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Abstract

We study a method to solve non-parametric regression problems in one and two dimensions with
statistical multiresolution estimation. We present the non-parametric regression problem, then in-
troduce the multiresolution norm and use it to formulate the optimization problem. We will discuss
two different regularization terms, a quadratic regularization term and a total variation term. We
will solve the quadratic problem in both one and two dimensions. In order the solve this problem
in one dimension, we use the ADMM (alternating direction method of multipliers) and Dykstra’s
projection method. For the two dimensional case, we use the Douglas-Rachford method. We will
consider the total variation problem only in two dimensions. To solve the total variation problem
we use the Douglas-Rachford method and Chambolle’s projection method. Towards the end, we
will verify and test the algorithms numerically.
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Sammendrag

Vi vil studere en metode for a Igse ikke-parametriske problemer i en og to dimensjoner med
statistisk multiresolusjonsestimering. Vi starter med a presentere det ikke-parametriske problemet
og multiresolusjonsnormen, disse vil deretter bli brukt til a formulere optimeringsproblemet. To
forskjellige regulariseringsledd, et kvadratiskledd og et totalvariasjonsledd, vil bli diskutert. Det
kvadratiske problemet vil bli Igst i bade en og to dimensjoner, mens totalvariasjonsproblemet bare
vil bli Igst i to dimensjoner. For a lgse problemet i en dimensjon vil vi bruke ADMM (alternating
direction method of multipliers) og Dykstras projeksjonsmetode. For a lgse de to-dimensjonale
problemene vil vi bruke Douglas-Rachfords metode. I tillegg til Douglas-Rachfords metode vil
vi for totalvariasjonsproblemet bruke Chambolles projeksjonsmetode. Mot slutten vil vi numerisk
verifisere og teste algoritmene.
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Chapter

Introduction

Noise reduction, or denoising, is a well-known field within signal processing. A signal can be
many different things. In one dimension, the signal can be audio, electromagnetic waves or radio
signals. In two dimensions, the signal can be an image. In three dimensions, the signal can be
a three dimensional images such as the result of a CT scan or a film, which is a time dependent
sequence of images. We will work with one and two dimensional signals, but the denoising method
we present also would work in higher dimensions.

Many factors can influence a signal from when the signal appears until it is received and recorded.
If a signal is traveling over a large distance, the signal may lose energy. This phenomenon is called
dissipation. The signal can also absorb energy or information from other signals or energy sources.
In this scenario, the signal has became noisy. Often, we divide the observed data Y, which is the
received signal, into two terms the original signal f and the noise . The observed data can then be
described with the equation

Y=f+e.

The noise is often divided into different groups, one of them being white noise. White noise is in
[4] defined as a discrete signal with mean equal to zero and constant variance o2, If the distribution
of the noise is Gaussian, then the noise is called Gaussian noise. This distribution is a widely
used model for noise. It will be assumed in this thesis that the noise can be described as Gaussian
noise.

We are interested in the original function f. Therefore, we want to find a reconstruction u such that
u ~ Y. To find the reconstruction u, we need to remove the noise ¢ from the data points [6]. Many
different methods have been developed to reconstruct the original signal f. We can for instance
apply different filters, use wavelet transforms or statistical methods. A widely used method over
the past decades years has been regularization. This method uses an energy minimization approach.
The approach often consists in minimizing a functional with two terms, one of which models how
the observed signal is derived from the original signal and the other contains information about the
original signal. Such a method is linear regression, where we assume the solution to be a linear
function.




In many situations, the solution is not a linear function, so linear regression is not the best method
for us. However, we could assume that the solution is smooth. Then, we can formulate the problem
as a constrained optimization problem with a regularization term that is the L,-norm of the gradient
of the reconstruction. If we then solves the problem such that the Ls-norm of the residual, v — Y,
is less than a constant 4 > 0, we have the minimization problem

1
min§||vu||§ such that |lu — Y|y < 6. (1.1)

However, with this constraint We have none local evaluating of the noise and the noise is not
independent. Therefore, we will not use this method either. We will formulate the problem as
a constrained optimization problem, but as constraint, we will use a statistical multiresolution
norm introduced by Nemirovskiy in [13]. For the regularization term, we will study two differ-
ent types.

In this thesis, we will study and develop algorithms to denoise signals in both one and two dimen-
sions. In one dimension, we will study a quadratic regularization problem. To solve the problem,
we will follow the approach in [7] and solve the problem with the alternating direction method of
multipliers [5] and Dykstra’s projection method [2].

