the last state of

the over all most likely path. For the log-normal LMM, however, these jumps are included in the estimation

of covariance. Thus, the covariance applied in the log-normal LMM is high compared to the covariances

applied in the other models. Even though the other models have more terms determining the variance, they

do not exceed the variance of the diffusion in the log-normal LMM in this scenario. This remarkably high

95 % PFE from the log-normal LMM gives an ex post motivation for our model extensions. The covariance

estimated for the log-normal LMM yields simulations which overestimates the PFE by quite a lot. The

opposite is seen in Period III. Here, the MSJD LMM estimates higher exposure than the jump diffusion

LMM. As discussed for the full data set, this stems from the relative parameters driving the variance of

the models. In this case, we see from Table 15 that the covariance of the ordinary diffusion, i.e. without

jumps, is close to the covariance matrix of state one, see Table 16. Besides, the jump parameters seen in

Table 14 are usually higher for state two. So, although the transition matrix of (A.0.1) implies a stationary

distribution that is clearly in favor of state one, the variance from state two of the MSJD LMM makes the

variance significantly higher than for the jump diffusion LMM.

Based on these cases, we can propose that the relative model behaviour between the jump diffusion LMM

and the MSJD LMM is dependent on the parameters governing the variance in the jump diffusion LMM.

If the parameters are close to the parameter values of state two in the MSJD LMM, we will expect the

exposure estimation of the jump diffusion LMM to be higher than for the MSJD LMM. Given the opposite,
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where the jump parameters are close to those of state one, the MSJD LMM is expected to yield a higher

estimated exposure. Thus we obtain a certain perspective: The jump diffusion LMM with EWMA is not

as sensitive to sudden fluctuations in interest rates as the LMM, rather it tries to balance having updated

volatility factors and at the same time include historical data through jumps. The MSJD might be even less

prone to very affected by recent fluctuations, because it would rather see it as a change of economic regime

in a broader historic perspective.

The examples considered in this thesis are by no means exhaustive, but they illustrate clearly that the

estimated PFE from the models can vary considerably. The crude backtesting of the models seen in

Figure 7 furthermore shows that the traditional log-normal LMM, and even the jump diffusion extension,

underestimates the PFE at 95 % level. As the MSJD LMM did not violate this percentile, it would be

interesting to investigate this model further, in a more rigorous manner. However, as discussed in [23], there

are yet no wide-spread adopted methodology for backtesting of PFE. Testing the exposure estimation for

more periods and a variety of portfolios would still be interesting in terms of exploring the model flexibility

and behaviour.

In Table 11 we see the historic kurtosis against the predicted kurtosis of the models. The leptokurtic

properties of the MSJD and JD clearly displayed, however with the given calibration they seem to be over

predicting the kurtosis. The Log-normal clearly under predicts the kurtosis as expected. The reason for

the differenced rates being used is that the 1- year LIBOR rate for the American market is actually not

especially leptokurtotic. From Yang [31] we see that significant leptokurtosis is find in the SHIBOR rate not

differenced. Thus one might conclude that in hindsight it would have been extra intresting to test several

different markets showing leptokurtosis. Further it should be noted that the shorter maturity LIBOR rates

are more leptokurtotic thus that would be an intersting study as well

When it comes to the trade-off between model complexity and performance, we cannot conclude fully from

the analysis performed in this thesis. The MSJD extension of the traditional LMM surely shows appreciated

behaviours in terms of capturing the market movement from historical data. For each of the considered

periods, the calibration of both the Markov-switch and the jumps were successful. However, the algorithms

needed to perform the parameter estimations are quite involved. If the increased effort needed is worth the

job will of course be dependent on the purpose of the simulations. At least in terms of estimating potential

future exposure, the model seems interesting for further research.
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8 Conclusion

