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1 BACKGROUND 
Concrete dams are used for forming reservoirs for more than 300 years and still the mechanisms 

keeping them same are still not fully discovered and good models to predict the stability of the 

structures are still during development. Concrete dams for most research purposes divided into two 

groups; massive structures based on gravity and lightweight structures based on static forces. The 

resistance against sliding is most significant for lightweight concrete dams and this thesis will focus 

on such structures. 

Sliding resistance for lightweight concrete dams such as Ambursen dams (In Norwegian: platedam), 

buttress dams and gated dams is of outmost importance for the global safety of the dams. For 

lightweight concrete dams, this is an issue to be mentioned related to the low ratio between the 

normal force and horizontal forces. Available and accepted methods are not satisfactory solving the 

problem with realistic determination of shear strength between concrete and rock. 

In the period from 2014 – 2018 a research program StableDams are initiated to develop better 

models to predict sliding resistance and shear capacity in the interface between concrete and rock 

foundations. In the spring semester of 2017 an intensive laboratory test program has been 

- 



developed at Luleå Tekniska Universitet LTU in Luleå to investigate both samples from current dams 

and artificial samples designed specifically to this research program. This master thesis will focus on 

FEM modelling to simulate the tests performed in the LTU lab and to describe how this model can be 

used to predict resistance on full-scale dams. 

2 MAIN ISSUES IN THE THESIS 
To be done: 

1) Finite element modelling of shear tests from LTU in the finite element program Atena. A 

feasible model should be developed with the right material parameters from material tests 

and literature. The model will be useful for predicting the right failure modes, and it should 

have similar work diagram and shear capacity as the lab test sample. 

2) Experiences from the FEM must be used to model a full-scale Ambursen dam pillar from Dam 

Kalhovd in Telemark. This includes how to discover how scale effects best should be handled, 

and to make a reasonable representation of the shear capacity of the interface between rock 

and concrete with respect to geometry and roughness. The result will be compared with 

analytic methods. A core point is to investigate how the shear capacity of the interface 

changes with size and position of roughness elements (asperities). 

3) Proposals for calculation procedures for shear capacity for concrete dams should be 

developed based on FEM, or other models or methods the candidate find feasible. 

Based on experiences from models, the work with scale effects and discussions with the involved 

parties, the candidate shall give advices on the carrying out of a large-scale shear test. 

3 SUPERVISON, DATA AND INFORMATION 

Main supervisor at NTNU will be Professor Leif Lia and the co-supervisors will be PhD-student Dipen 

Bista and Researcher Gabriel Sas in NORUT/LTU. Further collaboration will be organized with LTU 

(Luleå), KTH (Stockholm), Norut (Narvik), NVE and Statkraft. 

The candidate is encouraged to search information through colleges and employees at NTNU, 

SINTEF, Energy Norway, Authorities and other companies or organizations related to this topic. 

Contributions from other partners must always be referred in a legal way.  

4 THESIS REPORT, FORMAT, REFERENCES AND DECLARATION 

The report should be written with a text editing software, and figures, tables, photos etc. should be of 

good quality. The report should contain an executive summary, a table of content, a list of figures and 

tables, a list of references and information about other relevant sources. The report should be 

submitted electronically in B5-format .pdf-file in DAIM, and three paper copies should be handed in to 

the institute.  

The executive summary should not exceed 450 words, and should be suitable for electronic reporting.  
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SUMMARY 
Traditional stability analysis of concrete dams is based on the Mohr-Coulomb failure criteria with a 

peak friction angle to find the shear capacity. The peak friction angle is often in the range between 

40 and 50 degrees, and is highly dependent on the foundation roughness. It is either assumed or set 

by expert judgement from literature. This method is highly inaccurate, and gives a high error margin. 

More advanced methods exist, but there is to the authors knowledge no analytical models that takes 

the deformation in the dam into account. 

The aim of this thesis is to find out how well use of the finite element method can describe the shear 

capacity of a concrete dam, by applying the real geometry of the foundation together with a basic 

friction angle. The biggest challenge with failure of concrete dams, is that there are so many possible 

combinations of failure modes. The idea is to let the model calculate all possible failure modes, to 

find the weakest block in the chain. The simulations were run in the finite element software Atena. 

When doing this investigation, it has been important to benchmark the models against a real case. It 

was therefore decided to model the shear box tests done by Dipen Bista at LTU at the same time as 

this thesis was made. There were done 22 shear tests of samples of concrete casted on rock, and 

done material tests. This provided valuable material parameters and test results for the 

benchmarking of the numerical models made in this thesis. 

It was soon made clear that the modelling of the shear test was not straight forward, and it proved 

hard to get results that matched the tests. Due to lack of time and good test results, only 4 of the 22 

tests were modelled. Of these, only two represent the shear tests in a good way, although the two 

others also give valuable insight, and have many similarities to the shear tests modelled. A 

parametric study shows that a probable explanation for the differences are the rotational stiffness of 

the test setup. 

At the end, a case study is carried out on one pillar of Dam Kalhovd. The pillar is assessed with finite 

element analysis, and the real geometry of the foundation with a resolution of about 20 cm. For this 

section, this increases the factor of safety against sliding from 1.14 with the traditional approach to 

1.98 with the new approach. Use of the FEM seems to be a better description of reality than the 

traditional method. This seems to be a promising way of assessing old dams that are deemed unsafe 

by new regulations. 
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SAMMENDRAG 
Tradisjonell likevektsanalyse av betongdammer baserer seg på Mohr-Coulombs skjærkriterium med 

maks friksjonsvinkel for å finne skjærkapasiteten. Maks friksjonsvinkel er ofte mellom 40 og 60 

grader, og er veldig avhengig av fundamentets ruhet. Friksjonsvinkelen er enten antatt, eller satt ut 

ifra tolkning av litteratur. Denne metoden er unøyaktig, og gir en høy feilmargin. Mer avanserte 

metoder eksisterer, men det er så vidt undertegnede vet ingen av disse metodene som tar 

deformasjonen i dammen i betraktning. 

Målet med denne oppgaven er å finne ut hvor bra endelig elementmetode (FEM) kan beskrive 

skjærkapasiteten til en platedam ved å bruke den korrekte geometrien til fundamentet og en 

friksjonsvinkel for flatt skjærplan. Den største utfordringen ved glidebrudd i betongdammer er at det 

er så mange mulige kombinasjoner av mekanismer. Ideen er å la modellen regne ut alle mulige 

kombinasjoner for å finne det svakeste leddet i kjeden. Beregningene ble uført i 

elementmetodeprogrammet Atena. 

Når en ny metode brukes er det viktig å kvalitetssikre den. Det ble derfor besluttet å modellere en 

serie med skjærbokstester som ble utført av Dipen Bista ved LTU samme semester som denne 

oppgaven ble skrevet. Det ble gjort 22 tester av betong støpt på stein, og det ble utført tester for å 

finne materialegenskaper. Dette ga verdifulle testresultater for sammenlikning av de numeriske 

modellene som ble utviklet i denne oppgaven. 

Det ble snart klart at det å modellere skjærtesten ikke var rett fram, og det var vanskelig å få 

resultater som passet med testresultatene. På grunn av mangel på tid og testresultater ble bare fire 

av testene modellert. Av disse var det bare mulig å få resultater som passet med lab-resultatene for 

to, selv om de andre to også gav godt innblikk i lab-testenes oppførsel, og hadde mange likheter med 

lab-testene. En parametrisk studie viser at en sannsynlig årsak til forskjellene er rotasjonsstivheten i 

testoppsettet. 

En casestudie ble utført på pilar 59 fra Dam Kalhovd. Pilaren ble analysert med endelig 

elementmetode på den reelle geometrien med en oppløsning på omkring 20 cm. For denne 

seksjonen ble sikkerhetsfaktoren økt til 1.98, sammenliknet med 1.14 med den tradisjonelle 

metoden. Bruk av endelig elementmetode og reel geometri virker å være en bedre beskrivelse av 

virkeligheten enn den tradisjonelle metoden, og burde dermed tas i bruk. Dette virker å være en 

lovende metode for å vurdere gamle dammer som har blitt beregningsmessig usikre på grunn av nye 

forskrifter. 
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1. INTRODUCTION 
The Norwegian Dam Safety Regulations states that dams in consequence class 2 – 4 shall be 

reassessed every 15 years, and dams in class 1 every 20 years. The reassessment shall document if 

the dam is in accordance with the given regulations. These regulations change. The first Norwegian 

regulation for dams came in 1981 (Konow, 2017). A figure showing construction years for Norwegian 

dams is shown in figure 1.1: 

  

Figure 1.1 Construction years for Norwegian dams from the NVE register (Konow, 2017) 

Figure 1.1 shows that almost all Norwegian concrete dams are built before the first regulation. 

Before 1981, NVE assessed the plans for each dam separately (Konow, 2017). A general trend is that 

today’s regulations are stricter/different than the NVE practice when the dams were built. The 

Norwegian dams were built to be safe enough when they were built. The problem now is that “safe 

enough” has changed. It is not so easy or cheap to change the dams. 

This has made a need to prove that many existing dams are still safe enough, using other methods 

than the traditional methods. For global stability, the traditional method for plate dams is to find a 

safety factor against sliding and overturning (see equation 2.4). After the new guidelines from 2002, 

this safety factor must be larger than 1.4 for plate dams and 1.5 for gravity dams (for sliding). 

The aim of the thesis is to develop new methods for assessment of the sliding stability of concrete 

dams. The method used is based on finite element analysis of the dam with the real geometry of the 

foundation. The hypothesis is that using the real foundation geometry will give a contribution to the 

resistance capacity large enough that it will be sufficient to only strengthen some pillars on most 

plate dams. 

The objectives of the thesis are to first benchmark the method on some shear box tests with known 

resistance, and then apply the method to a real size plate dam pillar. 
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2. THEORETICAL BACKGROUND 

2.1. State of the art of research on concrete dams 

2.1.1. General stability formulations 
The purpose of a dam is to retain water. To obtain this it must be watertight, and be able to resist the 

loads. Only the load resisting property is of interest for this thesis. A concrete dam can fail in three 

principle ways, sliding, overturning and material failure. A dam failure is usually a combination of 

these three. For a dam to resist the loads, all forces and the moment must be in global and local 

equilibrium. The general way of expressing force and moment equilibrium in 2D is: 

∑ 𝐹𝐻 = 0  (2.1) 

∑ 𝐹𝑉 = 0  (2.2) 

∑ 𝑀 = 0  (2.3) 

For Norwegian conditions, the most important forces acting on a dam is: 

W – hydrostatic pressure. On an inclined surface this is often decomposed into a horizontal and 

vertical part, Wh and Wv. 

I – Ice load 

G – Self-weight of the dam 

U – Uplift, from the hydraulic pressure under the dam 

𝐹𝑓 – Maximum capacity of the friction force under the dam 

C – Maximum capacity of the cohesion force under the dam foundation 

N – Normal force 

Sediment load, earthquake load and hydrostatic back pressure is here neglected for simplicity. 

The forces that acts on a concrete dam can be divided into two categories, independent forces and 

dependent forces. By independent forces are here meant forces which values are given from the 

other forces. There are two such forces, the friction and the normal force. Given that they have high 

enough capacity, these forces balance the other forces, both in magnitude and resultant position, to 

give force and moment equilibrium. 

The dimensioning criterion for dams is not that they should be stable, according to the assumptions 

that are made, but that they should be stable with a margin. For sliding safety this margin is called a 

factor of safety, FS. A simple way to express this safety factor is that it is the ratio between driving 

and stabilizing forces. The definition of the FS in the Norwegian guidelines for concrete dams for a 

horizontal foundation are (NVE, 2005): 

𝐹𝑆 =
𝑐 ∗ 𝐴 + ∑ 𝐹𝑉 ∗ 𝑡𝑎𝑛(𝜑)

∑ 𝐹𝐻
  (2.4) 

 

𝜑 is the friction angle, c is the cohesion, and A is the foundation area with compression. 
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∑ 𝐹𝑉 = 𝑊𝑣 + 𝐺 − 𝑈  (2.5) 

∑ 𝐹𝐻 = 𝑊ℎ + 𝐼 (2.6) 

The correct way to interpret ∑ 𝐹𝑉 and ∑ 𝐹𝐻 in dam engineering is thus not the sum of forces acting 

on the dam, because that should be zero, but the compression and friction forces on the dam 

foundation. This neglects the normal force, since the normal force is equal to the other vertical 

forces acting on the foundation. This neglection is ok as long as the capacity of the rock foundation is 

not exceeded.  

2.1.2. Methods for calculating sliding stability 
Equation (2.4) is also called the shear friction method. A simpler form of the shear friction method is 

the sliding resistance method, which is basically the same, only without cohesion, and slightly 

different expressed. Both these methods are force equilibrium methods, where the dam is seen as a 

rigid body. A more accurate way of assessing the sliding stability is to use stress equilibrium instead 

of force equilibrium, which is called the limit equilibrium method (Johansson, 2009): 

𝐹𝑆 =
𝜏𝑓

𝜏
  (2.7) 

Here 𝜏𝑓 is the available shear capacity and 𝜏 is the required shear stress to have stress equilibrium in 

a point. Equation # applies to all parts of the concrete rock interface. To be able to benefit from the 

use of the limit equilibrium method, one need to be able to express spatial stress - strain and stress 

capacity variation, or at least express the distribution of forces with high resolution. One way to 

express this is through a Finite Element Method, FEM. 

2.1.3. Shear criteria 

2.1.3.1. Mohr-Coulomb’s shear criterion 

To find the sliding stability of a concrete dam, one needs to have an expression for the friction 

capacity under the dam. The classical formula for the friction capacity is the Mohr-Coulomb criterion 

(Johansson, 2009): 

𝜏𝑓 = 𝑐 + 𝜎𝑛
′ ∗ tan(𝜑)  (2.8) 

𝜎𝑛
′  is the effective normal stress. 

This criterion can be traced back to Leonardo Da-Vinci (Johansson, 2009), and is the most used 

expression for the friction capacity. It is popular due to its simplicity. Often, the cohesion is hard to 

find, so it is neglected. The friction capacity formula is then only dependent on one parameter, the 

friction angle 𝜑, which can be found from guidelines or other literature. 

2.1.3.2. Advanced shear criteria 

Unfortunately, science has shown that nature is not always that simple. In 1966, Franklin Patton 

published a book containing a bi-linear shear capacity criterion (Patton, 1966). Doing shear tests on 

“saw-tooth” samples he derived that there are two possible failure modes for a rock joint, sliding 

over the asperities, or shearing through. Bonding is not included in Patton’s criterion as it is here 

presented. Patton’s criterion is illustrated with the following diagram (Patton, 1966): 
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Figure 2.1 Bilinear failure criterion from Patton (1966) 

For low normal loads, the sample will have to slide over the asperities, and thus the asperity angle, 

which in this case is the same as the dilatation angle, is added to the friction angle in the expression. 

Since there is no bonding, and no material failure, there is no cohesion: 

𝜏𝑝𝑒𝑎𝑘 = 𝜎𝑛 ∗ tan(𝜑𝑏 + 𝑖)  (2.9) 

For high normal loads, the peak shear load will exceed the shear capacity of the asperities, and they 

will be sheared of. Then there is no dilatation, and thus i disappears. Since the surface will have 

another texture after the asperities have been sheared of, the residual friction angle, 𝜑𝑟  is used 

instead of the basic: 

𝜏𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑐𝑥 + 𝜎𝑛 ∗ tan(𝜑𝑟)  (2.10) 

- 𝜏𝑝𝑒𝑎𝑘 is the peak friction capacity 

- 𝜏𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is the residual friction capacity after sliding has occurred 

- 𝜎𝑣 is the normal stress on the interface 

- 𝜑𝑏 is the basic friction angle, meaning the peak friction angle of a plain interface 

- i is the dilatation 

-  𝜑𝑟  is the friction angle when the roughness is cut off. 

Between full dilatation and “residual sliding” there is a transition zone, making a curved envelope 

(Johansson, 2009). One should be careful with using Mohr-Coulomb’s criterion with a literature peak 

friction angle, since Patton’s criterion shows that it is dependent on the normal load. For samples 

without asperities, Patton’s criterion is reduced to Mohr-Coulomb’s criterion. 