In two dimensions, we will study the same regularization term as in one dimension. In addition,
we will study an approach where the regularization term is the total variation norm, which was
introduced as a method to reduce noise by Rudin, Osher and Fatemi in [16]. For both approaches,
we will develop an algorithm to solve the minimization problem based on the Douglas-Rachford
splitting algorithm [5]. When we have the total variation norm as regularization term, we will
use Chambolle’s projection method to solve the total variation problem [3]. At the end, we will
implement the algorithms in Matlab and test the methods numerically.




Chapter 2

Problem formulation

We want to remove noise from a discrete signal Y. We will start to formulate the problem as
non-parametric problem. Then, we will study a method to solve the problem.

We are given the data points Y € RV*M for N < M, on the two-dimensional grid

U= {(z;,y;) € R* | w; = ih,y; = jh,i=1,...,N,j=1,...,M} C[0,a] x [0,8],

a __ b

where h = 1 = W

We then assume the data points can be described in the form

Yij = f(zi,y5) + €y,

where f : [0, a] x [0,b] — R is an unknown function which we want to reconstruct. f is assumed
to be a continuous function. The noise, denoted as ¢, is assumed to be independent and identically
distributed (i.i.d.) with Gaussian distribution, mean ;. equal to zero and some variance o> > 0,
hence the noise is i.i.d. Gaussian. We assume that the variance of the noise is known, but the method
to reconstruct f to be discussed here can also be applied in the case of unknown variance.

Three examples illustrating the data Y are plotted in figure 2.1. The examples are one dimensional,
but the same principles applies to two dimensional problems. All three plots show the data points
Y = f(x) + ¢, where the original function f(z) = cos(wz). In subplot 2.1a we have 128 data
points and the variance is 0.1, in subplot 2.1b, we have 1024 data points and the variance is 0.1 and
in subplot 2.1c we have 1024 data points and the variance is 0.4. By studying the three different
plots, we can see how the number of data points and the variance of the noise influence the shape
of the data set.

First, we consider the influence of the number of data points. Comparing subplot 2.1a and subplot
2.1b, we see that they have the same variance, but subplot 2.1a has fewer data points than subplot
2.1b. We can also see that subplot 2.1b resembles a cosine function. However, while subplot 2.1a,
might look like a cosine, it could also include additional oscillations since the distance between
each point is large.
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Figure 2.1: The plots show the data points Y with noise as dots and the function f(x) = cos(wx) for
€ (0,1). f is the function we want to reconstruct from Y as a curve. In the subplots, we can see how the
different number of data points and the variance impact the shape of the data points.

Second, to see how the variance can impact the shape the data points form, we compare subplot 2.1b
and subplot 2.1c. In both figures we have N = 1024, but the functions have different variances,
subplot 2.1b has variance 0 = 0.1 and subplot 2.1c has variance 0 = 0.4. We see that the data
points are very scattered in subplot 2.1c. It is hard to see whether the data points either form a
linear shape or a cosine shape. While in subplot 2.1b, the shape of the function f is more retained.
Hence, the shape of the cosine function is easier to detect.

In summary, both the number of data points and the size of the variance impacts the appearance of
the set of data points. The shape of the original function is better retained in the set of data points
for large NV and small variance, than for small NV and large variance.

The aim is to find a reconstruction v of f from Y. A method to reconstruct f from Y is for instance
the least squares method. This method assumes f to be affine, which is very restrictive. We want to
solve as many different problems as possible, not only problems that are affine. For that reason, the
least squares method is not the best method for us and therefore must consider other methods.

A better method to reconstruct v might be to use constrained optimization. A constrained method
called the residual method is discussed in [8]. The optimization problem there is of the form
min J(u) suchthat V(u,Y) <7,
u
where J is the regularization term and V' connects the observed data points and the reconstructed
data. The purpose of the regularization term J is to impose some regularity properties to the
reconstruction u. Which properties we want to regularize can vary, so at this moment we define it

as a general (convex) functional J(u). This functional will be discussed in more detail in chapter
2.2.

In the residual method, V' is chosen such that the residual has the same properties as the noise.
Then, we minimize .J(u) subject to the constraint V. To evaluate the residual it is necessary to
evaluate v at the grid points. Therefore, we introduce the point evaluation

Sp: €% — RV,




which samples any function u on the regular grid I, that is, if u : [0,a] x [0,b] — R then
(Sru); ; = u(z;, y;). Using this notation we can express the residual as

r=Sru—Y.