In this thesis we have closely followed the papers from Steinrucke et al. [16], Glasserman and Merener [10]

and Glasserman and Kou [14] to develop and implement a scheme that yields forecast distributions from

the Markov-Switching Jump Diffusion extension of a log-normal LMM. A log-normal LMM and a jump

diffusion LMM was also implemented for reference points. We have outlined in detail how one can calibrate

the MSJD to historical forward LIBOR rates and why these parameters are reasonable in a comparison

setting. When calculating potential future exposure with the different models we obtain clearly different

results with the different models during different periods. Even though the backtesting for PFE is rather

crude and it is not necessarily possible to conclude whether the MSJD captures tail risk more accurately, this

testing demonstrates a behaviour which leads to an explanation an percspective on the MSJD as a model

that focuses on including historical concepts rather than being highly sensitive to recent market events.

The conclusion is thus that the Markov-switching jump diffusion extension is an interesting addition to the

LIBOR market model family that is of especially interest to practitioners who wants to increase the kurtoisis

in their estimate in an empirically sound way.

Further research on the model can clearly be to search for a market and periods where there are especially

interesting data that are leptokurtotic. Together with a rigorous backtesting using developed statistical

tests, this could better determine the usefulness of MSJD. Steinrücke also finds evidence in her paper that

more than two regimes appear in markets, hence an infinite hidden Markov model could be used instead to

find the optimal number of economic states.
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A Data analysis of Period III

This section contains a data analysis performed on a subset of the data in Period IIIII. The estimations and

calibrations presented here are performed in the same manner as for the full data set, presented in the Data

Analysis section.

Period IIIII also starts at the beginning of the data set, 02.01.1990, but ends at 21.05.2007. The historical

forward LIBOR rates for this period can be seen from Figure 2, to the left of the vertical line indicating

the end of this period. Descriptive statistics for this period’s historical forward LIBOR rates and their

log-returns is listed in Table 12.

Table 12: Descriptive statistics of the historical forward LIBOR rates and their log-returns, for Period III.

Maturity Mean (%) Variance (%)
Log-returns

mean (%)

Log-return

variance (%)

1Y 5.4268 0.0314 -0.0126 0.0456

2Y 5.6984 0.0251 -0.0130 0.0288

3Y 5.9709 0.0219 -0.0122 0.0177

4Y 6.3306 0.0224 -0.0123 0.0193

5Y 6.3833 0.0196 -0.0129 0.0152

Bt studying Figure 2, we see that the rate level usually increases for higher maturities. This is also seen

From Table 12, where the mean of the rates is found to increase with maturity. The variance, on the other

hand, will in most cases decreases with maturity. The same holds for the variance of the log-returns, whilst

the mean of the log-returns does not follow the same clear trend, but are all close to zero. This is as expected

from the transformation to log-returns.

The covariance of the last 500 trading days is found using EWMA with a smoothing parameter of 0.94, and

can be seen in Table 5. We see that the rate of lowest maturity has the highest variance. This coincides

with what was observed for the log-returns in Table 12. The variance level, however, is lower in this case.

This relative relationship between the variance of the log-returns holds for all maturities.
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Table 13: Covariance matrix of the log-returns of the historical forward LIBOR rates from Period IIIIIII.

1Y 2Y 3Y 4Y 5Y

1Y 0.00017 0.00009 0.00010 0.00009 0.00007

2Y 0.00009 0.00010 0.00005 0.00005 0.00006

3Y 0.00010 0.00005 0.00009 0.00010 0.00005

4Y 0.00009 0.00005 0.00010 0.00012 0.00005

5Y 0.00007 0.00006 0.00005 0.00005 0.00005

Next, the most likely path is found using the Markov-switch algorithm of section 4.3.2. The transition matrix

from the overall most likely state path was estimated to

Ĉ =

0.989 0.011

0.028 0.972

 , (A.0.1)

implying a stationary distribution of [0.713, 0.287]ᵀ. The probability of staying in the same state is high

for both states, albeit highest for state one. This causes the stationary distribution to be in favour of

being in state one. As this is the more stable state, this is what we expected from the construction of the

Markov-switching algorithm.