One drawback with Patton’s criterion is that the basic and residual friction angle is dependent on the 

surface roughness. For a mathematically perfect plain, there is no roughness, so the basic friction 

angle comes from the micro-roughness, which varies with the preparation of the surface. This makes 

it important to be consistent when doing shear tests, so that the roughness on the sample reflects 

the roughness that will be on the actual surface when sliding occurs. Another drawback is that it is 

made for a man-made idealized joint surface (Johansson, 2009). To make a criterion for a natural 

rock joint is a much harder task. Some good attempts of this has been made. Among these can be 

mentioned Barton’s criterion (Barton, 1973), Ladanyi and Archambault’s criterion (Ladanyi and 

Archambault, 1969), Kulatilake’s criterion (Kulatilake et al., 1995), Graselli’s criterion (Grasselli, 2001) 

and Johansson’s criterion (Johansson, 2009). Barton’s and Johansson’s criteria will here be further 

discussed.  
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2.1.3.3. Barton’s criterion 

Barton’s criterion is similar to Patton’s criterion, only with a curved envelope. The advantage with 

Barton’s criterion compared to Patton’s is the ability to calibrate the friction angle to both the 

surface geometry and the material strength. The criterion was proposed in (Barton, 1973), and 

further developed in (Barton and Choubey, 1977). Barton’s criterion is formulated as: 

𝜏𝑓 = 𝜎𝑛
′ ∗ tan [𝐽𝑅𝐶 ∗ 𝑙𝑜𝑔10 (

𝐽𝐶𝑆

𝜎𝑛′
) + 𝜑𝑏]  (2.11) 

JCS – Joint compressive strength. For unweathered surfaces, this equals the compressive strength of 

the materials. For weathered joints, it is not that simple. The JCS is proposed set by use of a Smith 

hammer (Barton and Choubey, 1977). If nothing else is known, 
1

4
 of the compressive strength could 

be used (Barton and Choubey, 1977). 

JRC – Joint roughness coefficient. This parameter reflects the surface roughness, and could be set by 

visual comparison with some typical roughness profiles presented in (Barton and Choubey, 1977), or 

from tilt tests on small samples by formula (2.12) (Barton and Choubey, 1977): 

𝐽𝑅𝐶 =
𝜑′ − 𝜑𝑟

log (
𝐽𝐶𝑆
𝜑𝑛

′ )
  (2.12)

 

𝜑′ is the basic friction angle found from tilt tests. 

If the surface is weathered, it is proposed to use the residual friction angle instead of the basic, and if 

nothing else is known, this can be estimated to 20° (Barton and Choubey, 1977). 

One of the main advantages with Barton’s criterion is that shear capacity scale effect can be 

implemented, which will later be explained. 

2.1.3.4. Johansson’s criterion 

Johansson made a conceptual model to find the shear capacity of a triangular asperity (Johansson, 

2009). What is interesting with Johansson’s criterion is that it is built on an understanding of the real 

process, and not just curve-fitting. An important keyword is the matedness of the joint surfaces, 

which expresses the relative size of the contact area between two surfaces (Johansson, 2009). Even 

though it is not perfect, it provides a foundation to build a good general model on. The roughness 

part of the model is based on a triangular asperity, exposed to shear load, and a normal load equal to 

the compressive strength of the rock. The explanation of the high normal load is that for a real 

surface, there will be few contact points when the sample starts to slide, and the force on each 

contact will crush the contacts with highest stress, until all contact points has a normal load equal to 

the compressive strength. The model is based on Patton’s criterion, identifying three possible failure 

modes: 

1) sliding over the asperity. The formula for this is given in eq. (2.9) in Patton’s criterion. 

2) Shearing through the asperity at the base. The formula is the same as eq. (2.10) in Patton’s 

criterion. 

3) Tensile failure of the asperity. A new formula is here introduced (Johansson, 2009): 

𝑇 =
(3 ∗ 𝜎𝑐𝑖 + 4 ∗ 𝜎𝑡𝑖) ∗ 𝐿𝑎𝑠𝑝

2

2 ∗ 𝑡𝑎𝑛(𝑖)
  (2.13) 

T – Shear resistance of the asperity 
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𝜎𝑐𝑖 – Uniaxial compressive strength of the asperity material 

𝜎𝑡𝑖 – Tensile strength of the asperity material 

𝐿𝑎𝑠𝑝 – Dimension of the asperity (assumed quadratic shape in the interface plain) 

i – Asperity angle 

The principle is that the failure mode giving the smallest capacity will be the failure mode happening, 

and for a standard hard rock (𝜎𝑐𝑖 = 100 𝑀𝑃𝑎, 𝜎𝑡𝑖 = 10 𝑀𝑃𝑎 and 𝜑𝑏 = 30°), the following diagram 

can be calculated: 

 

Figure 2.2 Resistance capacity for different failure modes from (Johansson, 2009) 

Figure 2.2 shows that for asperities with angles up to 34 degrees, the failure mode will be sliding over 

the asperities, for 34 to 68 degrees, the failure mode will be shear failure, and from 68 degrees it will 

be tensile failure of the asperities. 

Equation (2.13) is made by taking moment equilibrium about the toe of the asperity, as shown in 

figure 2.3: 

 

Figure 2.3 Illustration of the conceptual model from (Johansson, 2009) 
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The formula for the moment equilibrium is formulated as: 

𝑇 ∗
𝐿𝑎𝑠𝑝 ∗ tan(𝑖)

4
− 𝑁 ∗

3

4
∗ 𝐿𝑎𝑠𝑝 = 𝜎𝑡𝑖 ∗ 𝐿𝑎𝑠𝑝

2 ∗
𝐿𝑎𝑠𝑝

2
  (2.14) 

(2.14) can be rearranged to (2.13). But there is a problem with (2.14), it overestimates the capacity 

from the tensile strength by a factor of two. It is reasonable to assume that rock behave similar to 

concrete in tensile failure, and standard construction concrete is linear elastic until tensile failure 

(see figure 6.3). If the asperity overturns as a rigid body, the stress should not be equal to the tensile 

stress capacity over the whole base, but distributed linearly from 𝜎𝑡𝑖 at the front of the asperity to 

zero at the toe. The average stress should then be 
𝜎𝑡𝑖

2
, but the arm should be 

2∗𝐿𝑎𝑠𝑝

3
 instead of 

𝐿𝑎𝑠𝑝

2
, 

making the contribution from the tensile strength 𝜎𝑡𝑖 ∗ 𝐿𝑎𝑠𝑝
2 ∗

𝐿𝑎𝑠𝑝

3
, giving a reduction of 16.6 % (

1

6
). 

(2.13) can then be re-written as eq. (2.15): 

𝑇 =
(9 ∗ 𝜎𝑐𝑖 + 8 ∗ 𝜎𝑡𝑖) ∗ 𝐿𝑎𝑠𝑝

2

6 ∗ 𝑡𝑎𝑛(𝑖)
  (2.15) 

Johansson’s shear criterion was compared with shear test on split core samples and a large-scale 

test. The average friction angle found with the shear criterion were in average 55.6°, while the shear 

test found an average friction angle of 45.8°. 

2.2. Scale effects 

2.2.1. Scale effect from literature 
Scale effects exists for many properties. In this section will be treated scale effects in the shear 

capacity of rock joints. Scale effects of mesh size is treated in section 6.3.3.1. The presentation of 

scale effects in the shear capacity of rock joints will be based on Barton’s shear strength criterion, for 

which a scale effect theory is developed. 

Bandis, Lumsden and Barton investigated the scale effect of different roughness scales of rock joints 

(Bandis, 1980). Rock joints in a medium hard rock (σc = 80MPa) where simulated by a weak (σc = 0,75 

– 4,45 MPa), concrete-like brittle material. This made it possible to scale down the length scale so 

that it was possible to simulate prototype joints of 2 – 12 meters. A casting mould of the rock joint of 

interest was made, and a brittle material was casted into the casting mould to create multiple similar 

replicas. The replicas where tested in shear with different sample length and size. 

Some of the conclusions from Bandis (1980) are listed here: 

- Large samples have lower shear capacity/friction angle than small ones. This effect is asymptotic, 

meaning that the reduction in friction angle with the increase in sample size goes towards zero 

as the sample size goes towards infinity. The friction angle converges to the residual friction 

angle as the size increase. 

- The contact area decreases with increasing sample size. At the same time the size and number of 

contact areas increase with increasing sample size. This can be explained by that larger samples 

have larger asperities, and the contact areas will therefore be larger and fewer relative to size. 

- The intrinsic strength of rock is inverse proportional to sample size, but this effect is decreasing 

in the same way as the friction coefficient. This effect will cause smaller roughness elements to 

have a higher average limit stress than large ones, and can explain the decrease in friction angle 

with increasing sample size, since larger samples also have larger contact points. 
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- Large samples have higher peak shear displacement. Rule of thumb is that peak shear 

deformation is equal to 1 % of the sample length, but less for large samples (>3 m). Mark that 

Grasselli (2001) has related this to the crystal size. 

If we relate this to Barton’s shear criterion, increased block size tends to decrease JRC and JCS. In 

(Barton and Bandis, 1982) is presented formulas for the size effect on JCS and JRC: 

𝐽𝑅𝐶𝑛 = 𝐽𝑅𝐶0 ∗ (
𝐿𝑛

𝐿0
)

−0.02𝐽𝑅𝐶0

  (2.16) 

𝐽𝐶𝑆𝑛 = 𝐽𝐶𝑆0 ∗ (
𝐿𝑛

𝐿0
)

−0.03𝐽𝑅𝐶0

  (2.17) 

The formulas are based on curve fitting from 137 shear tests on rock joints. 

A scale dependent expression for the peak strength displacement 𝛿 is made (Barton and Bandis, 

1982): 

𝛿 =
𝐿

500
∗ (

𝐽𝑅𝐶

𝐿
)

0.33

  (2.18) 

Johansson (2009) states that for perfectly mated joints, there should be no scale effects. According to 

Johansson (2009), the scale effect increases with the decreasing degree of matedness. 

It should be mentioned that none of the scale effect theories known to the author includes the 

degree of stress mobilization. An example of such a scale effect is the tensile strength of a paper 

when ripping it from one side. The tensile strength of the paper is then independent of the length of 

the paper, since the stress is only mobilized around the edge of the crack. For a paper, this effect is 

due to the out-of-plain bending of the paper, but a similar effect would be there also with only in-

plain-deformation, for example in a concrete dam, or in a concrete plug in hydropower tunnels. The 

crack starts at the front of the dam, and propagates. This effect increases, the larger the structure is, 

since the peak strength deformation is not proportional to the scale of the structure (Grasselli, 2001). 

This effect is tried quantified through an example, applying data from Liahagen (2012) on a section of 

a typical concrete dam. 

2.2.2. Quantification of the scale effect from flexibility 
The E-modulus of concrete is about 30 GPa. A large plate dam is 30 m high and with 30 m bottom 

width. The pillars are 0,6 m wide at the bottom (𝐵𝑊) and there is 6 m c/c between the pillars. This 

gives a water pressure of 300 kPa on the dam at the bottom. The static situation that gives the 

largest deformation of the dam is if the dam is hinged at the toe with no friction under the dam. The 

displacement of the front of the dam could then be estimated by eq. (2.19): 

∆𝑥 =
𝜎𝑥 ∗ 𝐵𝑊 ∗

𝑐
𝑐

𝐸 ∗ 𝑡
=

300 𝑘𝑃𝑎 ∗ 30𝑚 ∗ 6𝑚

30 𝐺𝑃𝑎 ∗ 0.6𝑚
= 3 𝑚𝑚  (2.19) 

If the uptake of forces is distributed equally over the length, the deformation is halved to 1,5 mm. 

For a real dam loaded to its capacity for sliding the situation will be something between, since the 

normal forces will be largest near the toe and small near the upstream side. It is important to keep 

this order of magnitude in mind when transferring knowledge from shear tests to a large-scale 

interface. The problem is if the deformation in the upstream part of the dam can pass the peak stress 

deformation before this capacity is reached in the downstream part of the dam. A rigid body 

approach will thus underestimate the real capacity, but how much? If the dam is infinitely stiff the 
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rigid body approach will be a perfect estimation. The worst case is the situation where the dam is 

hinged at the toe, with a deformation through the dam of 3 mm. Whether this is a problem will 

depend on the shape of the asperities. For a perfectly plane and smooth foundation, there is no 

problem since there will then be no peak stress, but only the residual strength the whole time. For 

asperities with 20 degrees, the load diagram of test 2.2 from Liahagen (2012) is shown in figure 2.4, 

and can be used to investigate whether this is a problem. What makes the results from this test 

useful, is that the deformation is measured close to the concrete rock interface. Else rotation and 

shear deformations tend to give increasing displacements with increasing height over the interface. 

Sample 2.2 had a normal stress of 0.83 MPa, which is in the same order of magnitude as would be 

found in such a dam as here is of interest. 

 

Figure 2.4 Shear stress - strain diagram for saw teeth samples of concrete on rock with asperity angle 
20° from (Liahagen, 2012) 

As can be seen from figure 2.4, the zone of peak stress deformation is about 4 mm, making it 

possible for the whole dam to have peak stress at the same time, and justifying the use of a rigid 

body approach. 

But what happen if the asperity angle is increased or the size of the dam is larger? The work diagrams 

for the tests by Liahagen, with 40 degrees asperity angle, is given in figure 2.5: 
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Figure 2.5 Shear stress - strain diagram for saw teeth samples of concrete on rock with asperity angle 
40° from (Liahagen, 2012) 

If the load diagram for test 1.2, shown in figure #, where transferred to a real dam, the maximum 

capacity would be reached when the dam toe reaches its peak, because the load diagram is flatter 

after the peak. The peak average stress would then be the average of the peak stress of the work 

diagram and stress with 3 mm more deformation, as shown in figure 2.6: 
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Figure 2.6 Shear capacity as a function of the interface displacement, giving an average shear 
capacity for a structure with 3 mm maximum displacement 

The peak load is 130 kN, the load with 3 mm more deformation is 100 kN, giving an average peak 

load of 115 kN for the dam hinged at the toe. Using the peak capacity directly from the shear test 

would then underestimate the capacity by about 12 %. The amount of underestimation by not taking 

the deformation in the dam into account would increase with the angle of the asperities and the size 

of the dam. Since a concrete gravity dam will deform by about one tenth of a plate dam, the problem 

will not be so big for similar dams, but gravity dams are often larger. If this methodology should be 

applied in a real case, one should use the same load value to find the deformation of the dam, as the 

one found from the work diagram, which makes it in principle an iterative methodology. If this would 

be an issue would depend on if the safety factor is used to increase the load or reduce the shear 

capacity. It should be noted that in (Liahagen, 2012) it is used LVDT measurements of displacement 

(see section 4.4). In section 4.4 is found that the LVDT measured displacements are much larger than 

for the other measurement system. It is therefore reasonable to assume that the average peak 

displacement for the dam should be smaller than what is found here. 

One factor that helps the dam is that also the rock mass under the dam deforms. That is why one 

include a large rock foundation when making FEMs of dams. This effect is larger for gravity dams 

than for plate dams, since plate dam pillars have about 10 times as much rock foundation per m pillar 

than gravity dams. 

For the flexibility scale effect to be included in a FEA, it would need to be used a non-linear shear 

criterion for the peak stress behavior. Such a shear criterion is not available in the software used in 

this thesis. 
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2.3. Summary of previous work at NTNU 
This master thesis is one in a row at the Department of Civil Engineering at NTNU, on the shear 

capacity of concrete dams. In this section, a brief summary of previous works is presented. 

2.3.1. Stølen’s master thesis 
(Stølen, 2012). The goal with the thesis is to calculate the stability for dam Målset through the use of 

FEA, and through that work develop procedures that could be used also for other dams. Atena was 

chosen for the FEA, and a model was made of a plate dam pillar with real geometry. Since there was 

lack of good material data the model could not say anything sure about the stability of the dam, but 

compared to hand calculations done with the same material data it gave good insight into the 

behavior of the dam. 