We know that Y consist of f and Gaussian noise . If we in addition assume the variance known,
the variance of the residual should be equal or smaller than the variance of the noise. Which can be
formulated as
1 M
r 2o D (i) <o @.1)

=1 j5=1
and used as constraint.

We cant to formulate a method that do not require the variance of the noise known, so we will not
use (2.1) as constraint. Instead of knowledge about the variance, we will use the residual  and the
assumption that ¢ is i.i.d. Gaussian with mean ;¢ = 0 and compare the behavior of these two. The
behaviour is descibed by the multiresolution norm [13].

2.1 Multiresolution norm

In this section, we will formulate first the multiresolution norm [13], and then the constraint for
the optimization problem. To formulate the multiresolution norm, we will use some properties of a
Gaussian random variable. The probability density of a Gaussian random variable is

where o2 is the variance. Further, the sum of n independent Gaussians again is Gaussian distributed
with variance no?.

To describe the noise, we want to estimate the probability for the noise to lie with a certain distance
from zero. For example, in figure 2.2, we have 100 data points which are i.i.d. Gaussian with mean
i = 0 and variance 0 = 0.5. Three distances from zero are also plotted in the figure, d; = 0.5,
dy = 1.0 and d3 = 1.5. As we can see, there are many points with distance larger than d; from
zero, only a few with distance larger than d; from zero and none at all are further away from zero
than ds.

To describe this mathematically, we start with one grid point x;, for some i € {1,..., N} and
j € {1,..., M}. The probability for the noise at one grid point x; ; to have larger distance from

5
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Figure 2.2: The plot shows how a set with 100 i.i.d. Gaussian random variables with mean ¢ = 0 and
variance o = 0.5 are distributed around 0. The lines mark the distances d; = 0.5, do = 1.0 and d3 = 1.5
from 0, colored in red, blue and turquoise respectively. The sample at the point x,,, where v € {1,...,100}
and = € (0, 1), has the distance |, | from 0.

zero than C'o, where C' > 0, can be estimated as

—Co

P(les| > Co) = / k(y)dy + /C k(y)dy
o0 U2
=2 ! e 2:2dy

Co V 2o

= ——e 2, (22)

This is illustrated in subplot 2.3a. As we can see, the probability for some ¢; ; to be further away
from zero than C'o decreases fast as C' grows. For instance, the probability is less than 1 when
C > 0.64 and when C' > 2.5 is the probability almost zero.

Now, we want to look at the largest sample of |¢|. We then get the probability for any ¢; ; to be
further away from zero than C'o. To find this, we find the probability for the ¢ with the largest
distance to zero to be further away from zero than C'o, which can be estimated as

N M
P(max [e;| > Co) < >N Pyl > Co)

i=1 j=1
NM 2 c?

< —y/—e Tz, 2.3

S e\ (2.3)

This probability is plotted for N = M = 512 in subplot 2.3b. As we can see, the probability
behaves similar to (2.2), the further away from zero the C'o is from zero, the lower is the probability
to find any ¢ further from zero than C'c. The probability is less than 1 when C' > 4.62 and when

6
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Figure 2.3: In the figure to the left, (2.2) is plotted and in the figure to the right, (2.3) is plotted, where
N = M = 512. We see that in the plot to the left the probability is less than 1 when C' > 0.64 and when
C > 2.5 the probability is zero and in the plot to the right the probability is less than 1 when C' > 4.62 and
when C > 5.5 the probability is almost zero.

C > 5.5 the probability is almost zero. By comparing the two plots in figure 2.3, it is clear that the
point where the probability is zero, the value of C'is lower for (2.2) than for (2.3). We can then
conclude that, the probability for a sample ¢; ; to be further away from zero than Co is zero at a
smaller C' than the value of C' where the probability to find the sample with largest distance from
zero further away from zero than C'o is zero.

Now, we apply the same estimates at a sum of the noise at four adjacent grid points that form
a square with side lengths of two grid points. To that end, we assume ¢ € {1,..., N — 1} and
j €{1,..., M — 1} and consider the sum ¢; ; + ;41 + €; j+1 + €i+1,j+1. Since the noise is i.i.d.
Gaussian, the sum is also Gaussian distributed, with variance (20)2. Thus, the probability for the
absolute value of this sum to be larger than 2C'o is

1 _¢e2
2

21
P (|5i,j + Eit+1,5 + Eij+1 + 5i+1,j+1| > 200’) S \/;56
We divide the sum by 2 and rewrite the estimate as

1 c?