Jumps are identified, and jump parameters are estimated as explained in section 4.2.2. This is performed

both on the full data set in this period, and also the data sets that were split according to the overall most

likely path. The estimated parameters from the algorithm is shown in Table 14.
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Table 14: Estimated jump mean, variance and intensity for the full data set of Period IIIII, and in the split
data sets.

Full data set Data set state 1 Data set state 2

Maturity mJ vJ λ mJ vJ λ mJ vJ λ

1Y 0.0022 0.0041 0.0568 0.0067 0.0224 0.0023 0.0143 0.0212 0.0728

2Y 0.0050 0.0033 0.0126 0.0001 0.0437 0.0005 0.0204 0.0126 0.0335

3Y 0.0045 0.0024 0.0136 0.0031 0.0260 0.0002 0.0102 0.0105 0.0096

4Y 0.0065 0.0023 0.0089 0.0022 0.0296 0.0001 0.0097 0.0091 0.0092

5Y 0.0168 0.0007 0.0053 0.0035 0.0264 0.0002 0.0058 0.0074 0.0040

From Table 6, we observe that the jump size variance vJ and jump intensities λ for the full data set are

decreasing with maturity. This is for the data of state two, and in most cases for the data of state one. More

precisely, the jump size variance in the data of state one is higher for the second lowest maturity than for

the lowest. However, since the jump intensities of the second lowest maturity, and the remaining maturities,

are small compared to first maturity, we model these rates without jumps. That is, we interpret the jump

intensity to be zero for all maturities, except for the lowest. Hence, the assumptions on vJ and λ from section

4.2.2 are not violated.

The jump intensities from state one are, for all maturities, lower than for the full data set and state two.

Moreover, the jump intensities of the full data set are typically smaller than the for state two.

After removing the jumps, the covariance of the remaining data is found using EWMA. The covariance of

the full data set is seen in Table 15. For the split data, however, we do not apply EWMA, but rather find

the covariance from all of the data in the respective data set. The resulting covariance matrix for state one

and two is presented in Table 16 and 17, respectively.
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Table 15: Covariance matrix of the log-returns after removing identified jumps

1Y 2Y 3Y 4Y 5Y

1Y 0.00015 0.00008 0.00009 0.00009 0.00006

2Y 0.00008 0.00010 0.00005 0.00004 0.00005

3Y 0.00009 0.00005 0.00008 0.00010 0.00004

4Y 0.00009 0.00004 0.00010 0.00012 0.00004

5Y 0.00006 0.00005 0.00004 0.00004 0.00005

Table 16: Covariance matrix of the log-returns of the data in state one, after removing jumps

1Y 2Y 3Y 4Y 5Y

1Y 0.00016 0.00010 0.00010 0.00010 0.00008

2Y 0.00010 0.00015 0.00009 0.00008 0.00008

3Y 0.00010 0.00009 0.00011 0.00012 0.00008

4Y 0.00010 0.00008 0.00012 0.00014 0.00008

5Y 0.00008 0.00008 0.00008 0.00008 0.00011

Table 17: Covariance matrix of the log-returns of the data in state two, after removing jumps

1Y 2Y 3Y 4Y 5Y

1Y 0.00113 0.00064 0.00047 0.00038 0.00034

2Y 0.00064 0.00059 0.00036 0.00030 0.00026

3Y 0.00047 0.00036 0.00032 0.00031 0.00020

4Y 0.00038 0.00030 0.00031 0.00031 0.00018

5Y 0.00034 0.00026 0.00020 0.00018 0.00023

We notice that the variances found in Table 15, 16 and 17 are considerably lower than the jump size variances

for the corresponding data sets. Hence, the identified jumps clearly represent data points where the observed

value is not due to ordinary diffusion. Furthermore, the variances of the data in state two are significantly

higher than in state one, as expected.
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The covariances of the data with and without jumps in the full data set are very similar. To interpret this,

we need to keep in mind that they are found using EWMA for the last 500 trading days. This stems from

the fact that there are very few jumps occurring during the last 500 days. This covariances would still be

very much the same if the window of 500 days was increased, given a constant smoothing parameter of 0.94

in the EWMA. Even if the more distant data contains a lot of jumps, the weight would be so small that the

effect almost disappears.
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B Verification