2.3.2. Liahagen’s master thesis 
(Liahagen, 2012). The topic for this master thesis is what factors influence the shear capacity of 

concrete dams, and more specifically to do shear tests to quantify the influence of asperity angle and 

normal stress. 12 shear tests were done on samples of concrete casted on granite blocks, at the rock 

mechanics lab at Luleå University. It is shown that steeper asperities give higher peak strength, and 

that the failure mode changes from sliding over the asperities at low asperity angles, to shearing 

through the asperities at high asperity angles. A picture of a sample in the test apparatus is shown in 

figure 2.7, and the shape of the interface between concrete and rock in the samples are shown in 

figure 2.8: 

 

Figure 2.7 One of the samples from Liahagen in the testing machine 



13 
 

 

Figure 2.8 The shape of the samples from (Liahagen, 2012) 

The width of the samples is 240 mm. The surface is smooth, but not polished. Because of this, micro-

roughness is present, and the macro-roughness is the triangular asperities. The results from the tests 

are given in table 2-1: 

Table 2-1 The results from (Liahagen, 2012) 

 

The load is applied as a pure shear load, and the normal load is applied in the middle of the top side. 

The failure modes of most of the samples are sliding over the asperities, with damage to the top of 

the asperity before it slides over. Pictures of the samples after testing shows that the amount of 

damage to the asperity increase with the asperity angle and the normal force. All the samples with a 

40 degree asperity angle fails by material fracture with almost no sliding, and the higher the normal 

force, the more damage. The cohesion of the bonded tests can be found from test 4.1H and 4.2 as 

the difference between the shear capacities, and can thus be quantified to 3,3 MPa. This is far less 

than the estimated concrete material cohesion of 8,2 MPa, which is an indication that the interface 

between concrete and rock would be a probable failure plane for a concrete dam on a smooth 

foundation, even with bonding.  

The most interesting conclusion from this thesis is that the asperity angles have much larger 

influence on the capacity of the samples than the normal load. If this is transferred to concrete dams 
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it gives the possibility of preparing the foundation with a large roughness and use less concrete in the 

dam for weight. This will require good tools and methods for verifying the shear capacity. 

 

2.3.3. Eltervaag’s master thesis 
(Eltervaag, 2013). The topic of this thesis is to model the shear tests from Liahagen (2012) in the 

finite element program Atena (Cervenca Consulting, 2017), and apply the experience from these 

models to make a model of a full-scale dam section. Material data was taken from material tests, 

literature and the Atena manual (Cervenca et al., 2013). 

In Atena, the model for resistance against sliding is based on the Mohr-Coulomb shear criteria. 

Eltervaags approach was based on Patton’s criteria for sliding, which he was able to implement in 

Atena by use of cohesion softening. Patton’s criterion is given in (2.9) and (2.10). 

For the friction coefficient is used the residual friction angle, found from shear test 4.2, which had a 

flat interface (see table 2-1). For catching the peak capacity is used the cohesion parameter in Mohr-

Coulomb. This can be seen in figure 2.9, where the cohesive parameter is gradually reduced over a 

distance of 15 mm. It has no physical meaning as cohesion, but it seems to be a good way of 

representing the gradual wearing of micro-roughness. 

A large part of the work was to do a parametric study of the stiffness of the interface material. The 

problem was that the recommended stiffness created an ill-conditioned system (Eltervaag, 2013). 

The following figure shows how much the interface stiffness can mean for the resulting work 

diagram: 

 

Figure 2.9 Influence of the interface material stiffness (Eltervaag 2012) 

The figure shows the result from test 4.2. This test has a flat interface and a normal stress of 1,2 MPa. 

The right tangential stiffness was found to be 6*103 
𝑀𝑁

𝑚3 . The best fit tangential stiffness for the other 

samples ranged between 6*102 
𝑀𝑁

𝑚3  and 6*103 
𝑀𝑁

𝑚3 . 

After the parametric study of the interface material stiffness, the result from the FEM fitted the 

results from the shear test very well, with an average error on the peak stress of about 2 % and a 
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maximum error of 6 %. The experience from test sample modelling was used to model a part of a 

full-scale dam. An interesting comment from Eltervaag is that when trying to model a test where the 

failure mode consists of shearing through the asperities the model crashes before failure is reached. 

This problem is solved by using a flat interface, and treat the asperities as roughness through the 

friction angle, which gives a good result. 

2.3.4. Nymo’s master thesis 
(Nymo, 2016). The main finding in this thesis is that the beam formula underestimates the zone of 

compression in the dam, while it is quite straight forward to find it with a FEM. The zone of 

compression is important to find, since it is a common assumption that bonding only occur in this 

zone.  
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3. THE STABLE DAMS PROJECT 
This thesis is written in collaboration with NORUT, as a part of the Stable Dams project. The project is 

financed by the Norwegian state, the hydropower producers and the main consultant companies. It 

is hosted at NORUT Narvik, which is a North-Norway research institute working with northern 

technology. The background for the project is that there are some thousand concrete dams in 

Norway, and new guidelines have deemed many of them unsafe, creating a need for investments of 

billions in upgrading to meet the requirements. 

3.1. Why do we need more knowledge of concrete dams? 
There are many assumptions in the capacity assessment of concrete dams. These assumptions rise 

from the fact that there are a lot of variables, of which statistical distributions and relations are not 

known. In a perfectly deterministic world one could, given enough data, predict exactly future 

events. For the purpose of designing concrete dams, this means that one would be able to calculate 

the necessary capacity exactly, and do the design to meet the requirements. There are two problems 

with this, the world is not deterministic, and even if it were, there is not enough data. This can be 

proven through respectively the use of Heisenberg’s uncertainty principle, and the fact that the 

elementary building blocks, the atoms, are so small and numerous that no computer model could be 

able to hold all their unique positions, relations, velocities, and other relevant properties. To design 

concrete dams, one must therefore use statistics. The simplest way to do this is to have one 

parameter: The dam. This is the same as using historical data, saying that “the dam will be safe 

enough if we do it like this, because we have done it like this before, and it worked”. Since no dam is 

built exactly like another, this requires some classifications into separate groups, f. ex “concrete 

gravity dams lower than 15 meters built after 1950”. The problem with this method is that it does 

not give enough information to use it in the design process for a particular dam. To have better data 

we need to use more parameters. This reduces the uncertainty related to each parameter, since they 

then become more general and cheaper to test, but it requires better knowledge of the relation 

between the parameters, and it requires more data. It seems to be a general law that the accuracy of 

a prediction increases with the amount of data that are being utilized, given that the data is relevant 

and correct, and used in the right way. This can be illustrated with trying to find the statistical 

distribution of a data set from point observations. One point says nothing, two points can give a 

straight line, three points can give a parabola, and so on. Three points can also give a straight line, 

but it can also be a higher order function, or random. The more points added that fits the straight 

line, the higher the probability that the hypothesis is correct, but one can never be sure, even if all 

the data fits, because it can be a higher order function, it can be random, or there could be errors in 

the data set. 

So, what does this have to do with dam construction? If more data about the material properties can 

be utilized, the capacity prediction can come closer to the true capacity, reducing the uncertainty 

margins and the construction costs. And what is more relevant for the Norwegian hydropower 

industry, it can prove that dams that are deemed unsafe after new regulations are safe enough, or 

reduce the required rehabilitation. But with increasing complexity, the chance of errors increases. 

The more complex methods therefore require increased knowledge of both the true relations 

between parameters and the computational tools. To get this knowledge is an investment that will 

hopefully spare construction and rehabilitation costs and/or structural collapses. As all other 

investments, there is a relation between the size of the investment and the return on the 

investment. The marginal rate of return on an investment decrease to zero as the size of the 

investment goes towards infinity. In the case of concrete dam knowledge, the maximum possible 

benefit is to build a dam that exactly meet the required capacity to withstand the loads through its 



17 
 

lifetime with 100 % certainty. This is a limited gain given a limited time span, while the expenditure 

required to achieve it is infinite. Between the simple “one parameter approach” (general dam 

statistics) as described earlier, and “the correct solution”, there seems to be an economic optimum, 

where the marginal cost of more research equals the marginal benefit. 

The problem with using this approach to find the optimal amount of knowledge is that the relation 

between investment and return is very unsure. But one thing that can be done is to give reasonable 

arguments that an investment in knowledge is or is not feasible. 

In a survey done by Jensen in 1998, it was concluded that the cost of bringing all the dams up to the 
required standard was 2,5 billion NOK (Jensen and Skoglund, 2000). The price of a new 15 m high and 
100 m long concrete dam is about 50 million NOK, according to (Norconsult, 2016). As a comparison, 
the budget of the Stable Dams project is 17 million NOK. If Stable dams can spare more than 1 % of 
the costs related to dam upgrading, or translated to a more practical case, if Stable Dams has more 
than a 40 % chance of avoiding the unnecessary replacement of one medium sized dam, it is an 
economic success. 
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4. DESCRIPTION OF THE SHEAR TESTS 

4.1. General info about the test program 
The shear tests carried out at Luleå Tekniska Universitet in the spring of 2017 are a part of the Stable 

Dams Project, which is carried out by NORUT, in cooperation with the Norwegian hydropower sector. 

The planning and experimental work was done by Mr. Dipen Bista at NORUT. The main motive of the 

Stable Dams project is to investigate the mechanisms that occur in the failure of a concrete dam, and 

in this test program, the role of the positions of asperities in the interface between dam and concrete 

is investigated. 

4.2. Setup 
Shear tests were carried out on approximately cubic samples of the interface between concrete and 

rock with different location of asperities. The test setup is shown in figure #, and a simplified sketch is 

shown in figure #. It must be pointed out that the simulation models, and also figure # is mirrored 

compared to figure #. 

 

Figure 4.1 Test setup for the shear box tests on man-made asperities done at LTU in the spring 2017 
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Figure 4.2 A principle sketch of the test setup from figure 4.1. Note that this sketch is mirrored. 

To investigate the effect of asperities there are done three types of samples, one with an asperity 

placed at the toe (as in figure 4.2), one with an asperity placed in the middle and one with the 

asperity at the heel (the load side). The samples are named respectively A, B and C, and sample A is 

shown in the setup in figure 1. There were also done some samples without asperities. The 

dimension of the samples is approximately 280 mm X 280 mm X 270 mm. 

The samples are made by cutting of high quality gneiss rock into the right shape, and casting of the 

concrete directly at the rock sample. To avoid bonding between the layers, a thin rubber sheet is 

sprayed on the surface of the rock before casting of the concrete. The rubber is scraped of before the 

tests are made, so that the interface is clean. The interface between concrete and rock (hereafter 

referred to as the interface) is flat but not polished. This gives an artificially low roughness, but it is a 

technical necessity to be able to produce an un-bonded sample and still be able to scrape away the 

rubber sheet. An alternative could be to use a viscous substance that can washed of, f. ex. fat, but 

such substances would also severely affect the properties of the concrete. 

4.3. Overview of test samples 
Two types of tests were done, tests with the load placed as in figure 4.2 which allows rotation, and a 

setup with the load placed further down where the rotation is blocked, making it a pure shear test. 

These types are hereafter referred to as respectively samples with eccentric and non-eccentric load. 

Both load cases with all three asperity positions is tested with three different normal loads of 1 MPa, 

0.6 MPa and 0.2 MPa. The details on all the tests are shown in table 4-1: 
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Table 4-1 Test matrix from shear box tests done on man-made asperities at LTU in the spring of 2017 

Name Load case Asperity position Vertical load 
[MPa] 

Shear load 
capacity [MPa] 

E1 Non-eccentric Heel 1 2.8 

E2 Non-eccentric Heel 0.6 1.9 

E3 Non-eccentric Heel 0.2 1.0 

M2 Non-eccentric Middle 1 2.8 

 Non-eccentric Middle 0.6 Test failed 

M3 Non-eccentric Middle 0.2 1.2 

E8 Non-eccentric Toe 1 2.6 

E9 Non-eccentric Toe 0.6 2.1 

E10 Non-eccentric Toe 0.2 0.8 

F1 Non-eccentric None 1 0.9 

F6 Non-eccentric None 0.6 0.6 

E4 Eccentric Heel 1 0.7 

E5 Eccentric Heel 0.6 0.4 

E6 Eccentric Heel 0.2 0.3 

M7 Eccentric Middle 1 1.4 

M5 Eccentric Middle 0.6 1.1 

M6 Eccentric Middle 0.2 0.4 

E11 Eccentric Toe 1 2.4 

E12 Eccentric Toe 0.6 1.8 

E13 Eccentric Toe 0.2 0.5 

F3 Eccentric None 1 0.8 

F4 Eccentric None 0.6 0.3 

 

The justification of having these two different load cases is that the eccentric load case has stresses 

similar to a scaled model of a dam, with a combination of sliding and overturning. If one instead looks 

at the failure mode of a small part of a dam foundation, the failure mode will be sliding and/or 

lifting/crushing (from the global rotation). This is represented in the tests as the non-eccentric load 

case. 

The size of the asperities is set from scaling down terrain roughness, meaning asperities of some 

meters in the dam interface, for a typical height for a Norwegian plate dam. The asperity angle of 45 

degrees is set so that the failure mode shall be shearing through the asperity, and not sliding over it, 

as it would be with low asperity angles. Figure 2.2 shows this clearly. 

Of the twenty-two tests, four were modelled in the work with this thesis, M5, F1, E8 and E11. The 

results from these models are described in section 6.5. 
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4.4. Measurements 
There were done three types of measurements: 

1) Loads were measured by the load cells applying the hydraulic pressure for the load pistons. 

2) Direct measurements of displacements were done on the test machine with the LVDT 

measurement system, which is an electromechanical system that translates movement into 

electrical signals to a control unit. 

3) Displacement were measured using the ARAMIS Digital Image Correlation System, which 

consist of a high-resolution camera making a video of the shear test, and a powerful data 

program that post processes the video to find the displacement at a given time. 

The challenge was to coordinate these three systems. It was discovered that the LVDT measurements 

and the ARAMIS measurements of displacements did not match. The displacements measured by the 

LVDT system was up to ten times the ones measured by the ARAMIS system. It was decided that the 

ARAMIS system should be trusted. Due to an error done in the lab, the ARAMIS system was not 

correlated against the load measurements. Therefore, this correlation had to be done manually by 

the researcher, which was a very time-consuming task, and was therefore only done for four 

samples, M5, F1, E8 and E11. 

The Aramis system can be used to find the displacement of every point on the sample. For the 

samples where it was used, it was found the displacement for two points, one on each side of the 

concrete – rock interface, near the sample toe, and the relative displacement was found from 

subtracting one from the other. Measurements and loads were calibrated by adjusting the initial 

value to zero. 
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5. PRELIMINARY ANALYSIS OF SHEAR TESTS 
The aim of this section is to give some estimates of the capacity of the modelled samples towards 

different failure modes. Depending on the assumptions used, the estimates could give lower limit, 

higher limit, or be an estimation of the expected capacity. This is useful to assess both numerical 

model results and lab results. For example, if the calculation shows that a sample should overturn at 

a shear load of 100 kN, while the lab test failed by shearing through the asperity at 200 kN, there 

must be something wrong with the lab test, and/or with the data used in the hand calculation and 

the numerical models. For description of the samples, see table 4-1. 

5.1. Hand calculation of sample M5 

5.1.1. Sliding over the asperity 
Since sample M5 is free to rotate, the failure mode with sliding over the asperity will include 

overturning. It is not possible to calculate the capacity of sample M5 by hand because it has two 

contact points, one at the asperity and one at the toe, and it is not straight forward to find the 

distribution of forces between these points by hand calculation. 

5.1.2. Overturning 
The forces at peak strength is drawn in figure 5.1: 

 

Figure 5.1 Principle drawing of sample M5 with acting forces 

From equation (5.1) can then be shown that sample M5 should be unstable against overturning long 

before peak strength: 

𝐹𝑆𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔 =
𝐹𝑉 ∗ 𝑎𝑉

𝐹𝐻 ∗ 𝑎𝐻
=

44.5 ∗ 140

77 ∗ 100
= 0.81  (5.1) 
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So why is not the failure mode of M5 overturning? The answer could be the contribution from the 

asperity. In a dam stability assessment, the stabilizing moment from interface friction is not 

recognized, since it is assumed a straight plain. Here comes the same problem as in the section with 

sliding over the asperity. It is not possible to find the distribution of shear forces between the 

asperity and the rest of the interface, since the sample is free to rotate. 