1 5 i
P (§|€i,j + i1, + i1 + i1 a| > Ca) < \/;56 5

Then, taking the maximum over all possible sums of squares, we obtain

N-1M-1

Z P(’Ei’j‘ > CO’)

=1 j:1

(N-1)(M—-1) [2 _¢
< C \/;e 7,

1
P | max Sleij + €ivig + €igr +€ivim| > Co ) <




This result is similar to the result for one sample.

Finally, we assume side lengths of the square to be k € {1,..., N} grid points and the grid point
numbertobe i € {1,...,N —k+1}and j € {1,...,M — k + 1}. We then consider the sum

N—k+1 x\~M—k+1 . .. . . .
Zp:i * > =i * €p,q- Because of the properties of i.i.d Gaussians, the sum is also Gaussian and

the variance is ko. Using the same argumentation as earlier, we obtain that
ith—1j+k—1
c -
- > Co ——e
(ELEEORE
and
itk—1 j+k—1 N—k+1 M—k+1
(maX—| Z Z Epd] >Ca> < Z Z (leij| > Co)
N —k M—-—k+1) |2 _c2
< W=k 1 i )\/ie_%. 2.4)
7r

- C

We want to estimate the largest value of (2.4). Therefore, we take the maximum of all side lengths
and grid point numbers to obtain the estimate

N—k+1 M—k+1 N N—k+1 M—k+1
(Ikn?;(—’ Z Z 6pq}>00) SZP(max—‘ Z Z 5pq}>00)

NN—k+D(M—k+1) [2 e
§Z< +)C(' +)\/;e2

k
_ BMN+N - N?)(N+1)\/§_cz
=~ —€
s

2

MNQ\/§ o2
< Ze 5. 25
< —€ (2.5)

By introducing the index set

~

I={(kij):k=1,...,N,i=1,.... N—k+1,j=1,...,M—k+1},

the inequality (2.5) can be rewritten to

N—k+1 M—k+1 N2 (3 o
(max —‘ Z Z 5pq| >CO’) ST ;e*%. (2.6)

k,i,j )EI

From [7], we have that the term inside P is known as the multiresolution norm || - || 5.




Definition 1. Given a subset I C I, we define the multiresolution norm of v € RVN>*M gg
N—k+1 M—k+1

vl = ma))éIE ZZ Z qu‘

With the multiresolution norm, we can describe the behavior of both the noise and the residual.
Therefore, it is suitable to use as constraint for the optimization problem. There is one problem
with the multiresolution norm, in the way the index set is defined the number of equations to solve
increases fast when the number of grid points increases. Hence, time used to solve the problem
increases. To reduce solution time we will use only the necessary quadrants. In particular, if
N = M = 2™, where m € N, we can use the dyadic index sets. Which is defined such that only
some of the subsets of [ is used. We can describe the dyadic index set as a union

I=JI
s=0
of the index sets
Io={(k,i,j): k=2°i=p2°+1,j =q2°+ 1 withp,g=0,...,2"° = 1,s=0,1,...,m}.
More details about the dyadic subset can be found in appendix B.

Lemma 1. If ¢ € RY*M s q realization of an independent and identically distributed Gaussian
random variable and C' > dlog(N M), where d > 0 is a constant, then

\/ﬁ)

a’b ab\ ¢ e
> C _ | — ,
POl > €0 < i (72)

where h = & = % In particular, we have

N
P(|le|lg > odlog(NM)) — 0.
h—0

Proof. Inserting C' = dlog N M in (2.5), we obtain

MN? o )
P(|le|lp > odlog NM) < %.

- dlog(NM)
) u .
Now, we insert h = &=
a2b (dlog( ﬂ2 )2
ellg > odlog NM e -
P (Il > odlog NM) < 5t
— Le—d%og(;—‘;)log((;—s)%)
h3dlog(i‘i—g)

\/E)

a?b ab —d?log(*3
~ h3dlog(%) (ﬁ) ’




which converges to zero when h — 0. [l

From lemma 1, we have that if the number of grid points on a fixed rectangle is increased, the
probability for ||¢||p to be larger than do log(N M) will go towards zero and, for large enough
number of grid points, the probability will be negligible.

Lemma 2. Let w : [0,a] x [0,b] — R be a continuous function such that w # 0. Then there exists
some c > 0 such that

| Srwl||p > h

if h is sufficiently small.