B.1 Verification of the jump diffusion implementation

The implementation of the jump diffusion algorithm can be verified in a similar manner as described in

section B.2. Equation (??) was used to simulate log-returns of rates, given the following parameter set

which was chosen at random.

Table 18: Actual and estimated parameters for the jump calibration routine.

α̂ δ2 mJ vJ λ

Actual 0.000700 0.000004 0.000500 0.000200 0.050000

Estimated 0.000752 0.000004 0.004540 0.000222 0.048395

The number of realizations were 3000 and ∆t was set to 1/252.

Running the jump diffusion algorithm described in section 4.2 for the simulated data will estimate the jump

sequence, the corresponding jump sizes, and the parameter values. Figure 10 shows the result, and we clearly

see that the algorithm identifies the jumps and estimate the jump sizes correctly.

Figure 10: Log-returns for the simulated rates. The red circles indicate jumps.

Comparing the estimated values to the true values, we can conclude that the implementation is correct and

the algorithm succeeded.
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B.2 Verification of the Markov-switch implementation

This section shows the robustness of the Markov-switching algorithm, as well as it includes a verification of

the implementation. The main idea is to select two parameter sets, choose a state path and insert this into

the two-state Vasicek model defined in equation (3.2.2). Then the algorithm is applied at the data from the

Vasicek model, and tries to reproduce the path chosen initially. If the estimated path and the actual path

coincide, the implementation is successful.

A transition matrix and an initial condition is chosen

C =

0.95 0.05

0.1 0.9

 , v0 = 0.2 %.

Moreover, ∆t = 1/252. The chosen parameter sets for the Vasicek process are listed in Table 19.

Table 19: MS Parameters.

True parameters Simulated parameters

State γ δ σ2 γ̂ δ̂ σ̂2

1 0.0075 0.85 0.0015 0.00762 0.84872 0.00149

2 0.0080 0.91 0.0020 0.00633 0.93433 0.00178

Firstly, a path of state is sampled. We set the initial state to 1, and then sample from C to generate a path

of states with length N = 1260. Since there are two possible states, the path will consist of 1’s and 2’s,

indicating the state at the time. The path is shown in the middle of Figure 11. Now, this path, along with

the initial condition v0 and the parameter sets are inserted into the two-state discrete Vasicek process given

in Equation 4.3.6. The result is shown at the top of Figure 11.

Only the Vasicek data v is inserted into the algorithm in order to estimate the parameters and find the path

from which v is produced. The algorithm is run using the following priors

b0 = (0, 0), B0 =

0.5 0

0 0.5

 , f0 = 0.5, g0 = Var(v), σ2
1 = 0.003, σ2

2 = 0.001, C =

0.8 0.2

0.4 0.6


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The estimated path from the algorithm is shown in the lowermost plot of Figure 11. The algorithm clearly

reproduces the actual path, and with 10000 Monte Carlo iterations, where 1000 are burn-in iterations, the

paths differ at only 34 out of 1260. The algorithm also estimates the Vasicek parameters, which are listed

in Table 19. By comparing the true and simulated parameters, it is clear that the Markov-switch algorithm

is successful. Most importantly, the transition matrix was estimated to Ĉ =

0.9790 0.0210

0.1048 0.8952

, which is

close to the transition matrix that was used to produce the data.
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Figure 11: Verification of the implementation of the Markov-switch algorithm. The red circles in the
lowermost plot indicates the wrong states.
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