From figure 5.1 can be seen that the normal force on the asperity is contributing with a de-stabilizing 

moment and the asperity friction is contributing with a stabilizing moment. If the friction angle on 

the asperity is 45°, the two forces will be equal, and since the asperity angle is 45 degrees, the 

moments from the two forces would also be equal. That means the net contribution to the moment 

equilibrium from the asperity is zero. If the asperity angle or the friction angle had been larger, the 

asperity would have given a contribution to the stability. This should be considered for overturning 

stability on foundations with steep asperities. 

There are at least 19 % of the stabilizing moment against overturning that cannot be explained from 

the measured forces. This is thought-provoking and leads to the conclusion that there may be 

something wrong with the test-setup or the measured forces. 

The real failure mode of the sample is compression induced tensile failure by splitting of the sample 

from the asperity to the point of load application. This is not straight forward to calculate by hand. 

5.2. Hand calculation of sample F1 
Since this sample is fixed against rotation and has no asperity, only sliding is relevant. The capacity 

against sliding can be found by Mohr-Coulombs criterion. But this requires a friction angle. Maybe 

more interesting is therefore to use the capacity from the shear tests to find the basic friction angle, 

to be used for calculation on the other samples: 

𝜑𝑏 = 𝑡𝑎𝑛−1 (
𝐹𝐻

𝐹𝑉
) = 𝑡𝑎𝑛−1 (

60

74
) = 39°  (5.2) 

5.3. Hand calculation of sample E8 

5.3.1. Sliding over asperity 
It was observed in the lab test that the E8 sample has only one contact point at the time of failure, at 

the asperity. This makes it statically determined, and thus it is possible to calculate its capacity 

against sliding, given that this is the failure mode. 

The calculation starts with force equilibrium in the direction perpendicular to the asperity surface to 

find an equation for the normal force, as shown in figure 5.2: 
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Figure 5.2 Principle drawing of sample E8 with acting forces 

Then the global equilibrium must be found by either taking the force equilibrium in the direction 

parallel to the asperity surface, or to take equilibrium in the horizontal and vertical direction, of 

which both should give the same result. It is here chosen to take force equilibrium in the horizontal 

and vertical direction, so that the results could be checked. 

𝑁 = 𝐾 ∗ sin(𝜃) + 𝑉 ∗ cos(𝜃)  (5.3) 

𝑇 = 𝑁 ∗ tan(𝜑)  (5.4) 

∑ 𝐹𝑥 = 𝐾 − 𝑁 ∗ sin(𝜃) − 𝑇 ∗ cos(𝜃)  (5.5) 

∑ 𝐹𝑦 = 𝑁 ∗ cos(𝜃) − 𝑇 ∗ sin(𝜃) − 𝑉   (5.6) 
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The full derivation can be found in appendix A. The resulting formula for the required shear force to 

give sliding over the asperities is found to be: 

𝐾 = 𝑉 ∗
cos(𝜃) ∗ tan(𝜑) + sin(𝜃)

cos(𝜃) − sin(𝜃) ∗ tan(𝜑)
  (5.7) 

When this function is drawn, it can be shown that (5.7) can be further simplified to: 

𝐾 = 𝑉 ∗ tan(𝜃 + 𝜑)  (5.8) 

For sample E8 the following values are given: 

- Vertical force: V = 74 kN 

- Asperity angle: 45° 

- Friction angle: 39° 

To have sliding over the asperity, (5.8) gives a horizontal force of 703 kN, which is far larger than the 

peak capacity. At such large asperity angles, the result is very sensitive to differences in friction angle. 

If the friction angle were 45° and the asperity angle also 45°, it would not in theory be possible to get 

sliding over the asperity for any shear force, since tan(90°) is infinity. 

5.3.2. Shearing through the asperity 
Multiple shear surfaces are possible, but only one is straight forward to check by hand, cutting 

through as a straight plain. This is similar to the failure surface observed in the lab test. The 

assumption giving the highest capacity is a rigid body assumption, giving an even stress distribution 

along the failure surface, while a linear elastic stress distribution gives only half the capacity of the 

rigid body assumption. The rigid body assumption can be seen as a higher limit. The linear elastic 

assumption cannot be seen as a lower limit, as there could be geometrical effects in the asperity, 

making a less beneficial stress distribution. The assumed stress distributions can be seen in figure 5.3: 

 

Figure 5.3 Drawing of a constant and a triangular (linear elastic) stress distribution 
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If the same material model is used as in the numerical model, the capacity is only governed by the 

material cohesion. With a material cohesion of 13.54 MPa, the shear capacity of this failure mode is 

437 kN for rigid body, and 219 kN for linear elastic stress distribution, as can be seen in figure #. The 

capacity of the sample in the lab test was 191 kN, giving a quite good fit to the linear elastic 

assumption. The Atena simulation gave a capacity of 288 kN, which is between the linear elastic and 

the rigid body assumption. 

5.4. Hand calculation of sample E11 

5.4.1. Sliding over the asperity 
Given that the sample does not overturn, the shear force needed for sliding over the asperity should 

be the same for this sample as for E8. 

5.4.2. Overturning 
The shear load required for the sample to overturn is dependent on the point of overturning. In the 

lab test is observed that the point of overturning is very close to the dam toe, after the undercutting 

of the asperity. If it is assumed that the sample overturns without any friction against the asperity, 

the required shear load can be found by the formula: 

𝐹𝐻 = 𝐹𝑉 ∗
𝑎𝐹𝑣

𝑎𝐹ℎ
= 74 𝑘𝑁 ∗

135

100
= 100 𝑘𝑁  (5.9) 

This value can thus be viewed as a lower limit of the capacity against overturning. 

5.4.3. Undercutting and overturning 
In figure # can be seen that the failure mode is a combination of undercutting and overturning. If a 

straight shear plain through the asperity is assumed, the tensile capacity of the asperity can be 

included as a stabilizing load. Given that the sample overturns as a rigid body, the stress distribution 

will be linear, as shown in figure 5.4: 
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Figure 5.4 Principle drawing of sample E11 with forces when the sample overturns and ripping off the 
asperity 

The force needed to rip of the asperity FA can be calculated as: 

𝐹𝐴 = 𝐴𝐴𝑠 ∗
𝑓𝑡

2
= 60𝑚𝑚 ∗ 170𝑚𝑚 ∗

13.54 𝑀𝑃𝑎

2
= 69𝑘𝑁  (5.10) 

The required shear load to have overturning can then be found as: 

𝐹𝐻 =
𝐹𝑉 ∗ 𝑎𝐹𝑣 + 𝐹𝐴 ∗ 𝑎𝐹𝑎

𝑎𝐹ℎ
=

74𝑘𝑁 ∗ 140 + 69𝑘𝑁 ∗ 40

100
= 131 𝑘𝑁  (5.11) 

As a comparison, the test result was 176 kN, and the Atena simulation gave a capacity of 125 kN, 

with a similar failure mode to the one calculated here. 
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6. FEA OF SHEAR TESTS 

6.1. Introduction 
The objective of this thesis is to make numerical models of shear box tests done in the rock 

mechanics lab at Luleå University (LTU), and apply the experience from the modelling for making a 

full-scale numerical model of a dam section. In this thesis, two kinds of tests are modelled, tests with 

pure shear load, fixed against rotation, and tests with the shear load applied at a distance from the 

interface, without any rotation constrains. The tests without rotation is somewhat similar to the tests 

done by Liahagen (2012), except these tests have only one asperity, and an asperity angle of 45 

degrees for all tests. The asperity angle of 45 degrees was designed so that the failure mode will be 

undercutting of the asperities. As observed by Eltervaag (2013) it is hard to model a material failure 

due to the nature of tensile failure (see section 6.5.5.), and to capture the post-peak behavior is 

therefore not an important topic of this thesis. 

6.2. Choice of idealization 
A 2D model with plain stress was used, meaning that the model can expand freely in the third 

direction by the Poisson effect, in contrast to plain strain, where the material expansion is blocked, 

and therefore takes expansion forces in the third direction. Plain stress is thus a good approximation 

of a thin layer, and plain strain for a cross section with “infinite” thickness, like a concrete gravity 

dam. In (Eltervaag, 2013), the tests were first tried simulated in 3D, but this was soon abandoned, as 

the models were computationally expensive. The hypothesis of 2D behavior can be defended 

because the samples have the same geometry for a xy-plain for all z values. 

6.3. Building the model in GiD 
Atena is a finite element program (Cervenca Consulting, 2017). That means that it can model a 

structure that is loaded, and find the structural response to the applied forces in the form of stresses 

and strains in the structure. Atena Studio is a simulation program, and require input files with 

geometrical and material data, and other important problem characteristics such as solution 

methods, iteration and error limits and iteration method. This input file must be made by another 

program, in this case the creation of the input file is made in the program GiD, which is a general 

purpose modeler and pre-processing tool for FEA (CIMNE, 2017). First a brief overview is presented. 

Then a more detailed description is given. The models for the individual samples modelled is 

described in section 6.5. 
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6.3.1. Overview of the process 
The layout in GiD can be seen in figure 6.1: 

 

Figure 6.1 The GiD interface 

In this project, the models are built through the following steps: 

1) The geometry is drawn. This is done by first creating all the points. Then lines are 

drawn between the points, and surfaces are created from lines. When modelling in 

2D plain stress, the 3rd dimension is managed by assigning a thickness to the 

material. 

2) If there shall be sliding between materials in the model, a contact surface must be 

created, so that the characteristics for the interface can be defined. This is done by 

first duplicating the interface line such that the each of the two neighbor surfaces 

has its own line, with the line normal in opposite directions. Then a contact area is 

defined between these two lines. The contact area has no thickness, and the 

properties will be defined when an interface material is assigned to it. 

If two parts are fixed to each other, or if it is known that they will not move, a solid 

contact can be defined. The easiest way to do this is to let the two surfaces share the 

contact line. 

3) The materials are defined from a material model, values are chosen for the material 

parameters, and materials are assigned to each surface. 

4) Supports are defined, monitors for displacements, loads, stresses or other 

characteristics is defined. The function of monitors is to give important results in 

table form. For example, can a work diagram be made by plotting an external force 

monitor against a deformation monitor. 

5) If many loads are applied one after another, the loads must be defined in different 

load intervals. The first interval contains the boundary conditions, the monitors and 

the first load to be applied. In the second interval and so on, the first load and the 

monitors are removed, while the supports remain, and a new load is applied. Loads 

can be defined as force, or as forced displacement. To avoid that the model becomes 

singular when the capacity is reached, the load that we are interested in measuring, 

in this case the shear load, should be given as forced displacement. 
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A number of load steps should be chosen for each load interval according to the 

assumed stability of the model. If the system is well conditioned, few load steps are 

needed. This is much about trial and error. 

6) Problem data are adjusted. 

7) The model is run, and the results evaluated.  

6.3.2. Geometry and boundary conditions 
The most important part of all numerical modelling is how to discretize reality into geometry. The 

discretization is based on the following assumptions: 

1) It was clear from the beginning that the frame was too complex to be modelled directly. It is 

hollow, the wall thickness is not known, and it has internal stiffening in the loading direction. 

To model the frame was therefore chosen the same model as in Eltervaag (2013), where the 

frame was modelled as a massive rectangular frame, with geometry as shown in figure 6.2: 

 

Figure 6.2 The model used as a starting point for the numerical model development 

Regarding figure 6.2, and all other GiD figures must be explained the meaning of the pink 

lines. The Pink lines represents the surfaces. To make it possible to edit surfaces and lines 

independently of each other, the symbols for the surfaces and lines are placed so that they 

do not overlap. This has nothing to do with the real behavior of the model. 

2) The interfaces steel – concrete, and steel – rock are fixed together. It is reasonable to assume 

that this gives a higher degree of clamping than in the prototype. This gives the following 

effects: 

2.1) Both the concrete and rock part of the sample is seriously prevented from bending due 

to the unbendable steel frames. This makes it less likely to see the failure mode of 

breaking of the concrete part that were observed during the laboratory tests on some 

samples. 

2.2) The lower half of the sample is prevented from rotating inside the frame. This will 

probably reduce the absolute displacement compared to the prototype. This problem 
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can be circumvented by using the relative displacements between the two sample 

halves. 

3) All surfaces are perfectly even. This means that all interfaces are perfectly mated. This is hard 

to achieve in the laboratory, even though the concrete is casted directly on the rock with 

only a thin rubber sheet between. Perfectly mated surfaces give a stiffer transferring of 

forces between the model parts compared to if the mating is poorer, because a larger 

contact area gives lower stress levels and therefore less deformation. The lower stresses due 

to larger contact area also gives less local stress concentration. The small margins involved 

can be illustrated by that the peak strength displacement for the sample is in the order of 

magnitude 0,3 mm. 

6.3.3. Material models 

6.3.3.1. The concrete and rock material models 

The materials used to model rock and concrete in Atena is based on the same material model, a 

material called nonlinear cementitious 2 (Cervenca et al., 2013). This material uses a fracture-plastic 

model, which combines the Rankine-fracture Model for concrete cracking with a plasticity model for 

concrete crushing. It would also be possible to use a rock material model to model the rock, but this 

material model is more useful for modelling soil and weak rock masses with discontinuities and 

weathered cracks, as it is based the Drucker-Prager plasticity model, which is a modified version of 

the Mohr-Coulomb failure criterion. It was decided that this material model cannot represent the 

rocks that are used in these laboratory test, as there was used high strength rock which strength is 

governed more by the material strength, and less by the discontinuities. The stress-strain diagram for 

the Cementious 2 material is shown in figure 6.3: 

 

Figure 6.3 The stress - strain diagram for the Cementious 2 material model from (Cervenca et al., 
2013) 

For biaxial stresses, the following failure criterion is used: 
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Figure 6.4 Failure surface for 2D stress for the Cementious 2 material model from (Cervenca et al., 
2013) 

Figure 6.3 and 6.4 shows that the rock and concrete is strong in compression and week in tension, 

and that there is softening of the compressive strength in crushing. According to (Cervenca et al., 

2013), this is a good description of the real behavior in concrete. 

Crack model and fracture mechanics 

For low stresses the material model is simple and linear, and is quite easy to implement. The 

advanced part of the material model is the non-linear fracture part. Concrete cracks before it 

fractures. The cracks are very thin, and they govern the material behavior. If this were to be 

modelled directly, the element size would have to be very small. The complexity of the stress 

situation in front of a crack can be illustrated with figure 6.5 from (Bažant and Oh, 1983): 

 

Figure 6.5 The stress state in front of a crack from (Bažant and Oh, 1983) 
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When an element grid that are significantly larger than the (in theory) infinitely thin crack at the 

crack front is made, the high stresses at the crack front is smeared over the large element. The larger 

the element the more smeared cracks. This gives an element size effect such that large elements give 

artificially high capacity. Since reality do not consist of elements, this is un-physical. One way to deal 

with this could be to use a very fine mesh, but this is highly inefficient. Another way could be to 

refine the grid in front of the crack, but that means we must change the mesh continuously. To 

prevent the problem of predicting where a crack is going to form, and refine the mesh, another 

approach is used, where cracks are not modelled directly, but considered a part of the material 

properties, a so called smeared crack approach. For tensile cracks this is called the crack band 

theory, and is described in (Bažant and Oh, 1983). The background for this theory is that the 

dimensions of the concrete cracks are independent of the dimensions of the structure and the 

elements. 

How the crack band method works is that the crack is modelled by a band of parallel cracks in the 

main directions, as shown in figure 6.6: 

 

Figure 6.6 Illustration of cracks in a surface consisting of elements with the smeared crack approach 
from (Bažant and Oh, 1983) 

The propagation of cracks is governed by the fracture energy such that the crack will propagate if the 

released energy from propagating is larger than the fracture energy needed to open the crack. If this 

is the case, the crack will propagate in the direction where the relation between release energy and 

fracture energy is largest (Bažant and Oh, 1983). 