Proof. There exists some Z € (0,a) and y € (0,b) such that |w(z,y)| # 0. Assume without loss
of generality that w(Z, ) > 0. Then there exist some ¢ > 0 and § > 0 such that w(z,y) > ¢ for all
r €[z —05,z+0andy € [y — 0,7+ 6. As a consequence

—k+1 M—k+1
||Srw|| g = madk Z Z Spwpq‘
=1

N— k:-i-lM k+1

2 (ki ‘\/_ z; Z w(tpq)| > © i [l

T; >T—0 T, >T—0
ZTitk—1<T+8 Titk—1T+0
y;j>y—o yj>y—o
Yjth—1y+0 Yjtk—1y+6

Which is equivalent to maximizing the side lengths % of a square such that there exists some
ie{l,....,N—k+1} with z;>72—-4d and z; 1 <ZT+5, (2.7)
and there exists some

je{l,.... M —k+1} with y;>y—0 and yj i1 <G+ (2.8)

In order to estimate the maximum, we want to find a lower bound for the side length k of squares
in the square [T — 0,Z 4 0] X [y — d, 5 + 0]. For this purpose we use the two conditions (2.7) and
(2.8). We start with (2.7), which is the x-direction. The interval in x-direction overlays the grid
[0, a] as illustrated in figure 2 4. The line on the top in the ﬁgure is a part of the grid I" with V grid
points with distance h = 5 [z — 6, + 6] with length
24. Then k is the number of grid points from the top line that fits into the interval [z — J, Z + J]. To
find k, we find the difference between the index of the first grid point z; in [Z — §, Z + §], which is
the point x; with

i=min{l: z; € [T —4,T + I},

10
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Figure 2.4: The upper line in the figure is a part of the grid I' with grid size h. The bottom line is the interval
[z — 0,z + J] with size 26. The grid point x; is the grid point at most to the left in the interval [z — J, Z + ]
and the grid point z;, ;1 is the grid point at most to the right in the interval [z — §, Z + J].

and the last grid point x;, 41, 1.e. the point x;, ;1 with
i+k—1=max{l:z €[z—61z+ ]}
Then, the distance between z; | < T — 0, Ty > T + 018
|Tiik — 1| = (k+ 1)h > 2§

Thus, the number of grid points on the interval [z — 4, T + 4] is

25
Y
7

For the second condition we apply the same method and the obtain the same result

25
ps 201
-

The result for k& are the same in both directions are and both conditions (2.7) and (2.8) are satisfied.
The result for the maximum is then

if h <6.

> >

T; >T—0
Tipp—1<T+6
Y =>Y—0
Yj+k—1<Y+0

Then if the multiresolution norm contains any continuous parts the norm becomes

cd .
|Srw||p > ¢ max |k|>— ifh <4
(i,5,k)ET h
T; >T—0
Tigtk—1<T+0
Y >G—6
Yjtk—1y+0

11



From lemma 2, we obtain that the multiresolution norm will behave linearly with the number of grid
points in each direction if the samples consist of any continuous functions. Therefore, if the residual
r = Sru—Y contains any continuous parts, we can expect that ||r||z 2 7, where ¢ = [|7||o. On the
other hand, from lemma 1, we obtain that the multiresolution norm will behave logarithmic when
the number of grid points increases if the samples do not consist of any continuous functions. For
very small continuous functions, the norm struggles with separating the continuous functions and
the noise. Hence, if ||r||p < log(%%), we can expect that most of the continuous parts are removed
from r. Since we aim to remove as many continuous functions as possible from r, we cam use
lemma 1 and lemma 2 to formulate a constraint for the optimization problem. We formulate this
constraint as

Irlls < v,

where ;, is the multiresolution bound and chosen such that lemma 1 and lemma 2 are satisfied.
The lemmas are satisfied when

ab c
log(—) <, < —. 29
0g(r3) Sm <o (2.9)
Now, we should be able to separate the noise and the original function such that the residual almost
not contain any continuous functions.

2.2 Regularization

The purpose of the regularization term .J is to impose some regularity properties to the reconstruc-
tion u. We will now study two different convex functionals to use as regularization terms, one
where we take the Lo-norm of the gradient of u and one where we take the L;-norm of the gradient
of u, also known as the total variation norm of u [16].

Before we do so, we will discretize u and denote the discretized u as w; ;, where i = 1,..., N
and j = 1,..., M, and the gradient V : R" — R" x R is defined as (Vu);; = (Vuj,;, Vu?;),
where
Vul.lj _ Uit1,5 — Ui j lfl <N and Vu?g _ Ui 41 — Ui lfj <M '
’ 0 ifi =N ’ ifj =M

We ignore the term % in the definition of the gradient because it is only a constant and we will use
it to solve a constrained optimization problem. Henceforward, we will use the discretized form of
u.

First, we study quadratic regularization and the convex functional is then

N,M

1
Ju) = SIVull; = Y (Vuiy)* + (Vui,)?) (2.10)

3,j=1

This regularization term is a very tempting functional, since it is both continuous and differentiable,
and even quadratic, therefore often easy to minimize. The problem with this functional is that it
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does not manage discontinuities very well. If the original function f has any discontinuities, these
will be smoothed out in the reconstruction .

The second regularization term we will discuss is the L;-norm of the gradient of u, also called the
total variation norm. As a tool in denoising, this norm was introduced by Rudin, Osher and Fatemi
in [16]. The total variation norm is defined as

N,M N,M
IVuls = D7 [Vl = 0 \/(Vul,)? + (V)2 2.11)

1,j=1 1,j=1

The regularization term then becomes
J(u) = [[Vull;. (2.12)

This functional is often harder to minimize, since it is not differentiable when w is zero. On the other
hand, it manages discontinuities and edges, and partly smooth functions will be better reconstructed
than by the quadratic regularization term. None of the convex functionals manage oscillations, so
areas with oscillations in the function will give us problems.

The difference between these two functionals is the L, and L;-norm. The L,-norm is defined
as

lolls = /a3 + a3+ ... +a2
and the L{-norm is defined as
||Zl?||1 = |ZE1| + |ZE2| + ...+ |{En|

We can illustrate these two norms with their isosurfaces, which are shown in figure 2.5. As we can
see in the figures, the isosurface for the Lo-norm is a circle and the the isosurface for the L;-norm
is a square with the corners at the axis. In regularization we often want to find the the shortest
distance between a point y = (y;,y2) and a x = (1, x2) on the isosurface. We can formulate this
as a minimization problem. For the L,-norm it is often formulated as

e
min Z{|z5 + [l= — yll3 (2.13)

A AN
NN )4

(@) Ly (b) Ly

Figure 2.5: The figures show the isosurface for the Ly and L1 norm.
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(a) Ly (b) Ly

Figure 2.6: The figures show the shortest distance between the point y and the isosurface for the Lo and Ly
norm.

and for the L;-norm it is often formulated as
minaljzf; + [lz — y|5.

The solution of these two minimization problems is illustrated in figure 2.6. As we can see for
(2.13), none of the components of the point x can be zero unless the point y lies at one of the axes.
On the other hand, for (2.2), shortest distance between the isosurface and the point y can often
be such that one of the components of x is zero, without y lying on one of the axes. This gives
the L, norm the opportunity to be zero at all other places than these have something important
happens.

Another difference between the Ly-norm and the Li-norm is that large values for z; is harder
punished by the Ly-norm, than by the Li-norm. The reason is that the Lo-norm grows faster than
the Li-norm. So, when the L,-norm reconstructs a discontinuity, it is cheaper to have a small
gradient over a larger area, than have a large gradient at the discontinuity. For the L;-norm, it is the
opposite, it is cheaper a large gradient at the discontinuity, than have a small gradient over a larger
area. This property is the reason for the L;-norm to favor discontinuities.

To illustrate the difference in the solution for the regularization terms (2.10) and (2.12) we formulate
the minimization problems as

e 1
min || Va3 + 5llu = Y5, (2.14)

where Y is a noisy image and o > 0 is a weighting parameter, for the regularization term (2.10)
and

. 1
min pl| Vaully + 3 = Y3, (2.15)

where ©1 > 0 is a weighting parameter, for the regularization term (2.12). The solution of (2.14)
is easy to find because the equation is differentiable with respect to u. The solution is then found
where the derivative solved for u is zero. We then have

(—aA+Hu=Y,

14



where [ is the identity matrix, which can be solved directly. The solution of (2.15) is harder to find
since it is not differentiable at Vu = 0. So, to find the solution, we must use iterative methods. We
will use Chambolle’s projection method with ;o = 1, which will be presented in chapter 3.5. Figure
2.7 shows the reconstructions and the original image with and without noise, with variance o = 0.1.
The solutions of (2.14) and (2.15) are shown in subfigure 2.7c and subfigure 2.7d, respectively. As
we can see in subfigure 2.7c, the discontinuities are blurred when (2.14) is minimized. In the
solution for (2.15), the discontinuities are sharper, but some of the details are missing.