The material is assumed orthotropic (different properties in the main directions), and these 

properties change when the concrete cracks. This is called strain-softening. The E-modulus and 

strength changes according to the stress-strain diagram in figure 6.3 and 6.4, as a function of the 

stresses that are acting, but strength is not regained when the stresses decrease. In this way, we can 

say that the material model has a memory. It is assumed that the cracks go in the direction of the 

principle stresses (Cervenca et al., 2013). Cracks that are not going in one of these principle 

directions, must therefore go in zigzag, by weakening the element in both the x- and y-directions, 
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according to the direction of the crack. The material model is weakened both in stiffness and 

strength when cracking (Cervenca et al., 2013). 

6.3.3.2. The steel material model 

To model steel is chosen the material model solid elastic (Cervenca et al., 2013). This material model 

is simple and linear, with only two parameters relevant for this setup, the E-modulus of 500 GPa and 

the poisson ratio 0,2. The assumption of linearity is satisfied because the steel frame is dimensioned 

to have stresses in the linear area. The fact that the steel material model has no fracture mechanics 

is very beneficial for the model, as it avoids local fracture as a result of point loads on the concrete 

part. It was first tried to apply the loads between the steel and concrete, but this caused severe local 

damage, which slowed the model down and created errors. 

6.3.3.3. The interface material model 

The set-up with the most important parameters and the material model for the interface material 

model can be seen in figure 6.7: 

 

Figure 6.7 The interface material model in GiD (CIMNE, 2017) 

The key role of the interface in this project has been to govern the sliding behavior. In Atena, this is 

governed by the Mohr-Coulomb failure criteria with a curved envelope in tension, as seen in figure 

6.7.  

Friction factor 

The friction factor can be found by re-arranging the Mohr-Coulomb shear failure criterion from 

equation (2.4) into equation (6.1): 

𝑘𝑓 = tan(𝜑) =
𝐹𝑥

𝐹𝑦
  (6.1) 

Fx is the peak shear force, and Fy is the normal force. 
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Interface material stiffness 

Principally there are two approaches to calibration of the interface, it is a choice between using the 

interface stiffness to calibrate the model to the observed work diagram, or to set the interface 

stiffness according to some reasonable value according to some criterion. With the first approach, 

one hopefully gets a model that fits the laboratory test, but if the deviations between model and 

prototype is due to something else than difference in interface stiffness, one risk to make a miss-

calibrated model that cannot be used for anything because it will give wrong results for all other 

problems. Here is derived the formulas needed for calibration of the interface stiffness. 

For calibration of the interface stiffness is used measurements A1 and A2 from the F1 sample, 

showed in figure 6.8. The difference between these gives the relative displacement of the interface. 

 

Figure 6.8 The measurement points for displacement on the surface of the F1 sample from Aramis 

In most basic mechanics books can be found eq. (6.2) – (6.8) (Hibbeler and Fan, 2011): 

𝜎 = 𝐸 ∗ 𝜀  (6.2) 

𝜏 = 𝐺 ∗ 𝛾  (6.3) 

𝐺 =
𝐸

2(1 + 𝜈)
  (6.4) 

𝜀𝑦 =
∆𝑦

𝑦0
  (6.5) 

𝛾𝑥𝑦 =
∆𝑥

𝑦0
  (6.6) 

𝜎𝑦 =
𝐹𝑦

𝐴𝑥𝑧
  (6.7) 
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𝜏𝑥𝑦 =
𝑇𝑥

𝐴𝑥𝑧
  (6.8) 

The symbols are explained in figure 6.9, showing the load situation on the interface of the F1 sample: 

 

Figure 6.9 The forces acting on the interface of the F1 sample 

Formula (6.2) – (6.8) can be re-arranged into: 

𝐸𝑦 =
𝜎𝑦

𝜀𝑦
=

𝐹𝑦 ∗ 𝑦0

𝐴𝑥𝑧 ∗ ∆𝑦
  (6.9) 

𝐺𝑥𝑦 =
𝜏𝑥𝑦

𝛾𝑥𝑦
=

𝑇𝑥 ∗ 𝑦0

𝐴𝑥𝑧 ∗ ∆𝑥
  (6.10) 

The stiffness of the interface material is given in Atena in the units 
𝑀𝑁

𝑚3 . Stiffness is usually given in 

force per area, but since the interface layer has no thickness, this would give no deformation or a 

singular stiffness matrix. By giving the stiffness in force per volume, the thickness of the boundary 

layer is accounted for. If it is assumed that all the deformation between the two measurement points 
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A1 and A2 in figure 6.9 is happening in the interface (no elastic deformation), this gives equation 

(6.11) and (6.12): 

𝐾𝑁𝑁 =
𝐸𝑦

𝑦0
=

𝐹𝑦

𝐴𝑥𝑧 ∗ ∆𝑦
  (6.11) 

𝐾𝑇𝑇 =
𝐺

𝑦0
=  

𝑇𝑥

𝐴𝑥𝑧 ∗ ∆𝑥
  (6.12) 

 

The elastic deformations in the sample can be checked by modifying formula (6.11) and (6.12) into 

formula (6.13) and (6.14), and inserting the stiffness for rock and concrete: 

∆𝑦 = 𝐹𝑦 ∗ (
ℎ𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

𝐴𝑥𝑧 ∗ 𝐸𝑐𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
+

ℎ𝑟𝑜𝑐𝑘

𝐴𝑥𝑧 ∗ 𝐸𝑟𝑜𝑐𝑘
)  (6.13) 

∆𝑥 =  𝑇𝑥 ∗ (
ℎ𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒

𝐴𝑥𝑧 ∗ 𝐺𝑐𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
+

ℎ𝑟𝑜𝑐𝑘

𝐴𝑥𝑧 ∗ 𝐺𝑟𝑜𝑐𝑘
)  (6.14) 

If the height of concrete and rock between A1 and A2 is assumed to be 10 mm each, the elastic 

deformation for the F1 sample should be ∆𝑦 = 0.0004 𝑚𝑚 and ∆𝑥 = 0.0002 𝑚𝑚. Principally, these 

numbers should be subtracted from the deformation in equation (6.11) and (6.12), but the values are 

considered neglectable. 

That the stiffness of the interface material is different from the material stiffness is not necessary 

true literally speaking, but the boundary layer would be weaker since it is not perfectly mated on the 

micro scale, and therefore the contact area is smaller. A smaller area with high stiffness could thus be 

simulated by a larger area with lower stiffness, giving the same result as a complicated simulation of 

the real geometry. This is similar to using a friction coefficient for sliding resistance in the way that a 

complicated mechanism is translated to a simple parameter. 

A reasonable interpretation of the interface layer thickness could for example be the height of the 

largest roughness elements, and a reasonable way to find the stiffness could be the material stiffness 

of the weakest material multiplied with the ratio between the real contact area and the sample area. 

Unfortunately, it is hard to find the real contact area on a micro scale since it requires high resolution 

scanning of the two adjoining plains, and computer analysis on how the two parts fit together at the 

given vertical stress levels. For a perfectly mated joint with zero height, the interface stiffness as it is 

defined should be infinitely high. This will not work from a computational point of view. The 

experience from the modelling is that if the interface stiffness is set too high, the model crashes. It is 

observed that using too low interface material stiffness is making the model too soft and smooth. 

This can best be illustrated with the attempts to calibrate the model of the M5 sample to the LVDT 

measurements, as seen in figure 6.10: 
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Figure 6.10 Calibration of the interface material stiffness to the LVDT measurements for the M5 
sample. The figure is an example of the unnatural soft behavior when the interface material stiffness 
is set too low 

It can be described as putting a thick rubber mattress between the concrete and the rock part. It will 

allow the interface to deform far more than what has physical meaning, and therefore the concrete 

can rotate around the asperity without any damage. Since the failure mode is not described 

correctly, it will be challenging to get the correct post-peak behavior. 

6.3.4. Meshing 
It is used triangular, linear elements, after the advice of Dobromil Pryl at Cervenca Consulting, since 

these perform better when distorted, then higher order elements. When applying linear elements, it 

is important to have some elements over the thickness of a cross section exposed to bending, since 

linear elements cannot replicate a varying strain field within the element. The asperities we are 

dealing with in this project is exposed to heavy bending, and to get good results, there need to be 

some elements over the thickness. Since there is only one large asperity in the models in this project, 

this is not the dimensioning criterion for the number of elements anywhere, but it would be an issue 

for small roughness elements, for example on a real rock surface geometry. The need to have some 

elements over the thickness is dimensioning for the steel frame, since it is exposed to bending, and 

are thin compared to the test specimen. The dimensioning criterion for the concrete and rock mesh 

seems to be to be able to meet the spatial variations in stresses along the concrete - rock interface. 

Bažant and Oh (1983) pointed out that to satisfy the hypothesis of homogeneous properties within 

an element, the mesh should not be refined to more than some multiples of the largest aggregate. 

The largest aggregate size is in this case 16 mm, but probably smaller along the boundaries. When 

the mesh in this thesis to a large extent is set smaller than this, it is because it is used 2D elements, 
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meaning that the size of the elements is the area of the element times the depth of the structure. So 

even a 1 mm triangular element has a volume of 135 mm3. 

6.3.5. Interval data 
The basic function of interval data is to be able to apply more than one load, one after another. For 

each interval is defined loads and boundary conditions. This option also allows for varying load 

increments and solution parameters through the simulation. 

6.3.6. Solution parameters 
The function of these is to decide how Atena shall do the analysis. An illustration of the setup can be 

seen in figure 6.11: 

 

Figure 6.11 The solution parameters from GiD (CIMNE, 2017) 
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6.3.6.1. Iteration method 

It is not practically possible to calculate the solution to a large set of non-linear equations directly. 

Therefore, an iteration method is needed. In Atena one has the choice between the Newton-

Raphson method and the Arc Length method. The Newton-Raphson method is recommended for 

most cases, while the Arc-length method is recommended for cases with rapid changes, such as 

sudden failures causing snapbacks (Cervenca et al., 2013). This makes the Newton-Raphson suited for 

pre-peak simulation and the Arc-length method suited for post-peak simulation. Within the Newton-

Raphson method one has a choice between Full Newton-Raphson and Reduced Newton-Raphson. 

This choice is governed by the Stiffness Type and how often the stiffness matrix is assembled. In a 

reduced method, the stiffness matrix is not updated for each iteration, only for each step. The 

stiffness type for a reduced method is the elastic predictor, which in contrast to the tangential 

predictor, is more robust but not so efficient. Because of this, a good strategy is to start with the Full 

Newton-Raphson, and switch to a reduced Newton-Raphson in difficult areas. 

6.3.6.2. Equation solver 

One has the choice between several different solvers. A solver is a script to implement the equation 

solver method. They differ in what tricks and shortcut they take to save computational time. Each 

solver will have its pros and cons for particular types of problems. As long as the iteration criteria is 

fulfilled when reaching a solution, it does not matter which solver was used, so it is only a matter of 

computational time. Two solvers were used in this project, the Paradiso and the LU solver. The LU 

solver is more robust than the Paradiso solver, but it is also slower and more memory intensive. It is 

recommended to start with the Paradiso solver, and switch to the LU solver when the Paradiso solver 

do not give any solution (Cervenca et al., 2013). With reference to section 6.3.6.1. about iteration 

methods, it is smart to use the Paradiso solver together with the Full Newton-Raphson method, and 

the LU solver together with the Modified Newton-Raphson and the Arc-length method. 

6.3.6.3. Iteration criteria 

These settings give the required accuracy for an iteration to be good enough. The default values of 1 

% error in displacement and 0.01 % in energy are used. 

6.4. Material properties 

6.4.1. Concrete material properties 

6.4.1.1. Concrete compressive strength 

The concrete is designed to be a C40, which means it has a characteristic strength of 40 MPa, and a 

medium strength of 48 MPa after 28 days according to EC2 (Standard Norge, 2010). In this 

simulation, the medium strength is used as input to Atena, since this is the most probable value. 

The compressive strength is dependent on the curing time. For the M5 sample, the curing time was 

31 days. In the Eurocode, the strength is given after 28 days. The strength development for the extra 

three days can be calculated with formula 3.1 and 3.2 in EC2 (Standard Norge, 2010). 

𝑓𝑐𝑚(𝑡) = 𝛽𝑐𝑐(𝑡) ∗ 𝑓𝑐𝑚  (6.15) 

𝛽𝑐𝑐(𝑡) = 𝑒𝑥𝑝 {𝑠 [1 − (
28

𝑡
)

1

2
]}  (6.16)

s is dependent on the cement type, and is between 0,20 and 0,38. The formula is not valid beyond 28 

days for construction purposes, but for scientific purposes it should be possible to extrapolate the 

formula for some days. 
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Assuming it is a normal class (N) cement gives an s of 0,25, which gives a 𝛽𝑐𝑐(31) = 1,01, meaning 

that the real strength is 1% higher than the 28 day strength. This is considered neglectable, and in 

the calculations a compressive strength of 48 MPa are used. 

6.4.1.2. Concrete tensile strength 

The tensile strength can be found from the compressive strength, applying table 3.1 in EC2 (Standard 

Norge, 2010). A C40 concrete has a medium tensile strength fctm of 3,5 MPa according to table 3.1 in 

EC2. 

6.4.1.3. Other concrete parameters 

The Atena manual (Cervenca et al., 2013) gives suggested values for the input parameters for 

concrete. It is not full consistency between these suggestions and the Eurocode, and no information 

is available to make an informed choice. To represent C40 is chosen the column with compressive 

strength of 50 MPa, since the values for the compressive and tensile strength and E-modulus seems 

to have the best fit to the values from the Eurocode. Parameters, abbreviations and values are listed 

in table 6-1: 

Table 6-1 Concrete material parameters from (Cervenca et al., 2013) 

Parameter Short form Value Unit 

Compressive strength fc 48 MPa 

E-modulus Ec 33 GPa 

Tensile strength fct 3,5 MPa 

Poisson ratio ν 0.2 - 

Compressive cracking initiation stress Fc0 23.63 MPa 

Tensile fracture energy Gf 9.26*10-5 MN/m 

 

6.4.2. Rock material properties 

6.4.2.1. Rock compressive and tensile strength 

The compressive strength was set according to Eltervaag (2013) to 280 MPa, since it is a similar rock 

type. The tensile capacity was found with the Brazilian Test to 13.5 MPa. The E-modulus is set 

according to Eltervaag (2013) to 100 GPa. 

6.4.2.2. Rock fracture energy 

The fracture energy Gf is the amount of energy needed to open a new unit crack area (=>J/m2). 

When doing tensile strength tests, the fracture energy is the area under the work diagram from the 

top point until failure, as shown in figure 6.12: 

 

Figure.6.12 Illustration of the fracture energy, from Atena (CIMNE, 2017) 

Suggested values for concrete are given by Cervenca et al. (2013), but these are not applicable for 

rock. According to Bažant and Oh (1983), the fracture energy 𝐺𝑓 for a rock can be found from 

equation (6.17): 
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𝐺𝑓 =

𝑓𝑢
2

𝑐𝑛
2 ∗ 𝐴 ∗ 𝐸

∗ 𝑔(𝛼0)  (6.17) 
 

For a particular granite with tensile strength 4,8 MPa and E-modulus 29,4 GPa for core samples with 

diameter 30 mm and length 50 mm, the fracture energy was calculated to 94 J/m2 (Bažant and Oh, 

1983). Since in this case we do not have data on the geometric parameter 𝑔(𝛼0), we must assume 

this to be constant and representative to our case. If we disregard cn and A we can simplify equation 

(6.17) to (6.18): 

 
𝐺𝑓 ∝

𝑓𝑢
2

𝐸
  (6.18) 

 

 

The fracture energy for our gneiss should then be approximately: 

 

𝐺𝑓 = 94
𝐽

𝑚
∗

13,52

100
4,82

29,4

= 219
𝐽

𝑚
  (6.19) 

 

 

6.4.3. Interface material parameters 
During the modelling process, it was clear that the measurements of basic friction angle was not 

consistent with the results from the shear box tests. It was therefore chosen to calibrate the friction 

angle to sample F1 (see section 6.5.2). 