1

1.2
0.8 1

0.8
0.6 0.6

0.4
0.4

0.2

0
0.2

-0.2
o

(a) The original image (b) The original image with noise

1 1
0.6 [ 0.6
". | 0.4 0.4
, 02 02

- 0 0

(¢ Reconstru70ted with quadratic regularization (d) Reconstructed with total variation.

and a = 107",

Figure 2.7: The images in the figure shows a image called phantom. The two images at the top are the
original image with and without noise, with variance ¢ = 0.1, is applied. The two images at the bottom
is reconstructions. They are reconstructed with the optimization problem defined in the next section, where
the regularization term are quadratic regularization (to the left) and total variation (to the right). As we can
see, the reconstruction with quadratic regularization is blurred and the reconstruction with total variation has
clear edges. Note that the original image and the reconstructions are plotted with the colorbar scaled between
0 and 1.
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2.3 Optimization problem

In the two previous sections two different convex functionals .J(u) and the constraint are presented.
Now, we will define the optimization problem.

Assume the grid I' to be fixed and choose the dyadic index set [ to define the multiresolution norm
|| - || - The optimization problem then becomes

min J(u) suchthat ||u—Y| s <.
u€RT

In order to simplify the notation, + is used instead of v, if the emphasis of & is not necessary.

The multiresolution norm is complicated to work with, so we want to reformulate the constraint
such that we can use another norm. To that end, we introduce a linear operator £’ : RI' —» R/,

1
v | — v(x) :
<\/ #Q; N T Z ) 4
Q:NT i€l
where (); is the ith square in the index set /, and write the multiresolution norm as

= Fo)piil = | Folle.
Joll = e [(Fo)iss] = [1Fol

We now use the infinity norm instead of the multiresolution norm. The optimization problem then
becomes

min J(u) suchthat ||F(u—Y)|e <7. (2.16)

ucRl

The coupling between the objective function and the constraint is complicated. Therefore, we want
to rewrite optimization problem so we get a simpler coupling. We start with introducing

v=Flu-Y)
and inserting it into (2.16). The optimization problem then becomes

1 J h that ||v||e < dF(u—-Y)=v.
ueﬂgglew (u) such that ||v]|, <~ and F(u )=w

Instead of formulating the problem as a constraint problem, it can be reformulated as an equivalent
unconstrained problem by replacing the constraints with indicator functions [11]. First, we formu-
late the indicator function for the inequality constraint, which is i¢c(v) : RY — R U {+0cc} on the
feasible region C = {u € R : ||u — Y||z < ~v}. The indicator function then becomes

400 otherwise.
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Next, we formulate the indicator function for the equality constraint, whichis iz : RI' x Rf — R U {+occ}
on the feasible region F = {(u,v) € RY x Rl : F(u —Y) — v = 0}. This indicator function is

then defined as
0 ifFlu—Y)=
ix(u,v) ={ i Fu—Y)=v,
+00 otherwise.

Now, we replace the constraints with the indicator functions and the final optimization problem

becomes
i J ) F(u,v). 2.17
el )+ ie(e) i) @17
This probelm is a convex optimization problem and to solve it, we will use some splitting algorithms
that are presented in [5]. Which algorithms will be used depends on the convex functional J(u)
and the dimension of the problem.
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Chapter

Algorithms

In this chapter, the algorithms use to solve the optimization problem (2.17) are presented. Before
we do so, some theory from convex analysis and convex optimization is explained.

3.1 Convex analysis

A general optimization problem might have the form

min f(z) suchthat ¢;(z)=0,i€&

ci(x) > 0,i €T,
where f : R? — R U {+oo} in the objective function, £ and Z are the index sets for the equality
and inequality constraints. The domain of f is defined as dom f = {x : x € RU {400}} and a
definition of the relative interior ri can be found in [11]. Convex optimization problems is a special

group of optimization problems. In these problems the objective function f is convex, the equality
constraints are linear and the inequality constraints are concave.

A function is convex f if

flaz+ (1 —a)y) < af(z) = (1-a)f(y),

forall 0 < o < 1 and for all z,y € R%. A concave function is the opposite of a convex function,
which means that a function f is concave if

flaz + (1= a)y) > af(z) — (1 —a)f(y),

for all 0 < o < 1. This definition of a concave function is the same as to say that f is concave
if —f is convex. We also have that a sum of convex functions is convex. A linear function is both
convex and concave, because both the conditions are satisfied. Since a linear function is convex,
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the sum of a convex function and a linear function is also convex. For more details about convex
functions, see [11].