Sliding tests done on sawed drill samples of the rock indicates a basic friction angle of 32,86 degrees. 

When doing such sliding tests, it was clear that the basic friction angle found from this test was too 

dependent on the preparation of the samples. It was therefore decided to instead use one of the flat 

samples with the same normal stress for calibration, in this case the F1 sample. A tensile strength 

and cohesion of zero is used for the interface, because there is no bonding. It was decided to avoid 

using to cohesion parameter as an expression for the dilatancy as in Eltervaag (2013), since the 

dilatancy is a part of the friction factor, while the cohesion is independent of the normal stress. 

In the program manual for Atena can be found a recommended value for the interface stiffness, 

given by equation (6.20) (Cervenca et al., 2013): 

𝐾𝑁𝑁 = 𝐾𝑇𝑇 =
𝐸

𝑡
∗ 10  (6.20) 

E – Youngs modulus of the weakest material 

t – Element size of the weakest material 

For a concrete with E = 30 GPA and element sizes of 10 mm along the interface, the resulting 

stiffness is 3*107 MN/m3. 

Note that equation (6.20) is not very exact, the accepted range is from 0.1 to 100 times the value 

from (6.20). E is set to 30 000 MPa. 

6.5. Models and results 
The goal was to model all the shear tests. Due to miscommunication, the gap between the frames 

were believed to be 25 mm instead of 10 mm. This lead to an early cutoff of the toe corner of the 

samples. Due to this and other mistakes, several weeks were spent trying to calibrate a not 

representative model of sample M5 to the LVDT measurement results (see section 4.4). These 

problems were solved quite late in the project. Then a choice had to be made for which samples to 
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model. Since the results from the digital image correlation system Aramis were so time consuming to 

extract, it was not possible to get reliable results from all the samples, which is necessary for 

evaluating the results of the numerical models. It was therefore decided to model three samples, one 

sample with a flat interface, to calibrate the interface stiffness, and then one sample with and one 

sample without rotation. The aim of the modelling of the shear tests is then to evaluate how 

accurately the FEM can replicate the tests, and the implications of the degree of rotational freedom 

on the shear strength. 

6.5.1. Sample M5 
Sample M5 had the asperity in the middle, and a normal pressure of 0.6 MPa. The test sample failed 

by a tensile failure through the concrete part of the sample, initiated at the tip of the asperity. At the 

same time, the rock part fails by splitting of the top part of the asperity. An illustration of these 

failure modes can be seen in figure 6.13: 

 

Figure 6.13 The failure modes of the M5 sample 

Initially, the M5 model was built with the wrong geometry, which gave wrong results. At the end of 

the project, a new model was built for the M5, and the result from this model is presented here. The 

model geometry is shown in figure 6.14: 
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Figure 6.14 The geometry of the numerical model of the M5 sample 

The vertical load is applied as a line load on the top edge, and the shear load is applied 100 mm over 

the interface. 

The model predicted the capacity exactly (1% off), but it failed by the wrong failure mode. It failed by 

overturning, without any material damage. The results are presented in figure 6.15: 

 

Figure 6.15 Resulting work diagram from the simulation of the M5 sample (blue) together with the 
test results (orange) 

A reasonable explanation of the different failure modes but correct capacity is that the found 

capacity is the capacity where the sample becomes unstable against overturning. This could affect 

the structural strength, and it is reasonable to believe that a beginning overturning has initiated the 
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observed structural collapse. It should be noted that the hand calculations for sample M5 showed 

that it should be unstable against overturning. Therefore, it is reasonable to believe that there is 

something with the boundary conditions that is not represented correctly in the numerical model. 

6.5.2. Sample F1 
The F1 sample has a normal load of 1 MPa, and a flat interface. The failure mode of the F1 sample 

was sliding, without any material failure. The purpose of modelling the F1 sample is to calibrate the 

interface parameters. This is not possible to do from the samples with asperities, since it is not 

possible to separate between normal and shear load at the interface, or between normal and shear 

displacement on the interface when the interface angle is not constant. 

First, the friction coefficient was calculated from equation (6.1) to 0.80. 

The load was applied on the model in two load steps, first a step with the vertical loads, then a step 

with the horizontal loads. In the second step, the sample was fixed against rotation by use of master 

– slave conditions on the top edge, as shown in figure 6.16: 

 

Figure 6.16 The geometry of the numerical model for the F1 sample 

The way the master – slave condition works is that the degrees of freedom in the vertical direction is 

merged for the four points, so that if one points moves in the vertical direction, the others move the 

same distance. This prevents rotation. The points are free to move independently in other directions. 

The mesh was drawn with 1 mm elements along the interface, and the initial simulation was run with 

interface material stiffness of 3*108 MN/m3, as recommended in Cervenca et al. (2013). When the 

resulting work diagram of relative displacements of the interface was compared with the interface 

displacement from Aramis, it was found that the model was too stiff, as shown in figure 6.17: 
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Figure 6.17 First result for the F1 sample 

Since it was observed that the initial slope was far too steep, the interface material stiffness was 

reduced to fit the test results. The new stiffness was found by reading off load and displacement for 

two points, on the linear part of the work diagram from Aramis: 

Table 6-2 Values of shear load and interface displacement for the F1 sample from Aramis for 
calibration of the tangential interface material stiffness 

Displacement [mm] Shear load [kN] 

0 0 

0.02 19.65 

The tangential stiffness of the interface material can then be found from eq. (6.12): 

𝐾𝑇𝑇 =
𝜏𝑥𝑦

∆𝑥
=

𝑇𝑥

𝐴 ∗ ∆𝑥
=

19.65 ∗ 10−3𝑀𝑁

0.27𝑚 ∗ 0.27𝑚 ∗ 0.02 ∗ 10−3𝑚
= 13477

𝑀𝑁

𝑚3
  (6.12) 

For calibration of KNN we must look at the work diagram for the application of the normal load. The 

work diagram for the normal load is shown in figure 6.18: 
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Figure 6.18 Normal load - displacement diagram for the F1 sample for calibration of the normal 
interface material stiffness 

Figure 6.18 shows that the relationship between compression and deformation is not linear. So, 

when calibrating a linear parameter from figure 6.18, it must be calibrated in the same area of 

normal forces as may be expected in the test. That means that it should be calibrated in the upper 

area, where the diagram is linear. A new diagram was therefore made for this area, and is showed in 

figure 6.19: 

 

Figure 6.19 Zoomed version of figure 6.18 for calibration of the normal interface material stiffness for 
the F1 sample 

As can be seen from diagram 6.19, it is not possible to interpolate a stiffness from this diagram. It 

seems to be as good as vertical. This is also as could be expected from the initial value, and the 

normal stiffness is therefore kept at 3*108 MN/m3. 

When running the model with these values of tangential stiffness and friction coefficient, the 

following fit was obtained: 
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Figure 6.20 Shear work diagram from the un-calibrated and the calibrated model of the F1 sample, 
together with the test results from Aramis 

The initial slope and the capacity is ok. The deficit in capacity between the test and the Atena model 

after the calibration is due to that the interface stiffness in Atena also affects the capacity to some 

extent, such that a higher stiffness gives a higher capacity. If cohesion was used, the opposite result 

should have been expected, since a soft interface would distribute the stresses better over the 

interface. This relation makes the interface stiffness more important when having cohesion, and also 

more complex to calibrate. It can be observed that the elastic part of the test is not fully linear. This is 

hard to replicate by the use of a linear parameter. The curvature of the FEM is smoother than the 

test in the transition from elastic deformation to sliding. This is observed to be the case for most 

Atena models, and can have something to do with the constitutive material models. 

6.5.3. Sample E8 
The E8 sample is a pure shear test with an asperity at the end. It was blocked towards rotation such 

that the sample could deform in the x- and y- direction. The failure mode of sample E8 is cutting 

through the asperity. The precise path of the crack is different at the two sides, as shown in figure 

6.21:  

 

Figure 6.21 The failure modes of the E8 sample from the front side and the back side. The failure 
modes are slightly different 

Since the E8 sample is constrained against rotation, the same master - slave conditions as for the F1 

sample was used. The geometry and parameters are equal, except for the asperity. The model was 
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first run with the calibrated interface stiffness from the F1 model. This lead to a too soft behavior 

with too low strength, as explained in section 6.3.3.3. After this was made clear, the simulation was 

run with an interface stiffness according to eq. (6.20), of 3*108, since it was used 1 mm elements 

along the interface. The model then became very stiff, and with very high peak strength as shown in 

figure 6.22: 

 

Figure 6.22 The resulting work diagram from the simulation of the E8 sample (blue) and the test 
result from Aramis (orange) 

In figure 6.22, it is seen that the FEM capacity is 288 kN, while the lab test capacity is 191, and that 

the FEM interface is far too stiff. 

After this was tried a model which had 10 times higher tangential stiffness than the first one. This 

gave negligible difference in shear stiffness. It was therefore clear that the shear stiffness of the E8 

sample to a large extent is governed by the normal stiffness of the interface. This makes sense, since 

most of the force is on the asperity, and the force resultant is almost perpendicular to the surface. 

Here could have been done a parametric study of the normal and tangential stiffness to find the best 

fit. Experiences from the M5 samples have shown that this is not straight forward. Due to the bad 

conditioning (Eltervaag, 2013), it can take up to 6 hours for one model to run, and many runs are 

required. It is not acceptable to modify the model with the wrong parameter, just to fit the results. It 

was therefore decided to instead investigate the differences in behavior between lab test and 

simulation, to see if there were other problems with the model. As can be seen from figure 6.22, a 

larger problem with the model than the stiffness is the strength, which is far too high in the Atena 

model. 

Investigation of boundary conditions 

From the digital image processing tool Aramis, a video was made of the deformation in the frame, 

with the displacement in the x- and y- direction quantified for eight points. Two pictures from this 

video is shown in figure 6.23 and 6.24: 
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Figure 6.23 Frame displacements of the E8 sample initially 

 

Figure 6.24 Frame displacements of the E8 sample right after peak strength 

From figure 6.23 and 6.24 can be seen the displacements for points on the frame. The failure seems 

to be the same as in the lab test. The degree of rotation can be seen on the diagrams to the right in 
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the figures, as the difference in displacement between points on the frame. These figures show that 

the test setup is not as rigid as it was thought. At the time of failure, the difference in vertical 

displacement is as much as 0.5 mm. This do not seem like much, but consider the hand calculations 

in section 5, for the difference between sample E8 and E11.  As shall be made clear in the next 

section, this makes a difference, and is a probable reason for the different behavior of the lab test 

and Atena simulation. Due to the findings regarding the boundary conditions no more effort was put 

into fitting of sample E8. 

6.5.4. Sample E11 
The E11 sample is free of rotational constrains. The load is applied 100 mm over the interface, 

causing a moment. 

There are used 1mm elements along the interface, and the recommended stiffness from equation 

(6.20), KNN=Ktt=108 MN/m3. As with the other eccentric loaded samples, the load is applied 100 mm 

over the interface. The failure mode is shown in figure 6.25, and is undercutting of the asperity in an 

angle of approximately 45 degrees from the asperity base. 

 

Figure 6.25 The failure modes of the E11 sample from Aramis 

The experience from the E8 sample has shown that it is crucial to the result to allow the same degree 

of rotation as in the lab test. After inspections of the lab setup and conversations with the lab 

personnel it was concluded that the load cells were not resisting bending or movement in the radial 

direction. It was discovered that the only thing resisting movement and rotation were four springs 

used to hold the loading frame for the vertical load. The springs can be seen in figure 4.1. The spring 

constant was determined by drag tests, as seen in figure 6.26: 
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Figure 6.26 The test setup from the drag test to find the spring stiffness 

The test gave a spring constant of 70 kN/m. This value is used in the model. 

The original model is not wide enough to model the springs, which is shown in figure 4.1, so two 

arms had to be made to represent the top plate, were the springs are attached. The resulting 

geometry is shown in figure 6.27: 
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Figure 6.27 The geomatry of the numerical model for the simulation of the E11 sample 

When running the model, the capacity was found to 125, compared to 176 in the lab test. The failure 

mode was undercutting of the asperity as in the lab test. The Crack was initiated at the left corner of 

the asperity, as shown in figure 6.28: 

 

Figure 6.28 The failure mode from the simulation of the E11 sample at peak strength 

After some more simulation, a new crack appeared higher up on the asperity, as shown in figure 

6.29: 

 

Figure 6.29 The failure modes from the simulation of the E11 sample when the simulation stops. 
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The failure mode in figure 6.28 is similar to the observed for E11 in figure 6.25. The failure mode in 

figure 6.29 is almost exactly the same as the failure mode for the E8 sample, as can be seen in figure 

6.21. 

A similar video was made for the frame displacement as for the E8 sample. It turned out that the 

frame displacements for the E8 and the E11 samples where similar at the time of failure. That means 

that the test conditions for the E8 and E11 sample is also similar, even though the post peak behavior 

of the two samples are very different. This explains the similar peak strength results for the two 

samples. It seems to be some rim movement in the test setup for the E8 sample, that is not blocked 

before after peak strength has occurred. 

Compared to the lab test result, the simulation of the E11 sample is better than the E8, but it does 

not fit the lab results in a good way, as can be seen in figure 6.30: 

 

Figure 6.30 The resulting shear work diagram from the simulation of the E11 sample (blue) together 
with the test results from Aramis (grey) 

As can be seen in figure 6.30, the shapes of the work diagrams seem to be quite similar. There are 

two main differences, the peak strength, and the interface material stiffness. A small parametric 

study is therefore carried out to see if there can be found a set of parameters in a reasonable range, 

that can fit the test results. 

Investigation of the rock tensile strength 

The failure mode is shearing through the rock. It therefore seems reasonable that if the tensile and 

shear strength of the rock is increased, and the fracture energy increased accordingly, the shear 

capacity should also increase. In the original model is used a tensile strength of 13.54 MPa, found 

from test. The tensile capacity was increased to 18 and 30 MPa, and the other parameters adjusted 

according to this. The resulting work diagrams is shown in figure 6.31: 
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Figure 6.31 Resulting work diagrams from simulations of the E11 sample with higher rock tensile 
strength 

From figure 6.31 can be seen that a doubling of the tensile strength of the rock only increase the 

shear strength by 15 kN, or 12 %. A tensile strength of 30 MPa is not in a reasonable range. The 

tensile strength is probably not the problem here. 

Investigation of aggregate interlocking. 

Aggregate interlocking is a material parameter for the concrete and rock material model. It works on 

crack surfaces, and prevents sliding on the crack surface. Simulations of the E11 sample shows that 

use of aggregate interlocking has a prolonging effect on the peak, but little influence on the peak 

strength: 

 

Figure 6.32 Resulting work diagram from the simulation of the E11 sample with the aggregate 
interlocking parameter turned on 
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Figure 6.32 indicates that aggregate interlocking brings the simulation work diagram closer to the 

original, and it should therefore be included. It is used in the further investigations. 

Investigation of lab test data 

In figure 6.32 can be seen a horizontal sliding of 0.1 mm in the beginning of the lab test work 

diagram. This can be explained from a gap of 0.1 mm between the concrete and the rock asperity. It 

would make sense that the model should then behave like the F1 model in the beginning. This is not 

possible to control, but it is a reasonable assumption. Since it is not possible to put in such a gap in 

the Atena model, it is reasonable to take away this sliding in the data. The result of this can be seen 

in figure 6.33: 

 

Figure 6.33 Simulation result (orange) and results from Aramis adjusted to take away horizontal 
sliding part (blue) 

Investigation of rotational constrain 

The difference in capacity between the FEMs of E8 and E11 can only be explained due to the degree 

of rotational constrain. Since the lab test result showed results in between, a reasonable explanation 

would be that they had a rotational constrain in between. To investigate the effect of rotational, 

constrain, a new model was made of the E11 sample, where the spring stiffness was 10-doubled. 

Each of the four springs seen in figure # has then a stiffness of 700 kPa, compared to 70 kPa in reality. 

The result of the model with stiff springs is shown in figure 6.34: 
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Figure 6.34 Simulation results with 10 times stiffer springs (blue) and adjusted test results (grey) 

As can be seen in figure 6.34, the increase in rotational stiffness by 10 times increase of the spring 

stiffness brings the result closer to the test result. A new model is made, to see if it can be brought 

even closer with higher rotational stiffness. In figure 6.35 can be seen the result from the model with 

50- and 100-doubled spring stiffness: 

 

Figure 6.35 Simulation results with 50 (yellow) and 100 (light blue) times higher spring stiffness 

In figure 6.35 can be seen that a rotational constrain is a probable reason for the difference in 

capacity between the E11 lab test and the Atena model. An interpretation of this could be radial 

resistance at the load pistons. Since it is known that the springs are not the real reason for the 

difference in rotational constrain, it is not done further attempts of model fitting with the spring 

stiffness. 

0

20

40

60

80

100

120

140

160

180

200

-0,2 0 0,2 0,4 0,6 0,8 1

Sh
ea

r 
lo

ad
 [

kN
]

Interface displacement [mm]

E11 shear work diagram

Atena_StiffSprings

Atena

Aramis_SlidingRemoved

0

50

100

150

200

250

-0,2 0 0,2 0,4 0,6 0,8 1

Sh
ea

r 
lo

ad
 [

kN
]

Interface displacement [mm]

Atena_10xSpringStiffness

Atena

Aramis_SlidingRemoved

Atena_50xSpringStiffness

Atena_100xSpringStiffness



58 
 

Investigation of the model at other normal loads 

It is interesting to see how the model of E11 performs for other normal loads. Therefore, the E11 

model is modified to model the E12 and the E13 sample with a normal load of respectively 0.6 MPa 

and 0.2 MPa. There is no Aramis data available for these samples, but the shear capacity, together 

with the model results is shown in table 6-3: 

Table 6-3 Peak shear strength from simulation and tests for the E11, E12 and E13 samples 

 E11 E12 E13 

Lab test 175 kN 134 kN 40 kN 

Atena 125 kN 81 kN 35 kN 

Difference -29% -40% -13% 

Table 6-3 shows that the Atena model under-predicts the shear capacity for all the models with free 

rotation and asperity at the end. 

6.5.5. Why it is so hard to model post-peak behavior 
Tensile failure in brittle materials is in its nature unstable, since the criterion that should be satisfied 

for a tensile failure to happen is that the release of potential energy in the fracture of a unit area of 

the structure is higher than the energy needed to break open a unit area of the structure. If a non-

reinforced concrete column is loaded in tension until it fails, it is impossible to predict where it is 

going to fail, given that the material properties varies uniformly over the structure. 

When doing non-linear analysis in Atena, it works in the way that the load is applied in load steps, so 

that when a new small load is applied, the program iterates to find an equilibrium. 

When a tensile failure happens, an equilibrium does not exist, since once it is initiated in a small area, 

the release rate of energy is larger than what the structure can take up. Eventually, in real life a 

tensile failure stops somewhere, because although it can sound like a black hole, it is not. Unstable 

tensile failures tend to stop when the failure has reached the edge of that part of the structure. That 

may not be fatal for the structures ability to carry load but it is most often not possible to carry on 

the simulation after the local failure, since the program does not manage to converge the energy 

residual. 
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7. CASE STUDY DAM KALHOVD 

7.1. Introduction 
The aim of this case study is to see how use of the real geometry of the foundation will affect the 

calculated stability of a plate dam pillar compared to a traditional stability assessment with Mohr-

Coulomb shear criterion, rigid body displacement and straight shear plain. It is also investigated how 

different definitions of the factor of safety (FS) against sliding affects the stability. 

In this case study, section 59 of Dam Kalhovd is studied. The pillar has an approximate upstream 

height of 5 m. The geometry has been measured at sight. In figure 7.1 can be seen a picture from 

sight: 

 

Figure 7.1 Picture of pillar 59 from the Dam Kalhovd 

Dam Kalhovd was assessed by Norconsult as part of the reassessment process. As an initial 

assessment was used the traditional method assuming rigid body displacement and Mohr-Coulomb 

shear criterion. For pillar 59, this gave a FS against sliding of 1.14. 

7.2. Defining the factor of safety 
For a FEM, the factor of safety is not so straight forward as for a hand calculation, since the FEA can 

only find the load situation were the structure fails, meaning that the factor of safety equals one for 

the applied loads. The factor of safety against sliding is defined as the resistance capacity divided by 

the acting loads. This means that to find the factor of safety with a FEA, there are two principle ways 

to go, increase the loads or decrease the resistance capacity. For a traditional calculation, the only 

resistance is the friction. To reduce the friction factor is a normal procedure (Wyllie and Mah, 2004). 

But when doing an analysis on the real geometry, the friction is not the only resistance preventing 

sliding. If the resistance capacity should be reduced, then the material strength of the materials on 

both sides of the interface should also be reduced. This would lead to an iteration process to find the 
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factor of safety, were the parameters were adjusted, and the model would need to be re-run to find 

if the dam is safe with the given factor of safety. For simplicity, it is therefore chosen to put the factor 

of safety on the water loads (including uplift) and ice loads. This is equivalent to increasing the 

density of water together with the ice load. Since the calculation is divided into load steps, the factor 

of safety could then be defined as the load in the load step were the simulation stops divided by the 

dimensioning loads. The increase in loads are carried out by defining the water- and ice loads in a 

separate interval, and increase them until failure. The factor of safety is then equal to the resulting 

loads divided by the dimensioning loads. 

7.3. Material parameters 

7.3.1. Concrete 
There were found a medium compressive cylinder strength of 33.0 MPa and an E-modulus of 25 GPa 

for the concrete samples from Dam Kalhovd. The tensile strength is set from the eq. (7.1) (Standard 

Norge, 2010): 

𝑓𝑐𝑡𝑚 = 0.30 ∗ 𝑓𝑐𝑘

2
3  (7.1) 

𝑓𝑐𝑘 = 𝑓𝑐𝑚 − 8 𝑀𝑃𝑎  (7.2) 

Applied with a 𝑓𝑐𝑚 of 33.0 MPa equation (7.1) gives 𝑓𝑐𝑡𝑚 = 2.6 𝑀𝑃𝑎 

The fracture energy of the concrete is set according to the formula (Westberg and Johansson, 2016): 

𝐺𝑓 = 73 ∗ 𝑓𝑐𝑚
0.18  (7.3) 

Applied with a 𝑓𝑐𝑚 of 41.2 MPa equation (7.3) gives 𝐺𝑓 = 137 
𝑁

𝑚
. 

7.3.2. Rock 
There were done material tests on core samples from Dam Kalhovd. The results from the Concrete 

were quite reliable, while the results from the rock samples were not consistent, due to limited 

number of tests and different failure mode observed in compressive tests. Based on a qualitative 

assessment of the most reliable tests, the compressive strength was set to 100 MPa, and the E-

modulus to 60 GPa. The tensile strength was set according to equation (7.1) to 6.1 MPa, and the 

fracture energy was set to 167 
𝑁

𝑚
 according to formula (7.3). 

7.3.3. Interface parameters 
It was assumed no bonding, i.e. no cohesion, to be able to compare with the results from the 

spreadsheet calculation. Tests on core samples from Dam Kalhovd showed a friction angle of 69° for 

a normal pressure of 0.5 MPa. This was considered too high, and it was therefore used a friction 

angle of 45°, resulting in a friction factor of 1, as recommended in the NVE guidelines (NVE, 2005). 

The interface stiffness was set according to equation (6.20), as a function of mesh size. 

7.4. Model 

7.4.1. Geometry 
It is chosen to include the rock foundation in the model, rather than to apply boundary conditions 

directly on the dam. The rock foundation is modelled to a depth of 8 m and an outcrop of 5 m on 

both sides of the dam. The rock is modelled with fixed supports on all sides. The thickness of the 

foundation model is 1m. This is assumed to be the influence zone of the pillar. Unfortunately, the 

plate has a larger influence zone than the pillar, since its much wider. 
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It was chosen to model the pillar without the doorway and without reinforcement, to keep the 

model simple. This can be defended since the aim of the analysis is stability control, not to assess the 

structural strength. No self-weight is applied to the doorway. 

The model is shown in figure 7.2: 

 

Figure 7.2 The geometry of the numerical model for the simulation of pillar 59 from Dam Kalhovd 

In figure 7.2 can be seen that there is a crack in the front of the pillar. Previous experiences have 

shown that it is difficult to make a model with sliding along two parallel interfaces. It was therefore 

decided to make two models, one with the interface through the crack, and one with the interface 

between concrete and rock. 

In figure 7.2 can also be seen that the load plate for the application of ice load and hydrostatic load is 

quite thick. It was therefore decided to reduce its stiffness by a factor of 1000, such that it would be 

equivalent to a 0.1 mm steel plate, which is assumed to be neglectable. 

The geometry of the pillar is not correctly modelled. The real pillar has a top thickness of 0.3 m, 

increasing to 0.44 m at the bottom. Since the model is made with linear stress elements, which has 

constant thickness, it is used an average thickness of 0.37 m for the pillar. Since the Mohr Coulomb 

shear criterion is used for the interface without cohesion, the difference in pillar thickness between 

the model and reality does not matter for the sliding properties.  

7.4.2. Mesh 
The geometry is meshed with a mesh size of 0.05 m along the concrete – rock interface, 0.1 m in the 

concrete parts and 0.5 m in the rock foundation. The mesh together with the quality index is shown 

in figure 7.3: 
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Figure 7.3 The mesh quality for the simulation of pillar 59 from Dam Kalhovd 

The best is to have only equilateral elements (angles 60° for triangular elements). Elements with 

angles less than 30° is considered bad quality (Cervenca et al., 2013). As can be seen from figure 7.3, 

there are few such elements. There are some where the uplift is applied, but since these are linear 

elastic and the solution converges it is not believed to have any influence. 

7.4.3. Loads 
The less beneficial load case is HRW + ice load. The HRW is at elevation 1086.61 mas. The ice load is 

set to 100 kN/m and the distance between the sections is 5 m, giving an ice load of 500 kN per pillar. 

The hydrostatic load and ice load is applied on a steel plate with thickness 0.1 mm outside the 

concrete plate. To get a good mesh, the steel plate had to be made thicker and softer. It is modelled 

as a 100 mm thick plate with stiffness E=500 MPa, which is a thousand of steel stiffness. It is 

therefore equivalent to a 0.1 mm steel plate for compression, and thinner for bending.  

The total height of the section is 4.7 m. Since modelling triangular line loads in Atena is not straight 

forward, the load is applied as point load in 48 points along the plate, as seen in figure 7.4 and 7.5. 

The load for each point is calculated as the pressure in the point times the area it represents. Each 

point represents an area of 0.5 m2, except for the outer points representing an area of 0.25 m2. 

The uplift is modelled as a point load on a steel core inside the concrete plate, as seen in figure 7.4: 
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Figure 7.4 Illustration of the load application of the uplift force in the numerical model of pillar 59 
from Dam Kalhovd 

The uplift force is calculated as the hydrostatic pressure in front of the plate (47 kPa) times the area 

of the downside of the plate, giving a total load of 211.5 kN.  

The self-weight of the structure is applied with a value of 23 
𝑘𝑁

𝑚3 for the concrete and 27 
𝑘𝑁

𝑚3 for the 

rock. No weight is applied for the doorway. The load application is shown in figure 7.5: 

 

Figure 7.5 The load application in the numerical model of pillar 59 from Dam Kalhovd 
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The arrows inside the volumes represents surface loads, the up-pointing arrow is the uplift and the 

loads on the plate is the hydrostatic load and the ice load. 

7.5. Results 

7.5.1. Model with interface in foundation 
First the model was run without the crack, representing the original state. At a load of about 2.4 

times the dimensioning, a crack developed similar to the observed crack. After this crack had reached 

the plate, a new crack started to develop from the tip of the rock asperity towards the plate as 

shown in figure 7.6: 

 

Figure 7.6 Failure modes in the numerical model of pillar 59 from Dam Kalhovd with the interface at 
the foundation. In the figure is drawn the vertical stresses, and the failure modes are shown as cracks. 

Since each load step applies 1% of the dimensioning loads until step 100, and 1% of the water- and 

ice load from step 101, a simulation until step 240 corresponds to a factor of safety against sliding of 

2.4. Since this model do not collapse completely after the development of the first crack, it is 

assumed to be a valid result to start the simulation without the crack, and let It develop by itself. In 

the next step, the horizontal concrete crack develops into the plate. 

The cracks in the rock is partly a consequence of the assumed influence zone of 1m for the pillar. It is 

observed that most of the forces in this area comes from the plate. The crack in the front of the rock 

asperity is therefore not expected to occur on the real dam. 

7.5.2. Model with interface in the observed crack 
The model with crack through the concrete was run until step 280 before it stopped due to 

convergence problems. The reason for the lack of convergence was cracking in the rock foundation 

and through the plate, as shown in figure 7.7: 
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Figure 7.7 Illustration of the failure modes from the simulation of pillar 59 from Dam Kalhovd with an 
interface in the observed crack. In the figure is drawn the deformed shape over the original shape. 

Figure 7.7 shows the deformed shape, with a multiplication factor of 100. It seems like much of the 

stability against overturning comes from friction between the vertical surfaces of rock and concrete. 

This would not occur with a straight shear plain, and is one of the main advantages of including the 

geometry in the model. 

280 steps carried out gives FS=2.8 for this model. It is observed that there are tensile stresses of 1 

MPa in the concrete right over the foundation in the plate front, and this model is therefore not 

valid. It is not unreasonable that there should be 1 MPa cohesion under the plate, but since this is 

not documented, this is omitted in the model. It is reasonable to assume that these tensile stresses 

can explain the difference between the two models. 

Based on these considerations, the first model, the one with interface along the foundation, is found 

to be a good representation of the actual behaviour of the dam. This conclusion is strengthened by 

the appearance of the same failure mode as is observed on the real dam. This model is therefore 

used in the parametric study. 

7.6. Parametric study 

7.6.1. Ice load 
A new model was made, where only the ice load was increased. This is done to investigate what 

happens if the safety factor is only applied to the ice load instead of applying it to both the ice load 

and the density of water. Then the factor of safety is reduced to 2.1. This means that it is more 

conservative to only put the factor of safety on the ice loads, than on both the water- and ice loads. 

The reason for this is the large vertical hydrostatic pressure due to the inclined plate. 

Since the ice load is the most uncertain load for Norwegian conditions, this definition of the safety 

factor is reasonable. This calculation shows that the observed crack can be explained if the ice load 

has reached 210 kN/m. 
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7.6.2. Horizontal loads 
It is reasonable that the FS should be put on the parameter that contributes to the uncertainty, 

which is the resistance and the ice load. In the previous section, it was investigated what happens if 

the FS was put on the ice load. It was stated initially that it is not possible to put the FS on the 

resistance, since it is very complex with a real geometry. It is also stated that the normal procedure 

for finding the FS with FEA is to reduce the friction angle. Since the friction angle also represents the 

geometric roughness when a flat surface is assumed, it is reasonable to put the FS on the resistance 

as a whole. This can be justified by the large uncertainty in the property of the rock mass. In this 

section, the FS is therefore put on the horizontal forces. This should be equivalent to putting the FS 

on the resistance since the resistance equals the horizontal forces at sliding failure. 

The hydrostatic pressure is then decomposed into a vertical and a horizontal part, were the 

horizontal part is increased, while the vertical part is kept constant. Since the uplift is smaller than 

the vertical hydrostatic pressure on the upside of the plate, this should be a more conservative 

definition than the initial definition. The ice load is also increased accordingly. The model run to step 

199, where it fails, giving a FS=1.98. This is assumed to be the most correct FS. It is also the most 

conservative. The failure mode is, as before, shearing true the pillar and the plate, as shown in figure 

7.8: 

 

Figure 7.8 The failure modes from the simulation with increasing horizontal loads until failure 

At this stage, the model has not converged, but figure 7.8 indicates what happens in the model. 

As earlier mentioned, the crack through the rock is un-physical due to geometrical issues. As before, 

the crack develops at about the same place as the observed crack in the pillar. 