We assume that f : R® — R and g : R™ — R are convex. The minimization program
min f(2) + g(Ax), @.1)

where A € R™ ™, is then a convex program. We have a solution of (3.1) if and only if
0€0f(z") + A"0g(Ax™), (3.2)

where z* is the solution, A* is the conjugate of the operator A and Jf is the sub differential of f.
One definition of the sub differential is

Of ={seR": (s,d) < f'(x,d) forall deR"}.

For the convex program we have the dual program
msin fr(—=As)+g*(s), (3.3)
where f* is the conjugate of f and defined by
f*(s) = sup{(s, z) — f(x) : v € R"},

and g* is the conjugate of g and defined by

g'(s) = sup{(s, ) — g(a) : = € R},

The functions f* ad g* are convex, so the dual program is also convex. To solve (3.1), we will use
a reformulation of (3.2). To find a more suitable form of (3.2) we use that

s € df(x),
if and only if
x € df*(s).
If «* solves (3.1), then there exists
s* € dg(Ax™),
with
—A*s* € Of (x7).
As a consequence, we get that
Az™ € g™ (s™),
and
"€ Of*(—A%s").
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This gives us that s* solves the dual problem (3.3). Also, x* solves (3.1) and s* solves (3.3) if and
only if

s* € 0g(Ax™),

and
—A*s* € Of (z"),

or, alternatively, if
Azx* € g*(s"), (3.4)

and

" € df(—As). (3.5)

Then to solve (3.1), we can solve (3.3) and use (3.4) and (3.5) to get «*. For further readings see
[12, Chapter III, Remark 4.2].

Since (2.17) is a convex optimization problem and the object function is a sum of convex functions,
since we assume .J(u) to be convex, ic is convex and ir is linear, we can use some of the algo-
rithms presented in [5] to solve it. The methods presented here are splitting algorithms that solves
minimization problems of the form

min fi(2) + ...+ ful2),

zeRN

where fi,..., fm : RY — ]—00, 00] are convex functions. Some of the functions can be seen as
indicator functions [11] for a nonempty sets C; € R™. A natural method to minimize a indicator
function is to project it onto C;. The projection can then be formulated as

: 1 2
min Fiy) + 5lle =yl

where z € RY and 1 < j < m. This minimization problem also makes sense when f is not an
indicator function. From [11], we have that for every z € R the minimization problem admits
a unique solution. The unique solution is denoted as the proximity operator, which is formulated
as

. 1
prox g, () = argmin ; f3(y) + 5 lx — yll2, (3.6)

where 115 is a constant.

The proximity operator is a weighted minimization of the distance between = and y at the same
time is f minimized. When f is an indicator function this is, as mentioned, a simple projection. If
f 1s not a indicator function, the problem is minimized iteratively.

21



3.2 Alternating direction method of
multipliers

The alternating direction method of multipliers (ADMM) is a variant of the augmented Lagrangian
method [15, chapter 17], where the objective function is a sum of convex functions depending on
different variables. The objective function with two different variables should be of the form

fi(@) + fa(y),

and the optimization problem of the form

min fi(z) + faly),

zeRN yeRM Lx=y
where L is such that L™ L is invertible and

(ridom f2) Nri L(dom fy) # 0.

As the augmented Lagrangian method, ADMM uses the augmented Langrangian £ 4 : RY x RM x
RM —] — oo, +oo[ and finds the solution at the saddle point of the Lagrangian. The difference in
the methods is how the saddle point is found. The augmented Lagrangian method minimizes with
respect to the primal variables, x and y, simultaneously, while ADMM minimizes with respect to
one at a time. For fixed )\ and the Lagrange multiplier p, € R, we then obtain the algorithm

T, € argmin La(Z, Yn—1; Pn-1);
veRN

Yn € arg min EA(:ETLJ y;pn—1>7
ueH

DPn = Pn—1 1 )\(SNun - Un), (37)
where n = 1, .. .. Alternatively, using the proximity operators the algorithm becomes
Tp = PIOX Luyfy (ynfl - pn71)7

Yn = PIOX o p, (Ly + Pr-1),
Pn = Pn—1+ Lwn — Yn,

where n = 1, . ... The proximity operator for f; is defined as

prox r,p () = argmin L4(x, Yn—1;Pn-1)
z€RN

) 1
= argminju fi(z) — 5 1Le — ol

and the proximity operator for f; is defined as

) 1
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