7.7. Assessment of scale effects 
It is not possible from an empirical point of view to quantify the scale effects in a model, without 

making scaled versions of the same models. The assessment of scale effect must therefore be set up 

as a discussion. 
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One of the nice things about numerical models is that they model distributed forces, which 

converges to stress as the element size is decreased. Scale effects are in general a force 

phenomenon, rising from different stress distribution on different scales. When stress is modelled 

and not force, there should therefore not be any scale effects, in theory. The problem is that the 

interface where the plastic shear deformation happens is not modelled with high enough resolution. 

To capture the scale effects, the individual roughness would need to be modelled so that the model 

would contain the real contact area, since larger surfaces have larger contact areas (Johansson, 

2009). The resolution of the geometry in the model presented here is in the order of magnitude 20 

cm. To apply the real geometry helps on the scale effect, but it is the authors meaning that the 

resolution applied here is not high enough to make scale effects disappear. 

One way to mitigate this issue without using a very fine geometry would be to use a non-linear 

failure criterion, describing the post-peak behaviour from shear tests of the same scale as the 

resolution of the geometry. It was found that the interface displacement in the toe part of the pillar 

was about 3 mm at the time of failure. Then it is not correct to use a friction angle of 45°. Rather a 

residual friction angle of 40° should be used in this area. Unfortunately, it is not possible to have a 

variable friction angle in Atena. A friction angle of 45° can be defended by that the friction angle is 

higher than this in the parts of the interface that do not have any interface displacements. 
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8. ADVICE ON THE LARGE-SCALE SHEAR TEST 

8.1. Introduction 
The large-scale shear test is a part of the Stable Dam project. In the original plan, it should have been 

carried out in the late summer of 2017, but it has been delayed. When the assignment text for this 

thesis was made, it was expected that it should be carried out in the summer of 2018. At the delivery 

date of the thesis, it is expected that the test should be carried out earliest in the autumn of 2018. 

The purpose of the large-scale test is to be a demonstration of the developed assessment methods, 

to show that they are competent to be applied on full-scale dams. This leaves two questions to be 

answered: 

1) What methods for dam safety assessment should the large-scale test be designed to test. 

2) How should the large-scale test be carried out in practice. 

8.2. Location of the large-scale test 
In the Stable Dams project, two main approaches are carried out, to find the shear capacity of 

idealized surfaces, and to find the capacity of real surfaces. There are two alternatives for the large- 

scale test, to do it in the lab or in the field. In the lab, it is possible to do the test under controlled 

conditions. In the field, it is possible to test under much more realistic conditions. To put it on the 

edge, the choice stands between measuring a realistic sample inaccurately or measuring an 

unrealistic sample accurately. This should not make much difference, and the difference should be 

what should be tested. If a natural surface should be tested, it is beneficial to do it in the field, since 

nature consists of natural surfaces. If a simplified man-made surface should be tested, similar to the 

shear tests on man-made asperities done at LTU in the spring of 2017, it is better to do it in the lab, 

since the surfaces would need to be cut out as blocks for preparation. Since the aim of the large-scale 

test is to show that the developed methods are reliable on real dams with real geometry, I base the 

further discussion on that the test should be done in the field. 

Leif Lia has suggested to do full scale tests on sections of Nåvatn Dam II or Nåvatn dam IV in Åseral 

municipality in southern Norway. These dams are going to be decommissioned in 2018 in the process 

of merging the two reservoirs Skjerkevatn and Nåvatn. An air photo of the dams is shown in figure 

8.1: 
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Figure 8.1 Air photo of Dam Nåvatn I, II, III and IV 

From the picture in figure 8.1, it looks like dam IV is the best candidate, since this dam has the easiest 

access. In a brief period in 2018, the water will be drawn down for the decommissioning of the dams. 

Nåvatn Dam II is a 12 meters high plate dam, and it would therefore be available pillars in all heights 

below 12 meters. The most interesting would be to test pillars that are deemed unstable by the 

traditional methods. Norconsults assessment of Dam Kalhovd (appendix C) shows that it is the small 

pillars (below 6 m) that are most unstable due to ice load. Lower pillars would also require less force 

at lower heights, and have a longer time window due to rising water. 

8.3. Load case 
So, what scenario should be tested? How should the pillar be broken? Since it is a low pillar, HRW + 

ice load will be the dimensioning load case. In the case study on the pillar from Dam Kalhovd, the 

factor of safety was applied to the resistance, because the model of the resistance was considered 

most uncertain. This was done by increasing the horizontal forces until failure. For the full-scale test, 

the model of resistance is not uncertain, since it is a real structure, even if it is not known. The 

probable cause of failure for the dam is the ice load, and the dam should therefore be broken by 

increasing the equivalent of the ice load until failure. 

8.4. How to apply loads 
There would not be enough force to take down more than one pillar at a time. It must therefore be 

investigated how much cross-bearing there is between neighboring pillars, to find if it is possible to 
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do the test with the plate. If there is much cross-bearing, the plate would need to be removed or cut 

off. One approach could be to saw off the plate half way between the pillars, so that a representative 

part of the plate weight would be assigned to the pillar. But this approach would not be 

representative of the real state, since we would not apply distributed forces on the plate, and if we 

do, we would not be able to keep the plate in the correct position and angle at the sides, and 

therefore, the forces will not be distributed correctly. 

The main difficulty with a full-scale test is how to apply the load. The load bearing in a plate dam is 

highly complex. The most realistic, and therefore also most representative approach would be to test 

the dam when there is water behind, but this would require the construction of a water retaining 

structure, since testing the dam with a full reservoir of 120 mill m3 behind is not recommended. To 

use a water retaining structure would only be representative of the real state if it is found that there 

is no cross-bearing between the pillars. If such an effect is found, which is very probable, the loads 

would need to be assigned as concentrated loads. 

It should therefore be investigated how the load bearing is distributed between the plate trench and 

the pillar, so that an equivalent load could be assigned to the plate. After calculating the load and its 

distribution on the plate, the plate should be removed for the test. The insulating wall should stand 

to get sideway stability. It would be useful after the test is done to be able to back-calculate to find 

the equivalent load on a pillar with plate, as a result of the failure load on a pillar without plate. For 

this purpose, is needed a 3D numerical model of a dam section with the plate trench. 

The vertical loads from plate and water could be applied with concrete or steel weights, or by pre-

stressing wires between the pillar and rock bolts. The horizontal loads could for example be applied 

by building a concrete block on the upstream side of the pillar, so that the load could be produced by 

mechanical or hydraulic jacks, as shown in figure 8.2: 

 

Figure 8.2 Illustration of a possible test setup for the large-scale test 

The concrete block would need to have a larger capacity against sliding and overturning than the 

pillar. A rule of thumb is that it would need to have larger mass than the pillar. The volume of the 

pillar is approximately 10 m3 (6 m*5m*0.33 m). It would also need to be strengthened with rock 

bolts, and have the necessary curing time. If there are not enough curing time available, the amount 

of concrete could be increased to compensate. Concrete costs are in the order of magnitude 3000 

NOK/m3 (Norconsult, 2016), so the price for 15 m3 of concrete would come at about 45 000 NOK. The 

reinforcement, bolts and formwork would amount to at least that much (Norconsult, 2016). The best 

would be to coordinate this with concrete works for the concrete plinth under the asphalt core on 
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the new Dam Skjerkevatn, but it would probably not be possible to start that fast. There is also a 

question of how often the water level in Nyvatn is more than 5 m below the dam crest, but it would 

hopefully be possible to do the works before the spring flood in 2018. 

A simpler alternative for the load application would be to pull the section using a heavy-duty truck, 

where a dynamometer could measure the force. If this is done during the construction of the new 

embankment dam Skjerkevatn, there would be lots of available trucks for this purpose. If this 

method is chosen, a pillar from dam IV must be chosen, due to road access (see figure 8.1). According 

to (van Daal, 2015), a truck can generate a pull force approximately equal to 50 % of its own weight. 

According to the authors compendium in plant engineering (Bruland, 2013), a typical size for a wheel 

loader is 100 tons. If such a wheel loader was equipped for it, it could be approximated from these 

data that it could pull about 50 tons of force. That is not necessarily enough to pull down a plate dam 

pillar of 25 tons with favorable foundation geometry, bonding between concrete and rock, and rock 

bolts. This could be solved by using two trucks, either in parallel or in series. When doing this, it is 

very important to pull with the correct angle. It can be seen from the photo in figure 8.1 that there is 

a slope on the downside of the dam IV. From the map, this slope is found to be 65 m long and 14 m 

high, giving an average inclination of 1:5 or 11°. Since the wires would probably need to be attached 

to the truck in a height of approximately 2 m, about 3 m more must be added to the height 

difference due to the height of the dam, giving an inclination of 1:4, or 15° at the best position of the 

truck. This angle can be very favorable, not only to increase the pulling force, but also for the 

experiment. A rough calculation shows that for a 5 m high dam with plate inclination 4:5, the load 

resultant of water and ice will have an inclination of 31° with ice load of 100 kN/m and 17° with an 

ice load of 200 kN, which were the maximum load for the pillar studied from Dam Kalhovd in the case 

study. With bonding and rock bolts, the force would probably need to simulate a larger ice load. At 

300 kN/m the inclination would be 13°. If the weight of the plate also is included, the angle would be 

higher. With this angle, there would not be that large need to have vertical forces on the dam, if 

done right. This is one of the main advantages with the truck alternative. 

8.5. Monitoring 
The test should be monitored with the Aramis optical measurement system, similar to what is done 

on the shear tests on man-made asperities, conducted at LTU the spring of 2017. This is important to 

be able to compare the test to a numerical model. The data from Aramis could also be used to 

control the loads, by inserting the found displacements into a numerical model, to find the force 

needed to cause them. 

The experience from the spring 2017 shear tests at LTU shows that it is useful to have two 

independent measurement systems. 

8.6. Project risks 
There are multiple safety, health and environment risks related to this project. Some of the risks are 

here listed up: 

- Snapping of the pulling wire or load wires, resulting in the wire hitting someone with supersonic 

speed. 

- Bursting of hydraulic cylinders as a result of overloading of machinery. 

- The concrete block or pillar overturning sideways and hitting someone. 

- Someone getting run over by the truck. 

There are also economic risks in the project. One of the main economic risks would be if the project 

is extended or delayed, for example due to that the applied force is not high enough, or something 
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breaks down. The measurement devices are probably the most vulnerable component in the project. 

Most of the mechanical devices can probably be replaced without much delay. SHE issues and delay 

can hopefully be avoided with proper planning. 
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9. CONCLUSIONS 

9.1. Findings 

9.1.1. Theoretical background 
1) Use of the Mohr-Coulomb shear failure criterion leads to underestimation of the strength for 

small dams and overestimation of the strength for large dams, since the peak friction angle is 

decreasing with increased normal load, as shown by Patton (Patton, 1966). 

2) Use of Patton’s criterion requires an advanced model to set the dilatation angle correct. All 

of these models are rigid body models, meaning that they are unable to take into account 

the deformation in the dam to find the correct global capacity from the local work diagrams. 

9.1.2. Simulation of shear box tests 
3) The results of the modelling show that simulation these are not straight forward for the 

shear tests. The main reason for this seems to be that it is hard to replicate the laboratory 

boundary conditions, especially related to the steel frames and the load pistons. It is possible 

to fit the model to the result by modifying the rotational stiffness in the boundary conditions. 

This is not a proof that the rotational stiffness is the difference, but it makes it probable. 

4) Since it is probable that the main difference between the numerical model and the lab test is 

due to different rotational constrain in the test setup, and it is possible to calibrate the 

model using parameters related to the stiffness, the numerical model is assumed to be a 

good representation of reality. In a real concrete dam, there would not be any problems with 

the rotational constrains. 

5) One of the main learning points from modelling of the shear tests is that it is dangerous to 

calibrate a model with the wrong parameter. Even if a good fit is obtained, the model will not 

work in other cases. 

6) It is not straight forward to calibrate the interface material stiffness, since it is both 

dependent on the mesh size and the shear stress - strain. The best way to set the interface 

material stiffness seems to be to follow the recommendations in the program manual 

(Cervenca Consulting, 2017). To have the correct interface material stiffness is most 

important when cohesion is used. 

9.1.3. Case study 
7) A factor of safety is not a good way to assess the safety of a concrete dam, since it does not 

differentiate between parameters with small and large variation. In the case study, the FS 

was applied to the horizontal loads, which is equivalent to applying it to the sliding 

resistance. When this definition is applied to dam section 59 of Dam Kalhovd, it obtains a 

factor of safety against sliding of 1.98, compared to 1.14 with the traditional approach. The 

reason for this is that the failure mode is no longer sliding on a straight shear plain, but 

material failure in rock and concrete. Of the FS definitions investigated, this was the most 

conservative. 

8) The method with finite element analysis with real geometry seems to be a better 

representation of reality, and shows more capacity than the traditional method. It would not 

provide additional capacity for all sections, only on those with beneficial geometry. But it 

could mean the difference between decommissioning the whole dam and only doing 

strengthening of the worst sections. This would lead to a large gain for both the economy 

and the environment without violating society safety. 

9) The contribution from the slab trench seems to be very large. This effect should be taken into 

consideration also in traditional sliding analysis, for example by including the shear capacity 

of the plate in the shear resistance. 
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10) The stabilizing moment from the vertical component of friction between rock asperities and 

concrete is a major contribution to the stability against overturning for rough geometries. In 

a FEA, this contribution is included, but it is not recognized in the traditional method. 

9.1.4. Conclusions on the large-scale test 
11) The test should be done in the field to have a realistic foundation. Dam Nåvatn II and IV are 

good candidates. Dam IV is the best due to easiest access. 

12) A 3D model must be made to determine if there is cross-bearing between the pillars, and if it 

is, to find the equivalent loads on the pillar, so that it could be determined what loads should 

be applied. If there is cross-bearing, the plate must be removed. 

13) The load case should be HRW + ice load, and the pillar should be broken by increasing the ice 

load, since that is the most realistic scenario. 

14) The pillar could be simulated by a 2D plain stress model, similar to what is done in the case 

study in this thesis. 

15) An optical measurement system should be used to control the loads, and the result from the 

numerical model. It should be two independent measurement systems. 

16) Two methods for load application is presented. The cheapest and most realistic is probably 

the alternative with pulling the pillar with a heavy truck. The best way to choose would be to 

contact the entrepreneur working on the dam, and ask what can be delivered to which price. 

 

9.2. Suggestions for future work 
1) A Finite Element Model of a dam should be made where the roughness is represented 

through a spatial distributed, advanced failure criterion that includes the post-peak behavior. 

This failure criterion must be calculated for each element along the dam from the actual 

roughness at the foundation. The idea is to combine the FEMs ability to handle distributed 

stress and displacements, and its ability to iterate to find a solution, with an advanced, 

empirical shear failure criterion based on the real geometry. This should be combined with 

shear tests documenting the interface post-peak behavior at different normal stress levels, 

so that the peak friction angle is reduced to the residual friction angle during a given shear 

deformation of the interface. The failure criterion should be connected with the interface 

material stiffness, for example through the contact area. This approach would favor 

Grasselli’s criterion (Grasselli, 2001), since it includes the contact area. It is not possible to 

use advanced shear criteria in Atena – GiD in the standard form, but it could be made 

possible by programming a new module. 

2) An analytical method should be determined to find the contribution from the vertical friction 

component on the overturning stability. By hand calculation on sample M5 was found that 

for asperities with sum of friction angle and asperity angle larger than 90 degrees, this effect 

would be beneficial for the overturning stability. If this effect is quantified, it could be used 

for foundations with rough geometry and good rock quality. 
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Appendix A – Derivation of the Mohr-Coulomb formula for inclined 

sliding 
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Appendix B – Work diagrams based on LVDT measurements 

Pure shear samples 
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Shear + moment samples 
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Appendix C – Results from stability assessment of Dam Kalhovd 
The results presented here are carried out by Norconsult for Statkraft, who is the dam owner. These 

results are only a rough estimate of the strength capacity, for use in an early phase of the re-

assessment. They are found with the traditional method from the guidelines from the height of the 

pillars, the inclination of the foundation and a general pillar shape. 
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